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Abstract

Bacterial specialised metabolites are a rich source of natural products (NPs). The genes responsible for
their biosynthesis are physically clustered on the genome in biosynthetic gene clusters (BGCs). Many BGCs
consist of multiple groups of co-evolving genes called sub-clusters, each of which is responsible for
synthesising a specific chemical moiety in the NP. Sub-clusters therefore provide an important link between
the substructures of an NP and its BGC, highlighting the importance of sub-clusters for structural
predictions. Here, we improved the existing method for sub-cluster detection by making it more scalable,
reducing redundancy and using the antiSMASH database as a data source, which constitutes a ten-fold
increase in training data. Additionally, we introduced a text-mining algorithm called Latent Dirichlet
Allocation (LDA) as a novel unsupervised method for sub-cluster detection. LDA identifies groups of co-
occurring genes in the data and clusters them into sub-cluster motifs. Using LDA, we were able to identify
71% of the experimentally validated sub-clusters from the SubClusterBlast module in antiSMASH.
Furthermore, we annotated 50 sub-cluster motifs with structural information. This could readily be used
by BGC prediction tools like antiSMASH to enhance structure prediction and to provide novel structural
information to unclassified BGCs. We showed a direct application of our method by proposing the BGC for
heronapyrrole biosynthesis. Finally, we used a systematic approach to link sub-clusters to substructures,
which could be used in the future to connect BGCs to their NPs in an automated manner.



Introduction

A considerable part of bacterial metabolism is dedicated to the synthesis of specialised metabolites. While
these molecules govern intra-and interspecies interactions in general, they are bioactive compounds used
for defence, making them invaluable for bacterial survival (Traxler et al., 2015). Specialised metabolites
are natural products (NPs) with many uses in pharmaceutical, agricultural and dietary agents, like
antibiotics, antitumor agents and herbicides (Dayan et al., 2009; Li et al., 2009). NPs consist of a spectrum
of different chemical classes, which are often highly complex in structure. Intriguingly, the genes necessary
for the synthesis of NPs cluster together physically in biosynthetic gene clusters (BGCs) (Medema et al.,
2014). The search and discovery of new BGCs is thus crucial for identifying new NPs, which is especially
important in the field of antibiotics as antibiotic resistant bacteria become more prevalent (Chevrette et
al., 2018).

Traditionally, novel NPs were identified using low-throughput wet lab experiments (Katz et al., 2016). In
recent years however, genome mining approaches have become increasingly interesting for NP discovery,
due to the growing availability of genomic data. Multiple algorithms exist that search bacterial genomes
for putative BGCs, such as antiSMASH, ClusterFinder and PRISM (Kai Blin et al., 2019b; Cimermancic et
al., 2014; Skinnider et al., 2017). These methods have provided a better understanding of BGC diversity
and the evolutionary mechanisms that govern BGC diversity. Even using conservative constraints,
Cimermancic et al. (2014) estimated that over 6,000 broad BGC families exist, each of which consists of
multiple BGCs that synthesise distinct molecules from a common scaffold. Rapid evolution seems to be an
important factor for the large BGC diversity. This shows from the high frequency of horizontal gene transfer
and the high rates of insertions, deletions, duplications, and rearrangements that BGCs exhibit (Medema
et al., 2014). Another striking observation is the modular structure that several types of BGCs display. In
particular, BGCs encoding for polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs)
seem to consist of multiple modules or sub-clusters of co-evolving genes, each responsible for synthesising
specific chemical moieties (Del Carratore et al., 2019; Fischbach et al., 2008; Medema et al., 2014). Sub-
clusters therefore provide a direct link between the substructures of an NP and its BGC. This makes
information about sub-clusters and the substructures they synthesise highly valuable for structure
prediction, which would be a great asset for tools like antiSMASH. Not only would it improve the structure
prediction of existing BGC classes but it would also be possible to predict structures of currently unclassified
BGCs, such as the 10,000 unclassified BGCs in the antiSMASH database (K. Blin et al., 2019a). In synthetic
biology, the notion of BGC modularity has already been used to generate novel compounds by recombining
core genes from PKSs and NRPSs, and by altering single modifying genes like methyltransferases (Kim et
al., 2015; Menzella et al., 2005). However, insight into sub-clusters allows the possibility to interchange
complete chemical moieties instead of the core structure or small modifications. In addition to synthetic
biology, BGC modularity poses a great opportunity to connect metabolomics experiments to sub-cluster
data. Chemical moieties identified from fragments in mass spectrometry (MS) data could be linked to sub-
clusters responsible for their synthesis, which could lead to MS-guided genome mining (Del Carratore et
al., 2019). Recent advances in substructure modelling aid such metabologenomic approaches (van der
Hooft et al., 2016). More knowledge about sub-clusters is thus beneficial for understanding BGC evolution,
and has many practical applications.

Recently, Del Carratore et al. (2019) developed a method for the detection of sub-clusters in BGCs. They
constructed Clusters of Orthologous Groups (COGs) and used a statistical approach to determine if a group
of co-occurring COGs represents a sub-cluster. Subsequently, they made a score to be able to rank the
sub-clusters based on relevance and reliability. With this method, 185,718 putative sub-clusters were
found in a set of 12,842 BGCs, which were predicted with antiSMASH. Well characterised sub-clusters were
found to be present in the set of sub-clusters with high scores, demonstrating the effectiveness of their
method. However, the number of sub-clusters found in this analysis is very large. This can partly be
explained by the nested structure of a lot of sub-clusters, in which smaller, less specific sub-clusters are
contained in larger, more specific sub-clusters. Another reason for the inflated number of detected sub-
cluster might be that phylogenetic bias is not considered. As such, the presence of many highly similar



BGCs could result in the detection of artificial sub-clusters that consist of almost entire BGCs. Additionally,
this method is not very scalable as it relies on extensive all-vs-all searches to construct the COGs.

Here, we constructed an improved method for sub-cluster detection that is scalable to large datasets and
takes phylogenetic bias into account by filtering the input in a more advanced way. Scalability is achieved
by tokenising BGCs into strings of Pfam domains as a proxy for sequence identity, instead of extensive
COG construction. As Pfams are quite broad sequence models, we increased the resolution by splitting the
most important Pfams into a number of subPfams, each of which is a more narrow domain model that
covers a subset of a Pfam’s sequence space. To improve the previous statistical method, we removed
nested sub-clusters, collapsed similar sub-clusters into families, and similar families into clans. In addition
to the previous method, we implemented a text mining algorithm, Latent Dirichlet Allocation (LDA), for the
purpose of sub-cluster detection (Blei et al., 2003). LDA has already been used successfully in other
branches of natural science, such as genomics and metabolomics (Chen et al., 2010; van der Hooft et al.,
2016). In our case, LDA learns a set of sub-cluster motifs from a collection of BGCs, which are in turn used
to infer multiple sub-clusters in a BGC. We applied our pipeline to the antiSMASH database, which is a
considerable improvement in comparison with the previous method as it contains over ten times as many
BGCs (150,000) from almost 25,000 bacterial species that are chosen to reduce taxonomical bias (K. Blin
et al., 2019a). For the validation of our method we included the MiIBIG database, a set of curated BGCs
with structural information, in which a number of sub-clusters have been experimentally verified (Medema
et al., 2015). With our approach, we were able to characterise 50 different sub-cluster motifs present in
diverse BGC classes. The remaining 950 sub-cluster motifs remain largely unexplored, of which many are
likely to encode useful substructures. Using one of the characterised sub-cluster motifs, we showed a direct
practical application of our method by proposing the putative BGC for heronapyrrole production. Moreover,
we could correlate sub-clusters to substructures in a systematic manner by including the Crisemann
dataset in which substructure models were created previously using the MS2LDA tool (Criisemann et al.,
2017; Ernst et al., 2019).

