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CHAPTER 1

Introduction

Looking at the natural world around us, it is impossible not to be impressed by the
brilliance and the richness of its complexity. Starting from macroscopic patterns
such as “fir waves” in mountain forests (Sprugel, J. Ecol., 1976) or “tiger bushes” in
arid regions (Tongway et al., 2001), to the existence of complex life forms as plants
and animals, where billions of billions of cells operate and interact to sustain the
organism, all of these system share the same property. Indeed they are all highly
composite, with components that are in principle “designed” to execute simple
tasks, and cooperate and interact to give rise to a wide range of physical properties
such as self-organization, non-linearity, pattern formation, among others.

Systems with a high degree of complexity are everywhere in the world, and
at any length scale. As an example, the ecosystem of the tropical rainforest is
composed of very many di↵erent species of animals and plants that constantly
interact with each other. The way all di↵erent species with their behaviour play a
role in sustaining the forest is surprising, as at first sight the property of a single
species might not be thought to have any e↵ect on such a large ecosystem, whereas
the extinction of a single species can irreparably compromise this robust, yet fragile
because of human activity, system. A large flying fox from the forest, e.g., does not
know what is necessary for the tropical forest in order to survive, but it only knows
what is necessary for itself to survive. Nevertheless, what the rainforest needs the
large flying fox species to do in order to contribute to the forest survival, is exactly
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what that species does. For example, flying foxes disperse seeds while flying, and
because of their large home ranges, can disperse seeds in wide areas (Oleksy et al.,
Plos One, 2017). This mechanisms is crucial to promote the diversity of the forest
(Harms et al., Nature, 2000). More generally, all the plants and animals of the
rainforest cooperate and interact in a way that preserves the latter, while being
unaware of that.

Di↵erent approaches can be used to study the rainforest or any other complex
system. Among those, one option is mathematical modelling, that allows us to
represent the system in an idealized and simple way, including only the features
that we are interested in studying. Depending on the system under study, di↵erent
mathematical approaches could be used. For example, for large systems that change
on a long time scale such as the rain forest, one could, in principle, write down a set
of millions of deterministic coupled di↵erential equations, one for each component
of the system. It is clear that this approach is not e�cient because, even in the
eventuality that the set of equations was solvable, its solution would require an
extraordinary computational power that, at the moment, we lack.

For systems changing on shorter spatial and temporal scales such as the cell,
instead, some mechanisms are intrinsically stochastic. Microtubules, a complex
network of dynamic polymers and components of the cytoskeleton of eukaryotic
cells, for example, exhibit a stochastic behaviour as they alternate periods of
growth and periods of shrinkage, with growing and shrinking time that cannot
be deterministically predicted. Indeed, their growing and shrinking time obeys
well-defined probabilistic laws, and therefore one can only predict the average
quantity, not the time of a single event.

In both cases, it follows that stochastic modelling should be used to better model
these systems. In the first scenario, with large complex systems, it can be used for
example to approximate the e↵ect caused on the system by the dynamics of many
of its components as if they were just a random noise that a↵ects the single species
we are interested in studying. In the second case, instead, stochastic modelling not
only can better describe all the interactions between di↵erent components in terms
of probability of interaction, but it also accounts the intrinsic stochastic properties
of the system components.

In this thesis, we are going to study one of these complex systems with this
stochastic modelling approach. More specifically, we are going to apply the theory
of stochastic processes to the dynamics of the already mentioned microtubules. We
will first see how a specific class of microtubules in plants, the cortical microtubule
array, changes its orientation and maintains it as a consequence of the interaction
between individual microtubules. This process is very important for the anisotropic
cell expansion, and ultimately for the plant morphogenesis. Later in the thesis we
will make a step further by taking a look at how microtubules interact with another
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polymer component of the cytoskeleton, i.e. actin, and we will make predictions
about the consequences of such an interaction.

1.1 Microtubules are dynamic polymers of the

cytoskeleton

In this section, we introduce the main characters of this thesis, the microtubules. We
highlight some of their biological peculiarities, in particularly those that motivate
our modelling choices in the remaining chapters.

The cytoskeleton

The cytoskeleton is a complex, dynamic network present in the cells of all domains.
It has multiple and various functions, functional to the type of cell and organisms,
but the most common and important ones are: to give strength to the cell, to give
shape to the cell, to form the mytotic spindle, among others (Alberts, 2002).

In the eukaryotic domain, besides a multitude of linking and associated proteins,
cytoskeleton is composed by three distinct polymers: microtubules, actin filaments,
and intermediate filaments. Microtubules, in particular, are important for many
cellular mechanisms. Indeed they play an active role in mechanisms such as gene
expression, cell migration, and mitosis (Walczak & Heald, Int. Rev. Cytol., 2008).
Moreover, microtubules are involved in the development and in the morphogenesis
of the cells, and hence in the morphogenesis of the organisms (Lindeboom et al.,
Science, 2013). In this thesis, in particular, we will focus on the role of the plant
cortical microtubule array in the morphogenesis of higher plants.

The cortical microtubule array

The cortical microtubule array is an acentrosomal cytoskeletal structure in plant
cells located in a thin layer of the cytoplasm and bounded to the plasma membrane.
It consists of relatively short dynamic microtubules, the spatial organization of
which is very important for the control of cell expansion (Dixit & Cyr, Plant Cell,
2004). As an example, a rapidly elongating cell exhibits a very ordered structure
in which all cortical microtubules are bundled in a transverse direction to the
direction of the growth of the cell, see Figure 1.1, while they reorient to a direction
longitudinal to the growth direction of the cell when the latter elongates more
slowly (Sugimoto et al., Protoplasma, 2001). Experiments have revealed that the
reorganization of the cortical microtubule array can be triggered by environmental
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and hormonal signals (Sambade et al., Plant Cell, 2012 - Vineyard et al., Plant
Cell, 2013 - Lindeboom et al., Science, 2013).

Figure 1.1: Cortical microtubules in a rapidly elongating plant cell. Image is taken
from (Dixit & Cyr, Plant Cell, 2004)

Structure of microtubules

The elementary unit of a microtubule is a heterodimer of two tubulin proteins:
↵-tubulin and �-tubulin. These proteins are arranged to form an end-to-tail
protofilament. Usually, microtubules consist of 13 of these protofilaments, organized
in a tubular conformation, see Figure 1.2. However, it is not uncommon to find
microtubules composed by a di↵erent number of protofilaments (Chrétien et al., J.
Cell Biol., 1992).

The stacking of the tubulin dimers with ↵-� subunit binding is such that they
all have the same orientation. Specifically, all �-proteins are directed towards the
most dynamically unstable among the two microtubule tips, the so-called plus end,
while ↵-tubulin is directed towards the more stable tip, the so-called minus end
(Desai & Mitchison, Annu. Rev. Cell Dev. Biol., 1997).

Despite its small inner and outer diameters, 12 nm and 24 nm respectively, the
typical length of a microtubule is on the order of tens of micrometers, whilst its
persistence length is about 1-2 mm (Ledbetter & Porter, Science, 1964); therefore,
they can be seen as almost one dimensional sti↵ structures.

Dynamic instability

As we introduced already in the previous sections, microtubules are very dynamic
polymers, the dynamics of which mainly occurs at the plus end. This is a con-
sequence of the polarity induced by the ↵-� stacking. They spend part of their
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Figure 1.2: Structure of a microtubule. Courtesy of Thomas Splettstoesser
(www.scistyle.com).

lifetime in the polymerizing phase (growing state) and part in the depolymerizing
phase (shrinking state), with the possibility of switching from one state to the other
with the so-called catastrophes - growing-to-shrinking, and rescues - shrinking-
to-growing, see Figure 1.3. Usually, the growing and the shrinking speeds are
approximately constant during the growth and shrinkage period, respectively.

Polymerization of microtubules is made possible by GTP that binds to �-
tubulin at microtubule tips, stabilizes the tip, and promotes the attachment of
new tubulin dimers. However, the GTP cap bound to �-tubulin is hydrolized to
GDP shortly after the creation of the bond. This results in a reduction of a�nity
between neighbour tubulin proteins that causes destabilization and, therefore,
depolymerization and shrinkage of the microtubule. In other words, the GTP
creates a protective cap against subunit loss at the tip of the microtubule, while
hydrolyisis of GTP to GDP antagonizes this protective e↵ect (Mitchinson, Nature
1984). Hence, whether the microtubule persists in polymerizing or it undergoes a
catastrophe and depolymerizes depends on the relation between the binding rate
of new dimers with GTP caps and the hydrolyzing rate of GTP to GDP.

Nucleation

Microtubule nucleation is the process that initiates a new microtubule starting
from separate tubulin dimers. Besides the ↵ and �, a third kind of tubulin, mainly
associated to microtubule nucleation, is �-tubulin. Most of �-tubulin is organized
in ring complexes, the so-called �-TuRC in the Microtubule Organizing Centre
(hereafter MTOC) of animal cells, where it acts as a cap for microtubule minus
end to stabilize the latter while the plus end undergoes polymerization, enabling
in this way the nucleation of a new microtubule (Kollman et al., Nature, 2010).
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Figure 1.3: Schematic representation of a microtubule undergoing dynamic insta-
bility. Image is taken from (Draber et al., Front Immunol. 2012)

Plant cells, however, lack MTOCs. Still, they form complex microtubule
structures as the cortical microtubule array. Here, in contrast with the animal case,
�-tubulin is not localized at a specific site, but it is distributed anywhere in the cell
(Ehrhardt et al., J. Cell Sci., 2002). It has been shown that, although �-tubulin
can be dispersed in the cytosol and hence initiates microtubules from dispersed
sites (Schmit, Int. Rev. Cyt., 2002), most part of it binds to the lattice of already
existing microtubules, suggesting that the nucleation of new microtubules mainly
occurs from already existing ones (Murata et al., Nat. Cell Biol., 2005 - Ehrhardt,
Curr. Opin. Cell Biol., 2008). We refer to the nucleation from dispersed sites as
bulk or dispersed nucleation, while we refer to the microtubule-based nucleation as
bound or branching nucleation.

Microtubule Associated Proteins

Microtubule Associated Proteins (MAPs) are proteins that interact with micro-
tubules by binding to tubulin dimers and regulate microtubule dynamics (Desai
& Mitchison, Annu. Rev. Cell Dev. Biol., 1997). A large number of MAPs
with di↵erent functions and di↵erent localizations on the microtubule lattice have
been identified in the last three decades. Their function varies from stabilizing
or destabilizing microtubules, to mediating microtubule interaction with other
proteins (Maccioni & Cambiazo, Physiol. Rev., 1995). In this thesis we will focus
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on a few MAPs of three di↵erent kinds: plus end tracking proteins such as CLASP,
EB, or SPIRAL1, minus end tracking proteins as SPIRAL2, and severing proteins
as katanin, and we will discuss how their function is intimately linked to the spatial
organization of the cortical microtubule array.

Katanin

Named after the Japanese sword katana, katanin is an ATPase associated protein,
one of the functions of which is to sever microtubules along their lattice. A severing
event at the microtubule lattice initiates a new microtubule, as the mother is
divided in two daughters, independently on the presence of a � complex. The e↵ect
of katanin on the creation of new microtubules and on the dynamics of the cortical
array will be discussed in details in Chapters 2, 3, and 4.

Structurally, katanin is a heterodimeric protein consisting of a first 60 kDa
ATPase subunit that requires ATP hydrolysis to sever microtubules, and a second 80
kDa subunit that regulates the first subunit and localizes at the MTOCs (McNally
& Vale, Cell, 1993).

Katanin severs microtubules in multiple steps: firstly, it localizes at the micro-
tubule lattice and forms an hexomeric complex ring. Then ATP hydrolysis starts,
and when all phospates have been released, katanin undergoes conformational
changes that can disrupt tubulin-tubulin contacts (Hartman & Vale, Science, 1999
- Quarmby, J Cell Sci, 2000).

1.2 Research questions

In this thesis we are going to study how the dynamics of cytoskeletal components
influences the spatial organization of the cytoskeleton. In particular, we are
going to discuss two mechanisms: the reorientation of the cortical microtubule
array (Chapters 2, 3, and 4), and the transport of actin by the interaction with
microtubules (Chapter 5).

Cortical microtubules are very important for plant morphogenesis as they play
an active role in rapidly elongating the cell by orienting transversely to the growth
direction of the cell axis. In this way, they transport the building material for the cell
cortex to expand (Elliot & Shaw, Plant Physiol., 2018). Experiments revealed that,
as soon as the elongation rate of the cell slows down, cortical microtubules spatially
reorganize. They indeed change their direction from transverse to longitudinal to
the direction of elongation of the cell (Lindeboom et al., Science, 2013). Given the
absence of MTOCs in plant cells, one can hypothesize that cortical microtubules
self-reorganize from the old to the new spatial arrangement. As we are in presence
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of a self-organizing system composed by a large number of identical components,
we can argue that the cortical microtubule array is a complex system. Furthermore,
microtubules undergo intrinsic stochastic dynamics, with repetitions of catastrophes
and rescues. The occurrence of a catastrophe after a rescue event (or viceversa),
can be modelled as a Poisson-like event (Verde et al., J. Cell Biol., 1992). Therefore,
we choose to approach the study of the reorientation mechanism with stochastic
modelling. Thus, in the first part of the thesis, we will set up di↵erent stochastic
models of dynamic microtubules aimed at addressing two questions:

• Which factors play a role in the reorientation of the cortical array?

• How is the reoriented array maintained in the new direction?

In the second part of the thesis, we will study the spatial organization of
the cytoskeleton when only two of its components are present: actin filaments
and microtubules. Historically, the two di↵erent filaments have been extensively
studied, but only independently from each other. However, the importance of
their interaction has been acknowledged already sixty years ago (Abercrombie,
Exp. Cell. Res., 1961 - Vasiliev et al., Development, 1970). Indeed, in order to
develop, the cell needs to control the interaction between di↵erent cytoskeletal
components (Adikes et al., J. Cell Biol., 2017). Furthermore, the interaction
between actin and microtubules is thought to be crucial for neuronal growth,
cell migration and division, cellular wound healing, among others (Tortosa et
al., J. Biol. Chem., 2011 - Wu et al., Cell, 2008 - Huber et al., Curr. Opin.
Cell. Biol., 2015 - Dogterom & Koenderink, Nat. Rev. Mol. Cell Biol., 2018).
Recently performed experiments (Alkemade et al., in preparation) showed that the
interaction between actin filaments and microtubules mediated by the crosslinking
protein TipAct has a double e↵ect: it destabilizes microtubules by changing their
dynamic properties, and makes the actin filaments be transported by the plus end
of growing microtubules. In this work, starting from the experimental observations,
we will set up a stochastic model of microtubules undergoing dynamic instability
in three-dimensional confinement where actin filaments can freely di↵use. We will
address the questions:

• How is the spatial organization of actin and microtubules changed by their
interaction with respect to the corresponding non-interacting system?

• How can we control the spatial organization by changing the dynamic prop-
erties of actin filaments and microtubules?
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1.3 Modelling microtubule dynamics

Among the possible stochastic models for microtubule dynamics, the most canonical
one is the Dogterom-Leibler model (Dogterom & Leibler, Phys. Rev. Lett., 1993).
This model describes microtubule dynamics on the length scale of micrometers
and on the time scale of seconds. This means that the addition or the loss of a
single - or a small group, of tubulin dimers to the already existing microtubules is
not taken into account. On the contrary, the model considers the average growth
or shrinkage of the length of a microtubule in a certain unit of time. Thermal
fluctuations that can locally change the growth and shrinkage rate are neglected in
this model.

The model

In this model, a microtubule is modeled as a straight line either in growing state
(+), when it increases its length with growing speed v

+, or shrinking state (�),
when the length decreases with shrinking speed v

�. The microtubule can switch
between the two states with a certain catastrophe rate rc, and rescue rate rr, and
new microtubules are nucleated with nucleation rate rn, see Figure 1.4.

catastropherescuenucleation

Figure 1.4: Schematic representation of Dogterom-Leibler model of microtubules
undergoing dynamic instability.

Therefore, let m
± (t, l) be the probability distribution of growing/shrinking

microtubules with length l at time t. Then, dynamic equations for these two
distributions are

@

@t
m

+ (t, l) = �v
+ @

@l
m

+ (t, l)� rcm
+ (t, l) + rrm

� (t, l) , (1.1)

and
@

@t
m

� (t, l) = v
� @

@l
m

� (t, l)� rrm
� (t, l) + rcm

+ (t, l) , (1.2)

with boundary conditions
v
+
m

+ (t, 0) = rn,
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lim
l!+1

m
± (t, l) = 0.

Eqs. (1.1) and (1.2) are first order coupled partial di↵erential equations, and are
1-dimensional transport equations with source and decay, due to the switch from
one state to the other. The boundary conditions account the fact that all new
microtubules are nucleated in the growing state with initial length l = 0, and the
properties of probability functions of approaching 0 at l ! 1.

We can easily convince ourselves that the average growth length for a micro-
tubule from a rescue to the first catastrophe is l

+ = v
+
/rc, while the average

shrinkage length for a shrinking microtubule from a catastrophe to the following
rescue is l� = v

�
/rr. In particular,the model predicts the existence of two distinct

regimes of growth for the microtubules: the bounded-growth regime, i.e. when
l
�
> l

+, and the unbounded-growth regime, when l
+
> l

� (Dogterom & Leibler,
Phys. Rev. Lett., 1993). The typical behaviour of microtubule length in the
bounded and unbounded growth regimes is sketched in Figure 1.5.

Figure 1.5: Typical behaviour of the length of microtubules undergoing dynamic
instability in the (u) unbounded and in the (b) bounded-growth regime as a
function of time. Dashed lines represent the average value of the length over many
microtubules. Image is taken from (Dogterom & Leibler, Phys. Rev. Lett. 1993).

The bounded-growth regime

If l� > l
+ the system reaches the steady-state, i.e. the state in which all quantities of

the model no longer depend on time. Solving Eqs. (1.1) and (1.2) when @
@tm

± (t, l) =
0 is then straightforward, and the solution is

m
+ (l) =

rn

v+
e
�l/l

, (1.3)

m
� (l) =

rn

v�
e
�l/l

, (1.4)
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where

l =
⇣
rc

v+
� rr

v�

⌘�1
> 0. (1.5)

The existence of a finite typical length for microtubules is strictly linked to the
fact that their lifetime is finite as well. Indeed, it is possible to show (Bicout, Phys.
Rev. E, 1997) that the average lifetime of a microtubule with initial length l0 and
initial state � is

⌧ (l0,�) =
rc + rr

v�rc � v+rr
l0 +

v
+ + v

�

v�rc � v+rr
��,+, (1.6)

with full lifetime probability density function given by

L+ (t|l0) = ⇥

✓
t� l0

v�

◆
rc

v+t+ l0
e
� 1

v++v� [rr(v+t+l0)+rc(v�t�l0)]

⇥

2

64l0I0
✓

2

v+ + v�

p
rcrr (v+t+ l0) (v�t� l0)

◆

+
v
+

rc

s
rc

rr

v+t+ l0

v�t� l0
I1

✓
2

v+ + v�

p
rcrr (v+t+ l0) (v�t� l0)

◆#
,

(1.7)

L� (t|l0) = �

✓
t� l0

v�

◆
e
�rrt

+⇥

✓
t� l0

v�

◆
rcrr l0 e

� 1
v++v� [rr(v+t+l0)+rc(v�t�l0)]

p
rcrr (v+t+ l0) (v�t� l0)

⇥ I1

✓
2

v+ + v�

p
rcrr (v+t+ l0) (v�t� l0)

◆
,

(1.8)

where I0 (·) and I1 (·) are the modified Bessel functions of the first kind of order 0
and 1, respectively.

The unbounded-growth regime

When l
+

> l
� or, in other words, when the polymerization is faster then the

depolymerization, the system is in the so-called unbounded-growth regime: l is
no longer the typical length of microtubules, and the system does not reach the
steady-state. Instead, the average length of microtubules grows linearly in time, as

hli = V t =
v
+
rr � v

�
rc

rc + rr
t, (1.9)
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while the variance is

⌦
l
2
↵
� hli2 =

rcrr

(rc + rr)
3

�
v
+ + v

��2
t. (1.10)

The length distribution asymptotically - for great t, approaches a Gaussian dis-
tribution. Eq. (1.9) implies that, in contrast with the bounded-growth case, here
some microtubules grow indefinitely and have an infinite lifetime. However, due
to their stochastic behaviour, it is possible that after undergoing a catastrophe, a
microtubule does not undergo a subsequent rescue, but it completely depolymerizes,
and thus it has a finite lifetime. More generally, there exists a finite fraction of
microtubules that do not grow indefinitely, but they have a finite lifetime. We
call this fraction ultimate survival probability and we denote it with S� (l0). It is
possible to prove that

S+ (1|l0) = 1� v
�
rc

v+rr
e

l0
l , (1.11)

S� (1|l0) = 1� e
l0
l , (1.12)

and that the Eqs. (1.6), (1.7), and (1.8), holds for the unbounded growth-regime
as well, except they need to be rescaled by S� (l0), as we are now looking at the
lifetime of a microtubule conditional to the fact that its lifetime is finite (Bicout,
Phys. Rev. E, 1997).

1.4 Outline

The outline of the thesis is the following. In Chapter 2, we present a computational
stochastic model based on the Dogterom-Leibler model and aimed at explaining
how the regulation of microtubule ends is important for the amplification of the
number of longitudinal microtubules of the cortical array. We first introduce the
experiments that motivate the research presented in part of this thesis. Then, we use
our computational model to confirm the hypothesis proposed by the experimental
observations: amplification occurs when both the microtubule minus end is stable,
and when the probability that the newly-created plus end of a microtubule after a
severing event due to the action of katanin suddenly enters the growing state is
large enough.

In Chapter 3 we analytically study the computational model introduced in
Chapter 2. While in Chapter 2 we studied the model for microtubules in the
unbounded-growth regime, here we focus on the bounded-growth regime. We
observe that, in order to have amplification, the probability of a newly-created
plus end after severing to enter the growing state needs to be larger than a

12



critical threshold, defined by the model parameters. We then show that we can
calculate this threshold probability by making use of an approximation consisting
in considering only a small part of the system to describe it as a whole.

Experiments show that once the number of longitudinal microtubules amplifies
and the number of transverse falls, the new longitudinal array is maintained in
the new orientation. In Chapter 4, we explore the possible asymmetries that
can explain this maintenance e↵ect. In order to do so, we propose an analytical
model of dynamic microtubules split in two distinct populations that compete
for the same finite amount of building material and interact with each other to
sever microtubules of the opposite population. We introduce an asymmetry in the
dynamic parameters of the two populations and we observe that such an asymmetry
can explain the maintenance of the new longitudinal array.

In Chapter 5, we present a theoretical model of dynamic microtubules and
di↵using actin in a confinement. The model is based on recent experiments that
showed that microtubules and actin can interact through a class of proteins called
cytolinkers and that such an interaction can change the dynamic properties of the
former and can transport the latter. Given that this system has never been studied
before, in this chapter we are interested in making predictions about the possible
consequences of the actin-microtubule interaction rather then in understanding
the underlying mechanism that makes them interact. We identify the length
scales involved in the transport mechanism and their dependency on the dynamic
parameters of the model, in order to make the transport more e�cient.

