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Abstract 8 

To accelerate the understanding of the relationship between genotype and phenotype, plant scientists and plant breeders are looking for 9 

more advanced phenotyping systems that provide more detailed phenotypic information about plants. Most current systems provide 10 

information on the whole-plant level and not on the level of specific plant parts such as leaves, nodes and stems. Computer vision provides 11 

possibilities to extract information from plant parts from images. However, the segmentation of plant parts is a challenging problem, due to 12 

the inherent variation in appearance and shape of natural objects. In this paper, deep-learning methods are proposed to deal with this variation. 13 

Moreover, a multi-view approach is taken that allows the integration of information from the two-dimensional (2D) images into a three-14 

dimensional (3D) point-cloud model of the plant. Specifically, a fully convolutional network (FCN) and a mask R-CNN (region-based 15 

convolutional neural network) were used for semantic and instance segmentation on the 2D images. The different viewpoints were then 16 

combined to segment the 3D point cloud. The performance of the 2D and multi-view approaches were evaluated on tomato seedling plants. 17 

Our results show that the integration of information in 3D outperforms the 2D approach, because errors in 2D are not persistent for the 18 

different viewpoints and can therefore be overcome in 3D. 19 

 20 
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 22 

Nomenclature: 23 

  

∩ Intersection 

∪ Union 

|𝑀| Number of elements in the set 𝑀 [-] 

2D Two dimensional 

3D Three dimensional 

ADAM Adaptive moment estimation 

CNN Convolutional neural network 

𝑑&'() Distance between predicted and ground-truth node centres [pixels] 

F1 F1-score [-] 

FCN Fully Convolutional Network 

FN False negative [-] 

FP False positive [-] 

LUT Look-up table 

𝑀*+)( Mask predicted by the network 

𝑀,- Ground-truth mask 

Mask R-CNN Masked region-based convolutional neural network  

𝑛 Centre of the ground-truth node area 

𝑛/ Centre of the predicted node area 

NMS Non-maximum suppression 



ResNet Residual network 

RoI Region of interest 

SGD Stochastic gradient descent 

TP True positive [-] 

  

  

 24 

1 Introduction 25 

Plant scientists, geneticists and breeders are interested in having a better understanding of the relationship between a plant’s genotype, its 26 

environment and its resulting plant phenotype (Chen, Chen, Altmann, Klukas, 2014). A further understanding could provide, for instance, 27 

a better insight in which parts of the DNA are related to specific phenotypic traits, and how they play a role in the plant’s tolerance to biotic 28 

and abiotic stresses. Eventually, this could result in the ability to predict the phenotype from the genotype, allowing the efficient selection 29 

of improved cultivars, which is important in our quest for more efficient and sustainable agriculture (Poland & Rife, 2012). Advances in 30 

next-generation DNA sequencing techniques, currently allow for the efficient acquisition of vast amounts of accurate genotypic data 31 

(Goodwin, McPherson, McCombie, 2016). In contrast, the commonly used assessments of a plant’s phenotype are mainly based on manual 32 

assessment, which is expensive, time-consuming, subjective and error-prone. Lacking a vast amount of complete and accurate phenotypic 33 

data, in contrast to the readily available genotypic data, this has been called the phenotyping bottleneck. 34 

 35 

1.1 Image-based phenotyping methods 36 

To bridge the genotyping-phenotyping gap, there is an increased interest in plant phenomics (Furbank & Tester, 2011), and in particular in 37 

using image-based digital phenotyping systems to measure morphological traits of plants. Imaging techniques have the advantage of non-38 

destructive detection, high-throughput processing and multi-trait measurement (Li, Zhang, Huang, 2014). Two-dimensional (2D) image-39 

based phenotyping approaches are common methods to measure morphological plant traits. The PHENOPSIS system, for instance, retrieves 40 

information about leaf growth, leaf number, transpiration rate per unit leaf area, and root growth from the images, which are used to study 41 

the plant responds to soil-water deficit in Arabidopsis thaliana (Granier et al., 2006). Another imaging system, GROWSCREEN (Walter et 42 

al., 2007), assesses the growth of seedlings by measuring the leaf area and growth rate based on images from a top-camera. Building upon 43 

this system, Jansen et al. (2009) added chlorophyll-fluorescence imaging to measure photosynthetic activity as well as growth for an 44 

improved detection of stress tolerance. Minervini, Abdelsamea, and Tsaftaris (2014) proposed a plant-segmentation method to be able to 45 

track the growth of multiple plants over time. The disadvantage of these 2D approaches is that the acquired phenotypical traits are not 46 

complete, as the methods cannot deal with overlap and occlusion, and not accurate, as size and area measurements are inaccurate, due to 47 

the lack of the 3rd dimension.  48 

In order to deal with the limitations of 2D, we advocate phenotyping through three-dimensional (3D) imaging. With the rapid development 49 

in computing power and sensor technology, plant traits extracted from 3D models can provide researchers with more profound and accurate 50 

information. Different 3D sensing techniques are used to create a 3D model of a plant for phenotyping. Thapa, Zhu, Walia, Yu, and Ge 51 

(2018), for instance, used a point cloud acquired with a LiDAR scanner to measure leaf-surface area, leaf inclination angle and the angular 52 

distribution of maize and sorghum. Time-of-flight camera have been used in Chaivivatrakul, Tang, Dailey, and Nakarmi (2014), Haiou, 53 

Meng, Xiaodan, and Song (2018) and Vázquez-Arellano, Reiser, Paraforos, Garrido-Izard, and Griepentrog (2018) to rapidly get a 3D 54 

image of plants. 3D reconstructions of plants were made using 3D laser scanning in Paulus, Behmann, Mahlein, Plumer, and Kuhlmann 55 

(2014), Garrido et al. (2015) and Su, Zhu, Huang, and Guo (2018). However, the above 3D methods are sometimes called 2.5D methods, 56 

since a point cloud of only one viewpoint is obtained. Pound, French, Murchie, and Pridmore (2014) proposed the combination of multiple 57 

viewpoints in order to obtain a full 3D reconstruction of a plant, based on which accurate plant traits, such as the leaf surface area can be 58 

determined. To combine the benefits of a full 3D reconstruction with high-throughput efficiency, Golbach, Kootstra, Damjanovic, Otten, 59 

and van de Zedde (2015) implemented an efficient shape-from-silhouette method to accurately measure plant volume, stem height and the 60 

surface area of individual leaves.  61 

Although a few of the above-mentioned studies measure traits on a plant-organ or plant-part based, most of the methods acquire 62 



information on the whole-plant level. To get more detailed phenotypical information, the plant models need to be segmented into the 63 

individual organs, such as leaves, stems, and nodes. To advance the state of the art in 2D leaf segmentation, an annotated dataset was made 64 

available as part of the leaf-segmentation challenge to train and test leaf-segmentation methods (Minervini, Fischbach, Scharr, Tsaftaris, 65 