Methods

Python was used for all analyses in this project. Code is available at
https://git.wageningenur.nl/louwe015/scripts-thesis. In our pipeline, each BGC is tokenised by converting
all genes into strings of (sub)Pfam combinations (Figure 1). With a graph based filtering step redundant
BGCs are removed from the dataset, after which we detect sub-clusters using two algorithms: a statistical
method and Latent Dirichlet Allocation (LDA). The resulting sub-clusters of both methods are annotated
with substructures and can be used to predict sub-structures in BGCs. These steps are described in the
following sections, while the supplementary methods provide more detailed explanations.
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Figure 1 Workflow for the detection of sub-clusters. All genes in BGCs are converted into strings of Pfam domains,
after which redundant BGCs are filtered out based on an Adjacency Index of domains. Sub-clusters are detected
using two methods: Latent Dirichlet Allocation (LDA) and a statistical analysis (stat). BGCs from the MiBIG
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database are used to annotate putative sub-clusters with sub-structures. These annotations are used to predict
sub-structures in unknown BGCs.

Data selection and processing

The main dataset consisted of three data sources: the MiBIG database, the Criisemann dataset and the
antiSMASH database. Version 1.4 of the MiIBIG database was used which contains 1,819 BGCs
(https://dl.secondarymetabolites.org/mibig/mibig gbk 1.4.tar.gz). The Crisemann dataset consists of
5,927 BGCs that originate from the 146 Streptomyces and Salinispora strains investigated by Criisemann
etal. (2017). antiSMASH 3.0 was used for the detection of BGCs in the Criisemann dataset. The antiSMASH
database (https://antismash-db.secondarymetabolites.org/) is comprised of 152,122 BGCs detected with
antiSMASH 4.0 (Table S1). Additionally, the MIiBIG database and the Crisemann dataset were used
together as the small dataset. BGCs were discarded if they were flagged by antiSMASH as laying on a
contig-edge, as these BGCs are probably incomplete and less accurate. Additionally, BGC-class information
was included in the analysis, by using the predicted antiSMASH classes for the antiSMASH database, and
the output of a BiG-SCAPE run for the Criisemann and MiBIG datasets (van der Hooft, J. J., personal
communication).

BGCs were tokenised by converting each gene into a string of (sub)Pfam domains. To detect (sub)Pfams,
the HMMER3 tool hmmscan was used with a custom profile hidden Markov model (pHMM) database
consisting of Pfam database version 32.0 where 112 Pfams were replaced by corresponding subPfams
(Bateman et al., 2018; Mistry et al., 2013). These 112 Pfams were selected as they are the most abundant
biosynthetic Pfams in the antiSMASH database (Kautsar, S. A., personal communication, Supplementary
files). To create subPfams, the multiple sequence alignment of a Pfam is split into clades, after which a
new pHMM is built for each clade, each of which constitutes a subPfam (Figure S6A).

Redundant BGCs were removed from the analysis using a similarity network of BGCs, where BGCs were
connected based on an Adjacency Index of domains higher than 0.95 or if BGCs were fully contained within
one another. From each maximal clique in the network, only the BGC with the most domains was chosen
to remain in the analysis (Table S1;Figure S7). After redundancy filtering, all hon-biosynthetic domains
were removed from all BGCs. To select biosynthetic domains, EC-associated Pfams were collected with
ECDomainMiner, from which Pfams were selected if they occurred in pre-calculated BGCs (Alborzi et al.,
2017; Kautsar, S. A., personal communication). After manual curation this resulted in a list of 1,839
biosynthetic Pfams (Supplementary files). Additionally, Pfams that occurred less than three times in a
dataset were removed as well as BGCs that contained less than two non-empty genes.

Sub-cluster detection: re-implementation of the statistical method

The statistical method for sub-cluster detection was re-implemented in python according to Del Carratore
et al. (2019). Instead of representing genes as COGs as in the previous method, we represent each gene
as a combination of its domains. First, all possible adjacency and co-localisation interactions between each
pair of genes are counted. To assess whether an observed interaction between two genes occurs more
than by random chance, one needs to distribute such a pair of genes randomly through the dataset and
calculate the probability of the observed interaction. To reduce the computational burden of a permutation-
based approach, for each pair of genes one gene is kept fixed while the other is being randomly distributed
throughout the data. For an adjacency interaction this gives a hypergeometric equation describing all
available positions of one gene while the other is fixed (Table S2;Equation 1). This follows from the fact
that there are three options for the position of gene B while keeping gene A fixed: not adjacent to gene A
(B1), adjacent to gene A (B2), or adjacent to gene A on both sides (Bs). N1, N2 and N3 represent all available
positions in these three categories, while Niwt represent all positions and Bt all occurrences of gene B. For
a co-localisation interaction the same applies, except for the fact that gene B can be co-localised with nmax
genes A, where nmax is the number of genes A co-localised with gene B (Table S2;Equation 2). When nmax
is large this becomes computationally hard, which is why we replaced duplicate genes with an empty gene
(a dash) and placed one copy of the duplicate gene at the end of the cluster separated by an empty gene.
This simplifies the equation as only two types of co-localisation need to be counted: co-localisation and no
co-localisation (Table S2;Equation 3). A p-value can be calculated by summing all probabilities in the
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hypergeometric distribution that correspond to a number of interactions higher or equal to the observed
number of interactions. Or, to make it easier, by subtracting the sum of all possible interactions smaller
than the observed interaction from one (Table S2;Equation 4).

Sub-cluster detection: LDA

Latent Dirichlet Allocation (LDA) is an unsupervised algorithm based on Bayesian probabilities, which we
use to infer latent sub-cluster composition in BGCs (Blei et al., 2003). It assumes a bag-of-words
representation, where each BGC is depicted as a frequency vector of its domain combinations, not taking
gene order into account. Analogous to topic modelling of text, BGCs, domain-combinations and sub-cluster
motifs resemble documents, words and topics, respectively. The domain-combinations in each BGC are
used to approximate the latent parameters: the sub-cluster motif distributions in the BGCs and the domain-
combination distributions in the sub-cluster motifs. To do so, the number of sub-cluster motifs N has to be
predefined, as well as hyperparameters a and B. We chose all prior parameters for each dataset specifically,
where we chose N with the highest overlap with SubClusterBlast (Supplementary methods) and symmetric
a=B=1/N. For the actual inference of the latent parameters, online variational Bayes was used, which is
implemented as a multicore version in Gensim (Hoffman et al., 2010; Rehurek et al., 2010). In this
implementation an LDA model is trained by updating it with mini-batches from the dataset, which has low
time and memory complexity. We chose the chunksize of each mini-batch to be 5% of the dataset with a
minimum chunksize of 2,000 for small datasets, which is loosely based on testing different chunksizes by
Hoffman et al. (2010). We considered that using 2,000 iterations to train a model was sufficient after
assessing that the log-likelihood converged sufficiently (Figure S8).