After the conclusions, and taking the cue from the models presented in Chapters
2 and 5, we finally present in the appendix a stochastic ageing model for individuals
born in an initial state and evolving in di↵erent states, with the possibility for
them to switch from one state to another. We show that this model exhibits some
intriguing mathematical properties.





CHAPTER 2

CLASP and SPR2 promote microtubule reorientation

by acting as tip regulatory factors

Microtubules are very dynamic polymers, and their dynamics is involved in many
cellular processes such as reorganization of the cortical array, chromosome segre-
gation, cell migration, and many others (Alberts, 2015). Experiments performed
in the last two decades, showed that the dynamics is important not only at mi-
crotubule tips, but it can also be induced from events at microtubule lattice: in
particular, it has been shown that severing processes at microtubule lattice play
a crucial role in the regulation of cytoskeleton (Lindeboom et al., Science, 2013 -
Burk et al., Plant Cell, 2001 - McNally et al., J. Cell Biol., 2006).

The protein katanin, named after the Japanese sword katana, had been identified
as a microtubule-stimulated ATPase protein that severs microtubules (McNally
& Vale, Cell, 1993), inducing dynamics starting from their lattice. Experimental
observations had shown that katanin is a severing protein and it has three modes of
operation. Firstly, katanin is responsible for the release of microtubule minus end
from their nucleation site, enabling depolymerization and consequently treadmilling
of the minus end (Wasteneys, J. Cell Science, 2002). The second way consists of the

The experiments reviewed in this chapter have been designed and carried out by Jelmer J.

Lindeboom and David W. Ehrhardt from the Carnegie Institution for Science (United States of

America), and Masayoshi Nakamura from Nagoya University (Japan).
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severing along the whole length of the microtubules at apparently random locations
(Roll-Mecak and Vale, J. Cell Biol., 2006). Finally, katanin localizes at crossovers
between di↵erently oriented microtubules in the cortical microtubule array of
etiolated1 hypocotyl of Arabidopsis thaliana, and there it severs microtubules
(Lindeboom et al., Science, 2013).

Intuitively, we can hypothesize that these last two severing mechanisms produce
an increase in the number of microtubules, as well as they shorten their average
length.

In this chapter we will focus on the third way for the katanin to sever micro-
tubules and on the e↵ect of this severing on the increase of their number. In section
2.1 we will investigate the role of katanin in the severing-driven reorientation of
cortical microtubule array in dark grown cells of Arabidopsis thaliana, and we will
introduce a theoretical model able to explain the underlying mechanisms behind
such a reorientation. In section 2.2 and 2.3 we will present the experiments that
determine two crucial regulatory factors for respectively plus and minus end that
enable the reorientation, and with our model we will test our assumptions about
how these two regulatory factors work. In the last section, we will analytically solve
a model for microtubules undergoing dynamic instability at both plus and minus
end, to test whether or not minus end instability is important for the steady-state
microtubule length distribution when in absence of severing.

2.1 The cortical microtubule array undergoes a

katanin-mediated reorientation

Experimental observations

The cortical microtubule array is an unique acentrosomal cytoskeletal structure in
plant cells, and it is essential for the morphogenesis of the organism as it controls
the direction of the anisotropic cell expansion. The function of the array depends
on the spatial organization of its microtubules. It has been shown that microtubules
change their dynamic behaviour - and hence their arrangement, as a response to
both chemical and physical environmental signals (Dixit & Cyr, Plant Cell, 2004).

A striking example of such a change in spatial organization occurs in etiolated
hypocotyls of Arabidopsis Thaliana, and consists of the reorientation of the array
from a transverse to a longitudinal direction to the growth direction of plant
axis after the exposure to blue light. Particularly, one can observe that katanin

1
The etiolation is a process that makes flowering plants undergo alterations when they grow

in absence of light. Such alterations include, e.g., smaller leaves and a pale yellow color, due to

the absence of chlorophyll.
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Figure 2.1: Katanin localization (yellow arrowheads) at a crossover (blue arrow-
heads). Image taken from (Lindeboom et al., Science, 2013).

Figure 2.2: Reorientation of the cortical microtubule array of an Arabidopsis
thaliana cell. Image taken from (Lindeboom et al., Science, 2013).
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Figure 2.3: Count of microtubule creations as a function of time after blue light
stimulation, (A) associated with a nucleation complex, (B) and associated with a
crossover. Image taken from (Lindeboom et al., Science, 2013).

localizes at crossovers between di↵erently oriented microtubules (see Figure 2.1)
and there preferentially severs longitudinal, resulting in the e↵ective creation of a
new longitudinal microtubule. Usually, the newly-created plus end after severing
undergoes a catastrophe due to the absence of a stabilizing GTP cap at the
severing site. Here, however, due to a non-completely-understood downstream
e↵ect of photoactivation as a response to the blue light, a fraction of the newly-
created plus ends are stabilized and immediately grow. These newly-created
lagging microtubules have then the opportunity to create new crossovers with the
initial transverse microtubules, and hence they have the opportunity to undergo
new severing events. This amplification mechanism, indeed, creates in around 30
minutes a new population of microtubules orthogonal to the initial transverse array,
see Figure 2.2. Recent experiments have shown that in this system around 83%
of microtubule creations are katanin-mediated (Lindeboom et al., Science 2013).
After the stimulation with blue light, in fact, we can observe a decreased rate of
microtubule nucleation in advantage of an increased rate of severing mediated
microtubule creations at crossovers, see Figure 2.3. It is however important to
underline that the creation of a crossover does not necessarily imply the occurrence
of a severing event. Indeed a severing event at a crossover is not an instantaneous
event that happens just after the crossover creation, but it requires a certain
waiting time, due to the finite time needed by katanin to recruit at the severing
site. Because of this, any crossover might be removed by the depolymerization of
either of the two microtubules involved, preventing the recruitment of katanin on
the lattice of the microtubule, and hence the severing event.

This reorientation is not a proper reorientation, in the sense that individual mi-
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Figure 2.4: Probability of severing event at crossovers in Arabidopsis thaliana WT
and ktn1-2. In the WT case, a fraction of the newly-created plus end after severing
is stabilized and immediately grows. Image taken from (Lindeboom et al., Science,
2013).

Figure 2.5: Reorientation of the cortical microtubule array in WT and ktn1-1.
While the former exhibits complete reorientation after 60 minutes time, the latter
exhibits a neglectable degree of reorientation. Image taken from (Lindeboom et al.,
Science, 2013).
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crotubules do not change their orientation. Instead, it consists of the disappearance
of a population of microtubules - the transverse one, due their finite lifetime, in
advantage of the creation of a second population - the longitudinal. As we will see
in Chapter 4, the disappearance of transverse microtubules provides the building
material for the creation of the second.

As a final proof that indeed katanin-mediated severing events drive the reorienta-
tion process, experiments performed with Arabidopsis katanin suppressed mutants
ktn1-1 and ktn1-2 do not exhibit severing events at microtubule crossovers (see
Figure 2.4), and hence do not exhibit any reorganization of the cortical microtubule
array (Zhang et al., Current Biology 2013), see Figure 2.5.

The model

To describe the impact of katanin mediated severing events on the initial amplifica-
tion of the number of longitudinal microtubules, we set up a stochastic model of
longitudinal microtubules undergoing dynamic instability in a background of stable
transverse microtubules, see Figure 2.6 (Nakamura et al., J. Cell Biol. 2018). In
order to be able to consider the initial transverse array as a constant background,
we focus on the initial stage of the process, i.e. up to 500 seconds after the exposure
to blue light (see Figure 2.7). After that time, the experiments reveal the start of

waiting time distribution
timer starts

Crossover removed 
by depolymerization

Severing occurs Ampli�cation stepCrossover created

Trailing plus end
shrinks

Minus end
dynamics

Plus end
dynamics

Figure 2.6: Schematic of the model. The competition between severing at a
crossover and crossover removal due to depolymerization of either of the two
microtubule ends plays a crucial role in the amplification process, as well as the
fraction p

+ of rescue after severing.

the suppression of the initial array. Hence, after 500 seconds, the dynamics of the
transverse microtubules can no longer be ignored.
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Figure 2.7: Amplification of the number of longitudinal microtubules in the first
500 seconds after the exposure to blue light. Image taken from (Lindeboom et al.,
Science, 2013).

The model keeps track of the time evolution of a single longitudinal microtubule
and all of its severing-created descendants. Dynamic parameters for longitudinal
microtubules are the growing and shrinking speed for the plus end, v+ and v

�

respectively, shrinking speed for the minus end w, catastrophe rate rc and rescue
rate rr for the plus end, rate of passing from paused state to shrinking state rps,
and rate of passing from the shrinking state to the paused state rsp for the minus
end.

The experimentally measured distribution of the spacing �x between initial
transverse microtubules can be reasonably fit by the distribution function

f (�x) =

8
><

>:

0 if �x < 0.5µm,

1
d e

��x
d if �x � 0.5µm.

(2.1)

The spacing scale parameter d is chosen such that the mean spacing davg between
neighbour in the initial transverse array is consistent with the experimentally
measured one, see Tables 2.1 and 2.2, and Figures 2.8 and 2.14.

Every time a longitudinal microtubule plus end impinges on a transverse
microtubule, it creates a crossover. This crossover is either removed by the
shrinkage of either of ends of the microtubule, or it leads to a severing event if it
survives long enough. Whether the severing event occurs or not is determined by a
competition between the waiting time distribution for severing events at a crossover,
and the survival time distribution of crossovers from microtubule depolymerization.
This competition will be studied in details in Chapter 3. While the survival time
of crossovers from depolymerization depends mainly on the dynamic parameters of
microtubules, the severing waiting time is an intrinsic property of the crossovers.
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The choice of a good severing waiting time distribution needs to fulfill two di↵erent
requirements: it is the function that best fits the experimentally measured data
(Nakamura et al., J. Cell Biol., 2018 - Lindeboom et al., J. Cell Biol., 2018), and it
best represents the recruitment of katanin at microtubule crossovers. Using, e.g., an
exponential function for the waiting time distribution would not work, since every
crossover needs a certain amount of time to recruit enough katanin for the severing
event to occur, and an exponential function bears a high probability of severing at
short times. Instead, a peaked distribution expresses better the idea that katanin
requires some time to accumulate at crossovers. Therefore, a reasonable choice for
the severing waiting time distribution is the Gamma probability density function
(Papoulis, 1984), i.e.

Wk,✓ (t) =
t
k�1

✓k� (k)
e
� t

✓ , (2.2)

where k and ✓ are the shape and scale parameters of the distribution, and

� (k) =

Z +1

0
dx x

k�1
e
�x

,

is the Euler gamma function (Abramowitz & Stegun, 1965).
If a severing event at a crossover happens, the newly-created plus end of the

lagging microtubules either is stabilized and suddenly enters the growing state
with probability p

+, or the shrinking state with probability 1� p
+. Similarly, the

newly-created minus end of the leading microtubule either shrinks with probability
q
�, or pauses with probability 1� q

�.
In the following two sections, we are going to use our model to quantify the

magnitude of the longitudinal amplification in the case of changed stability at
either of the two microtubule ends.

2.2 CLASP stabilizes newly-created plus ends

after severing

Overview of the experiments

Several proteins that track the plus end of Arabidopsis thaliana growing micro-
tubules have been identified (Bisgrove et al., Plant Physiol., 2004). Here, we focus
on the e↵ect of End Binding Protein 1 (EB1), Cytoplasmic-Linker-Associated
Protein (CLASP) and SPIRAL1 (SPR1) on the probability of having a rescue after
severing at the microtubule plus end, and hence on the speed of the amplification
of the number of longitudinal microtubules. To do that, we compare the di↵erent

22



CLASP and SPR2 promote microtubule reorientation by acting as tip regulatory factors

outcomes in the reorientation process in the microtubules that lack those proteins.
We refer to those microtubules as mutants, and we denote them as 3x-eb1 2, clasp,
and spr1, and we compare the results with the control reorientation outcome of
the Wild Type (WT) (Lindeboom et al., J. Cell Biol., 2018).

Figure 2.8: Transverse microtubules bundle before the exposure to blue light.
Image taken from (Lindeboom et al., J. Cell Biol., 2018).

In vivo quantitative imaging shows that the reorientation process starts after
the exposure to blue light, and in around 15 minutes the reorientation of WT and
spr1 is complete. After 30 minutes from the first exposure to blue light, also the
cortical microtubule array of 3x-eb1 mutant is completely reoriented, while in clasp
mutant, even though one can observe an increase in the number of longitudinal
microtubules, the reorientation does not happen, see Figure 2.9. Therefore, we
explore all possible reasons why the cortical microtubule array of clasp mutant
behaves di↵erently from WT and other mutants.

Experimental measurements show that WT and the three mutants exhibit
di↵erent dynamic behaviours, see Table 2.1: indeed, clasp and spr1 have a greater
plus end growth speed than WT, whilst 3x-eb1 and WT show a comparable
growth speed. The shrinkage speed of WT is greater, equal, and smaller than

2
The 3x- comes from the fact that in Arabidopsis thaliana, EB1 is encoded in three genes: a,

b, and c. They are all disrupted to create 3x-eb1.
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WT spr1 3x-eb1 clasp

0 min 15 min 30 min 0 min 15 min 30 min 0 min 15 min 30 min 0 min 15 min 30 min

Figure 2.9: Reorientation of the cortical array in WT, spr1, 3x-eb1, and clasp.
Image taken from (Lindeboom et al., J. Cell Biol., 2018).

spr1, clasp, and 3x-eb1 respectively. As regards dynamic instability rates, we can
observe a reduced catastrophe rate in the spr1 mutant, while clasp and 3x-eb1
show catastrophe rates comparable to WT. Finally, one can observe a very low
rescue rate in clasp mutant, compared to the WT, in agreement with the well-
studied observation that CLASP protein is a potent microtubule rescue promoter
(Al-Bassam et al., Dev. Cell, 2010). Looking at the dynamic parameters, one
can notice that all genotypes are in the unbounded-growth regime. Indeed, the
average speed of microtubules are VWT = 0.043µms�1, V3x-eb1 = 0.034µms�1,

Vclasp = 0.032µms�1, and Vspr1 = 0.061µms�1 where V = v+rr�v�rc
rr+rc

has been
defined in Eq. (1.9). Therefore, one can observe some degree of di↵erence in the
dynamics of di↵erent mutants.

These measurements of the probability of rescue after severing highlight two
interesting facts. First of all, one can observe a small but relevant di↵erence in
such a probability depending on the orientation of the microtubule. Indeed, all
genotypes show a greater probability of rescue after severing for the longitudinal
microtubules than the transverse. The second observation is that such a probability
is very low - around 3% in clasp mutant, suggesting that CLASP protein acts as a
protector against depolymerization after a severing event, see Table 2.1.

Hence, from these experimental observations, we formulate the hypothesis that
the reason why clasp mutant fails in the amplification mechanism is because of
either the low probability of rescue after severing or the low intrinsic rescue rate.

A final observation concerns the severing waiting time at crossovers. As we
introduced in the previous section, the severing waiting time distribution for all
mutants is nicely fitted by a Gamma probability density function. However, the
di↵erent mean severing waiting times experimentally measured, and the di↵erent
widths of the distributions for clasp and 3x-eb1 with respect to WT (Figure 2.10),
suggest that CLASP antagonizes the activity of katanin, whilst EB1 promotes it,
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see Table 2.1. Experimentally, one can only measure the severing waiting time
distribution conditional that the severing had occurred and the crossover had not
been removed by dynamic instability of the microtubule. Then we have chosen
scale and shape parameters for the severing waiting time distributions such that
the output distributions optimally fit the experimental ones, see Figure 2.10.
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Figure 2.10: (A) Intrinsic severing waiting time distribution used in the simulations,
and (B) comparison between experimentally observed (blue dots) and computed
conditional severing waiting time distribution (red dots) for WT, spr1, 3x-eb1, and
clasp. Image taken from (Lindeboom et al., J. Cell Biol., 2018).

Computational approach

To assess whether a high probability of rescue after severing plays a more important
role than a low intrinsic rescue rate, we make use of the computational model
introduced in the previous section. As the experiments only concern the behaviour
of the plus end of microtubules, and the minus end does not exhibit a very fast
dynamics, in our model we keep plus ends dynamic and we hold minus ends stable.
In other words, for all mutants we have w = 0, rps = 0, and q

� = 0.
Since we are only interested in the amplification mechanism for the number of

longitudinal microtubules in the first 500 seconds of the whole reorientation process,
we allow severing only for longitudinal microtubules. Every simulation follows the
fate of one longitudinal microtubule and all of its descendants in the background
of transverse microtubules. After 500 simulated seconds, either the simulation
output is exctinction, i.e. the initial microtubule and all of its descendants have
shrunk to length l = 0 because of dynamic instability, or it is amplification, i.e.
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the initial microtubule has a surviving o↵spring due to severing at crossovers. For
every genotype we run N = 5⇥ 104 trials of the same simulation, and we average
the results over N .

For all genotypes, simulations result in an average amplification, even though
every single trial exhibits a finite probability of extinction, see Figure 2.11. This
result is consistent with the experimental outcomes, since all genotypes observed -
even clasp mutant, show some degree or reorientation, see Figure 2.9. The result
that every trial has a finite probability to lead to amplification depends on the fact
that all genotypes are in the unbounded-growth regime. Hence some microtubules
live indefinitely (Bicout, Phys. Rev. E, 1997) and they and/or their descendants
are severed an exponentially increasing amount of times. The consequence of this
is that the average number of microtubules over all simulations shows amplification.
Even if the amplification occurs for all genotypes, we observe a di↵erent speed of
amplification depending on the mutant. As expected, clasp and 3x-eb1 exhibit
a very slow speed of amplification compared to those of the WT and spr1. In
particular, amplification of clasp is almost non-noticeable after the first 500 seconds,
see Figure 2.11B.
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Figure 2.11: Time evolution of (A) the extinction probability, and (B) the number
of longitudinal microtubules created by severing for WT, spr1, 3x-eb1, and clasp.
Results are averaged over N = 5⇥ 104 trials of the same simulation. Image taken
from (Lindeboom et al., J. Cell Biol., 2018).

If we look at the parameters used for WT and clasp, we notice that the severing
waiting time in clasp mutant is on average shorter than in WT, as well as clasp
growth speed is higher than WT one. This feature, together with the fact that
shrinkage speed and catastrophe rate of the two genotypes are similar, would
suggest a higher speed of amplification for clasp rather than for the WT. However,
both experiments and simulations show the opposite behaviour. Therefore, the
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reason must be explained by the other two di↵erent parameters that these two
genotypes exhibit: probability of rescue after severing p

+, or intrinsic rescue rate
rr. In order to understand which of these two parameters plays a more important
role for the di↵erent behaviour of microtubules, we create two synthetic in silico
mutants: WT microtubules with clasp intrinsic rescue rate (WT/clasp-rr), and
WT microtubules with clasp probability of rescue after severing (WT/clasp-p+).
Despite a very similar behaviour for the extinction probability of the two synthetic
mutants, we observe a faster amplification speed for WT/clasp-rr, while WT/clasp-
p
+ almost reproduces the amplification behaviour of the clasp mutant, see Figure

2.12. This result supports our hypothesis that the crucial role for the amplification
of the number of longitudinal microtubules is played by the probability of rescue
after severing p

+.
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Figure 2.12: Time evolution of (A) the extinction probability, and (B) the number
of longitudinal microtubules created by severing for WT and clasp, and for the
synthetic mutants WT/clasp-rr and WT/clasp-p+. Results are averaged over
N = 5⇥ 104 trials of the same simulation. Image taken from (Lindeboom et al., J.
Cell Biol., 2018).

To better quantify the importance of p+ rather than rr for the amplification
mechanism, we perform a sensitivity analysis. We keep WT values as background
and we change in turn p

+ and rr. As we are dealing with two unrelated parameters,
we need to find a method to compare a change in the first with a change in the second.
Since our interest is in the behaviour of microtubules in the unbounded-growth
regime, we observe that the minimum value for rr such that a microtubule with
WT background parameters is still in the unbounded-growth regime is rr = 0.013
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events/second. Indeed, with such a rescue rate, we have

V =
v
+
rr � v

�
rc

rr + rc
= 0.

We compare the number of microtubules after 500 seconds with that rescue rate
with the same quantity obtained with WT background but p+ = 0. Then, we tune
p
+ from 0 to 0.25, and for every value of p+ we obtain the correspondent value for

rr through the relation

p
+
WT = 0.15� 0

p+
=

rr,WT = (0.026� 0.013) events/s

rr
.

Figure 2.13 shows that the amplification is more sensitive to the change of p+ rather

Figure 2.13: Sensitivity analysis of microtubules amplification to the change of rr
and p

+. We counted the average number of microtubule after 500 seconds when we
change rr (red dots), and p

+ (blue triangles). From left to right, rescue rates rr are:
rr = 0.013 events/s, rr = 0.015 events/s, rr = 0.017 events/s, rr = 0.019 events/s,
rr = 0.022 events/s, rr = 0.024 events/s, rr = 0.026 events/s, rr = 0.028 events/s,
rr = 0.031 events/s, rr = 0.033 events/s, and rr = 0.035 events/s. Probability
of rescue after severing p

+ are, respectively: p
+ = 0, p+ = 0.025, p+ = 0.05,

p
+ = 0.075, p+ = 0.1, p+ = 0.125, p+ = 0.15, p+ = 0.175, p+ = 0.2, p+ = 0.225,

and p
+ = 0.25. Image taken from (Lindeboom et al., J. Cell Biol., 2018).

than rr. This is a further evidence that, even though the intrinsic rescue rate and
hence the dynamic instability of a microtubule is important for the amplification
mechanism, the key parameter for the speed of amplification is the probability of
rescue after severing.
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Parameter Description WT 3x-eb1 clasp spr1 Units

v+ Growth speed 0.103 0.102 0.117 0.11 µms
�1

v� Shrinkage speed 0.225 0.248 0.225 0.207 µms
�1

rc Catastrophe rate 0.0058 0.0057 0.0062 0.0048 s
�1

rr Rescue rate 0.026 0.0237 0.0187 0.0261 s
�1

p+ Rescue after severing (k) 0.15 0.13 0.03 0.1 -

p+? Rescue after severing (?) 0.12 0.11 0.02 0.09 -

d Spacing scale parameter 1.01 0.85 0.98 0.82 µm
davg Average bundle spacing 1.51 1.35 1.48 1.32 µm
k Gamma shape parameter 7 8 6 8 -

✓ Gamma scale parameter 7.5 8.3 7.4 7.7 s

tsev Mean severing waiting time 47.9 59.8 39.6 52.7 s

Table 2.1: Plus end dynamics and crossover parameters.