2016). In Scharr et al. (2016), an overview of four methods that joined the challenge is presented. The method proposed by Vukadinovic 66 

and Polder (2015) segments plant from the background using colour and texture features and a neural network and then segments the leaves 67 

using watershed segmentation on the Euclidean distance map. The method proposed by Scharr et al. (2016) combined a super-pixel approach 68 

and a distance map to segment the leaves and Yin, Liu, Chen, and Kramer (2018) proposed a multi-leaf segmentation and alignment 69 

algorithm.  70 

 71 

1.2 Deep-learning based phenotyping methods 72 

Many of the hand-crafted segmentation methods mentioned above have recently been outperformed by deep-learning methods. Sakurai, 73 

Uchiyama, Shimada, Arita, and Taniguchi (2018), for instance, proposed a fully convolutional network (FCN) (Long, Shelhamer, Darrell, 74 

2015) for semantic image segmentation, resulting in high performance in plant segmentation. Morris (2018) applied a convolutional neural 75 

network (CNN) to detect leaf contours, which combined with watershed segmentation, results in a good leaf-segmentation performance in 76 

cluttered images. Ward, Moghadam, and Hudson (2018) applied a Mask R-CNN (He, Gkioxari, Dollár, Girshick, 2017) to segment different 77 

instances of leaves, beating other hand-made approaches on the leaf-segmentation challenge. A regression network based on ResNet50 (He, 78 

Zhang, Ren, Sun, 2016) was implemented by Giuffrida, Doerner, and Tsaftaris (2018) for the accurate counting of leaves in images, robust 79 

to deal with different plant species.  80 

Despite the great advances in 2D segmentation of plant parts, a clear drawback of the segmentation of 2D images is that it cannot deal 81 

with overlap and occlusions. To deal with this, segmentation methods for 3D point-cloud reconstructions of plants are needed. Again, some 82 

hand-crafted approaches have been proposed. Li and Tang (2017), for instance, proposed a method that fits the longest possible vertical line 83 

from several views on the 3D point cloud, in order to detect the stem of corn plants. After extracting the stem, the leaves remain as clusters 84 

in the point cloud. Similarly, Thapa et al. (2018) removed stem points by filtering on the distance to the vertical centre and consecutively 85 

applied K-means clustering to segment the points that belonged to each leaf. A Euclidean clustering algorithm including heuristics about 86 

the shape of leaves and internodes was used in Nguyen, Slaughter, Max, Maloof, and Sinha (2015) to segment point clouds of cucumber 87 

plants. The segmentation of plant parts, however, is often very challenging due to morphological variations of the plant. The assumptions 88 

underlying the hand-crafted methods are therefore often violated, resulting in erroneous segmentations. Moreover, the heuristics used 89 

hindered the application of the method to different species or cultivars. Therefore, in this paper, the use of deep-learning methods was 90 

studied to learn to segment plant parts in 3D.  91 

To our knowledge, no deep-learning method that results in the segmentation of individual plant parts in 3D point clouds of plants exists 92 

in the literature. In general, the segmentation of 3D points clouds using deep learning is a fresh field. Some approaches exist, which can be 93 

classified into two types. One type of approach is the point-based work that direct deal with unordered 3D point clouds. This includes 94 

methods such as PointNet (Qi, Su, Mo, Guibas, 2017), PointNet ++ (Qi, Yi, Su, Guibas, 2017), SGPN (Wang, Yu, Huang, Neumann, 2018) 95 

and 3DmFV (Ben-Shabat, Lindenbaum, Fischer, 2017), which take the 3D point cloud as input and output class labels for every point. The 96 

other type of approach is multi-view based, which creates a number of 2D projections from the 3D point clouds, applying deep-learning 97 

based segmentation methods on the generated 2D images, and then combining the different projections into a 3D point-clouds segmentation. 98 

SnapNet (Boulch, Guerry, Le Saux, Audebert, 2017), for instance, was used for semantic segmentation of a 3D scene by generating 99 

numerous virtual RGB and geometry-encoded images of the 3D scene, training the images through a network, and back-projecting the label 100 

predictions to the 3D model to give to each point a label. Similarly, MVCNN (Su, Maji, Kalogerakis, Learned-Miller, 2015) is used for 3D 101 

shape recognition by applying a standard CNN to recognize the shapes in 2D rendered images from a 3D point cloud. Our approach takes 102 

inspiration from these multi-view methods, but multi-view 2D camera images were used instead of generated images. 103 

 104 

A plant-part segmentation method is proposed based on deep learning in combination with a multi-view camera system, which segments 105 

the 2D images and combines the information from multiple viewpoints into a 3D point-cloud representation of the plant. The added value 106 

of multi-view 3D segmentation over 2D segmentation is explored. The multi-view camera setup proposed in (Golbach et al., 2015) was 107 

used and applied to both a semantic-segmentation network based on FCN (Long et al., 2015) and an instance-segmentation network based 108 



on Mask R-CNN (He et al., 2017). Inspired by multi-view methods, the 2D segmentations are combined from different viewpoints to obtain 109 

the 3D point-clouds segmentation. A novel 3D voting strategy is proposed and the performance of the system is evaluated on leaf, stem and 110 

node segmentation of tomato seedlings. Our approach can overcome the drawbacks of segmentation on 2D images and obtain a promising 111 

performance on segmentation of 3D point clouds. The results of the segmentation can be used for trait extraction of a seedling in the future. 112 

The reasons to use a multi-view approach is threefold, (a) the method integrates naturally with our multi-camera setup (Golbach et al., 2015), 113 

(b) it can benefit from the GPU optimisation of CNNs for 2D segmentation, enabling a future high-throughput system, and (c) this approach 114 

can deal with large and variable-sized point clouds, whereas point-cloud-based 3D segmentation methods, such as PointNet++ (Qi et al. 115 

2017), have a limited input size, therefore requiring down sampling with loss of spatial resolution or splitting up in multiple boxes with loss 116 

in speed. 117 

2 Materials and Methods 118 

2.1 Overview of the Method 119 

Figure 1 gives an overview of the proposed method. The method performs two types of segmentation; semantic segmentation and instance 120 

segmentation. Semantic segmentation is the task of labelling each point in the image with a class, that is, a point-based classification. For 121 

example, in this paper, each point is labelled as either background, stem, leaf or node. Semantic segmentation does not cluster the points 122 

into different objects and cannot differentiate between instances. Our method also performs instance segmentation, where all points 123 

belonging to an object instance are clustered and labelled individually. For instance, our method finds all points belonging to each individual 124 

leaf.  125 

 126 
Fig. 1 Overview of method. 127 

Our goal is to perform semantic and instance segmentation on 3D point clouds of seedlings. To this end, our method is based on a 128 

multi-view camera system for 3D reconstruction as proposed by Golbach et al. (2015). As shown in Fig. 1, the multi-view 2D images of a 129 

seedling are acquired by the system. Next, semantic segmentation and instance segmentation are performed on the 2D images. Then, the 130 

