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Abstract 
Bacterial specialised metabolites are a rich source of natural products (NPs). The genes responsible for 

their biosynthesis are physically clustered on the genome in biosynthetic gene clusters (BGCs). Many BGCs 

consist of multiple groups of co-evolving genes called sub-clusters, each of which is responsible for 

synthesising a specific chemical moiety in the NP. Sub-clusters therefore provide an important link between 

the substructures of an NP and its BGC, highlighting the importance of sub-clusters for structural 

predictions. Here, we improved the existing method for sub-cluster detection by making it more scalable, 

reducing redundancy and using the antiSMASH database as a data source, which constitutes a ten-fold 

increase in training data. Additionally, we introduced a text-mining algorithm called Latent Dirichlet 

Allocation (LDA) as a novel unsupervised method for sub-cluster detection. LDA identifies groups of co-

occurring genes in the data and clusters them into sub-cluster motifs. Using LDA, we were able to identify 

71% of the experimentally validated sub-clusters from the SubClusterBlast module in antiSMASH. 

Furthermore, we annotated 50 sub-cluster motifs with structural information. This could readily be used 

by BGC prediction tools like antiSMASH to enhance structure prediction and to provide novel structural 

information to unclassified BGCs. We showed a direct application of our method by proposing the BGC for 

heronapyrrole biosynthesis. Finally, we used a systematic approach to link sub-clusters to substructures, 

which could be used in the future to connect BGCs to their NPs in an automated manner. 
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Introduction 
A considerable part of bacterial metabolism is dedicated to the synthesis of specialised metabolites. While 

these molecules govern intra-and interspecies interactions in general, they are bioactive compounds used 

for defence, making them invaluable for bacterial survival (Traxler et al., 2015). Specialised metabolites 

are natural products (NPs) with many uses in pharmaceutical, agricultural and dietary agents, like 

antibiotics, antitumor agents and herbicides (Dayan et al., 2009; Li et al., 2009). NPs consist of a spectrum 

of different chemical classes, which are often highly complex in structure. Intriguingly, the genes necessary 

for the synthesis of NPs cluster together physically in biosynthetic gene clusters (BGCs) (Medema et al., 

2014). The search and discovery of new BGCs is thus crucial for identifying new NPs, which is especially 

important in the field of antibiotics as antibiotic resistant bacteria become more prevalent (Chevrette et 

al., 2018). 

Traditionally, novel NPs were identified using low-throughput wet lab experiments (Katz et al., 2016). In 

recent years however, genome mining approaches have become increasingly interesting for NP discovery, 

due to the growing availability of genomic data. Multiple algorithms exist that search bacterial genomes 

for putative BGCs, such as antiSMASH, ClusterFinder and PRISM (Kai Blin et al., 2019b; Cimermancic et 

al., 2014; Skinnider et al., 2017). These methods have provided a better understanding of BGC diversity 

and the evolutionary mechanisms that govern BGC diversity. Even using conservative constraints, 

Cimermancic et al. (2014) estimated that over 6,000 broad BGC families exist, each of which consists of 

multiple BGCs that synthesise distinct molecules from a common scaffold. Rapid evolution seems to be an 

important factor for the large BGC diversity. This shows from the high frequency of horizontal gene transfer 

and the high rates of insertions, deletions, duplications, and rearrangements that BGCs exhibit (Medema 

et al., 2014). Another striking observation is the modular structure that several types of BGCs display. In 

particular, BGCs encoding for polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) 

seem to consist of multiple modules or sub-clusters of co-evolving genes, each responsible for synthesising 

specific chemical moieties (Del Carratore et al., 2019; Fischbach et al., 2008; Medema et al., 2014). Sub-

clusters therefore provide a direct link between the substructures of an NP and its BGC. This makes 

information about sub-clusters and the substructures they synthesise highly valuable for structure 

prediction, which would be a great asset for tools like antiSMASH. Not only would it improve the structure 

prediction of existing BGC classes but it would also be possible to predict structures of currently unclassified 

BGCs, such as the 10,000 unclassified BGCs in the antiSMASH database (K. Blin et al., 2019a). In synthetic 

biology, the notion of BGC modularity has already been used to generate novel compounds by recombining 

core genes from PKSs and NRPSs, and by altering single modifying genes like methyltransferases (Kim et 

al., 2015; Menzella et al., 2005). However, insight into sub-clusters allows the possibility to interchange 

complete chemical moieties instead of the core structure or small modifications. In addition to synthetic 

biology, BGC modularity poses a great opportunity to connect metabolomics experiments to sub-cluster 

data. Chemical moieties identified from fragments in mass spectrometry (MS) data could be linked to sub-

clusters responsible for their synthesis, which could lead to MS-guided genome mining (Del Carratore et 

al., 2019). Recent advances in substructure modelling aid such metabologenomic approaches (van der 

Hooft et al., 2016). More knowledge about sub-clusters is thus beneficial for understanding BGC evolution, 

and has many practical applications. 

Recently, Del Carratore et al. (2019) developed a method for the detection of sub-clusters in BGCs. They 

constructed Clusters of Orthologous Groups (COGs) and used a statistical approach to determine if a group 

of co-occurring COGs represents a sub-cluster. Subsequently, they made a score to be able to rank the 

sub-clusters based on relevance and reliability. With this method, 185,718 putative sub-clusters were 

found in a set of 12,842 BGCs, which were predicted with antiSMASH. Well characterised sub-clusters were 

found to be present in the set of sub-clusters with high scores, demonstrating the effectiveness of their 

method. However, the number of sub-clusters found in this analysis is very large. This can partly be 

explained by the nested structure of a lot of sub-clusters, in which smaller, less specific sub-clusters are 

contained in larger, more specific sub-clusters. Another reason for the inflated number of detected sub-

cluster might be that phylogenetic bias is not considered. As such, the presence of many highly similar 
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BGCs could result in the detection of artificial sub-clusters that consist of almost entire BGCs. Additionally, 

this method is not very scalable as it relies on extensive all-vs-all searches to construct the COGs. 

Here, we constructed an improved method for sub-cluster detection that is scalable to large datasets and 

takes phylogenetic bias into account by filtering the input in a more advanced way. Scalability is achieved 

by tokenising BGCs into strings of Pfam domains as a proxy for sequence identity, instead of extensive 

COG construction. As Pfams are quite broad sequence models, we increased the resolution by splitting the 

most important Pfams into a number of subPfams, each of which is a more narrow domain model that 

covers a subset of a Pfam’s sequence space. To improve the previous statistical method, we removed 

nested sub-clusters, collapsed similar sub-clusters into families, and similar families into clans. In addition 

to the previous method, we implemented a text mining algorithm, Latent Dirichlet Allocation (LDA), for the 

purpose of sub-cluster detection (Blei et al., 2003). LDA has already been used successfully in other 

branches of natural science, such as genomics and metabolomics (Chen et al., 2010; van der Hooft et al., 

2016). In our case, LDA learns a set of sub-cluster motifs from a collection of BGCs, which are in turn used 

to infer multiple sub-clusters in a BGC. We applied our pipeline to the antiSMASH database, which is a 

considerable improvement in comparison with the previous method as it contains over ten times as many 

BGCs (150,000) from almost 25,000 bacterial species that are chosen to reduce taxonomical bias (K. Blin 

et al., 2019a). For the validation of our method we included the MiBIG database, a set of curated BGCs 

with structural information, in which a number of sub-clusters have been experimentally verified (Medema 

et al., 2015). With our approach, we were able to characterise 50 different sub-cluster motifs present in 

diverse BGC classes. The remaining 950 sub-cluster motifs remain largely unexplored, of which many are 

likely to encode useful substructures. Using one of the characterised sub-cluster motifs, we showed a direct 

practical application of our method by proposing the putative BGC for heronapyrrole production. Moreover, 

we could correlate sub-clusters to substructures in a systematic manner by including the Crüsemann 

dataset in which substructure models were created previously using the MS2LDA tool (Crüsemann et al., 

2017; Ernst et al., 2019). 