2.3 SPR2 protects minus end from fast

depolymerization

Overview of the experiments

In the previous section we have seen how the stability of newly-created plus ends
after severing is important for the reorientation of the cortical microtubule array.
The importance of the dynamics of the plus end is relatively well-understood.
However how the dynamics of the minus end influences such a reorientation has
not yet been investigated. Furthermore, how minus ends are controlled in higher
plants is also currently unknown. The SPIRAL2 (SPR2) protein has recently been
identified as a minus end tracker and a protector against subunit loss (Nakamura
et al., J. Cell Biol., 2018). In vivo experiments in dark-grown etiolated hypocotyl
of Arabidopsis thaliana show that SPR2 accumulates at newly-created minus ends
after severing and stabilizes them, protecting them from a fast depolymerization.
Our hypothesis is that without a stable minus end, i.e. in presence of fast minus
end depolymerization, crossovers between di↵erently oriented microtubules are
more likely to be removed by the shrinkage of either of the two microtubules,
as the e↵ect of the minus end depolymerization is added to the one due to the
dynamic instability of the plus end. Therefore, as a consequence of this increased
crossover removal, katanin lacks recruitment spots on the microtubules, decreasing
the number of severing events and then the e↵ectiveness of the reorientation.

Interestingly, from the experiments there are no observations of polymerization
at microtubule minus ends, but minus end dynamic instability only consists of
periods of shrinkage and periods of pause (Shaw et al., Science, 2003).

To test the hypothesis that SPR2 promotes cortical microtubule array reorienta-
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tion by increasing the lifetime of potential severing site, we compare the dynamics
and the e�ciency of the reorientation of WT with those of the SPR2 lacking mutant,
the spr2-2. The two di↵erent genotypes exhibit di↵erent dynamic behaviours at
both plus and minus end, see Table 2.2. As regards the plus end, we observe an
identical growth speed between WT and spr2-2, whilst the shrinkage speed of
spr2-2 is higher than in the control case. However, spr2-2 exhibits a very low
catastrophe rate, with a comparable - still higher, rescue rate than in WT case.
This reduced catastrophe rate in spr2-2 mutant, suggests that SPR2 protein may
have a destabilizing e↵ect for microtubule plus end. The minus end, instead, shows
a depolymerization for spr2-2 mutant almost three times faster than for WT. More-
over, spr2-2 has a very low shrink-to-pause rate and a very high pause-to-shrink
rate, while WT exhibits exactly the opposite behaviour. This suggests that the
minus end of spr2-2 mutant is almost always shrinking and the minus end of WT
is mainly pausing. This hypothesis is confirmed by the experimental measurements,
that show that in 91% of the observation time the spr2-2 minus end is shrinking,
against 35% of the time for the WT. The e↵ect of this further dynamic instability
at the minus end for the length distribution of microtubules will be discussed in
detail in the next section.

As regards the e�ciency of the reorientation in response to the exposure to
blue light, the experiments show that spr2-2 does not quickly reorient as in the
case of WT, see Figure 2.15. Nevertheless also spr2-2 exhibits some very slow
degree of reorientation. This observation is not enough to support our hypothesis
that the lack of reorientation is due to the removal of crossovers consequent to the
fast minus end depolymerization: indeed, it is still possible that SPR2 promotes
katanin e�ciency at crossovers. To test whether this is the case or not, the
severing waiting time distribution from the moment of the creation of a crossover
and the moment in which the severing event occurs has been measured, given
that the crossover is not removed by dynamic instability. Intriguingly, one can
observe no substantial di↵erence between the two severing time distributions as an
evidence that SPR2 neither stimulates nor represses katanin activity at microtubule
crossovers. Furthermore, as we will see later in this section, with our simulations we
can nicely fit both experimentally measured distributions with the same intrinsic
severing waiting time distribution, see Figure 2.16.

A good method to test whether or not is the minus end depolymerization
that prevents the reorientation from happening, is to count how many times the
creation of a crossover leads to a severing event, and how many times a crossover
is removed by depolymerization of either of the two ends. As we can see in Table
2.3, in WT the fraction of crossovers resolved by severing is greater than in spr2-2.
Furthermore, looking at crossover removals by depolymerization, we can notice
that in the spr2-2 mutant 84% of the cases the removal is due to minus end loss,
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Figure 2.14: Transverse microtubule bundle before the exposure to blue light.
Image taken from (Nakamura et al., J. Cell Biol., 2018).

0 min 10 min 20 min 30 min 0 min 10 min 20 min 30 min

spr2-2WT

Figure 2.15: Reorientation of the cortical array in WT and spr2-2. Image taken
from (Nakamura et al., J. Cell Biol., 2018).
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Figure 2.16: (A) Intrinsic severing waiting time distribution used in the simulations,
and comparison between experimentally observed (blue dots) and computed condi-
tional severing waiting time distribution (red dots) for (B) WT and (C) spr2-2.
Image taken from (Nakamura et al., J. Cell Biol., 2018).
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against 11% of the cases in WT, proving our hypothesis that stability of minus
end plays a crucial role in the reorientation mechanism.

Computational approach

To provide further evidence in support to the hypothesis that the fast minus
end depolymerization prevents the cortical microtubule array from reorienting
by removing the possible severing spots, we use the experimentally measured
parameters for WT and spr2-2 mutant to run stochastic simulations of the model
discussed in section 2.1. Given the impossibility to directly measure the probability
of shrinkage after severing q

� for the minus end, we have chosen this parameter
such that the time that a microtubule minus end spends on average in either of the
two possible states is in agreement with the experimentally measured one, see Table
2.2. Our simulations keep track of the time evolution of a microtubule and all of
its descendants created by severing, up to 500 simulated seconds. As well as in the
case of the plus end analysis of previous section, this choice is motivated by the fact
that we are only interested in the initial stage of the reorientation process, and for
more than 500 seconds we can no longer consider the grid of transverse microtubule
as a constant background. Results, averaged over N = 5 ⇥ 104 di↵erent trials,
show that even if the extinction probability is smaller in spr2-2 case than in the
WT, the amplification of the number of longitudinal microtubules is faster in the
WT rather than in the mutant, in agreement with experimental observations, see
Figure 2.17. The surprising result that extinction is less likely for spr2-2, depends
on the fact that spr2-2 microtubules are in general longer than WT microtubules.
Indeed, not only their plus end is more deeply in the unbounded-growth regime,
but they also show a decreased shortening e↵ect due to the severing, since the
severing probability per crossover is lower than in WT case, see Table 2.3.

Figure 2.17 shows that the amplification process is more e�cient for WT.
However, the dynamics at the minus end is not the only di↵erence between the two
genotypes, since also the dynamics of the plus end is influenced by the presence of
SPR2 protein. To isolate the role of the two changes in the dynamics, we build
two synthetic in silico mutants: microtubules with WT as a background but with
minus end parameters of spr2-2 (WT+spr2-2 -), and microtubules with spr2-2 as
a background but with WT parameters for the minus end (spr2-2+WT-). The
most interesting result comes from the observation of the simulations outcome for
WT+spr2-2 - mutant: indeed, Figure 2.17 shows that amplification is almost non-
existent for such a mutant, with a very high extinction probability as well, confirming
the importance of a stable minus end for the e�ciency of the amplification process.
In contrast, the very fast dynamics of the plus end coupled with the stable minus end
of spr2-2+WT-, enables a very strong amplification of the number of longitudinal
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microtubules, more than one order of magnitude greater than in the full spr2-2
case.
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Figure 2.17: Time evolution of (A) the extinction probability, and (B) the number
of longitudinal microtubules created by severing for WT, clasp, and for the synthetic
mutants WT+spr2-2 -, and spr2-2+WT-. Results are averaged over N = 5⇥ 104

trials of the same simulation. Image taken from (Nakamura et al., J. Cell Biol.,
2018).

To further confirm our results, we perform a statistical analysis of the crossovers
resolution (Table 2.3). We observe that spr2-2 and WT+spr2-2 - have the same
depolymerization probability at a crossover, whilst in WT and spr2-2+WT- the
depolymerization probability is comparable, even if slightly di↵erent, showing how
the probability of crossover removal due to the shrinkage of microtubules depends
more on the minus end than on the plus end dynamics. The same good agreement
is exhibited by the probability that the crossover removal occurs because of the
shrinkage of either of the two ends, conditional to the fact that the crossover is
removed by depolymerization. Intriguingly, experiments and simulations for WT
and spr2-2 show a very good agreement for the probability of crossover removal due
to the shrinkage of either of the two ends, supporting even more our hypothesis.

However, we notice from Table 2.3, that our model overestimates the probability
of severing at a crossover, with respect to the experimental measurements. At
the moment, we do not have a full explanation for this overestimate, but we can
speculate that it is due to our choice of limiting the dynamics and the severing to
only longitudinal microtubules. Indeed, in the experiments we observe crossover
removals due to depolymerization of transverse microtubules, as well as severing of
the latter. The crossover statistics collected in the experiments take into account
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Parameter Description WT spr2-2 Units

v+ Plus end growth speed 0.105 0.105 µms
�1

v� Plus end shrinkage speed 0.195 0.21 µms
�1

w Minus end shrinkage speed 0.023 0.063 µms
�1

rc Plus end catastrophe rate 0.0063 0.0025 s
�1

rr Plus end rescue rate 0.0268 0.033 s
�1

rps Minus end pause to shrinking rate 0.0058 0.0138 s
�1

rsp Minus end shrinking to pause rate 0.014 0.0016 s
�1

tp Fraction of time in pausing state 0.65 0.09 -

ts Fraction of time in shrinking state 0.35 0.91 -

p+ Rescue after severing (k) 0.11 0.19 -

p+? Rescue after severing (?) 0.07 0.08 -

q� Minus end shrink probability after severing 0.35 1 -

d Spacing scale parameter 0.89 0.78 µm
davg Average bundle spacing 1.39 1.28 µm
k Gamm shape parameter 7 7 -

✓ Gamma scale parameter 8.5 8.5 s

tsev Mean severing waiting time 46.7 43.74 s

Table 2.2: Minus end dynamics and crossover parameters

crossover resolutions for the entire time of the experiments, i.e. for 30 minutes, and
as we have seen before, after 500 seconds from the beginning of the experiment, we
can no longer consider the initial transverse array as stable. Thus, including the
dynamics of transverse microtubules together with the dynamics of longitudinal
could in principle level the discrepancy between experiments and simulations, as
regards the fraction of crossovers removed by depolymerization against severing.

A final proof of our hypothesis that the reorientation of the array mainly
depends on the stability of microtubule minus end, comes from the analysis of the
severing waiting time distribution. In keeping with our assumption that SPR2
does not influence the e�ciency of katanin, in our simulation we impose the same
intrinsic severing waiting time distribution at the crossovers for both WT and
spr2-2. As expected, using the right choice of parameters (Table 2.2) for the Gamma
distribution of Eqs. (2.2), our two resultant computed conditional waiting time
distributions nicely fit the two experimentally observed waiting time distributions
for both WT and spr2-2.

This, together with all other evidence that we provided in this section, confirms
that SPR2 protein has no role in promoting or antagonizing the e↵ect of katanin
on the severing mechanism. Instead, it promotes the cortical microtubule array
reorientation by acting as a protector of the minus end of microtubules, and in this
way increasing the lifetime of crossovers as potential microtubule severing sites.
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Experiments Simulations

(A) WT spr2-2 WT spr2-2 WT
+spr2-2 - spr2-2+

WT
-

(B) 1266 1056 3.4⇥ 10
6

1.8⇥ 10
6

0.5⇥ 10
6

19.2⇥ 10
6

(C) 0.39 0.24 0.61 0.31 0.31 0.68
(D) 0.61 0.76 0.39 0.69 0.69 0.32
(E) 0.89 0.16 0.92 0.19 0.3 0.87
(F) 0.11 0.84 0.08 0.81 0.7 0.13

Table 2.3: Crossover resolution in WT, spr2-2, WT+spr2-2 -, and spr2-2+WT-.
(A) Genotype, (B) number of analyzed crossovers, (C) severing fraction, (D)
depolymerization fraction, (E) fraction of depolymerization from the plus end, (F)
fraction of depolymerization from the minus end.

2.4 Minus end dynamic instability changes

steady-state properties of microtubules

The e↵ect of the dynamic instability at the plus end on the length of microtubules
has already been analytically well-studied (Dogterom & Leibler, Phys. Rev. Lett.,
1993). However, a theoretical model that takes into account the dynamic instability
of microtubules at both ends has not yet been developed. Therefore, taking our cue
from the experimentally observed dynamics of the microtubule minus end, and to
better elucidate the e↵ect of this dynamic instability on the length of microtubules
before the exposure to blue light - i.e. with no severing events, we set up a stochastic
model based on Dogterom-Leibler model in which both ends undergo dynamic
instability. In agreement with the experimental observations, the minus end can be
either in the shrinking or in the paused state, and it can switch from one state to
the other with constant rate. In other words, we use the same model we developed
in section 2.1 without severing events, and with a certain nucleation rate rn for
new microtubules.

Our goal here is to check whether the dynamic instability at the minus end
plays a role in the shape of the steady-state length distribution, or it just changes
the length scale of the already known distribution.

Dynamic equations

Let m�⌧ (t, l) be the length distribution of microtubules at time t, with length l,
with plus end in the state �, and minus end in the state ⌧ . Plus end state can be
either growing (� = +) or shrinking (� = �), and minus end state can be either
paused (⌧ = 0) or shrinking (⌧ = �). As experiments have shown, we impose
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w < v
+ (Nakamura et al., J. Cell Biol., 2018). Therefore, the dynamic equations

can be written as

@m
+� (t, l)

@t
= �

�
v
+ � w

� @m+� (t, l)

@l

� (rc + rsp)m
+� (t, l) + rrm

�� (t, l) + rpsm
+0 (t, l) ,

(2.3)

@m
+0 (t, l)

@t
= � v

+ @m
+0 (t, l)

@l

� (rc + rps)m
+0 (t, l) + rrm

�0 (t, l) + rspm
+� (t, l) ,

(2.4)

@m
�� (t, l)

@t
=
�
v
� + w

� @m�� (t, l)

@l

� (rr + rsp)m
�� (t, l) + rcm

+� (t, l) + rpsm
�0 (t, l) ,

(2.5)

@m
�0 (t, l)

@t
= v

� @m
�0 (t, l)

@l

� (rr + rps)m
�0 (t, l) + rcm

+0 (t, l) + rspm
�� (t, l) ,

(2.6)

supplemented by the boundary conditions

m
+� (t, 0) = 0, (2.7)

m
+0 (t, 0) =

rn

v+
, (2.8)

lim
l!1

m
�� (t, l) = 0, (2.9)

lim
l!1

m
�0 (t, l) = 0. (2.10)

The first two boundary conditions come from our choice of nucleating microtubules
only with the minus end in the paused state. This is motivated by the experimental
observation that microtubule minus end remains attached to the nucleation site
until enough katanin is recruited there. Then, the minus end is released from the
nucleation site, and treadmilling is enabled (Wasteneys, J. Cell Science, 2002).
The last two boundary conditions come from the mathematical requirement of
probability density functions to be integrable. Physically, they imply that there
are no infinitely long microtubules.

37



CLASP and SPR2 promote microtubule reorientation by acting as tip regulatory factors

Steady-state solution

At first sight, the set of equations (2.3-2.6) seems to be pretty hard to solve. Indeed,
to reduce its complexity, we try to find the solution of the steady-state version of
the system. Therefore, we denote m (l) as

m (l) =

0

BBBBBBBB@

m
+� (l)

m
+0 (l)

m
�� (l)

m
�0 (l)

1

CCCCCCCCA

,

and L as

L =

0

BBBBBBBBB@

� rc+rsp
v+�w

rps
v+�w

rr
v+�w 0

rsp
v+ � rc+rps

v+ 0 rr
v+

� rc
v�+w 0 rr+rsp

v�+w � rps
v�+w

0 � rc
v� � rsp

v�
rr+rps

v�

1

CCCCCCCCCA

.

Steady-state version of Eqs. (2.3-2.6) can now be written as

d

dl
m (l) = Lm (l) . (2.11)

The solution of Eq. (2.11) can be achieved with numerical methods, and it will
be discussed in Chapter 5. Here, however, we try to find an analytical solution,
and to do that we make the further simplification of setting rr = 0, i.e. we assume
that microtubules with the plus end in the shrinking state can not undergo rescues.
With this approximation, the equations become

0 = �
�
v
+ � w

� dm+� (l)

dl
� (rc + rsp)m

+� (l) + rpsm
+0 (l) , (2.12)

0 = �v
+ dm

+0 (l)

dl
� (rc + rps)m

+0 (l) + rspm
+� (l) , (2.13)

0 =
�
v
� + w

� dm�� (l)

dl
� rspm

�� (l) + rcm
+� (l) + rpsm

�0 (l) , (2.14)

0 = v
� dm

�0 (l)

dl
� rpsm

�0 (l) + rcm
+0 (l) + rspm

�� (l) . (2.15)
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By combining Eqs. (2.12) and (2.13), we can show that dynamic instability for
microtubules growing at the plus end can be rewritten as uncoupled second order
di↵erential equations as

d
2
m

+⌧ (l)

dl2
+

✓
rc + rsp

v+ � w
+

rc + rps

v+

◆
dm

+⌧ (l)

dl
+

rc (rc + rsp + rps)

(v+ � w) v+
m

+⌧ (l) = 0,

(2.16)
with ⌧ = �, 0, and with boundary conditions

m
+� (0) = 0, (2.17)

m
+0 (0) =

rn

v+
. (2.18)

Since Eq. (2.16) is a second order di↵erential equation, we need a second boundary
condition. Thus, by setting l = 0 in Eqs. (2.12) and (2.13), we obtain

d

dl
m

+� (l)

����
l=0

=
rn

v+

rps

v+ � w
, (2.19)

d

dl
m

+0 (l)

����
l=0

= �rn (rc + rps)

(v+)2
. (2.20)

Equation (2.16) is a second order linear di↵erential equation (Polyanin and Zaitsev,
2003), with positive discriminant

�2 ⌘
✓
rc + rsp

v+ � w
+

rc + rps

v+

◆2

� 4
rc (rc + rsp + rps)

(v+ � w) v+

=

✓
rc + rsp

v+ � w
� rc + rps

v+

◆2

+ 4
rsprps

(v+ � w) v+
> 0.

Therefore, its general solution is

m
+⌧ (l) = e

� 1
2

⇣
rc+rsp

v+�w
+

rc+rps

v+

⌘
l
h
C

+⌧
1 e

1
2�l + C

+⌧
2 e

� 1
2�l
i
, (2.21)

with
C

+�
1 =

rn

v+

rps

(v+ � w)�
, (2.22)

C
+�
2 = � rn

v+

rps

(v+ � w)�
, (2.23)

C
+0
1 =

rn

v+

1

2�

✓
�+

rc + rsp

v+ � w
� rc + rps

v+

◆
, (2.24)
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C
+0
2 =

rn

v+

1

2�

✓
�� rc + rsp

v+ � w
+

rc + rps

v+

◆
, (2.25)

see Figure 2.18. Expressions for m
�� (l) and m

�0 (l) can be found by solving a
two di↵erential equations system with Eq. (2.21) plugged in Eqs. (2.14) and (2.15).
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Figure 2.18: Length distribution for microtubules with (A) plus end in growing state
and minus end in shrinking (blue), paused (green), and the cumulative distribution
for all growing microtubules (red). (B) Comparison between the cumulative
distribution for growing microtubules (red), and the exponential distribution

n
+ (l) = rn

v+�we
�rcl/(v+�w) for growing microtubule in the Dogterom-Leibler model

(black). Parameters used for these distributions are v
+ = 0.105µms�1, w =

0.063µms�1, rc = 0.0025 s�1, rps = 0.0138 s�1, rsp = 0.0016 s�1, and rn =
0.01 s�1.

Changing the boundary conditions

Figure 2.18 shows that when we add dynamic instability at the minus end, the
steady-state distribution for growing microtubules defined by

m
+ (l) = m

+� (l) +m
+0 (l) , (2.26)

is no longer the negative exponential distribution of Dogterom-Leibler model of
Eq. (1.3). The causes and implications of this observation will be discussed in
details in chapter 5. Here, instead, we want to find a way to recover the general
solution of Dogterom and Leibler without changing the main feature of the model,
i.e. the presence of dynamic instability at both ends of microtubules, but by acting
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on the boundary conditions at l = 0. Indeed, since the general solution for the
two distributions is the same, we notice that the di↵erence between m

+� (l) and
m

+0 (l) arises solely and exclusively from the di↵erent boundary conditions of the
two functions. Therefore, we ask whether we can find di↵erent boundary conditions
such that m

+� (l) = ↵m
+0 (l), with ↵ 2 (0,1), and, if so, whether we can find

an overall shrinking speed for the minus end w such that the length distribution
of our new system coincides with the length distribution of a Dogterom-Leibler
model with growing speed v

+ � w. In other words, we have to find the boundary
conditions and the parameter ↵ such that

8
><

>:

C
+�
1 = ↵C

+0
1 ,

C
+�
2 = ↵C

+0
2 .

(2.27)

We suppose that a fraction u of microtubules are nucleated with the minus end
initially in the shrinking state, and consequently, the fraction 1� u of microtubules
are nucleated in the paused state as in the original model. With these new boundary
conditions

m
+� (0) =

rn

v+ � w
u, (2.28)

m
+0 (0) =

rn

v+
(1� u) , (2.29)

d

dl
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����
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"
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#
, (2.30)
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"
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#
, (2.31)

the integration coe�cients of Eqs. (2.21) become
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Conditions (2.27) yield

u =
2rps

2rps +
⇣
�+ rc+rsp

v+�w � rc+rps
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⌘
v+

, (2.36)

and
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v
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✓
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v+

◆
. (2.37)

Intriguingly, we notice that Eq. (2.36) implies that C+�
2 = 0 = C

+0
2 . This means

that the only possible length distribution such that m+� (l) = ↵m
+0 (l) given a

certain choice of boundary conditions is the exponential distribution.
By making use of some simple algebra we can show that

↵ =
u

1� u

v
+

v+ � w
,

and we can eventually rewrite

m
+ (l) = m

+� (l) +m
+0 (l) = (1 + ↵)m+0 (l) , (2.38)

with
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. (2.39)

Average minus end speed

To check whether or not a constant average speed w for the minus end such that
our four state model can be approximated with a two state model with dynamic
instability only at the plus end exists, we compare all moments of distribution
(2.38) with the moments of the exponential distribution for growing microtubules
in the Dogterom-Leibler model, with growing speed v

+ � w.
We denote with M

+
j the j

th moment of the distribution m
+ (l), i.e.

M
+
j =

Z 1

0
dl l

j
m

+ (l)

and similarly with N
+
j the j

th moment of the distribution

n
+ (l) =

rn

v+ � w
e
�rcl/(v+�w)

.
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We look for w such that
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(2.40)
for every j = 0, 1, 2, . . . . Using some elementary algebra, we can show that

v
+ � w + uw
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2rc
,

and if we plug this in Eqs. (2.40), for every j we obtain

w = v
+ � 2rc

rc+rsp
v+�w + rc+rps

v+ ��
. (2.41)

Using this last result we can finally rewrite m
+ (l) as

m
+ (l) =

rn

2rc

✓
rc + rsp

v+ � w
+

rc + rps

v+
��

◆
e
� 1

2

⇣
rc+rsp

v+�w
+

rc+rps

v+ ��
⌘
l

=
rn

v+ � w
e
� rc

v+�w
l
.

