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Abstract 9 

This study demonstrates the effect of better accounting for feed-food competition in life cycle 10 

assessment (LCA) to derive mitigation strategies that contribute to efficiently feeding the growing 11 

world population. Economic allocation, commonly used in LCA, falls short in accounting for feed-food 12 

competition as it does not consider interlinkages in the food system. The authors hypothesise that an 13 

alternative “food-based” allocation better accounts for food-feed competition by assigning no 14 

environmental impact to feed products unfit for human consumption. To evaluate the impact of 15 

accounting for feed-food competition on LCA results, economic and food-based allocation were 16 

compared in an LCA of a novel egg production system that feeds only products unsuitable or undesired 17 

for human consumption. Using economic allocation, the global warming potential (GWP) of 1.30 kg 18 

CO2-eq, energy use (EU) of 10.49 MJ, land use (LU) of 2.90 m2, and land use ratio (LUR) of 1.56 per kg 19 

egg of the case study farm were all lower than that of free range or organic eggs. Avoiding feed-food 20 

competition on this farm reduced the environmental impact per kg egg by 56-65% for GWP, 46-54% 21 

for EU, 35-48% for LU and 88% for LUR, compared to free-range laying hens fed a conventional diet. 22 

Accounting for feed-food competition with food-based allocation further reduced impacts per kg egg 23 

by 44% for GWP to 0.57 kg CO2-eq, 38% for EU to 4.05 MJ, 90% for LU to 2.59 m2, and 83% for LUR to 24 

1.29. This improved LCA better captures the complexity of the food system. 25 

Keywords 26 

Life cycle assessment, circular food system, feed-food competition, sustainable food production, 27 

livestock production, egg production 28 

1Abbreviations/concepts  29 

                                                           
ASF: Animal-source food 
LUR: Land use ratio 
LCA: Life cycle assessment 
LU: Land use 
EU: Energy use 
GWP: Global warming potential 
GHG: Greenhouse gas 
LCF: Low-opportunity-cost feedstuffs 
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1. Introduction 30 

Animal-source food (ASF) supplies humans with high quality protein and essential micro-nutrients 31 

(Craig and Mangels, 2009), but it’s production has significant negative environmental impacts 32 

(Steinfeld et al., 2006). These impacts include climate change (Vermeulen et al., 2012), ecosystem 33 

pollution (Gerber et al., 2013), biodiversity loss (Newbold et al., 2016) and use of scarce resources such 34 

as land, water, and fossil-energy (Steinfeld et al., 2006). Globally, the livestock sector is responsible for 35 

∼15% of anthropogenic greenhouse gas (GHG) emissions (Gerber et al., 2013), and uses ∼80% of 36 

farmed land (Poore and Nemecek, 2018).  37 

Feed cultivation is responsible for the majority of greenhouse gas (GHG) emissions and almost all land 38 

use (LU) of livestock production (De Vries and de Boer, 2010). Globally, it occupies ∼40% of all arable 39 

land (Mottet et al., 2017) on which food crop cultivation is more efficient (Garnett, 2011) as nutrients 40 

are lost when converting plant into animal biomass (Godfray et al., 2010). To address arable land 41 

availability, a major limitation to sustainably feeding the world’s future population (Lambin and 42 

Meyfroidt, 2011), recent studies propose to avoid this inefficiency by feeding livestock only with 43 

products that humans cannot or do not want to eat (Van Zanten et al., 2018). These ‘low-opportunity-44 

cost feedstuffs’ (LCF) include crop residues, e.g. wheat straw or beet tails, and by-products, e.g. wheat 45 

middlings or sugar beet pulp, of food crops grown on arable land, food waste, and grazing resources 46 

from non-arable land (Schader et al., 2015). Livestock fed with only LCF upcycle nutrients that would 47 

otherwise be lost to the food system into ASF (Bowles et al., 2019), without using additional arable 48 

land (Garnett et al., 2015). By avoiding competition between feed and food crop production (Röös et 49 

al., 2017), they contribute to a more efficient food supply (Van Kernebeek et al., 2016). 50 