Methods  
Python was used for all analyses in this project. Code is available at 

https://git.wageningenur.nl/louwe015/scripts-thesis. In our pipeline, each BGC is tokenised by converting 

all genes into strings of (sub)Pfam combinations (Figure 1). With a graph based filtering step redundant 

BGCs are removed from the dataset, after which we detect sub-clusters using two algorithms: a statistical 

method and Latent Dirichlet Allocation (LDA). The resulting sub-clusters of both methods are annotated 

with substructures and can be used to predict sub-structures in BGCs. These steps are described in the 

following sections, while the supplementary methods provide more detailed explanations. 

 

Figure 1 Workflow for the detection of sub-clusters. All genes in BGCs are converted into strings of Pfam domains, 
after which redundant BGCs are filtered out based on an Adjacency Index of domains. Sub-clusters are detected 
using two methods: Latent Dirichlet Allocation (LDA) and a statistical analysis (stat). BGCs from the MiBIG 

https://git.wageningenur.nl/louwe015/scripts-thesis
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database are used to annotate putative sub-clusters with sub-structures. These annotations are used to predict 
sub-structures in unknown BGCs. 

Data selection and processing 
The main dataset consisted of three data sources: the MiBIG database, the Crüsemann dataset and the 

antiSMASH database. Version 1.4 of the MiBIG database was used which contains 1,819 BGCs 

(https://dl.secondarymetabolites.org/mibig/mibig_gbk_1.4.tar.gz). The Crüsemann dataset consists of 

5,927 BGCs that originate from the 146 Streptomyces and Salinispora strains investigated by Crüsemann 

et al. (2017). antiSMASH 3.0 was used for the detection of BGCs in the Crüsemann dataset. The antiSMASH 

database (https://antismash-db.secondarymetabolites.org/) is comprised of 152,122 BGCs detected with 

antiSMASH 4.0 (Table S1). Additionally, the MiBIG database and the Crüsemann dataset were used 

together as the small dataset. BGCs were discarded if they were flagged by antiSMASH as laying on a 

contig-edge, as these BGCs are probably incomplete and less accurate. Additionally, BGC-class information 

was included in the analysis, by using the predicted antiSMASH classes for the antiSMASH database, and 

the output of a BiG-SCAPE run for the Crüsemann and MiBIG datasets (van der Hooft, J. J., personal 

communication). 

BGCs were tokenised by converting each gene into a string of (sub)Pfam domains. To detect (sub)Pfams, 

the HMMER3 tool hmmscan was used with a custom profile hidden Markov model (pHMM) database 

consisting of Pfam database version 32.0 where 112 Pfams were replaced by corresponding subPfams 

(Bateman et al., 2018; Mistry et al., 2013). These 112 Pfams were selected as they are the most abundant 

biosynthetic Pfams in the antiSMASH database (Kautsar, S. A., personal communication, Supplementary 

files). To create subPfams, the multiple sequence alignment of a Pfam is split into clades, after which a 

new pHMM is built for each clade, each of which constitutes a subPfam (Figure S6A). 

Redundant BGCs were removed from the analysis using a similarity network of BGCs, where BGCs were 

connected based on an Adjacency Index of domains higher than 0.95 or if BGCs were fully contained within 

one another. From each maximal clique in the network, only the BGC with the most domains was chosen 

to remain in the analysis (Table S1;Figure S7). After redundancy filtering, all non-biosynthetic domains 

were removed from all BGCs. To select biosynthetic domains, EC-associated Pfams were collected with 

ECDomainMiner, from which Pfams were selected if they occurred in pre-calculated BGCs (Alborzi et al., 

2017; Kautsar, S. A., personal communication). After manual curation this resulted in a list of 1,839 

biosynthetic Pfams (Supplementary files). Additionally, Pfams that occurred less than three times in a 

dataset were removed as well as BGCs that contained less than two non-empty genes. 

Sub-cluster detection: re-implementation of the statistical method 
The statistical method for sub-cluster detection was re-implemented in python according to Del Carratore 

et al. (2019). Instead of representing genes as COGs as in the previous method, we represent each gene 

as a combination of its domains. First, all possible adjacency and co-localisation interactions between each 

pair of genes are counted. To assess whether an observed interaction between two genes occurs more 

than by random chance, one needs to distribute such a pair of genes randomly through the dataset and 

calculate the probability of the observed interaction. To reduce the computational burden of a permutation-

based approach, for each pair of genes one gene is kept fixed while the other is being randomly distributed 

throughout the data. For an adjacency interaction this gives a hypergeometric equation describing all 

available positions of one gene while the other is fixed (Table S2;Equation 1). This follows from the fact 

that there are three options for the position of gene B while keeping gene A fixed: not adjacent to gene A 

(B1), adjacent to gene A (B2), or adjacent to gene A on both sides (B3). N1, N2 and N3 represent all available 

positions in these three categories, while Ntot represent all positions and Btot all occurrences of gene B. For 

a co-localisation interaction the same applies, except for the fact that gene B can be co-localised with nmax 

genes A, where nmax is the number of genes A co-localised with gene B (Table S2;Equation 2). When nmax 

is large this becomes computationally hard, which is why we replaced duplicate genes with an empty gene 

(a dash) and placed one copy of the duplicate gene at the end of the cluster separated by an empty gene. 

This simplifies the equation as only two types of co-localisation need to be counted: co-localisation and no 

co-localisation (Table S2;Equation 3). A p-value can be calculated by summing all probabilities in the 

https://dl.secondarymetabolites.org/mibig/mibig_gbk_1.4.tar.gz
https://antismash-db.secondarymetabolites.org/


6 
 

hypergeometric distribution that correspond to a number of interactions higher or equal to the observed 

number of interactions. Or, to make it easier, by subtracting the sum of all possible interactions smaller 

than the observed interaction from one (Table S2;Equation 4). 

Sub-cluster detection: LDA 
Latent Dirichlet Allocation (LDA) is an unsupervised algorithm based on Bayesian probabilities, which we 

use to infer latent sub-cluster composition in BGCs (Blei et al., 2003). It assumes a bag-of-words 

representation, where each BGC is depicted as a frequency vector of its domain combinations, not taking 

gene order into account. Analogous to topic modelling of text, BGCs, domain-combinations and sub-cluster 

motifs resemble documents, words and topics, respectively. The domain-combinations in each BGC are 

used to approximate the latent parameters: the sub-cluster motif distributions in the BGCs and the domain-

combination distributions in the sub-cluster motifs. To do so, the number of sub-cluster motifs N has to be 

predefined, as well as hyperparameters α and β. We chose all prior parameters for each dataset specifically, 

where we chose N with the highest overlap with SubClusterBlast (Supplementary methods) and symmetric 

α=β=1/N. For the actual inference of the latent parameters, online variational Bayes was used, which is 

implemented as a multicore version in Gensim (Hoffman et al., 2010; Rehurek et al., 2010). In this 

implementation an LDA model is trained by updating it with mini-batches from the dataset, which has low 

time and memory complexity. We chose the chunksize of each mini-batch to be 5% of the dataset with a 

minimum chunksize of 2,000 for small datasets, which is loosely based on testing different chunksizes by 

Hoffman et al. (2010). We considered that using 2,000 iterations to train a model was sufficient after 

assessing that the log-likelihood converged sufficiently (Figure S8). 

