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It seems to me, that when it’s time to die,  
-and that will come to all of us-,  
there will be a certain pleasure in thinking that  
you had utilized your life well, 
that you had learn as much as you could,  
gathered in as much as possible of the universe,  
and enjoyed it. 
    ―Isaac Asimov  
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Abstract 

 

As one of the countries with the largest forest cover in the world, Indonesia is facing a 

severe problem of deforestation. The enormous land use change in the country has 

serious impact in the global greenhouse emission, making REDD+ a significant initiative 

for Indonesia. To ensure effective REDD+ intervention measures, identifying and 

analysing drivers of deforestation in the country are of a great importance. In this study, 

we conduct spatial analysis of drivers of deforestation to assess the link between the 

direct and indirect drivers of deforestation. Random forest algorithm was employed to 

identify the major indirect drivers of deforestation in the country. Utilizing a number of 

direct and potential indirect driver data in 139 sample units, we found that the majority 

of the deforestation in the country is related to palm oil and is greatly influenced by their 

distance to palm oil mills and roads. Smallholder agriculture-driven deforestations tend 

to occur near roads and rivers. While biophysical properties of the area can influence the 

deforestation pattern to a certain extent, it is deemed as insignificant determinant of 

deforestation, alongside the socioeconomic variables. We conclude that different direct 

driver has specific underlying driver linked to it. Its effect can be studied by firstly 

distinguishing the proximate cause of the deforestation rather than analysing the 

deforestation as a whole. This implies the need of comprehensive direct driver data as a 

prequisite. This study demonstrated a way to link the direct and indirect drivers, and can 

possibly be extended to greater scale and detail to produce detailed information 

regarding drivers of deforestation. This knowledge can further contribute to countries in 
setting up effective and accurate REDD+ strategies. 

Keywords: deforestation, direct driver, indirect driver, palm oil, REDD+, random forest, Indonesia  
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1. Introduction 

1.1 Forest and deforestation 

It is well known that forests play significant roles in the ecosystem. Currently, forests 

cover around 30.6% of the Earth’s surface and contain 80% of the planet’s biomass (FAO, 

2015; Pan et al., 2013). In the tropics, the tropical rainforests host over 80% of the world’s 

biodiversity whilst covering just over 7% of the world’s land (Malhi and Wright, 2004). 

Forests also act as major carbon sinks, absorbing billions of tons of greenhouse gases 

(GHG) each year (Canadell and Raupach, 2008). As such, forests hold important role in 

the global climate due to its role in the global carbon cycle. 

Despite the significant roles, forests are now widely regarded as the most endangered 

habitat on the Earth. More and more forests are being cleared to make way for 

agricultural lands and settlements (FAO, 2015). This practice is called deforestation, i.e., 

clearing forest lands into non-forest. It is estimated that deforestation accounts for 18% 

of global GHG emission (Angelsen et al., 2009). Therefore, deforestation is a prominent 

on-going problem, particularly in regard to the climate change (Achard et al., 2014a; 

Hansen et al., 2013b).  

Deforestation historically occurred in temperate forests of Europe, North America, and 

Asia up until the 20th century (FAO, 2012). Nowadays, deforestations are shifting into the 

tropical countries. Currently, among the countries with the highest deforestation rate is 

Indonesia, alongside with Brazil (FAO, 2015). Forests hold an essential role in the 

development in these countries. In Indonesia alone, forest is a major source of livelihood 

for around 6 to 30 million of people (Sunderlin et al., 2000). As a consequence, forests 

have continually been exploited, leading to the loss of 21 MHa of forests area between 

1990-2005 (Hansen et al., 2009). Inevitably, this enormous area loss has significant 

implications in the climate change issue (Margono et al., 2014). 

1.2 REDD+ 

To tackle deforestation and therefore mitigating climate change, the parties of United 

Nations Framework Convention on Climate Change (UNFCCC) has developed REDD+: 

reduce emissions from deforestation and forest degradation, and foster conservation, 

sustainable management of forests, and enhancement of forest carbon stocks (UNFCCC, 

2007). The ultimate objective of REDD+ aligns with the Paris Agreement, which central 

aim is to keep the rising global temperature below 2°C. REDD+ is a set of guidelines to set 

up efforts to ultimately mitigate climate change. These guidelines are aimed to a group of 

developing countries located in subtropical or tropical area, where land use change is a 

prominent source of GHG emissions. REDD+ is thus considered as a significant initiative 

for Indonesia. 

The early phase of REDD+ focuses on the participating countries to formulate their 

national strategy, action plan, policies, measures, and capacity building activities (Minang 

et al., 2014). This phase is called as the readiness phase, where the countries are prepared 
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before the actual REDD+ activities, national strategies and policies are implemented. 

Currently, most of the participating countries are within this phase (UNFCCC, 2018).  

The UNFCCC calls for the participating countries to address drivers of deforestation and 

forest degradation in the formulation of their national strategies (UNFCCC, 2009). This is 

because the drivers are “unique to countries’ national circumstances, capacities and 

capabilities” (UNFCCC, 2014). Moreover, drivers of deforestation also hold an important 

role in monitoring, reporting, and verification (MRV) of the REDD+ activities (Grassi et 

al., 2008). Ultimately, the MRV system needs to be driver-specific as different drivers 

would need different monitoring and evaluation method (Achard et al., 2014b; Salvini et 

al., 2014). Specifically addressing these drivers is an important component of a good MRV 

system, ensuring effective and accurate REDD+ activities (UNFCCC, 2009). 

Indonesia has already submitted their national strategy back in 2012 (Indonesian REDD+ 

Task Force, 2012), and is currently on the readiness phase leading up to the 

implementation phase. It is then becoming a major importance to specify the drivers of 

deforestation in the country. A good system of monitoring is crucial so that the REDD+ 

intervention measures would be effective (Salvini et al., 2014).  

1.3 Drivers of deforestation 

In addressing deforestation drivers, there are two critical aspects to underline. The first 

is the distinction of the direct and indirect drivers of deforestation, and the second is that 

deforestation drivers can vary regionally.  

Deforestation is not merely caused by the proximate (direct) drivers, but also by the 

underlying (indirect) drivers (Geist and Lambin, 2001; Kissinger et al., 2012; Rautner et 

al., 2013). Proximate drivers are those circumstances that affect the occurrence of 

deforestation directly (Geist and Lambin, 2001). This is commonly related to human 

activities that directly affect the loss of forest, such as the opening of new agricultural 

lands or establishment of roads/infrastructures.  

In contrast, the underlying drivers push the occurrence of deforestation indirectly. Such 

drivers are formed by multiple factors and processes, such as economic, demographic 

and governance (Rademaekers et al., 2010; Salvini et al., 2014). For example, population 

growth is widely deemed as the primary underlying cause of deforestation (Geist and 

Lambin, 2001). The increasing population size may increase the need of agricultural land 

to be cultivated, thus putting the forests into deforestation risk (Kaimowitz and Angelsen, 

1998). 

Regional variation of deforestation drivers is primarily influenced by different local 

circumstances. Geist and Lambin (2002) identified clear regional pattern of causes of 

deforestation influenced by economic factors and national policies. Currently, small-

holder farmers still constitute as the main direct driver of deforestation in Africa, while 

in Latin America, cattle ranching and soybean farming are more prominent (Rudel et al., 

2009). The increasing demand of these commodities pushes the countries to increase 

their production, thus there are needs to open new lands (Rautner et al., 2013). 
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1.4 Drivers of deforestation in Indonesia 

In Indonesia (and Southeast Asia in general), agricultural expansion is the most 

important driver of deforestation, followed by infrastructure expansion (Rademaekers et 

al., 2010). In the island of Sumatra, approximately 70% of the forests have been lost due 

to the establishment of palm oil plantations (Rautner et al., 2013). Borneo has also seen 

high deforestation rate due to timber extraction and the establishment of rubber and 

palm oil fields. Currently, only half of its original forest remain, a third of these were lost 

in just the last three decades (Gaveau, 2017).  

