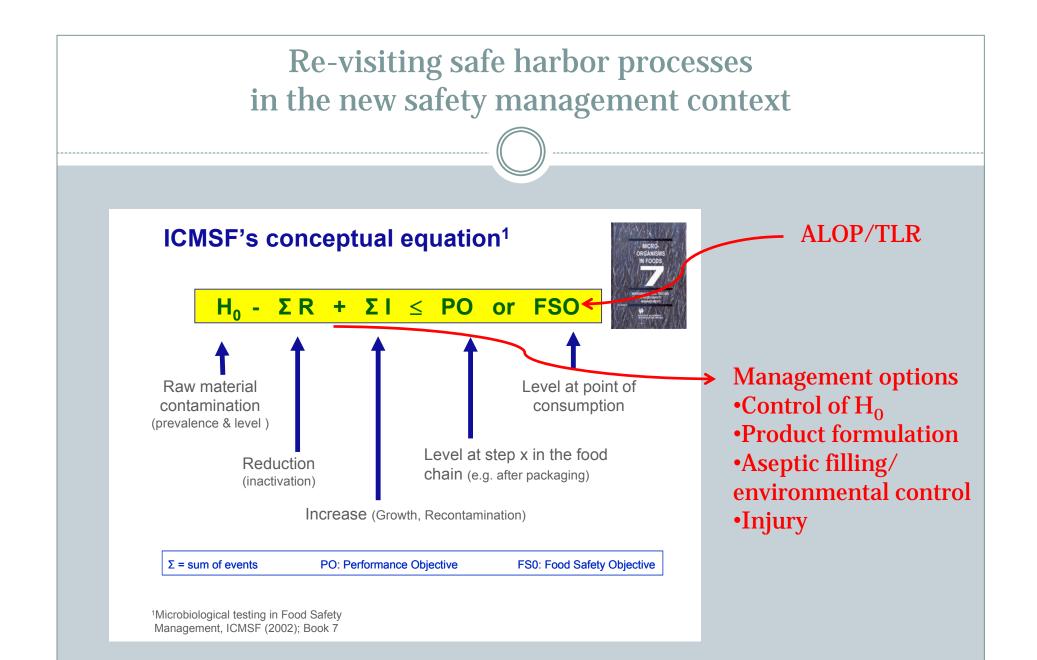


Application of QMRA to go beyond safe harbors in thermal processes. Part 2: quantification and examples

JEANNE-MARIE MEMBRÉ¹, MIEKE UYTTENDAELE², FRANÇOIS BOURDICHON³, ANNEMIE GEERAERD⁴, MARCEL ZWIETERING⁵

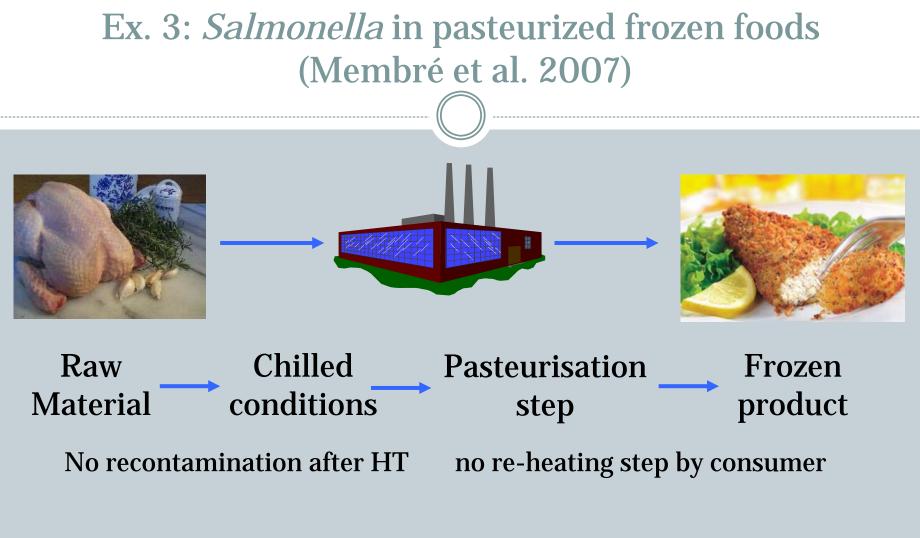
¹ UNILEVER, SAFETY & ENVIRONMENTAL ASSURANCE CENTRE, UK ² LABORATORY OF FOOD MICROBIOLOGY AND FOOD PRESERVATION, GHENT UNIVERSITY, BELGIUM ³ DANONE RESEARCH – CENTRE DANIEL CARASSO, FOOD SAFETY CENTRE, FRANCE ⁴ CPMF^{2 -} FLEMISH CLUSTER PREDICTIVE MICROBIOLOGY IN FOODS & DIVISION OF MECHATRONICS, BIOSTATISTICS AND SENSORS (MEBIOS/BIOSYST), KATHOLIEKE UNIVERSITEIT LEUVEN