2D segmentation results are projected to a 3D point cloud using the know intrinsic and extrinsic parameters of the multiple cameras. Finally, 131 

the 3D points are segmented by applying a voting strategy on the results from the multiple 2D segmentations. 132 

In the following subsections, the multi-view camera system is described (section 2.2), as well as the methods for 2D semantic 133 

segmentation (section 2.3) and for 2D instance segmentation (section 2.4). Following this, the combination of these results into a multi-134 

view 3D segmentation method (section 2.5) is discussed. The section is completed with a description of the evaluation methods (section 135 

2.6). 136 

2.2 Multi-view camera system 137 

The multi-view camera setup as proposed by Golbach et al. (2015) with ten cameras placed in a semi-sphere observing the plant from 138 

different viewpoints was used. The cameras were placed at a distance of 900 mm from the seedlings. The system uses Basler acA1300-139 

30gm cameras, which are affordable cameras that provide grey-scale images with a 1280×900-pixel resolution at 30 fps. The use of grey-140 



scale gives a sharper transition between plant and background compared to colour cameras, which use a Bayer pattern. This improves the 141 

segmentation of plant and background, resulting in improved 3D point clouds. The plants were segmented from the background using 142 

backlighting. The resulting plant silhouettes were input to a shape-from-silhouette method that calculates a 3D voxel representation of the 143 

plant combining the silhouettes from all the camera images. With the trade-off between accuracy and speed, the final resolution of the voxel 144 

space was set to 0.25 mm/voxel, using 240×240×300 voxels (x, y, z), resulting in real-world dimensions of 60×60×75 mm. In this study, 145 

we use the individual 2D images as well as the 3D point cloud corresponding to the surface points in the 3D voxel representation of the 146 

plant. 147 

2.3 Semantic segmentation on 2D images 148 

The goal of semantic segmentation of 2D images of seedlings is to segment the pixels into four classes: background, leaf, stem and node. 149 

To meet this need, we use an end-to-end deep-learning approach to semantic segmentation. A fully convolutional network (FCN), as  150 

proposed by Long et al. (2015), was used. The outputs of the network are the class labels of each pixel. The used images dataset is discussed 151 

followed by the use of FCN to semantically segment the seedling images. 152 

2.3.1 Dataset for 2D semantic segmentation 153 

Examples of input images and ground-truth semantic-annotations are shown in Fig. 2. The seedlings in the dataset were in the early stage 154 

of development with two leaves. The dataset contains 620 grey-scale images of 62 seedlings with a resolution of 1280×900 pixels. The 155 

dataset was separated in 420-100-100 for training, validation and testing, respectively. The validation set was used to determine the stopping 156 

criterium of training, in order to prevent overfitting. The network was trained until the loss on the validation set stabilized or increased again. 157 

The performance evaluation reported in this paper result from the test dataset. Ground-truth pixel-wise annotations were manually obtained 158 

using the segmentation tool LabelMe (Russell, Torralba, Murphy, Freeman, 2008). Pixels were divided into four classes: background, leaf, 159 

stem and node. As a large part of the original images contained background, the images were cropped to 600×400 pixels before feeding 160 

them to the deep neural-network. The different classes were heavily imbalanced, with 99.183% of the pixels being background, while the 161 

occupations of leaf, stem and node were 0.600%, 0.207% and 0.013% respectively. During training of the networks, measures were taken 162 

to deal with the imbalanced, as will be discussed later. 163 

 164 

Fig. 2 Examples of input images (first line) and ground-truth semantic-annotations (second line). 165 

2.3.2 Fully convolutional network architecture 166 

The FCN architecture is shown in Fig. 3. The VGG-16 convolutional network proposed in (Simonyan & Zisserman, 2014), which is 167 

commonly used in semantic segmentation tasks was used. As proposed by Long et al. (2015), some modifications at the final layers of the 168 

original network were made to accommodate semantic segmentation. The network uses an encoder-decoder structure. In the encoder part 169 

of the network, a high-dimensional feature vector is extracted from the image in a series of convolutional layers followed by pooling steps, 170 

providing an abstract representation of the image content. The encoder part is illustrated in Fig. 3 by Con1-Pool1-…-Con7. The Con7 layer 171 

has a dimensionality of 21×13 with 4,096 feature channels. The decoder part consists of a 1×1 convolution layer with 4 (number of classes) 172 

channels followed by a series of deconvolution and un-pooling layers to bilinearly up-sample the coarse predictions to pixel-dense outputs 173 

of the original resolution. To predict finer details, skip connections were used from the pool4 and the pool3 layer. At the output layer, the 174 

network predicts the semantic class of each pixel; background, leaf, stem or node. Transfer learning was employed by copying the pre-175 



trained VGG-16 weights of the first five convolution layers trained on ImageNet (Deng et al., 2009) to our network. The other weights were 176 

randomly initialised. The network was trained using stochastic gradient descent (SGD) with weighted cross-entropy loss to handle the 177 

imbalanced dataset. The hyper-parameters for training were taken from (Long et al., 2015): a learning rate of 10-3, momentum of 0.9 and 178 

weight decay of 5-4 for 500 iterations. Dropout was used in the Con6 and Con7 layer.   179 

 180 
Fig. 3 Fully convolutional network architecture used for the semantic segmentation. The image refers to the image drawn by Souza (2017) 181 

and He et al. (2017). 182 

2.4 Instance segmentation on 2D images 183 

Not only is pixel-wise segmentation of the plant images of interest, but also individual plant parts need to be distinguished and segmented; 184 

so-called instance segmentation. To this end, MASK-RCNN was employed (He et al., 2017), which is a widely used tool for instance-185 

segmentation tasks. Based on an input image, the network provides a bounding box around the object instance, including a pixel-level 186 

segmentation of the object inside the bounding box. The dataset will be discussed, followed by the Mask R-CNN architecture 187 