Despite this scientific acknowledgement of the relevance of avoiding feed-food competition, the state 51 

of the art life cycle assessment (LCA) used to assess environmental impacts of ASF production falls 52 

short in addressing this issue as it is not designed to include interlinkages in the food system (Van 53 

Zanten et al., 2018). Producing oil from sunflower seed, for example, also yields meal and hulls (see 54 

Figure 1). In an LCA of ASF, the environmental impact of this multifunctional process is allocated to its 55 

multiple outputs (e.g. oil, meal and hulls) based on their relative economic value (De Vries and de Boer, 56 

2010), a method defined as economic allocation (Guinée, 2002). Of the impact of cultivating and 57 

processing one kg of sunflower seed, 80% is allocated to the resulting 285 g sunflower oil as this oil 58 
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represents 80% (€0.25/€0.32) of the economic value of the process outputs (Figure 1). The economic 59 

value of a product, however, does not reflect their (un)suitability for direct human consumption (Van 60 

Zanten et al., 2016).  61 

62 
Figure 1 Environmental impact allocation over the co-products resulting from the multifunctional process sunflower seed 63 
crushing under traditional economic and food-based allocation as introduced in this paper (mass distribution of outputs & 64 
price of outputs (FeedPrint, 2018)).  65 

By not considering whether used feeds are fit for human consumption or compete for land with food 66 

crop production, mitigation strategies proposed by LCA studies may increase the resource use of the 67 

entire food system (Van Zanten et al., 2018). LCA studies by Herrero et al. (2016), for example, propose 68 

to reduce the environmental impact per kg ASF by increasing animal productivity, defined as animal 69 

output over feed input (Balmford et al., 2018). This productivity increase requires high quality feeds 70 

(De Vries et al., 2015), typically including food crops or feed crops grown on arable land, thereby 71 

increasing competition with food production (Wilkinson and Lee, 2018). Negative implications of such 72 

strategies, i.e. increased pressure on arable land, are overlooked as the state of the art LCA ignores 73 

their consequences on interlinked production systems (Van Zanten et al., 2018).  74 

To move towards a resource efficient food system, LCA’s shortcoming in considering food system 75 

interactions such as feed-food competition should be addressed. This study presents a first step 76 

towards achieving this by introducing a novel allocation method that reflects the (un)suitability of feed 77 

Economic value 

1 kg seed 

Input Output 

Oil: 285 g 

Meal: 350 g 

€ 0.90 

€ 0.18 

80% 

20% 
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Food-based 

100% 
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 0% 
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products for human consumption. This food-based allocation assigns zero environmental impact to by-78 

products unsuitable or undesired for human consumption whereas the determining (food) product is 79 

given full allocation. Of the environmental impact of cultivating and processing one kg of sunflower 80 

seed, 100% is now allocated to the resulting 285 g sunflower oil as this is the only edible end-product 81 

which drives sunflower seeds production (Figure 1).  82 

This study evaluates the impact of explicitly accounting for feed-food competition on LCA results. A 83 

conventional LCA with economic allocation was compared with an alternative LCA with “food-based” 84 

allocation that explicitly accounts for feed-food competition (Figure 1). Both LCAs were extended with 85 

the land-use ratio (LUR) indicator which provides insights into the land use efficiency of the entire food 86 

system (Van Zanten et al., 2016). The limitations of economic allocation, illustrated by the impact of 87 

accounting for feed-food competition in LCA, were assessed in a case study of an innovative egg 88 

production system that avoids feed-food competition.  89 

2. Material and Methods 90 

The impact of explicitly accounting for feed-food competition in LCA was explored. LCA is a holistic 91 

approach to evaluate the environmental impact throughout a product’s entire life cycle (Baumann and 92 

Tillman, 2004). Following the LCA protocol (Guinée, 2002), the goal and scope definition and inventory 93 

analysis are described in the material and methods, the impact assessment in the results and 94 

interpretation of the results in the discussion. 95 

2.1 Goal and scope definition  96 
LCA was applied to a case study of ‘Kipster’, an innovative egg production system designed to produce 97 

eggs with respect for animals, farmer, and planet. The system avoids feed-food competition, produces 98 

and uses solar energy, and rears the male chicks associated with egg production for meat (Kipster, 99 