Each sub-cluster motif in an LDA model consists of a probability vector of domain combinations, 

representing the contribution of each domain combination to a sub-cluster motif. To filter out noise, we 

sorted this vector from high to low probability, summed the probabilities and included all domain 

combinations until 0.95 was reached. When a group of genes from a BGC match to a sub-cluster motif, 

this putative sub-cluster is assigned a probability representing how much of the BGC matches to this sub-

cluster motif. We set a cut-off on the match probability of 0.05, which loosely corresponds to a BGC of 40 

genes matching with at least 2 genes to a sub-cluster motif. Each gene in a match is also assigned a 

probability describing how well it fits in a match, for which we set a cut-off of 0.3. Lastly, we calculated an 

overlap score for each match, which we calculated by summing the domain combination probabilities from 

the sub-cluster motif present in the match. We set a quite liberal threshold of 0.15 on the overlap score, 

as this was the highest threshold that did not remove manually validated SubClusterBlast sub-clusters 

from the analysis. 

Results 
As our main dataset, we used our three data sources grouped together, the antiSMASH database, the 

MiBIG database and the Crüsemann dataset. Additionally, we used the MiBIG database and the Crüsemann 

separately as a small dataset, to see how sub-cluster detection changes when increasing the amount of 

data. We processed each BGC for sub-cluster detection by tokenising each gene in a BGC as a combination 

of (sub)Pfam domains, and performing redundancy filtering (Figure S6;Table S1). After these processing 

steps, the main datasets contained 60,028 BGCs with 10,539 domain combinations, while the small dataset 

contained 2,923 BGCs with 1,874 domain combinations. 

Detecting sub-clusters with the previously established statistical method 
The statistical method finds groups of genes that are either adjacent to each other, or co-localise in more 

BGCs than you would expect by random chance, reasoning that such a group of genes is a sub-cluster of 

co-evolving genes. Using this method we found 243,246 sub-clusters in the main dataset, and 15,798 sub-

clusters in the small dataset. For both datasets, over 70% of the statistical sub-clusters contain less than 

ten genes, and a good portion of the sub-clusters occur in more than 10 BGCs, i.e. 14% in the main dataset 

and 7% in the small dataset (Figure S9). 
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For the main dataset, we found an average of 4 sub-clusters per BGC, while the previous approach resulted 

in around 14 sub-clusters per BGC. It therefore seems like the nested nature of the sub-clusters has 

decreased by performing filtering for redundant BGCs. However, looking at the statistical sub-clusters 

nested structures were still apparent. We therefore aimed to cluster nested and related sub-clusters 

together, which also provides more comprehensibility to the statistical sub-clusters. We performed two 

rounds of K-means clustering, in which we first clustered the statistical sub-clusters into 10,000 sub-cluster 

families (SCFs) and then clustered these SCFs into 2,000 sub-cluster clans (SCCs) using the SCF cluster 

centres. As an additional measure for reducing nested sub-clusters, we removed redundant sub-clusters 

in each SCF if they had the same occurrence as some bigger sub-cluster containing the redundant sub-

cluster completely. This removed over half of the sub-clusters resulting in 108,085 sub-clusters. Although 

some SCCs grouped seemingly unrelated sub-clusters together that share only one gene, the majority of 

1626 SCCs provide groups of related sub-clusters, sharing at least three genes. With these two simple 

steps we managed to improve the comprehensibility of the statistical sub-clusters drastically. 

LDA as a novel tool for sub-cluster detection 
In order to enrich the discovery of sub-clusters we present a new unsupervised method for sub-cluster 

detection with Latent Dirichlet Allocation (LDA). LDA is a Bayesian probabilistic model used to model topics 

of co-occurring words in text documents (Blei et al., 2003). In an LDA model, each document is depicted 

as a mixture over latent topics, in which a topic is a distribution over the words present in the documents. 

In our case a document is a BGC, a word is a gene represented as a domain combination, and a topic can 

be thought of as a sub-cluster motif. This highlights the use of LDA for sub-cluster detection as we assume 

that a BGC is a combination of multiple different sub-clusters, which consist of co-evolving genes that co-

occur in multiple BGCs. Another benefit of LDA is illustrated by the fact that a topic or sub-cluster motif 

has the potential to contain a set of core genes that synthesise the base of a sub-structure, along with 

additional modifying genes, hereby capturing sub-structure diversity. We constructed two LDA models, one 

with 1,000 sub-cluster motifs for the main dataset and one with 100 sub-cluster motifs for the small 

dataset, after which the main and small dataset were queried on their respective LDA models. In the main 

dataset, we identified around 250,000 sub-clusters, where each sub-cluster is a group of genes matching 

against a sub-cluster motif. Over 80% of the BGCs in the main dataset contained at least one sub-cluster 

motif (Figure S10). Many of the sub-clusters were uninformative as they contained only one gene from a 

sub-cluster motif, or sub-clusters and their motifs encompassing entire BGCs (Figure 2A-B). For a sub-

cluster to be interesting we would expect its size to be between 2-12 genes, as experimentally 

characterised sub-clusters fall in this range. Many sub-clusters were of this expected size making these 

sub-clusters and their motifs interesting. As such, two experimentally verified sub-clusters of macbecin for 

methoxymalonate and AHBA provide an example as we were able to identify them in sub-cluster motifs 

563 and 742, respectively (Figure 2C). 
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Figure 2 (A) Scatterplot of the length of each BGC (number of non-empty genes) from the main dataset versus 
the length of a match to a topic or sub-cluster motif, representing a sub-cluster. The colour of each dot indicates 
how many times a BGC with a certain length contains a sub-cluster with a certain length. (B) BGC for flexirubin 
where the identified sub-cluster found encompasses the entire BGC, demonstrating an uninformative result. (C) 
BGC for macbecin where the two characterised sub-clusters for AHBA (red) and methoxymalonyl (blue) are 
highlighted in the structure of macbecin (Zhang et al., 2008). Sub-clusters from (B) and (C) are linked to their 
corresponding location in (A). 

Both methods capture the majority of experimentally validated sub-clusters 
In order to validate the sub-cluster detection methods, we used a set of 109 experimentally validated sub-

clusters. These 109 known sub-clusters are the only centrally stored validated sub-clusters, which are used 

by the SubClusterBlast tool in the antiSMASH framework (K. Blin et al., 2013). We compared all the 

putative sub-clusters from our analysis against the known sub-clusters. To assess whether we identified a 

known sub-cluster, we calculated the fraction of the known sub-cluster that we captured in a putative sub-

cluster as the overlap fraction. Setting the overlap fraction at 0.6, the sub-cluster motifs from the main 

dataset performs the best, identifying 77 (71%) of the validated sub-clusters, while the statistical sub-

clusters from the main dataset and the sub-cluster motifs from the small dataset both identified 74 (Figure 

S11). The statistical sub-clusters of the small dataset had the worst performance capturing 63 validated 

sub-clusters.  

Exploring the sub-cluster motifs 
To showcase our findings we annotated 50 sub-cluster motifs, of which 23 originated from the set of known 

sub-clusters and 27 were annotated using MiBIG BGCs (Table S3). These annotations constitute 35 

different substructures at different levels of detail (Figure 3). All 50 annotated sub-cluster motifs 

corresponded to SSCs to a certain degree, corroborating the sub-cluster motif annotations. Many of the 

annotated sub-cluster motifs are present in diverse BGC classes, while others occur in one class primarily 

(Figure S12;Figure S13). One example of the former is BGC0001597 (fluvirucin b2) that contains sub-

cluster_motif_773 for a 3-amino-2-methylpropionyl starter unit constituting a macrolactam ring (Figure 

3). This sub-cluster motif primarily occurs in NRPSs and type I PKSs. Interestingly, it also occurs in some 

Other class BGCs which cannot be classified by antiSMASH like NZ_KB913032.1.cluster021 and 

NZ_AXAS01000001.cluster006. This does not only provide these interesting BGCs with previously unknown 

structural information, it also adds to their validity. 
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Figure 3 The pie chart visualises the annotations for the 50 sub-cluster motifs divided into general substructure 
groups, where an example substructure is shown for several groups. Additionally, examples of eight of the 
substructures are shown in the structures of apoptolidin, platencin, fluvirucin b2 and pyralomicin 1a, where the 
colour of the substructures correspond to the pie chart. For these four compounds, their respective BGCs are 
shown where the sub-cluster motifs are highlighted in the same colour as the substructures they encode. 