Each sub-cluster motif in an LDA model consists of a probability vector of domain combinations,
representing the contribution of each domain combination to a sub-cluster motif. To filter out noise, we
sorted this vector from high to low probability, summed the probabilities and included all domain
combinations until 0.95 was reached. When a group of genes from a BGC match to a sub-cluster motif,
this putative sub-cluster is assigned a probability representing how much of the BGC matches to this sub-
cluster motif. We set a cut-off on the match probability of 0.05, which loosely corresponds to a BGC of 40
genes matching with at least 2 genes to a sub-cluster motif. Each gene in a match is also assigned a
probability describing how well it fits in @ match, for which we set a cut-off of 0.3. Lastly, we calculated an
overlap score for each match, which we calculated by summing the domain combination probabilities from
the sub-cluster motif present in the match. We set a quite liberal threshold of 0.15 on the overlap score,
as this was the highest threshold that did not remove manually validated SubClusterBlast sub-clusters
from the analysis.

Results

As our main dataset, we used our three data sources grouped together, the antiSMASH database, the
MiBIG database and the Criisemann dataset. Additionally, we used the MiBIG database and the Criisemann
separately as a small dataset, to see how sub-cluster detection changes when increasing the amount of
data. We processed each BGC for sub-cluster detection by tokenising each gene in a BGC as a combination
of (sub)Pfam domains, and performing redundancy filtering (Figure S6;Table S1). After these processing
steps, the main datasets contained 60,028 BGCs with 10,539 domain combinations, while the small dataset
contained 2,923 BGCs with 1,874 domain combinations.

Detecting sub-clusters with the previously established statistical method

The statistical method finds groups of genes that are either adjacent to each other, or co-localise in more
BGCs than you would expect by random chance, reasoning that such a group of genes is a sub-cluster of
co-evolving genes. Using this method we found 243,246 sub-clusters in the main dataset, and 15,798 sub-
clusters in the small dataset. For both datasets, over 70% of the statistical sub-clusters contain less than
ten genes, and a good portion of the sub-clusters occur in more than 10 BGCs, i.e. 14% in the main dataset
and 7% in the small dataset (Figure S9).



For the main dataset, we found an average of 4 sub-clusters per BGC, while the previous approach resulted
in around 14 sub-clusters per BGC. It therefore seems like the nested nature of the sub-clusters has
decreased by performing filtering for redundant BGCs. However, looking at the statistical sub-clusters
nested structures were still apparent. We therefore aimed to cluster nested and related sub-clusters
together, which also provides more comprehensibility to the statistical sub-clusters. We performed two
rounds of K-means clustering, in which we first clustered the statistical sub-clusters into 10,000 sub-cluster
families (SCFs) and then clustered these SCFs into 2,000 sub-cluster clans (SCCs) using the SCF cluster
centres. As an additional measure for reducing nested sub-clusters, we removed redundant sub-clusters
in each SCF if they had the same occurrence as some bigger sub-cluster containing the redundant sub-
cluster completely. This removed over half of the sub-clusters resulting in 108,085 sub-clusters. Although
some SCCs grouped seemingly unrelated sub-clusters together that share only one gene, the majority of
1626 SCCs provide groups of related sub-clusters, sharing at least three genes. With these two simple
steps we managed to improve the comprehensibility of the statistical sub-clusters drastically.

LDA as a novel tool for sub-cluster detection

In order to enrich the discovery of sub-clusters we present a new unsupervised method for sub-cluster
detection with Latent Dirichlet Allocation (LDA). LDA is a Bayesian probabilistic model used to model topics
of co-occurring words in text documents (Blei et al., 2003). In an LDA model, each document is depicted
as a mixture over latent topics, in which a topic is a distribution over the words present in the documents.
In our case a document is a BGC, a word is a gene represented as a domain combination, and a topic can
be thought of as a sub-cluster motif. This highlights the use of LDA for sub-cluster detection as we assume
that a BGC is a combination of multiple different sub-clusters, which consist of co-evolving genes that co-
occur in multiple BGCs. Another benefit of LDA is illustrated by the fact that a topic or sub-cluster motif
has the potential to contain a set of core genes that synthesise the base of a sub-structure, along with
additional modifying genes, hereby capturing sub-structure diversity. We constructed two LDA models, one
with 1,000 sub-cluster motifs for the main dataset and one with 100 sub-cluster motifs for the small
dataset, after which the main and small dataset were queried on their respective LDA models. In the main
dataset, we identified around 250,000 sub-clusters, where each sub-cluster is a group of genes matching
against a sub-cluster motif. Over 80% of the BGCs in the main dataset contained at least one sub-cluster
motif (Figure S10). Many of the sub-clusters were uninformative as they contained only one gene from a
sub-cluster motif, or sub-clusters and their motifs encompassing entire BGCs (Figure 2A-B). For a sub-
cluster to be interesting we would expect its size to be between 2-12 genes, as experimentally
characterised sub-clusters fall in this range. Many sub-clusters were of this expected size making these
sub-clusters and their motifs interesting. As such, two experimentally verified sub-clusters of macbecin for
methoxymalonate and AHBA provide an example as we were able to identify them in sub-cluster motifs
563 and 742, respectively (Figure 2C).
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Figure 2 (A) Scatterplot of the length of each BGC (number of non-empty genes) from the main dataset versus
the length of a match to a topic or sub-cluster motif, representing a sub-cluster. The colour of each dot indicates
how many times a BGC with a certain length contains a sub-cluster with a certain length. (B) BGC for flexirubin
where the identified sub-cluster found encompasses the entire BGC, demonstrating an uninformative result. (C)
BGC for macbecin where the two characterised sub-clusters for AHBA (red) and methoxymalonyl (blue) are
highlighted in the structure of macbecin (Zhang et al., 2008). Sub-clusters from (B) and (C) are linked to their
corresponding location in (A).

Both methods capture the majority of experimentally validated sub-clusters

In order to validate the sub-cluster detection methods, we used a set of 109 experimentally validated sub-
clusters. These 109 known sub-clusters are the only centrally stored validated sub-clusters, which are used
by the SubClusterBlast tool in the antiSMASH framework (K. Blin et al., 2013). We compared all the
putative sub-clusters from our analysis against the known sub-clusters. To assess whether we identified a
known sub-cluster, we calculated the fraction of the known sub-cluster that we captured in a putative sub-
cluster as the overlap fraction. Setting the overlap fraction at 0.6, the sub-cluster motifs from the main
dataset performs the best, identifying 77 (71%) of the validated sub-clusters, while the statistical sub-
clusters from the main dataset and the sub-cluster motifs from the small dataset both identified 74 (Figure
S11). The statistical sub-clusters of the small dataset had the worst performance capturing 63 validated
sub-clusters.