This result shows that there exists a well defined minus end speed w such that
we can see the minus end as if it is constantly depolymerizing, even though it
undergoes dynamic instability. However Eq. (2.36) shows that this is possible only
for a very specific choice of boundary conditions for microtubule nucleation. More
specifically, there exists a unique choice of boundary conditions such that there is
a minus end speed w that makes the steady-state length distribution be a negative
exponential, as well as in the Dogterom-Leibler model.

2.5 Conclusions

In this chapter, we showed how the control and the regulation of microtubule end
stability is crucial for the katanin-based reorientation of the cortical microtubule
array of Arabidopsis thaliana cells. With our computational model we have indeed
seen how a su�ciently large probability of rescue after severing for the newly-created
plus end is a fundamental factor for the amplification of the longitudinal array, as
it increases the opportunity for a microtubule to create crossovers with di↵erently
oriented microtubules, and therefore the possibility of being severed again. The
plus end tracking protein CLASP is responsible for increasing the probability of
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rescue after severing, as it binds to newly-created plus end after severing and
it stabilizes them, allowing their polymerization. Moreover, we have shown how
a stable minus end is also important for the amplification, as it maintains the
severing spots, i.e. microtubule crossovers, for the katanin to act. An unstable
minus end, indeed, would remove microtubule crossovers with its depolymerization,
decreasing the average lifetime of crossovers, and hence the opportunity to resolve
them with a severing event. The minus end tracker SPIRAL2 is important for the
stability of microtubule minus ends as it binds there and stabilizes, protecting them
against subunit loss. Finally, we introduced a theoretical model for microtubules
undergoing dynamic instability at both ends. The model showed that, in general,
the steady-state properties of microtubule length change when we add instability
at the minus end with respect to the null Dogterom-Leibler model. However,
we learned that there exists a unique choice of boundary conditions such that
the steady-state length distribution of microtubules with dynamic instability at
both ends can be described by a modified Dogterom-Leibler model in which the
microtubule minus end always shrinks with a specific shrinking speed that depends
on the other dynamic parameters.



CHAPTER 3

Probability of rescue after severing defines a critical

threshold for microtubule amplification

In the previous chapter we have shown that the stability of microtubule ends is
important for the reorientation of the cortical microtubule array. In particular,
we have shown with computer simulations that a high probability of rescue after
severing is crucial for enhancing the speed of the amplification of the number of
longitudinal microtubules for a di↵erent set of mutants. However, the experiments
revealed that, at least in the initial phase of reorientation, the microtubules are in
the unbounded-growth regime, i.e. the regime when microtubule polymerization
prevails over the depolymerization, see Chapter 1. In this regime, microtubules can
in principle live for a very long time, and therefore can be severed a large number of
times. Hence, as we observed in Chapter 2, having a non-zero probability of rescue
after severing is not strictly necessary for the amplification to occur. Furthermore,
the unbounded-growth regime for microtubules amplifying in number cannot be
sustained by the cell. Indeed the total amount of tubulin in the cell to drive
polymerization is finite, and therefore we can expect that for longer time periods
the growing speed of microtubules decreases, making them slow down and enter
the bounded-growth regime. It follows that, to completely understand the role of
the probability of rescue after severing in the reorientation mechanism, we need
to study the system when the reorientation cannot be driven by the fast growth
of microtubules. For this reason, in this chapter, we focus on microtubules in the
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bounded-growth regime.
Specifically, we perform an in-depth study of the theoretical model of longi-

tudinal microtubules undergoing dynamic instability in a background of stable
transverse microtubules already introduced in Chapter 2. In Section 3.2 we show
how, for microtubules in the unbounded-growth regime, the probability of rescue
after severing dramatically a↵ects the amplification speed of the cortical array and
the success probability of such an amplification. This result can be generalized
for the bounded-growth regime as well, provided that the probability of rescue
after severing is large enough. Indeed, we show that from the model parameter
emerges a critical relationship between probability of succeeding in the amplifica-
tion mechanism and probability of rescue after severing. In the last section, we
calculate the critical threshold that needs to be overcome for the success of the
amplification by using a combination of analytical calculations and computer simu-
lations. To achieve this result, we introduce a two-crossovers theory in which the
entire background of transverse microtubules is replaced by only two microtubules,
and we calculate the contribution of the probability of rescue after severing to the
probability that the creation of a crossover leads to a severing event. In order to do
that, we develop a new approximated technique to calculate the first-passage time
distribution (hereafter FPTD) for microtubules to reach relatively close targets,
that can be used for solving first-passage time problems in other systems as well.

3.1 The model

Dynamic model

The model - already introduced in Chapter 2, consists of a single longitudinal
microtubule undergoing dynamic instability in the background of transverse mi-
crotubules. Every time the longitudinal microtubule crosses a transverse one it
creates a crossover where it can be severed. The occurrence of a severing event
depends partly on the intrinsic waiting severing time at a crossover of Eq. (2.2)
and partly on the dynamic instability of the microtubule. When a severing event
occurs, the former long microtubule is now split in two shorter microtubules. Both
of them keep undergoing dynamic instability and can create new crossovers. In
this way, they have the opportunity to be severed again and to create an o↵spring
of severing-created descendants. After a severing event, the newly-created plus end
of the lagging microtubule either is stabilized and enters the growing state with
probability p

+, or the shrinking state with probability 1� p
+. The newly-created

minus end of the leading microtubule is now positioned at the severing point in a
stable state, whilst no changes are applied to its plus end, see Figure 2.6.
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Parameter Description
Numerical value Numerical value

Units
(bounded) (unbounded)

v+ Growth speed 0.1 0.103 µms
�1

v� Shrinkage speed 0.25 0.225 µms
�1

rc Catastrophe rate 0.02 0.0058 s
�1

rr Rescue rate 0.02 0.026 s
�1

p+ Rescue after severing Tuned Tuned -

d Spacing between neighbors 1.5 1.5 µm
✓ Gamma scale parameter 8.5 8.5 s

k Gamma shape parameter 7 7 -

Table 3.1: Model parameters.

Contrarily to the previous chapter, here we study the model when the distance
between two neighbour transverse microtubules is fixed, in place of being drafted
from the probability distribution of Eq. (2.1). In other words, the background
of transverse microtubules is replaced by a regular grid with constant spacing d

between neighbours.

Microtubule dynamic equations in the interstitial strip

After the creation of a crossover and before the creation of a second one, the
dynamics of the plus end of a microtubule is described by the Dogterom-Leibler
model for microtubules undergoing dynamic instability. Notice that the dynamics
of the plus end is not influenced by eventual severing events. Therefore, as long as
the plus end is at a position x 2 (nd, (n+ 1)d), we can study the property of the
correspondent microtubule undergoing dynamic instability in a strip of width d as
if its length is l = x� nd.

Given our specific interest in studying the properties of the system in both
the bounded and the unbounded-growth regime, we have chosen two sets of dy-
namic parameters: for the bounded-growth case parameters are chosen accordingly
to previous observations (Vos et al., Cell Motil. Cytoskel., 2004), while for the
unbounded-growth case, both dynamic parameters and grid parameters are those
that have been directly measured for the WT case in previous experiments (Linde-
boom et al., J. Cell Biol., 2018), see Table 3.1.

Splitting probabilities in the interstitial strip

If a microtubule plus end impinges on a transverse microtubule, it creates a crossover.
After the creation of the crossover the plus end is located at x 2 (nd, (n+ 1)d), and
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as long as this condition is fulfilled the dynamics of microtubules is described by
the Dogterom-Leibler model for microtubules with the minus end at nd, regardless
the occurrence of a severing event. Without any loss of generality, we can therefore
set n = 0 and the length l = x.

Due to the dynamic instability of the plus end, the microtubule either reaches
length x = d or shrinks back to length x = 0. The occurrence of either of these
events is described by the so-called splitting probabilities R

�
0 (x) and R

�
d (x). They

are the probabilities that a microtubule with initial state � and initial length x

arrives first at length 0 or d respectively. Conservation of probability implies that
R

�
0 (x) +R

�
d (x) = 1.

To formally calculate these probabilities, one can look at the behaviour of a
microtubule for an infinitesimal amount of time �t = �x/v

±. If the initial length
of the microtubule is x, then the probability that it reaches the boundary at d is
described by

R
+
d (x) = rc

�x

v+
R

�
d (x) +


1� rc

�x

v+

�
R

+
d (x+ �x) , (3.1)

where, if �t = �x/v
+ it is small enough, rc

�x
v+ is the probability for the microtubule

to undergo a catastrophe during �t. Similarly

R
�
d (x) = rr

�x

v�
R

+
d (x) +


1� rr

�x

v�

�
R

�
d (x� �x) . (3.2)

By combining together Eqs. (3.1) and (3.2) and taking the limit �x ! 0, together
with the boundary conditions R+

d (d) = 1 and R
�
d (0) = 0, we can show (Mulder,

Phys. Rev. E, 2012) that

R
+
d (x) =

e
x/l � rrv

+

rcv�

ed/l � rrv+

rcv�

, (3.3)

and

R
�
d (x) =

rrv
+

rcv�

⇣
e
x/l � 1

⌘

ed/l � rrv+

rcv�

. (3.4)

Similarly, we can obtain

R
+
0 (x) =

e
d/l � e

x/l

ed/l � rrv+

rcv�

, (3.5)

and

R
�
0 (x) =

e
d/l � rrv

+

rcv� e
x/l

ed/l � rrv+

rcv�

. (3.6)
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Notice that these expressions hold for both the bounded and the unbounded-growth
case. This is a direct consequence of the fact that in a strip both regimes produce
a steady-state solution (Govindan & Spillman, Phys. Rev. E, 2004).

3.2 Results

Unbounded-growth regime

The model introduced in the last chapter has been computationally studied for
microtubules in the unbounded-growth regime (Lindeboom et al., J. Cell Biol.,
2018) and it shows that the probability of rescue after severing p

+ is more important
for the speed of amplification of longitudinal microtubules rather than the intrinsic
rescue rate rr of microtubules.

Here, we want to perform an in-depth study of the response to the system to
the change of p+. We will show that, even though p

+ is crucial for the speed of
amplification, it is not required for the occurrence of it.

Our simulations consist of N = 105 trials in which a single longitudinal micro-
tubule undergoes dynamic instability in the whole grid of transverse microtubules.
For every trial we keep track of the fate of the initial microtubule and its o↵spring
until either no more microtubules are present - i.e. they all have shrunk to length
zero, and we call this possible output extinction, or for every trial that did not
result in an extinction, the number of microtubules exponentially increases, and
we call this second possible output amplification.

Figure 3.1A shows that for our choice of dynamic parameters, the speed of
amplification increases monotonically with p

+. Furthermore, we notice from Figure
3.1B that larger values of p+ correspond to lower extinction probabilities, suggesting
that a good stabilization after severing has a double e↵ect: not only it increases
the speed of amplification, but also raises the likelihood of the amplification.

It is also interesting to notice that, as p+ raises, the slope of extinction prob-
ability decreases in time in a way that suggests the existence of an asymptotic
value for it. In that case, the number of microtubules generated by the first one
and its descendants is great enough to prevent the system from extinguishing. We
call this asymptotic value ultimate extinction probability. The ultimate extinction
probability can be used as an order parameter to estimate how many microtubules
are required to make sure that the amplification occurs.

The interesting result that in the unbounded-growth regime even the p
+ = 0

case leads to an overall amplification can be explained by an intrinsic property of
the regime itself. Indeed, although every severing event shortens the length of the
severed microtubule, its plus end is not a↵ected by such an event. Consequently,
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Figure 3.1: (A) Time evolution of the number of longitudinal microtubules for four
di↵erent values of p+. They all show amplification. (B) Extinction probability
as a function of time. It represents the fraction of trials in which, after a certain
amount of time, all microtubules have completely depolymerized.

the dynamic properties of the leading microtubule are not changed by the severing,
and so it applies to the microtubule lifetime as well. Since the average length of
microtubules in the unbounded-growth regime grows in time as

V t =
rrv

+ � rcv
�

rr + rc
t,

it follows that the average lifetime of microtubules is infinite (Dogterom & Leibler,
Phys. Rev. Lett., 1993), and hence the probability that at least one microtubule is
severed an infinite number of times is 1.

Bounded-growth regime

In this section, we address the question whether or not the amplification occurs
regardless of p+ in the bounded-growth regime as well as in the unbounded-growth
case. To do so we perform computer simulations for microtubules in the bounded-
growth regime (see Table 3.1) to show that p+ needs to be greater that a certain
critical value p

+
c in order have amplification. Moreover, using a combination of

computer simulations and analytical calculations we characterize this critical value
as a function of the other model parameters.
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Critical point in simulations

By tuning the probability of rescue after severing p
+ from 0 to 1, we can observe

three di↵erent behaviours, see Figure 3.2A: for low values of p+ the average number
of microtubules exponentially decays in time (extinction); for high values of p+ the
number of microtubules exponentially increases (amplification); for a very specific
choice of p+, i.e. p

+ ' 0.36 for our choice of dynamic parameters, the number
of microtubules remains constant in time. It follows that this system exhibits
criticality in the amplification versus extinction e↵ect as a response to the change of
p
+, and for our choice of model parameters the critical point is p+ ' 0.36. A good

choice of order parameter to establish whether the output would be amplification
or extinction is the amplification probability, defined as the complementary of the
ultimate extinction probability, i.e. the fraction of trials the output of which is
amplification. Below the critical point the amplification probability is zero, whilst
it is greater than zero otherwise, see Figure 3.2B.
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Figure 3.2: (A) Time evolution of the number of longitudinal microtubules for three
di↵erent values of p+. One leads to amplification (blue line), one to extinction (black
line), and one corresponds to the critical behaviour (red line). (B) Amplification
probability as a function of p+. Amplification probability is non-zero for p+ greater
than p

+
crit ' 0.36.

Calculation of the critical point

The amplification mechanism can be seen as the product of a chain reaction. Indeed,
every severing event creates new lagging microtubules that act as intermediates
of the reaction during the propagation step (Laidler, Chemical Kinetics, 1987).
The newly-created lagging microtubule either shrinks to length zero and die, or it
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generates an o↵spring of new lagging microtubules. If the size of the o↵spring is,
on average, greater than one, the output is amplification. In other words, suppose
that a newly-created microtubule is severed M times (after the first severing event
it becomes a leading microtubule). Then amplification occurs if, on average,

M > 1. (3.7)

Suppose now that a microtubule (hereafter we refer to it as the leading micro-
tubule) is created by severing with initial length x = d. Then, it is initially created
in the growing state with probability p

+, and in the shrinking state with probability
1� p

+. Thus, the size of the o↵spring of the leading microtubule can be written
as M = p

+
M

+ + (1� p
+)M�, where M

� is the size of the o↵spring of a leading
microtubule created in the state �. However, it is easy to convince ourselves that
M

� = R
�
d (d)M+. Indeed, since no severing events can occur if the plus end of

the microtubule is at x 2 (0, d), the size of the o↵spring of a microtubule born with
length d and in the shrinking state is the same as if it was born in the growing
state, provided that the microtubule recovers the initial length d, i.e. it creates
again the crossover in d. Hence, the condition (3.7) can be rewritten as

M =
⇥
p
+ +

�
1� p

+
�
R

�
d (d)

⇤
M

+
> 1. (3.8)

By solving the equality related to Eqs. (3.8) we can find the critical value of
p
+ = p

+
crit above which amplification occurs

p
+
crit =

1�R
�
d (d)M+

�
1�R

�
d (d)

�
M+

. (3.9)

From this equation, we can identify the two extreme scenarios in which amplifi-
cation never or always occurs, regardless of p+. In the first case, we observe that
amplification never occurs if p+crit > 1, meaning that the maximum value that p+

can reach is not enough to lead to amplification. With simple algebra we can show
that condition p

+
crit > 1 is equivalent to the condition

M
+
< 1, (3.10)

i.e. amplification is impossible if the average size of the o↵spring of leading
microtubules born in the growing state is smaller than 1. In the second case,
we observe that amplification always occurs if p

+
crit < 0, meaning that even

without stabilization after severing, dynamic parameters of the model are such
that amplification is still possible. This condition is equivalent to

M
+
R

�
d (d) > 1, (3.11)
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or M�
> 1, i.e. amplification occurs every time the average size of the o↵spring of

leading microtubules born in shrinking state is greater than 1.
Unfortunately we are not able to analytically calculate M

+, but we can compu-
tationally measure it. It is important to notice that, in our discussion, we implicitly
assumed that all microtubules are born with initial length d, which implies that all
severing events happens at the first crossover. We refer to this approximation as
first-crossover approximation.

However, given the stochastic nature of the system and of the severing waiting
time probability of Eq. (2.2), it is possible that a severing event occurs further in
the grid than at the first crossover of a leading microtubule, i.e. the initial length
of a newly created microtubule is x = nd, with n > 1. In this case, we have to
add to the size of the o↵spring of the leading microtubule the number of severing
events that occur at previous crossovers at its lagging part after the event at nd.

In other words, if we define mi via M
+ = 1

N

NP
i=1

mi, as the number of microtubules

generated by a single leading microtubule, we denote si as the number of times its
leading part is severed, and cji as the position of the crossover at which the first
severing takes place, with the rule: cji = n� 1 if the severing happened at nd, then

mi = si +
siX

ji=1

⇥
cji � bcji

⇤
, (3.12)

where bcji
is the number of crossovers resolved by shrinkage of the lagging part of

the leading microtubule after the severing at cji . Notice that, since the behaviour
of the newly-created plus end of the lagging microtubule depends on p

+, then bcji
depends on p

+ as well, and so does mi. Hence, Eq. (3.9) does not hold anymore.
To avoid this complication, in first approximation we replace mi with

m
(0)
i = si +

siX

ji=1

cji , (3.13)

and we directly count this number, see Figure 3.3. If we average m
(0)
i over

N = 105 simulations, we eventually find the first approximation for M+, i.e. M+
0 =

2.61± 3.91. If we plug this number, as well as the parameters of Table 3.1, in Eq.
(3.9) we obtain the first estimate of the critical probability of rescue after severing,
i.e. p+crit,(1) = 0.316, against the computationally measured one p+crit = 0.360. Table

3.2 shows a comparison between p
+
crit,(1) and p

+
crit for di↵erent sets of dynamic

parameters. Notice that, even though our first-crossover approximation provides a
reasonable estimate of the critical probability, we systematically underestimate it.
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0
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01

21 0

Figure 3.3: Schematic of the count of the size of the o↵spring m
(0)
0 of a microtubule

labelled by 0 created by severing in the growing state. When a crossover is created,
the competition severing-shrinking takes place, and if the severing occurs, the
counter of the number of severing events s0 gains one unit, whilst the size of the
o↵spring gains 1+ cs0 . We keep track of the leading microtubule as it can generate

other descendants, further increasing m
(0)
0 . We do not keep track of the lagging

microtubules created by severing.
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In order to have a better estimate of p+crit, we now try to make the assumption
that

bcji
=
�
1� �cji ,0

�
pcr

�
p
+
�
, (3.14)

where pcr (p+) is the probability that a crossover at (n�1)d is resolved by shrinkage
after a severing event occurred at nd, conditional to the fact that such a severing
event at nd had occurred. The Kronecker function �cji ,0

of Eq. (3.14) accounts the
fact that, if the severing happens at the first crossover, i.e. cji = 0, there is no
need of removing one unit from the count of the crossovers that would lead to a
severing event.

Notice that with the definition of Eq. (3.14), we are assuming that in case of a
severing event at nd, only the crossover at (n� 1)d can be removed by shrinkage of
the newly-created plus end, whilst crossovers at d, 2d, . . . , (n� 2)d are all resolved
by severing. In this case we approximate mi with

m
(1)
i = si +

siX

ji=1

h
cji �

�
1� �cji ,0

�
pcr

�
p
+
� i

. (3.15)

From this equation, we can observe that

siX

ji=1

�
1� �cji ,0

�
pcr

�
p
+
�
= pcr

�
p
+
� h

si �
�
�c1,0 + �c2,0 + · · ·+ �csi ,0

� i

= pcr

�
p
+
� h

si � si h�ci,0i
i

= pcr

�
p
+
�
si h1� �ci,0i ,

(3.16)

where the average value h�ci,0i is calculated over all severing events that a leading
microtubule undergoes along its lifetime, and consequently h1� �ci,0i is the fraction
of severing events that a leading microtubule undergoes at nd with n > 1. If we
combine Eqs. (3.13), (3.15), and (3.16) together, and we average over N , we obtain

M
+
1 =

1

N

NX

i=1

m
(1)
i

=
1

N

NX

i=1

h
si +

siX

ji=1

cji � pcr

�
p
+
�
si h1� �ci,0i

i

= M
+
0 � pcr

�
p
+
�
S
1

N

NX

i=1

h1� �ci,0i ,

(3.17)
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where S = 1
N

NP
i=1

si, and where we assumed that the correlation between the number

of severing events that occur along the lifetime of a microtubule and the fraction of
them that occur at nd with n > 1 is negligible. In this case, if N � 1 for the law

of large numbers 1
N

NP
i=1

h1� �ci,0i is the probability that a microtubule is severed

at nd with n > 1, sampled over all cases in which a severing event had occurred.

By replacing M
+ with M

+
0 in Eq. (3.8), we obtain the final amplification

condition

M =
h
p
+ +

�
1� p

+
�
R

�
d (d)

i "
M

+
0 � pcr

�
p
+
�
S
1

N

NX

i=1

h1� �ci,0i
#
> 1. (3.18)

Eq. (3.18) contains two quantities that we cannot determine analytically, namely
M

+
0 and S. However, they can be quite easily measured with computer simulations.

On the other hand, the probabilities pcr (p+) and
1
N

NP
i=1

h1� �ci,0i can be analyti-

cally calculated by making use of a two-crossovers theory that we will develop later
in this section.

Analytical approach

In this section we are going to calculate the critical probability of rescue after
severing. Our starting point is the inequality (3.18). From the equation associated
to that condition, it follows that we need to analytically calculate the probabilities

pcr (p+) and
1
N

NP
i=1

h1� �ci,0i, i.e. the probability that a crossover is removed by

the shrinkage of a microtubule induced by a severing event at a following crossover,
and the probability that a microtubule is severed at a crossover di↵erent than the
first one, respectively. In order to do so, and because of the complexity of the
model, we make the approximation that the entire grid of transverse microtubules
is replaced by just two transverse microtubules. Therefore, we first calculate the
FPTD for a longitudinal microtubule to create a crossover with a transverse as we
will need it for the formulation of our two-crossovers approximation. Then, we give
some analytical results of the one-crossover approximation already introduced in
the previous section. Finally, we present the two-crossovers approximation and we
show that, with it, we can calculate the critical probability of rescue after severing
with a good degree of accuracy.
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The first passage time distribution

The creation of new crossovers for a microtubule undergoing dynamic instability is
intimately linked to a FPTD problem for the same microtubule to reach a target.
Here, we face this problem by making use of an approach where we consider all
possible legal paths to reach the target, given the knowledge of the time needed to
reach it.