2.4.1 Dataset for 2D instance segmentation 188 

The same plants and images with the same split in training, validation and test sets as discussed in section 2.3.1 were used. Here, the ground-189 

truth annotations consist of the bounding boxes around the object instances including labels of the instances (e.g. “leaf 1” or “leaf 2”) and 190 

a pixel-level segmentation of the instance inside the bounding box (called mask). The stem, node and all individual leaves were also 191 

annotated using the LabelMe annotation tool. The train dataset contains 840 instances of leaves, 420 instances of stems and 420 instances 192 

of nodes. The test dataset contains 200 instances of leaves, 100 instances of stems and 100 instances of nodes. Figure 4 gives a few examples 193 

of the annotated dataset. 194 

 195 

Fig. 4 Examples of input images (first line) and ground-truth instance-annotations (second line). 196 



2.4.2 Mask R-CNN architecture 197 

The Mask R-CNN architecture (He et al., 2017) can be divided into 3 parts: a feature-extraction network, a region-proposal network and 198 

two instance detection and segmentation networks, as shown in Fig. 5. The feature-extraction network used had a 50 layer residual network 199 

(He et al., 2016), which extracted high-level features from the input image in the final convolutional layer of the 4-th stage (ResNet-50-C4). 200 

This is a commonly used network for feature extraction. The region-proposal network proposed a number of initial regions of interest (RoIs) 201 

that potentially contain objects of interest (Ren, He, Girshick, Sun, 2017). The RoIAlign layer is applied to warp the RoIs into fix-sized 202 

feature maps. These were then input to the instance detection and segmentation network consisting of two branches. One branch was a fully-203 

connected network that takes the RoI as input and detects the presence of an object instance including the bounding box, the class label and 204 

the confidence score. The other branch was a fully convolutional network for predicting the pixel mask of the objects within the bounding 205 

box. The confidence scores (ranging from 0 to 1) describe how confident the network is about the predicted class. 206 

Hyper-parameter settings are taken from (He et al., 2017), which are set as follows. During training, a RoI was considered correct if 207 

it had an intersection-over-union (IoU) with the ground-truth box of at least 0.7. To avoid duplicates for the same object, the non-maximum 208 

suppression (NMS) was applied with the threshold set to 0.7. The network was trained using the adaptive moment estimation (ADAM) 209 

optimiser for 450 iterations, after which the training loss and validating loss were stable, with a learning rate of 10-3 and a weight decay of 210 

10-3 for the first 5 iterations, then with a learning rate of 10-4 and a weight decay of 5×10-4 for the next 30 iterations, and finally at a learning 211 

rate of 10-5 and a weight decay of 10-4 for the final iterations.  212 

 213 

Fig. 5 Mask-RCNN architecture used for the instance segmentation. The image refers to the images drawn by (Ren et al., 2017). 214 

2.5 Segmentation on 3D point clouds 215 

Segmentation of plant parts in the individual camera images has clear limitations due to occlusions and difficult perspectives. To deal with 216 

that, an integration of the image segmentations from different viewpoints into a 3D representation was utilised. The dataset is explained 217 

first, followed by a discussion of the multi-view 3D segmentation method. 218 

2.5.1 Dataset for multi-view 3D segmentation 219 

To evaluate the performance of the multi-view 3D segmentation method, the 3D point clouds were annotated manually by using Rviz cloud 220 

annotation tool (Monica, Aleotti, Zillich, Vincze, 2017). Each point in the cloud was assigned a class label. In case of instance segmentation, 221 

each individual instance got a specific label. Figure 6 contains examples of the annotated point clouds. 222 



 223 

Fig. 6 Examples of ground-truth point clouds of seedlings, ground truth semantic-annotations and ground truth instance-annotations. 224 

2.5.2 Voting strategy for multi-view 3D segmentation 225 

In order to segment the 3D point cloud of the plant, the predicted segmentations of all 2D images were combined in 3D using a voting 226 

strategy, as illustrated in Fig. 7. The first step is to obtain the intrinsic and extrinsic camera parameters in order to spatially calibrate the 227 

multi-view camera system (Golbach et al., 2015). In this procedure the projections of the points in the 3D work space onto each of the ten 228 

camera images was determined and stored in look-up tables (LUTs) for computational efficiency. Once the system was calibrated and the 229 

2D-to-3D correspondences were determined, the 3D point cloud of the plant can be obtained using the shape-from-silhouette method as 230 

described in section 2.2. Next, for each point in the 3D point cloud, the LUTs were employed to find the corresponding pixel coordinates in 231 

the ten camera images. At these coordinates the predicted class label in the 2D images was sampled as predicted by the deep neural networks. 232 

Finally, a voting strategy to label the 3D points was used. Each point received ten votes on the predicted labels from the ten images. The 233 

probability of each class label was calculated from the proportion of votes. The class label with the highest probability was assigned to the 234 

3D point. The same method was applied for semantic segmentation and for instance segmentation. 235 



 236 

Fig. 7 Procedures of projecting 2D results to 3D point cloud. Bounding box and mask colour on image 0-9 are randomly chosen. 237 

2.6 Performance evaluation 238 

The performance of the proposed method for plant-part segmentation was evaluated on two levels, on the pixel level and on the object (plant 239 

part) level. In both cases, the evaluation was based on precision, recall and F1-score. Precision indicated the proportion of correct detections 240 

and recall indicated the proportion of plant parts that were detected by the neural networks. Both measures ranged between 0 (worst) and 1 241 

(perfect):  242 

 Precision = 	
TP

TP	 + 	FP	 
Eq. (1) 

 Recall = 	
TP

TP	 + 	FN Eq. (2) 

where TP is the number of true positives, FP is the number of false positives and FN is the number of false negatives. Precision and recall 243 

are combined in the F1-score, providing the harmonic average of both: 244 

 F1 = 2 ∙ 	
Precision	 ∙ 	Recall
Precision	 + 	Recall	 

Eq. (3) 

The difference in the pixel-wise and object-wise evaluation lies in the way that the TP, FP, and FN were calculated. For the pixel-wise 245 

evaluation, the annotated ground-truth mask, 𝑀,-, of the plant part was compared pixel-by-pixel with the predicted mask, 𝑀*+)(. When 246 

both masks agree on the class, the number of true positives is determined by the intersection of the two masks (Eq. (4)). The number of 247 

false positives was the number of pixels/points predicted by the network, which were not present in the ground-truth annotation (Eq. (5)). 248 

The false negatives were the pixels/points in the ground-truth annotation that were not predicted by the network (Eq. (6)): 249 

 TP =	 D𝑀*+)( ∩𝑀,-D Eq. (4) 

 FP = D𝑀EFGHD − 	TP Eq. (5) 

 FN = |𝑀JK| − 	TP Eq. (6) 

