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Abstract  12 
Irrigation systems face unforeseeable changes in climate, technologies, and societal 13 

preferences during their lifetime, potentially rendering them obsolete or inadequate. To 14 

remain functional, irrigation systems need to be adaptive to changes as the future unfolds. 15 

Past approaches to irrigation system design were largely informed by engineering or 16 

economic criteria. This is increasingly recognised as insufficient. We provide examples of 17 

contemporary irrigation systems in Australia to highlight the need for planning and design 18 

approaches that recognise the complex interactions between human and water systems and 19 

embrace unknowns. We review literature on hydro-social interactions and dynamic adaptive 20 

pathways to provide insights for the development of adaptive irrigation systems.  21 

Highlights  22 

• Long lasting irrigation infrastructure faces unforeseeable natural and societal 23 

unknowns.  24 

• Adaptive design approaches need to incorporate the coupled nature of human-25 

water interactions.  26 

• Adaptive design is a process of ongoing social learning.  27 

  28 
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Introduction 29 
Irrigation schemes facilitate the intensification of agricultural systems and are usually 30 

associated with economic development and nation building [1]. However, contemporary 31 

irrigation schemes no longer command the unequivocal support they once did. Public policy 32 

debates now concern trade-offs between the economic potential of irrigation and the 33 

prevention of adverse environmental and social impacts. Anti-dam movements in the mid 34 

and late 20th century altered public perceptions of infrastructure development and halted 35 

the construction of many large dams [2], although recently there appears to be a resurgence 36 

[3••]. Support for existing irrigation systems is also susceptible to shifts in public attitudes. 37 

For example, in January 2019, reports of fish kills in Australia’s Murray-Darling Basin 38 

intensified public debates about water management and irrigation, calling into question the 39 

effectiveness of previously negotiated arrangements of water sharing [4]. The long-term 40 

sustainability of irrigation systems is as much a social and political challenge as it is a 41 

challenge for science, engineering, and economics. Past approaches are no longer 42 

considered sufficient for the design of new infrastructure [5]. There is a growing body of 43 

literature that recognises that water systems are both natural and social and are shaped by 44 

the coupled dynamics of human-water interactions [6]. In parallel to this literature, there 45 

are repeated calls for forward-looking or adaptive decision frameworks to help deal with 46 

uncertainty about the future [7-9]. This, combined with invariably contested goals for the 47 

future we aspire to, lends significant ambiguity to water infrastructure planning. 48 

Here, we argue that ignoring potential long-term social and environmental consequences of 49 

investment decisions can lead to suboptimal outcomes. We use examples from our research 50 

in Australia to highlight the need for adopting a long-term perspective when decisions are 51 

made about investing in irrigation infrastructure. We explore some of the challenges 52 

involved in the development of new irrigation schemes in the Australian island state of 53 

Tasmania, at a time when support for existing irrigation schemes in Australia’s iconic 54 

Murray-Darling Basin is the subject of intense policy debate. How can irrigation systems be 55 

designed and managed to be adaptive to a future that will be shaped by largely 56 

unforeseeable human-water interactions? To address this question, we review and bring 57 

together insights from the literature on coupled human-water interactions and on dynamic 58 
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adaptive pathways approaches to explore how no-regret decisions could be made about the 59 

design and management of irrigation infrastructure. 60 

Contemporary irrigation infrastructure development in Australia  61 
In 2014, the Tasmanian State Government set a long term goal to achieve an annual 62 

agricultural farm gate value of $AUD 10 billion by 2050, which was then almost a tenfold 63 

increase of agricultural production value [10]. Water is closely linked to this transformation, 64 

with irrigation investment proposals using catch phrases such as ‘just add water’ 65 

and ’pipeline to prosperity‘ [11]. The schemes are designed to last for at least 100 years and 66 

deliver water at 95% reliability. Reliability is based on modelled projections of water 67 

availability through to 2030 under wet, median and dry climate scenarios [12].  68 

Tasmania takes a deliberate, cautions approach to irrigation infrastructure development. 69 