Exploring the sub-cluster motifs

To showcase our findings we annotated 50 sub-cluster motifs, of which 23 originated from the set of known
sub-clusters and 27 were annotated using MiBIG BGCs (Table S3). These annotations constitute 35
different substructures at different levels of detail (Figure 3). All 50 annotated sub-cluster motifs
corresponded to SSCs to a certain degree, corroborating the sub-cluster motif annotations. Many of the
annotated sub-cluster motifs are present in diverse BGC classes, while others occur in one class primarily
(Figure S12;Figure S13). One example of the former is BGC0001597 (fluvirucin b2) that contains sub-
cluster_motif_773 for a 3-amino-2-methylpropionyl starter unit constituting a macrolactam ring (Figure
3). This sub-cluster motif primarily occurs in NRPSs and type I PKSs. Interestingly, it also occurs in some
Other class BGCs which cannot be classified by antiSMASH like NZ_KB913032.1.cluster021 and
NZ_AXAS01000001.cluster006. This does not only provide these interesting BGCs with previously unknown
structural information, it also adds to their validity.
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Figure 3 The pie chart visualises the annotations for the 50 sub-cluster motifs divided into general substructure
groups, where an example substructure is shown for several groups. Additionally, examples of eight of the
substructures are shown in the structures of apoptolidin, platencin, fluvirucin b2 and pyralomicin 1a, where the
colour of the substructures correspond to the pie chart. For these four compounds, their respective BGCs are
shown where the sub-cluster motifs are highlighted in the same colour as the substructures they encode.

Identifying the BGC for heronapyrrole biosynthesis

Information about the sub-clusters present in a BGC is not only useful to predict the product of a BGC, it
could also be used as a tool to identify a BGC for a known compound. As an example, we aimed to identify
the BGC responsible for heronapyrrole biosynthesis as the producing organism is present in the antiSMASH
database and a candidate BGC has yet to be identified. Heronapyrroles A-D are a group of farnesylated
nitropyrroles recently isolated from Streptomyces sp. CMB-StM0423 (Raju et al., 2010; Schmidt et al.,
2014). As the heronapyrroles consist of a terpene-and a pyrrole derived moiety, we considered sub-cluster
motifs related to terpenes and pyrroles. Based on antiSMASH classes, seven BGCs of CMB-StM0423 contain
terpene moieties, of which one also contained a sub-cluster motif which we annotated as terpene related.
One of these BGCs classified as a terpene, NZ_CP025407.1.cluster026, contained sub-cluster motif 972 as
well as SCC_1465, which we annotated as pyrrole related based on the pyrrole moieties in kosinostatin
and showdomycin (Ma et al., 2013; Palmu et al., 2017). NZ_CP025407.1.cluster026 is the only BGC in
CMB-StM0423 that contains sub-cluster motif 972, which leads us to the hypothesis that it is the BGC
responsible for heronapyrrole biosynthesis (Figure 4). This hypothesis is substantiated by the presence of
the terpene elements that could be responsible for the farnesyl moiety. Additionally, we also identified sub-
cluster_motif_972 and SCC_1465 in NZ_CP011492.1.cluster001. This predicted BGC originates from
Streptomyces sp. CNQ-509, which is the producing strain of a group of farnesylated nitropyrroles called
nitropyrrolins A-E, which are very similar to the heronapyrroles.
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Figure 4 Sub-clusters from kosinostatin and showdomycin responsible for the biosynthesis of their pyrrole
derivatives (Ma et al., 2013, Palmu et al., 2017). The lane LDA shows sub-clusters from sub-cluster motif 972,
while the lane Stat shows sub-clusters from SCC 1465. On the right the hypothesis is depicted that
NZ_CP025407.1.cluster026 is responsible for heronapyrrole synthesis based on the presence of the same sub-
cluster motif and SCC as kosinostatin and showdomycin.
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Correlation analysis

We deemed it interesting to assess if we could correlate substructures to sub-clusters in an automated
manner as this could have the potential to link unknown molecules to BGCs at a large scale. We used a
previously defined correlation score which assumes that a BGC is needed to synthesise a product, but that
a BGC can be cryptic and not synthesise anything. Ernst et al. (2019) used the MS2LDA tool to create
substructure models, called mass2motifs, from MS data of the Criisemann dataset. For Crisemann sub-
cluster information, all Crisemann BGCs were queried on the sub-cluster motifs and SCCs of the main
dataset. For each of the 107,590 pairs of mass2motif and sub-cluster motif we calculated how well they
co-occur across the Criisemann strains with the correlation score, while we did the same for the 122,404
pairs of mass2motifs and SCCs. In order to prioritise interesting substructure-sub-cluster pairs, we
performed permutation tests for all pairs. This resulted in 3,230 and 1,939 positive scoring combinations
with a p-value below 0.1 for the mass2motif paired with sub-cluster motifs or SCCs, respectively (Figure
5). We identified 5 high correlation scores with low p-values between two staurosporine-related
mass2motifs and both sub-cluster motifs and SCCs constituting the amino-sugar moiety of staurosporine.
These are the only scores which we could identify as meaningful, which is already a good result as only a
fraction of the mass2motifs, sub-cluster motifs and SCCs are annotated.
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Figure 5 Stacked histogram of the correlation scores across the Criisemann strains between the mass2motifs
paired with either the SCCs or sub-cluster motifs with a p-value below 0.1. Highlighted with their scores are the
pairs mass2motif_108 with SSC_452, SSC 1010, sub-cluster_motif 953 and sub-cluster_motif_559, and the pair
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mass2motif 8 with SSC_452. The aforementioned sub-cluster motifs (blue) and SCCs (brown) are responsible
for sugar synthesis in staurosporine, while both mass2motifs (red) are staurosporine related.

Discussion

The aim of this project was to improve upon the previous method for sub-cluster detection. To enhance
BGC processing prior to sub-cluster detection, we used (sub)Pfam domains to represent sequence similarity
which increased the scalability. Additionally, we reduced phylogenetic bias by filtering out redundant BGCs.
By grouping the statistical sub-clusters in SCCs and removing redundant sub-clusters, we partly resolved
the nested sub-cluster structures that result from the previous statistical method. Furthermore, we used
LDA as a novel tool for sub-cluster detection. The sub-cluster motifs found with LDA had the highest
benchmarking score on the characterised sub-clusters from SubClusterBlast. Moreover, we could annotate
50 sub-cluster motifs with substructure information, showing that LDA is a valuable method for the
detection of sub-clusters.

Comparing LDA to the statistical method, they share a common goal as they both aim to find groups of
co-occurring genes. LDA learns distributions over the domain-combinations from the data, which constitute
sub-cluster motifs that provide a nicely clustered structure of similar sub-clusters, hereby capturing sub-
cluster variation. The statistical method, however, creates many combinations of co-occurring genes,
producing individual sub-clusters that exhibit highly nested structures making it harder to find similar sub-
clusters across BGCs. Apart from the nested structures, the statistical method produces a huge amount of
sub-clusters of which only a fraction probably provides meaningful information. This is illustrated by the
fact that the statistical sub-clusters are very noisy. In a group of BGCs sharing multiple sub-clusters, all
combinations of these shared sub-clusters would form new sub-clusters, which happens frequently.
However, LDA generates a more limited amount of sub-cluster data, which might contain less meaningful
sub-clusters compared to statistical method in absolute numbers, but has a way higher ratio of valid sub-
cluster information. We partly solved the problems for the statistical sub-clusters by grouping them into
SCCs and removing redundant sub-clusters, but problems still exist for the statistical method. Compared
to LDA, it is for example rather difficult to query a BGC using the statistical sub-clusters. This is partly due
to the fact that it would quickly become very time consuming to query for statistical sub-clusters while
allowing inexact matching. For these reasons we now propose to use LDA as the main method for sub-
cluster detection as it captures sub-cluster variety in the sub-cluster motifs and can be used easily to query
BGCs for sub-cluster motifs. The statistical sub-clusters could still be used to identify the sub-cluster
boundaries better, by for example clustering them within the sub-cluster motifs. In doing so, when a BGC
matches a certain sub-cluster motif, it could be checked if that BGC contains any of the statistical sub-
clusters clustered within the certain sub-cluster motif, hereby improving accuracy of the sub-cluster
detection. The drawback of the statistical method that it produces highly nested and variable sub-clusters
could as such be used as a strength.