The first passage time problem for a microtubule to reach length x1 starting
from x0 in the absence of severing can be seen as a reverse lifetime problem, in the
sense that in place of reaching the target at x1 the microtubules survives until it
arrives at x1, as if it was shrinking from x0 to x1. In this way, the growing speed
of the microtubule acts as its shrinking speed, its catastrophe rate as the rescue
rate, and viceversa.

Hence, if L� (t|x1 � x0) is the lifetime distribution for microtubules with initial
length x1 � x0 and initial state � (see Chapter 1), the function that expresses the
target reaching at distance x1 � x0 from the starting point is

L
target
� (t, x1 � x0) = L� (t|x1 � x0)

���
v± ! v⌥
rc $ rr

, (3.19)

However, function L
target
� (t, x1 � x0) is not yet the FPTD. Indeed, from the

definition (3.19) it follows that �x can increase indefinitely before shrinking to 0.
This can happen as a consequence of the decrease of x0, the value of which can in
principle become negative. Therefore, Ltarget

� (t, x1 � x0) must be re-scaled by the
number of paths that reach the target x1 at time t, without ever shrinking back to
x < x0, calculated over all possible paths that arrive at x1 at time t, see Figure
3.4AB. We call these paths legal paths.

For our purpose, the target to reach is a transverse microtubule for the creation
of a new crossover, the position of which is at distance d from the starting point,
i.e. the previous transverse microtubule. Typically, for the range of values of
Table 3.1, every plus end that impinges on a transverse microtubule either does
it without any catastrophe, or it undergoes one catastrophe and a subsequent
rescue. For the dynamic parameters we are considering, the occurrence of multiple
catastrophe-rescue events is very unlikely. Therefore we assume that all paths are
either direct - no catastrophes, or indirect - one catastrophe and one rescue.

Given the constant growing and shrinking speeds, the amount of time that a
microtubule needs to reach the target at d is given by the time needed to reach it
in absence of any catastrophe, added to the time spent from a catastrophe to the
moment when the original length before the catastrophe is restored. Mathematically,

Td =
d

v+
+�x (Td)

✓
1

v+
+

1

v+

◆
, (3.20)
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where Td is the first-passage time, and �x (Td) is the distance walked by the plus
end from the catastrophe to the subsequent rescue. From Eq. (3.20) we can find

the expression for �x (T ) = v+v�

v++v�

�
T � d

v+

�
.

Given the Poisson nature of catastrophe events, if a catastrophe occurs, the
probability that it occurs does not depend on the distance to the target. Therefore,
the fraction of legal paths can be written as �0!d (T ) = 1� �x(T )

d , and finally the
FPTD as

F0d (t) = L
target
� (t, d)�0!d (t)⇥


d

✓
2

v+
+

1

v�

◆
� t

�
, (3.21)

where the Heaviside theta is imposed to allow at most one catastrophe-rescue event.
Indeed t = d

�
2
v+ + 1

v�

�
is the amount of time that a microtubule needs to almost

reach the target yet without touching it, i.e. d
v+ , then undergo a catastrophe and

almost shrink to length 0, i.e. d
v� , and finally undergo a rescue and grow until the

target is reached, d
v+ .

In order to separate direct paths from indirect paths, it is convenient to split
F0d (t) in two parts, and rewrite it as

F0d (t) = �

✓
t� d

v+

◆
e
�rct + f0d (t) , (3.22)

where the term proportional to delta accounts direct paths, while f0d (t) accounts
indirect. From Section 3.1 we know that it is not granted that the microtubule
reaches the target but it succeeds with probability R

+
d (x). Therefore F0d (t) is

normalized to R
+
d (x) and, as a consequence, the relation

Z 1

0
dt f0d (t) = R

+
d (0)� e

� rcd

v+ (3.23)

holds.
We run N = 106 simulations of microtubule plus ends undergoing dynamic

instability in a strip of length d, and we create the histogram of the arrival
times for the N ⇥R

+
0d plus ends that reach the target. Figure 3.4CD shows that

the approximation of only one catastrophe-rescue event is a good approximation
when the target is relatively close compared to the dynamic parameters of the
microtubules, while it apparently fails when the target is more distant, see Figure
3.4EF. However, it is convenient to underline that for d � l we can observe a very
few arrivals at the target, since from Eq. (3.3) we notice that the arrival probability

R
+
d (0) decays as e�d/l. On the other hand, in the unbounded-growth regime, since

the fraction 1� rcv
�

rrv+ of plus ends always arrives at the target, for distant targets
the approximation of one catastrophe-rescue event is no longer good.
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Figure 3.4: (A) Legal and (B) illegal path for a microtubule to reach the target at
a distance d in a first passage time T . Only one catastrophe and one rescue are
allowed. (C-F) Comparison between simulations (red dots) and theory (blue line)
for the non-direct part fd (t) of the first passage time distribution. (B, C) Our
theory nicely fits simulations for relatively close targets (d = 1.5µm, d = 6µm),
(D, E) while it apparently fails for more distant targets (d = 30µm, d = 60µm).
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One-crossover theory

Näıvely, one can think that once a crossover is created the probability p
(1)
sev of

resolving it with a severing event is given by the competition between two indepen-
dent events: microtubule lifetime, expressed by the random variable T+ (x) with
density function given by Eq. (1.7), and severing waiting time at the crossover,
with random variable ⌧d and density function defined in Eq. (2.2). Then, if we
define the random variable t = ⌧d � T0, we can calculate its probability density
function by using the relation

Pz (z = x+ y) =

Z +1

�1
dz

0
Px (z � z

0)Py (z
0) , (3.24)

where Pi is the probability density function of the random variable i = x, y, z, and
x and y are independent random variables (Stuart & Ord, 1994). In our case, the
probability density function is

P⌧d�T+(0) (t) =

Z +1

�1
dt

0
Wk,✓ (t+ t

0)L+ (t0|0) . (3.25)

Hence, the probability that the event “severing” occurs before the event “return”
is Pr [t < 0] =

R 0
�1 dt P⌧d�T+(0) (t). This probability is not yet the probability of

resolving a crossover with a severing event: indeed, microtubules in the unbounded-
growth regime have a finite probability of growing indefinitely. In that case, the
microtubule lifetime T+ (0) ! 1, whereas Eq. (3.25) only refers to those of which
it is finite. Therefore, the probability of resolving a crossover with a severing event
is

p
(1)
sev = S+ (1|0) + [1� S+ (1|0)]

Z 0

�1
dt P⌧0�T+(0) (t) . (3.26)

Consequently the probability of resolving a crossover with a shrinkage

p
(1)
shrink = 1� p

(1)
sev. (3.27)

However, with this approach we are not considering the number of crossovers
removed by shrinkage after the severing at a second crossover, and as a consequence
the dependency on p

+. In other words, some microtubules that would have been
severed at the crossover at d, may not be severed there anymore, because a severing
at the crossover nd, with n > 1, can in principle shorten their lifetimes, and make
them shrink below the crossover at d before the severing occurs, see Figure 3.5.
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Two-crossovers theory

In order to take into account the influence of a crossover on the resolution of the
previous one, we calculate the probability of resolving a crossover with a severing
event in a scenario in which we have only two transverse microtubules, at positions
d and 2d. We make the further approximation that the same microtubule cannot
be severed two times at the same crossover. We denote the probability of having a

severing event at d as p(2)sev, and consequently we define the probability of resolving

a crossover with shrinkage as p(2)shrink = 1� p
(2)
sev.

Figure 3.5B shows the three distinct ways in which the newly-created crossover
at d can be resolved by shrinkage or severing: 1) the plus end shrinks (is severed)
before reaching 2d, 2) the plus end shrinks (is severed) after reaching 2d but before
being severed there, 3) the plus end shrinks (is severed) after reaching 2d and after
being severed there. The third case bears a dependency on p

+ because the dynamic
instability of the newly-created plus end of the lagging microtubule is altered by
the severing event.

We first notice that p
(2)
shrink can be split in two probabilities, i.e. p

(2)
shrink =

qsev + qshrink, where qsev is the probability of shrinkage after severing at 2d,
while qshrink is the probability of shrinkage without any severing. Furthermore,
since qsev depends on the dynamic behaviour of the microtubule just after the
severing event, it carries a dependency on p

+ and can be split again in qsev (p+) =
p
+
qsev,+ + (1� p

+) qsev,�, where qsev,� is the probability of shrinkage after being
severed at 2d with the newly-created plus end in the state �.

As regards the probability qshrink that microtubules shrink below d without
being severed there, we observe that such a probability accounts all cases in which

crossovers are resolved by shrinkage in absence of the crossover at 2d, i.e. p(1)shrink,
except for those cases in which microtubules that in principle would have shrunk
back, do not have enough time to do so because they are severed at 2d. We describe

this situation with the probability qns, and hence qshrink = p
(1)
shrink � qns.

Therefore, the final expressions for the probabilities of resolving a crossover
with a severing and with a shrinkage are

p
(2)
shrink

�
p
+
�
= p

(1)
shrink � qns + qsev

�
p
+
�
, (3.28)

p
(2)
sev

�
p
+
�
= p

(1)
sev + qns � qsev

�
p
+
�
, (3.29)

see Figure 3.6. Notice that qsev (p+) can be rewritten as

qsev

�
p
+
�
= qsev,� � (qsev,� � qsev,+) p

+
,

where the term in the braces is always positive. Indeed, all microtubules with a
growing plus end after severing have to first return back to the severing point in the
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timer starts timer startstimer starts

A B

Figure 3.5: Schematic of the one-crossover theory (A). The newly-created crossover
can be resolved either by the shrinkage of the plus end below the crossover itself
(lower blue square), or by the severing at crossover (upper blue square). Schematic
of the two-crossovers theory (B). The first crossover created can be resolved either

by the shrinkage of the longitudinal microtubule with probability p
(2)
shrink (sum of

all paths that bring to lower blue square), or by the severing at crossover with

probability p
(2)
sev (sum of all paths that bring to upper blue square). Whether

the severing at the first crossover occurs or not also depends on what happens at
the second crossover: a severing event at the second crossover alters the dynamic
instability of the lagging microtubule, and hence its probability of shrinking before
being severed at the first crossover.
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shrinking state before completing the shrinkage. In other words, since a microtubule
initially in the growing state takes more time to completely depolymerize than a
microtubule in the shrinking state, its probability of resolving the crossover at d
before being severed there is smaller than in the opposite case. Consequently, the

probability p
(2)
sev (p+) of resolving a crossover with a severing event grows linearly

with p
+.

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

Figure 3.6: Probability of severing at a crossover. Comparison between simulations

in the whole grid (dots) and two crossovers severing probability p
(2)
sev (straight lines)

for three di↵erent sets of dynamic parameters reveals that the two-crossovers theory
very well approximates the behaviour of the severing probability at a crossover
as a response to the change of p+. In particular, we use both bounded-growth
regime parameters, respectively v

+ = 0.1µms-1, v� = 0.25µms-1, rc = 0.02 s-1,
rr = 0.02 s-1 (red dots and red line), and v

+ = 0.11µms-1, v� = 0.275µms-1,
rc = 0.022 s-1, rr = 0.01 s-1 (green dots and green line), and unbounded-growth
regime parameters - v+ = 0.1µms-1, v� = 0.25µms-1, rc = 0.006 s-1, rr = 0.02 s-1

(blue dots and blue line).

With this two-crossovers theory, we can finally give a new estimate of the
critical probability of rescue after severing by calculating the probabilities pcr (p+)

and 1
N

NP
i=1

h1� �ci,0i of Eq. (3.18). In order to do that, we first define p2d as the

probability to have a severing event at 2d before an eventual severing event at d.
The proper expression for p2d, as well as those for qsev,� and qns can be found in
the appendix.

We now define the three events A, B, and C as

A = shrinkage of microtubule below d after severing at 2d,

B = severing event at 2d before severing event at d,

C = severing event at either d or 2d.
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The three events are nested as A ⇢ B ⇢ C, and their probabilities are Pr (A) =

qsev (p+), Pr (B) = p2d, and Pr (C) = p
(2)
sev (p+)� qsev (p+)+p2d = p

(1)
sev � qns+p2d.

Thus, in this two-crossovers theory, it holds

pcr

�
p
+
�
= Pr (A|B) =

Pr (A \B)

Pr (B)

=
Pr (A)

Pr (B)
=

qsev (p+)

p2d
,

(3.30)

and

1

N

NX

i=1

h1� �ci,0i = Pr (B|C) =
Pr (B \ C)

Pr (C)

=
Pr (B)

Pr (C)
=

p2d

p
(1)
sev � qns + p2d

.

(3.31)

With these probabilities, the resolution of the equality associated to inequality
(3.18) of Section 3.2 leads to p

+
crit,(2), that is

p
+
crit,(2) =

1

2S�qsev�
�
1�R

�
d (d)

�

⇥
⇢�

M
+
0 � S↵�

� �
1�R

�
d (d)

�
� S�qsev�R

�
d (d)

+
q⇥�

M
+
0 � S↵�

� �
1�R

�
d (d)

�
+ S�qsev�R

�
d (d)

⇤2 � 4S�qsev�
�
1�R

�
d (d)

��
,

(3.32)

where
↵ = p

(1)
sev + qns � qsev,�,

� =
1

p
(1)
sev � qns + p2d

,

�qsev = qsev,� � qsev,+.

Therefore, we can compare p
+
crit,(2) with p

+ for the reference values of Table 3.1
and for other sets of dynamic parameters, see Table 3.2.

Table 3.2 shows a very good agreement between our predicted critical proba-
bility of rescue after severing in the two-crossovers approximation and the critical
probability obtained with our simulations in the whole grid of transverse micro-
tubules, confirming our hypothesis that in order to study the critical properties of
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Dynamic parameters
Critical point Critical point Critical point

(simulations) (1-cross. theory) (2-cross. theory)

v+ v� rc rr p+crit p+crit,(1) p+crit,(2)
µms

�1 µms
�1

s
�1

s
�1

- - -

0.10 0.250 0.020 0.020 0.360 0.316 (0.122) 0.361 (0.003)

0.08 0.275 0.016 0.022 0.338 0.297 (0.121) 0.337 (0.003)

0.15 0.225 0.020 0.020 0.142 0.108 (0.239) 0.144 (0.014)

0.10 0.250 0.030 0.015 0.882 0.819 (0.071) 0.864 (0.020)

0.10 0.250 0.015 0.030 0.089 0.068 (0.236) 0.103 (0.157)

0.10 0.250 0.030 0.015 0.800 0.733 (0.084) 0.780 (0.025)

0.10 0.275 0.020 0.030 0.285 0.240 (0.158) 0.285 (0.000)

0.10 0.250 0.010 0.020 0.054 0.041 (0.241) 0.066 (0.222)

0.08 0.225 0.015 0.025 0.208 0.179 (0.139) 0.213 (0.024)

0.12 0.225 0.020 0.025 0.175 0.140 (0.200) 0.179 (0.023)

0.08 0.250 0.002 0.020 0.510 0.455 (0.108) 0.497 (0.025)

Table 3.2: Comparison p
+
crit,(2) vs p

+
crit for di↵erent sets of dynamic parameters.

All other model parameters are those of Table 3.1. The numbers in the braces
represent the relative error between the measured quantity p

+
crit and the theoretical

predictions p+crit,(1) and p
+
crit,(2).

the system, we can approximate the entire grid of transverse microtubules with
just two of them without any substantial loss of accuracy. Furthermore, this result
is in agreement with our choice of considering the severing of microtubules only
possible at the first two crossovers that they have along their length.

3.3 Conclusions

Our aim was to study the response of the cortical microtubule array to a change
in the probability of rescue for the newly-created plus ends after severing. To do
that, we first introduced a stochastic model of microtubules undergoing dynamic
instability in a grid of stable transverse microtubules, and we observed that the
system responds to the change of such a probability in two distinct ways: by
increasing the speed of amplification and by reducing the extinction probability.
We observed that, although for microtubules in the unbounded-growth regime the
amplification is on average always reached even when the probability of rescue
after severing is zero, in the bounded-growth regime such a probability is required
to be greater than a certain critical threshold in order to have amplification. The
di↵erence between the two regimes comes from the fact that in the unbounded-
growth case some microtubules have an infinitely long lifetime, and hence they are
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severed an infinite amount of times, allowing the amplification to occur. Next, we
identified the critical relationship between probability of rescue after severing and
the rest of the dynamic parameters of the model. In order to do that, we introduced a
two-crossovers theory in which the entire grid of transverse microtubules is replaced
by only two of them. The introduction of this theory carried the development a
novel technique to calculate the FPTD of microtubules to reach a relatively close
target based on the sum over all possible paths that reach the target without
a complete depolymerization of the microtubule. This technique allowed us to
estimate the critical probability of rescue after severing in our two-crossovers
approximation with high degree of accuracy, and has the potential to be used to
calculate the FPTD for other systems as well.

3.4 Appendix

Calculation of the severing probability at a crossover

In order to calculate qsev,� we define the following random variables: severing
waiting time at d as ⌧d and at 2d as ⌧2d with density function of Eq. (2.2), FPT
at second crossover Td with density function of Eq. (3.21), lifetime T� (x) of a
microtubule with initial state � and initial length x, and severing waiting time
e⌧2d at 2d with the further requirement that the severing event occurs before the
removal of crossover at 2d due to shrinkage. Given the independence of the two
events, it follows that the cumulative function �e⌧2d (t) = Pr [e⌧2d < t] of e⌧2d can be
rewritten as

�e⌧2d (t) = Pr [(⌧2d < t) \ (⌧2d < T+ (0))]

=
1

ZW

Z t

0
dt

0
Wk,✓ (t

0)

Z 1

t0
dt

00
L+ (t00|0) ,

(3.33)

where

ZW =

Z 1

0
dtWk,✓ (t)

Z 1

t
dt

0
L+ (t0|0) . (3.34)

Therefore, the probability density function fWk,✓ (t) of e⌧2d is

fWk,✓ (t) =
1

ZW
Wk,✓ (t)

Z 1

t
dt

0
L+ (t0|0) , (3.35)

where we used the definition of probability density function, fWk,✓ (t) =
d
dt�e⌧2d (t).

The probabilities qsev,� can be seen as the probability that the microtubule
reaches 2d, it is severed there with newly-created plus end in the state �, and
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finally shrinks back below d, before being severed at d. As we observed in the
one-crossover scenario, if a microtubule arrives at 2d it can be severed there in
two distinct ways: either it is a microtubule that grows indefinitely and hence is
severed with probability 1, or the severing at 2d wins the competition against the
removal of the same crossover due to dynamic instability. In the first case, that
accounts a fraction S+ (1|0) of the microtubules (see Chapter 1), a microtubule
shrinks back below d if ⌧d > Td + ⌧2d + T� (d), with associated probability density
function

P⌧d�Td�⌧2d�T�(d) (t)

=

Z

R3

dt
0
dt

00
dt

000
Wk✓ (t+ t

0 + t
00 + t

000)F0d (t
0)Wk✓ (t

00)L� (t
000|d) ,

(3.36)

where we used again the relation (3.24), while in the second case, that accounts
the remaining 1� S+ (1|0), the microtubule shrinks below without being severed
there if ⌧d > Td + e⌧2d + T� (d), and simultaneously if it is severed at 2d, i.e. if
⌧d < T+ (0). The probability density function associated with the first condition is

P⌧d�Td�e⌧2d�T�(d) (t)

=

Z

R3

dt
0
dt

00
dt

000fWk✓ (t+ t
0 + t

00 + t
000)F0d (t

0)Wk✓ (t
00)L� (t

000|d) ,

(3.37)

while for the second condition is expressed in Eq. (3.25). Therefore, the final
expression for qsev,� is

qsev,� = R
+
d (0)

⇢
S+ (1|0)

Z 1

0
dt P⌧d�Td�⌧2d�T�(d) (t)

+ [1� S+ (1|0)]
Z 1

0
dt P⌧d�T0 (t)

Z 1

0
dt P⌧d�Td�e⌧2d�T�(d) (t)

�

⇥ [1� S+ (1|d)] ,
(3.38)

where the first factor R+
d (0) accounts all microtubules that reach length 2d starting

from d, and the final factor 1� S+ (1|d) accounts all microtubules that after the
severing at 2d shrink back below d.

To calculate qns we first define the random variable eT+ as the time that a
microtubule starting in the growing state and with plus end at 2d needs in order to
return in the shrinking state at 2d, with the further condition that no severing event
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occurs at 2d. Similarly to the derivation of fWk,✓ (t), we can derive the probability

density function of eT+, that is

eL+ (t) =
1

ZL
L+ (t|0)

Z t

0
dt

0
Wk,✓ (t

0) , (3.39)

with

ZL =

Z 1

0
dtL+ (t|0)

Z t

0
dt

0
Wk,✓ (t

0) . (3.40)

Therefore, as qns is basically the probability that a microtubule reaches length
2d and would return to length d but it cannot because it is severed at 2d, the
two conditions that our random variables have to fullfil are ⌧2d < T+ (0) and
⌧d > Td + eT+ + T� (d). The former condition has already been discussed before,
whilst the latter has associated probability density function

P⌧d�Td�eT+�T�(d) (t)

=

Z

R3

dt
0
dt

00
dt

000
Wk✓ (t+ t

0 + t
00 + t

000)F0d (t
0) eL+ (t00)L� (t000|d) .

(3.41)

Therefore

qns = R
+
0d [1� S+ (1|0)]

Z 0

�1
dt P⌧d�T+(0) (t)

Z 1

0
dt P⌧d�Td�eT+�T�(d) (t) .

(3.42)
Finally, in order to calculate the probability p2d to have a severing event at 2d

before an eventual severing event at d, we notice that we have two di↵erent cases.
In the first case, the microtubule reaches length 2d and is severed there before
being severed at d, i.e. ⌧d > Td + ⌧2d. In the second case, the microtubule reaches
2d and it is severed there before being severed at d, i.e. ⌧d > Td + e⌧2d, with the
further condition that the event “severing” wins the competition against the event
“shrinkage” at 2d, or in other instances ⌧2d < T+ (0). The associate probability
density functions to these conditions are, respectively,

P⌧d�Td�⌧2d (t) =

Z

R2

dt
0
dt

00
Wk✓ (t+ t

0 + t
00)F0d (t

0)Wk✓ (t
00) , (3.43)

P⌧d�Td�e⌧2d (t) =

Z

R2

dt
0
dt

00
Wk✓ (t+ t

0 + t
00)F0d (t

0)fWk✓ (t
00) , (3.44)

P⌧2d�T+(0) (t) = P⌧d�T+(0) (t) , (3.45)
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therefore

p2d = R
+
0d

⇢
S+ (1|0)

Z 1

0
dt P⌧d�Td�⌧2d (t)

+ [1� S+ (1|0)]
Z 0

�1
dt P⌧2d�T+(0) (t)

Z 1

0
dt P⌧d�Td�e⌧2d (t)

�
.