> ⁵ WAGENINGEN UNIVERSITY AND RESEARCH CENTRE, LABORATORY OF FOOD MICROBIOLOGY, THE NETHERLANDS

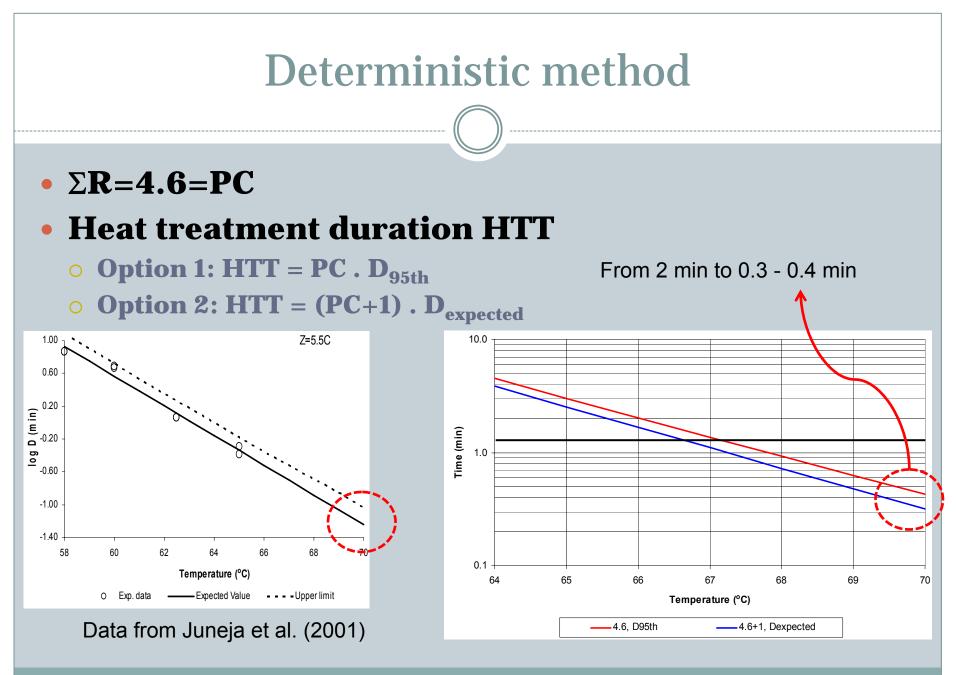

AGROTECHNOLOGY & FOOD SCIENCES GROUP WAGENINGEN UR

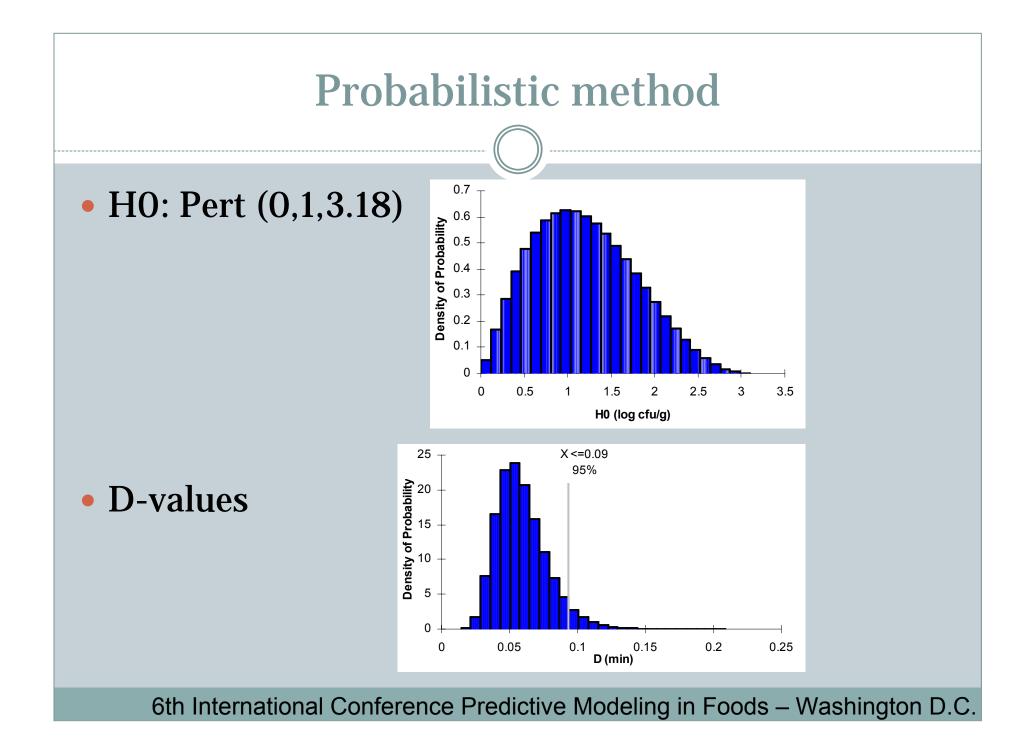
Ex. 1: 4.4 log reduction of *E. coli* O157:H7 in frozen beef patties (ICMSF, 2002)