The fact that a sub-cluster motif is a distribution over genes allows for a fast way to query BGCs for the
presence of sub-cluster motifs. This also highlights sub-cluster motifs from a biological point of view. Sub-
cluster motifs contain a few main genes responsible for the core of a substructure and have the ability to
capture many genes that modify and diversify this core. Such is the case for sugar motifs like sub-cluster
motif 842, where most sugars constitute dideoxy-sugars that are sometimes aminated or methyl-
aminated. However, the sugar sub-cluster motifs also provide an example for a downside of the
unsupervised LDA method. Although there are some structural differences between different sub-cluster
motifs for sugars, the environment of the sugar sub-clusters had an impact on shaping the sub-cluster
motifs. The sugar-related sub-cluster motif 72 contains for example a number of type II PKS genes, while
the sugar-related sub-cluster motif 743 contains diazo-group genes like in lomaivicitin. A way to solve this
would be to apply LDA in a semi-supervised manner, which is a huge asset of LDA. Before training an LDA
model, certain motifs could be seeded beforehand, which allows accurate sub-cluster motifs to be reused
in new analyses, analogous to MotifDB, where annotated mass2motifs are stored (Rogers et al., 2019).
Such semi-supervised approaches would allow for noise to be eliminated from sub-cluster motifs and sub-
cluster motifs to be finetuned.

Another way to reduce noise and to identify the more robust sub-cluster motifs would be to train multiple
LDA models. Sub-cluster motifs that are found in every LDA model would constitute conclusive sub-cluster
motifs, whereas sub-cluster motifs that are identified a majority of the time would still be considered
reasonably accurate. In this manner, noisy sub-cluster motifs that arise through chance would be filtered
out, as they would only occur in one of the many LDA models. Noisy genes in accurate sub-cluster motifs
could be filtered out by taking intersects of multiple similar sub-cluster motifs. As another option, each
BGC could be represented multiple times in training to increase the observations of less frequently
occurring sub-clusters. This could lead to better estimation of the sub-cluster motif distributions over the
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data and cause less erroneous mixed sub-cluster motifs. We tried this shortly for the small dataset and
saw that the overlap with SubClusterBlast increased slightly. This would be interesting to continue
experimenting with in the future.

The 50 sub-cluster motifs that we annotated could readily be integrated into tools like antiSMASH to
enhance structure predictions. They could also prove highly useful to classify BGCs for which there is
currently no class annotation. In the case of antiSMASH, including these 50 sub-cluster motifs would mean
a vast improvement to the current scope of sub-cluster prediction, as 27 out of the 50 sub-cluster motifs
were not included in the list of SubClusterBlast sub-clusters. Additionally, the 23 sub-cluster motifs that
showed overlap with the SubClusterBlast sub-clusters could be used as a replacement for the
SubClusterBlast method. As querying a BGC for sub-cluster motifs is rather fast, this could result in a
substantial speed increase, which would have to be investigated in the future.

With our correlation analysis, we demonstrated that it is already possible to connect substructures with
sub-clusters in an automated manner. However, the previously defined correlation analysis was not ideal
for our situation. One of the problems was the limited amount of data, as we could only use 137 strains
from the Criisemann dataset, 50 annotated sub-cluster motifs and 40 annotated mass2motifs. Not only
did we have a limited set of strains, all strains were highly related to each other, meaning that many
compounds and BGCs are shared between them. By default this created high correlation scores for pairs
of sub-clusters and substructures occurring in abundant BGCs and compounds. We aimed to solve this by
performing permutations tests to assess the likelihood of a high scoring pair arising by chance, which is
the case for very abundant pairs. This only left very few high scoring pairs, in which we could only identify
the pairs related to staurosporine. Doroghazi et al. (2014) developed the correlation metric to allow for
the fact that many BGCs can be cryptic by not punishing the absence of a structure when a BGC is present.
Because of the nature of the scoring metric many pairs with low p-values and scores just above zero arose,
which consist mainly of mass2motifs with very low degrees paired with all sub-cluster occurring in the
same strains. Furthermore, this correlation method generally results in a lot of noise, as sub-clusters and
substructures that occur in a shared subset of strains will all correlate to each other. Such co-correlating
structures make the identification of the actual correlating pair therefore difficult, especially with limited
annotations. Identifying clusters of co-correlating pairs could therefore provide a way to make the
interpretation of this analysis easier. Additionally, the correlation analysis is not perfect in our case, as
multiple different sub-clusters are often responsible for synthesising the same substructure. As an
example, mass2motif 119 is annotated as a dimethyl-amino-deoxysugar found in both rosamicin and
lomaivicitin. However, the sub-cluster responsible for the sugar group in rosamicin is present in a different
sugar sub-cluster motif than the sub-cluster from lomaivicitin. This illustrates a big drawback for using this
method. In order to solve this, sub-cluster motifs that constitute similar structures should be grouped
together before running the correlation analysis. Combining this with the integration of more diverse
species would improve this correlation analysis drastically. As this is just a first step in linking substructure-
and sub-cluster models with limited information, we expect that analyses like these will have great impact
in the future facilitating metabologenomics experiments.

Throughout our sub-cluster detection analyses, we did not find many sub-clusters containing multiple
multi-domain genes such as PKS or NRPS modules. This is due to the fact that we tokenised each gene as
a combination of domains, which does not allow for capturing small variations in multi-domain genes. To
model such multi-domain genes it would probably be better to tokenise each BGC as a string of domains,
ignoring gene boundaries, as is done by (Navarro-Mufoz et al., 2018). Another generic issue in our analysis
is that we did not include some important biosynthetic domains, which caused some sub-clusters not to be
detected properly. An example is the sub-cluster for the indolocarbazole moiety in staurosporine, which
was not detected because the main gene of this sub-cluster contains the Ferritin-like domain which was
not included in the analysis.