Identifying the BGC for heronapyrrole biosynthesis 
Information about the sub-clusters present in a BGC is not only useful to predict the product of a BGC, it 

could also be used as a tool to identify a BGC for a known compound. As an example, we aimed to identify 

the BGC responsible for heronapyrrole biosynthesis as the producing organism is present in the antiSMASH 

database and a candidate BGC has yet to be identified. Heronapyrroles A-D are a group of farnesylated 

nitropyrroles recently isolated from Streptomyces sp. CMB-StM0423 (Raju et al., 2010; Schmidt et al., 

2014). As the heronapyrroles consist of a terpene-and a pyrrole derived moiety, we considered sub-cluster 

motifs related to terpenes and pyrroles. Based on antiSMASH classes, seven BGCs of CMB-StM0423 contain 

terpene moieties, of which one also contained a sub-cluster motif which we annotated as terpene related. 

One of these BGCs classified as a terpene, NZ_CP025407.1.cluster026, contained sub-cluster motif 972 as 

well as SCC_1465, which we annotated as pyrrole related based on the pyrrole moieties in kosinostatin 

and showdomycin (Ma et al., 2013; Palmu et al., 2017). NZ_CP025407.1.cluster026 is the only BGC in 

CMB-StM0423 that contains sub-cluster motif 972, which leads us to the hypothesis that it is the BGC 

responsible for heronapyrrole biosynthesis (Figure 4). This hypothesis is substantiated by the presence of 

the terpene elements that could be responsible for the farnesyl moiety. Additionally, we also identified sub-

cluster_motif_972 and SCC_1465 in NZ_CP011492.1.cluster001. This predicted BGC originates from 

Streptomyces sp. CNQ-509, which is the producing strain of a group of farnesylated nitropyrroles called 

nitropyrrolins A-E, which are very similar to the heronapyrroles. 
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Pyralomicin 1a 
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Platencin 

BGC0000021 

Apoptolidin 
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10 
 

 

Figure 4 Sub-clusters from kosinostatin and showdomycin responsible for the biosynthesis of their pyrrole 

derivatives (Ma et al., 2013; Palmu et al., 2017). The lane LDA shows sub-clusters from sub-cluster motif 972, 
while the lane Stat shows sub-clusters from SCC 1465. On the right the hypothesis is depicted that 
NZ_CP025407.1.cluster026 is responsible for heronapyrrole synthesis based on the presence of the same sub-
cluster motif and SCC as kosinostatin and showdomycin. 

Correlation analysis 
We deemed it interesting to assess if we could correlate substructures to sub-clusters in an automated 

manner as this could have the potential to link unknown molecules to BGCs at a large scale. We used a 

previously defined correlation score which assumes that a BGC is needed to synthesise a product, but that 

a BGC can be cryptic and not synthesise anything. Ernst et al. (2019) used the MS2LDA tool to create 

substructure models, called mass2motifs, from MS data of the Crüsemann dataset. For Crüsemann sub-

cluster information, all Crüsemann BGCs were queried on the sub-cluster motifs and SCCs of the main 

dataset. For each of the 107,590 pairs of mass2motif and sub-cluster motif we calculated how well they 

co-occur across the Crüsemann strains with the correlation score, while we did the same for the 122,404 

pairs of mass2motifs and SCCs. In order to prioritise interesting substructure-sub-cluster pairs, we 

performed permutation tests for all pairs. This resulted in 3,230 and 1,939 positive scoring combinations 

with a p-value below 0.1 for the mass2motif paired with sub-cluster motifs or SCCs, respectively (Figure 

5). We identified 5 high correlation scores with low p-values between two staurosporine-related 

mass2motifs and both sub-cluster motifs and SCCs constituting the amino-sugar moiety of staurosporine. 

These are the only scores which we could identify as meaningful, which is already a good result as only a 

fraction of the mass2motifs, sub-cluster motifs and SCCs are annotated. 

 

Figure 5 Stacked histogram of the correlation scores across the Crüsemann strains between the mass2motifs 
paired with either the SCCs or sub-cluster motifs with a p-value below 0.1. Highlighted with their scores are the 
pairs mass2motif_108 with SSC_452, SSC_1010, sub-cluster_motif_953 and sub-cluster_motif_559, and the pair 
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mass2motif_8 with SSC_452. The aforementioned sub-cluster motifs (blue) and SCCs (brown) are responsible 
for sugar synthesis in staurosporine, while both mass2motifs (red) are staurosporine related. 

Discussion 
The aim of this project was to improve upon the previous method for sub-cluster detection. To enhance 

BGC processing prior to sub-cluster detection, we used (sub)Pfam domains to represent sequence similarity 

which increased the scalability. Additionally, we reduced phylogenetic bias by filtering out redundant BGCs. 

By grouping the statistical sub-clusters in SCCs and removing redundant sub-clusters, we partly resolved 

the nested sub-cluster structures that result from the previous statistical method. Furthermore, we used 

LDA as a novel tool for sub-cluster detection. The sub-cluster motifs found with LDA had the highest 

benchmarking score on the characterised sub-clusters from SubClusterBlast. Moreover, we could annotate 

50 sub-cluster motifs with substructure information, showing that LDA is a valuable method for the 

detection of sub-clusters. 

Comparing LDA to the statistical method, they share a common goal as they both aim to find groups of 

co-occurring genes. LDA learns distributions over the domain-combinations from the data, which constitute 

sub-cluster motifs that provide a nicely clustered structure of similar sub-clusters, hereby capturing sub-

cluster variation. The statistical method, however, creates many combinations of co-occurring genes, 

producing individual sub-clusters that exhibit highly nested structures making it harder to find similar sub-

clusters across BGCs. Apart from the nested structures, the statistical method produces a huge amount of 

sub-clusters of which only a fraction probably provides meaningful information. This is illustrated by the 

fact that the statistical sub-clusters are very noisy. In a group of BGCs sharing multiple sub-clusters, all 

combinations of these shared sub-clusters would form new sub-clusters, which happens frequently. 

However, LDA generates a more limited amount of sub-cluster data, which might contain less meaningful 

sub-clusters compared to statistical method in absolute numbers, but has a way higher ratio of valid sub-

cluster information. We partly solved the problems for the statistical sub-clusters by grouping them into 

SCCs and removing redundant sub-clusters, but problems still exist for the statistical method. Compared 

to LDA, it is for example rather difficult to query a BGC using the statistical sub-clusters. This is partly due 

to the fact that it would quickly become very time consuming to query for statistical sub-clusters while 

allowing inexact matching. For these reasons we now propose to use LDA as the main method for sub-

cluster detection as it captures sub-cluster variety in the sub-cluster motifs and can be used easily to query 

BGCs for sub-cluster motifs. The statistical sub-clusters could still be used to identify the sub-cluster 

boundaries better, by for example clustering them within the sub-cluster motifs. In doing so, when a BGC 

matches a certain sub-cluster motif, it could be checked if that BGC contains any of the statistical sub-

clusters clustered within the certain sub-cluster motif, hereby improving accuracy of the sub-cluster 

detection. The drawback of the statistical method that it produces highly nested and variable sub-clusters 

could as such be used as a strength. 