2017). First, the environmental impacts of this system were benchmarked against free range and 100 

organic egg production, using traditional LCA with economic allocation. Subsequently, the impact of 101 

accounting for feed-food competition in LCA was illustrated by comparing economic with food-based 102 

allocation (Figure 1). How each allocation method applies to the feed used by Kipster is described in 103 

section 2.2.4, i.e. the inventory assessment of feed production. 104 
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The indicators LU (m2) and GWP (CO2-eq) were selected as livestock production contributes 105 

significantly to land use and climate change (Steinfeld et al., 2006), and EU (MJ) for its inherent relation 106 

with GWP. To calculate GWP, the three main GHGs related to agriculture, CO2, CH4 and N2O, were 107 

summed using their CO2-eq weighting factors for 100-year time horizon: 1 for CO2, 28 for biogenic CH4, 108 

30 for fossil CH4 and 265 for N2O (Myhre, 2013). Where LU quantifies the amount of land needed to 109 

produce one kg egg, the land use ratio (LUR) was included to indicate whether this land could have 110 

been used more efficiently to produce plant-source food (Van Zanten et al., 2016), for more detail see 111 

section 2.3.  112 

 113 
Figure 2. Production chain of the Kipster egg production system. 114 

The LCA, performed from cradle-to-farm-gate, included the following processes: rearing female and 115 

male chicks, egg production, solar energy production, manure management, feed production, and 116 

other off farm processes such as bedding material and energy production (Figure 2). The hatching 117 

phase and parent stock were excluded.  118 

2.2 Inventory analysis.  119 

The following section quantifies the inputs and outputs related to each farm process (Table 1): chick 120 

rearing (2.2.1), egg production (2.2.2), and solar energy production (2.2.3). The environmental impacts 121 

per unit of these inputs and outputs are then quantified for the off-farm processes: feed production 122 

(2.2.4), bedding material and energy production (2.2.5), and manure management (2.2.6).  123 
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2.2.1. Rearing female and male chicks 124 
Female chicks were reared from hatch to the egg productive stage, whereas male chicks were reared 125 

as slow-growing broilers. Kipster rears male chicks in response to societal concerns about the 126 

conventional culling of day-old male chicks. In the European union only 16% of these chicks is used as 127 

feed for zoo animals or reptiles while the rest is wasted (Bokma and Leenstra, 2010). Production data 128 

and inputs and outputs related to female chicks reared for Kipster (Table 1) are in line with the Dutch 129 

average production (Vermeij, 2017). Male chicks are reared under similar circumstances (Table 1) and 130 

reach a slaughter weight of 1.5 kg in 119 days (Zanders and Claessens, 2018), resulting in a meat yield 131 

of 580 g per chick (Loetscher et al., 2015; USDA, 2018). Based on the principles of system expansion, 132 

this valuable meat output, is expected to replace free range broiler meat with an average GWP of 7.01 133 

kg CO2-eq, EU of 41.2 MJ and LU of 9.96 m2 per kg (Appendix A). 134 

2.2.2. Egg production 135 
Inputs and outputs related to the egg production phase (Table 1) were based on technical results of 136 

Kipster. The DeKalb white laying hens produce eggs for 64 weeks after a 3 week adaptation period, 137 

and are kept at a density of 6.7 animals per m2 (Zanders and Claessens, 2018). At the end of the egg 138 

production phase, hens of 1.5 kg are slaughtered. The resulting 580 g meat per hen (Loetscher et al., 139 

2015) was accounted for using similar system expansion assumptions as reported for rooster meat.  140 

Table 1. Production data, inputs and outputs of rearing male and female laying hen chicks and the laying phase  141 
      Female chicks   Male chicks   Laying hens 
Production data               
Round size # animals  24,840  24,930  24,000 
Round duration days  119  119  470 
Mortality %  3.5  4.75  7.81 
Housing density animals/m²  10.50  10.50  6.70 
Farm input (/animal/round)             
Feed kg  5.6  7.3  55.33 
Bedding material kg  0.015  0.015  0.088 
Diesel l  30  -  - 
Gas m³  0.15  0.15  - 
Electricity kWh  2.35  2.35  8.36 
Farm output (/animal/round)             
Eggs kg  -  -  23.17 
Meat kg  -  0.58  0.58 
Manure kg   2.48   3.14   13.12 
Solar energy kWh  -  -  16.71 
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2.2.3. Solar energy production 142 

