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Abstract

Soil organic carbon is an important regulator of global climate and soil quality and an important

aspect in the current climate change mitigation debate. To assess the current state of soil organic

carbon accurate maps of the distribution are needed. Recently machine learning replaced more

traditional regression kriging techniques in the application of digital soil mapping. While the

machine learning models often outperform the traditional methods on accuracy, most of them do

not take spatial context into account. To overcome this limitation convolutional neural networks

were recently introduced for digital soil mapping. These models were originally designed for

automatic image recognition and have the added benefit that they use the spatial structure of the

input. This research continues the development of this very new technique. A common critique

of machine learning methods is that they are black boxes, which makes it difficult to understand

their functioning. The Local Interpretable Model agnostic Explanations algorithm was proposed

to open this black box and let the user judge the model performance. LIME is mainly designed for

classification, but also works for regression tasks. This research is the first application of LIME

for digital soil mapping.

The goal of this research was to implement a convolutional neural network for the spatial mod-

eling of soil organic carbon, compare the accuracy with a random forest and assess the usefulness

of LIME to open the black box. To obtain this goal a selection of covariates was made using a

recursive feature elimination approach, after which several convolutional neural network model

architectures were run in a 10-fold cross validation to select the most suitable one. At last the

same selection of covariates was also fed to the LIME algorithm.

The results of this research show that the convolutional neural network is outperformed by

a random forest when modeling SOC concentrations in Argentina. However, some interesting

relations between the chosen activation function, number of convolutional layers, window sizes

and the accuracy of the model were found. These findings can be used in future research to design

a more effective convolutional neural network. The LIME algorithm did unfortunately not work

with the convolutional neural network, because of issues with the structure of the input. The

algorithm did, however, work for the random forest model. Some minor differences in covariate

importance between a selection of points could be seen. But as the algorithm is mostly used for

classification tasks, the interpretation of the results proved challenging for a regression task.

Convolutional neural networks are shown to be a promising technique for digital soil mapping,

but their implementation needs further improvements before they can be considered fully oper-

ational for digital soil mapping applications. The LIME algorithm did unfortunately not prove

very useful in explaining the model performance for this digital soil mapping task.
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Chapter 1

Introduction

1.1 Background

1.1.1 The importance of soil organic carbon

Globally 1500 Pg of soil organic carbon (SOC) are stored in the first meter of the soil. This

massive storage of SOC plays a major role in the regulation of the global climate (Jobbágy and

Jackson, 2000). The flux of CO2 coming from the soil is one of the biggest fluxes of the global

carbon cycle (Schlesinger and Andrews, 2000). SOC is also an important indicator of soil quality,

agronomic productivity and sustainability as it influences important physical, chemical and biolo-

gical soil quality processes (Reeves, 1997). Climate change, land use change and mismanagement

of agricultural land can degrade the SOC pool and consequently reduce soil quality and release

large amounts of CO2 into the atmosphere (Lal, 2004a). SOC is currently receiving a lot attention

for its role in mitigating climate change. In 2015 the ”4 per 1000” initiative started to demonstrate

the potential of SOC to mitigate climate change and ensure food securite (Minasny et al., 2017),

a recent article promoted eight different ways of stimulating carbon sequestration in soils to meet

the Paris climate agreements (Rumpel et al., 2018) and a new index of calculating how a change

in land use contributes to the global capacity to store carbon was proposed (Searchinger et al.,

2018). A global increase of the carbon content in soils by just a few parts per thousand would

remove around 3-4 gigatonnes of CO2 from the atmosphere, which is equivalent to the total annual

fossil-fuel emission of the European Union (Chabbi et al., 2017). By changing to recommended

management practices (RMP) the influx of SOC into the soil can exceed the outflux of CO2 to the

atmosphere. Changing from conventional plow tillage to conservation tillage is one of the most

proposed RMPs (e.g. Follett, 2001; Lal, 2004b; West and Post, 2002; Lal, 2005). These changes

will mitigate climate change and maintain soil quality (Follett, 2001).

1.1.2 Digital Soil Mapping

Because of the crucial role of SOC in both climate regulation and soil quality status there is a

need for more accurate maps of SOC carbon storage in global soils. Modeling studies can help

provide this information. Mechanistic models such as RothC provide information on soil organic

carbon storage and dynamics by modeling the turnover rate of SOC (Coleman and Jenkinson,
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CHAPTER 1. INTRODUCTION

1996). Statistical methods such as digital soil mapping (DSM) focus on the correlation between

SOC and environmental explanatory variables, i.e. covariates. Most of the DSM methods are

built upon the CLORPT framework of soil forming factors (Jenny, 1994):

S = f(cl, o, r, p, t)

where S is the soil property of interest, cl is climate, o are organisms, r is relief, p is parent material

and t is time. Once the function f is chosen and its parameters are calibrated, predictions of S

are made for each location in the area of interest. Later a new framework was proposed that

adds soil type, spatial location and spatial errors into the equation. This is called the scorpan

framework (McBratney et al., 2003). An example of a commonly used DSM techniques techniques

is multiple linear regression (Lamichhane et al., 2019). Linear correlations between the covariates

and the variable of interest are calculated and used to derive a trend that predicts SOC from the

covariates. The residuals of the trend have a zero mean but a non-zero variance. If these residuals

are spatially correlated, as characterized by a variogram, then multiple linear regression may be

extended to regression kriging (Hengl et al., 2004).

A lot of the methods used in digital soil mapping are based on linear relations (Webster

and Oliver, 2007). Recent developments in computer science have, however, made it possible

to implement machine learning techniques for DSM (Lamichhane et al., 2019). These machine

learning methods can deal with complex correlations and non-linear relations, which makes them

excellent for tracing relations between dependent and explanatory variables and making predictions

(Goodfellow et al., 2016). Some examples of these techniques are random forests, neural networks

and support vector machines (Heung et al., 2016). Random forests are found to outperform

multiple linear regression and even other machine learning techniques in most studies (Lamichhane

et al., 2019).

1.1.3 Artificial Neural Networks

An artificial neural network is one of the many machine learning models. The first concepts of

artificial neural networks (ANN) already date back to 1943 as a method to replicate the human

brain (McCulloch and Pitts, 1943). Neural networks are built up from connected neurons. The

most basic ANN consists of one input layer, one hidden layer and one output layer (Figure 1.1).

A hidden layer in a neural network makes a decision using a non-linear activation function. Each

connection between the individual neurons gets assigned a weight and bias that are fed to the

activation function. The combination of the non-linear activation function with these weights

and biases of the input defines the signal that a neuron outputs. These weights and biases are

recurrently updated during the training of the model to end up with the most accurate results at the

output layer. The model does this by minimizing a difference function between model predictions

and observations, e.g the mean squared error, in a validation set of the data (Goodfellow et al.,

2016).

An extension of ANN models is called deep learning. A neural network gets deep when it used

more than one hidden layer between the input and the output layer (Goodfellow et al., 2016).

Examples of such deep learning models are convolutional neural networks. Convolutional neural

networks are specifically developed to process data that have a grid-like topology and are often

2 Mapping soil organic carbon using convolutional neural networks and global data
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Output

Hidden
layer

Input
layer

Output
layer

Figure 1.1: Simple representation of a neural network.

used for image classification tasks (Goodfellow et al., 2016). A convolutional neural network has

several convolution layers that make use of a filter convolving (sliding) over the image to detect and

store patterns in the data. Pooling layers are often added after a convolution layer to merge similar

features into one. This reduces the dimension of the representation and reduces noise (LeCun et

al., 2015). Recently it is shown that CNN’s can also be applied for digital soil mapping, as spatial

data also come in the form of grids (Padarian et al., 2019; Wadoux et al., 2019; Wadoux, 2019).

To use convolutional neural networks for digital soil mapping windows, i.e. small subsets, of the

covariates are created. Within these windows the convolution layers look for spatial information

and patterns. The convolutional neural network then predicts the point value of the center point

of the window from that information.

1.1.4 Opening the black box

In general ML models, and artificial neural networks in particular, are considered ’black boxes’.

This means that while the accuracy of the model can be evaluated and may be higher than that

of other models, the exact functioning of the model remains unknown. We do not learn about the

underlying mechanisms behind the predictions, as the model does not give much insight about

how input and output are related. Insight in the functioning of the model can provide information

to the user to explain more about the modelled processes from these mechanisms. Insight in model

processes at a local scale provides the opportunity to evaluate if the model predictions make sense

when evaluating them with expert knowledge. In other words, is it logical that certain covariates

are more important at one point compared to a other point. Ribeiro et al. (2016) recently developed

the ’local interpretable model-agnostic explanations’ (LIME) algorithm to provide insight into the

structure of machine learning models. The LIME algorithm uses the assumption that every model

can locally be approximated by simpler models. Analyzing these simpler models might provide

the insight in machine learning models that we are after.

