WAGENINGEN

UNIVERSITY & RESEARCH

Plant-part segmentation using deep learning and multi-view vision

Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G.

This is a "Post-Print" accepted manuscript, which has been Published in "Biosystems
Engineering"

This version is distributed under a non-commercial no derivatives Creative Commons
@ (CC-BY-NC-ND) user license, which permits use, distribution, and

reproduction in any medium, provided the original work is properly cited and not
used for commercial purposes. Further, the restriction applies that if you remix,
transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:

Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G. (2019). Plant-part segmentation
using deep learning and multi-view vision. Biosystems Engineering, 187, 81-95.
https://doi.org/10.1016/j.biosystemseng.2019.08.014

You can download the published version at:

https://doi.org/10.1016/j.biosystemseng.2019.08.014

109
110
111
112
113
114
115
116
117

118

119

120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136

137

138

139
140

on Mask R-CNN (He et al., 2017). Inspired by multi-view methods, the 2D segmentations are combined from different viewpoints to obtain
the 3D point-clouds segmentation. A novel 3D voting strategy is proposed and the performance of the system is evaluated on leaf, stem and
node segmentation of tomato seedlings. Our approach can overcome the drawbacks of segmentation on 2D images and obtain a promising
performance on segmentation of 3D point clouds. The results of the segmentation can be used for trait extraction of a seedling in the future.
The reasons to use a multi-view approach is threefold, (a) the method integrates naturally with our multi-camera setup (Golbach et al., 2015),
(b) it can benefit from the GPU optimisation of CNNs for 2D segmentation, enabling a future high-throughput system, and (c) this approach
can deal with large and variable-sized point clouds, whereas point-cloud-based 3D segmentation methods, such as PointNet++ (Qi et al.
2017), have a limited input size, therefore requiring down sampling with loss of spatial resolution or splitting up in multiple boxes with loss

in speed.

2 Materials and Methods

2.1 Overview of the Method

Figure 1 gives an overview of the proposed method. The method performs two types of segmentation; semantic segmentation and instance
segmentation. Semantic segmentation is the task of labelling each point in the image with a class, that is, a point-based classification. For
example, in this paper, each point is labelled as either background, stem, leaf or node. Semantic segmentation does not cluster the points
into different objects and cannot differentiate between instances. Our method also performs instance segmentation, where all points
belonging to an object instance are clustered and labelled individually. For instance, our method finds all points belonging to each individual
leaf.

Fig. 1 Overview of method.

Our goal is to perform semantic and instance segmentation on 3D point clouds of seedlings. To this end, our method is based on a
multi-view camera system for 3D reconstruction as proposed by Golbach et al. (2015). As shown in Fig. 1, the multi-view 2D images of a
seedling are acquired by the system. Next, semantic segmentation and instance segmentation are performed on the 2D images. Then, the
2D segmentation results are projected to a 3D point cloud using the know intrinsic and extrinsic parameters of the multiple cameras. Finally,
the 3D points are segmented by applying a voting strategy on the results from the multiple 2D segmentations.

In the following subsections, the multi-view camera system is described (section 2.2), as well as the methods for 2D semantic
segmentation (section 2.3) and for 2D instance segmentation (section 2.4). Following this, the combination of these results into a multi-
view 3D segmentation method (section 2.5) is discussed. The section is completed with a description of the evaluation methods (section
2.6).

2.2 Multi-view camera system
The multi-view camera setup as proposed by Golbach et al. (2015) with ten cameras placed in a semi-sphere observing the plant from

different viewpoints was used. The cameras were placed at a distance of 900 mm from the seedlings. The system uses Basler acA1300-

30gm cameras, which are affordable cameras that provide grey-scale images with a 1280x900-pixel resolution at 30 fps. The use of grey-

141
142
143
144
145
146
147

148

149
150
151
152

153

154
155
156
157
158
159
160
161
162
163

164
165

166

167
168
169
170
171
172
173
174
175

scale gives a sharper transition between plant and background compared to colour cameras, which use a Bayer pattern. This improves the
segmentation of plant and background, resulting in improved 3D point clouds. The plants were segmented from the background using
backlighting. The resulting plant silhouettes were input to a shape-from-silhouette method that calculates a 3D voxel representation of the
plant combining the silhouettes from all the camera images. With the trade-off between accuracy and speed, the final resolution of the voxel
space was set to 0.25 mm/voxel, using 240%240%300 voxels (x, y, z), resulting in real-world dimensions of 60x60x75 mm. In this study,
we use the individual 2D images as well as the 3D point cloud corresponding to the surface points in the 3D voxel representation of the

plant.