For the object-wise performance evaluation, TP, FP and FN were calculated on the level of the plant parts. To determine if a plant part 250 

was detected by the network, the intersection-over-union (IoU) between the annotated ground-truth mask was examined, 𝑀,-, and the 251 

predicted mask, 𝑀*+)( both labelled with a particular class. The IoU ranges from 0 to 1, indicating how well the plant part had been 252 

segmented: 253 

 IoU =	
|𝑀EFGH ∩𝑀JK|
|𝑀EFGH ∪𝑀JK|	 

Eq. (7) 

where |𝑀| indicates the number of pixels/points in the set of points/pixels 𝑀. TP is the number of true plant parts that have a corresponding 254 



prediction with an	IoU ≥ 0.5, FP is the number of predicted plant parts that have no associated true plant part, that is, IoU < 0.5, and FN 255 

is the number of true plant parts that were not predicted by the network, that is, IoU < 0.5.  256 

For the node detection, the object-wise evaluation was slightly different. Since the node area was very small, it was difficult to define 257 

a precise boundary of a node. This renders the IoU a useless measure for the performance of the node detection. Instead, the Euclidian 258 

distance between the centre of the predicted node area, 𝑛/, and the center of ground-truth node area, 𝑛 was used 259 

 𝑑&'() = ‖𝑛 − 𝑛/‖	 Eq. (8) 

By setting a distance threshold on 𝑑&'(), the precision, recall and F1-score can be calculated for the node detection. In the evaluation, 260 

a threshold of 1 mm and 2 mm was used. If the distance was larger than the threshold, the predicted node was considered as a false positive 261 

and the ground-truth was considered as a false negative. If the distance was smaller than the threshold, the predicted node was considered 262 

as a true positive. If there was no detection for a node, then the ground truth was considered as a false negative.  263 

To compare the 2D and multi-view 3D segmentation results, Welch's t-test, also called the unequal variances t-test, was applied to test 264 

if there is a significant difference in the results of 2D and multi-view 3D segmentation. 265 

3 Results 266 

The focus in the experiments was on the comparison between 2D and 3D plant-part segmentation. In section 3.1, the performance of 267 

semantic segmentation was compared and section 3.2 the results for the instance segmentation are shown. In section 3.3, a qualitative 268 

analysis on the errors of the method is discussed to provide insights for future improvements. 269 

3.1 Performance of semantic segmentation  270 

Figure 8 and Fig.9 show some examples of semantic segmentation on the 2D images and the 3D point clouds respectively using the methods 271 

described in section 2.3 and section 2.5. It should be noted that in the 3D case, some points in the background were included in the plant 272 

reconstruction due to a reconstruction error made by the shape-from-silhouette method. The deep neural network, however, correctly 273 

predicted those points as being background. Table 1 provides the quantitative evaluation of the methods on the complete test set. 274 

In general, the results in Table 1 show that for leaf and stem segmentation, all measures (precisions, recalls, and F1-scores) increase when 275 

the 2D segmentation results were combined in the 3D point cloud. Also, the standard deviations on the measures decrease, which indicates 276 

that the algorithm’s performance was more stable in 3D than in 2D. The p-values resulting from the Welch’s t-test show that the improvement 277 

was significant. This shows the benefit of the multi-view 3D method. The precision scores of stem and leaf for 2D segmentation were lower 278 

than the recall scores. The reason for this is that the predicted area of these plant parts made by the deep neural network was larger than the 279 

ground-truth area, which means that the network predicted a portion of background pixels as foreground. In 3D, this is not an issue, due to 280 

the shape-from-silhouette method that carves out the plant contours. The precision for stem in 3D was lower than for leaf due to the fact 281 

that the stem is a thin structure, consisting of only a small number of points compared to the leaves. The average point number of stem and 282 

leaf in each point cloud was 374 and 4,029 respectively. Due to the small number of points, false negatives had a strong effect on the 283 

precision scores for the stem. 284 

The results for background segmentation could not directly be compared between 2D and 3D. In 2D image segmentation, the measures 285 

are all close to 1.00. This is caused by the extreme imbalance in the 2D dataset, with the images consisting for 99.183% of background 286 

pixels. In the 3D data set, however, there were hardly any background points, as these should be carved out by the shape-from-silhouette 287 

method. This explains the low precision score for the multi-view 3D method, as with only a few background points, there was a low number 288 

of true positives for the background prediction. Every mistake made (false positive or false negative), therefore drastically reduced the 289 

scores. The high associated standard deviations reflect large fluctuations in the scores due to the small number of background points. If the 290 

result for background was calculated over the whole dataset, instead of forming an average over the individual point cloud, the precision 291 

and recall were 0.90 and 0.91, which means the algorithm seldom detected other instances as background and could detect most background 292 

points in 3D point clouds. 293 

The node detection was evaluated with the object-wise performance using the Euclidean distance of the centre of the predicted and 294 

ground-truth node area. When the threshold of node distance was set as 2 mm, both nodes in 2D images and 3D point clouds could be well 295 

detected with an F1-score at 0.98 and 0.96 respectively. A threshold of 1 mm resulted in an F1-score 0.88 and 0.73 respectively. The p-296 

values indicated that the differences are not significant. Figure 10a provided more detail on the node detection. It showed the histogram 297 



with percentages of real nodes that are detected by the algorithm at particular distances. The plot also shows that for the 2D case, 4% of the 298 

nodes are missed. In 3D, 7% of the nodes were missed. The reason for the increasing number of miss detection was that in 2D, only a few 299 

pixels are predicted as a node and the location of these points on the plant did not agree in the images from different viewpoints. In the 300 

voting procedure, it happened that none of the 3D points got a majority of votes for a node. Hence the node was not detected. 301 

 302 
Fig.8 Examples of input images (top row) and predictions of semantic pixel labels (bottom row). 303 

 304 

Fig. 9 Examples of predictions of multi-view 3D semantic segmentation. 305 

Table 1 Result of semantic segmentation. In the upper part, the performance of the pixel-wise semantic segmentation is shown. The lower 306 

part indicates the performance of the object-wise node detection. The results are the averages over respectively the 2D images (N=100) and 307 

the 3D point clouds (N=60). The numbers in parentheses are the standard deviations of the results. a Points of background only exist in some 308 

point clouds, which results in the low precision in multi-view 3D segmentation. If we calculate the result of background (3D) among the 309 

whole dataset, precision and recall will be 0.90 and 0.91, respectively. *There is a significant difference. 310 

 311 

  

Pixel-wise semantic segmentation 

Precision Recall F1-score 

2D 3D P-value 2D 3D P-value 2D 3D P-value 

Stem 0.54 (0.14)  0.86 (0.09) 0.000* 0.90 (0.15) 0.97 (0.05) 0.000* 0.68 (0.14) 0.91 (0.05) 0.000* 