The Kipster laying hen barn is covered with 1,097 solar panels, producing ∼385,479 kWh solar energy 143 

per laying round, covering the energy requirement of both the rearing and the laying phases (Appendix 144 

E; Table E5). The surplus solar energy sold to the grid is assumed to replace average Dutch grid 145 

electricity which has a higher environmental impact (Table 3). 146 

2.2.4. Feed production 147 
In the rearing phase, both female and male chicks were fed a conventional diet (Appendix B). Laying 148 

hens were fed a diet consisting of LCF specifically designed for Kipster to avoid feed-food competition. 149 

Energy providing LCF included bakery rest streams (e.g. bread crumbs, biscuit sand, crispbread, dough 150 

melange, rice waffle, rusk) and candy rest streams (e.g. candy syrup, waffle syrup), while European 151 

sunflower and rapeseed meal provided protein (Appendix B; S1). The environmental benefits of two 152 

potential future protein-rich LCF were explored in two diet scenarios (Appendix B; S2-S3) with the same 153 

nutritional value of 11.8 MJ metabolisable energy, 6 g digestible lysine and 3 g digestible methionine 154 

per kg. The alternative protein source in the oilseed scenario (S2) was soybean meal. As the demand 155 

for soybean meal drives soybean production, it’s considered a feed crop that competes for arable land 156 

with food crop production (Van der Werf et al., 2005). In a future circular food system where soybean 157 

cultivation is limited to the demand for soybean oil, soybean meal is a by-product unsuitable for human 158 

consumption. In the insect scenario (S3), the alternative protein source was meal from larvae fed on 159 

food waste and manure, both being unsuitable as livestock feed (Van Zanten et al., 2015). Feeding 160 

insects to livestock is not permitted in the EU (Veldkamp et al., 2012), but has the potential to reduce 161 

the environmental impact of livestock production (Sánchez-Muros et al., 2014).  162 

The impact of each feed ingredient (Appendix B) was derived from Feedprint (Vellinga et al., 2013), 163 

supplemented for larvae meal (Van Zanten et al., 2015), additives (Garcia-Launay et al., 2014), soybean 164 

oil and lecithin (Ecoinvent, 2013), and fish oil (AgriBalyse, 2017). Feed production impacts include those 165 

related to feed cultivation, drying/processing and transport to the farm but exclude those related to 166 

land use change. The environmental impact per kg feed, for each allocation method (Table 2), was 167 

calculated by multiplying the impact per kg feed ingredient with its relative use in the diet.   168 
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Table 2 Global warming potential (GWP), energy use (EU) and land use (LU) per kg feed for each phase/scenario, under 169 
economic and food-based allocation. 170 
    Economic allocation   Food-based allocation 

  GWP   EU   LU   GWP   EU   LU  
Feed  (kg CO2-eq)  (MJ)  (m2)  (kg CO2-eq)  (MJ)  (m2) 
Rearing female  0.65  5.84  1.96  0.54  6.16  1.34 
Rearing male  0.65  6.53  1.65  0.46  4.95  0.91 
Laying hen S1  0.37  3.44  1.02  0.13  1.75  0.01 
Laying hen S2  0.30  3.75  0.85  0.20  2.79  0.27 
Laying hen S3   0.40   4.39   0.09   0.30   3.66   0.02 

Using economic allocation, impacts related to cultivation and processing were allocated to the 171 

resulting co-products based on their relative economic value (Figure 1). This implies that of the impact 172 

of cultivating and processing 1 kg sunflower seed, 80% was allocated to the resulting sunflower oil, and 173 

20% to sunflower meal (Vellinga et al., 2013). Food industry wastes such as dough melange were 174 

assumed to have no economic value according to LCA regulations (FEFAC, 2018). Using food-based 175 

allocation, all cultivation and processing impacts were allocated to the determining (food) product 176 