New irrigation schemes have to demonstrate economic benefits, ensure cost-recovery, and 70 

meet selected environmental criteria [13]. The schemes are developed as public-private 71 

partnerships, wherein farmers must commit to buying water rights to cover at least 30% of 72 

the construction cost of the scheme while the remaining 70% is funded by government. This 73 

first commitment defines the design of the scheme and the supply capacity of the irrigation 74 

pipes. As such, the long-term water availability delivered through the scheme is determined 75 

by the current willingness of farmers to invest. In research carried out by the authors, 76 

farmers with no previous experience in irrigation described how their perceptions changed 77 

as they learned what they could do with water [14]. Not only their demand for water, but 78 

also their willingness to pay for water has increased in the last few years. See the Text Box 1 79 

for an illustrative quote. 80 

Text Box 1. Illustrative quote of a Tasmanian irrigator about their changing perspective on the value of irrigation water, 81 
from [15]  82 

 83 

Although irrigation schemes are built with the explicit purpose of transforming the 84 

agricultural sector and rural communities, the current design strategy in Tasmania treats 85 

“I remember when water cost $15 /ML (1000 m3) and it went to $20 /ML and we all 
thought it was too dear. Sometimes you have got to pinch yourself and realise that I’m 
about to spend $250,000 just to get access to 50 ML of water. If someone would have 
told me this 10 years ago, I would have thought he was living in fairyland, but 
perceptions change. If I tell other growers about the reality of irrigation water they 
often don’t believe me”.  
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social change as outside its scope; it does not explore future scenarios of varying demand 86 

for irrigation water or changing attitudes, including the perceived value of irrigation water.  87 

By designing new irrigation schemes based on current demand, (current) economic viability 88 

might be ensured, but adaptation to future changes of climate and social values is limited. 89 

This can lead to the development of infrastructure that is either inadequate or 90 

inappropriate in the future. Nowhere is this more apparent than in Australia’s Murray-91 

Darling Basin. Significant investment of public funds in large irrigation infrastructure across 92 

the basin spurred private investment and economic development of regional communities 93 

for most of the 20th century [16,17]. Towards the late 1900s however, changing attitudes 94 

towards recurrent environmental issues in the Basin altered the political commitment for 95 

large-scale infrastructure. Reforms were instituted to buy back water licenses from irrigators 96 

and allocate water for environmental purposes, but they remain mired in controversy to this 97 

day. Reflection on water resource development in the Murray-Darling Basin leads to two 98 

relevant insights: 1) during the life span of irrigation infrastructure, societal preferences and 99 

water availability are likely to change; and 2) reallocation of water is a difficult, expensive 100 

process that poses a huge political challenge. These examples highlight the need for greater 101 

recognition of the interconnectedness of human-water interactions when irrigation systems 102 

are developed. 103 

Recognition of coupled human-water interactions 104 
When water is conceptualised as a resource, biophysical factors such as climatic influences, 105 

flow, storage or drainage are often considered independently from human or social factors 106 

such as needs, values, or governance [18]. Likewise, when water infrastructure systems are 107 

planned, social and economic considerations are, to use Lane’s [19] words, ‘bolted on’ to 108 

the end of hydrological assessment and design. Many argue that the arbitrary decoupling of 109 

bio-physical considerations from social, economic or political considerations has led to 110 

adverse consequences for people and the environment [8,20,21]. Malin Falkenmark [6,22], 111 

an early advocate for interdisciplinary studies of water, pointed out the extent of human 112 

influence on water circulation and made the case for a new field of hydrosociology to 113 

involve the social sciences in the study of the coupled nature of human-water interactions 114 

[22].   115 
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Studies of integrated social and environmental systems have proliferated in the last three 116 

decades, with notable contributions being made by Elinor Ostrom [23] on long-enduring 117 

irrigation systems and more broadly, the literature on resilience in social-ecological systems. 118 

The focus of the social-ecological systems literature is on the system as a whole, wherein 119 

interrelationships between components and processes are emphasized [24]. However, this 120 

literature has met with criticism from many social researchers who contest the application 121 

of functionalist ecological theories to the study of human systems, particularly for its 122 

inability to account for the role of human agency, power relationships or constructivist 123 

theories of knowledge (see [25] for a broad critique).  124 

Focussing on studies of human-water interactions, Wesselink et al [26••] trace and contrast 125 

two approaches that have emerged from natural sciences and social sciences perspectives: 126 

socio-hydrology and hydrosocial research. Socio-hydrology has emerged as a new discipline 127 

that seeks to study the dynamics of society-water interactions to discover regularities that 128 