Leaf 0.77 (0.11) 1.00 (0.00) 0.000* 0.95 (0.07) 0.99 (0.02) 0.000* 0.85 (0.08) 0.99 (0.01) 0.000* 

Background a 1.00 (0.00) 0.54 (0.47) 0.001* 1.00 (0.00) 0.89(0.14) 0.000* 1.00 (0.00) 0.85 (0.20) 0.003* 

  

Object-wise semantic detection of node 

Precision Recall F1-score 

2D 3D P-value 2D 3D P-value 2D 3D P-value 

Threshold = 1 mm 0.90 0.82 0.110 0.86 0.65 0.074 0.88 0.73 0.086 

Threshold = 2 mm 1.00 1.00 - 0.96 0.93 0.168 0.98 0.96 0.175 

 312 



 313 

Fig. 10 Distribution of distance between the centre of predicted node pixels and the centre of ground-truth on (a) semantic segmentation 314 

and (b)instance segmentation. 2D represents results of segmentation on 2D images (ground-truth node number in the testing dataset=100). 315 

3D represents results of segmentation on point clouds (ground-truth node number in testing dataset=60). 316 

3.2 Performance of instance segmentation  317 

Here, the result for 2D and multi-view-3D instance segmentation results by the methods introduced in section 2.4 and section 2.5 are 318 

discussed. Some examples are shown in Fig. 11 and Fig. 12. The quantitative performance results on the full test set are given in Table 2. 319 

Regarding the performance of leaf and stem pixel-wise segmentation, the precision, recall and F1-scores were higher for the multi-view 3D 320 

method compared to 2D method, with lower standard deviations. The very low p-values show that the improvement was highly significant. 321 

This demonstrates that the multi-view 3D approach was better able to detect the plant parts and provides a more stable detection. The 322 

precision scores were particularly high, showing that predictions made by the deep neural network are reliable. The recall in 2D 323 

segmentation was relatively low, which means that the algorithm failed to segment some of the plant parts with sufficient overlap between 324 

predicted and ground-truth area. The multi-view 3D method was better at segmenting the plant parts as indicated by the higher recall scores. 325 

Regarding the object-wise segmentation of leaf and stem, both precision and recall values for the multi-view 3D method were 1.00, 326 

indicating that with the IoU-threshold of 0.5, all leaf and stem instance were detected perfectly. In the 2D case, the values are lower. And 327 

especially for the leaves, many instances were not detected well. Again, the multi-view 3D method outperformed the method using the 328 

individual viewpoints.  329 

The 2D instance-segmentation method only predicted leaf, stem and node instances. The results therefore did not show a performance 330 

for the class background. When projecting the 2D results to the 3D point cloud segmentation, some 3D points correspond to pixels in the 331 

2D images for which the neural network did not predict a label. These points were classified as background. In 3D point cloud-segmentation, 332 

the F1-score for the background was 0.42 with the precision at 0.17 and the recall at 0.98. These low values, however, were caused by the 333 

fact that there were hardly any background points in the 3D point clouds. This results in a low number of true positives and therefore a small 334 

number of false positives brings down the score down severely. This also explains the high standard deviations. If the TP, FN and FP are 335 

calculated for background among the whole dataset, instead of the averages over the images, precision and recall were 0.73 and 0.98, 336 

respectively. This means that the true background points were detected successfully, but some points on the plant were falsely labelled as 337 

background. 338 

Regarding node detection, the multi-view 3D method detected most of the nodes within a distance of 1mm, with an F1-score of 0.96, 339 

whereas the 2D method had a F1-score of 0.67. The results for 3D were significantly better than in the 2D case. When the distance threshold 340 

was set to 2 mm, both the 2D and multi-view 3D methods detect the node well, with F1-scores of 0.94 and 1.00 respectively. Although the 341 

performance for the multi-view 3D method was better, the difference was not significant. Figure 10b shows the number of detected nodes 342 

at different distances, which indicates that the multi-view 3D instance segmentation reliably and accurately detected the nodes, whereas the 343 

2D images missed 5% of the nodes.  344 



 345 
Fig. 11 Examples of input images (first line) and predictions of instance labels (second line). 346 

 347 

Fig. 12 Examples of predictions of multi-view 3D instance segmentation. 348 

Table 2 Results of instance segmentation. In the upper part, the performance of the pixel-wise semantic segmentation is shown. The lower 349 

part indicates the performance of the object-wise node detection. The results are the averages over respectively the 2D images (N=100) 350 

and the 3D point clouds (N=60). The numbers in parentheses are the standard deviations of the results. For the 2D images, no background 351 

instance class was considered. In the 3D case, only a small number of background points are in the point cloud, resulting in the low 352 

precision score. a Points of background only exist in some point clouds and a large amount of other instance’s points is classified as 353 

background, which results in the low precision in multi-view 3D segmentation. If we calculate the result of background (3D) among the 354 

whole dataset, precision and recall are 0.73 and 0.98, respectively. *There is a significant difference. 355 

 356 

  

Pixel-wise instance segmentation 

Precision Recall F1-score 

2D 3D P-value 2D 3D P-value 2D 3D P-value 

Stem 0.77 (0.16) 0.97 (0.04) 0.000* 0.65 (0.20) 0.79 (0.09) 0.000* 0.70 (0.15) 0.87 (0.06) 0.000* 

Leaf 1 0.95 (0.10) 1.00 (0.00) 0.000* 0.66 (0.19) 0.92 (0.06) 0.000* 0.78 (0.14) 0.96 (0.03) 0.000* 

Leaf 2 0.93 (0.13) 1.00 (0.00) 0.000* 0.67 (0.20) 0.89 (0.09) 0.000* 0.78 (0.16) 0.94 (0.05) 0.000* 

Background a - 0.17 (0.26) - - 0.98 (0.04) - - 0.42 (0.31) - 

  

Object-wise instance detection 

Precision Recall F1-score 

2D 3D P-value 2D 3D P-value 2D 3D P-value 

Stem 0.68 1.00 - 0.67 1.00 - 0.68 1.00 - 

Leaf  0.83 1.00 - 0.82 1.00 - 0.83 1.00 - 

Node 
1 mm 0.68 0.96 0.001* 0.65 0.96 0.003* 0.67 0.96 0.002* 

2 mm 0.97 1.00 0.177 0.92 1.00 0.126 0.94 1.00 0.141 

3.3 Qualitative analysis of errors 357 

In the previous subsections, the quantitative results showing that the proposed multi-view 3D systems for segmentation outperformed the 358 