Mapping soil organic carbon using convolutional neural networks and global data 3
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1.2 Problem statement

Kriging methods are proven techniques for spatial modeling, which take spatial correlation into

account. However, these techniques do have some limitations and are often suboptimal to machine

learning techniques when it comes to the achieved prediction accuracy. Recently machine learning

techniques are therefore more often used, but while they perform well they lack the use of spatial

correlation and structure in their predictions. Another issue with machine learning techniques is

that they are black boxes. Their functioning is difficult to understand and it is difficult to learn

something about the underlying processes from these models.

1.3 Objective and research questions

This study aims to implement a convolutional neural network for the spatial modeling of soil

organic carbon concentrations, using global data with a resolution of 250 m. After this, the added

added value of a CNN compared to other machine learning techniques will be investigated and an

attempt will be made to learn about the mechanistic processes behind machine learning models

by opening the ‘black box’. To achieve this objective Argentina will be used as a case study and

a total of three research questions will be answered:

• What is the most suitable convolutional neural network architecture to map the spatial

distribution of soil organic carbon on a country scale using global data?

• How does the prediction accuracy of a convolutional neural network compare to that of a

random forest when applied to mapping the spatial distribution of topsoil SOC?

• How can the ’Local Interpretable Model-agnostic Explanations’ algorithm be used to provide

insight into the structure, functioning and decisions of machine learning soil organic carbon

prediction models?
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Chapter 2

Argentina case study data

2.1 Description of study area

Argentina was used as a case study in this research. Argentina is the 8th largest country in the

world, it has a large variety of climate, geology and ecology and thus a large variety of soils

(Heuvelink et al., 2018). This variety is also reflected in the spatial distribution of soil organic

carbon (Figure 2.1). Large parts of Argentina are arid and semi-arid. The soils found in these

areas, mostly Aridisols and Entisols, contain low SOC concentrations due to the dry conditions.

The eastern part of the country receives more precipitation and elatively high concentrations of

SOC can be found there. The dominant soil type that can be found in this region are Mollisols.

Mollisols are also found in the mountainous area in the South-West and far South of Argentina.

A lot of SOC is built up in the soils of this region due to low temperatures and high precipitation

(Heuvelink et al., 2018). Argentina has a total land surface area of 2.78 million km2. Of this area

60% is taken up by natural and semi-natural terrestrial vegetation, 20% by cultivated and managed

land and 20% by natural or semi-natural aquatic or regularly flooded vegetation. However, the

country is heavily affected by land use change, with a loss of more than 30,000 km2 of forest

between the years 2007 and 2016 (Heuvelink et al., 2018).

Mapping soil organic carbon using convolutional neural networks and global data 5



CHAPTER 2. ARGENTINA CASE STUDY DATA

Figure 2.1: Soil types of Argentina (modified from Rodŕıguez et al., 2019) (left). SoilGrids map
of the distribution of SOC in Argentina (map derived from SoilGrids (Hengl et al., 2017)) (right).

2.2 data description and pre-processing

2.2.1 Soil data

A large set of soil observations (n >17,000) was available for Argentina. The observations were

collected during a relatively long period (1955 - 2017) and cover almost the entire country. The

highest density of observations is found in the area South of Buenos Aires. Because soil organic

carbon carbon concentrations change over time (Mann, 1986) and covariates derived from MODIS

(see section below) are only available after 2000 a shorter period from 2002-2015 was used in this

study. The point dataset was cleaned by filtering for the years 2002-2015, profiles that did not

contain any organic carbon data were removed and the weighted average for the top 30 cm of

the soil was calculated. For the convolutional neural network buffers have to be drawn around

the point observations into which the covariate data are extracted (Chapter 3). If points are to

close to the border these buffers will stretch over the borders, which can cause problems with the

modeling. To tackle this problem a few points that were to close to the border were removed

from the dataset. At the end a dataset of 1892 point observations was available for the modeling

(Figure 2.2).
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CHAPTER 2. ARGENTINA CASE STUDY DATA

Figure 2.2: Spatial distribution of the topsoil (0 – 30 cm) organic carbon measurements used in
this research (g/kg), n = 1892.

The distribution of the 0 - 30 cm soil carbon concentrations is heavily skewed to the right

(Figure 2.3). The SOC data have a mean value of 16.16 (g/kg), a median value of 14.36 (g/kg),

Mapping soil organic carbon using convolutional neural networks and global data 7
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a minimum value of 0.36 (g/kg) and a maximum value of 81 (g/kg) (Table 2.1). The SOC values

were log-transformed so that they better match a normal distribution. After this the values were

normalized between 0 and 1. This transformation and normalization helps with model performance

of neural networks (Sola and Sevilla, 1997). After predictions the values were back transformed

for more easy interpretation. However, a back transformation of the log normal predictions gives

the median instead of the mean back which can cause some bias in the results (Yamamoto, 2007).

Table 2.1: Summary statistics of 0-30 cm soil organic carbon concentrations [g/kg].

Summary statistics Value

Number of samples 1892
Minimum 0.36
1st quantile 9.30
Median 14.36
Mean 16.16
3rd quantile 20.60
Maximum 81.00
St. dev. 10.08

Figure 2.3: Histogram of the topsoil (0 – 30 cm) SOC concentrations (g/kg) for Argentina. The
distribution is skewed to the right
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2.2.2 Covariates

A large set of covariates related to the soil forming factors was available at a spatial resolution of

250m. This set contains data on global climate, geology, land use/cover, net primary productiv-

ity, reflectance, soil, terrain and vegetation indices. The main source of the data was ISRIC’s

’WorldGrids’ covariate repository. This repository contains covariates, e.g. MODIS satellite data,

that were used to produce SoilGrids250m (Hengl et al., 2017). Heuvelink et al. (2019) further

supplemented this dataset with global data from the GIMMS (Global Inventory Modeling and

Mapping Studies) NDVI data set that is derived from imagery obtained from the Advanced Very

High Resolution Radiometer (AVHRR) instrument on board the NOAA satellite series (Tucker

et al., 2005; Vermote et al., 2014; Pizon et al., 2005). Global Inventory Modeling and Mapping

Studies Several land use layers from The HYDE (History Database of the Global Environment)

were also added to the dataset (Goldewijk et al., 2017). In total 352 different covariate layers were

available for the modeling.

The covariates were already preprocessed by ISRIC. All layers were resampled to a resolution

of 250 m and reprojected to an equal-area projection (Kempen et al., 2018). The NDVI data was

averaged in four groups of average NDVI values of three months for each year (Heuvelink et al.,

2019) and were further averaged over the entire period from 2002 to 2015. To efficiently handle

the 352 large raster layers a dataset containing these layers was created in GRASS GIS (GRASS

Development Team, 2019). This bypassed the problem of having to load all raster layers into R,

which is relatively slow and memory intensive. To further lower the computational intensity, the

data that had a global extent were clipped to the extent of Argentina. GDAL (Geospatial Data

Abstraction Library) was used to convert the raster layers to text files, where the extent could be

set with relatively low computational intensity (Greenberg and Mattiuzzi, 2018). These GDAL

text files were then loaded into the GRASS database.
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Methodology

3.1 Covariate selection

A total of 352 covariate layers were available for the modeling. To reduce the number of covariates

and select covariates to be used in the modeling, two steps were performed. The first step was

to perform a Pearson correlation between all covariates and remove some of the covariates a with

high correlation, because of the likelihood that they provide very similar information. Each pair

of variables with a pair-wise correlation higher than 0.9 was selected. Of this pair, the variable

with the largest mean absolute correlation with all other covariates was removed. This process

was repeated iteratively until there were no more pairs of covariates with an absolute correlation

greater than 0.9. This was done using the findCorrelation function from the caret package in

R (Jed Wing et al., 2019). After this initial reduction, the remaining covariates were used in a

recursive feature elimination algorithm (Guyon et al., 2002). The recursive feature elimination

selected the most important predictors out of a large group of covariates. It gave the optimal

number and selection of covariates, to provide the highest possible accuracy. Because the RFE is

purely statistical and optimized for the random forest model it might not select the best performing

covariates for the convolutional neural network. In addition, a selection of covariates was therefore

made based on pedological knowledge and factors influencing soil organic carbon concentrations

in soils (Jobbágy and Jackson, 2000; Parton et al., 1987). Table 3.1 shows the selected pedological

covariates.
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Table 3.1: List of manually selected covariates based on pedological knowledge.