(3.46)





CHAPTER 4

Reorientation of the cortical microtubule array in presence

of finite tubulin pool

The experiments we presented in Chapter 2 showed that in presence of a high
probability of rescue after severing and a stable minus end, cortical microtubules
could reorient and maintain the new orientation for a relatively long period of time,
see Figure 2.5. Indeed, one could observe that, in around 30 minutes time, the
transverse array completely disappeared in advantage of a new longitudinal popu-
lation of microtubules. However, the model we computationally and analytically
studied in Chapters 2 and 3, only looked at the first stage of this reorientation
process, i.e. the first 500 seconds after the exposure to light. In that time frame,
the transverse array could be considered as a constant background, and indeed we
assumed the dynamics only for longitudinal microtubules.

Here, we want to study the behaviour of the system during the long-time phase
of reorientation process. In particular, we are interested in understanding which
factors play a role in the success and in the maintenance of the new longitudinal
array of microtubules. Experimental observations have already shown the existence
of a preferential severing for the more recently nucleated microtubules rather than
the older ones. As in the initial phase of the process all background microtubules are
transverse, there is a strong correlation between new and longitudinal microtubules,
resulting in a preferential severing mechanism for the latter. In this chapter, we
test the hypothesis whether the asymmetry induced by the preferential severing
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can explain the reorientation, and maintain the new longitudinal array.
In this chapter, we will introduce a theoretical model of two populations of

microtubules - transverse and longitudinal, that compete for a finite tubulin pool,
and interact with each other to create new microtubules through severing, starting
from the initial transverse array. In Section 4.1 we study the model with the
asymmetry induced by the preferential severing for longitudinal microtubules.
Although this model explains the fast initial amplification of the new longitudinal
array, does not give a good explanation of the long term maintained reorientation.
Nevertheless, it provides us interesting observations for a change in the model
features that could explain the observed phenomena. Therefore, in Section 4.2
we study the same model without severing events, but with another asymmetry
induced by a small di↵erence in the growth speeds of the two populations of
microtubules. In this way, we show that the advantage coming from a slightly
higher growing speed can completely reorient the array from a transverse to a
longitudinal direction, and can maintain the array in the new orientation. Finally,
in Section 4.3, we computationally test the model with both di↵erent speeds for
growing microtubules belonging to di↵erent populations and interaction between
them due to severing. We show that the combination of the two e↵ects not
only explains the full reorientation and the maintenance of the array, but also
considerably shortens the time scale of the process.

4.1 Preferential severing of longitudinal

microtubules does not explain

a maintained reorientation

The model

The model, based on the Dogterom-Leibler model, consists of two populations of
microtubules undergoing dynamic instability: longitudinal (Mk) and transverse
(M?). The two populations compete for a finite tubulin pool, i.e. they have a finite
amount of building material that they can use to grow and to be nucleated. If Ltot

is the total amount of tubulin in the system, it follows that it is divided in three
di↵erent classes: free tubulin pool Lf , tubulin used by longitudinal microtubules
Lk, and tubulin used by transverse microtubules L?, such that

Ltot = Lf + Lk + L?. (4.1)

In order to take into account the finiteness of the tubulin pool, we model the
growth speed of microtubules with a saturating chemical equilibrium, that takes
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into account the fact that the more free tubulin is present in the pool, the faster is
the growth of microtubules. Practically, this implies the introduction of a constant
Lv that is expression of finiteness of the pool and di↵usion of the free tubulin
(Cytrynbaum et al., J. Cell Sci., 2004). Therefore, the expression for the speed of
microtubules in the growing state is

V
+ (Lf ) = v

+ Lf

Lf + Lv
. (4.2)

Microtubules in the shrinking state shrink with speed v
�, and they can switch

from the growing to the shrinking state and viceversa with catastrophe rate rc and
rescue rate rr, respectively.

Figure 4.1: Tubulin redistribution in the system. Tubulin leaves the free pool to
build microtubules of the two dynamic population with a rate proportional to the
total number of growing microtubules, while it goes back in the free pool with a
rate proportional to the total number of shrinking microtubules.

The two populations of microtubules interact with each other through severing
events at crossovers. As in this chapter we are interested more in explaining how
with the severing mechanism it is possible to maintain the reoriented array, rather
than in the amplification mechanism per se, for the sake of simplicity we assume
that severing events can occur over the whole length of a microtubule, with a
severing rate proportional to the latter. Nevertheless, since in cells a microtubule
is severed depending on how many crossovers it creates with di↵erently oriented
microtubules, here we define a severing rate that takes that into account. To that
end, we assume that all cortical microtubules live on the lateral surface of a cylinder
of height h and radius r. To fix the ideas, let l be the length of a single longitudinal
microtubule. Then, the probability for that microtubule to create a crossover with
a transverse one is

pcross (l) =
l

h

M?X

i=1

l?,i

2⇡r
,
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where l?,i is the length of the ith transverse microtubule. Then

pcross (l) =
1

2⇡rh
lL?.

Furthermore, as we said in the introduction of the chapter, to be consistent with
the experimental observations, we implement a preferential severing for the newer
(longitudinal) microtubules (Lindeboom et al., Science, 2013). In order to do so,
we introduce the probability of severing a longitudinal microtubule q >

1
2 . Then,

if rs is the intrinsic severing rate at a crossover, the overall severing rate for a
longitudinal or transverse microtubule of length l is

Rs,k (l) = qrslL?, (4.3)

or
Rs,? (l) = (1� q) rslLk, (4.4)

respectively, and where the factor 1
2⇡rh has been incorporated in the severing

rate rs. Accordingly to the previous chapters, once a microtubule is severed, the
newly-created plus end of the lagging microtubule enters either the growing state
with probability p

+, or the shrinking state with probability 1�p
+, while no changes

are applied to the state of the plus end of the leading microtubule. Finally, the
newly-created minus end of the leading microtubule stays stable, without any
dynamics.

The last ingredient of the model is the nucleation of new microtubules. Besides
the creation of new microtubules by severing, consistently with in vivo observations
(Ehrhardt, Curr. Opin. Cell Biol., 2008), here we assume that microtubules are
mainly - but not exclusively, nucleated by branching processes starting from already
existing microtubules. In particular, if Rn is the overall nucleation rate of the new
microtubules in the whole system, we know that because of the finite tubulin pool,
Rn is a function of Lf , and specifically

Rn (Lf ) = rn

L
a
f

L
a
f + La

v

, (4.5)

where here the Hill coe�cient a = 6. The nucleation rate can be further split in
branching nucleation, with rate

Rn,b = Rn (Lf )
Lk + L?

Lk + L? + L⇤
,

and nucleation from a dispersed site, with rate

Rn,u = Rn (Lf )
L⇤

Lk + L? + L⇤
,
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where L⇤ is the propensity length for dispersed nucleation, i.e. a constant that
controls how many nucleation events occur from dispersed sites in the cytosol
rather than on the lattice of already existing microtubules. These nucleation rates
can be split again to divide nucleation in the longitudinal direction from nucleation
in the transverse. In the cortical microtubule array, when a new microtubule is
nucleated from the lattice of an already existing one through branched nucleation,
it is nucleated preferentially parallel or with an angle of about 40� with respect to
the growth direction of the parent microtubule (Deinum et al., Phys. Biol., 2011).
This suggests the existence of a nucleation mechanism that roughly maintains
the orientation of the microtubule array. As here we only consider two possible
directions for microtubules, we assume that new microtubules generated through
branched nucleation have a strong bias towards growing in the same direction
as the parent microtubule. Therefore, we introduce the probability z for a new
microtubule to be nucleated parallel to the parent microtubule, and consequently
1 � z as the probability to be nucleated orthogonal to it. Then, the branching
nucleation rates for new longitudinal and transverse microtubules are

R
k
n,b = Rn (Lf )

zLk + (1� z)L?

Lk + L? + L⇤
, (4.6)

and

R
?
n,b = Rn (Lf )

(1� z)Lk + zL?

Lk + L? + L⇤
, (4.7)

respectively. If we assume that the medium is isotropic as regards the dispersed
nucleation of new microtubules, we can also write the dispersed nucleation rates as

R
k
n,u = Rn (Lf )

1
2L⇤

Lk + L? + L⇤
= R

?
n,u. (4.8)

It follows that the overall nucleation rates for the two populations are

R
k
n = R

k
n,u +R

k
n,b = Rn (Lf )

1
2L⇤ + zLk + (1� z)L?

Lk + L? + L⇤
, (4.9)

R
?
n = R

?
n,u +R

?
n,b = Rn (Lf )

1
2L⇤ + zL? + (1� z)Lk

Lk + L? + L⇤
, (4.10)

see Figure 4.2.
Numerical values for the model parameters have been chosen accordingly to

the experimental measurements already discussed in Chapter 2, see Table 4.1. As
regards the numerical value for the severing rate, is has been chosen considering a
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       increases        increases

Figure 4.2: Schematic of the possible creation of new longitudinal (red) and
transverse (black) microtubules.
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Parameter Description Numerical value Units

v+ Growth speed 0.103 µms
�1

v� Shrinkage speed 0.225 µms
�1

rc Catastrophe rate 0.01 s
�1

rr Rescue rate 0.026 s
�1

rs Severing rate 2 · 10�7
s
�1 µm�2

rn Nucleation rate 0.3 s
�1

p+ Rescue after severing 0.15 -

q Sever probability (longitudinal microtubules) 0.75 -

Ltot Total amount of tubulin 4 · 103 µm
Lv Crossover length 8 · 102 µm
L⇤ Propensity length of dispersed nucleation 10

2 µm
z Probability of nucleation parallel to the parent 0.9 -

Table 4.1: Reference values for the parameters of the model.

cylindrical cell with height h = 100 µm and radius r = 20 µm, and such that the
average waiting time between the nucleation of a new microtubule and the first
severing event it undergoes is about 100 seconds. Even though the probability of
rescue after severing p+ and the probability of severing for longitudinal microtubules
q will be tuned in the rest of the chapter, Table 4.1 gives their reference values
from the experimental measurements (Lindeboom et al., Science, 2013).

Dynamic equations

Let m� (t, l) be the probability distribution of the length of microtubules in the
state � at time t. Besides the in and out-flux of microtubules at a length l due to
the dynamic instability, here we also have to take into account the fluxes due to
the severing events. Therefore, following (Tindemans & Mulder, Phys. Rev. E,
2010), we can show that the dynamic equations that govern the model are

@

@t
m

+
k (t, l) =� V

+ (Lf )
@

@l
m

+
k (t, l)� rcm

+
k (t, l) + rrm

�
k (t, l)

� q rs l L? m
+
k (t, l) + q rs

�
1 + p

+
�
L?

h
M

+
k (t, l) +M

�
k (t, l)

i

+ q rsL?M
+
k (t, l) ,

(4.11)
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@

@t
m

�
k (t, l) = v

� @

@l
m

�
k (t, l)� rrm

�
k (t, l) + rcm

+
k (t, l)

� q rs l L? m
�
k (t, l) + q rs

�
1� p

+
�
L?

h
M

+
k (t, l) +M

�
k (t, l)

i

+ q rsL?M
�
k (t, l) ,

(4.12)
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+
? (t, l) =� V

+ (Lf )
@

@l
m

+
? (t, l)� rcm

+
? (t, l) + rrm

�
? (t, l)

� (1� q) rs l Lk m
+
? (t, l)

+ (1� q) rs
�
1 + p

+
�
Lk
⇥
M

+
? (t, l) +M

�
? (t, l)

⇤

+ (1� q) rsLkM
+
? (t, l) ,

(4.13)
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@t
m

�
? (t, l) = v

� @

@l
m

�
? (t, l)� rrm

�
? (t, l) + rcm

+
? (t, l)

� (1� q) rs l Lk m
�
? (t, l)

+ (1� q) rs
�
1� p

+
�
Lk
⇥
M

+
? (t, l) +M

�
? (t, l)

⇤

+ (1� q) rsLkM
�
? (t, l) ,

(4.14)

with boundary conditions

V
+ (Lf )m

+
k/? (t, 0) = R

k/?
n

�
Lf , Lk/?

�
, (4.15)

lim
l!1

m
�
k/? (t, l) = 0. (4.16)

It is convenient to underline that the total amount of tubulin polarized in either
of the two directions is linked with the microtubule length distributions as

Lk (t) =

Z 1

0
dl l

h
m

+
k (t, l) +m

�
k (t, l)

i
,

L? (t) =

Z 1

0
dl l
⇥
m

+
? (t, l) +m

�
? (t, l)

⇤
,

i.e. the total amount of tubulin used by longitudinal/transverse microtubules
is the first moment of the total length distribution of longitudinal/transverse
microtubules.

The initial transverse array

To keep with the assumption coming from the experiments that initially all cortical
microtubules are directed transversely to the growth direction of the cell, we build
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the initial array by considering dispersed and branching nucleation possible only in
the transverse direction. In other words, for the creation of the initial array, we
impose

R
k
n = 0,

R
?
n = rn

L
a
f

L
a
f + La

v

= Rn (Lf ) .

With these conditions, Eqs. (4.13) and (4.14) reduce to the dynamic equations of
the Dogterom-Leibler model. Furthermore, the dependency of the growing speed
of microtubules on the amount of free tubulin Lf in the pool implies that the
microtubule length distribution eventually reaches the steady-state even in the case
of initially unbounded-growth microtubules (Tindemans, 2009). Thus, the solution
of the model is the steady-state solution of Dogterom-Leibler model, and we use
this solution as the initial condition for the system of Eqs. (4.11-4.14), i.e.

m
+
k (0, l) = 0, (4.17)

m
�
k (0, l) = 0, (4.18)

m
+
? (0, l) =

Rn (Lf )

V + (Lf )
exp


�
✓

rc

V + (Lf )
� rr

v�

◆
l

�
, (4.19)

m
�
? (0, l) =

Rn (Lf )

v�
exp


�
✓

rc

V + (Lf )
� rr

v�

◆
l

�
, (4.20)

together with the Eq. (4.1) for the free tubulin pool. As in the rest of the chapter
we are going to study the system in the limit of sudden depolymerization after
catastrophe, it is convenient to briefly discuss the expression for the free tubulin in
such a limit, i.e.

L
2
f �

✓
Ltot � Lv �

v
+
Rn (Lf )

r2c

◆
Lf � LtotLv = 0. (4.21)

This is a high order algebraic equation. However, the coe�cient Ltot�Lv� v+Rn(Lf )
r2c

is dominated by the factor Ltot � Lv, see Table 4.1, and consequently changing

any of the free parameters in v+Rn(Lf )
r2c

within a realistic biological range would

only give minor changes to the solution Lf ' Ltot. Still, the limit of sudden
depolymerization allows us to achieve interesting analytically results, that with the
full model would be either non-achievable or with very complicated and non-handy
mathematical expressions.
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Steady-state solution

The dependency of the growing speed of microtubules on the amount of free tubulin
Lf in the pool implies that the microtubule length distribution eventually reaches
the steady-state. Here, in order to find an analytical solution, we make the further
assumption that microtubules undergo complete depolymerization suddenly after a
catastrophe, i.e.

hli
v�

⌧ 1

rr
, (4.22)

where hli is the mean length of a microtubule in the system. In this limit we can
identify all microtubules with the growing microtubules, and then we remove the
label + from all microtubule distributions to ease the notation. To further ease
the notation, if not strictly necessary, we hereafter drop the direct dependency of
V

+ and Rn on Lf . Thus, Eqs. (4.11-4.14) are replaced by

0 = �V
+ d

dl
mk (l)� rcmk (l)� q rs l L? mk (l) + q rs

�
1 + p

+
�
L?Mk (l) , (4.23)

0 = � V
+ d

dl
m? (l)� rcm? (l)� (1� q) rs l Lk m? (l)

+ (1� q) rs
�
1 + p

+
�
LkM? (l) .

(4.24)

If we di↵erentiate by l the last two equations we obtain

V
+ d

2

dl2
mk (l) + (rc + q rsL? l)

d

dl
mk (l) + q rsL?

�
2 + p

+
�
mk (l) = 0, (4.25)

V
+ d

2

dl2
m? (l) +

�
rc + (1� q) rsLk l

� d

dl
m? (l) + (1� q) rsLk

�
2 + p

+
�
m? (l) = 0.

(4.26)
As Lk/? =

R1
0 dlmk/? (l), Eqs. (4.25) and (4.26) are coupled second order di↵eren-

tial equations, and they are also linked to Eq. (4.1) through V
+ (Lf ). However, Lf ,

Lk, and L? do not depend on l, hence Eqs. (4.25) and (4.26) can be in principle
solved, with solutions that depend on the total amount of tubulin used by the
other population and on the free tubulin. Before solving them, we re-write the two
equations in a more elegant way as

d
2

d�2
µk (�) + (1 + q �⇤? �)

d

d�
µk (�) + q �⇤?

�
2 + p

+
�
µk (�) = 0, (4.27)

d
2

d�2
µ? (�) +

�
1 + (1� q)�⇤k �

� d

d�
µ? (�) + (1� q)�⇤k

�
2 + p

+
�
µ? (�) = 0,

(4.28)
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where we introduced the non-dimensional quantities

� =
rc

V +
l,

⇤k/? =
rc

V +
Lk/?,

µk/? =
V

+

R
k/?
n

mk/?,

� =
rs (V +)

2

r3c

.

Notice that, with this non-dimensionalization, all parameters of the model - includ-
ing the independent variable �, are functions of Lf as they depend on V

+ (Lf ).
To solve Eq. (4.27), we first notice that the asymptotic solution for large �

decays as e�
1
2 q�⇤?�2��. Therefore, we suppose there exists a function ⇠k (�) such

that

µk (�) = exp


�1

2
q�⇤?�

2 � �

�
⇠k (�) .

If we plug this in Eq. (4.27) we obtain

d
2

d�2
⇠k (�)� (1 + q �⇤? �)

d

d�
⇠k (�) + q �⇤?

�
1 + p

+
�
⇠k (�) . (4.29)

If we change variable as x = (1 + q �⇤?�) /
p
2q �⇤?, last equation becomes

d
2

dx2
⇠k (x)� 2x

d

dx
⇠k (x) + 2

�
1 + p

+
�
⇠k (x) , (4.30)

i.e. the Hermite equation (Courant & Hilbert, 1953), the solution of which is the
Hermite function

⇠k (x) = H1+p+ (x) . (4.31)

Therefore, the full solution for µk becomes (Mulder, unpublished)

µk (�) =
H1+p+

�
(1 + q �⇤?�) /

p
2q �⇤?

�

H1+p+

�
1/
p
2q �⇤?

� exp


�1

2
q�⇤?�

2 � �

�
, (4.32)

and similarly

µ? (�) =
H1+p+

� �
1 + (1� q)�⇤k�

�
/
p
2 (1� q)�⇤k

�

H1+p+

�
1/
p

2 (1� q)�⇤k
�

⇥ exp


�1

2
(1� q)�⇤k�

2 � �

�
.

(4.33)
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Eqs. (4.32) and (4.33) highlight a peculiar property of the model. Indeed, if
p
+ 6= 0, both denominators of the two distribution can be identically 0. In
other words, there exist two values of � such that H1+p+

�
1/

p
2q �⇤?

�
= 0 or

H1+p+

�
1/
p
2 (1� q)�⇤k

�
= 0, with the consequence that the number of longitu-

dinal/transverse microtubules diverges. In the analytically tractable p
+ = 1 case

these values are � = 1
q⇤?

for the divergence of the longitudinal, and � = 1
(1�q)⇤k

for the divergence of the transverse microtubules.

Moment equations

We define the k
th moment of the microtubule length distributions as:

L
(k)
k =

Z 1

0
dl l

k
mk (l) ,

L
(k)
? =

Z 1

0
dl l

k
m? (l) ,

with L
(0)
k/? = Mk/? and L

(1)
k/? = Lk/?. Then, if we multiply Eqs. (4.23) and (4.24)

by l
k and we integrate them between 0 and 1, we obtain

0 = �k,0 R
k
n + kV

+
L
(k�1)
k � rcL

(k)
k � qrs

k � p
+

k + 1
L? L

(k+1)
k , (4.34)

0 = �k,0 R
?
n + kV

+
L
(k�1)
? � rcL

(k)
? � qrs

k � p
+

k + 1
Lk L

(k+1)
? . (4.35)

Unfortunately, given that Eqs. (4.34) and (4.35) form an open set of recursive
equations, it is impossible to write them in a closed-form for a certain choice of k.
However, we can highlight some features of the equations by studying k = 0 and
k = 1 cases. Indeed, we have

0 = R
k
n � rcMk + qrsp

+
L? Lk, (4.36)

0 = R
?
n � rcM? + qrsp

+
Lk L?, (4.37)

and

0 = V
+
Mk � rcLk � qrs

1� p
+

2
L? L

(2)
k , (4.38)

0 = V
+
M? � rcL? � qrs

1� p
+

2
Lk L

(2)
? . (4.39)
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Eqs. (4.36) and (4.37) can be rewritten as

Mk =
R

k
n

rc
+ q

rs

rc
p
+
Lk L? (4.40)

M? =
R

?
n

rc
+ (1� q)

rs

rc
p
+
Lk L?, (4.41)

showing the intuitive result that the number of microtubules equals the overall
creation rate over the catastrophe rate.

Eqs. (4.38) and (4.39) also highlight a peculiar feature: indeed if we look at the
p
+ = 1 case, we can observe that

Lk

Mk
=

V
+

rc
=

L?
M?

, (4.42)

i.e. the average length of the microtubules of the two populations is the same and
it is independent on both the preferential severing q and on the severing rate rs.
This is counter-intuitive, indeed for q >

1
2 not only the longitudinal microtubules

are severed more frequently, but also at every severing event their number increases
due to p

+ = 1, and thus one can argue that the average length of a longitudinal
microtubule should be shorter than that of a transverse, in disagreement with Eq.
(4.42).

Polarization and transverse suppression

To evaluate the e�ciency of the reorientation, we define the following order param-
eters:

• number and length polarization, respectively

PM =
Mk �M?

Mk +M?
, PL =

Lk � L?

Lk + L?
,

as order parameters for the di↵erence between the two populations,

• number and length transverse suppression, respectively

RM =
M

0
? �M?

M
0
? +M?

, RL =
L
0
? � L?

L
0
? + L?

,

as order parameters that estimate how much of the original transverse array
is still present at the end of the process.

Ideally, to consider the reorientation e�cient, we require that all four order param-
eters are close to 1, and that the time scale to reach the steady-state is comparable
to the experimentally observed one, see Chapter 2.
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Computational approach

Since the non-closed-form nature of Eqs. (4.36-4.39) does not allow us to analytically
calculate polarization and transverse suppression, we set up stochastic simulations
of the full model, i.e. also considering shrinking microtubules and with dynamic
parameters chosen in agreement with the experimental measurements, see Table
4.1.

We want to test our hypothesis that the preferential severing for longitudinal
microtubules creates an asymmetry in the system that can make the array reorient
and sustain it. To do so, we perform a sensitivity analysis in which we tune q and
p
+ from 0 to 1 and we measure, with computer simulations, the polarization and
the transverse suppression at the equilibrium, as well as the time needed by the
system to perform reorientation of the array, averaged over N = 103 simulations.