- Hazard identification: EHEC/cattle
- Hazard characterization: moderate to severe disease (HUS)/ deaths, with a relatively low infective dose (<100 cells) => $FSO \le -2.4$ ($\le 1cfu/250$ g)
- Exposure assessment: carcass surface contamination & decontamination, no increase under controlled chilling/fabrication operations => $\Sigma I=0$ small proportion: high prevalence and concentration (1-10 g⁻¹) => H₀ = 2
- $\Sigma R \ge H_0 + \Sigma I FSO = 2 + 0 + 2.4 = 4.4$

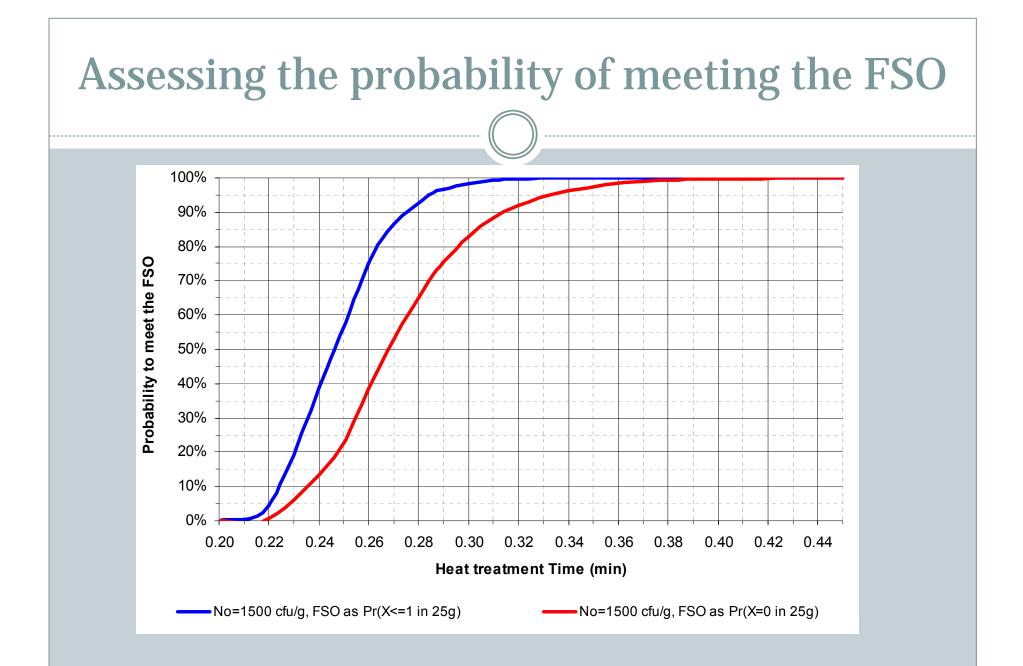

Ex. 2: 5 log reduction of *L. monocytogenes* in shrimp (Walls 2005)

- Hazard identification: L. monocytogenes/ shrimp
- Hazard characterization: listeriosis
- Exposure assessment: mostly < 100 cfu $g^{-1} => H_0 = 2$ $\Sigma I=0$


- $\Sigma \mathbf{R} \ge \mathbf{H_0} + \Sigma \mathbf{I} \mathbf{FSO} = \mathbf{2} + \mathbf{0} + \mathbf{2} = \mathbf{4}$
- Added safety margin of 1 log: $\Sigma \mathbb{R} \ge 5$
- Further recommendations: Shrimp are sorted by size, and the plant has determined the minimum time at the target temperature for the largest shrimp processed in any batch.