Some of the main direct and indirect drivers of deforestation in Indonesia are highlighted 

by Indrarto et al. (2012) in CIFOR’s Indonesia country profile. According to the report, 

agriculture establishment constitutes the main direct driver of deforestation in 

Indonesia. The increasing price and the rising global demand of palm oil stimulates the 

expansion of the agriculture. Indonesia is the world’s largest producer of palm oil 

(Indrarto et al., 2012). According to Sawit Watch (2009), the area of palm oil estates 

increased for about five-fold in the span of merely ten years (1989-1998).  

The future demand for palm oil is not expected to slow down, because it has the lowest 

production cost, highest yield per area and is very versatile (Corley, 2009). Furthermore, 

the current trend of biofuel would need palm oil as the raw material. Corley (2009) 

estimated that around 12 Mha of palm oil plantations would need to be established 

worldwide, to meet the world’s demand. Various plans have been established for this, and 

in Indonesia, the island of Papua is likely to be the next target (AFP, 2008; Indrarto et al., 

2012). Klute (2008) described Papua as the ‘last forest frontier’ of Indonesia, so it is of 

great importance to protect Papua’s forest. 

On the other hand, mining, although not as significant as estate crops, also acts among the 

major driver because many small-scale mining are operating illegally (Indrarto et al., 

2012). Illegal logging is also among the most significant deforestation causes (Indrarto et 

al., 2012). Loggings cause tree density to decrease. Such sparse and degraded lands are 

easy to clear, thus leading to land conversion into farm or agricultural lands, for example. 

Forest fire is also a common cause of deforestation. Some occurred naturally, but many 

others are intentionally burned mostly for swidden agriculture (Applegate et al., 2001).  

Among the highlighted indirect drivers of deforestation in Indonesia are economic 

development and population growth (Indrarto et al., 2012). The fast-growing economy of 

Indonesia sees the increasing population of the middle-class, which in turn escalates the 

development (Rademaekers et al., 2010). A study shows that a 1% increase in population 

is followed by 0.3% shrinkage of forest cover (Sunderlin and Resosudarmo, 1997). 

Increasing population densities also constitutes as the main indirect driver of 

deforestation and has a similar effect to economic growth (Laurance, 2007). 

Other indirect stimulating factors include the demand for various commodities (e.g., 

timber, palm oil, and pulp). Huge demand for timber pushes Indonesia to export around 

33 million m3 of timber annually to the USA, Europe, Japan and China combined (Indrarto 

et al., 2012). Pulp and paper industry is also among the prominent forest-related 

industries (Palmer, 2001). 
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2. Problem definition and objectives 

Some prior studies have identified the major direct drivers of deforestation. However, 

most of them are more focused on the global and regional scale (Geist and Lambin, 2002; 

Kissinger et al., 2012; Rademaekers et al., 2010). De Sy (2016) addressed the importance 

of incorporating national circumstances in studying deforestation drivers because spatial 

dynamics play a significant role in determining the drivers of deforestation in a different 

area. For example, each island in Indonesia has its own specific circumstances. Thus, 

deforestation in different regions of the country can be driven by varying drivers 

(Indrarto et al., 2012). 

Kissinger et al. (2012) emphasized the need to also address the underlying deforestation 

driver by “looking beyond the forest sector”. Solely focusing on the proximate driver 

would be less effective in reducing deforestation and forest degradation because direct 

and indirect drivers are interrelated. Effective intervention measures thus can be 

achieved by identifying the link between the direct and indirect deforestation drivers. 

While this is important, quantitative assessment on this issue is still uncommon (De Sy, 

2016). Researchers also experienced difficulties in identifying the clear links between the 

direct and indirect drivers due to the complex and multifaceted trait of the indirect 

drivers (Angelsen, 2008; Kissinger et al., 2012). 

All in all, this research aims to explore the relationship between the direct and indirect 

deforestation drivers using spatial analysis. The area scope would be constrained to 

Indonesia. The objectives of this research are outlined as follows: 

• Assess the link between the direct and indirect driver of deforestation in 

Indonesia in a spatially explicit manner. 

• Identify the indirect drivers of deforestation in Indonesia for deforestation in 

general and for specific direct drivers. 
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3. Methodology 

3.1 Data sources 

To explore the spatial relationship between the drivers of deforestation, it is important 

that the data covering both types of drivers are available. Among the initial steps of this 

research is to gather such data from various sources. As this research aims to explore the 

spatial dimension of the drivers, those data need to have location attributes so spatial 

analysis can be made.  

The data used in this research are classified into two main categories, i.e., direct drivers 

and indirect drivers. The indirect drivers would be further divided into several sub-

categories. 

3.1.1 Direct drivers 

A previously conducted research by De Sy et al. (2015) has identified the main direct 

drivers of deforestation. The study makes use of the forest land use change data from the 

2010 Global Remote Sensing Survey (RSS) of the United Nations Food and Agricultural 

Organisation (FAO & JRC, 2012). The data is a systematic 10 km x 10 km sample units, 

which are then segmented into polygons. Each polygon–if there is any deforestation–is 

assigned with a follow-up land use (Table 3.1) as a proxy of the direct driver of 

deforestation. This follow-up land use was determined by visual interpretation of high-

resolution imagery (De Sy et al., 2015). The dataset provides information for two periods 

of time: 1990-2000 and 2000-2005. A total of 139 sample units were used to sample the 

entire area of Indonesia (Figure 3.1).  

Table 3.1 lists the categorization of the follow-up land use classes used in this study (De 

Sy et al., 2015; Hosonuma et al., 2012). Several land use classes were not considered, such 

as mixed agriculture, pasture, and mining because these follow-up land uses were either 

not present or making a very small presence in the current study area. Out of the whole 

dataset, the deforested area was mainly followed by agriculture (53%) and other land use 

(42%). Built-up lands take a portion of about 4% of the follow-up land use, while water 

takes about 1%. 

It is important to note that some sample units do not have land use information for the 

2000-2005 period due to either cloud obscuration, poor satellite coverage or low-quality 

images (FAO & JRC, 2012). To ensure consistency in the analysis, such sample units are 

omitted. Only regions with complete information for the whole period are kept, resulting 

in 110 sample units throughout the country. From those, a total of 100 sample units have 

a portion of its region deforested, and only 62 sample units have a portion of its area 

classified as forest region. 
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Figure 3.1 The distribution of the sample units, with each black square indicates a sample unit of 
10 x 10 km. 

 

Table 3.1 Direct driver categories, modified from De Sy et al. (2015). Note that not all of the land 
uses listed here are present in the study area. 

Category Follow-up land use Description 

Agriculture 
 

Commercial crop Land under cultivation for crops, characterised by medium (2-20 ha) to 

large (>20 ha) field sizes. 

Small-holder crop Land under cultivation for crops, characterised by very small (<0.5 ha) 

to small field sizes (0.5-2 ha). 

Tree crop Miscellaneous tree crops (e.g., coffee, palm trees), orchards and groves. 

Built-up 

Urban & settlements Urban, settlements and other residential areas. 

Roads and built-up Roads, built-up areas and other transport, industrial and commercial 

infrastructures. 

Other 

Bare land Barren land (exposed soil, sand, or rocks). 

Other wooded land 

Land not classified as forest, spanning more than 0.5 ha; with trees 

higher than 5 m and canopy cover of 5-10%, or trees able to reach these 

thresholds in situ, or with a combined cover of shrubs, bushes, and trees 

above 10%. It does not include land that is predominantly under 

agricultural or urban land use. 

Grass and 

herbaceous 

Land covered with (natural) herbaceous vegetation or grasses. 

Wetlands 

Areas of natural vegetation growing in shallow water or seasonally 

flooded environments. This category includes Marshes, swamps and 

bogs. 

Water 
Natural Natural water source (river, lake, etc.). 

Artificial Man-made water bodies (e.g. reservoirs). 

Unknown land use All land that cannot be classified (e.g., due to low-resolution imagery). 
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3.1.2 Indirect drivers 

This research incorporates different indirect drivers as outlined in Table 3.2. These were 

chosen based on its significance in the reviewed studies, mainly as outlined in Geist and 

Lambin (2002) and Kaimowitz et al. (2002).  

 

Table 3.2 List of the considered indirect drivers. 