In this project, we have provided an improved approach for the detection of sub-clusters. We demonstrated
that LDA is an effective tool for the discovery of new sub-clusters. Using MiBIG BGCs, we were able to
annotate 50 sub-cluster motifs with structural information. These annotated motifs can now be used in
future experiments and for the improvement of structural predictions in BGC prediction frameworks like
antiSMASH. In antiSMASH, the annotated sub-cluster motifs could provide an addition to SubClusterBlast,
or even serve as a replacement. By linking the heronapyrroles and nitropyrroles to their putative producing
BGC, we illustrated a direct application of our work. Additionally, we provided the initial step for linking
sub-clusters to substructures in a systematic way, which in the feature could lead to automated connection
of BGCs to their NPs.
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Supplementary data

Supplementary methods

Tokenising BGCs

To represent sequence similarity, BGCs were tokenised by converting them into strings of Pfam domains,
using the HMMER3 tool hmmscan and the Pfam database version 32.0 (Bateman et al., 2018; Mistry et
al., 2013). As Pfams are very broad domain models, we divided the Pfams that are most important for
BGCs into more specific domain models called ‘subPfams’, to increase the resolution for sub-cluster
detection. To create subPfams, a Pfam is divided into more narrow domains models that cover the
subspaces of that Pfam, by extracting the multiple sequence alignment of a Pfam and separating it into
clades. A new profile Hidden Markov Model (pHMM) is then built for each clade, each of which constitutes
a subPfam (Figure S6A). The 112 biosynthetic Pfams that are most abundant in the antiSMASH database
were converted into subPfams (Kautsar, S. A., personal communication, Supplementary files). We created
our own pHMM database by replacing these 112 Pfams with their corresponding subPfams in the Pfam
database version 32.0. To query a BGC, we used hmmscan to scan against our pHMM database with the
tc-cutoff as a cutoff on the bitscore. Multiple hits in a gene were allowed to overlap by 10%. If the overlap
was higher only the hit with the highest bitscore was kept. In this fashion, we tokenised each BGC as a
string of genes, where each gene is a token represented as a combination of the present domains (Figure
S6B). Genes without a hit were represented by a dash.
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Figure S6 (A) subPfams are constructed for the 112 most frequent Pfam domains in the antiSMASH database by
dividing the multiple sequence alignment of a Pfam into clades and converting each clade into a new pHMM. (B)
The BGCs predicted by antiSMASH are tokenised by detecting (sub)Pfams in each gene, where non-biosynthetic
Pfams are removed. After tokenising the BGCs, sub-cluster can be detected with the statistical method (Stat),
where the tokenised genes are represented in their original order, or by LDA, which assumes a bag of words
model where original gene order is not taken into account.

Filtering BGCs

In order to reduce phylogenetic bias, we filtered out redundant BGCs by constructing a similarity network
of BGCs and choosing representative nodes from this network. As a similarity measure between BGCs we
used an Adjacency Index of domains (AI), which has been used previously to assess BGC similarity
(Navarro-Mufioz et al., 2018). The AI between BGCs is calculated by dividing the number of all distinct
shared pairs of adjacent domains by the total number of distinct pairs of adjacent domains, while ignoring
gene boundaries. We constructed undirected graphs of similar BGCs by connecting two BGCs if their Al
was above 0.95. We also connected two BGCs if one BGCs was fully contained in the other. To select
representatives from the graphs all maximal cliques in the graph are found using find_cliques from the
networkx module, which is based on the algorithm described by Bron et al. (1973). Then, the BGC with
the most domains is chosen from each maximal clique to remain in the analysis, iterating over the cliques
from largest to smallest until there are no cliques left. If there is more than one BGC to choose from, the
BGC with least connections is picked to stay in the analysis to preserve as much information as possible.
BGCs in a clique that are not selected are filtered out. This process is repeated until there are no
connections left between BGCs.

Filtering domains

As we are interested in groups of genes that are directly responsible for the biosynthesis of chemical
substructures, we chose to only detect sub-clusters of biosynthetic genes. In order to only select such
genes, we discarded all Pfams that were not present in a list of 1,839 biosynthetic Pfams. We compiled
this list by collecting all 3,010 EC-associated Pfams from ECDomainMiner using the lowest threshold
(Alborzi et al., 2017). We discarded domains from this list if they did not occur within existing pre-calculated
BGCs (Kautsar, S. A., personal communication). This list was filtered further by searching for keywords
like transporter or DNA-binding. We then added 50 manually curated biosynthetic domains to the list that
were not part of ECDomainMiner but were frequent in the antiSMASH database, resulting in the list of
1,839 biosynthetic domains (Supplementary files). Additionally, Pfams were removed before sub-cluster
detection if they occurred less than three times throughout the dataset. Subsequently, we removed all
BGCs that contained less than two non-empty genes as result of Pfam filtering.
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Clustering statistical sub-clusters

As the statistical method results in a large humber of sub-clusters, we clustered them into sub-cluster
families (SCFs) and the SCFs into sub-cluster clans (SCCs). To do so, we used the K-means algorithm
implemented in scikit learn with k-means++ seeding, as it is very fast and easy to use on our large dataset
of sub-clusters (Arthur et al., 2007; Pedregosa et al., 2011). We represented all sub-clusters as a
presence/absence matrix with ones and zeros on which we ran K-means with 1,000 iterations and 20
restarts. For the construction of SCFs, we assessed the K-means clustering of different numbers for k. We
chose a clustering based on the lowest within cluster sum-of-squares (WCSS), while keeping the amount
of families to a minimum and trying to make sure one big ‘hairball’ cluster is formed with unrelated sub-
clusters. In order to cluster the SCFs into SCCs, we clustered the centroids from the SCF clustering and
assessed the clustering of different numbers for k in the same way as for the SCFs. We deemed an SCF to
be meaningful if it had three genes that were present in at least 60% of the sub-clusters in the SCF.
Additionally, we removed redundant sub-clusters from each SCF. We deemed a sub-cluster redundant if it
had the same occurrence as a bigger sub-cluster in which it was contained completely.

Benchmarking against SubClusterBlast

The 127 SubClusterBlast sub-clusters were extracted from
https://bitbucket.org/antismash/antismash/src/master/antismash/generic _modules/subclusterblast/subcl
usters.txt (K. Blin et al., 2013). From the 127 validated sub-clusters, 109 had matching accessions in the
MiBIG database. To see how many known sub-clusters we could identify, we calculated the overlap between
all known sub-clusters and the putative sub-clusters from one of the detection methods. We defined an
overlap as the number of genes (domain combinations) from a known sub-cluster that are present in a
putative sub-cluster, divided by the number of genes in the known sub-cluster. We considered a known
sub-cluster to be detected if there was at least one putative sub-cluster matching the known sub-cluster
with an overlap above 0.6.

Annotation

The annotation of sub-cluster motifs or sub-cluster clans (SCCs) with substructures is still a manual task
with low throughput, which is why we annotated only a small number of sub-cluster motifs and SCCs. In
order to assign a substructure to a sub-cluster motif or SCC, we looked at the sub-cluster motifs and SCCs
present in MiBIG BGCs, as their structures are validated. We considered an annotation appropriate for a
sub-cluster motif or SCC if it is present in multiple MiBIG BGCs that share a similar substructure, while the
genes in the sub-cluster comply with their proposed function in literature (Supplementary files). The latter
is more valid for sub-cluster motifs and SCCs encompassing known sub-clusters as the genes from known
sub-clusters are experimentally validated. To visualise and inspect identified sub-clusters, we improved an
existing BGC visualisation script from Navarro-Munoz et al. (2018) for the purpose of sub-cluster
visualisation.