(Figure 1). This implies that the impact of cultivating and processing 1 kg sunflower seed was fully 177 

allocated to the sunflower oil driving these processes, and none to the associated sunflower meal, as 178 

it is unfit for human consumption. Environmental impacts related to the processing of a by-product, 179 

for example, drying sunflower meal, were allocated to this by-product. Although soybean meal drives 180 

soybean production, under food-based allocation no impact related to cultivation or processing of 181 

soybeans was allocated to it, assuming that in a future circular food system soybean production will 182 

be limited to oil demand. 183 

2.2.5. Bedding material and energy production  184 
Other off-farm processes include the production of animal bedding material and energy sources used 185 

on the farm and for transport. The environmental impact of each of these inputs (Table 3) was derived 186 

from Ecoinvent (2013).   187 
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 Table 3. Global warming potential (GWP), energy use (EU) and land use (LU) related to the production of farm inputs 188 
(Ecoinvent, 2013) 189 
    GWP 1   EU    LU  
Farm input  (kg CO2-eq)  (MJ)  (m2) 
Diesel (l)  0.22  3.39  0.004 
Gas (m3)  2.10  38.95  0.002 
Electricity2 (kWh)  0.74  2.98  0.014 
Solar power (kWh)  0.11  1.31  0.010 
Bedding material3 (kg)   0.07   0.76   0.005 

 2.2.6. Manure management 190 
CH4 and N2O emissions from manure handling and storage were computed using a tier 2 approach 191 

(IPCC, 2006), country specific data from Van Bruggen et al. (2014), and IPCC default values (IPCC, 2006), 192 

(Appendix C). Laying hen manure was dried before storage and no leaching or volatilisation was 193 

assumed to occur (Oenema et al., 2000).  194 

2.3. Land use ratio 195 
The LUR, an indicator of land use efficiency, is defined as the maximum amount of plant-based human 196 

digestible protein (HDP) that can be derived from the land used to cultivate the feed to produce one 197 

kilogram HDP from ASF (Van Zanten et al., 2016). A LUR below one implies that livestock produce more 198 

HDP per m2 than food crops could on the same land. As described in detail in Appendix D, the LUR is 199 

calculated with Equation 1,  200 

𝐿𝐿𝐿𝐿𝐿𝐿 =
∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑚𝑚

𝑗𝑗=1 (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 × 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗)
𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘𝑘𝑘 𝐴𝐴𝐴𝐴𝐴𝐴

 201 

where LOij is the land area (m2) occupied for a year to cultivate the amount of feed ingredient i (i=1,n) 202 

in country j (j=1,m) needed to produce 1 kg ASF, in this case eggs and chicken meat, including rearing 203 

young stock. HDPj is the maximum amount of HDP that can be produced per m2/year by direct 204 

cultivation of food-crops in country j. The denominator contains the amount of HDP in 1 kg ASF (Van 205 

Zanten et al., 2016).   206 

1: GWP includes production and combustion of energy sources 
2: Dutch average grid electricity 
3: Wood chips 

Equation 1: 
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3. Results 207 

Using economic allocation, the GWP per kg Kipster egg was 1.13 kg CO2-eq, the EU was 11.86 MJ, and 208 

the LU was 2.99 m2 of which 61-73% resulted from the laying phase (Figure 3). These results consider 209 

the impacts avoided by replacing grid energy with surplus solar energy, and replacing broiler meat with 210 

rooster and laying hen meat (Appendix E; Table E1). The solar energy surplus of 80,476 kWh reduced 211 

egg production phase GWP by 0.095 kg CO2-eq, EU by 1.42 MJ, and LU by 0.002 m2 per kg eggs 212 

(Appendix E, Table E5). The 12,900 kg meat produced from culled laying hens further reduced GWP by 213 

0.17 kg CO2-eq, EU by 0.99 MJ and LU by 0.24 m2 per kg egg. The 13,750 kg meat produced from male 214 

chicks reduced GWP of rearing male chicks by 0.18 kg CO2-eq, EU by 1.06 MJ, and LU by 0.26 m2 per kg 215 

egg.  216 

 217 
Figure 3. Global warming potential (GWP), energy use (EU), and land use (LU)/kg egg of Kipster as a whole using economic 218 
and food-based allocation, and the contribution of rearing of female and male chicks and egg production. 219 