Category Data Source 
Format/ 

Resolution 
Year 

Zonation Oil palm concession zones GFW Vector 2018 
Wood fibre concession zones GFW Vector 2018 
Logging concession zones GFW Vector 2018 
Plantation GFW Vector 2018 

Distance/ 
proximity 

Road networks 
Meijer et al. 
(2018)  

Vector 2018 

Piers BIG Vector  
Ports BIG Vector  
Oil palm concession zones GFW Vector  
Wood fibre concession zones GFW Vector  
Logging concession zones GFW Vector  
River BIG Vector  
Oil palm mills GFW Vector  

Biophysical Elevation SRTM Raster/90 m 2000 
Slope SRTM Raster/90 m  
Temperature WorldClim Raster/900 m  
Precipitation WorldClim Raster/900 m  

Socioeconomi
c 

Population, GDP, HDI, 
Employment 

World Bank Table 
1990-
2013 

 

Zonation 

Concession zones refer to areas allocated by the government or other official bodies in 

cultivating a particular commodity. Including such factors is an attempt to incorporate 

policy factors, because several studies have linked concession zones with higher 

deforestation rate (Abood et al., 2015; Busch et al., 2015). Concession zones for oil palm 

(Global Forest Watch, 2018b), wood fibre (Global Forest Watch, 2018d) and loggings 

(Global Forest Watch, 2018a) are gathered from Global Forest Watch’s open data portal 

(GFW), which were initially compiled from government agencies, non-governmental 

organization (NGOs) and other bodies. Oil palm concession refers to industrial-scale oil 

palm plantations, wood fibre concession area concerns the area where fast-growing tree 

plantations for the production of timber and wood pulp are established, and logging 

concession zones refer to the area where forest exploitation is permitted through 

selective logging. 

Tree plantation data by Transparent World and published by GFW is also considered 

(Global Forest Watch, 2018c). Seen from above, it is difficult to distinguish between 

natural forest and plantation forest. Assisted by high-resolution imagery, the dataset was 

made by discriminating the two types of forest through visual interpretation. 
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Distance/proximity factors 

Distance to certain features have proved to be a determinant factor in the occurrence of 

deforestation (Barber et al., 2014; Kaimowitz et al., 2002; Zhang et al., 2016). Proximity 

factors relate to the distance of forest to a certain feature that may drive deforestation. 

This involves features such as infrastructures, transportation hubs, river, or concession 

areas as listed in Table 3.2.  

Special attention is paid into transportation networks due to its significant effect in 

pushing deforestation (Barber et al., 2014; Miyamoto, 2006). A study by Barber et al. 

(2014) revealed that in the Amazon, around 95% of deforestation happened within 5.5 

km from roads or 1 km from navigable rivers. Considering the importance, road networks 

and rivers are thus included among the factors considered. This also includes other 

related transportation hubs such as piers and ports. The main source of the road network 

data is gathered from the Global Road Inventory Project (GRIP) by Meijer et al. (2018). 

This data covers the road network for most parts of the country.  

The oil palm mills dataset are also gathered from GFW (FoodReg and WRI, 2018). 

Distances from palm oil, wood fibre and logging concession zones were also calculated 

because deforestation tends to occur near a previously deforested area (Bray et al., 2008). 

Biophysical parameters 

Findings of Nakakaawa et al. (2011) and Zhang et al. (2016) found that deforestation can 

be correlated with specific biophysical specifications. Biophysical parameters usually 

determine the land suitability for a plantation or agricultural field to be established 

(Zhang et al., 2016). Flatlands located in lower altitude are usually considered in 

plantation establishment. Thus, deforestation is more likely to occur in the same land 

characteristics. Biophysical parameters considered in this study concerns topographic 

and climatic variables.  

The Shuttle Radar Topography Mission (SRTM) is used as the primary source of elevation 

data (Jarvis et al., 2008). Using the same dataset, the slope is also calculated. The climatic 

variables are sourced from the WorldClim, consisting of annual mean temperature and 

annual precipitation (Fick and Hijmans, 2017).  

Socioeconomic variables 

Romijn et al. (2013) observed higher deforestation probability linked with developed 

socioeconomic conditions such as higher GDP and population. They are the main 

underlying factors that drive the landscape change in a particular area by putting 

pressure into land use change. The increasing population in a certain region, for example, 

cause the demand for food to increase thus stimulating more forest to be converted into 

farms because more land is needed. 

In this study, an attempt to take these parameters into account is made through the 

Indonesia Database for Policy and Economic Research (INDO-DAPOER) (World Bank 

Group, 2018). INDO-DAPOER is a dataset that covers a number of economic and social 

indicator, compiled from various sources such as governmental institutions, and 

statistical bureau. A total of 220 parameters are provided, spanning across four main 

categories: fiscal, economic, social and demographic. From the range of variables, only 
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four parameters are considered in this study: population, GDP (Gross Domestic Product), 

HDI (Human Development Index) and employment. These variables are picked by 

considering its completeness and relevance of the data. 

3.2 Methods 

3.2.1 Theoretical framework 

Several researches have previously studied the spatial link between deforestation and its 

drivers. Literature reviews were conducted to study different methods for assessing this 

relationship. Most studies used either regression or classification method to explore the 

link of such issues.  

Logistic regression was used by Kaimowitz et al. (2002) to study the deforestation in 

Santa Cruz, Bolivia. The study used factors such as access to roads and markets, 

biophysical conditions and area classification (e.g., indigenous, concession, protected).  

This research uses the polygon approach: by dividing the study area into predetermined 

classifications based on those factors. These polygons are selected carefully so that the 

resulting areas are not overly large since the incorporated variables are regarded 

homogeneous in the polygons. Thus, for each polygon, the potential explanatory variable 

is computed. It is then fitted to a model as a logistic model weighted by the polygon area. 

The result of the regression is assessed from its coefficient, t-value and significance, 

revealing different factors that have the most influence on the deforestation of the area. 

Another study by Apan et al. (2017) employed correlation and logistic regression analysis 

to explore the relationship between forest cover and its predictor variables in the 

Philippines. Similar to Kaimowitz et al. (2002), they utilized binary logistic regression 

approach to estimate whether deforestation would occur or not. Factors considered 

include topographic, land use, land cover, population and proximity to several features 

(i.e., roads, river, forest canopy, and cropping areas). In contrast to Kaimowitz et al. 

(2002), pixel-based sampling was used rather than polygon-based.  

However, they found out that their spatial predictor was not effective in predicting forest 

loss. A suggestion was to use as many spatial predictors as possible as outlined by Geist 

and Lambin (2002), also incorporating demographic, policy and cultural factors. The 

nation-wide analysis was also considered inefficient; reducing the spatial extent was 

suggested to come up with better results, so the considered factors can be site-specific.  

Zhang et al. (2016) utilized a machine learning technique, i.e., random forest, to 

determine the factors influencing tree cover gain/loss in Li River Basin, China. They 

incorporate factors similar to previous researches, such as initial landscape, biophysical 

and proximity. Tree cover loss was then modeled for each county covering the basin and 

for each period. Special attention was given to the variable importance feature. This 

feature of random forest enables significance assessment of the incorporated factors to 

the model; thus, the most influential factor can be determined. Using the partial 

dependence plot, individual assessment of the factors in relation to the model result can 

also be assessed.  
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Considering the advantages/disadvantages of the reviewed methods, as well as the 

objectives aimed at this research, random forest is deemed as the most suitable method. 

Different factors and data can be easily incorporated using this method. Besides, the 

factor importance and the partial dependent plot would provide a way to answer the 

second research question. The overview of the data processing steps is illustrated in 

Figure 3.2. 

3.2.2 Pre-processing 

During the pre-processing step, each of the data is initially transformed/assigned the 

same projection system, i.e., WGS 84/World Equidistant Cylindrical (EPSG: 4087). 

Zonation 

Incorporating zonation into model-ready variable was done through rasterizing the data. 

The initial format of data is mostly vector. While converting the data into a raster format, 

the values assigned are binary. For example, a pixel is assigned value one if it fell inside a 

logging concession zone and assigned 0 otherwise. 