The fact that a sub-cluster motif is a distribution over genes allows for a fast way to query BGCs for the 

presence of sub-cluster motifs. This also highlights sub-cluster motifs from a biological point of view. Sub-

cluster motifs contain a few main genes responsible for the core of a substructure and have the ability to 

capture many genes that modify and diversify this core. Such is the case for sugar motifs like sub-cluster 

motif 842, where most sugars constitute dideoxy-sugars that are sometimes aminated or methyl-

aminated. However, the sugar sub-cluster motifs also provide an example for a downside of the 

unsupervised LDA method. Although there are some structural differences between different sub-cluster 

motifs for sugars, the environment of the sugar sub-clusters had an impact on shaping the sub-cluster 

motifs. The sugar-related sub-cluster motif 72 contains for example a number of type II PKS genes, while 

the sugar-related sub-cluster motif 743 contains diazo-group genes like in lomaivicitin. A way to solve this 

would be to apply LDA in a semi-supervised manner, which is a huge asset of LDA. Before training an LDA 

model, certain motifs could be seeded beforehand, which allows accurate sub-cluster motifs to be reused 

in new analyses, analogous to MotifDB, where annotated mass2motifs are stored (Rogers et al., 2019). 

Such semi-supervised approaches would allow for noise to be eliminated from sub-cluster motifs and sub-

cluster motifs to be finetuned. 

Another way to reduce noise and to identify the more robust sub-cluster motifs would be to train multiple  

LDA models. Sub-cluster motifs that are found in every LDA model would constitute conclusive sub-cluster 

motifs, whereas sub-cluster motifs that are identified a majority of the time would still be considered 

reasonably accurate. In this manner, noisy sub-cluster motifs that arise through chance would be filtered 

out, as they would only occur in one of the many LDA models. Noisy genes in accurate sub-cluster motifs 

could be filtered out by taking intersects of multiple similar sub-cluster motifs. As another option, each 

BGC could be represented multiple times in training to increase the observations of less frequently 

occurring sub-clusters. This could lead to better estimation of the sub-cluster motif distributions over the 
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data and cause less erroneous mixed sub-cluster motifs. We tried this shortly for the small dataset and 

saw that the overlap with SubClusterBlast increased slightly. This would be interesting to continue 

experimenting with in the future. 

The 50 sub-cluster motifs that we annotated could readily be integrated into tools like antiSMASH to 

enhance structure predictions. They could also prove highly useful to classify BGCs for which there is 

currently no class annotation. In the case of antiSMASH, including these 50 sub-cluster motifs would mean 

a vast improvement to the current scope of sub-cluster prediction, as 27 out of the 50 sub-cluster motifs 

were not included in the list of SubClusterBlast sub-clusters. Additionally, the 23 sub-cluster motifs that 

showed overlap with the SubClusterBlast sub-clusters could be used as a replacement for the 

SubClusterBlast method. As querying a BGC for sub-cluster motifs is rather fast, this could result in a 

substantial speed increase, which would have to be investigated in the future. 

With our correlation analysis, we demonstrated that it is already possible to connect substructures with 

sub-clusters in an automated manner. However, the previously defined correlation analysis was not ideal 

for our situation. One of the problems was the limited amount of data, as we could only use 137 strains 

from the Crüsemann dataset, 50 annotated sub-cluster motifs and 40 annotated mass2motifs. Not only 

did we have a limited set of strains, all strains were highly related to each other, meaning that many 

compounds and BGCs are shared between them. By default this created high correlation scores for pairs 

of sub-clusters and substructures occurring in abundant BGCs and compounds. We aimed to solve this by 

performing permutations tests to assess the likelihood of a high scoring pair arising by chance, which is 

the case for very abundant pairs. This only left very few high scoring pairs, in which we could only identify 

the pairs related to staurosporine. Doroghazi et al. (2014) developed the correlation metric to allow for 

the fact that many BGCs can be cryptic by not punishing the absence of a structure when a BGC is present. 

Because of the nature of the scoring metric many pairs with low p-values and scores just above zero arose, 

which consist mainly of mass2motifs with very low degrees paired with all sub-cluster occurring in the 

same strains. Furthermore, this correlation method generally results in a lot of noise, as sub-clusters and 

substructures that occur in a shared subset of strains will all correlate to each other. Such co-correlating 

structures make the identification of the actual correlating pair therefore difficult, especially with limited 

annotations. Identifying clusters of co-correlating pairs could therefore provide a way to make the 

interpretation of this analysis easier. Additionally, the correlation analysis is not perfect in our case, as 

multiple different sub-clusters are often responsible for synthesising the same substructure. As an 

example, mass2motif 119 is annotated as a dimethyl-amino-deoxysugar found in both rosamicin and 

lomaivicitin. However, the sub-cluster responsible for the sugar group in rosamicin is present in a different 

sugar sub-cluster motif than the sub-cluster from lomaivicitin. This illustrates a big drawback for using this 

method. In order to solve this, sub-cluster motifs that constitute similar structures should be grouped 

together before running the correlation analysis. Combining this with the integration of more diverse 

species would improve this correlation analysis drastically. As this is just a first step in linking substructure-

and sub-cluster models with limited information, we expect that analyses like these will have great impact 

in the future facilitating metabologenomics experiments. 

Throughout our sub-cluster detection analyses, we did not find many sub-clusters containing multiple 

multi-domain genes such as PKS or NRPS modules. This is due to the fact that we tokenised each gene as 

a combination of domains, which does not allow for capturing small variations in multi-domain genes. To 

model such multi-domain genes it would probably be better to tokenise each BGC as a string of domains, 

ignoring gene boundaries, as is done by (Navarro-Muñoz et al., 2018). Another generic issue in our analysis 

is that we did not include some important biosynthetic domains, which caused some sub-clusters not to be 

detected properly. An example is the sub-cluster for the indolocarbazole moiety in staurosporine, which 

was not detected because the main gene of this sub-cluster contains the Ferritin-like domain which was 

not included in the analysis. 

In this project, we have provided an improved approach for the detection of sub-clusters. We demonstrated 

that LDA is an effective tool for the discovery of new sub-clusters. Using MiBIG BGCs, we were able to 

annotate 50 sub-cluster motifs with structural information. These annotated motifs can now be used in 

future experiments and for the improvement of structural predictions in BGC prediction frameworks like 

antiSMASH. In antiSMASH, the annotated sub-cluster motifs could provide an addition to SubClusterBlast, 

or even serve as a replacement. By linking the heronapyrroles and nitropyrroles to their putative producing 

BGC, we illustrated a direct application of our work. Additionally, we provided the initial step for linking 

sub-clusters to substructures in a systematic way, which in the feature could lead to automated connection 

of BGCs to their NPs. 
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Supplementary data 

Supplementary methods 

Tokenising BGCs 

To represent sequence similarity, BGCs were tokenised by converting them into strings of Pfam domains, 

using the HMMER3 tool hmmscan and the Pfam database version 32.0 (Bateman et al., 2018; Mistry et 

al., 2013). As Pfams are very broad domain models, we divided the Pfams that are most important for 