emerge over time in diverse contexts [27]. It aspires to capture all human-nature 129 

interactions into a holistic, quantitative model that explains and seeks to predict how 130 

human-water systems co-evolve over time [28••]. As with social-ecological systems, the 131 

main criticisms of socio-hydrology are its inability to predict human values, human 132 

behaviour or social interactions [29•,30•] and its inability to deal with knowledge 133 

controversies [19]. By contrast, hydrosocial research encompasses the work of social 134 

scientists and political ecologists who focus on the power relations that lead to inequalities 135 

in human-water systems. It sees human-environment interactions as a dialectical process 136 

that shapes both water and society. i.e., their relationship is internal. Just as the material 137 

flows of water through the landscape influence human activity, social relations – played out 138 

through hydraulic infrastructure, laws and policy narratives – determine the flow of water 139 

(for example, see [31]). Hydrosocial research is criticised for over-theorizing and not 140 

engaging as much with identifying solutions to the problems they articulate [26••].  141 

Regardless of these epistemological differences and limitations, both socio-hydrological and 142 

hydrosocial approaches highlight the complex and coupled nature of human-water 143 

interactions. Whilst the explanatory power of socio-hydrology is useful in a historical, spatial 144 

and comparative sense, the value of hydrosocial research is in its emancipatory power, i.e., 145 

its ability to illuminate power asymmetries so that they may be negotiated and addressed. 146 
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In this regard, the two approaches could complement each other in a pluralistic or reflexive 147 

manner (see [19,25,32] for ways to do this). While this adds value to the planning and 148 

design process, it still does not address the limited ability to support forward-looking 149 

decision making. For that, the literature on Dynamic Adaptive Pathways might help. 150 

Embracing the unknowns by exploring Adaptive pathways 151 
Dealing with future uncertainty is increasingly recognised as a key challenge for the design 152 

and management of water infrastructure. [7,33,34]. A promising approach, applied in the 153 

long-term Dutch Delta Programme, is the Dynamic Adaptive Policy Pathway (DAPP) 154 

approach [35••,36-38]. The DAPP approach is presented as a new planning paradigm, 155 

wherein a strategic, long-term vision is developed based on consensus [39]. Commitments 156 

are made for short-term action items while the framework allows for dynamic adaptation 157 

over time, i.e., the pathways to reach the strategic vision can be adjusted or switched as the 158 

future unfolds [40]. Predefined tipping points trigger the need to redefine a strategy or to 159 

change direction [37••]. The intention of using the DAPP framework in the Dutch Delta 160 

program is to avoid making design decisions now, that will be regretted later [41].  161 

Outside the Netherlands, similar adaptive pathway approaches have been applied in 162 

England to develop the Thames Estuary 2100 pathways [42], in New Zealand, where 163 

stakeholders explored the influence of climate scenarios in a local flood risk management 164 

context [43,44], and in Australia to develop adaptive plans to adjust to climatic changes in 165 

two local coastal regions [45,46]. In the face of uncertainty, the DAPP approach reduces 166 

path-dependencies; it is adaptive to new information; and it allows for greater distribution 167 

of costs and benefits across generations [27].  168 

The main limitations of the DAPP approach relate to its assumptions: that participants have 169 

an understanding of (system) complexities (including externalities); that tipping points can 170 

be clearly identified; that knowledge is uncontested; and that a clearly defined 171 

unambiguous long-term objective can be agreed upon [47••,48••]. Furthermore, we find 172 

that applications of DAPP tend to focus on climatic or natural unknowns. The coupled 173 

interactions between biophysical and social phenomena are rarely explored. In some cases 174 

(for example in [49]), future changes in climate and societal perspectives are considered 175 

together to evaluate the robustness of investment strategies, but these approaches use 176 

forecasting techniques, which can be problematic for dealing with unforeseeable changes. 177 
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Insights for developing adaptive irrigation infrastructure 178 
During the lifespan of irrigation infrastructure, unforeseeable changes in climate, the 179 

environment, technologies, and societal preference can render the infrastructure 180 

inadequate, obsolete or prohibitive to sustain. Hence, we propose a new approach (Figure 181 