2.3 Semantic segmentation on 2D images

The goal of semantic segmentation of 2D images of seedlings is to segment the pixels into four classes: background, leaf, stem and node.
To meet this need, we use an end-to-end deep-learning approach to semantic segmentation. A fully convolutional network (FCN), as
proposed by Long et al. (2015), was used. The outputs of the network are the class labels of each pixel. The used images dataset is discussed

followed by the use of FCN to semantically segment the seedling images.

2.3.1 Dataset for 2D semantic segmentation

Examples of input images and ground-truth semantic-annotations are shown in Fig. 2. The seedlings in the dataset were in the early stage
of development with two leaves. The dataset contains 620 grey-scale images of 62 seedlings with a resolution of 1280%900 pixels. The
dataset was separated in 420-100-100 for training, validation and testing, respectively. The validation set was used to determine the stopping
criterium of training, in order to prevent overfitting. The network was trained until the loss on the validation set stabilized or increased again.
The performance evaluation reported in this paper result from the test dataset. Ground-truth pixel-wise annotations were manually obtained
using the segmentation tool LabelMe (Russell, Torralba, Murphy, Freeman, 2008). Pixels were divided into four classes: background, leaf,
stem and node. As a large part of the original images contained background, the images were cropped to 600x400 pixels before feeding
them to the deep neural-network. The different classes were heavily imbalanced, with 99.183% of the pixels being background, while the
occupations of leaf, stem and node were 0.600%, 0.207% and 0.013% respectively. During training of the networks, measures were taken

to deal with the imbalanced, as will be discussed later.

Input images

Colour

Ground truth 2D semantic-annotations

Background

Fig. 2 Examples of input images (first line) and ground-truth semantic-annotations (second line).

2.3.2 Fully convolutional network architecture

The FCN architecture is shown in Fig. 3. The VGG-16 convolutional network proposed in (Simonyan & Zisserman, 2014), which is
commonly used in semantic segmentation tasks was used. As proposed by Long et al. (2015), some modifications at the final layers of the
original network were made to accommodate semantic segmentation. The network uses an encoder-decoder structure. In the encoder part
of the network, a high-dimensional feature vector is extracted from the image in a series of convolutional layers followed by pooling steps,
providing an abstract representation of the image content. The encoder part is illustrated in Fig. 3 by Conl-Pooll-...-Con7. The Con7 layer
has a dimensionality of 21x13 with 4,096 feature channels. The decoder part consists of a 1x1 convolution layer with 4 (number of classes)
channels followed by a series of deconvolution and un-pooling layers to bilinearly up-sample the coarse predictions to pixel-dense outputs
of the original resolution. To predict finer details, skip connections were used from the pool4 and the pool3 layer. At the output layer, the

network predicts the semantic class of each pixel; background, leaf, stem or node. Transfer learning was employed by copying the pre-

176
177
178
179

180
181
182

183

184
185
186
187

188

189
190
191
192
193
194

195
196

trained VGG-16 weights of the first five convolution layers trained on ImageNet (Deng et al., 2009) to our network. The other weights were
randomly initialised. The network was trained using stochastic gradient descent (SGD) with weighted cross-entropy loss to handle the
imbalanced dataset. The hyper-parameters for training were taken from (Long et al., 2015): a learning rate of 10-, momentum of 0.9 and

weight decay of 5 for 500 iterations. Dropout was used in the Con6 and Con7 layer.

Conl Pooll Pool2
| con2

Pool3 Pool4 Pool5

Con3 | .) 1x1 Convolution
] Cond | Cons
[| F'LI Con7
Conb 1

Wﬁﬂ S~

a

L/

'a
ol
Y

»
>

1x1 Convolution '

Output

1x1 Convolution

Input /I

Convolution Layer Pooling Layer Deconvolution Layer _

Fig. 3 Fully convolutional network architecture used for the semantic segmentation. The image refers to the image drawn by Souza (2017)
and He et al. (2017).

2.4 Instance segmentation on 2D images

Not only is pixel-wise segmentation of the plant images of interest, but also individual plant parts need to be distinguished and segmented;
so-called instance segmentation. To this end, MASK-RCNN was employed (He et al., 2017), which is a widely used tool for instance-
segmentation tasks. Based on an input image, the network provides a bounding box around the object instance, including a pixel-level

segmentation of the object inside the bounding box. The dataset will be discussed, followed by the Mask R-CNN architecture

2.4.1 Dataset for 2D instance segmentation

The same plants and images with the same split in training, validation and test sets as discussed in section 2.3.1 were used. Here, the ground-
truth annotations consist of the bounding boxes around the object instances including labels of the instances (e.g. “leaf 1” or “leaf 2”’) and
a pixel-level segmentation of the instance inside the bounding box (called mask). The stem, node and all individual leaves were also
annotated using the LabelMe annotation tool. The train dataset contains 840 instances of leaves, 420 instances of stems and 420 instances

of nodes. The test dataset contains 200 instances of leaves, 100 instances of stems and 100 instances of nodes. Figure 4 gives a few examples

Ll
I

of the annotated dataset.