Code Description

NDVI1 Normalized Difference Vegetation Index January, February,
March

NDVI4 Normalized Difference Vegetation Index April, May, June
NDVI7 Normalized Difference Vegetation Index July, August, September
NDVI10 Normalized Difference Vegetation Index October, November,

December
MOR ENV DEME Digital elevation model
MOR MRG SLP Terrain slope based on DEMMRG5 derived in SAGA GIS and

expressed in radians x 100.
MOR MRG TPI Topographic Position Index
MOR MRG TWI Topgraphic Wetness Index
VEG MOD EVI01AVG Long-term averaged mean monthly MODIS Enhanced Vegetation

Index (EVI) for months January and February
VEG MOD EVI03AVG Long-term averaged mean monthly MODIS Enhanced Vegetation

Index (EVI) for months March and April
VEG MOD EVI05AVG Long-term averaged mean monthly MODIS Enhanced Vegetation

Index (EVI) for months May and June
VEG MOD EVI07AVG Long-term averaged mean monthly MODIS Enhanced Vegetation

Index (EVI) for months July and August
VEG MOD EVI09AVG Long-term averaged mean monthly MODIS Enhanced Vegetation

Index (EVI) for months September and October
VEG MOD EVI11AVG Long-term averaged mean monthly MODIS Enhanced Vegetation

Index (EVI) for months November and December
CLM MOD LSTDYRAVG Long-term averaged mean annual surface temperature (daytime)

MODIS
CLM CHE PYRSUM Total annual precipitation at 1 km (based on CHELSA climate

surfaces)

3.2 Building the convolutional neural network

A convolutional neural network mostly consists of four major layers: convolution, pooling, flatten

and fully connected (also called dense) layers. The convolution layers look for certain features

and patterns in the input data and pass their results on to the pooling layers. These layers join

features to optimize model performance and reduce noise. The flatten layers convert the matrix

output of the convolutional and pooling layers to a vector of values that is then fed to a fully

connected layer, which gives a weighted sum of the input and pass this on (Goodfellow et al.,

2016). Also several dropout layers can be used. These dropout layers randomly disconnect certain

connections between the neurons, to reduce the risk of overfitting (Srivastava et al., 2014).

All machine learning models need to be trained. During this step the model will ”learn” to

achieve the best prediction possible. An optimizer, e.g. the Adam optimizer, is used to minimize

a loss function by updating the weights used within the model (Kingma and Ba, 2014). Before

training a neural network the entire dataset is split into a training and a test set. The training

set is fed to the neural network where it is internally split in 80% training and 20% validation

set. The training data is used to optimize the weights of the model. It does so by updating the

weights every epoch to minimize the loss function. The validation set is used to detect overfitting
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and help set the hyperparameters. The training runs for a certain number of epochs. One epoch

is one training iteration over the entire training data set. During one epoch the data can be put

in to the model at once or in minibatches. Another parameter that effects the training is the

learning rate of the optimizer. The learning rate determines how big the changes in weights are

(Goodfellow et al., 2016). After the model is trained the independent test set is used to assess the

accuracy of the model on data that were not previously used in the model.

3.2.1 Preparing the input

A spatial convolutional neural network takes a four dimensional array of shape n x w x h x b as

input, where n is the number of data points, w is the width of the window, h is the height of the

window and b is the number of covariates. To create this array first all covariates were scaled to

have a mean of 0 and a standard deviation of 1. Next, square buffers of w by h pixels were drawn

around each point. The values of the selected covariate layers, were extracted to these buffers to

form a 3D matrix of size w x h x b for each point. These 3D matrices where then joined together

to form the final 4D matrix. The extraction of the raster data was done using the velox package in

R (Hunziker, 2017). This package runs the extraction in C++, which has significant performance

benefits over internal R speeds.

3.2.2 Optimal model selection

To implement the convolutional neural network the R package ’Keras’ was used (Allaire and

Chollet, 2019). Keras is based on the extensive tensorflow machine learning library and provides

functions that are necessary to efficiently build a CNN (Allaire and Chollet, 2019). The con-

volutional neural network as used in Wadoux et al. (2019) was used as a starting point for the

convolutional neural networks in this research. Many parameters can be tuned when building a

convolutional neural network. Firstly, an initial hyperparameter optimization using the build in

keras hyperparameter optimization was used to set appropriate setting for the number of neurons

a layer, the size of the filter used in convolutional layers and the dropout rates in the dropout

layers. For this the model was run with different combinations of settings for these hyperpara-

meters (Allaire and Chollet, 2019). The combination of the initial model, with the optimized

hyperparameters is given in table 3.2. Further a batch size of 32 was used, the learning rate was

set to 0.0001 and the Adam optimizer (Kingma and Ba, 2014) was used to minimize the mean

squared error during training.

After this initial hyperparameter optimization 24 models were designed with different com-

binations of several major parameters (Table 3.3): Three window sizes were tested, these are the

windows within which the CNN looks for patterns. The data were either augmented or not aug-

mented. Data augmentation is often used in machine learning to get more data for model training

and should in general increase the accuracy. Augmenting was in this case done by rotating the

covariate matrices in the array by 90, 180 and 270 degrees (Padarian et al., 2019). Two different

activation functions were used. These activations function determine the signal that a neuron

sends to the next neuron. Relu (Rectified Linear Unit) is a widely used activation function for

neural networks. Selu (Scaled Exponential Linear Unit) is a more recently developed variation of

Relu (Klambauer et al., 2017). Padarian et al. (2019) proposes adding a extra convolutional layer
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Table 3.2: Initial convolutional neural network architecture. The values in between brackets are
the dropout rates.

Layer Filter size Number of neurons Activation function

Convolutional 3 x 3 64 ReLu
Max Pooling 2 x 2 – –
Convolutional 2 x 2 28 ReLu
Dropout (0.5) – – –
Flatten – – –
Dense – 40 ReLu
Dropout (0.2) – – –
Dense – 50 ReLu
Dropout (0.2) – – –
Dense – 1 Linear

when dealing with larger window sizes. To see this effect models with two convolutional layers

and three convolutional layers were used.

Table 3.3: Major hyperparameters

Major parameters settings

Window size 15x15; 21x21; 27x27
Data augmentation Yes or No
Activation function RELU or SELU
Number of convolutional layers 2 or 3

A 10-fold cross-validation approach was used to select which of the 24 models obtained the

highest average accuracy. For this cross-validation the 1892 points were split in ten folds that were

used as test sets to calculate the accuracy for each model (Appendix A). Each model is trained

ten times on the remaining training data sets and its accuracy is calculated on the ten test sets. In

the end the final accuracy of each model was computed over all the folds. The model architecture

with the highest accuracy was selected to be used for further modeling and comparison with a

random forest model. During the training phase of the model, an automated stopping algorithm

was applied to stop the model when it started overfitting. Each model therefore runs for a different

number of epochs, which indirectly introduced an extra major parameter: the number of epochs.

A random forest model was used as a reference model as it has already often been used for

digital soil mapping and is shown to perform well (Lamichhane et al., 2019). The random forest

model was built with 500 trees and used the exact same input folds as the convolutional neural

network. However the random forest model takes tabular data as input and does not need the

high-dimensional arrays.

3.2.3 Accuracy

The accuracy of the models was computed from the prediction errors on the test sets.

e(x) = zsi − ẑsi (3.1)
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where zsi is the observed value at location s, and ẑsi is the predicted value at that location. To

quantify the accuracy of the model predictions several measurements were used. The root mean

squared error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(zsi − ẑsi)
2 (3.2)

The amount of variance explained by the model (AVE):

AV E = 1 −
∑n

i=1(zsi − ẑsi)
2∑n

i=1(zsi − z̄)2
(3.3)

The mean error (ME) was used to asses the bias of the predictions:

ME =

∑n
i=1(zsi − ẑsi)

n
(3.4)

The concordance correlation coefficient (ρ) was used to study the agreement of the predictions to

the measurements with respect to the 1:1 line (Lin, 1989):

ρ =
2ρ

′
σzσẑ

σ2
z + σ2

ẑ + (µz − µẑ)2,
(3.5)

where n is the number of independent test samples, µ, σ and σ2 are the mean, variance and

standard deviation of either the predicted or observed values and ρ
′

is the correlation between the

observed and predicted mean.

