

Application of QMRA to go beyond safe harbors in thermal processes.

Part 2: quantification and examples

JEANNE-MARIE MEMBRÉ¹, MIEKE UYTTENDAELE², FRANÇOIS BOURDICHON³,
ANNEMIE GEERAERD⁴, MARCEL ZWIETERING⁵

¹ UNILEVER, SAFETY & ENVIRONMENTAL ASSURANCE CENTRE, UK

² LABORATORY OF FOOD MICROBIOLOGY AND FOOD PRESERVATION,
GHENT UNIVERSITY, BELGIUM

³ DANONE RESEARCH – CENTRE DANIEL CARASSO,
FOOD SAFETY CENTRE, FRANCE

⁴ CPMF² - FLEMISH CLUSTER PREDICTIVE MICROBIOLOGY IN FOODS & DIVISION OF
MECHATRONICS, BIOSTATISTICS AND SENSORS (MEBIOS/BIOSYST), KATHOLIEKE UNIVERSITEIT
LEUVEN

⁵ WAGENINGEN UNIVERSITY AND RESEARCH CENTRE,
LABORATORY OF FOOD MICROBIOLOGY, THE NETHERLANDS

Re-visiting safe harbor processes in the new safety management context

Ex. 1: 4.4 log reduction of *E. coli* O157:H7 in frozen beef patties (ICMSF, 2002)

- *Hazard identification*: EHEC/cattle
- *Hazard characterization*: moderate to severe disease (HUS)/ deaths, with a relatively low infective dose (<100 cells) => FSO ≤ -2.4 ($\leq 1\text{cfu}/250\text{ g}$)
- *Exposure assessment*: carcass surface contamination & decontamination, no increase under controlled chilling/fabrication operations => $\Sigma I=0$
small proportion: high prevalence and concentration ($1\text{-}10\text{ g}^{-1}$) => $H_0 = 2$
- $\Sigma R \geq H_0 + \Sigma I - FSO = 2 + 0 + 2.4 = 4.4$

Ex. 2: 5 log reduction of *L. monocytogenes* in shrimp (Walls 2005)

- *Hazard identification: L. monocytogenes/ shrimp*

- *Hazard characterization: listeriosis*

- *Exposure assessment:*
mostly $< 100 \text{ cfu g}^{-1}$ $\Rightarrow H_0 = 2$
 $\Sigma I = 0$

no detectable cells per serving of 100 g $\Rightarrow FSO \leq -2$

- **$\Sigma R \geq H_0 + \Sigma I - FSO = 2 + 0 + 2 = 4$**
- Added safety margin of 1 log: **$\Sigma R \geq 5$**
- Further recommendations: Shrimp are sorted by size, and the plant has determined the minimum time at the target temperature for the largest shrimp processed in any batch.

Ex. 3: *Salmonella* in pasteurized frozen foods (Membré et al. 2007)

- Safe Harbor: UK ACMSF : **70°C / 2min** gives 6D reductions of *E. coli* 0157:H7, *Salmonella* spp. and *L. monocytogenes*
- Can we safely reduce this heat treatment?

Deterministic method

Deterministic method

- $\Sigma R = 4.6 = PC$
- **Heat treatment duration HTT**
 - Option 1: $HTT = PC \cdot D_{95th}$
 - Option 2: $HTT = (PC+1) \cdot D_{expected}$

Data from Juneja et al. (2001)

Probabilistic method

- H_0 : Pert (0,1,3.18)

- D-values

Probabilistic method

- $N = N_0 \cdot 10^{-\text{time}/D}$
- $p = \text{probability for one cell to survive the treatment in } 25 \text{ g portions} = 10^{-\text{time}/D}$
- or $\text{time} = -\log(p) \cdot D$ with
 - $N \sim \text{Binomial}(N_0, p)$
 - $p \sim \text{Beta}(1+N_{\text{target}}, 1+N_0-N_{\text{target}})$
- $\text{HTT} = 95^{\text{th}} \text{ percentile of } (-\log(p) \cdot D)$
- FSO can be either 0 or 1 cell per portion
 - $p \sim \text{Beta}(1+FSO, 1+N_0-FSO)$
- **HTT = 0.30 or 0.26 min**

Assessing the probability of meeting the FSO

Quantification of the log reduction obtainable during thermal processing

Micro-organism	T _{ref} [°C]	z [°C] mean (range)	Log(D _{ref}) range	D _{ref} [min] range	Reference
sporeformer	121.1	10 (7 to 12)	-2 to 0.69	0.01 to 5	Holdsworth, 2004
vegetative cells	70	5 (4 to 7)	-1.52 to 1.04	0.03 to 11	Mossel, 1995

Micro-organism	T _{ref} [°C]	z [°C]	Log(D _{ref}) mean (95% prediction interval)	D _{ref} mean (95% prediction interval)	Reference
<i>C. botulinum</i> (ABF)	120	10.2	-0.78 (-1.24 to -0.32)	0.17 (0.058 to 0.48)	Van Asselt and Zwietering, 2006
<i>L. monocytogenes</i>	70	7	-1.06 (-1.84 to -0.28)	0.087 (0.014 to 0.52)	Van Asselt and Zwietering, 2006

Guidelines for prediction purposes

Level I - a safe harbor approach

- Assuming the approximation of a realistic time-temperature profile with static intervals
- Basic model approach with general parameter values, e.g., consensus safe harbor of a D -value not exceeding 0.25 min at 72°C for *L. monocytogenes* in RTE-foods

$$\log\left(\frac{N}{N_0}\right) = -\frac{t}{D}$$

$$D = D_{ref} 10^{\left(\frac{T_{ref} - T}{z}\right)}$$

Guidelines for prediction purposes

Level II – an approach based on databases

- Extended database for *L. monocytogenes*
 - All products (940 data): $D_{72} = 0.274$ min, $z = 7^\circ\text{C}$
 - Dairy products (280 data): $D_{72} = 0.104$ min, $z = 6.4^\circ\text{C}$
 - Milk (226 data): $D_{72} = 0.091$ min, $z = 6.2^\circ\text{C}$
 - Basic model approach
 - More advanced model, e.g.,
Weibull type model

$$\log\left(\frac{N}{N_0}\right) = -\left(\frac{t}{\delta}\right)^b$$

$$\delta = \delta_{ref} 10^{\left(\frac{T_{ref} - T}{z}\right)}$$

Guidelines for prediction purposes

Level III – an approach based on user-specific data

- User-specific data and/or data from ComBase
- Identification of, e.g., a Weibull type model with GInaFiT
- Estimates of the parameters
 - $b \Rightarrow$ generally no need for a secondary model
 - $\delta \Rightarrow$ (extended) Bigelow type model

Application of these guidelines for prediction purposes

1. Quantification of the ΣR term for a given temperature profile (monitored or calculated)
2. Options to adjust the time duration or temperature to achieve a pre-specified ΣR
3. Optimization of heat processing design

Conclusions

- Risk assessment is an appropriate framework to go beyond safe harbors; by
 1. combining in an accurate way the performance of a certain, specified thermal treatment with **performances in other stages** of the food production chain;
 2. **reducing the uncertainty** on predictions, and therefore decreasing the need for being conservative;
 3. calculating **accurately** the time needed at a specified treatment temperature or the temperature needed for a specified treatment duration using more complicated models to attain a stated performance level.
- Nevertheless, safe harbors to set a heat treatment remain valuable

Thank You for your attention

ILSI Report “RISK ASSESSMENT APPROACHES
TO SETTING THERMAL PROCESSES
IN FOOD MANUFACTURE” to be published in 2010