3.1 Food-based versus economic allocation  220 
Food-based allocation reduced the GWP per kg Kipster egg to 0.49 kg CO2-eq, EU to 7.19 MJ, and LU 221 

to 0.11 m2 (Figure 3). The majority of this reduction occurred in the laying phase, as only laying hens 222 

were fed an LCF-based diet. The contribution of the laying phase to the total impact per kg egg was 223 

reduced to 55% for GWP, 44% for EU, and -206% for LU. The negative LU of the laying phase, the 224 

hatched area in Figure 3, resulted from the LU avoided by replacing broiler meat with laying hen meat 225 

(0.24 m2/kg egg), being higher than the LU in the laying hen phase (0.02 m2/kg egg). The reduction in 226 

GWP (26%) and EU (13%) in the rearing phase was relatively small, while the reduction of LU was 59%. 227 
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Using economic allocation, the majority of the GWP, EU, and LU per kg Kipster egg was related to feed 228 

production (Table 4). For GWP, a relatively large share (14.5%) of the impact originated from manure 229 

management. For EU, the use and production of farm energy sources accounted for 22.5%. While feed 230 

production remained the dominant impact source, food-based allocation reduced its contribution to 231 

all indicators (Table 4).  232 

  Economic   Food-based 
Input   GWP (%)   EU (%)   LU (%)  GWP (%)   EU (%)   LU (%) 
Energy  5.8  22.5  0.0  9.9  32.4  0.0 
Feed  79.7  77.5  99.9  65.3  67.6  99.8 
Bedding material  0.0  0.0  0.0  0.0  0.0  0.0 
Manure    14.5   0.0   0.0   24.8   0.0   0.0 

Table 4 Percentage of Kipster’s global warming potential (GWP), energy use (EU) and land use (LU) resulting from energy 233 
use/production, feed production, bedding production, and manure management under economic and food-based allocation. 234 

3.3 Diet scenarios 235 
With economic allocation, neither of the alternative diets (S2-S3) reduced the impact per kg egg for all 236 

indicators simultaneously, compared to the baseline diet (S1) (red dashed line, Figure 4). The insect 237 

meal diet (S3) greatly reduces LU while slightly increasing EU and GWP. Food-based allocation results 238 

in a lower environmental impact on all indicators for all diets, most pronouncedly for LU. The difference 239 

between allocation methods is less pronounced for the insect meal diet (S3) due to the high EU of 240 

insect rearing and the low economic value of the insect feed. With food-based allocation, the lowest 241 

impact on all indicators is achieved using the baseline diet (S1) (black dashed line, Figure 4).  242 

 243 
Figure 4 the environmental impact (GWP, EU, LU)/ kg egg from the Kipster system using alternative diets (S2 soy bean meal, 244 
S3 insect meal), compared to the current diet (S1) using economic and food-based allocation.  245 
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3.4 Land use ratio 246 

Using economic allocation, the LUR of the laying phase alone is ≥1 for both S1 (1.14) and S2 (1.06). This 247 

implies that the land used to produce laying hen feed could yield more HDP if used to produce human 248 

food crops (Figure 5a). The LUR of S3 was 0, implying an absence of competition for land between feed 249 

and food production. Adding the 0.57 LUR of the rearing phase to consider the entire Kipster system 250 

resulted in an LUR of 1.70 for S1, 1.63 for S2, and 0.57 for S3 (Figure 5b). Using food-based allocation, 251 

the LUR of the laying phase is 0 for S1 and S3. The LUR of 0.36 for S2 implies that some feed-food 252 

competition occurs. Adding the 0.30 LUR of the rearing phase results in an LUR of 0.66 for S2 and 0.30 253 

for S1 and S3 (Figure 5b). These <1 LUR’s imply that Kipster produces protein more efficiently than 254 

achievable with food crops grown on the same land, thereby contributing to food system efficiency.  255 

 256 
Figure 5 Land use ratio (LUR) of a) Kipster laying phase and b) Kipster as a whole under the current (S1) and alternative (S2-3) 257 
diets, using economic and food-based allocation.  258 