3.2.4 Final predictions maps

The convolutional neural network architecture that had the highest accuracy was trained again

using all 1892 data points. This final model was then used for the predictions. Creating predictions

with a convolutional neural network required considerable computational resources. The final

predictions were therefore made for a subsection of Argentina that runs East to West across

approximately the center of Argentina (Figure 3.1). This region covers a wide range of SOC

values and contains large differences in climate and soils. To efficiently manage the prediction

process, the area was split in 444 tiles of 100 by 100 cells, i.e. 25 * 25 km. After a prediction was

made for each tile these were mosaiced together using GDAL to create the final prediction maps.
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Figure 3.1: Region of Argentina that was used to create the final prediction maps

Mapping soil organic carbon using convolutional neural networks and global data 15



CHAPTER 3. METHODOLOGY

3.3 Opening the black box with LIME

To get insight into the decisions and functioning of the convolutional neural network the LIME

algorithm was used (Ribeiro et al., 2016). LIME follows the principle that every complex model can

locally be approximated by simpler models and fits sparse linear models for a selection of predicted

points (Figure 3.2). Ribeiro et al. (2016) provides a detailed explanation of the algorithm.

Figure 3.2: Graphical illustration of the functioning of LIME for a classification task. The
blue/pink background represents a model’s complex function f , which is unknown to LIME,
and cannot be approximated well by a linear model. To predict at the bold red cross, LIME
samples instances, gets predictions using f , and weighs these by the proximity to the instance
being explained. These weights are represented by the sizes of the red cross and dark blue dots.
The learned locally valid explanation is represented by the dashed line. Figure from Ribeiro et al.
(2016)

This example and most uses of LIME are for classification tasks, for which the model outputs

one outcome with the highest possibility. This study presents the first implementation of LIME in

a digital soil mapping, where the outcome is a continuous numerical value instead of a classification.

The algorithm has not yet often been used for regression problems and little reference was available

for how to optimize the use of LIME for these tasks. To implement lime the R-package ’lime’ was

used (Pedersen and Benesty, 2018). The functions in this package take a machine learning model

and a selection of points as input and run the lime algorithm on these. It is adapted to work

with random forests as it can take a dataframe as input. However, the package had only recently

been updated to work with convolutional neural networks and images as input. Trying to get it to

work for the CNN would involve tricking the model into thinking it gets a real image as input. As

the data in this research are not standard RGB images several adjustments were tried to get it to

work with the covariates. Two groups of point were selected: six points that were close together in

predicted SOC value, around 14 g/kg, and five points that covered more of the range of the SOC

values (Figure 3.3). This way the differences in variable importance could be studied for similar

SOC values and the extremes.

The lime package produced two types of plots. Detailed feature plots that show the weights

attributed to the different covariates along with the values of the covariates. However, the values

of the covariate had to be placed in a specified number of bins before the feature plots could be

made, which causes the data values to be shown as thresholds. This in combination with data

that is scaled to a mean of zero and standard deviation of 1, made for a difficult interpretation

of these plots as the values no longer represent the actual value of the covariate. Next to these
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Figure 3.3: Points used with LIME. The blue triangles are points with predicted SOC values that
are close together. The red dots are points taken from the full range of SOC values.
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detailed plots more general overviews could also be plotted to review many explanations at once

and look at the relative difference in importance of the covariates for the different points.

3.4 Software and computations

All statistical analyses and modeling were performed in the statistical programming language R

running version 3.4.4 (R Core Team, 2019). R offers a wide range of packages to aid in statistical

analysis, furthermore it is strong in working with spatial data and visualization. Besides the

earlier mentioned R packages several other packages were also used. The main packages are

’raster’ (Hijmans, 2019) to handle spatial data, ’ggplot2’ (Wickham, 2016) for visualizations of

both graphs and maps and ’dplyr’ (Wickham et al., 2019) to efficiently handle data and dataframes.

The random forest was implemented using the ranger package (Wright and Ziegler, 2017). After

testing on a simple desktop the full computations were performed on a 12-core linux server.

Working with raster layers in R can be quite memory intensive. To avoid running into memory

issues most of the raster processing was done outside of R using GRASS GIS (GRASS Development

Team, 2019) and GDAL (Greenberg and Mattiuzzi, 2018). Raster layers were only loaded into R

when absolutely necessary.
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Results

4.1 Covariate selection

A selection of highly correlated covariates were removed after checking the pearson correlation

coefficient. This reduced the covariates set from 352 layers to 132 layers. This set of covariates

was further reduced using a recursive feature elimination (X. Chen and Jeong, 2007). A quick

initial increase in accuracy is visible up to around 20 variables. After this initial increase, the

increase gets minimal and the accuracy stabilizes (Figure 4.1). The RMSE values represent the

normalized data and do therefore not show the true RMSE, but the same increase in accuracy is

visible as for the AVE.

The RFE selected an optimal value of 55 variables when using random forest. However, because

Figure 4.1: R
ecursive feature elimination results]Results of the recursive feature elimination run using 132

covariates. The best performance is obtained when using 55 covariates. However, after 20
variables the increase in accuracy is already minimal.

Mapping soil organic carbon using convolutional neural networks and global data 19



CHAPTER 4. RESULTS

convolutional neural networks tend to be more computation-intensive than random forests only

the 20 most important variables were selected for further modelling. Increasing the number of

covariates any further would likely only give a small increase in accuracy. This increase would

possibly not weigh up against the increase in computation time. The 20 selected variables are

given in Table 4.1 along with a check for the direct Pearson correlation between these covariates

and the topsoil organic carbon. The correlation with SOC is relatively low for all covariates.

The selected covariates include EVI and NDVI layers that represent vegetation intensity. Climate

is represented by surface temperatures, precipitation, precipitable water vapor and cloud cover

layers. The highest found direct correlation is 0.49 for the long-term averaged mean monthly

enhanced vegetation index (EVI) for September and October. The long-term averaged mean

monthly surface temperature (nighttime) in February has the lowest direct (absolute) correlation

with a negative correlation of -0.11.

Table 4.1: The twenty covariates that were selected by the RFE including their direct correlation
with SOC

Covariate correlation

Mean yearly MODIS Enhanced Vegetation Index (EVI) 0.49
Normalized Difference Vegetation Index November, October, December 0.49
Long-term averaged mean monthly MODIS Enhanced Vegetation Index (EVI) for
months September and October

0.49

Long-term averaged mean monthly MODIS Enhanced Vegetation Index (EVI) for
months March and April

0.44

Long-term averaged mean monthly MODIS Enhanced Vegetation Index (EVI) for
months November and December

0.44

Long-term averaged mean monthly MODIS Enhanced Vegetation Index (EVI) for
months January and February

0.44

Long-term s.d. of the monthly MODIS Enhanced Vegetation Index (EVI) for
months March and April

0.41

Long-term averaged mean monthly MODIS Enhanced Vegetation Index (EVI) for
months July and August

0.39

Long-term s.d. of the monthly MODIS Enhanced Vegetation Index (EVI) for
months July and August

0.39

Normalized Difference Vegetation Index January, February, March 0.37
Standard Deviation yearly MODIS Enhanced Vegetation Index (EVI) 0.37
Precipitation of wettest month 0.34
Long-term averaged mean cloud cover 0.28
Long-term averaged mean monthly MODIS Precipitable Water Vapor in cm for
months July and August

0.25

Long-term averaged monthly cloud cover July 0.16
Long-term averaged mean monthly surface temperature (nighttime) MODIS Feb-
ruary

-0.11

Long-term averaged mean monthly surface temperature (daytime) MODIS March -0.29
Long-term averaged mean monthly surface temperature (daytime) MODIS
November

-0.31

Long-term s.d. of the monthly surface temperature (nighttime) MODIS Yearly -0.31
Long-term averaged mean monthly surface temperature (daytime) MODIS Feb-
ruary

-0.53
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4.2 Optimal model selection

A 10-fold cross validation was run to select the best performing convolutional neural network

architecture out of combination of 4 major parameters (Table 3.3). For each architecture the

accuracy was calculated. The architecture combination with the overall highest accuracy is a model

with two convolutional layers, activated with SELU activation functions, no data augmentation

and a window size of fifteen by fifteen cells, i.e. 3750 by 3750 meters (Table 4.2). This architecture

Table 4.2: Model architecture of the best performing model.

Layer Filter size Number of neurons Activation function

Convolutional 3 x 3 64 SELU
Max Pooling 2 x 2
Convolutional 2 x 2 28 SELU
Dropout 0.5
Flatten
Dense 40 SELU
Dropout 0.2
Dense 50 SELU
Dropout 0.2
Dense 1 Linear

achieved an AVE of 0.48, a RMSE of 7.27 (g/kg), a concordance correlation coefficient of 0.67 and

a mean error of 0.38 (g/kg) (Table 4.3). The difference between the 24 architecture combinations

are relatively small, especially within the top 10 (Table 4.3). The AVE is ranging from 0.472 to

0.439, the RMSE from 7.253 to 7.499 (g/kg) and the CCC from 0.667 to 0.643. The ME is a bit

more variable and ranges from 0.377 to 1.709 (g/kg).