Input images

7

Ground truth 2D instance-annotations

f-—.

Fig. 4 Examples of input images (first line) and ground-truth instance-annotations (second line).

Leaf 1

Leaf 2

Node

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213
214

215

216
217
218

219

220

221
222

2.4.2 Mask R-CNN architecture

The Mask R-CNN architecture (He et al., 2017) can be divided into 3 parts: a feature-extraction network, a region-proposal network and
two instance detection and segmentation networks, as shown in Fig. 5. The feature-extraction network used had a 50 layer residual network
(He et al., 2016), which extracted high-level features from the input image in the final convolutional layer of the 4-th stage (ResNet-50-C4).
This is a commonly used network for feature extraction. The region-proposal network proposed a number of initial regions of interest (Rols)
that potentially contain objects of interest (Ren, He, Girshick, Sun, 2017). The RolAlign layer is applied to warp the Rols into fix-sized
feature maps. These were then input to the instance detection and segmentation network consisting of two branches. One branch was a fully-
connected network that takes the Rol as input and detects the presence of an object instance including the bounding box, the class label and
the confidence score. The other branch was a fully convolutional network for predicting the pixel mask of the objects within the bounding
box. The confidence scores (ranging from 0 to 1) describe how confident the network is about the predicted class.

Hyper-parameter settings are taken from (He et al., 2017), which are set as follows. During training, a Rol was considered correct if
it had an intersection-over-union (IoU) with the ground-truth box of at least 0.7. To avoid duplicates for the same object, the non-maximum
suppression (NMS) was applied with the threshold set to 0.7. The network was trained using the adaptive moment estimation (ADAM)
optimiser for 450 iterations, after which the training loss and validating loss were stable, with a learning rate of 1073 and a weight decay of
1073 for the first 5 iterations, then with a learning rate of 10 and a weight decay of 5x10 for the next 30 iterations, and finally at a learning

rate of 10~ and a weight decay of 10 for the final iterations.

Feature maps Fix-sized feature maps Fully connected layers

l Category labels wilV"_ .
ﬂ confidence scores stem 0.990

===z .
. e I leaf 0.9¢
Bounding boxes i | eaf 0.990

RolAlign) ; !

D —— — |

Fully convolutional layers \ -

i
—_ —— Masks
Input A feature extraction A region-proposal Instance d'etectlon and Output
network network segmentation networks

Fig. 5 Mask-RCNN architecture used for the instance segmentation. The image refers to the images drawn by (Ren et al., 2017).
2.5 Segmentation on 3D point clouds
Segmentation of plant parts in the individual camera images has clear limitations due to occlusions and difficult perspectives. To deal with

that, an integration of the image segmentations from different viewpoints into a 3D representation was utilised. The dataset is explained

first, followed by a discussion of the multi-view 3D segmentation method.
2.5.1 Dataset for multi-view 3D segmentation
To evaluate the performance of the multi-view 3D segmentation method, the 3D point clouds were annotated manually by using Rviz cloud

annotation tool (Monica, Aleotti, Zillich, Vincze, 2017). Each point in the cloud was assigned a class label. In case of instance segmentation,

each individual instance got a specific label. Figure 6 contains examples of the annotated point clouds.

223
224

225

226
227
228
229
230
231
232
233
234
235

Ground truth point clouds of seedlings Colour
1

f N Point without
. v ' annotation

Fig. 6 Examples of ground-truth point clouds of seedlings, ground truth semantic-annotations and ground truth instance-annotations.

2.5.2 Voting strategy for multi-view 3D segmentation

In order to segment the 3D point cloud of the plant, the predicted segmentations of all 2D images were combined in 3D using a voting
strategy, as illustrated in Fig. 7. The first step is to obtain the intrinsic and extrinsic camera parameters in order to spatially calibrate the
multi-view camera system (Golbach et al., 2015). In this procedure the projections of the points in the 3D work space onto each of the ten
camera images was determined and stored in look-up tables (LUTs) for computational efficiency. Once the system was calibrated and the
2D-to-3D correspondences were determined, the 3D point cloud of the plant can be obtained using the shape-from-silhouette method as
described in section 2.2. Next, for each point in the 3D point cloud, the LUTs were employed to find the corresponding pixel coordinates in
the ten camera images. At these coordinates the predicted class label in the 2D images was sampled as predicted by the deep neural networks.
Finally, a voting strategy to label the 3D points was used. Each point received ten votes on the predicted labels from the ten images. The
probability of each class label was calculated from the proportion of votes. The class label with the highest probability was assigned to the

3D point. The same method was applied for semantic segmentation and for instance segmentation.