Simulations consist of an initial transverse array at the equilibrium, created as
previously described in this section. Then, at time t = 0, we allow the nucleation of
longitudinal microtubules both through branched nucleation from already existing
ones, and dispersed nucleation. We let the simulations run until the system reaches a
steady-state, and then we measure polarization and transverse suppression. Figures
4.3AB and 4.4 show that the system does not exhibit longitudinal polarization at
the equilibrium for biologically realistic p+, i.e. for p+ comprises between 0 and 0.25.
At the same time, Figure 4.3CD shows that in the same range of values, although
we can appreciate some degree of transverse suppression, the initial transverse array
does not disappear. On the other hand, Figures 4.3 and 4.4 reveal the existence
of two regions in the (q, p+) plane where the reorientation occurs and it is fast,
namely when both probabilities are high and, surprisingly, when they are both
low. While we can easily argue that a high value of both q and p

+ is associated
to a greater likelihood of increasing the size of the longitudinal population and
the lifetime of their individuals, and hence the longitudinal polarization, it is more
di�cult to intuitively understand the behaviour of the system for low values of
those probabilities. However, low q together with low p

+ is linked to an e↵ective
shortening of the single transverse microtubules, and to a fall in their average
lifetime. As a consequence, the overall length used by the transverse array shortens,
and so does the number of transverse microtubules, as their nucleation is partly
correlated to the length polarized in their direction.

As the only asymmetry between the two populations of the system is due to
the probability q, Figure 4.3AB displays, as expected, the symmetry P ! �P , as
q ! 1� q for both PM and PL.

Although from these results we can conclude that the preferential severing for
the longitudinal microtubules cannot explain the maintenance of the array in the
longitudinal direction, at least in the biological range of values for p+, the dynamic
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Figure 4.3: (A) Microtubule number polarization, (B) microtubule length polariza-
tion, (C) transverse number suppression, (D) and transverse length suppression as
functions of q and p

+. Lighter colors correspond to a more e�cient reorientation.
Results are averaged over N = 103 simulations.
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Figure 4.4: Transverse-to-longitudinal reorientation time as a function of q and
p
+. Lighter colors correspond to a faster reorientation. Results are averaged over

N = 103 simulations.
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behaviour of the two microtubule populations for high values of q and p
+ highlights

an interesting fact. The amount of free tubulin in the pool does not substantially
change from the initial value where only transverse microtubules are present, to the
final steady-state value, see Figure 4.5B. This means that all the building material
used by the longitudinal microtubules to create the new array comes from the
suppression of the initial transverse array. Curiously, Figure 4.5A also shows that
at the start of the reorientation process, i.e. at t = 0, we have a sudden little drop
of the number of transverse microtubules. This may be explained by the sudden
change in the nucleation rate of old microtubules, as it switches from Rn to a
fraction of it.
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Figure 4.5: Time evolution of (A) longitudinal (red) and transverse (black) micro-
tubules, and (B) tubulin used by the longitudinal population (red), the transverse
population (black), and the free tubulin (blue), averaged over N = 103 simulations.
Here, we used q = 0.8 and p

+ = 0.6.

The results shown so far represent the average behaviour of the system. However,
as this model includes stochasticity and it represents two distinct populations
interacting with each other, we cannot a priori exclude oscillatory time behaviours
in the distribution of populations, with cycles in the

�
Mk,M?

�
and

�
Lk, L?

�

planes. Indeed it is possible that, for a specific choice of dynamic parameters, two
distinct steady-states exist, with the system that can stochastically switch from
one state to the other. Here, however, our simulations show that for our choice
of dynamic parameters there are no oscillations in the size of the populations,
except for the noise coming from the stochasticity of the system. Indeed, Figure 4.6
shows that, except for some stochastic noise, Mk (t) measured in a single simulation
reproduces the time behaviour of the same quantity, averaged over N = 103

di↵erent simulations. Future investigations should be aimed at analytically and
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Figure 4.6: Time evolution of Mk averaged over N = 103 simulations (red line),
and in five di↵erent single simulations (orange lines). Besides the statistical noise,
every single simulation reaches the same steady-state value. Here, we used q = 0.8
and p

+ = 0.6.

computationally checking whether there exists a volume in the parameters space
where the two populations evolve in time with an oscillatory behaviour.

4.2 Small di↵erence in microtubule growth speed

maintains the reorientation of the array

Assuming asymmetry in the severing probability for the two populations of mi-
crotubules is not enough to explain the maintenance of the reorientation of the
cortical array. Therefore, such a reorientation must be explained by other asymme-
tries. Here, we make the hypothesis that the final longitudinal polarization is due
to a di↵erence in the dynamic parameters of microtubules belonging to the two
di↵erent populations. Specifically, we assume that longitudinal microtubules grow
faster than transverse. This choice is motivated by two distinct reasons. Firstly,
experimental observations in neuronal microtubules have shown that di↵erently
oriented microtubules living in the same system can have di↵erent dynamics (Baas
et al., Cytoskeleton, 2016 - Tas et al., Neuron, 2017). Secondly, changing only one
parameter - in particular the growing speed, would make the model mathematically
more tractable. Moreover, as we will see in the next sections, changing the growing
speed is equivalent to changing the catastrophe rate for the study of the model in
the steady-state.
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Small increase in the growing speed of longitudinal

microtubules

To test our hypothesis that reorientation and maintenance of the array are caused
by a biased recruitment of tubulin towards the longitudinal microtubules, we make
use of the model introduced in Section 4.1 with the following changes: no severing
events are allowed, i.e.

rs = 0,

and the growing speed for longitudinal microtubules is greater than that for
transverse microtubules, i.e.

v
+
k = ↵v

+
? ⌘ ↵v

+
, 1 < ↵ < 2.

In order to find an analytical solution, we assume once more that the complete
depolymerization time after undergoing a catastrophe is much shorter than the
average shrinkage time between a catastrophe and a subsequent rescue, i.e.

hli
v�

⌧ 1

rr
.

We also assume that all microtubules are nucleated in the same direction as the
parent microtubule, i.e. z = 1. This allows us to rewrite the dynamic Eqs.
(4.11-4.14) as

@

@t
mk (t, l) = �↵V

+ @

@l
mk (t, l)� rcmk (t, l) , (4.43)

@

@t
m? (t, l) = �V

+ @

@l
m? (t, l)� rcm? (t, l) , (4.44)

with boundary conditions
↵V

+
mk (t, 0) = R

k
n, (4.45)

V
+
m? (t, 0) = R

?
n . (4.46)

Moment equations

We study the 0th and the 1st moment equations corresponding to Eqs. (4.43) and
(4.44), i.e.

d

dt
Mk (t) = R

k
n � rcMk (t) , (4.47)

d

dt
M? (t) = R

?
n � rcM? (t) , (4.48)
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d

dt
Lk (t) = ↵V

+
Mk (t)� rcLk (t) , (4.49)

d

dt
L? (t) = V

+
M? (t)� rcL? (t) , (4.50)

coupled with the conservation of total tubulin

d

dt
Lf (t) = � d

dt

⇥
Lk (t) + L? (t)

⇤
. (4.51)

Suppose now that ↵ = 1. Then, because of the symmetry, there are no changes
in the dynamics of the system with respect to the initial system with only the
transverse array. Therefore we can safely assume that in this case Lf = const. Here,
since ↵ is slightly greater than 1, we can reasonably make the same assumption,
and therefore

d

dt

⇥
Lk (t) + L? (t)

⇤
= 0. (4.52)

This last equation means that all building material used by the newer longitudinal
array comes from the already existing transverse one.

Steady-state solution

In order to find a way to control the polarization of the tubulin, and hence the
reorientation mechanism, we study the steady-state version of the moment Eqs.
(4.47-4.50). If we isolate rcMk and rcM? from the four equations we obtain

R
k
n = rcMk =

r
2
c

↵V +
Lk, (4.53)

and

R
?
n = rcM? =

r
2
c

V +
L?. (4.54)

From Eq. (4.53) we can observe that multiplying v
+ by ↵ for the longitudinal

growing speed is equivalent to divide rc by
p
↵.

If we define

�k/? ⌘
Lk/?

Ltot � Lf
, �⇤ ⌘ L⇤

Ltot � Lf
,

and we divide Eq. (4.53) by (4.54), by making use of Eqs. (4.9) and (4.10) we
obtain the system 8

>><

>>:

�?
�k

=
1
2�⇤+�k

↵( 1
2�⇤+�?)

,

�k + �? = 1.

(4.55)
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It is important to underline that condition (4.22) imposes (Ltot � Lf ) /Ltot ⌧ 1.
Indeed, the sudden release of all the tubulin of a microtubule after a catastrophe
increases the availability of free tubulin, see also Eq. (4.21). Nevertheless, our
choice of L⇤ is still such that �⇤ < 1, see Table 4.1. With some simple algebra we
can solve the system to find

�k =
(↵� 1)� 1

2�⇤ (↵+ 1) +
q⇥

(↵� 1) + 1
2�⇤ (↵+ 1)

⇤2 � 2�⇤ (↵� 1)

2 (↵� 1)
, (4.56)

�? =
(↵� 1) + 1

2�⇤ (↵+ 1)�
q⇥

(↵� 1) + 1
2�⇤ (↵+ 1)

⇤2 � 2�⇤ (↵� 1)

2 (↵� 1)
. (4.57)

We divide both sides of Eq. (4.57) by (↵� 1) + 1
2�⇤ (↵+ 1) and we obtain

�?

(↵� 1) + 1
2�⇤ (↵+ 1)

=

1�
r

1� 2�⇤(↵�1)

[(↵�1)+ 1
2�⇤(↵+1)]2

2 (↵� 1)
.

We observe that the second term in the square root is

2�⇤ (↵� 1)
⇥
(↵� 1) + 1

2�⇤ (↵+ 1)
⇤2 =

2�⇤ (↵� 1)

(↵� 1)2 + 1
4�

2
⇤ (↵+ 1)2 + �⇤ (↵+ 1) (↵� 1)

< 1,

because at the denominator �⇤ (↵+ 1) (↵� 1) > 2�⇤ (↵� 1) if ↵ > 1. Therefore
we can expand the square root

�?

(↵� 1) + 1
2�⇤ (↵+ 1)

=

1�

1� 1

2
2�⇤(↵�1)

[(↵�1)+ 1
2�⇤(↵+1)]2

�

2 (↵� 1)
,

and hence

�? ' 1

2

�⇤

(↵� 1) + 1
2�⇤ (↵+ 1)

. (4.58)

Consequently

�k ' 1� 1

2

�⇤

(↵� 1) + 1
2�⇤ (↵+ 1)

. (4.59)

By plugging Eqs. (4.58) and (4.59) into Eqs. (4.53) and (4.54), we obtain the
number of microtubules in the longitudinal and in the transverse directions

Mk =
Rn

rc

1

�⇤ + 1


1

2
�⇤

✓
1� 1

(↵� 1) + 1
2�⇤ (↵+ 1)

◆
+ 1

�
, (4.60)
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M? =
Rn

rc

1
2�⇤

�⇤ + 1

✓
1 +

1

(↵� 1) + 1
2�⇤ (↵+ 1)

◆
. (4.61)

With this result we can control the amount of tubulin and the number of
microtubules in the transverse array by acting on the probability of dispersed
nucleation, and hence we can control the e�ciency of the reorientation, see Figure
4.7.

More generally, we have proven that when two populations of individuals
(microtubules) compete for the same pool of building material (tubulin) with a
birth mechanism proportional to the overall age (length) of a population, a small
bias in the ageing rate (growing speed) causes a significant unbalance in the number
of individuals in the two populations, as well as in their overall age (length).

It is interesting to study the two limit cases of �⇤ ! 0 - i.e. nucleation is all
microtubule-based, and �⇤ ! 1 - i.e. nucleation is all dispersed. In the first case
we observe that

lim
�⇤!0

�k = 1,

lim
�⇤!0

�? = 0,

lim
�⇤!0

Mk =
Rn

rc
,

lim
�⇤!0

M? = 0,

i.e. all tubulin is polarized in the longitudinal direction, and then we observe full
reorientation of the array from the transverse to the longitudinal direction. In the
opposite limit

lim
�⇤!1

�k =
↵

↵+ 1
,

lim
�⇤!1

�? =
1

↵+ 1
,

lim
�⇤!1

Mk =
1

2

Rn

rc
,

lim
�⇤!1

M? =
1

2

Rn

rc
,

meaning that although in such a limit the isotropy of the dispersed nucleation
imposes that the final number of microtubules of the two populations is the same,
the ↵ > 1 bias in the growing speed still produces a slight tubulin polarization
in the longitudinal direction, with the consequence of producing slightly longer
longitudinal microtubules than transverse, see Figure 4.7.
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Figure 4.7: (A) Number of microtubules and (B) non-dimensional length used
by microtubules populations as functions of the propensity length for dispersed
nucleation, with ↵ = 1.1.

Furthermore, if we plug Eq. (4.58) into the steady-state version of Eq. (4.50),
we obtain an expression for the amount of free tubulin, as

L
2
f�

Ltot � Lv + L⇤ �

v
+
Rn

r2c

✓
↵+

1

2

L⇤
Ltot � Lf

(↵+ 1)

◆�
Lf�Lv (Ltot + L⇤) = 0,

(4.62)
where, once more, we did not express Rn in terms of Lf , and where in the second
coe�cient we observe a direct dependency on Lf . However, this expression bears
similarities with Eq. (4.21) for the free tubulin of the initial transverse array, i.e.

L
2
f �

✓
Ltot � Lv �

v
+
Rn

r2c

◆
Lf � LvLtot = 0.

The term ↵+ 1
2

L⇤
Ltot�Lf

(↵+ 1) if Eq. (4.62) is smaller than two: indeed, we already

observed for the initial array that in our L⇤ ⌧ Ltot limit, the relation L⇤ < Ltot�Lf

still holds. Here, given the increased average growing speed of all microtubules, we
can reasonably assume that if there is a change in Lf with respect to the initial
configuration, this change can only make Lf become smaller, and consequently
L⇤ < Ltot � Lf for the final configuration as well. Hence, the second coe�cient
of both equations is dominated by the factor Ltot � Lv, see Table 4.1. Similarly,
the third coe�cient of both equations is similar, as Ltot � L⇤. This means that
the overall change in the amount of free tubulin from the initial transverse array
to the final steady-state with both microtubule populations is neglectable. This
proves that our choice of considering Lf = const is reasonable. As a consequence,
Lk + L? is constant in time, as the relation Lk + L? = Ltot � Lf holds.
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Time-dependent solution

In this section we look for an expression for the time scale of the reorientation of
the array from the transverse to the longitudinal direction to the growth direction
of the cell. We focus on Eqs. (4.47) and (4.49), with their respective boundary
conditions

Mk (0) = 0 = Lk (0) .

By plugging these boundary conditions in Eqs. (4.47) and (4.49) we obtain the
boundary conditions for the first derivative of both Mk and Lk

dMk (t)

dt

����
t=0

= Rn

1
2L⇤

Ltot � Lf + L⇤
,

dLk (t)

dt

����
t=0

= 0.

Eqs. (4.47) and (4.49) can be decoupled to obtain

d
2
Lk (t)

dt2
+ 2rc

dLk (t)

dt
+
⇣
r
2
c � ↵V

+ eRn

⌘
Lk (t) = ↵V

+ eRn
1

2
L⇤, (4.63)

and

d
2
Mk (t)

dt2
+ 2rc

dMk (t)

dt
+
⇣
r
2
c � ↵V

+ eRn

⌘
Mk (t) = rc

eRn
1

2
L⇤, (4.64)

where we defined

eRn =
Rn

Ltot � Lf + L⇤
.

Eqs. (4.63) are second order non-homogeneous di↵erential equations, the solutions
of which are

Lk (t) =
1

2
L⇤

↵V
+ eRn

r2c � ↵V + eRn

+
1

2
L⇤

q
↵V + eRn

2
⇣
r2c � ↵V + eRn

⌘

⇥
✓

rc �
q

↵V + eRn

◆
e
�
⇣
rc+

p
↵V + eRn

⌘
t

�
✓
rc +

q
↵V + eRn

◆
e
�
⇣
rc�

p
↵V + eRn

⌘
t
�
,

(4.65)
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Mk (t) =
1

2
L⇤

rc
eRn

r2c � ↵V + eRn

+
1

2
L⇤

eRn

2
⇣
r2c � ↵V + eRn

⌘

⇥
✓q

↵V + eRn + rc

◆
e
�
⇣
rc�

p
↵V + eRn

⌘
t

�
✓q

↵V + eRn � rc

◆
e
�
⇣
rc+

p
↵V + eRn

⌘
t
�
.

(4.66)

These expressions define the time scale of the reorientation process, i.e.

treor /
✓
rc �

q
↵V + eRn

◆�1

. (4.67)

To highlight all dependencies of treor on the model parameters, we can conveniently
rewrite ↵V

+ eRn by expressing all quantities as functions of Lf , and by making use
of Eq. (4.62) we find

↵V
+ eRn = ↵v

+
rn

Lf

Lf + Lv

L
a
f

L
a
f + La

v

1

Ltot � Lf + L⇤
= r

2
c

↵

↵+ 1
2

L⇤
Ltot�Lf

(↵+ 1)
.

Thus, the time scale of the reorientation can be written now as

treor /
"
rc

 
1�

s
↵ (Ltot � Lf )

↵ (Ltot � Lf ) +
1
2L⇤ (↵+ 1)

!#�1

. (4.68)

As we previously discussed, Lf is weakly dependent on rc. Because of this, Eq.
(4.68) reveals that the time scale of the reorientation is inversely proportional to
the catastrophe rate. The interpretation of this counter-intuitive result, is that
every time a microtubule undergoes a catastrophe, it releases to the free tubulin
pool an amount of tubulin equal to its length. Therefore, the amount of building
material available for the new array increases with higher rate, and so does the
speed of reorientation.

Polarization and transverse suppression

Contrarily to Section 4.1, here we can analytically calculate the reorientation
polarization and transverse suppression. Indeed, from Eqs. (4.58-4.61) we obtain

PM =
Mk �M?

Mk +M?
=

(↵� 1)
�
1� 1

2�⇤
�

(1 + �⇤)
⇥
(↵� 1) + 1

2�⇤ (↵+ 1)
⇤ ,
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and

PL =
Lk � L?

Lk + L?
=

(↵� 1)
�
1 + 1

2�⇤
�

(↵� 1) + 1
2�⇤ (↵+ 1)

.

As expected, both reorientation parameters are close to 1 when �⇤ is small, see
Figure 4.8, whilst they rapidly decay to 0 for higher values of �⇤. These expressions
for the polarization also set the value for ↵ in order to have reorientation for fixed
�⇤. Indeed, let e.g. P be a certain value for the lenght polarization. Then, in order
to have PL > P , ↵ needs to be such that

↵ >
�⇤ +

�
1� 1

2�⇤
� �

1� P
�

�
1 + 1

2�⇤
� �

1� P
� .

Figure 4.9 shows that for small �⇤, a little di↵erence between the growing speeds
of the two populations is enough to yield to longitudinal polarization.

Similarly, we can calculate the transverse suppression:

RM =
M

0
? �M?

M
0
? +M?

=

�
1
2�⇤
�2

(↵+ 1) + 1
2�⇤ (2↵� 1) + (↵� 1)

3
�
1
2�⇤
�2

(↵+ 1) + 1
2�⇤ (4↵� 1) + (↵� 1)

,

and

RL =
L
0
? � L?

L
0
? + L?

=
↵
�
1 + 1

2�⇤
�
� 1

↵
�
1 + 1

2�⇤
�
� 1 + �⇤

.

Figure 4.10 shows that in the case of the transverse suppression the e↵ect of the
bias in the speed is to almost completely remove the initial transverse array.
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Figure 4.8: Polarization for (A) the microtubules, and (B) the tubulin as a function
of the propensity length for dispersed nucleation for ↵ = 1.05 (red), ↵ = 1.1 (blue),
and ↵ = 1.15 (green).
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Figure 4.9: Minimum speed bias ↵ required to have length polarization greater
than P , for �⇤ = 0.02 (red), �⇤ = 0.06 (blue), and �⇤ = 0.1 (green).
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Figure 4.10: Suppression for (A) microtubules number and (B) length as a function
of the propensity length for dispersed nucleation for ↵ = 1.05 (red), ↵ = 1.1 (blue),
and ↵ = 1.15 (green).
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4.3 Computational approach

This section is divided in two subsections. In the first one, we computationally test
the theoretical predictions of Section 4.2 in the case in which shrinking microtubules
do not completely depolymerize suddenly after the catastrophe. In other words,
we test if our findings can be generalized to the same model with also shrinking
microtubules. In the second section, instead, we reintroduce the severing mechanism
described in Section 4.1. There, we computationally study if the combination of
severing and biased speed a↵ects the e�ciency and the time of the reorientation.

Without severing

In order to test whether our theoretical predictions can be generalized to the full
model described in Section 4.2 with shrinking microtubules as well, we perform
stochastic simulations of the model.
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Figure 4.11: Time evolution of (A, C, E) longitudinal (red) and transverse (black)
microtubules, and (B, D, F) tubulin used by the longitudinal population (red), the
transverse population (black), and the free tubulin (blue), for ↵ = 1.05 (A, B),
↵ = 1.1 (C, D), and ↵ = 1.15 (E ,F).

We run N = 103 stochastic simulations consisting first in creating the initial
transverse array through the mechanism described in Section 4.1. At time t = 0 we
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switch to the full model, with nucleation occurring in the longitudinal direction as
well as in the transverse, with model parameters given by Table 4.1, except for the
severing rate, as we are discussing the model without severing, and hence rs = 0.

Figure 4.11 shows that, for di↵erent ↵ values, when the steady-state is reached
both the number of microtubule and the overall length are polarized more in the
longitudinal direction rather than in the transverse. The figure also reveals that
increasing ↵ has a double e↵ect: indeed, not only it increases the e�ciency, but it
also shortens the time scale of the reorientation, in agreement with our theoretical
predictions. Furthermore, small values of ↵ do not seem to have an influence on the
change of the free tubulin of the system (Figure 4.11B), while when as ↵ increases,
Lf slightly decreases (Figure 4.11F). Therefore, for higher values of ↵, we can no
longer consider the pool of free tubulin as a constant length for the estimate of the
reorientation time in Eq. (4.68).

Figure 4.12, instead, shows the time dependency of Lk (t) for di↵erent catas-
trophe rates. As expected from Eq. (4.68), we observe a very fast decrease of the
time needed to reach the steady-state as rc increases, with the rc = 0.005 events/s
case where Lk needs many hours to reach the plateau. However, the increase
of the catastrophe rate is also correlated to a lower steady-state value for the
longitudinal length Lk. Intuitively, we can argue that this is due to the fact that
the mean length of a microtubule is inversely proportional to the catastrophe rate,
and so is the sum of the lengths of all microtubules. However, we still lack a full
quantitative description of the e↵ect of the dynamic parameters - and specifically of
the catastrophe rate, on the e�ciency of the reorientation and on the reorientation
time. These preliminary data suggest the existence of an optimal value for rc in
order to have e�cient reorientation in a short time, and future investigations will
be performed toward that direction.