Table 4.3: Top 10 of the model and input architectures with the highest accuracy

Activation
function

N-
convolutional
layers

Window
size
[pixels]

Augmentation AVE RMSE [g/kg] CCC ME [g/kg]

Selu 2 15 x 15 No 0.481 7.266 0.672 0.377
Selu 3 21 x 21 Yes 0.470 7.339 0.671 0.446
Selu 3 27 x 27 No 0.470 7.343 0.652 0.548
Selu 2 15 x 15 Yes 0.468 7.357 0.649 1.163
Relu 2 27 x 27 Yes 0.458 7.425 0.619 1.485
Selu 2 21 x 21 No 0.455 7.442 0.655 0.650
Selu 3 21 x 21 No 0.453 7.455 0.643 0.989
Relu 3 27 x 27 Yes 0.447 7.501 0.614 1.709
Selu 2 27 x 27 No 0.443 7.527 0.648 0.685

Figure 4.2 shows the relations between the major parameters and the RMSE. Models that use

Selu activated neurons dominate the lower parts of the graphs and seem to get better accuracies

on general. A window size of 15 shows the largest spread in RMSE compared to a window size of

21 and 27, but also contains the lowest RMSE value. When the window size increases the Relu

activated models do show an increase in accuracy, but still do not obtain as low of a RMSE as the

Selu activated models. The spread in RMSE values is more or less the same for either two or three
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convolutional layers, but the values are generally lower for models with two convolutional layers.

Also here Selu outperforms Relu for most combinations. A large gap between Selu and Relu is

visible in the RMSE values when using no data augmentation. When the data are augmented

both Relu and Selu activated models get relatively low RMSE values, but not as low as with no

augmentation.

Figure 4.2: Response of the model accuracy to some major parameters.

4.3 Accuracy of CNN versus random forest

The random forest obtained an AVE of 0.53, RMSE of 6.91 (g/kg), a concordance correlation

coefficient of 0.69 and a mean error of 1.09 (g/kg). When compared to the convolutional neural

network, the random forest achieved better results for each accuracy measurement, except for the

mean error. Table 4.4 gives an overview of the achieved accuracy for both models.

Table 4.4: 10-fold cross validation results

Model AVE RMSE [g/kg] CCC [-] ME [g/kg]

Convolutional neural network 0.48 7.27 0.67 0.38
Random Forest 0.53 6.91 0.69 1.09

Figure 4.3 gives plots of the observed versus predicted soil organic carbon concentrations for

both the convolutional neural network and the random forest. The trend of both models generally

follows the 1:1 line, but there is quite a lot of scatter visible. Both models seem to underpredict

the high observed values.
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Figure 4.3: Observed vs. predicted soil organic carbon concentrations (g/kg) for the convolutional
neural network (left) and the random forest (right)

Both models show a large spread in accuracy over the ten folds (Figures 4.4 & 4.5). For the

optimal CNN model the AVE values are ranging from 0.34 to 0.58 and the RMSE is ranging from

7.56 to 6.36 (g/kg). For the random forest the AVE values are ranging from 0.41 to 0.68 and a

RMSE of 5.58 (g/kg). The trends of both the CNN and the random forest model generally follow

the 1:1 line, but still quite some scatter around the lines is visible.

During the modeling the impression rose that the neural network might be heavily influenced

by setting the seed in the R-script, which also could cause the big difference between the folds.

But it turned out that this was only caused by the selection of the input data for the model. To

test this the optimal CNN model was run with the data from fold number 7, with four different

seeds. The AVE ranges from 0.59 to 0.61, the RMSE from 6.11 to 6.32 (g/kg) and the CCC from

0.78 to 0.79. So there is a slight influence of the seed, but the influence is minimal.
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Figure 4.4: Results of the 10-fold cross validation per fold for the convolutional neural network.
The dotted line represents the 1:1 relation. A trend line of the points is shown in blue.

Figure 4.5: Results of the 10-fold cross validation per fold for the random forest. The dotted line
represents the 1:1 relation. A trend line of the points is shown in blue.

4.3.1 K-fold predictions maps

Figure 4.6 shows the predictions on the test sets for the convolutional neural network and the

random forest. In general the predictions show the same spatial pattern as is visible in the

observed data (Figure 2.2). Most points are fairly close to the observed values, but for some

points the difference between predicted and observed goes up to almost 50 g/kg (Figure 4.7 &

4.8). These figures again show the underfitting of both models where they severly underpredict

some of the points, but the figures also show the models strongly overpredict some points.
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Figure 4.6: Points predictions on the test data sets from the convolutional neural network (left)
and the random forest (right)
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Figure 4.7: Difference between the observed SOC concentrations at the point locations and the
predicted concentration using the convolutional neural network.
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Figure 4.8: Difference between the observed SOC concentrations at the point locations and the
predicted concentration using the random forest.
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4.3.2 Pedological data

The accuracy of the convolutional neural network and the random forest was also assessed with

covariates selected using pedological knowledge, including several terrain covariate layers. After

the 10-fold cross validation with this data the same convolutional neural network architecture was

selected as the optimal model. However, the rest of the top ten looks different (Table 4.5). The

most notable results are that more models with Relu activation functions were performing well

and only two models without data augmentation made the top 10.

Table 4.5: Top 10 of the model and input architectures with the highest accuracy using the
pedologically selected data

Activation
function

N-
convolutional
layers

Window
size
[pixels]

Augmentation AVE RMSE [g/kg] CCC ME [g/kg]

Selu 2 15 x 15 No 0.448 7.493 0.654 0.422
Selu 2 21 x 21 Yes 0.447 7.501 0.647 0.756
Relu 2 21 x 21 Yes 0.446 7.508 0.610 1.715
Relu 2 27 x 27 Yes 0.444 7.521 0.607 1.343
Selu 3 27 x 27 Yes 0.444 7.522 0.639 0.562
Relu 2 15 x 15 Yes 0.444 7.523 0.609 1.455
Relu 3 21 x 21 No 0.443 7.526 0.605 1.791
Selu 2 27 x 27 Yes 0.437 7.569 0.621 0.413
Selu 3 15 x 15 Yes 0.432 7.601 0.632 0.717
Relu 3 15 x 15 Yes 0.425 7.644 0.591 2.062

The obtained accuracy of the CNN models and the random forest model is consistently lower

than for the models using the RFE data, but the differences are very small. The best performing

convolutional neural network obtained an AVE of 0.45, a RMSE of 7.49 (g/kg), a concordance

correlation coefficient of 0.65 and the mean error of 0.42. The random forest model obtained an

average AVE of 0.52, a RMSE of 6.95 (g/kg), a CCC of 0.68 and a mean error of 1.21 (g/kg).

4.3.3 Prediction maps

Using the best performing convolutional neural network and the random forest, predictions were

made for a subsection of Argentina (Figure 4.9). These prediction maps show some differences

in the spatial patterns. The range of predicted values is much higher for CNN than for RF. The

CNN predictions range from 0 g/kg to 50 g/kg. The RF predictions range from 5 g/kg to 35 g/kg.

Therefore less details are visible in the random forest plots. Both models show the same trend

of low values in the West of the subsection and higher values in the East. But the locations of

the highest values is different for the two plots. The CNN predicts a small area with extremely

high values in the South-Eastern corner of the section, while this region is not visible on the RF

predictions.
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Figure 4.9: Prediction maps made using the convolutional neural network (top) and the random
forest (bottom). For visibility reasons two different legends are used for the two maps.

4.4 Opening the black box with LIME

Unfortunately it was not possible to get the lime package working for the convolutional neural

network. The algorithm would not accept the input in the form as it was used for the CNN.

However, the algorithm did work for the random forest. The LIME algorithm was run for a

selection of six points that were close together in predicted SOC concentration and a selection of

five points that capture a large part of the prediction range (Figure 3.3). The lime package gave

two feature plots as output (Appendix B). However, these proved difficult to interpret and seem

to be more useful for classification tasks and for studying each individual point. Using continuous

and scaled data as input makes these figures hard to read when two bins are defined (which is

compulsory). These plots thus show results in relative terms, e.g. a relatively high ndvi versus a

relatively low ndvi.

More useful were the explanation plots (Figures 4.10 & 4.11). A summary of the covariate

codes and their meaning is given in appendix C. These plots give a general comparison of covariate

importance between the points. In figure 4.10 all cases, i.e. points, have a predicted SOC value of

around 14 g/kg. Only small differences in covariate weights are visible when looking at this figure.

For figure 4.11 the points with a large difference in predicted SOC concentration were used. More

difference in the weights are visible in between the points. For instance for the average daytime

temperature in November (CLM MOD LSTD11AVG) the negative weight is severely higher for

case 1079 (14.01 SOC (g/kg)) compared to for instance case 1834 (2.86 SOC (g/kg)). In general
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the figures show that the average ndvi for the months October, November and December gets the

highest weight for all point observations and the daytime average temperature in November gets

the strongest negative weight. It is interesting to see that the yearly average enhanced vegetation

index gets almost 0 weight for all covariates, while this is the covariate with the highest score from

the recursive feature elimination.