Correlation analysis

In order to correlate substructures to sub-clusters in a systematic manner, we used the Criisemann dataset
to link substructure models to the two different sub-cluster models derived in this research, using a
previously defined correlation metric (Doroghazi et al., 2014). The substructure models constitute 300
mass2motifs generated previously with the MS2LDA tool, based on MS/MS data from the Criisemann
dataset (Ernst et al., 2019). The two sub-cluster models were generated by querying all tokenised
Criisemann BGCs to the LDA model trained on the whole dataset, and to the SCCs generated from the
whole dataset, respectively. A Boolean vector was created for each mass2motif, sub-cluster motif and SCC,
representing the presence/absence in all strains of the Criisemann dataset. We excluded motifs or clans if
they were present in less than two strains. Each pair of mass2motif and sub-cluster motif or SCC was
scored for a mutual presence/absence pattern across strains. This correlation score constitutes scoring
+10 if both members of a pair are present in a strain, +1 if both members of a pair are absent in a strain,
-10 if the mass2motif is present in a strain while a sub-cluster motif or SCC is not, or 0 if the mass2motif
is absent in a strain while a sub-cluster motif or SCC is present. We prioritised valuable pairs by assessing
how meaningful a positive score is in two ways: calculating the maximum possible correlation score without
changing the occurrences, and performing a permutation test. The permutation test was carried out by
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scrambling each Boolean vector 10,000 times, calculating 10,000 random scores for each pair and dividing
the times a higher or equal score than the observed score occurs by 10,000.
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Figure S7 Graphical representation of graph-based filtering for the small dataset: MiBIG-and Crisemann BGCs.
Each node represents a BGC and an edge represents an AI of 0.95 or higher. In blue are the BGCs chosen as
representatives, while BGCs that are filtered out are in black.
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Figure S8 Convergence of the log-likelihood of the LDA model trained on the filtered 60,028 BGCs from the
antiSMASH database, the Criisemann dataset and the MIiBIG database with 2,000 iterations of chunksize 3,000.
Log-likelihood based on 28 held out BGCs.
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Figure S9 The distribution of the number of genes per module in the main dataset (A) and the small dataset (B),
together with the distribution of the log10 of the occurrence in the main dataset (C) and the small dataset (D).
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Figure S10 The number of topics or sub-cluster motifs per BGC in the main dataset, not counting sub-clusters of
length one as these are almost definitely noise.
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Figure S11 Overlap between SubClusterBlast and both sub-cluster detection methods applied on the main dataset
(antiSMASH database) or the small dataset (Criisemann), according to different overlap cut-offs. Both datasets

also contain the MiBIG database.
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Figure S12 Relative abundance of antiSMASH classes when querying the main dataset (filtered) on the 50
annotated sub-cluster motifs. Matches of length 1 are ignored and hybrid class BGCs are counted for all classes

they contain. Ripps classes are grouped together.
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Figure S13 Degrees (occurrences) of the annotated sub-cluster motifs based on the main (filtered) dataset.
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Figure S14 Correlation scores between mass2motifs and SCCs (A) or sub-cluster motifs (B), where the significant
pairs are highlighted.

Tables

Table S1 Number of BGCs in the different datasets during different processing steps before sub-cluster detection.
The main dataset is a combination of the antiSMASH database, the MiBIG database and the Criisemann dataset.
The small dataset combines the Criisemann dataset with the MiBIG database.

Number of BGCs antiSMASH-db MiIBIG Criisemann Main dataset Small dataset

Initial 152,122 1,819 | 5,927 159,868 7,746
On contig edge 41,914 0 1,367 43,281 1,367
Filtered 50,296 317 3,113 56,559 3,456
Final 59,912 1,502 | 1,447 60,028 2,923
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Table S2 Equations for statistical method.

Equation 1 Hypergeometric equation for adjacency interactions
between gene A and gene B. Bi: gene B not adjacent to gene A, Ba:
gene B adjacent to gene A, Bs: gene B adjacent to gene A on both
sides. N1, N2 and Ns represent all available positions in these three
categories, while Nt represent all positions, and Bt all occurrences
of gene B.

Equation 2 Hypergeometric equation for co-localisation interactions
between gene A and gene B. B:i: gene B not co-localised with gene A,
B>: gene B co-localised to gene A, Bnmax: gene B co-localised with nmax
gene A. N1, N2 and Nnmax represent all available positions in these three
categories, while Nt represent all positions, and Bt all occurrences
of gene B.

Equation 3 Simplified hypergeometric equation for co-localisation
interactions between gene A and gene B. Bi: gene B not co-localised
with gene A, B2: gene B co-localised to gene A. N1 and N2 represent all
available positions in these two categories, while Ntwt represent all
positions, and Bt all occurrences of gene B.

Equation 4 Calculation of the p-value for an interaction. i: amount of
interaction, ios: observed amount of interaction.

p="F

() G ()
(52)

Pd=

o = (%)

Btot
(5:) (52)

B,/ \B;

Fa ()
Btot

2iobsz]'_PiSi(zb:i:l_ Pd
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Table S3 Annotation table for the sub-cluster motifs. Detailed version in Subcluster_annotations.xlsb.

Sub-cluster Annotation Annotation Annotation Sub- Degree
motif specific general grouping Cluster
-Blast
8 ectoine ectoine Ectoine No 483
28 tipks tipks PKS No 108
44 ectoine ectoine Ectoine No 382
58 AHBA/3-HAA amino_benzoic_a Amino Yes 98
cid benzoic
acids
72 (amino)sugar sugar Sugar Yes 446
76 thiopeptide RiPP RiPP No 811
86 lassopeptide RiPP RiPP No 258
189 DPG/HPG/BHT teicoplanin/balhi Teicoplanin Yes 165
mycin_related related
204 PCA/PDC phenazine Phenazine No 221
208 Methoxy- methoxymalonyl- PKS- No 444
malonyl-ACP ACP extender
unit
216 L-4- L-4- Methyl Yes 50
methylproline methylproline amino acid
228 cyclic-t2pks t2pks PKS No 613
234 macrolactam macrolactam Macrolactam No 74
241 amide-ring/ring- t2pks-tailoring PKS No 140
oxidations/-
methylation
292 enduracididine enduracididine Enduracid- Yes 41
idine
296 cyclic_sesqui/- terpene Terpene No 375
tetraterpene
329 chloro/bromo- halogenated_aro Haloginated No 215
phenyl/pyrrole matic_ring ring
346 valienol/ cyclitol Cyclitol Yes 216
valienone/
validone

MiBIG evidence

BGC0000853, BGC0000854
BGC0001396, BGC0000047, BGC0001648,
BGC0000035, BGC0001812, BGC0001658,
BGC0000087, BGC0001199, BGCO000086,
BGC0000052, BGC0000053, BGC0O000144,
BGC0001533, BGC0001662, BGC0001830,
BGC0000123, BGC0000097, BGCO000038,
BGC0000029, BGC0000059, BGC0000021
BGC0000855, BGC0000858, BGC0000852
BGC0000213, BGC0000187, BGCO000679,
BGC0001140, BGC0001156, BGC0001295

BGC0001595, BGC0000102,+800thers
BGC0001753,+20
BGC0001655, BGC0001674, BGC0001781,
BGC0001539, BGC0000579, BGCO000575,
BGC0001673, BGC0000578, BGC0001552,
BGC0001507, BGC0001645, BGC0001493,
BGC0001548, BGC0001550, BGC0001549