BGCs into more specific domain models called ‘subPfams’, to increase the resolution for sub-cluster 

detection. To create subPfams, a Pfam is divided into more narrow domains models that cover the 

subspaces of that Pfam, by extracting the multiple sequence alignment of a Pfam and separating it into 

clades. A new profile Hidden Markov Model (pHMM) is then built for each clade, each of which constitutes 

a subPfam (Figure S6A). The 112 biosynthetic Pfams that are most abundant in the antiSMASH database 

were converted into subPfams (Kautsar, S. A., personal communication, Supplementary files). We created 

our own pHMM database by replacing these 112 Pfams with their corresponding subPfams in the Pfam 

database version 32.0. To query a BGC, we used hmmscan to scan against our pHMM database with the 

tc-cutoff as a cutoff on the bitscore. Multiple hits in a gene were allowed to overlap by 10%. If the overlap 

was higher only the hit with the highest bitscore was kept. In this fashion, we tokenised each BGC as a 

string of genes, where each gene is a token represented as a combination of the present domains (Figure 

S6B). Genes without a hit were represented by a dash. 
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Figure S6 (A) subPfams are constructed for the 112 most frequent Pfam domains in the antiSMASH database by 
dividing the multiple sequence alignment of a Pfam into clades and converting each clade into a new pHMM. (B) 
The BGCs predicted by antiSMASH are tokenised by detecting (sub)Pfams in each gene, where non-biosynthetic 
Pfams are removed. After tokenising the BGCs, sub-cluster can be detected with the statistical method (Stat), 
where the tokenised genes are represented in their original order, or by LDA, which assumes a bag of words 

model where original gene order is not taken into account. 

Filtering BGCs 

In order to reduce phylogenetic bias, we filtered out redundant BGCs by constructing a similarity network 

of BGCs and choosing representative nodes from this network. As a similarity measure between BGCs we 

used an Adjacency Index of domains (AI), which has been used previously to assess BGC similarity 

(Navarro-Muñoz et al., 2018). The AI between BGCs is calculated by dividing the number of all distinct 

shared pairs of adjacent domains by the total number of distinct pairs of adjacent domains, while ignoring 

gene boundaries. We constructed undirected graphs of similar BGCs by connecting two BGCs if their AI 

was above 0.95. We also connected two BGCs if one BGCs was fully contained in the other. To select 

representatives from the graphs all maximal cliques in the graph are found using find_cliques from the 

networkx module, which is based on the algorithm described by Bron et al. (1973). Then, the BGC with 

the most domains is chosen from each maximal clique to remain in the analysis, iterating over the cliques 

from largest to smallest until there are no cliques left. If there is more than one BGC to choose from, the 

BGC with least connections is picked to stay in the analysis to preserve as much information as possible. 

BGCs in a clique that are not selected are filtered out. This process is repeated until there are no 

connections left between BGCs. 

Filtering domains 

As we are interested in groups of genes that are directly responsible for the biosynthesis of chemical 

substructures, we chose to only detect sub-clusters of biosynthetic genes. In order to only select such 

genes, we discarded all Pfams that were not present in a list of 1,839 biosynthetic Pfams. We compiled 

this list by collecting all 3,010 EC-associated Pfams from ECDomainMiner using the lowest threshold 

(Alborzi et al., 2017). We discarded domains from this list if they did not occur within existing pre-calculated 

BGCs (Kautsar, S. A., personal communication). This list was filtered further by searching for keywords 

like transporter or DNA-binding. We then added 50 manually curated biosynthetic domains to the list that 

were not part of ECDomainMiner but were frequent in the antiSMASH database, resulting in the list of 

1,839 biosynthetic domains (Supplementary files). Additionally, Pfams were removed before sub-cluster 

detection if they occurred less than three times throughout the dataset. Subsequently, we removed all 

BGCs that contained less than two non-empty genes as result of Pfam filtering. 
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Clustering statistical sub-clusters 

As the statistical method results in a large number of sub-clusters, we clustered them into sub-cluster 

families (SCFs) and the SCFs into sub-cluster clans (SCCs). To do so, we used the K-means algorithm 

implemented in scikit learn with k-means++ seeding, as it is very fast and easy to use on our large dataset 

of sub-clusters (Arthur et al., 2007; Pedregosa et al., 2011). We represented all sub-clusters as a 

presence/absence matrix with ones and zeros on which we ran K-means with 1,000 iterations and 20 

restarts. For the construction of SCFs, we assessed the K-means clustering of different numbers for k. We 

chose a clustering based on the lowest within cluster sum-of-squares (WCSS), while keeping the amount 

of families to a minimum and trying to make sure one big ‘hairball’ cluster is formed with unrelated sub-

clusters. In order to cluster the SCFs into SCCs, we clustered the centroids from the SCF clustering and 

assessed the clustering of different numbers for k in the same way as for the SCFs. We deemed an SCF to 

be meaningful if it had three genes that were present in at least 60% of the sub-clusters in the SCF. 

Additionally, we removed redundant sub-clusters from each SCF. We deemed a sub-cluster redundant if it 

had the same occurrence as a bigger sub-cluster in which it was contained completely. 

Benchmarking against SubClusterBlast 

The 127 SubClusterBlast sub-clusters were extracted from 

https://bitbucket.org/antismash/antismash/src/master/antismash/generic_modules/subclusterblast/subcl

usters.txt (K. Blin et al., 2013). From the 127 validated sub-clusters, 109 had matching accessions in the 

MiBIG database. To see how many known sub-clusters we could identify, we calculated the overlap between 

all known sub-clusters and the putative sub-clusters from one of the detection methods. We defined an 

overlap as the number of genes (domain combinations) from a known sub-cluster that are present in a 

putative sub-cluster, divided by the number of genes in the known sub-cluster. We considered a known 

sub-cluster to be detected if there was at least one putative sub-cluster matching the known sub-cluster 

with an overlap above 0.6. 

Annotation 

The annotation of sub-cluster motifs or sub-cluster clans (SCCs) with substructures is still a manual task 

with low throughput, which is why we annotated only a small number of sub-cluster motifs and SCCs. In 

order to assign a substructure to a sub-cluster motif or SCC, we looked at the sub-cluster motifs and SCCs 

present in MiBIG BGCs, as their structures are validated. We considered an annotation appropriate for a 

sub-cluster motif or SCC if it is present in multiple MiBIG BGCs that share a similar substructure, while the 

genes in the sub-cluster comply with their proposed function in literature (Supplementary files). The latter 

is more valid for sub-cluster motifs and SCCs encompassing known sub-clusters as the genes from known 

sub-clusters are experimentally validated. To visualise and inspect identified sub-clusters, we improved an 

existing BGC visualisation script from Navarro-Muñoz et al. (2018) for the purpose of sub-cluster 

visualisation. 

Correlation analysis 

In order to correlate substructures to sub-clusters in a systematic manner, we used the Crüsemann dataset 

to link substructure models to the two different sub-cluster models derived in this research, using a 

previously defined correlation metric (Doroghazi et al., 2014). The substructure models constitute 300 

mass2motifs generated previously with the MS2LDA tool, based on MS/MS data from the Crüsemann 

dataset (Ernst et al., 2019). The two sub-cluster models were generated by querying all tokenised 

Crüsemann BGCs to the LDA model trained on the whole dataset, and to the SCCs generated from the 

whole dataset, respectively. A Boolean vector was created for each mass2motif, sub-cluster motif and SCC, 

representing the presence/absence in all strains of the Crüsemann dataset. We excluded motifs or clans if 

they were present in less than two strains. Each pair of mass2motif and sub-cluster motif or SCC was 

scored for a mutual presence/absence pattern across strains. This correlation score constitutes scoring 

+10 if both members of a pair are present in a strain, +1 if both members of a pair are absent in a strain, 

-10 if the mass2motif is present in a strain while a sub-cluster motif or SCC is not, or 0 if the mass2motif 

is absent in a strain while a sub-cluster motif or SCC is present. We prioritised valuable pairs by assessing 

how meaningful a positive score is in two ways: calculating the maximum possible correlation score without 

changing the occurrences, and performing a permutation test. The permutation test was carried out by 

https://bitbucket.org/antismash/antismash/src/master/antismash/generic_modules/subclusterblast/subclusters.txt
https://bitbucket.org/antismash/antismash/src/master/antismash/generic_modules/subclusterblast/subclusters.txt
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scrambling each Boolean vector 10,000 times, calculating 10,000 random scores for each pair and dividing 

the times a higher or equal score than the observed score occurs by 10,000. 