Distance/proximity 

Proximity variable was gathered from the distance raster. The values of each cell in such 

raster represent the closest distance of a particular pixel into a certain feature. The 

calculated distance is Euclidean distance: the distance from the centre of a cell into the 

centre of the nearest source feature cell. A total of eight distance raster were calculated, 

each representing different features as listed in Table 3.2.  

Socioeconomic 

The initial format of the socioeconomic variable was a table, thus it needs to be converted 

into geo-data, i.e., data with location information. Because the data was presented in 

district level, with the name of the corresponding region presented, georeferencing can 

be made. District boundary vector was gathered from the Indonesian Ministry of Home 

Affair. The link between the boundary vector and the table was then made through the 

district name, so the district boundary files are now attached with the socioeconomic data 
from INDO-DAPOER. Finally, the data was converted into raster format. 

Biophysical 

Every biophysical data was presented in a raster format. Except for the slope, every data 

was already ready to use. The slope was calculated from the digital elevation model, i.e. 

SRTM. Here, the slope was presented in degrees and was calculated considering its eight 

neighbouring cells using the basic algorithm of Burrough and McDonnel (1998). 
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Figure 3.2 Flowchart illustrating the pipeline of the research. The research starts with gathering 
the data, pre-processing them, modelling, and analysis. 
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3.2.3 Sampling 

Implementation of random forest requires the input to be presented in a data frame. With 

each data is now assembled in geo-data, a mechanism to sample the values from the 
sample units was developed, similar to Zhang et al. (2016). 

Systematic, regular sampling was the method used to sample the data due to its trait in 

reducing spatial autocorrelation (Zhang et al., 2016). A regular grid of points with 500 m 

interval was distributed among the sample units (Figure 3.3). This resulted in the sample 

size of 44,037 records. A huge portion of the data, however, consists of NA values because 

not all of the data cover the whole sample areas. Any sample points containing NA values 
was omitted. Thus, the number of sampled data inputted into the model was much less. 

Following Kaimowitz et al. (2002) polygon-based sampling was also used. Polygons 

representing deforestation/forest occurrence from De Sy et al. (2015) and FAO & JRC 

(2012) were used as the sampling polygons. The values of all pixels falling within the 

polygon were averaged and taken as the sampled variable. 

The point-based and polygon-based sampling resulted in slightly different number of 

records, as shown in Table 3.3. For the point-based sampling, the proportion of the 

deforested and forest sample are quite balanced, while less balance is achieved in the 

polygon-based sampling. Almost all of the major islands in the country have its sample 

area consisting of deforested polygon, particularly in Sumatra, Kalimantan, Sulawesi, and 

Papua. However, only a small portion of the sample units in Java show deforested 
polygons. 

 

 

Figure 3.3 Illustration of the sampling mechanism in the existing sampling unit. The white dots 
indicate the sample points with the interval of 500 m. The deforested polygon is the base of the 

polygon-based sampling method. 

 



15 
 

Table 3.3 Overview of the sampling result. Different sampling methods return different number 
of records. In agriculture direct driver, only smallholders and tree crops were dominant; there 
was not enough sample of commercial agriculture to be considered in the models. 

Category 
# of features 

Point Polygon 

All 4621 4199 

Deforested 2361 2482 

Non-deforested 2260 1717 

Agriculture 1311 1360 

Smallholder 358 409 

Tree crops 955 950 

Other 1085 1079 

Built-up 56 100 

Water 11 26 

 

 

3.2.4 Random forest model 

Random forest model was developed by Breiman (2001). It is a machine learning 

technique that constructs an ensemble of decision trees to conduct classification or 

prediction (regression). Random forest employs the bagging method. This algorithm is 

sensitive to the number of variables chosen to split the nodes (mtry) and the number of 

decision trees constructed in the model (ntree).  

In the first step, the algorithm constructs multiple decision trees ntree (Liaw and Wiener, 

2002). At the nodes of each decision tree, the algorithm use a portion of the predictors 

(mtry) by randomly sampling them. The result of every tree is then averaged, and the 

prediction is inferred from them. 

In this research, the models would be constructed with the main aim to predict whether 

deforestation happened or not. Thus, the dependent variable is the deforestation 

occurrence. It is categorical and binary; there is only two possible value on the dependent 

variable, i.e., whether deforestation occurs or do not occur. The model will be constructed 

such that the binary value is determined by the value of other independent variables, 

which corresponds mostly to the indirect driver data. The number of the trees (ntree) is 

500 by default, and the number of randomized variables is equal to the square root of the 
number of available variables. 

The models were constructed multiple times to accommodate 1) different sampling 

method (i.e., regular vs. polygon-based); 2) different variable combination and 3) detailed 

assessment of different direct drivers. To reach the latter, a base model needed to be 

constructed. Such models would built from the most effective indirect driver 

combination. Some measures were conducted to come up with this base model, such as 

variable reduction, detection of false predictor and accuracy analysis. Because not all of 

the considered indirect drivers might be useful, measures to detect the significance of all 

of the indirect drivers were also conducted so the ineffective indirect drivers can be 
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omitted. It is also important to detect potential false predictors. Finally, the models were 

judged from its accuracy so that the most accurate model can be picked out. 

Due to the randomization trait of random forest, each of the constructed model would 

produce a slightly different classification result and accuracy. To achieve a more 

consistent and reliable result, the averaged outcome of 50 runs of the model is used. 

3.2.5 Result assessment 

Assessment of the model can be made through the accuracy, and the out-of-bag (OOB) 

estimate error rate. During the construction of the model, the initial dataset is partitioned 

into 70:30 proportion of training and testing data. Accuracy shows the percentage of the 
validation dataset that was correctly predicted.  

Each constructed tree in random forest also only utilizes around two-thirds of the 

observations. The remaining data is not used to fit the tree; thus, it is called out-of-bag. 

The result of the model is compared to the OOB, such that the test error can be estimated 
(Breiman and Cutler, 2003; James et al., 2013). 

2.2.6 Variable Importance 

This feature of random forest is useful to assess which variables (i.e., indirect drivers) 

have the most significant role in classification. During the randomized selection of 

variables in constructing the nodes, some variables are left out. The tree is constructed 

without considering the left-out variables. After running the model, the trees are rerun 

by also considering the left-out variable to produce another classification result. The 

result are then compared with the original classification results, typically resulting in a 

margin: the proportion of votes for its true class minus the maximum of the proportion 

of votes for each of the other classes (Breiman and Cutler, 2003). The importance was 

measured by averaging the lowering of the margin across all cases when a particular 

variable is permuted. The larger the margin means, the more important a variable is. If 

that particular variable is left out, the classification accuracy will greatly decrease. 

Feature importance can also be measured through the Gini index, i.e. the measure of the 

purity of a node. A smaller value indicates that a node is pure; the result of a single 

dominant observation (James et al., 2013). Therefore, a split on the classification tree will 

decrease the gini. Averaging all of the decreases in the forest caused by a particular 

variable thus produce the Gini measure. Although it is known to be not as reliable as the 

former measure, this feature may still be useful in assessing the importance of a variable 

(Breiman and Cutler, 2003). 

2.2.7 Partial Dependence 

Partial dependence plot is method to show the effect of a feature into the outcome of a 

machine learning model (Friedman, 2001). In this research, this plot can show the effect 

of a particular indirect driver in predicting deforestation occurrence. Partial dependence 

plot is visualized in a 2-axes graph. The x-axis depicts the independent variable of 

interest. In the case of classification, the y-axis shows the marginal effect of a variable on 

the class probability (Breiman et al., 2011). A positive value suggests that the particular 
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value of the independent variable is more likely to corresponds with the positive class of 

the dependent variable, and vice versa. 

3.3 Software 

Most of the data processing and analysis were conducted within R (R Core Team, 2018). 