2D systems were presented. In this subsection, the errors that the systems made are examined in more detail, this is in order to better 359 

understand the reasons behind this improvement and to find the limitations of the systems and possibilities for future improvements. In 360 

section 3.3.1, the qualitative analysis for 2D and multi-view-3D semantic segmentation is presented, and in section 3.3.2, the qualitative 361 

analyses of 2D and multi-view-3D instance segmentation are presented. 362 

3.3.1 Qualitative analysis of semantic segmentation performance 363 

The different types of errors made by the 2D semantic-segmentation method are illustrated in Fig. 13. Four different types of error were 364 

distinguished:  365 

(a) The segmentation was poor at the borders of plant parts. At the leaf borders, the segment extends into the background, and 366 

segmentation errors were made at the junction between leaf and stem. This explains partly the low precision for 2D semantic 367 

segmentation. This type of error occurred in every image in the test set (Fig. 13a).  368 

(b) The algorithm cannot deal with abnormal views of the leaves (Fig. 13b), resulting in false negatives, lowering the recall. 369 

This error appeared in 3.0% of the images and in total, 4.0% of the images contain abnormal views of the leaves.  370 

(c) The algorithm had an incomplete segmentation on areas with a low foreground-background contrast (Figure 13c), resulting 371 

in false negatives, lowering the recall. This error appeared in 37.0% of the images, while 39.0% of the images contained 372 

parts of the seedlings with a low contrast with the background (the plug).  373 

(d) The algorithm had incomplete segmentation within a plant part (Fig. 13d), resulting in false negatives, thus lowering the 374 

recall. This happened in 6.0% images.  375 

The multi-view 3D system did not show most of the errors that the 2D system made. Error (a), the over-extension of the segments in the 376 

background, was dealt with by the shape-from-silhouette method, which removes background points from the point cloud. Errors (b), (c) 377 

and (d) were diminished due to the voting strategy, as these errors occurred at specific places in specific viewpoints but were not consistent 378 

for the different viewpoints. The most prominent error remaining in the multi-view 3D method was that some of the leaf points were 379 

classified as stem, as shown in Fig. 13e. Because of the low number of stem points, this error resulted in a relatively low precision for stem 380 

segmentation. It also lowered the recall for leaf segmentation. Another main error in multi-view 3D semantic segmentation was the miss 381 

detection on nodes (Fig. 13f), which occurred in 7% of the testing dataset. This is error was discussed in section 3.1.  382 

 383 

Fig. 13. (a)-(d) provide examples of four types of errors of the 2D semantic-segmentation method: (a) the algorithm has difficulties at the 384 

borders of leaves and junction between leaves and stem, (b) the algorithm cannot always deal with abnormal views of the leaves, (c) the 385 

algorithm has an incomplete segmentation on areas with a low foreground-background contrast, (d) the algorithm sometimes has an 386 

incomplete segmentation within an organ, usually on leaves. (e)-(f) show two types of errors that occasionally occur in the multi-view 3D 387 

semantic-segmentation method: (e) the stem segment extends into the leaves and (f) miss detection of the node. 388 

 389 

3.3.2 Qualitative analysis of instance segmentation performance 390 

Examples of errors made by the 2D instance-segmentation network can be divided into six specific classes:  391 

(a) The algorithm predicted a mask not related to a plant part (Fig. 14a). This type of error occurred in 0.7% of the instances.  392 

(b) The algorithm predicted multiple masks for one instance (Fig. 14b), influencing the recall of pixel segmentation and 393 

resulting in at least one false positive and a false negative in the object-wise evaluation due to low IoU. This type of error 394 

occurred in 0.3% of the instances.  395 



(c) The algorithm predicted a mask that only contains a part of the instance (Fig. 14c), resulting in a lower recall in pixel-wise 396 

segmentation and a false positive and a false negative in object-wise detection. This type of error occurred in 2.7% of the 397 

instances.  398 

(d) The algorithm struggles with viewpoints where the leaves appeared very thin and elongated or very small (<200 pixels area) 399 

(Fig. 14d) and where the stems were very small (<200 pixels). This error occurred in 12% of the instances, while 18% of 400 

the instances were with such thin or small structures. 401 

(e) The algorithm had poor segmentation on areas with low foreground-background contrast (Fig. 14e), resulting in lower recall 402 

for the pixel-wise segmentation and a false positive and a false negative for the object-wise detection 13.7% of the instances 403 

were partially in low contrast. This type of error occurred in 8.7% of the instances.  404 

(f) The algorithm missed some of the instances, resulting in lower recall for the pixel-wise segmentation and a false negative 405 

for the object-wise detection (Fig. 14f). This error occurred in 1.7% of the instances. 406 

 407 

The multi-view 3D systems can avoid most of the errors (a)-(f) that occur in the 2D segmentation due to the voting strategy. Although the 408 

multi-view 3D method greatly improved precision and recall over the 2D method, the multi-view 3D method still suffered from a relatively 409 

low recall for the pixel-wise segmentation. This was caused by two types of errors: Fig. 14g shows that points near the node area were often 410 

classified as background, as well as points near the border of the leaves and the stems, see Fig. 14h. This was caused by the low recalls of 411 

leaf and stem in the 2D instance segmentation, classifying part of the plant as background, which occasionally resulted in a majority of 412 

votes for background on some of the 3D plant points. The errors at the borders of the plant were also an effect of the relatively low resolution 413 

of the 3D point cloud with respect to the 2D images. For each 3D point, only one corresponding pixel is considered in each image, whereas 414 

in reality it corresponds to an area of pixels. 415 

 416 

Fig. 14 (a)-(f) show examples of different types of errors of 2D instance-segmentation method: (a) random prediction, (b) multiple 417 

predicted masks for one instance, (c) partial segmentation, (d) bad mask segmentation on thin or small instances, (e) bad segmentation on 418 

instances with low foreground-background contrast, (f) miss detection on leaf. (g)-(h) show two types of errors of the multi-view 3D 419 

instance-segmentation method: (f) bad segmentation at the node area, and (g) bad segmentations on points at edges. 420 

 421 

Discussion and Conclusion 422 

A deep-learning-based multi-view 3D segmentation method is proposed, which segments 3D point clouds of plants into different plant parts. 423 



The method uses a voting strategy to project the segmentation results on 2D images from multiple viewpoints to the 3D point clouds. Two 424 

deep-learning networks, FCN for semantic segmentation and Mask-RCNN for instance segmentation were used. The 2D and multi-view 425 

3D method were evaluated on tomato seedlings with the task of segmenting background, leaves, stems and nodes. The methods were 426 

evaluated both on the ability to segment the plant on the pixel-level, as well as on object-wise detection. From the results, it could be 427 

concluded that the multi-view 3D approach greatly outperforms the 2D approach both for semantic, as well as for instance segmentation. 428 