4. Discussion 259 

Before discussing the impact of allocation methods on LCA results, LCA results based on economic 260 

allocation are benchmarked against those found in literature. For this comparison, GWP results were 261 

recalculated using previously assumed equivalence weighing factors: 1 for CO2, 25 for CH4 and 298 for 262 

N2O (Forster P., 2007). The environmental impact per kg Kipster egg was lower than that of commercial 263 

free range or organic eggs (Table 4) due to avoided feed-food competition, on-farm solar energy use, 264 

supply of surplus solar energy to the grid, and rearing male chicks. While use and supply of solar energy 265 

reduced Kipster’s environmental impacts, rearing male chicks resulted in a net impact increase; the 266 

impacts of growing male chicks were higher than impacts avoided by their meat output (Appendix E; 267 

Table E1). This is a clear example of a sustainability trade-off, where addressing a social sustainability 268 

issue, namely culling of day-old chicks (Kipster, 2017), results in an environmental cost. Excluding the 269 
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benefits of solar energy use and supply and the costs of rearing male chicks (Appendix E, Table E1 & 270 

E6), resulted in a GWP of 1.43 kg CO2-eq, EU of 14.77 MJ, and LU of 2.70 m2 per kg egg, and an LUR of 271 

1.42. Compared to free range laying hens fed a conventional diet (Table 5), feeding only LCF to laying 272 

hens reduced GWP by 48-58%, EU by 21-37%, LU by 34-47%, and LUR by 32%. This was due to the 273 

small environmental impact allocated to LCF due to their relatively low economic value, and is in line 274 

with findings from studies assessing the impact of feeding specific LCF such as rape seed meal (Van 275 

Zanten et al., 2015a), waste fed insects (Van Zanten et al., 2015b), and food waste (Zu Ermgassen et 276 

al., 2016). 277 

Table 5. Global warming potential (GWP), energy use (EU), and land use (LU) per kg egg from free range and organic systems 278 
found in literature and of Kipster found in this study.  279 
    GWP   EU    LU  LUR 
Study  Free range  Organic  Free range  Organic  Free range  Organic  Free range 
Dekker et al. (2011)  2.75  2.54  23.45  20.55  4.08  6.76  - 
Leinonen et al. (2012)   3.38   3.42   18.78   26.41   5.10   -  - 
Van Zanten et al. (2016)  -  -  -  -  -  -  2.08 
Kipster (current study)  1.14  -  11.86  -  2.98  -  1.70 

Accounting for feed-food competition with food-based allocation further reduced the environmental 280 

impact per kg egg by 57% for GWP, 40% for EU, 96% for LU (Figure 3), and 88% for LUR (Figure 4). As 281 

to date, Kipster only avoids feed-food competition in the laying phase, the main impact reductions are 282 

achieved there. The reduction is most pronounced for LU, while the limited reduction in EU and GWP 283 

is due to the smaller contribution of feed production on these impacts (Table 4) and the energy needed 284 

to process LCF into compound feed, such as animal fat refinery, drying and additive production. GWP 285 

and EU can be further reduced by avoiding heavily-processed co-products, improving production 286 

processes, or using renewable energy sources. The second law of thermodynamics determines that 287 

recycling materials in a circular food system always requires energy which, by definition should be 288 

obtained from renewable sources (Korhonen et al., 2018). 289 

A conventional LCA with economic allocation not only underestimates the mitigation potential of 290 

strategies directed at avoiding feed-food competition, it even promotes the use of food crops as 291 

livestock feed (Van Zanten et al., 2018). This has been demonstrated in studies aiming to reduce the 292 

environmental impact of livestock production, as well as in studies aiming to reduce the impact of 293 

human diet. The latter typically recommend replacing grass-based beef with meat from fast-growing 294 

livestock such as broilers (Hallström et al., 2015) which are fed high quality feed-like cereals.  295 
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Accounting for feed-food competition in LCA is essential to promoting the circular food system and 296 

economy strived for by the Dutch government (Rijksoverheid, 2016) and the European Union 297 