R is a programming language which provides an environment for statistical computing 

and graphics. Pre-processing, spatial data handling, and data visualization were 

implemented in R using relevant packages. Implementation of random forest was done 

through the ‘randomForest’ and ‘caret’ package (Kuhn, 2008; Liaw and Wiener, 2002). In 

addition to model implementation, those packages were also utilised to review the model, 

such as getting the model accuracy as well as assessing the variables in detail. These 

assessments were visualised using package ‘ggplot’ (Wickham, 2016).  
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4. Results 

4.1 Statistical properties of the indirect drivers 

Table 4.1 presents the statistical overview of the indirect drivers. These statistics are only 

computed for continuous indirect drivers (i.e., proximity, socioeconomic and 

biophysical); categorical indirect drivers (i.e., zonation) is left out. In general, no 

significant difference is observed between different sampling methods. Notable 

differences are only observed in indirect drivers with high standard deviation, such as 

distance to palm oil mills and GDP. 

The average distance to both roads and rivers suggests that most of the deforestation 

happened within 3-5 km proximity from these features. A similar pattern is also observed 

in distance to concession zones: deforestation is more common in forests closer to 

concession zones (Table 4.1). However, different observation is noticed in the distance to 

palm oil mills and piers.  For the point-based sample, the average distance to those 

variables suggests that deforestation is more common in forests further away from palm 

oil mills and piers, although the standard deviation themselves are relatively high.  

As suggested by its high standard deviation, the socioeconomic variables tend to have 

high variations. The histograms (Figure 4.1) show that the value tend to spread out, thus 

confirming this finding. Notable gaps and patches are evident particularly in GDP and 

HDI. The only socioeconomic variable with low standard deviation is the HDI. Different 

sampling methods show the same average HDI of 70, either for forest or deforested area. 

Different observations for different sampling methods were also observed. For GDP, 

polygon-based sample shows deforested area is correlated with higher GDP (2642 bil. 

compared to 2884 bil. on the forested area), while the point-based sample shows the 

opposite (2515 bil. compared to 2450 bil. on the forested area).  

Average precipitation suggests that deforestations are commonly occurring in areas 

where the precipitation rate is higher (around 2700 mm/year compared to 2550-2600 

mm/year for forested area). The standard deviation of this variable is also relatively low 

(around 370-400 mm/year), suggesting that there is less variation. Looking at the 

elevation, point-based sample suggests that deforestation tend to occur in higher 

altitudes (121 m for forest, 160 m for deforested), while polygon-based sampling shows 

the opposite (204 m for forest, 188 m for deforested). There is no significant difference 

noted between forest/deforested region in temperature and slope. The average 

temperature for both forest and deforested area is circa 26°C, and the slope is around 3-

5° steep. 
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Table 4.1 Statistical properties of the (a) point-based sampled and (b) polygon-based sampled 

indirect drivers. These overviews seem to agree with the initial assumption, except for some 

(greyed-out) variables. The deforested region was initially assumed to be associated with higher 

socioeconomical properties and closer to the human-made structures. 

(a) 

Category Variable 
Mean Standard Deviation 

Forest Deforested Forest Deforested 

Distance 

Concession logging (km) 81.2 66.8 77.7 55.7 
Concession palm oil (km) 36.1 16.3 50.3 30.1 
Concession wood fibre (km)  83.4 39.1 204.2 74.3 
Palm oil mills (km) 89.4 97.5 165.6 211.7 
Piers (km) 53.6 65.7 45.9 61.0 
Ports (km) 79.4 62.5 47.9 43.8 
River (km) 7.6 5.3 5.3 3.8 
Roads (km) 7.7 3.1 8.3 4.9 

Socioeconomic 

GDP (IDR billion) 2884.5 2642.2 2398.5 2929.6 
Population 423,737 319,552 276,052 220,539 
HDI 70 70 3 4 
People employed 168,308 135,398 98,571 85,964 

Biophysical 

Precipitation (mm/year) 2,569 2,703 373 390 
Temperature (°C) 26.3 26.1 15 19 
Elevation (m) 121 160 279 389 
Slope (°) 3 3 5 6 

 

(b) 

Category Variable 
Mean Standard Deviation 

Forest Deforested Forest Deforested 

Distance 

Concession logging (km) 74.0 63.4 78.3 56.6 
Concession palm oil (km) 36.8 17.9 47.6 33.9 
Concession wood fibre (km)  82.1 42.4 183.6 89.9 
Palm oil mills (km) 123.1 104.5 243.5 230.1 
Piers (km) 60.8 65.0 54.5 56.6 
Ports (km) 79.7 64.1 49.1 47.2 
River (km) 7.1 5.0 4.8 3.9 
Roads (km) 8.5 3.3 8.5 5.3 

Socioeconomic 

GDP (IDR billion) 2450.6 2515.2 2099.3 2624.8 
Population 367,692 324,067 266,800 218,305 
HDI 70 70 3 5 
People employed 148,700 138,314 96,265 86,465 

Biophysical 

Precipitation (mm/year) 2,631 2,725 451 402 
Temperature (°C) 25.9 26 21 21 
Elevation (m) 204 188 386 416 
Slope (°) 5 4 7 6 
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Figure 4.1 Histogram of the point-sampled socioeconomic variables. Discrete distributions are 
observed, especially in GDP and population. 

 

4.2 Model construction 

The base model was determined by trying out different combination of indirect drivers 

(Table 4.2). In total, three different combinations were tested to come up with the base 

model. These combinations were determined according to the significance of each 

indirect driver. Potential false predictor was also left out. 

The model was initially constructed by incorporating all of the indirect drivers listed in 

Table 3.2. Using these 20 indirect drivers, the significance of each considered indirect 

driver is assessed from its average decrease of accuracy when the particular indirect 

driver is removed from the model. As can be seen in Figure 4.2, both sampling methods 

agree that the zonation indirect drivers are among the least significant predictors in the 

model. This is followed by the socioeconomic indirect drivers, putting both categories 

among the candidate of the removed indirect drivers. 

A detailed assessment of precipitation suggests its role as a potential false predictor, as 

identified from Figure 4.3. This partial dependence plot suggests that deforestation seem 

to happen within a specific precipitation rate of 2700 mm. Downward spike around 2500 

mm precipitation rate also suggest another specific value for forest area. While these 
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values coincide with the average precipitation rate indicated in Table 4.1, the overall 

shape of the curve shows no variation; indicating strong evidence of false predictor. 

The base model is thus constructed by removing these categories of indirect drivers: 

zonation, socioeconomic and precipitation (Table 4.2). Each combination is tested on 

both point-based and the polygon-based sample. Accuracy is used to judge the model 

rather than the OOB error estimate, because between different models, there are only 

minor differences on the OOB error estimate. 

Overall, the models return good results with low error rate and high accuracy. As depicted 

in Table 4.3, point-based models always return higher accuracy and lower OOB error 

estimate. Around 2% difference of error estimate is observed between the two different 

sampling methods, while the accuracy returns about 3% discrepancy. Excluding zonation 

and precipitation saw an increase of accuracy by 0.08% in the point-based model but a 

decrease of 0.33% for the polygon-based model. Further removal of the socioeconomic 

variable was able to recover the accuracy by 0.14% in the polygon-based model. A slight 

increase of 0.02% is also observed in the point-based model. All things considered, Model 

3 is thus selected as the base model. Although accuracy-wise the polygon-based model 

does not return the best accuracy, including false predictor is deemed to produce biased 

result.  

Using model 3 as the base model, four different direct driver-specific models were 

constructed: 1) agriculture, 2) other drivers, 3) smallholder agriculture and 4) tree crop 

agriculture. The last two models are constructed to assess the indirect drivers of 

agricultural-driven deforestation in detail. The accuracy of these models is listed in Table 

4.3. In all cases, the models are able to reach relatively high accuracy. It appears that the 

effect of different sampling method is reduced here with both sampling method returning 

similar accuracy; even the polygon-based model is more accurate than its counterpart. In 

contrast to its base models, notable differences can be observed on the OOB error 

estimate between the different direct driver models. 
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Figure 4.2 Variable importance plot for model 1 applied to (a) point-based sample and (b) 
polygon-based sample.  
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Figure 4.3 Partial dependence plot of precipitation. 

 

Table 4.2 Variable combinations of each random forest model. 