Figures 

 

Figure S7 Graphical representation of graph-based filtering for the small dataset: MiBIG-and Crüsemann BGCs. 
Each node represents a BGC and an edge represents an AI of 0.95 or higher. In blue are the BGCs chosen as 
representatives, while BGCs that are filtered out are in black. 

 

Figure S8 Convergence of the log-likelihood of the LDA model trained on the filtered 60,028 BGCs from the 
antiSMASH database, the Crüsemann dataset and the MiBIG database with 2,000 iterations of chunksize 3,000. 
Log-likelihood based on 28 held out BGCs. 
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Figure S9 The distribution of the number of genes per module in the main dataset (A) and the small dataset (B), 
together with the distribution of the log10 of the occurrence in the main dataset (C) and the small dataset (D). 

 

 

Figure S10 The number of topics or sub-cluster motifs per BGC in the main dataset, not counting sub-clusters of 
length one as these are almost definitely noise. 

A B 

C D 
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Figure S11 Overlap between SubClusterBlast and both sub-cluster detection methods applied on the main dataset 

(antiSMASH database) or the small dataset (Crüsemann), according to different overlap cut-offs. Both datasets 
also contain the MiBIG database. 

 

Figure S12 Relative abundance of antiSMASH classes when querying the main dataset (filtered) on the 50 
annotated sub-cluster motifs. Matches of length 1 are ignored and hybrid class BGCs are counted for all classes 
they contain. Ripps classes are grouped together. 
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Figure S13 Degrees (occurrences) of the annotated sub-cluster motifs based on the main (filtered) dataset. 

 

Figure S14 Correlation scores between mass2motifs and SCCs (A) or sub-cluster motifs (B), where the significant 
pairs are highlighted.  

Tables 
Table S1 Number of BGCs in the different datasets during different processing steps before sub-cluster detection. 
The main dataset is a combination of the antiSMASH database, the MiBIG database and the Crüsemann dataset. 
The small dataset combines the Crüsemann dataset with the MiBIG database. 

Number of BGCs antiSMASH-db MiBIG Crüsemann Main dataset Small dataset 

Initial 152,122 1,819 5,927 159,868 7,746 

On contig edge 41,914 0 1,367 43,281 1,367 

Filtered 50,296 317 3,113 56,559 3,456 

Final 59,912 1,502 1,447 60,028 2,923 

A B 
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Table S2 Equations for statistical method. 

Equation 1 Hypergeometric equation for adjacency interactions 
between gene A and gene B. B1: gene B not adjacent to gene A, B2: 

gene B adjacent to gene A, B3: gene B adjacent to gene A on both 
sides. N1, N2 and N3 represent all available positions in these three 
categories, while Ntot represent all positions, and Btot all occurrences 
of gene B. 

𝑷𝒅 =
(

𝑵𝟏

𝑩𝟏
) (

𝑵𝟐

𝑩𝟐
) (

𝑵𝟑

𝑩𝟑
)

(
𝑵𝒕𝒐𝒕

𝑩𝒕𝒐𝒕
)

 

Equation 2 Hypergeometric equation for co-localisation interactions 
between gene A and gene B. B1: gene B not co-localised with gene A, 
B2: gene B co-localised to gene A, Bnmax: gene B co-localised with nmax 
gene A. N1, N2 and Nnmax represent all available positions in these three 
categories, while Ntot represent all positions, and Btot all occurrences 
of gene B. 

𝑃𝑑 =

(
𝑁1

𝐵1
) (

𝑁2

𝐵2
) … (

𝑁𝑛𝑚𝑎𝑥

𝐵𝑛𝑚𝑎𝑥

)

(
𝑁𝑡𝑜𝑡

𝐵𝑡𝑜𝑡
)

 

Equation 3 Simplified hypergeometric equation for co-localisation 
interactions between gene A and gene B. B1: gene B not co-localised 
with gene A, B2: gene B co-localised to gene A. N1 and N2 represent all 
available positions in these two categories, while Ntot represent all 
positions, and Btot all occurrences of gene B. 

𝑃𝑑 =
(

𝑁1

𝐵1
) (

𝑁2

𝐵2
)

(
𝑁𝑡𝑜𝑡

𝐵𝑡𝑜𝑡
)

 

Equation 4 Calculation of the p-value for an interaction. i: amount of 
interaction, iobs: observed amount of interaction. 

𝑝 = 𝑃𝑖 ≥ 𝑖𝑜𝑏𝑠
= 1 − 𝑃𝑖 ≤ 𝑖𝑜𝑏𝑠

= 1 − ∑ 𝑃𝑑

𝑖 ≤ 𝑖𝑜𝑏𝑠

 

 

Table S3 Annotation table for the sub-cluster motifs. Detailed version in Subcluster_annotations.xlsb. 

Sub-cluster 

motif 

Annotation 

specific 

Annotation 

general 

Annotation 

grouping 

Sub-

Cluster
-Blast 

Degree MiBIG evidence 

8 ectoine ectoine Ectoine No 483 BGC0000853, BGC0000854 

28 t1pks t1pks PKS No 108 BGC0001396, BGC0000047, BGC0001648, 

BGC0000035, BGC0001812, BGC0001658, 

BGC0000087, BGC0001199, BGC0000086, 
BGC0000052, BGC0000053, BGC0000144, 

BGC0001533, BGC0001662, BGC0001830, 

BGC0000123, BGC0000097, BGC0000038, 

BGC0000029, BGC0000059, BGC0000021 

44 ectoine ectoine Ectoine No 382 BGC0000855, BGC0000858, BGC0000852 

58 AHBA/3-HAA amino_benzoic_a
cid 

Amino 
benzoic 

acids 

Yes 98 BGC0000213, BGC0000187, BGC0000679, 
BGC0001140, BGC0001156, BGC0001295 

72 (amino)sugar sugar Sugar Yes 446 BGC0001595, BGC0000102,+80others 

76 thiopeptide RiPP RiPP No 811 BGC0001753,+20 

86 lassopeptide RiPP RiPP No 258 BGC0001655, BGC0001674, BGC0001781, 

BGC0001539, BGC0000579, BGC0000575, 

BGC0001673, BGC0000578, BGC0001552, 
BGC0001507, BGC0001645, BGC0001493, 

BGC0001548, BGC0001550, BGC0001549 

189 DPG/HPG/BHT teicoplanin/balhi

mycin_related 

Teicoplanin 

related 

Yes 165 BGC0000290, BGC0000440, BGC0000441, BGC0000311 

+10 

204 PCA/PDC phenazine Phenazine No 221 BGC0001302, BGC0001080, BGC0000935 

208 Methoxy-
malonyl-ACP 

methoxymalonyl-
ACP 

PKS-
extender 

unit 

No 444 BGC0000020, BGC0001511, BGC0000040, 
BGC0001034, BGC0000021 

216 L-4-

methylproline 

L-4-

methylproline 

Methyl 

amino acid 

Yes 50 BGC0000397 

228 cyclic-t2pks t2pks PKS No 613 BGC0000279, BGC0000256, BGC0000230, 

BGC0000200, BGC0000190, BGC0001062, 
BGC0001376,+10others 

234 macrolactam macrolactam Macrolactam No 74 BGC0000029, BGC0000097, BGC0001522, 