1) for developing adaptive irrigation systems that brings together insights from DAPP and 182 

the literature on coupled human-water interactions. The major difference from DAPP is that 183 

the proposed approach recognises the coupled dynamics of human-water interactions by 184 

exploring impacts on the water system, society and the environment iteratively. Fig. 1 185 

shows this modified, iterative learning and assessment loop, adapted from Haasnoot [35••], 186 

that makes this approach applicable for other settings such as coastal or river infrastructure. 187 

 188 

Figure 1. Developing irrigation systems in a social learning process by linking hydro-social 189 

interactions with adaptive pathways. Adapted from Haasnoot [35••] 190 

Rather than attempting to predict hydro-social changes, we propose that finding the ideal 191 

pathway to manage or use water should be approached as an ongoing learning process with 192 

stakeholders. The process commences with the development of broad objectives, with the 193 

recognition that these objectives will change over time. A prerequisite for such an approach 194 
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would be a culture that openly embraces and communicates uncertainty and ambiguity1. 195 

Social unknowns are not to be treated as exogenous but instead to be embraced, 196 

internalised, explored, and communicated. Uncertainty, ambiguity and ignorance can foster 197 

creativity, innovation and consensus building [52], but it is important to recognise that they 198 

can be used as a political tool [53,54].  199 

Recognising the importance of the political and institutional contexts of water resource 200 

decisions [18,55,56], we suggest that as a part of the design and management process, 201 

space should be explicitly created for social learning amongst stakeholders. Social learning 202 

processes aim to facilitate cooperation among stakeholders based on shared meanings and 203 

practices [57] and provide a means to learn together to better manage together [58]. 204 

Diverse and plural knowledges are a key ingredient to such learning [59]. In the Tasmanian 205 

research study described above (see [14], further research is in progress), we found that 206 

such processes can also be useful in appreciating social change induced by changes to water 207 

systems and vice versa. Facilitated discussions between key stakeholders can create 208 

opportunities to appreciate diversity, learn from each other, and enable the identification of 209 

potential future pathways. Indeed, community-based social learning approaches to deal 210 

with future uncertainty are arguably more justifiable than top-down engineering solutions 211 

that regard social values as static and unchangeable [51,60-62]. We acknowledge that social 212 

learning processes are not immune to issues arising from power asymmetries. It becomes 213 

imperative to critically examine the framing of issues and contestations of knowledge to 214 

foster conditions for learning.  215 

An important element of the proposed approach is the addition of flexible design 216 

alternatives when it comes to irrigation infrastructure development. Irrigation infrastructure 217 

is typically expected to last at least several decades, often centuries. Without flexibility in 218 

design, the adaptiveness of the overall system is largely constrained. Flexibility is required 219 

not only in the design of physical infrastructure (for examples, see [34]) but also in 220 

institutional arrangements and management options. We conclude by identifying adaptive 221 

design approaches for irrigation infrastructure. This includes suggestions for future 222 

                                                           
1 Ambiguity is identified as a source of uncertainty [e.g. 50] or as a dimension of uncertainty [51]. 
Here, we refer to it separately to stress its significance. 
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research. We provide three examples of strategies that could be explored for the 223 

development of adaptive irrigation infrastructure: 224 

1. Improving adaptive capacity through social learning processes that bring together 225 

experienced irrigators (or other stakeholders) with farmers who are considering 226 

making an investment decision in infrastructure.   227 

2. Organising informal networks and recurring workshops between stakeholders aimed 228 

at social learning, ideally decoupled from decision making. Decoupling learning from 229 

decision making could help to overcome issues related to power imbalances, allow 230 

participants to bridge divides and improve dialogue conditions  [63,64]. 231 

3. Overcoming path dependency by regulating the water market. Regulation can be 232 

done in many ways. One way is for the State to purchase water rights in the 233 

development stage with subsequent release of these rights at strategic points in 234 

time to regulate the price and allow newcomers to start irrigating. Another way to 235 

encourage learning by doing is to lower the upfront cost of water rights and increase 236 

the yearly rates. This would potentially lead to a bigger uptake of water rights and 237 

farmers pay for the water when they actually have the chance to generate the value 238 

needed to cover the costs. An additional option is to stop allocating perpetual water 239 

rights, but instead treat water rights as scarce resources such as radio frequencies, 240 

that can be bought at auction for a limited period only (say 30 years). This would 241 

allow future generations to participate in the scheme and adapt to future social and 242 

hydrological changes. 243 
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