Variables Model 
1 2 3 (Base) Agri Small Treecrop Other 

Driver 
Agriculture  

Smallholder 
   

 
   

Tree crop    
Other     

Zonation Concession logging 

       
Concession palm oil 
Concession wood fibre  
Plantation 

Distance Roads 

       

River 
Ports 
Piers 
Palm oil mills 
Concession logging 
Concession palm oil 
Concession wood fibre  

Socioeconomic Population 

       
GDP 
HDI 
Employment 

Biophysical Elevation 

 

      
Slope       
Precipitation       
Temperature       
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Table 4.3 Overview of model accuracy. Because there are not many variations on the OOB error 
estimate between the model, the accuracy is used as the main judgement of the model. 

Model 
OOB Accuracy (%) 

Point Polygon Point Polygon 
1 5.92% 7.66% 95.12% 92.56% 

2 5.94% 7.64% 95.20% 92.23% 

3 (Base) 5.96% 7.64% 95.22% 92.37% 

Agriculture 3.72% 4.39% 96.21% 95.18% 

Smallholder 5.37% 5.30% 93.57% 96.41% 

Tree Crop 2.99% 4.11% 97.91% 97.33% 

Others 6.23% 6.75% 94.59% 92.78% 

 

4.3 Direct driver models 

4.3.1 Variable importance 

The overview of variable importance for the direct driver-specific models is visualised in 

the heatmap in Figure 4.4. A detailed depiction of these are also visualised in variable 

importance plot in Annex A. Between different direct drivers, variations of the order of 

the most significant indirect drivers are spotted, indicating that specific circumstances 

are only revealed when analysing the direct drivers in detail. In general, all of the models 

agree that distance to palm oil mills is always among the most important, and slope is 

always the least important. Other important variables include distance to roads and 

elevation. It can be seen that in the base model, the mean decrease accuracy tends to be 

in a higher value, while splitting the direct drivers into specific categories result in lower 
mean decrease accuracy.  

In agriculture-driven deforestation, different magnitude of mean decrease accuracy is 

identified between different sampling methods, but the composition of the top-5 indirect 

driver stays the same. It includes elevation, distance to piers, palm oil mills, river, and 

roads. Looking into specific agricultural direct drivers, smallholder agricultures seem to 

be related to the presence of roads and river. On the other hand, tree crop agriculture is 

most prominently related to the distance to palm oil mills, followed by distance to roads 

and logging concession zones.  

Both sampling methods agree that other direct drivers are associated with the distance 

to palm oil mills. Compared to other models, biophysical parameters (i.e., elevation and 

temperature) seem to take more importance in this model. Other significant indirect 
drivers include distance to logging concession zones and distance to ports. 
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Figure 4.4 Heat map of variable importance of (a) point-based model and (b) polygon-based 
model. The heatmap is coloured based on the mean decrease on accuracy when a particular 
variable is removed. A higher value corresponds to a more important variable. 

 

4.3.2 Partial dependence 

The partial dependence plots (PDP) of the most significant indirect drivers are presented 

in Annex B. When interpreting the PDP, we are interested mainly with the trend of the 

graph and the value of the x- and y-axis (Friedman, 2001; Sharma, 2017). In this research, 

the y-axis shows how the likelihood of deforestation is changing with the change in the 

given indirect driver (shown in the x-axis). Positive y-axis value means for that particular 

value on the x-axis, the model is likely to predict deforestation. Negative value indicates 

the opposite. If the y-axis value is zero, that particular indirect driver has no effect in the 
prediction outcome. 

Clear trends are observed in the PDP of distance to road and distance to river. These PDPs 

suggest that deforestation is more likely to occur nearby roads or rivers. The farther a 

forest is from roads or river, the less likely deforestation to occur. Breaking up the data 

into specific direct driver revealed that distance to roads and rivers have the strongest 
effect in predicting deforestation in the tree crop and other direct driver. 

Different breakpoints (i.e. where the line crosses the x-axis) are observed between 

different direct driver models, suggesting different effect of roads and rivers to specific 
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direct drivers. This might indicate the distance where the presence of a certain feature 

loses its effect in constituting deforestation. For roads, it is observed that smallholder 

agriculture and tree crop agriculture have lower breakpoint (< 5000 m) compared to 

other direct driver. Higher breakpoints are observed in the distance to river, ranging from 

5000-7500 m, with smallholder agriculture has the lowest breakpoint (around 5000 m). 

For both roads and rivers, it is also noted that the peak probability is achieved circa 1000-

1500 m. This might suggest that deforestation does not necessarily occur right beside the 

road/river, but at a certain distance from it. 

Although analysis of the variable importance plots previously signified the importance of 

distance to palm oil mills, the pattern indicated in its PDP is not as obvious as expected. 

Relative to the base, agriculture and smallholder model, distance to palm oil mills is only 

apparent in deforestation driven by tree crop agriculture (in 0-30 km) and other driver 

(> 25 km).  

The PDP of both distance to ports and distance to piers suggest that they have a mixing 

effect on the deforestation occurrence. The effect of distance to port in predicting 

deforestation is apparent within 0-25 km distance, while the effect of piers is notable 

within 50-60 km distance. For both indirect drivers, the effect is strongest in the tree crop 

and other driver model. Smallholder-driven deforestation is only slightly affected by the 

distance to pier. 

In the biophysical variables, specific pattern is again only revealed in the direct driver-

specific models. The base, agriculture and other direct driver model initially show no 

significant pattern; the pattern is only revealed when looking into specific categories of 

agriculture. Smallholder-driven deforestation is more likely to occur in higher elevation 

(> 500 m) and in temperature range of 20-24°C. Tree crop-driven deforestation is more 
likely to happen in lower altitudes (100-250 m) and warmer temperature (25-26°C). 
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5. Discussions 

5.1 Overview 

This research assessed the link between the direct and indirect drivers of deforestation. 

Models were initially constructed using two different sampling methods, i.e., point and 

polygon-based sample. These two methods result in different accuracy and in general, the 

point-based sample was able to deliver the higher accuracy. This might be addressed to 

the trait of the sampling methods. In handling large areas, polygon-based sampling would 

average the value of the whole area, thus generalizing the variables. In contrast, point-

based sampling is able to sample the extremes: higher/lower value would not be 

dissolved. Despite this, similar trend and pattern are still observed in the variable 

importance and partial dependence plot. Between the two different sampling methods, 

the composition of the most important variable, as well as its marginal effect are still 
comparable. 

All in all, initial assessment at the direct driver data suggests that most deforestation in 

Indonesia is directly driven by agricultural and other direct drivers. Contrasting order of 

importance of the indirect drivers are apparent when comparing the variable importance 

plot of different models, suggesting that general deforestation model (i.e. base model) do 

not always reflect the pattern shown in the driver-specific model. Apparently, these 

hidden patterns are only revealed by constructing the model based on the specific direct 
driver. Some of the most important findings are described below. 

5.2 Palm oil as a driver of deforestation 

Though it does not always rank as the most important variable, the consistent 

significance of distance to palm oil mill in each of the constructed model signifies the role 

of palm oil in constituting deforestation. This finding seems to confirm the long-growing 

perception of palm oil as a cause of deforestation in Indonesia. Koh and Wilcove (2008) 

estimated that at least 56% of palm oil expansion in Indonesia is established in a formerly 

natural forests-lands. A regional analysis in Southeast Asia found that at least 45% of the 

palm oil plantations in the region were originally forests (Vijay et al., 2016). This role is 

also underlined by Indrarto et al. (2012) in CIFOR’s Indonesia country report, where a 

five-fold increase of palm oil estate area in the 90s was observed: from 1,652,301 ha in 

1989 to 8,204,524 ha in 1998 (Sawit Watch, 2009). 

The significance of distance to palm oil mills is particularly apparent in the tree crop and 

other driver model. In both models, this variable ranks as the most important variable 

with a clear gap of mean decrease accuracy value with the other variables. This provides 

a compelling evidence that the tree crops in Indonesia is dominated by palm oil. While in 

the data the scale of plantation is not distinguished, this palm oil-related deforestation is 

most likely be dominated by large scale plantations. In their study, Lee et al. (2014), found 

that in Indonesia, deforestation leading to palm oil establishment are mostly driven by 

large-scale palm oil industry (89.2%), in contrast to smallholder (10.7%).  
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Distance to palm oil mills also acts as an important variable in the other driver models. 