Figure 4.10: General explanation plot of the LIME prediction, that shows the weights assigned to
each covariate for six points that have more or less the same SOC value.
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Figure 4.11: General explanation plot of the LIME prediction, that shows the weights assigned to
each covariate for five points that cover a large range of SOC values.



Chapter 5

Discussion

5.1 Covariate selection

5.1.1 Optimal number of covariates

A recursive feature elimination (RFE) method was used to select the most important covariates out

of the total list of covariates. RFE has shown promising results since its development. However,

removing all ’weak’ features might prove negative for the model performance as these features

might be powerful when used together (Guyon and Elisseeff, 2003). X. Chen and Jeong (2007)

shows this improvement of accuracy when ’weak’ features are used together for a classification

task using support vector machines. It might thus be that, in this research, features that could

together have had a major positive effect on the modeling results were not selected. The recursive

feature elimination gave an optimum of 55 covariates to obtain the highest possible accuracy when

modeling with a random forest (Figure 4.1). To reduce computation times when training and

predicting with the convolutional neural network the decision was made to use twenty variables.

These twenty variables were still able to achieve a high accuracy as the increase in accuracy, when

using more than twenty variables is minimal.

Selecting fewer variables than optimal for the random forest might have favored the convolu-

tional neural network. Random forest generally respond well to large amounts of covariates, while

the performance is quickly limited when the number of covariates is minimized (Nussbaum et al.,

2018). CNN’s might be able to deal with a small number of covariates very well, as they create a

large number of hyper-covariates from the original input covariates (Wadoux, 2019). This possible

effect is, however, not shown in this research as the accuracy of the CNN is lower than that of the

random forest. In other digital soil mapping studies that only use a small number of covariates

in combination with a convolutional neural network, the CNN outperforms the random forest

(Wadoux et al., 2019; Padarian et al., 2019). A further decrease in the number of covariates, e.g.

from twenty to three, might thus push the results in the favor of CNN compared to random forest.

If this decrease in number of covariates also increases the overall accuracy of the convolutional

neural networks has to be further investigated.
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5.1.2 Selected covariates

Vegetation indices

The RFE selected a large number of vegetation indices as important features when predicting soil

organic carbon (Table 4.1). The vegetation indices are all positively correlated with soil organic

carbon, so more vegetation will in general lead to more organic material that can be added to the

soil. This relation seems to be strong enough for the RFE to have selected several of these layers.

Next to vegetation indices, land use or land cover are also often used as important covariates

for the mapping of soil organic carbon (e.g. Wadoux, 2019; Heuvelink et al., 2019). However, no

land use or land cover layers were selected by the covariate selection. Most likely the influence

of vegetation on soil organic carbon is already strongly covered by the NDVI and EVI layers.

Multiple studies show this correlation between the vegetation indices and land cover (e.g. J. Chen

et al., 2015; Wang et al., 2005).

Climate data

Several surface temperature layers were selected by the RFE. They all have a negative correlation

with SOC which indicates a higher temperature will lead to lower soil organic carbon. The lower

soil organic carbon concentrations can indeed be found in the large areas of Argentina that are

arid or semi-arid and thus produce little organic matter (Chapter 2). These are also the regions

with the highest mean monthly surface temperature in February.

Two covariates that are related to the water availability for the plants were selected. The

precipitation of the wettest month and the the precipitable water vapor both show a positive

correlation with SOC. In general more water availability will lead to a higher productivity in

plants, which leads to a possible higher influx of plant material to the soil. The RFE also selected

two cloud cover layers, these are the long-term averaged cloud cover and the average cloud cover

in July. A direct relationship is not to be expected between cloud cover and soil organic carbon. It

is likely that cloud cover is a proxy for the relation between precipitation and soil organic carbon

concentrations.

Terrain parameters

The recursive feature elimination selected multiple layers of several covariates, but did not select

any terrain and relief covariates within the top 20. This is suprising, as these factors are important

aspects of the SCORPAN digital soil mapping framework (McBratney et al., 2003) and are often

used in soil organic carbon modeling studies (e.g. Wadoux et al., 2019; Padarian et al., 2019;

Mishra et al., 2010). Most likely their relationship with SOC was masked by the large number of

climate and vegetation data available for the RFE.

5.2 Optimal major parameters

The 10-fold cross validation with 24 model architecture combination revealed several relations

between the accuracy of the models and the parameters (Figure 4.2).
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5.2.1 Relu versus Selu activation

Models with Selu activated neurons clearly outperform the models with Relu activations functions

as is seen by the almost constantly lower RMSE. The reason that Selu activated neurons outper-

form the Relu activated neurons is because neurons that use Relu activation functions can get

stuck at a zero gradient. When the neurons get stuck at a zero gradient they do not contribute

to the learning of the model anymore and become ”dead” neurons. Selu activated neurons were

designed to overcome this problem and can not go to a zero gradient (Klambauer et al., 2017).

This effect of the dead neurons is probably also visible in the number of epochs the models where

trained for (Figure 5.1). Because neurons of the Relu models can stop learning the models train

less smoothly and have a risk of overfitting quite quickly, which causes them to stop training early

when automated early stopping is active. It is visible that in general the Relu activated models

stop after fewer epochs than the Selu models. By stopping early the model most likely has not

yet reached its optimal training, which explains their lower accuracy. From this results it seems

that training the convolutional neural network for more epochs generally leads to a lower RMSE

and thus a better accuracy. Although Selu models on average train longer than Relu models,

Figure 5.1: Relation between the number of epochs and the RMSE

all models still stopped under 200 epochs. This is low compared to other convolutional neural

networks used for SOC mapping (Wadoux et al., 2019; Padarian et al., 2019). However, Latifovic

et al. (2018) obtained results deemed reasonable on a classification task to create a geological map

of a region of Canada, while using only 100 epochs.
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5.2.2 Window size

The window size has a strong effect on model accuracy (Table 3.3). If the size of a window exceeds

the size of the spatial correlation in environmental factors, the patterns that are observed might

no longer effect the soil organic carbon concentration. This negative effect on the accuracy by

increasing the windowsize is shown by (Padarian et al., 2019). Wadoux et al. (2019) shows an

initial increase in accuracy with an increase in windowsize, but also shows a decrease in accuracy

when the windowsize gets too large. Both of these studies use covariates with a smaller resolution

than this research: 100m and 25m respectively. Wadoux et al. (2019), Padarian et al. (2019)

and Wadoux (2019) all found very different scales of spatial correlation for SOC, ranging from

several hundred meters to several kilometers. Wadoux (2019) used data with a resolution of 1

km and found that there is a spatial correlation up to 3 km for organic carbon. That finding

coincides with the optimal windowsize found in this research of 15 x 15 cells, i.e. 3750 m by

3750 m. These differences between the different researches most likely show that resolution is

an important aspect when determining the optimal window sizes. This makes sense as data of

different resolutions represents different spatial patterns, e.g. global climate data shows a different

scale of temperature patterns than a regional model. Adding a analysis of the sample variogram of

soil organic carbon could be a valuable addition to future research, to more effectively determine

the windowsize.

5.2.3 Convolutional layers

Increasing the window size increases the number of parameters in the model and therefore increases

the risk of overfitting. Padarian et al. (2019) adds extra convolutional layers, and subsequently

pooling layers, to minimize this risk. But increasing the complexity of a deep learning model by

itself also increases the chance of overfitting on the training data, especially when the amount

of data is limited (Srivastava et al., 2014). In this research the RMSE is consistently higher for

models with three layers than for models with two convolutional layers. The increased complexity

thus indeed causes a less stable model. Changing the dropout rate based on the number of layers in

the network instead of setting it to a fixed number, might have a positive effect on the performance

of the deeper models (Srivastava et al., 2014).

5.2.4 Data augmentation

Models with no augmentation, i.e. models that have less input data, seem to perform better in

general than the models with data augmentation (Table 3.3). One would expect the opposite

because in general neural networks depend on large amounts of training data to obtain accurate

results (Simard et al., 2003). Convolutional neural networks are therefore often trained with tens

of thousands of training images, when they are used for image classification (Krizhevsky et al.,

2012). However, in the field of digital soil mapping those amounts of data are of often not available.