The qualitative analysis identified a number of errors made by the 2D segmentation methods. However, errors that were made in the 2D 429 

semantic and instance segmentation did not occur persistently in all viewpoints on the plant. The projection of the segmentation into 3D 430 

space and the consecutive voting process result in a majority vote for the classification of a point in which most of the errors were ruled out. 431 

On 2D images, segmentation errors were regularly observed, such as bad segmentation on leaves that appear thin, on instances with low 432 

foreground-background contrast, on abnormal viewpoints and on small instances, as well as multiple masks and partial segmentation for 433 

one instance. However, by projecting the results on the 2D images into a 3D point cloud, the proposed method made up for these errors, as 434 

they did not occur for all viewpoints.  435 

The ability to segment different plant parts in 3D enables the estimation of several phenotypic traits (Golbach et al., 2015). The 436 

semantic segmentation can provide general traits, such as total leaf area, stem length and plant volume. The instance segmentation can 437 

provide additional information on the individual plant parts, such as stem length and diameter, leaf area, dimensions, shape and angle, and 438 

internode lengths. In the future, this will provide plant scientists, geneticists and breeders better tools to understand the relationship between 439 

genotype, environment and phenotype, and to accelerate breeding.  440 

The used multi-camera setup works under controlled and diffuse illumination, reducing the effects ambient light, shadows and specular 441 

reflections. However, the used deep-learning methods have been often used under uncontrolled illumination, and we therefore expect no 442 

difficulties for multi-view 3D segmentation in uncontrolled environments. 443 

We proposed a multi-view approach, using CNNs for 2D segmentation and a voting scheme to combine the segmentations from 444 

different viewpoints in 3D. This voting scheme assumes that every point in the point cloud is visible from all camera images, which is not 445 

always the case due to occlusions. Although, our results show that the majority vote provides generally the correct class, it is recommended 446 

to analyse the visibility of the points to allow only votes from cameras that can observe them. Such a more elaborated voting will allow to 447 

deal with more complex plants providing more occlusions. The multi-view approach does not provide a true end-to-end solution, as the 448 

voting scheme is not optimized by the deep-learning methods. In future work, we will compare the multi-view approach to 3D deep-learning 449 

methods that work directly on the point cloud. 450 

In this paper, we used tomato seedlings in an early-growth stage. However, the proposed method should also be able to deal with other 451 

plant types and in later growth stages. As backbone, we use deep neural networks for the segmentation of plant parts in 2D images. Others 452 

have shown that these methods can deal with more complex plant structures with dense foliage and with different plant species. Kuznichov, 453 

Zvirin, Honen, and Kimmel (2019) and Ward et al. (2018), for instance, used a Mask R-CNN as a solution for the leaf-segmentation 454 

challenge (Minervini et al., 2016). To deal with the issue of small datasets, they proposed a data augmentation method to synthesise 455 

photorealistic images. Morris (2018) proposed a fully convolutional pyramid network to discriminate leaf boundaries to segment leaves in 456 

dense foliage. These results can be combined with our multi-view method to combine 2D segmentations from different viewpoints into a 457 

3D segmented plant model. Future work needs to show the accuracy of our method on other plant types and in later growth stages.  458 

The qualitative analysis revealed a number of remaining errors in the multi-view 3D segmentation, which we hope to improve in 459 

future work by: (a) improving the data by considering colour images instead of grey-scale, which should improve the contrast between plant 460 

and background, as well as including more training data, to provide the network with more examples of abnormal views on the plant; (b) 461 

improving the 2D segmentation methods, by adding additional skip connections to include more local detail to improve segmentation at the 462 

borders of the plant parts; (c) improving the 3D point cloud method by increasing the resolution, which will improve segmentation at the 463 

borders. Also, it is currently assumed that a point on the plant is visible in all camera views, which is not true in reality due to occlusion. By 464 

including methods well-known in computer graphics such as z-buffering, visibility can be made more realistic; (d) comparing this method 465 

to deep-learning approaches that directly work on the 3D point clouds, such as PointNet++ (Qi et al., 2017) and SGPN (Wang el al., 2018). 466 
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 470 

Figure Captions 471 

Fig. 1 Overview of method. 472 

Fig. 2 Examples of input images (first line) and ground-truth semantic-annotations (second line). 473 

Fig. 3 Fully convolutional network architecture used for the semantic segmentation. The image refers to the image drawn by Souza (2017) 474 

and He et al. (2017). 475 

Fig. 4 Examples of input images (first line) and ground-truth instance-annotations (second line). 476 

Fig. 5 Mask-RCNN architecture used for the instance segmentation. The image refers to the images drawn by (Ren et al., 2017). 477 

Fig. 6 Examples of ground-truth point clouds of seedlings, ground truth semantic-annotations and ground truth instance-annotations. 478 

Fig. 7 Procedures of projecting 2D results to 3D point cloud. Bounding box and mask colour on image 0-9 are randomly chosen.  479 

Fig.8 Examples of input images (top row) and predictions of semantic pixel labels (bottom row). 480 

Fig. 9 Examples of predictions of multi-view 3D semantic segmentation. 481 

Fig. 10 Distribution of distance between the centre of predicted node pixels and the centre of ground-truth on (a) semantic segmentation 482 

and (b)instance segmentation. 2D represents results of segmentation on 2D images (Ground truth node number in the testing dataset=100). 483 

3D represents results of segmentation on point clouds (Ground truth node number in testing dataset=60). 484 

Fig. 11 Examples of input images (first line) and predictions of instance labels (second line). 485 

Fig. 12 Examples of predictions of multi-view 3D instance segmentation. 486 

Fig. 13. (a)-(d) provide examples of four types of errors of the 2D semantic-segmentation method: (a) the algorithm has difficulties at the 487 

borders of leaves and junction between leaves and stem, (b) the algorithm cannot always deal with abnormal views of the leaves, (c) the 488 

algorithm has an incomplete segmentation on areas with a low foreground-background contrast, (d) the algorithm sometimes has an 489 

incomplete segmentation within an organ, usually on leaves. (e)-(f) show two types of errors that occasionally occur in the multi-view 3D 490 

semantic-segmentation method: (e) the stem segment extends into the leaves and (f) miss detection of the node. 491 

Fig. 14 (a)-(f) show examples of different types of errors of 2D instance-segmentation method: (a) random prediction, (b) multiple predicted 492 

masks for one instance, (c) partial segmentation, (d) bad mask segmentation on thin or small instances, (e) bad segmentation on instances 493 

with low foreground-background contrast, (f) miss detection on leaf. (g)-(h) show two types of errors of the multi-view 3D instance-494 

segmentation method: (f) bad segmentation at the node area, and (g) bad segmentations on points at edges. 495 
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