Looking at the data into detail, most of the other direct drivers here refer to other wooded 

lands, mainly consisting of degraded forest and shrubs. The strong presence of distance 

to palm oil mills in the other driver model suggests that these abandoned lands are 
eventually turned into palm oil plantations in the following years.  

Several explanations can be attributed to this. First, it might be related to the 

establishment of new moratoriums. While the demand for palm oil keeps on increasing, 

the establishment of new moratoriums in 2010 prohibits local governments for granting 

new concession licenses (Busch et al., 2015). This makes it harder for farmers to clear 

new forests. However, this moratorium was often criticised, one of them for not covering 

the secondary (degraded) forest (Murdiyarso et al., 2011). Exploiting existing degraded 

forest or cleared land might be seen as the most reasonable option; thus providing a 

strong explanation of this finding (Sheil et al., 2009).  

Second, it is possible that this other land use is merely a step in the land use change 

process. Boucher et al. (2011) outlined that forest logging is often followed by the 

establishment of palm oil plantations. This is further confirmed by Romijn et al. (2013) 

whose study found out that around 25% of open and degraded lands are eventually 

converted into commercial agriculture. This is related to the third explanation, the result 

of misused concession licenses for establishing plantations (Romijn et al., 2013). Many 

companies used this license merely to clear the forest, sell the timbers, and then abandon 

the lands. These wastelands, as referred by WWF Indonesia (2008), are then abandoned, 
covered by shrubs before eventually converted into palm oil plantations.  

It is interesting to note the biophysical pattern found on the tree crop driver. The peaks 

shown on the PDP of temperature and elevation correspond with some biophysical 

suitability of palm oil. During their study in mapping palm oil suitability across Indonesia, 

Pirker et al. (2016) used similar parameters, such as by setting the optimum 

temperatures between 24-28 °C. Gingold et al. (2012) described altitudes below 500 m 

as ‘highly suitable’ for palm oil plantations. While such biophysical variables are not the 

most determinant variable in characterising palm oil plantations (thus relating it to 

deforestation), it can be useful to a certain extent (Vijay et al., 2016). 

Vijay et al. (2016) emphasised the need to “not relying solely on biophysical 

requirements” to characterise palm oil expansion. They suggested to include proximity 

to infrastructures to come up with better characterisation. These transportation 

infrastructures (i.e., roads) rank amongst the important variables in the tree crop model, 

thus confirming Vijay’s hypothesis.  

5.3 Role of smallholder agriculture 

The composition of the variable importance in smallholder model suggests that the 

circumstances are more complex than in the tree crop agriculture, where palm oil is the 

lone dominant direct driver. Here, distance to roads and rivers, as well as elevation play 

a much greater role than palm oil mills. This is expected, as the categorization of 

smallholder agriculture on the data does not include palm oil plantation. Hence, other 

circumstances play a greater role here. 
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Lee et al. (2014) outlined that expansion of smallholder agricultures in Indonesia cover 

various commodities such as rubber plantation, rice fields or rattan garden. The 

biophysical variables attributed to smallholder agriculture tend to spread out and does 

not specifically point out on a specific value, unlike the ones observed in the tree crops 

model. The temperature ranges from 16-24 °C, and it tends to present in higher elevation 

(500-2000 m). This suggests that the variety of commodities can be very diverse. Rice 

might be preferred in the lowlands, while in the highlands cash crops (e.g., coffee and tea) 

is also common (FAO, 2005). Perennial crops such as rubber tree are quite versatile, and 

it has been associated with shifting agriculture practice, i.e., slash and burn system 

especially in the highlands (FAO, 2005). 

5.4 Direct and indirect drivers of deforestation in Indonesia 

Constructing specific direct driver models produced different level of importance of 

indirect drivers. For each direct driver, different indirect driver tends to also have 

different marginal effect. These variations suggest that there are some links that are 

specifically related between each direct and indirect driver. 

The first link is notable from the transportation networks. In general, Miyamoto (2006) 

outlined the strong role of road networks in determining deforestation is because roads 

provide accessibility, thus reducing transportation cost and time of logistics. The role of 

roads as a driver of deforestation is not new, and numerous studies have previously 

emphasised the role (Barber et al., 2014; Miyamoto, 2006; Zhang et al., 2016). However, 

it is interesting to note that in this research, the marginal effect of distance to roads is 

only most apparent in the palm oil-related direct drivers (i.e., tree crops and other direct 

drivers), and not in the smallholder direct driver. A possible explanation of this might be 

related to the ability of large-scale palm oil industry to establish their own ‘unofficial’ 

road networks.  

In their study, Barber et al. (2014) outlined that in addition to major roads, the presence 

of ‘unofficial’ road networks can amplify the risk of deforestation. These roads were built 

without official supervision and incentives from the government (Arima et al., 2005; 

Brandão and Souza, 2006). In Indonesia, these roads are frequently established near 

areas with vulnerable forests and agriculture activities (Sloan et al., 2018). In contrast to 

smallholder agricultures that utilize existing ‘official’ road networks, large-scale 

plantations might possibly establish their own road network, thus explaining the 

significant marginal effect of distance to roads in tree crop and other direct driver. 

Another link can be found in the role of distance to river. The role of river as a predictor 

of deforestation has been underestimated in previous studies (Barber et al., 2014; 

Laurance et al., 2002). However, this finding suggests that distance to rivers is 

particularly important in predicting deforestations driven by smallholder agricultures. 

This might be attributed to the farming system in Indonesia. Most of the farm system in 

Indonesia is rain-fed agricultures, i.e., they rely on rain to irrigate the field. Additionally, 

a relatively big portion (31.5%) of them uses irrigation system; utilizing natural 

freshwater sources such as rivers and lakes to irrigate the crops (Devendra, 2016). 
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According to the CIA’s World Factbook, Indonesia has over 67 km2 of irrigated farmlands, 

the 6th highest in the world (Central Intelligence Agency, 2009). 

There is not enough evidence on the common use of navigable river as a mean of 

transportation and logistics of agricultures, especially in Indonesia. In Indonesia, rivers 

are only a common means of transporting extracted woods after deforestation (Bauch et 

al., 2007; McCarthy, 2002). 

5.5 Implications for REDD+ 

Detailed information regarding drivers of deforestation is vital for REDD+ activities to 

succeed. While addressing these drivers are beyond the scope of this study, the methods 

presented in this research have demonstrated an approach to analyse the link between 

direct and indirect drivers of deforestation in Indonesia. Merely analysing deforestation 

as a general model is deemed inadequate, because our results show that specific link to 

indirect drivers are only revealed in the direct driver-specific models. This implies the 
need of detailed direct driver data as a prerequisite. 

Prior studies have utilized land uses following deforestation as a proxy of direct driver 

data (De Sy et al., 2015; Hosonuma et al., 2012). The present study has demonstrated the 

usability of such proximate direct driver in linking them with indirect driver data. This 

opens up a way to potentially analyse the link between direct and indirect drivers in 

greater scale and greater detail. To achieve this, one may use detailed forest cover change 

(Hansen et al., 2013a) or temporal land cover data (Bontemps et al., 2013; Jun et al., 

2014). The advances in earth observation system has also open up ways to detect forest 

disturbance in near real-time, thus providing even more detailed data (Popkin, 2016; 

Verbesselt et al., 2010). Detailed information on the link between direct and indirect 

drivers can therefore help the countries in setting up their national strategies to 

effectively address the drivers of deforestation. 

5.6 Limitations and recommendations 

5.6.1 Potential bias in variable importance and partial dependence plot 

Random forest has been popularly used in geospatial domain. However, one should 

consider some limitations in the method, especially during the interpretation of the 

variable importance (Okun and Priisalu, 2007). Strobl et al. (2007) pointed out that the 

algorithm’s variable importance measures can be unreliable when “potential predictor 

variables vary in their scale of measurement or their number of categories”. Gislason et 

al. (2006) also outlined the insensitivity of this method when dealing with noise and 

overtraining. The false predictor role of precipitation in this research demonstrated this 
potential bias. 