BGC0000078, BGC0001452 

241 amide-ring/ring-

oxidations/-
methylation 

t2pks-tailoring PKS No 140 BGC0000279, BGC0000256, BGC0000230, 

BGC0000200, BGC0000190, BGC0001062, 
BGC0001376,+10others 

292 enduracididine enduracididine Enduracid-

idine 

Yes 41 BGC0000388, BGC0000341 

296 cyclic_sesqui/-

tetraterpene 

terpene Terpene No 375 BGC0000651, BGC0000653, BGC0000674 

329 chloro/bromo-

phenyl/pyrrole 

halogenated_aro

matic_ring 

Haloginated 

ring 

No 215 BGC0000130, BGC0000131, BGC0001819, 

BGC0000111, BGC0001500, BGC0001172, 
BGC0000128, BGC0000374, BGC0000127, 

BGC0001038, BGC0001159 

346 valienol/ 

valienone/ 

validone 

cyclitol Cyclitol Yes 216 BGC0001038, BGC0000723, BGC0000722, BGC0000701 
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372 2-amino-3-

hydroxy-

cyclopent-2-

enone 

2-amino-3-

hydroxycyclopent

-2-enone 

Amino 

pentenone 

Yes 48 BGC0000052, BGC0000213, BGC0001298, BGC0000187 

425 terpenoid terpenoid Terpene Yes 126 BGC0000632 

449 DMAPP/GPP terpene Terpene Yes 164 BGC0000654, BGC0001664, BGC0000665, 
BGC0001126, BGC0000668, BGC0001594, 

BGC0001501, BGC0001612, BGC0000666, 

BGC0001595, BGC0001140, BGC0001156 

451 Chlorinated-

tryptophan/-
indolocarbazole 

chloro-

tryptophan 

Chloro-

tryptophan 

Yes 193 BGC0000809, BGC0000822, BGC0000823, 

BGC0001333, BGC0001335, BGC0001337 

455 hydroxy/-

methoxy-

benzenes 

benzene 

modification 

Benzoic 

acids 

Yes 268 BGC0000216, BGC0000261, BGC0000394, 

BGC0000421, BGC0000422, BGC0000202, 

BGC0001693, BGC0000236, BGC0000240, BGC0000241 

+ 10 others 

483 enediyne enediyne Enediyne Yes 159 BGC0000081, BGC0000112, BGC0000150, 

BGC0000965, BGC0001008, BGC0001397, BGC0001584 

503 lanthionine lantipeptide RiPP No 798 BGC0000507, BGC0000509,+30 

510 indolocarbazole indolocarbazole Indolo-

carbazole 

No 107 BGC0000813, BGC0000814, BGC0001224, 

BGC0001223, BGC0001336 

515 carbamoyl carbamoyl Carbamoyl No 204 BGC0000090, BGC0000074, BGC0000834 +10 

530 aminosugar sugar Sugar Yes 66 BGC0000809, BGC0001522, BGC0000880 

536 3-HAA/DHBA hydroxy-
benzoic_acid 

Benzoic 
acids 

No 557 BGC0001213, BGC0000368, BGC0001437 

538 methyl-

aspartate/methyl

-asparagine 

methyl-aspartate Methyl 

amino acid 

Yes 189 BGC0001770, BGC0000876, BGC0001448, 

BGC0000429, BGC0000167 

559 sugar sugar Sugar Yes 470 BGC0000025, BGC0000052,+40others 

563 methoxymalonyl-

ACP 

methoxymalonyl-

ACP 

PKS-

extender 
unit 

Yes 87 BGC0000994, BGC0000065, BGC0000090 

568 Uroporphyrin-

ogen_III 

uroporphyrin-

ogen_III 

Porphyrin-

ogen 

No 125 BGC0000906, BGC0000905 

572 4-methyl-3-

hydroxyanthranili
c_acid 

4MHT Amino 

benzoic 
acids 

Yes 165 BGC0000296, BGC0000428, BGC0000303, BGC0000409 

595 ectoine ectoine Ectoine No 296 BGC0000859, BGC0000857, BGC0000860, BGC0000856 

610 piperideine-

derivative 

piperideine Piperidine No 78 BGC0001296, BGC0001433, BGC0001293 

626 2,3-

dihydroxybenzoic

acid 

DHBA Benzoic 

acids 

No 557 BGC0001185, BGC0000343, BGC0001502, 

BGC0000451, BGC0000454, BGC0000309, 

BGC0000945, BGC0001345, BGC0000401 

669 methylated-

sugar 

sugar Sugar Yes 124 BGC0000148, BGC0000362, BGC0000363, 

BGC0000364, BGC0000365, BGC0000769, BGC0000875 

685 t2pks t2pks PKS Yes 265 BGC0000221, BGC0000227, BGC0000245, 

BGC0000225, BGC0000233, BGC0000269,+10 

731 amino/guadinino amino/guadinino Amino group No 25 BGC0000052, BGC0001662, BGC0001700 

742 3-amino-5-
hydroxy-

benzoicacid 

AHBA Amino 
benzoic 

acids 

Yes 187 BGC0000020, BGC0001511, BGC0000090, BGC0000106 

743 Aminosugar sugar Sugar No 40 BGC0000240, BGC0000241, BGC0001693 

773 3-amino-2-

methyl-

propionyl-starter 

macrolactam Macrolactam No 153 BGC0000167, BGC0001770, BGC0001597, 

BGC0001101, BGC0000202, BGC0001658 

816 t3pks t3pks PKS No 352 BGC0001647, BGC0000282 

842 Desosamine/Ami
nosugar/4_6‐
dideoxysugar 

sugar Sugar Yes 74 BGC0001830, BGC0000054, BGC0000055, 
BGC0000033, BGC0000102, BGC0001503, 

BGC0000078, BGC0001008, BGC0000035, 

BGC0000047, BGC0001396, BGC0000085, BGC0001812 

868 dihydroxyphenyl

glycine/dihydrox
ybenzoicacid 

dihydroxyphenyl

glycine 

Amino 

benzoic 
acids 

Yes 124 BGC0001233, BGC0001066, BGC0001148, 

BGC0001635, BGC0001819, BGC0001807 

893 malonyl-CoA malonyl-CoA PKS-

extender 

unit 

No 94 BGC0000279, BGC0000216, BGC0000261 

912 Diamino-
butyricacid 

DABA Diamino 
acid 

Yes 146 BGC0000950, BGC0000951, BGC0001807 

953 aminosugar/met

hylated_sugar 

sugar Sugar Yes 140 BGC0000193, BGC0001812, BGC0000096, 

BGC0001452, BGC0001522, BGC0000055, 

BGC0000019, BGC0000825, BGC0000826, 

BGC0001074, BGC0000199, BGC0000212, 
BGC0000216, BGC0000141 

972 pyrrole/indole pyrrole/indole Pyrrole No 161 BGC0001073, BGC0001778, BGC0001595, 

BGC0000668, BGC0000824 

 

  



23 
 

Table S4 Correlation scores between mass2motifs and sub-cluster types for pairs present in staurosporine. 

Mass2motif Sub-cluster type Score Max score % of max score p-value 

mass2motif_108 sub-custer_motif_953 249 438 0.57 0.000 

mass2motif_108 sub-custer_motif_559 68 278 0.24 0.000 

mass2motif_8 SCC_452 300 615 0.49 0.010 

mass2motif_108 SCC_452 355 607 0.58 0.010 

mass2motif_108 SCC_1010 215 572 0.38 0.010 

 

Supplementary files 

• biosynthetic_pfams.txt 
• subPfams.txt 
• subcluster_annotations.xlsb 

 