(European Commission, 2015). This study illustrates the potential of food-based allocation to account 298 

for feed-food competition. Food-based allocation is simplified and binary; a product is allocated all the 299 

impact of cultivation and processing when suitable for human consumption, and none when 300 

unsuitable. This simplistic allocation – assuming products are either food or not – is applicable in the 301 

case study, where only products unfit for human consumption are fed to livestock. When assessing 302 

conventional systems with a high-quality feed diet, the impact allocated to each product should reflect 303 

its value for human nutrition. Developing this type of allocation method is complex, as it requires 304 

implementing a measure expressing nutritional value including multiple nutritional aspects such as the 305 

nutrient density score (Van Kernebeek et al., 2014). This score considers the nutrient content per 100 306 

g of a product relative to the daily recommended nutrient intake, and averages the score per nutrient 307 

into one final score (Drewnowski and Fulgoni III, 2014). Besides the complexity of implementing this 308 

score in an allocation method, it does not fully account for the nutritional benefits of ASF, for example, 309 

essential vitamin B12 is only available in animal products, and the amino acid composition matches 310 

daily requirements better than plant-source foods (Ertl et al., 2016).  311 

Food system modelling (Van Kernebeek et al., 2016) or scenario studies (Schader et al., 2015) are the 312 

most promising methods for capturing the complexity of the food system. Although these methods 313 

are unsuited to assessing or monitoring the impact of an individual product or production system, they 314 

provide valuable insights into how much ASF can be consumed when feeding only LCF. Van Zanten et 315 

al. (2018) reviewed these food system studies and showed that feeding livestock LCF only, globally 316 

provides about 9-23 grams of animal protein per capita per day. Per capita availability of ASF when 317 

feeding only LCF can be further increased by optimally using LCF (van Hal et al., 2019) and exploring 318 

alternative LCF ingredients such as insect meal, as in S3 in this study. The insect meal diet (S3) showed 319 

reductions of LU at the cost of an increase in EU and GWP. The high EU and GWP relate to the assumed 320 

high EU from larvae rearing and processing, based on an experimental trial of rearing larvae on food 321 

waste and manure conducted by a Dutch waste processor (Van Zanten et al., 2015). Both can be 322 

reduced by using renewable energy and developing industry-scale larvae rearing systems (Van Zanten 323 
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et al., 2015), which can only occur when European legislation no longer prohibits the use of waste-fed 324 

insects in animal feed (Van Zanten et al., 2015).  325 

Avoiding feed-food competition assumes that the ultimate goal of the food system is to feed humans 326 

efficiently, thereby neglecting other purposes served by agricultural production. In reality, the debate 327 

around competition for agricultural resources should not only consider the production of food and 328 

feed, but also the production of fibre (e.g. cotton), fuel (e.g. wood, biofuels), and the provision of other 329 

ecosystem services. This competition framework is complex and has not been comprehensively 330 

studied (Muscat et al., 2018). In the larger perspective of the battle for biomass, leftovers from the 331 

agricultural sector should be considered for other purposes than feeding livestock, keeping in mind 332 

that livestock feeding is seen as the most valuable use of food waste and by-products 333 

(Papargyropoulou et al., 2014). Including feed-food competition in the environmental impact 334 

assessment of food is an important first step towards a more efficient agricultural system.  335 

5. Conclusion 336 

Compared to free range laying hens fed a conventional diet, feeding only low-opportunity-cost feeds 337 

(LCF) reduced GWP by 48-58%, EU by 21-37%, LU by 34-47% and LUR by 32% in case of economic 338 

allocation. This was caused by the small environmental impact allocated to LCF due to their relatively 339 

low economic value. Using food-based allocation, the impact per kg egg was further reduced by 54% 340 

for GWP, 38% for EU, 94% for LU, and 88% for LUR. An LCA with economic allocation underestimates 341 

the environmental benefits of avoiding feed-food competition. Although food-based allocation 342 

illustrates the inadequacy of LCA in accounting for the complexity of the food system, it is as yet 343 

simplistic, and should be further developed to reflect the nutritional value of co-products for human 344 

nutrition. To promote mitigation measures that improve the resource use efficiency of the entire food 345 

system, improved LCAs that capture the complexity of the food system are needed.  346 
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