This research attempted to overcome this issue by making comparisons of the results to 

preceding studies. While some of our results produce sensible outcomes, this might 

explain the insignificant role of several variables throughout different models. Critical 

assessment is thus a necessity in interpreting the results. Several studies have developed 

improved random forest algorithm to tackle this issue, therefore future studies might be 
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directed into implementing such improved algorithms (Strobl et al., 2007; Zhang and Lu, 

2012). 

Molnar (2018) outlined several disadvantages of Partial Dependence Plot (PDP) to be 

considered when interpreting such plots. First, PDPs do not show distribution. For 

example, there might be some regions of the graph with actually no data that is 

represented as straight line in the plot. This might lead to false conclusions. Second, PDPs 

assume the independence of the assessed variable (i.e., indirect driver). This plot assumes 

that one indirect driver is not correlated with another indirect driver. In reality, this is 

mostly not the case. For example, population and economic growth often have positive 
correlation (Geist and Lambin, 2001). 

5.6.2 Socioeconomic variables 

Prior studies have indicated the importance of socioeconomic variables in modelling 

deforestation, such as by incorporating GDP, population and employment rate (Kissinger 

et al., 2012; Romijn et al., 2013; Vijay et al., 2016). An attempt to incorporate these 

variables was made by using data from World Bank Group (2018). However, the 

socioeconomic variables always rank low in the variable importance plot. There are 

several possible explanations.  

First, it is possible that the socioeconomic variables are simply not of importance in the 

model. The effect of these variables in influencing deforestation might be too complex for 

random forest to model, as the effect of socioeconomic variables in deforestation is not 

very straightforward.  

Second, this might be attributed to the quality of the data. Presenting the data in district 

level means assuming that every area of a district is homogeneous, having the same value. 

In reality, this is not always the case; the different neighbourhood of a city, for instance, 

would always have different population densities. The same case applies to other 

socioeconomic variables such as HDI or GDP. In spatial analysis, one way to present 

continuous data is through raster. With each pixel representing a snippet of an area, a 

specific value can be attributed to them. Currently, such gridded socioeconomic data is 

rare; even if there is any, they are often presented in poor resolution, and the range of the 

available socioeconomic variable is limited such as the population estimate grid 

produced by NASA SEDAC (Socioeconomic Data and Application Center). 

5.6.3 Categorical variables and other potential drivers 

Seen from the variable importance across the models, in general, categorical (i.e., binary) 

variables are not good predictors of deforestation. Initially, these variables were expected 

to be able to represent the concession zones, as one of the policy factors governing 

deforestation. The considered concession zones in this research are the main industrial 

causes of deforestation in Indonesia, i.e. palm oil, wood fibre and logging (Abood et al., 

2015). In fact, between these three industries, palm oil is actually the direct driver with 

the least impact in terms of forest loss between 2000-2010. Fibre plantation and logging 

have greater disturbance, responsible for 1.9 Mha and 1.8 Mha of forest loss, respectively. 

Excluding these variables means that they are not represented well in the model. As a 

result, detailed assessment of the drivers was only able to be conducted on palm oil, 
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because the distance to palm oil mills seems to be very decisive in constructing the model. 

In future studies, it is suggested to include also variables related to the other drivers. 

Continuous, rather than categorical variable would be recommended. Potential features 

may include, for example, distance to pulp factories or logging mills. 
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6. Conclusions 

 

The present study was conducted to assess the link between direct and indirect drivers 

of deforestation in Indonesia. Random forest-based spatial analysis of deforestation 

drivers revealed that factors affecting different direct drivers could vary. In general, tree 

crop driven deforestation is dominated by palm oil; particularly in large scale tree 

plantations and is linked with the presence of palm oil mills and roads. In contrast to the 

tree crop direct driver, the smallholder direct driver does not point out to a specific crop 

type; it is rather a complex driver and may be associated with different categories of 

agriculture, such as cash crops, perennial plants or swidden agriculture. In addition to 

roads, smallholder agriculture is linked with the distance to river as its underlying driver 

of deforestation. 

Although some results have indicated specific biophysical characteristics for specific 

direct drivers of deforestation, biophysical variables are less determinant compared to 

the distance variables. The significance of socioeconomic variables as underlying driver 

of deforestation was also not observed in this study. 

The method proposed in this study can possibly be extended to greater level of detail, 

such as to be implemented in nation-wide monitoring. This implies the need of detailed 

direct driver data, so that the deforestation can be distinguished. Future studies might be 

directed into producing and including continuous socioeconomic variables. Including 

more factors concerning other potential indirect drivers (i.e., logging and wood fibre) 

would also be useful. Due to the lack of data, this study has not been able to analyse in 

detail regarding smallholder agricultures. Given its dominant role, one can conduct 

detailed spatial analysis specifically in this type of agriculture to reveal the hidden 

circumstances, e.g., the specific types of crops that cause deforestation. 

Nevertheless, this study demonstrated the utilization of spatial analysis in analysing 

deforestation. Proximity and spatial distribution are among the spatial properties of 

forest clearing, and spatial analysis can be a useful instrument in studying deforestation. 

The findings made in this study can contribute to countries in setting up effective and 

efficient REDD+ strategies. 
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Annex A: Variable importance plot 

 

The variable importance plots of each of the constructed model is presented here. It can 

be noted that different direct drivers have different order of importance of indirect 

drivers. For example, in the general (base) model, distance to roads does not seem to have 

high importance value. The importance is only revealed in the direct driver specific 

model, that roads are of high importance in the agriculture (i.e. smallholder and tree 
crops) but not in the other direct driver.   
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Agriculture 
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Annex B: Partial dependence plot 
 

Elevation 

 

 

The influence of elevation as indirect driver in constituting deforestation is almost zero in the base, agriculture and other direct driver model. The 

effect is only apparent in specific direct drivers: smallholder agriculture and tree crops agriculture. Smallholder-driven deforestation tend to occur in 

higher altitudes (500-2000 m) and tree crops-driven deforestation is only apparent in lower altitudes (~150 m). 
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Temperature 

 

 

Temperature seem to constitute deforestation in all direct drivers. Only the range between different direct drivers is different: in almost all direct 

drivers, 26.5°C is the most common temperature where deforestation occur. Only in smallholder agriculture-driven deforestation the range of 

temperature tend to spread out, between 16-26°C.  
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Distance to Roads 

 

The effect of distance to roads as indirect driver of deforestation shows almost a negative linear relationship in all direct drivers. The probability of 

deforestation decreases the further a forest is from roads. This effect is most apparent in the tree crop driven deforestation. The breakpoints suggest 

that this underlying driver has effect around 0-5 km. 
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Distance to Piers 

 

Distance to piers have mixing effects in different direct drivers. This indirect driver is most apparent in tree crop and other direct driver-related 
deforestation. The model is more likely to predict deforestation in the farther distances (> 50 km), except for the other direct driver, where the peak 
is observed in the distance around 25 km.  
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Distance to Ports 

 

Distance to ports have similar effect to distance to piers. While it seems to have no effect in constituting smallholder driven-deforestation, its 
influence is very apparent in the tree crop and other direct drivers (between 0-50 km).    
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Distance to River 

 

Similar to distance to roads, distance to river also have negative linear relationship with the probability of deforestation. The effect is more or less of 
the same magnitude for every direct driver. The effect of this indirect driver is apparent within 5-7.5 km radius from river.  
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Distance to Palm Oil Mills 

 

While the variable importance plot for different direct driver signified the high importance of distance to palm oil mills, the PDPs of this 
indirect driver are not showing striking pattern. However, these plots agree that the effect of distance to palm oil mills is only apparent 
in the tree crop agriculture and other direct drivers.  
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Distance to Logging Concession Zones 

 

 

As suggested by the peak, these plots suggest that deforestation is more likely to happen in forests nearby the logging concession zone 
(between 0-75 km). There is less probability of deforestation in farther distance. Every direct driver shows similar pattern, suggesting 
that the effect is almost identical for different direct drivers.  
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Distance to Wood Fibre Concession Zones 

 

Distance wood fibre concession zones have minor influence in constituting deforestation agriculture and smallholder-driven 

deforestation, and seem to have the strongest effect in the other driver model. In contrast, it has no effect in constituting deforestation in 
tree crop-driven deforestation. 