Wadoux et al. (2019) used 2962 samples and Padarian et al. (2019) augmented the data used to

obtain 1744 samples. Padarian et al. (2019) shows a decrease in modeling error of about 10% when

modeling with 1744 samples instead of 436. In this research data augmentation, from 1892 original

samples to 7568 samples after augmentation, did not lead to an overall increase in accuracy (Table

3.3). Also in studies from other domains it is found that not all data augmentation techniques
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prove effective (e.g. Schlüter and Grill, 2015). It could be that the data augmentation lets the

CNN learn patterns that simply are not to be found elsewhere in Argentina and therefore inhibit

the generalization of the neural network. In further research several different data augmentation

techniques could be used to come up with the optimal augmentation method for digital soil

mapping.

5.3 Accuracy

5.3.1 Evaluation of model accuracy

On average the random forest obtains a better accuracy than the convolutional neural network

(Table 4.4). This better performance of the random forest is most likely caused by the selection

of the covariates, as the recursive feature elimination optimized this selection for random forest.

The random forest obtains significantly better results for the AVE and RMSE. The CCC is more

or less the same for both models, but again the random forest has a slightly better score. Only for

the mean error the random forest performs worse, with a mean error of 1.09 (g/kg), compared to

a mean error of 0.38 (g/kg) for the convolutional neural network. The mean errors show that both

models are on average underpredicting, but that the underprediction is larger for the random

forest. This bias is most likely due to the underestimation of the extremely high SOC values

(Figure 5.2).

Figure 5.2: Density plot of the observed SOC [g/kg] and predicted SOC distributions.

A standard k-fold cross validation approach was used in this research to calculate the accuracies

and select the model with the highest accuracy. However, this standard approach might produce

overoptimistic estimates of the true prediction error (Krstajic et al., 2014). Krstajic et al. (2014)
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therefore proposed the nested cross validation approach to avoid these overoptimistic estimates.

This method could have been used in this research and would have produced more independent

and accurate accuracy measures. The nested cross validation approach would involve splitting the

data one extra time, which reduces the amount of data available for training. In this specific case

this could have lead to a overall lower accuracy of the model, but this was not further investigated.

5.3.2 Point predictions

The underpredictions and overpredictions are also visible, when looking at the difference plots

(Figures 4.7 & 4.8). Overall the error is relatively small, as most points are predicted within a -10

to 10 (g/kg) range around the observed value. But especially in the region South of Buenos Aires,

the errors are larger. This is also the region in which there is more variation in SOC concentrations

(Figure 2.2). The general spatial pattern in the point predictions (Figure 4.6) is comparable with

the observed SOC values (Figure 2.2). With a smooth increase in SOC values from the low SOC

concentrations in the arid regions in the center of the country towards the higher concentrations

in the region south of Buenos Aires. The predictions, however, show a smoother pattern than the

observed values. This is a general smoothing effect that regression models have when predicting,

where high values tend to be underpredicted and low values tend to be overpredicted.

5.3.3 Comparison to other studies

The accuracy of the random forest is comparable to the accuracy obtained by a modeling study

for topsoil SOC predictions in Argentina (Poggio et al., 2018). It is interesting to see that Poggio

et al. (2018) obtained these results with very different covariates. Covariates used in Poggio et al.

(2018) are the seasonal averaged NDVI’s and several terrain parameters, i.e. elevation, slope and

topographic position index. Wadoux et al. (2019) obtains an AVE of 0.55 using a convolutional

neural network for the prediction of soil organic carbon, while a random forest achieved an AVE

of 0.35. The CNN model thus performs slightly better than the CNN in this research and clearly

outperforms a random forest. As they only use three covariates this might be explained by the fact

that random forest generally favors a large number of covariates (Nussbaum et al., 2018), while

the convolutional neural can already get a lot of extra information out of three layers (Wadoux,

2019). In a study that uses 37 covariates with a 1 km resolution to predict multiple soil proper-

ties, Wadoux (2019) obtained an AVE of 0.15 and a CCC of 0.46. So the overall accuracy is lower

than in this research for the CNN, but again the CNN outperforms the random forest in that

study for soil organic carbon. But, when looking more carefully at their results the random forest

outperforms the neural network for most of the other soil properties that were modeled. Padarian

et al. (2019) found the CNN to be outperforming a Cubist model, but does not show the actual

accuracy measures and is therefore difficult to compare.

Pedological data selection

To address the fact that RFE is optimized for random forest a selection of covariates was also made

based on pedological knowledge to see how the models would respond. Both the random forest and

the convolutional neural network obtained lower accuracy when using pedological data, compared
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to using the RFE selected data, and the convultional neural network was again outperformed by

the neural network. The difference in accuracy, between models using RFE data and the models

using pedologically selected data, was more or less the same for RF and CNN. Adding terrain

covariates was expected to increase the accuracy of the model, as they are commonly used in

digital soil mapping studies (e.g. Wadoux et al., 2019; Wadoux, 2019; Padarian et al., 2019;

Poggio et al., 2019). It is unclear why this was not the case in this research, but it might have

something to do with the resolution of the data and that the patterns in terrain parameters are

too local compared to the large patterns found in the climate and vegetation covariates. But as is

explained earlier further research is needed on the relation between the resolution of the covariates,

covariate selection and the window sizes.

The k-fold run for the convolutional neural networks with the pedological data resulted in

exactly the same model architecture as the optimal one that was selected using the RFE data

(Table 4.5). As the rest of the ten best performing architectures is different compared to the

k-fold run with the RFE selected data, the optimal architecture seems to not only obtain the

highest accuracy but also seems to be the most stable model.

5.3.4 Prediction maps

The final prediction maps show similarities but also large difference in predictions between the

convolutional neural network and random forest predictions. It is clearly visible that the ran-

dom forest predicted lower values compared to the convolutional neural network. This stronger

underfitting was also shown by the relatively high mean error of the random forest. It therefore

seems that the CNN is better in predicting the extremes than the random forest. Both prediction

maps show the trend from low values in the West to high values in the East, which coincides with

the trend observed SOC values (Figure 4.9). The prediction maps show a scattering look in the

Eastern side of the region, which is especially visible in the CNN map. These patterns are most

likely caused by the yearly average EVI covariate, that shows this same pattern. As this is the

most important predictor according to the RFE, it makes sense that these patterns are visible in

the final predictions.

5.4 Opening the black box with LIME

Unfortunately the LIME algorithm could not be made working for the convolutional neural net-

work. The R-packages has recently been optimized for working with images but it is very specific

about the input. It was possible to trick the algorithm to think the covariate data was an actual

image, but it would only accept images with three bands (RGB) instead of the 20 covariates that

were used as bands in the CNN. When trying to use only three covariates, as to resemble a three

band image, it still did not recognize the values as being logical image values. This might be fixed

by rescaling the data values to logical values for RGB images, values between 0 and 255 (Ribeiro

et al., 2016). However, the model then would no longer resemble the model that was used to

make the predictions. The lime package did work with the random forest and gave two general

plots as output for the two sets of points (Figure 4.10 & 4.11). Interpreting the results of LIME

proved rather difficult and examples were very limited. The original paper (Ribeiro et al., 2016)
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has over 1500 citations on google scholar, but when searching in the literature that cites LIME it

was difficult to find papers that actually used it. Most of them just propose LIME as a possible

way to learn from the machine learning models. A couple of papers could be found that actually

use it, but these were all for classification tasks (e.g. Ghafouri-Fard et al., 2019). So no reference

material was found interpreting the LIME results of a regression task.

The two general explanations plots that were created gave a overview of the weight assigned

to each covariate for the different points. They show some surprising results. As LIME is based

on local linear models you would expect quite some overlap with the direct correlation between

the covariates and SOC (Table 4.1). However, on general EVI layers get assigned quite a low

weight compared to climate layers, while the correlation for most EVI layers is stronger. The

yearly average EVI even gets almost 0 weight assigned, while according to the RFE this was one

of the most important predictors and it also has the highest direct positive correlation with SOC.

What causes this difference is unclear and needs further research. Some quite clear differences

in attributed weight can be visible when comparing the soil organic carbon points with a large

difference in predicted value (Figure 4.11). However, what causes these differences is very difficult

to explain.

5.5 General discussion and limitations of the research

5.5.1 Model

Creating a neural network requires a lot of tests and changes to the structure in order to get

the most appropriate architecture for the available data. The model created by Wadoux et al.

(2019) was chosen as a starting point, as it showed a promising increase in prediction accuracy

compared to a random forest. Using a model architecture from another research allowed for a more

efficient start of the project, but might not have been the optimal choice as the used covariates and

data were completely different. Building a convolutional neural network from scratch might have

yielded better results. However, because the implementation of convolutional neural networks in

the field of environmental sciences is still evolving and the available literature is limited it can be

difficult to find the right information you need to design your own starting architecture.