- Safe Harbor: UK ACMSF : 70°C / 2min gives 6D reductions of *E. coli* 0157:H7, *Salmonella spp.* and *L. monocytogenes*
- Can we safely reduce this heat treatment?
 6th International Conference Predictive Modeling in Foods Washington D.C.



Probabilistic method

- N=N0.10^{-time/D}
- p = probability for one cell to survive the treatment in 25 g portions = 10^{-time/D}
- or time = -log(p). D with
 - o N ~Binomial(N0,p)
 - $p \sim Beta(1+N_{target}, 1+N0-N_{target})$
- HTT= 95th percentile of (-log(p). D)
- FSO can be either 0 or 1 cell per portion
 p ~Beta(1+FSO ,1+N0-FSO)
- HTT = 0.30 or 0.26 min

Quantification of the log reduction obtainable					
during thermal processing					
Micro- organism	T _{ref} [°C]	z [°C] mean (range)	Log(D _{ref}) range	D _{ref} [min] range	Reference
sporeformer	121.1	10 (7 to 12)	-2 to 0.69	0.01 to 5	Holdsworth, 2004
vegetative cells	70	5 (4 to 7)	-1.52 to 1.04	0.03 to 11	Mossel, 1995
Micro- organism	T _{ref} [°C]	z [°C]	Log(D _{ref}) mean (95% prediction interval)	D _{ref} mean (95% prediction interval)	Reference
<i>C. botulinum</i> (ABF)	120	10.2	-0.78 (-1.24 to -0.32)	0.17 (0.058 to 0.48)	Van Asselt and Zwietering, 2006
L. monocytogenes	70	7	-1.06 (-1.84 to -0.28)	0.087 (0.014 to 0.52)	Van Asselt and Zwietering, 2006
6th International Conference Predictive Modeling in Foods – Washington D.C.					

Guidelines for prediction purposes Level I - a safe harbor approach

- Assuming the approximation of a realistic timetemperature profile with static intervals
- Basic model approach with general parameter values, e.g., consensus safe harbor of a *D*-value not exceeding 0.25 min at 72°C for *L. monocytogenes* in RTE-foods

$$\log\left(\frac{N}{N_0}\right) = -\frac{t}{D}$$
$$D = D_{ref} 10^{\left(\frac{T_{ref} - T}{z}\right)}$$

Guidelines for prediction purposes Level II – an approach based on databases

- Extended database for *L. monocytogenes*
 - All products (940 data): $D_{72} = 0.274$ min, $z = 7^{\circ}C$
 - Dairy products (280 data): $D_{72} = 0.104 \text{ min}, z=6.4^{\circ}\text{C}$
 - Milk (226 data): $D_{72} = 0.091 \text{ min}, z=6.2^{\circ}\text{C}$
 - Basic model approach
 - More advanced model, e.g., Weibull type model

$$\log\left(\frac{N}{N_0}\right) = -\left(\frac{t}{\delta}\right)^{b}$$
?
$$\delta = \delta_{ref} 10^{\left(\frac{T_{ref} - T}{z}\right)}$$

Guidelines for prediction purposes Level III– an approach based on user-specific data

- User-specific data and/or data from ComBase
- Identification of, e.g., a Weibull type model with GInaFiT
- Estimates of the parameters
 - *b* => generally no need for a secondary model
 - $\delta =>$ (extended) Bigelow type model

Application of these guidelines for prediction purposes

- 1. Quantification of the ΣR term for a given temperature profile (monitored or calculated)
- 2. Options to adjust the time duration or temperature to achieve a pre-specified ΣR
- 3. Optimization of heat processing design

Conclusions

- Risk assessment is an appropriate framework to go beyond safe harbors; by
 - 1. combining in an accurate way the performance of a certain, specified thermal treatment with performances in other stages of the food production chain;

"Some bloke wants to know if we've carried out a thorough risk assessment?"

- 2. **reducing the uncertainty** on predictions, and therefore decreasing the need for being conservative;
- 3. calculating accurately the time needed at a specified treatment temperature or the temperature needed for a specified treatment duration using more complicated models to attain a stated performance level.
- Nevertheless, safe harbors to set a heat treatment remain valuable

6th International Conference Predictive Modeling in Foods –

Thank You for your attention

ILSI Report "RISK ASSESSMENT APPROACHES TO SETTING THERMAL PROCESSES IN FOOD MANUFACTURE" to be published in 2010