+10
BGC0001302, BGC0001080, BGC0000935
BGC0000020, BGC0001511, BGC0000040,
BGC0001034, BGC0000021

BGC0000397

BGC0000279, BGC0000256, BGC0000230,
BGC0000200, BGC0000190, BGC0001062,
BGC0001376,+100others
BGC0000029, BGC0000097, BGC0001522,
BGC0000078, BGC0001452
BGC0000279, BGC0000256, BGC0000230,
BGC0000200, BGC0000190, BGC0001062,
BGC0001376,+100others
BGC0000388, BGC0000341

BGC0000651, BGC0000653, BGCO000674

BGC0000130, BGC0000131, BGCO001819,

BGC0000111, BGC0001500, BGC0001172,

BGC0000128, BGC0000374, BGC0000127,
BGC0001038, BGC0001159

BGC0000290, BGC0000440, BGC0000441, BGC0000311

BGC0001038, BGC0000723, BGC0000722, BGC0000701
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372

425
449

451

455

483

503
510

515

536

538

559

563

568

572

595

610

626

669

685

731
742

743
773

816
842

868

893

912

953

972

2-amino-3-
hydroxy-
cyclopent-2-
enone
terpenoid
DMAPP/GPP

Chlorinated-
tryptophan/-
indolocarbazole
hydroxy/-
methoxy-
benzenes

enediyne

lanthionine
indolocarbazole

carbamoyl
aminosugar
3-HAA/DHBA

methyl-
aspartate/methyl
-asparagine
sugar
methoxymalonyl-
ACP

Uroporphyrin-
ogen_III
4-methyl-3-
hydroxyanthranili
c_acid
ectoine
piperideine-
derivative
2,3-
dihydroxybenzoic
acid
methylated-
sugar
t2pks

amino/guadinino

3-amino-5-
hydroxy-
benzoicacid
Aminosugar
3-amino-2-
methyl-
propionyl-starter
t3pks
Desosamine/Ami
nosugar/4_6-
dideoxysugar

dihydroxyphenyl

glycine/dihydrox
ybenzoicacid
malonyl-CoA

Diamino-
butyricacid
aminosugar/met
hylated_sugar

pyrrole/indole

2-amino-3-
hydroxycyclopent
-2-enone

terpenoid
terpene

chloro-
tryptophan

benzene
modification
enediyne

lantipeptide
indolocarbazole
carbamoyl
sugar
hydroxy-
benzoic_acid
methyl-aspartate

sugar
methoxymalonyl-
ACP
uroporphyrin-
ogen_III
4AMHT

ectoine
piperideine

DHBA

sugar
t2pks

amino/guadinino

AHBA

sugar
macrolactam

t3pks
sugar

dihydroxyphenyl
glycine

malonyl-CoA

DABA

sugar

pyrrole/indole

Amino
pentenone

Terpene
Terpene

Chloro-
tryptophan

Benzoic
acids

Enediyne

RiPP
Indolo-
carbazole
Carbamoy!
Sugar
Benzoic
acids
Methyl
amino acid

Sugar
PKS-
extender
unit
Porphyrin-
ogen
Amino
benzoic
acids
Ectoine
Piperidine

Benzoic
acids

Sugar
PKS

Amino group

Amino
benzoic
acids
Sugar
Macrolactam

PKS
Sugar

Amino
benzoic
acids
PKS-
extender
unit
Diamino
acid
Sugar

Pyrrole

Yes

Yes
Yes

Yes

Yes

Yes

No

No

Yes

No

Yes

Yes

Yes

No

Yes

No
No

Yes

Yes

No

Yes

No
No

No

Yes

Yes

Yes

Yes

48

126
164

193

268

159

798
107

204

557

189

470

87

125

165

296

78

557

124

265

25
187

40
153

352
74

124

94

146

140

161

BGC0000052, BGC0000213, BGC0001298, BGC0000187

BGC0000632
BGC0000654, BGC0001664, BGC0000665,
BGC0001126, BGC0000668, BGC0001594,
BGC0001501, BGC0001612, BGCO000666,
BGC0001595, BGC0001140, BGC0001156
BGC0000809, BGC0000822, BGC0000823,
BGC0001333, BGC0001335, BGC0001337

BGC0000216, BGC0000261, BGC0000394,
BGC0000421, BGC0000422, BGC0000202,
BGC0001693, BGC0000236, BGC0000240, BGC0000241
+ 10 others
BGC0000081, BGC0000112, BGC0000150,
BGC0000965, BGC0001008, BGC0001397, BGC0001584
BGC0000507, BGC0000509,+30
BGC0000813, BGC0000814, BGC0001224,
BGC0001223, BGC0001336
BGC0000090, BGC0000074, BGC0000834 +10
BGC0000809, BGC0001522, BGC0000880
BGC0001213, BGC0000368, BGC0001437

BGC0001770, BGCO000876, BGC0001448,
BGC0000429, BGC0000167

BGC0000025, BGC0000052,+400thers
BGC0000994, BGC0000065, BGCO000090

BGC0000906, BGC0000905

BGC0000296, BGC0000428, BGCO000303, BGC0000409

BGC0000859, BGC0000857, BGC0O000860, BGC0000856
BGC0001296, BGC0001433, BGC0001293

BGC0001185, BGC0000343, BGC0001502,
BGC0000451, BGC0000454, BGCO000309,
BGC0000945, BGC0001345, BGC0000401
BGC0000148, BGC0000362, BGC0O000363,
BGC0000364, BGC0000365, BGC0000769, BGCO000875
BGC0000221, BGC0000227, BGC0000245,
BGC0000225, BGC0000233, BGC0000269,+10
BGC0000052, BGC0001662, BGC0001700

BGC0000020, BGC0001511, BGC0O000090, BGC0000106

BGC0000240, BGC0000241, BGC0001693
BGC0000167, BGC0001770, BGCO001597,
BGC0001101, BGC0000202, BGC0001658

BGC0001647, BGC0000282
BGC0001830, BGC0000054, BGCO000055,
BGC0000033, BGC0000102, BGCO001503,
BGC0000078, BGC0001008, BGC0O000035,

BGC0000047, BGC0001396, BGCO000085, BGC0001812
BGC0001233, BGC0001066, BGC0001148,
BGC0001635, BGC0001819, BGC0001807

BGC0000279, BGC0000216, BGC0000261

BGC0000950, BGC0000951, BGC0001807

BGC0000193, BGC0001812, BGC0O000096,
BGC0001452, BGC0001522, BGCO000055,
BGC0000019, BGC0000825, BGC0000826,
BGC0001074, BGC0000199, BGC0000212,
BGC0000216, BGC0000141
BGC0001073, BGC0001778, BGC0001595,
BGC0000668, BGC0000824
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Table S4 Correlation scores between mass2motifs and sub-cluster types for pairs present in staurosporine.

Mass2motif Sub-cluster type Score Max score % of max score p-value
mass2motif 108 sub-custer_motif 953 249 438 0.57 0.000
mass2motif 108 sub-custer_motif 559 68 278 0.24 0.000

mass2motif_8 SCC_452 300 615 0.49 0.010
mass2motif 108 SCC_452 355 607 0.58 0.010
mass2motif 108 SCC_1010 215 572 0.38 0.010

Supplementary files

e biosynthetic_pfams.txt
e subPfams.txt
e subcluster_annotations.xIsb