Improvements of the model

Several improvements could be applied to improve the model. The step-wise approach of building

the model used in this research allowed to follow the process and better understand the importance

of the model parameters especially during the optimization of the model. Other techniques like

Bayesian optimization, might remove this trial and error part and could possible provide a more

stable model optimization (Snoek et al., 2012). Further tweaking of the parameters could have

had a positive effect on the accuracy, but was not feasible within the time frame of this research.

One of the tweaks that could have been made was to do tests with a neural network, that has more

neurons in the fully connected/ dense layers, like in Wadoux (2019). This could lead to higher

accuracy but would also increase the training time due to an increase in parameters and would

increase the risk of overfitting given the limited size of data available (Srivastava et al., 2014).
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5.5.2 Data

The final accuracy of the convolutional neural network is in general rather low but comparable

with other studies in digital soil mapping. This indicates that the accuracy is dependent on the

the availability of the data, their spatial distribution and the correlation with available covariates.

For the available data and covariates the accuracy thus seems adequate. A convolutional neural

network is based on finding patterns in input data (LeCun et al., 2015). The CNN’s are often

used for image classification tasks in which certain features and boundaries are clearly visible

(Krizhevsky et al., 2012). When using low resolution spatial data it might be that the patterns in

the data are not always very clear, especially inside a window, where for instance the large scale

climate data could be almost homogeneous distributed. This effect might even be stronger when

using data that are downscaled from a 1 kilometer resolution to 250 meter resolution. Wadoux

et al. (2019) uses data with 25 meter resolution and obtains a higher accuracy than this research,

while Wadoux (2019) uses data with 1 kilometer resolution and obtains lower accuracy than this

research. This might indicate a relation between the resolution of the data and the maximum

obtainable accuracy, but further research is needed to prove this assumption.

Improvements of the data

Using more data points that have a better coverage over the entire country would most likely

increase the accuracy. Using more data is generally shown to reduce prediction errors (Breiman,

2001). Even when splitting into training, validation and test subsets, each dataset would then

still capture most of the variation. As the CNN is based on spatial patterns and these patterns

can have many shapes in nature, it is important to capture as much of the patterns as possible.

Otherwise the model would find new prediction locations with patterns it does not recognize.
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Conclusions

6.1 Research questions

What is the most suitable convolutional neural network architecture to map the

spatial distribution of soil organic carbon on a country scale using global data?

After a 10-fold cross-validation run for 24 models with different combinations of several major

model parameters and differences in input, a convolutional neural network that has two convo-

lutional layers and uses Selu activated neurons obtained the highest accuracy. The input data

were not augmented and a window size of 15 x 15 cell, i.e. 3750 x 3750 meters seemed optimal.

The accuracy of this model was slightly higher than that of the models with other parameter

combinations. This was both the case when training with covariates that were selected by a re-

cursive feature elimination and when training with covariates manually selected using pedological

knwoledge. Therefore this model seems to be the most stable model out of the 24 tested in this

study.

How does the prediction accuracy of a convolutional neural network compare to that

of a random forest when applied to mapping the spatial distribution of top soil SOC?

The convolutional neural network had a lower accuracy compared to the random forest. The CNN

achieved an Amount of Variance Explained of 0.48, a RMSE of 7.27 (g/kg) and a concordance

correlation coefficient of 0.67. The random forest obtained better accuracy with an AVE of 0.53,

a RMSE of 6.91 (g/kg) and a concordance correlation coefficient of 0.69. In general the point

predictions on the test sets reproduce the spatial pattern that is also visible in the observed data,

but both models produce a smoothed result. They both underpredict some of the extreme SOC

values, but the underprediction of the random forest is stronger than for the convolutional neural

network. This is also shown by the mean error (ME), with a ME of 0.38 for the CNN and a ME

of 1.09 for the RF. The final prediction maps for CNN and RF produce the trend of low values in

the West of the selected subregion to higher values in the East of the section, that is also observed

in the measured value. However, the range of values predicted for this region are rather different.

The CNN seems to predict the extremes better and produces a range from 0 up to 60 g/kg SOC,

while random forest produces a range of values from 5 up to 30 g/kg.
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How can we use the ’Local Interpretable Model-agnostic Explanations’ algorithm to

provide insight into the structure, functioning and decisions of machine learning soil

organic carbon prediction models?

The local interpretable model-agnostic explanations algorithm did not yet work for the convolu-

tional neural network. The implementation of the algorithm into user-friendly code is still ongoing

and for the moment the code does not accept spatial data. The issue was not solved by using three

covariates to mimic the three RGB bands of an image as input. However, the algorithm worked

for the random forest model. The algorithm is mainly aimed at and used for classification tasks.

Interpreting the results for a regression task proved rather difficult. The resulting plots show some

patterns of relative importance of the predictors, from which you could defer the relation between

the values of the covariates and the SOC predictions for certain point locations. However, linking

this to why these differences in weights actually led to the predicted outcome proved very difficult.

6.2 General conclusion

Using the spatial structure of the covariates surrounding a point observation by using a convolu-

tional neural network is a promising method to increase the prediction accuracy for several soil

properties when comparing it with other machine learning techniques. Even though the convolu-

tional neural network used in this research produced an adequate accuracy, it did not show the

expected increase in accuracy compared to the random forest.

Implementing a convolutional neural network not only requires a lot of testing and optimiz-

ation, but also a clear understanding of computer science to be able to understand some of the

underlying mechanisms. Next to that, advanced data handling skills are needed to prepare the

input into the correct shape. When building the CNN is compared to implementing a random

forest algorithm, CNN takes much more time and is more difficult to understand and implement.

Because convolutional neural networks still take a lot more effort than other techniques and the

expected increase in accuracy is not always obtained, convolutional neural networks are still far

from becoming the go to method for each soil scientist and digital soil mapper.

The Local Interpretable Modeling agnostic Explanations algorithm was promising at first, but

it could unfortunately not be implemented for the convolutional neural network. It did work with

the random forest, but the results based on continuous predictions instead of a classification task

proved difficult to interpret.
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Appendix A

Figure A.1: The 10 test sets used for accuracy assessment in the k-fold cross validation. They are
randomly selected from the total dataset and cover the entire country. As is expected the highest
density is found in the area South of Buenos Aires. All other data is used for model training.
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APPENDIX B.

Figure B.1: Feature plots of LIME, that show the contribution of a covariate to the final pre-
dictions, expressed in weight. Upper plot shows the results for six points with a predicted SOC
concentration around 14 g/kg. The lower plot gives the results for the five points that cover a
large range of SOC values
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Appendix C

Table C.1: The 20 RFE selected covariates including the name codes

Code Description

VEG MOD EVIYRAVG Long-term yearly average MODIS Enhanced Vegetation Index
(EVI)

NDVI10 Normalized Difference Vegetation Index October, November,
December

VEG MOD EVI09AVG Long-term averaged mean monthly MODIS Enhanced Vegetation
Index (EVI) for months September and October

VEG MOD EVI03AVG Long-term averaged mean monthly MODIS Enhanced Vegetation
Index (EVI) for months March and April

VEG MOD EVI11AVG Long-term averaged mean monthly MODIS Enhanced Vegetation
Index (EVI) for months November and December

VEG MOD EVI01AVG Long-term averaged mean monthly MODIS Enhanced Vegetation
Index (EVI) for months January and February

VEG MOD EVI03STD Long-term s.d. of the monthly MODIS Enhanced Vegetation In-
dex (EVI) for months March and April

VEG MOD EVI07AVG Long-term averaged mean monthly MODIS Enhanced Vegetation
Index (EVI) for months July and August

VEG MOD EVI07STD Long-term s.d. of the monthly MODIS Enhanced Vegetation In-
dex (EVI) for months July and August

NDVI1 Normalized Difference Vegetation Index January, February, March
VEG MOD EVIYRSTD Standard Deviation yearly MODIS Enhanced Vegetation Index

(EVI)
CLM WCL BIO13 Precipitation of Wettest Month
CLM MOD CCYRAVG Long-term averaged mean cloud cover
CLM MOD PWV07 Long-term averaged mean monthly MODIS Precipitable Water

Vapor in cm for months July and August
CLM MOD CC07AVG Long-term averaged monthly cloud cover July
CLM MOD LSTN02AVG Long-term averaged mean monthly surface temperature (night-

time) MODIS February
CLM MOD LSTD03AVG Long-term averaged mean monthly surface temperature (daytime)

MODIS March
CLM MOD LSTD11AVG Long-term averaged mean monthly surface temperature (daytime)

MODIS November
CLM MOD LSTNYRSTD Long-term s.d. of the monthly surface temperature (nighttime)

MODIS Yearly
CLM MOD LSTD02AVG Long-term averaged mean monthly surface temperature (daytime)

MODIS February
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