With severing

In the previous sections we have observed that a good probability of rescue after
severing together with preferential severing is required in order to quickly reach
the steady-state. Unfortunately, these two ingredients are not enough to have a
sustained reorientation. We have also observed how a little di↵erence in the growing
speed of the two populations, together with the microtubule-based nucleation
mechanism can maintain the new orientation. In this case, however the theoretically
predicted reorientation time is in general slow compared to the experimentally
observed one. Here, we study both the e�ciency and the time of the reorientation
after including in the model both severing and biased speed.

We have already observed that an analytical solution of the model presented
in Section 4.1 is not reachable. Therefore, we set up stochastic simulations of the
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Figure 4.12: Time evolution of Lk for rc = 0.005 events/s (magenta), rc = 0.01
events/s (red), and rc = 0.02 events/s (orange).

new model, that includes both preferential severing and asymmetry in the growing
speed of microtubules belonging to the two di↵erent populations.

Our goal, here, is to test whether or not the model introduced in Section
4.1, with the addition of the small di↵erence in the growing speeds of the two
populations, leads to a complete and fast reorientation. As we want to keep the
di↵erence between the two speeds small, we set ↵ = 1.1, while we make use of
dynamic parameters listed in Table 4.1. Then, as we already did in the first section
of the chapter, we perform a sensitivity analysis in which we separately tune q and
p
+ from 0 to 1 in order to find the optimal combination of these two probabilities

for the reorientation of the array. Figures 4.13 and 4.14 shows the polarization and
the transverse suppression for both microtubule number and length. Although this
case, like in Section 4.1, reveals that a more e�cient and fast reorientation requires
high values of both q and p

+, here we can observe that the lighter areas in all heat
maps are wider than in the previous case. In particular, we can observe a good
degree of reorientation for p+ comprises between 0 and 0.25, i.e. in the biological
range, for almost every value of q. In particular, it is interesting to notice that in
such an area, polarization and suppression seem to be not strongly dependent on q.
This suggests that, even though the preferential severing plays an important role
in the amplification phase of the reorientation to boost the creation of longitudinal
microtubules, in presence of biased speed it is not stricty necessary to maintain
the new longitudinal array. Figure 4.14 also shows that here the area in the (q, p+)
space such that the reorientation occur is bigger than in the case of the model of
Section 4.1, see Figure 4.4.

Figure 4.15 shows the time behaviour of the number and the total length of
microtubules belonging to the di↵erent populations. The combination of preferential
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as functions of q and p
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Results are averaged over N = 103 simulations.
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Figure 4.14: Transverse-to-longitudinal reorientation time as a function of q and
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N = 103 simulations.
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Figure 4.15: Time evolution of (A) longitudinal (red) and transverse (black)
microtubules, and (B) tubulin used by the longitudinal population (red), the
transverse population (black), and the free tubulin (blue), averaged over N = 103

simulations.
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Figure 4.16: Time evolution of Mk averaged over N = 103 simulations (red line),
and in five di↵erent single simulations (orange lines). Besides the statistical noise,
every single simulation reaches the same steady-state value.
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severing and biased speed has then a double e↵ect: it makes the reorientation more
e�cient by increasing the number of longitudinal microtubules at the steady-state
and suppressing the transverse, and it makes the reorientation occur faster, see also
Figure 4.16. This result suggests that our model is a possible candidate to explain
the underlying mechanism behind the reorientation of the cortical microtubule
array and its maintenance in the newer direction observed in the in vivo performed
experiments. Moreover, Figure 4.15B also shows that even in this case we cannot
observe any appreciable di↵erence between the amount of free tubulin at the
beginning and at the end of the process, proving again that the building material
used by the longitudinal array comes from the original transverse one.

4.4 Conclusions

In this chapter, we have studied the long-time behaviour of the cortical microtubule
array during the transverse-to-longitudinal reorientation process. Our aim was to
test our initial hypothesis: is the asymmetry induced by the preferential severing
for the longitudinal microtubules enough to explain the full reorientation and the
maintenance of the new longitudinal array? Our computer simulations of Section 4.1
have revealed that, although the preferential severing indeed creates polarization of
number and length of microtubules in the longitudinal direction, such a polarization
is not large enough, as the system still exhibits a substantial amount of microtubules
directed transversally to the growth direction of the cell. Indeed, we do not observe
a considerable transverse suppression. A possible explanation of this outcome is
the increased possibility of creation of new transverse microtubules due to the
severing event with respect to that of the system in the initial state, in which only
transverse microtubules where present. Furthermore, even though the experiments
have revealed a strong correlation between new microtubules and longitudinal
microtubules (Lindeboom et al., Science, 2013), and hence preferential severing
for the longitudinal in the first stage of the reorientation process, for longer times
we expect this correlation to drop, as the microtubules belonging to the initial
transverse array eventually disappear due to their finite lifetime. Therefore, our
conclusion is that the preferential severing cannot explain the maintenance of the
new longitudinal array for two separate reasons. Firstly, it still increases the creation
of new transverse microtubules. Secondly, for long time periods, the correlation
between new and longitudinal microtubules vanishes, as the initial microtubules
all disappear due to their finite lifetime, and new microtubules are nucleated in
both directions. In this case, we expect not to find any preferential severing for
longitudinal microtubules for long time periods. Therefore, an interesting research
question to address could be to experimentally quantify the time evolution of the
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correlation between new and longitudinal microtubules, in order to understand
whether or not the preferential severing still takes place after long periods of time.
However, it is important to underline that the preferential severing is still an
important factor in the first stage of the reorientation process, as it allows the
number of longitudinal microtubules to quickly amplify, see Chapters 2 and 3.

To understand which asymmetry can explain the reorientation of the cortical
array and the maintenance of the new direction we made a new hypothesis: trans-
verse and longitudinal microtubules have slightly di↵erent dynamic parameters.
To test this hypothesis, in Section 4.2 we studied the model introduced in Section
4.1 with two changes: no severing events, and growing speed for the longitudinal
microtubules slightly larger than that for the transverse. We analytically showed
that this small bias in the growing speed coupled with a strong correlation between
tubulin polarization and direction of the newly-nucleated microtubules, explains
both the reorientation of the array and the maintenance of the new longitudinal one.
Yet, with only this ingredient, the reorientation process occurs in a considerably
larger time scale with respect to the experimentally measured one. Intriguingly,
we observed that the same result could be obtained by introducing a bias in the
catastrophe rate, i.e. by slightly reducing the catastrophe rate for longitudinal mi-
crotubules. This suggests that a small di↵erence that breaks the symmetry between
transverse and longitudinal microtubules in any of their dynamic parameters, can
lead to macroscopic e↵ects concerning the number and the length polarization and
suppression. Unfortunately, at the moment there are no experimental observations
of such an asymmetry that could confirm our theoretical predictions. Indeed, with
our model we do not claim that the reason of the reorientation is the presence of a
di↵erence in the dynamic parameters, but we do claim that if the di↵erence exists,
it is an excellent candidate to be the responsible of the reorientation.

In Section 4.3, instead, we put together the bias in the speed and the severing
for microtubules. Our aim was to test whether the results obtained in Section 4.2
were still valid in the case of the addition of the severing mechanism, and to check
whether it was possible to have a fast reorientation with the two ingredients together.
We found out that, with the severing mechanism, not only the reorientation was
still possible, but it was faster than in the case of the model studied in the first two
sections of this chapter. Moreover we observed that, as expected, the preferential
severing for the longitudinal microtubules is not a necessary ingredient to explain
the final number and length polarization in the longitudinal direction. Indeed, we
observed a weak dependency of polarization and transverse suppression on q, for
p
+ in the biological range of values. These results also showed that microtubule
severing and small di↵erence in the speed contribute to the reorientation of the
cortical array and in the maintenance of the new one in two distinct ways: the
former speeds up the reorientation process, whilst the latter makes it occur and,



furthermore, it maintains the new longitudinal array.



CHAPTER 5

Microtubule-based actin transport in a three-

dimensional confinement

In the previous chapter we investigated microtubules as independent components
of the cytoskeleton. In other words, we modelled the plant cytoskeleton as if
it was only composed by microtubules, ignoring the other two polymers present
there, i.e. actin and intermediate filaments, and ignoring the interaction between
di↵erent cytoskeletal components. Here, instead, we introduce a system composed
of dynamic microtubules interacting with di↵using actin.

The interaction between actin and microtubules is very important for many
cellular mechanisms, such as maintenance of cell shape, cell division and migration,
cell polarization, cellular wound healing, and many others (Siegrist & Doe, Genes
Dev., 2007 - Huber et al., Curr. Opin. Cell. Biol., 2015 - Dogterom & Koenderink,
Nat. Rev. Mol. Cell Biol., 2018). Therefore, understanding the underlying
mechanisms and the consequences of such an interaction plays an important role
in the investigation of cellular and cytoskeletal processes. However, although actin
and microtubules have been very well studied independently, very little has been
explored about how these two polymers interact with each other.

The experiments reviewed in this chapter have been designed and carried out by Celine Alke-

made, Marileen Dogterom and Gijsje H. Koenderink from Technische Universiteit Delft (The

Netherlands).
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In this chapter, we theoretically study the consequences of the interaction
between actin filaments and microtubules in three dimensional confinement. In
Section 5.1, we present the in vitro experiments that observed the interaction
between actin and microtubules mediated by a class of linking proteins called
cytolinkers. The experiments highlight two important features caused by the
interaction: a change in the dynamic properties of microtubules and microtubule-
based transport of actin. In Section 5.2 we introduce a stochastic model of
microtubules undergoing dynamic instability in a three dimensional cell with freely
di↵using actin in it. As the equations of the model exhibit a high degree of
complexity we can only numerically solve them to highlight their main features. In
Section 5.3 we analytically solve the system in the limit of fast di↵usion for the
actin filaments. This allows us to understand what the consequences of the changed
dynamics of microtubules are for the steady-state length distribution of the latter.
Finally, in Section 5.4 we analytically study the system under the assumption that
the actin-microtubule interaction does not change the dynamic properties of the
microtubules. In this way, although we still cannot analytically solve the model,
we can identify how the system responds to the change of the parameters of the
model.

5.1 Overview of experiments

Actin filaments

Actin filaments (F-actin) are one of the components of the eukaryotic cellular
cytoskeleton. They are composed by globular actin proteins (G-actin) that organize
in a double stranded helix to form the filament, the diameter of which is of about
7 nanometers. The persistence length of an actin filament is of the order of 10
µm, whilst its typical length can extend for a few micrometers. Therefore, actin
filaments are both smaller and more flexible than microtubules.

In the cytoskeleton, actin filaments form a dynamic network that plays an
important role in many cellular processes, such as cell motility, phagocytosis,
or receiving extracellular signals to mediate the cell response (Papakonstanti &
Stournaras, Methods Enzymol., 2007). The organization of the actin network is
mediated by the so-called crosslinking proteins, that bind actin filaments together
and make them interact. Some of these proteins, like for example MACF1, can
also bind actin to microtubules (Chen et al., Genes Dev., 2006), suggesting that
the organization of the former can be influenced by the dynamics of the latter.
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Experimental observations

Actin and microtubules can interact in di↵erent possible ways. For example, they
can interact through steric repulsion, passive crosslinking, microtubule growth
guidance by actin bundles, among others (Preciado Lopez et al., Nat. Comm., 2014
- Preciado Lopez, 2015). Here, we focus on the interaction mediated by cytolinkers.
Typically, cytolinkers have an actin binding domain to bind to actin, and two
distinct ways to bind to microtubules: either they bind to the tip via a link to an
EB protein, or to the lattice.

Recent quasi 2D in vitro experiments (Alkemade et al., in preparation) have
shown that di↵erent engineered cytolinkers can connect actin to microtubules, with
di↵erent e↵ects. As an example, TipActLong is a cytolinker that binds actin to the
lattice of microtubules, see Figure 5.1A, with an interesting e↵ect on the dynamics
of the latter. Indeed, they slow down microtubule growth by decreasing their speed,
but they simultaneously dramatically suppress the catastrophe rate, see Figure
5.2, resulting in an overall stabilization of the microtubules. As a consequence,
microtubules are helped in growing in dense actin networks. Intriguingly, Figure 5.2
also reveals that in the case of TipActLong, an appreciable change in the dynamics
of microtubules occur only when also actin filaments are present.

A B

TipActLong TipAct
F-actinF-actin

microtubulemicrotubule EBEB

Figure 5.1: Microtubules (red blocks) and actin (blue lines) interacting through
cytolinkers. (A) TipActLong binds to microtubule lattice whilst (B) TipAct binds
to the microtubule plus end via EB. Courtesy of Celine Alkemade.

On the contrary, experiments performed with the cytolinker TipAct, that links
the plus end of microtubules to actin filaments, see Figure 5.1B, have revealed
a di↵erent e↵ect coming from the interaction. Indeed, it has been observed that
on the one hand it still changes the dynamic properties of microtubules, but on
the other hand it captures di↵using actin filaments on microtubule plus ends. A
captured actin filament is then transported as long as the microtubule grows, or
until the actin filament simply detaches from the microtubule.

As regards the change in microtubule dynamics, the experiments have revealed
that in presence of TipAct the growing speed of microtubules undergoes a significant
decrease with respect to the control case, while it increases the catastrophe rate,
e↵ecting in the shortening of the average length of microtubules, see Figure 5.2.
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Figure 5.2: Growth speed and catastrophe rate for microtubules in absence of
cytolinkers, with TipAct and TipActLong. All measurements are repeated two
times: without actin (red histograms), and with actin (blue histograms). Image
taken from (Alkemade et al., in preparation).

Intriguingly, it seems that there is no substantial di↵erence in both growing speed
and catastrophe rate when actin is present with respect to when it is absent, still in
presence of TipAct, suggesting that the change in the dynamics of microtubules is
due to changes in the biochemistry of the system rather than to steric interactions
between microtubules and actin.

Concerning the actin transport, the kymograph in Figure 5.3 shows that the lo-
calization of actin is maintained at microtubule plus end, confirming the occurrence
of actin transport by the microtubule tip. The capture of actin from microtubules
occurs when, due the dynamics of the microtubule and the observed di↵usion of
actin in the sample, the latter is close enough to the plus end of the former to allow
the binding through TipAct. Typically, a microtubule binds to actin before reaching
a length of about 7 µm. The experiments show that the actin transport occur on
average for 70 seconds before the unbinding from the transporting microtubule.
The unbinding can occur both because of the detachment of the actin or induced
by a microtubule catastrophe. In a very few cases, however, actin transport by
the plus end can be observed also during the shrinking phase of a transporting
microtubule.

Although the actin transport mechanism has been observed in a quasi 2D
experiment, some preliminary experimental observations have also been performed
in a droplet (Vendel et al., Methods in Molecular Biology, in press). Figure 5.4
shows that, even in the three dimensional case, some short transport events have
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Figure 5.3: Transport of an actin filament by the plus end of a microtubule in
presence of TipAct. Image taken from (Alkemade et al., in preparation).

Oil phase

+

++

+

+
+

+ +

+

++

+

B

microtubule

actin
lipid 

monolayerMTOC
tip-tracking

complex

Oil phase

+

++

+

+
+

+ +

+

++

+

A

microtubule

actin
lipid 

monolayer

MTOC

EB3

TipAct microtubules            actin 
C

TipActMTs actin
D

t

Figure 5.4: Microtubules and actin interacting in a three dimensional droplet.
Schematic of a droplet containing a MTOC with several microtubules nucleating
from it (aster) and di↵using actin, (A) without cytolinkers and (B) with cytolinkers.
(C) Co-alignment of actin filaments to microtubules (blue arrow) in presence of
cytolinkers. The orange arrow indicates the location of a short event of actin
transport by the growing plus end of the microtubule shown in (D). Image taken
from (Vendel et al., Methods in Molecular Biology, in press).
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been recorded, providing a proof of concept that actin transport by microtubules
via cytolinkers is possible also in a three dimensional environment like, for example,
a cell.

5.2 The model: dynamic microtubules and

di↵using actin

So far no theoretical studies about the dynamics of microtubules and actin when
they interact with each other have been performed. Therefore, here we explore
the possible consequences of this interaction as regards the spatial organization of
actin and microtubules in a confinement. In the remaining part of the chapter, we
are interested in making predictions about how microtubules and actin mutually
influence when they interact. Given that our interest also lies in the actin transport
mechanism, we base our model on the experiments performed with TipAct. Finally,
even though transport in three dimensions has not yet been incontrovertibly
observed, here we study the system of actin and microtubules in a three dimensional
environment. Nevertheless, some of the results obtained can be easily generalized
to fewer dimensions.

The model

The model is once again based on the Dogterom-Leibler model also discussed in
previous chapters, and consists of M microtubules undergoing dynamic instability
in an homogeneous 3-dimensional sphere of radius R, interacting with A actin
filaments di↵using with di↵usion constant D. As we are interested in studying the
interaction between actin and microtubules, and in particular in the transport of
actin by the plus end of microtubules, in our model we ignore the polymerization
and depolymerization of the actin filaments and we model them as dimensionless
particles.

All microtubules are isotropically nucleated at position x = 0 in the growing
state, radially growing with speed v

+. Besides the general properties of the
dynamics of microtubules of Dogterom-Leibler model - i.e. alternation of growth
and shrinkage due to rescues and catastrophes, every time the plus end of a
microtubule is within the range of interaction s of an actin filament, the microtubule
tip and the filament can interact and bind together with binding rate rb. The
filament is then transported by the microtubule plus end towards the surface of
the cell, with bound growing speed (or transport speed) vb < v

+, accordingly to
the experimental measurements. When bound together, microtubules and actin
filaments can unbind in three distinct ways: i) they detach with constant unbinding
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rate ru, ii) the microtubule undergoes a catastrophe and releases the particle with
catastrophe rate rc, iii) or a microtubule hits the surface of the cell, and it is
reflected back in the shrinking state after releasing the actin. Microtubules are
also subject to sudden re-nucleation as soon as they completely depolymerize, i.e.
we impose reflective boundary conditions at x = 0 for the microtubules. Finally,
actin filaments are completely reflected when they touch the boundary, or in other
words, when they are at position |x| ⌘ x = R, see Figure 5.5.

A B

C

Figure 5.5: Schematic of the model. (A) Microtubules (green lines) undergoing
dynamic instability and actin (blue spirals) di↵using in a 3-dimensional sphere.
(B) Interaction between actin and microtubules. (C) Boundary conditions at the
surface of the cell and at the centre.

Dynamic equations

As actin binds to microtubule plus ends with rate rb within a certain range of
interaction s, here we assume that the actual interaction process is much faster
than both the di↵usion of the actin and the growth of a microtubule. Moreover, we
assume that s is small enough that the density distribution of growing microtubule
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plus ends is approximately constant in it. Therefore, if m+ (t,x) is the distribution
of free growing microtubules, and a (t,x) the distribution of free actin filaments,
the overall interaction rate is given by

rbsm
+ (t,x) a (t,x) .

Then, if we also introduce the distributions of the plus end of shrinking microtubules
m

� (t,x) and of the plus end of microtubules bound to actin b (t,x), the dynamic
equations that describe the system are

4⇡x2 @m
+ (t,x)

@t
=� v

+ ·r4⇡x2
m

+ (t,x)� rc4⇡x
2
m

+ (t,x)

� rbs 4⇡x
2
m

+ (t,x) a (t,x) + ru4⇡x
2
b (t,x) + rr4⇡x

2
m

� (t,x) ,
(5.1)
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@a (t,x)

@t
= Dr2

a (t,x)� rbsm
+ (t,x) a (t,x) + (ru + rc) b (t,x) . (5.4)

The first three equations are transport equations for the radial distributions1 of the
plus end of growing microtubules, shrinking microtubules, and bound microtubules.
The last equation is a di↵usion equation for the free actin particle with a decay
due to the capture of actin filaments by microtubule tips, and a source due to the
release of actin from the tip to the pool.

Since the system exhibits spherical symmetry we make use of spherical coor-
dinates to study the system, i.e. x = (x, ✓,�). We also notice that, given our
assumptions of homogeneity and isotropy, all quantities of the model only depend
on the radial coordinate x. Furthermore, it has been shown by Govindan and Spill-
man (Govindan & Spillman, Phys. Rev. E, 2004) that microtubules undergoing
dynamic instability in a confined volume always reach a steady-state, regardless
of the choice of the dynamic parameters. Hence, we reasonably assume that our
system always reaches the steady-state, and we restrict the study of Eqs. (5.1-5.4)

1
The radial distribution is the function that describes the density of probability at a certain

distance from the origin. In the case of, e.g., plus end of growing microtubules in three dimensions,

it is defined as 4⇡x2m+
(t,x).

112



Microtubule-based actin transport in a three dimensional confinement

in such a situation. Finally, since in the experiments no rescues have been observed,
we make the further assumption that rr = 0. In this way, once a microtubule
undergoes a catastrophe, its fate is determined as it cannot be rescued. Therefore,
as we did in Chapter 4, we make the final assumption that v� � v

+, i.e. as soon
as a microtubule undergoes a catastrophe it suddenly depolymerizes, and then it
nucleates again. In this way the number of microtubules in the shrinking state -
and hence the related distribution, drops to zero and Eq. (5.2) vanishes.

With all these assumptions, we can rewrite Eqs. (5.1-5.4) in the steady-state as

0 = �v
+ d

dx

⇥
x
2
m (x)

⇤
� rcx

2
m (x)� rbs x

2
m (x) a (x) + rux

2
b (x) , (5.5)

0 = �v
b d

dx

⇥
x
2
b (x)

⇤
� (rc + ru)x

2
b (x) + rbs x

2
m (x) a (x) , (5.6)

0 = D
1

x2

d

dx


x
2 d

dx
a (x)

�
� rbsm (x) a (x) + (ru + rc) b (x) , (5.7)

where m (x) ⌘ m
+ (x). This set of ordinary di↵erential equations is supplemented

by the boundary conditions defined by the properties of the model. Indeed, the
sudden renucleation of every microtubule that undergoes a catastrophe implies

v
+
m (0) = v

+
m (R) + v

b
b (R) + rcM, (5.8)

and

b (0) = 0. (5.9)

The release of actin filaments from microtubules when they arrive bound to the
cell surface, together with the reflective boundary condition for the free di↵using
actin, instead, imply

D ra (x) · bx|x=R = v
b
b (R) . (5.10)

Besides the boundary conditions, conservation of probability implies a normalization
condition for both actin filaments and microtubules

4⇡

Z R

0
dx x

2 [m (x) + b (x)] = M, (5.11)

4⇡

Z R

0
dx x

2 [a (x) + b (x)] = A. (5.12)
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Numerical solution

Unfortunately, due to the presence of the coupling term m (x) a (x) in all dynamic
equations (5.5-5.7), it is not possible to decouple them in order to write a closed
form equation for every species, and consequently, an analytical solution of the
model seems to be non-reachable. For this reason, in this section, we solve the
model with numerical techniques.

As we are dealing with one second order and two first order di↵erential equations,
we need four boundary and/or normalization conditions in order to find a solution.
Conditions (5.8-5.12) are in principle five. However, condition (5.10) implies
condition (5.9) through the set (5.5-5.7). Therefore, the number of independent
boundary/normalization conditions is four.

An interesting technique to include normalization conditions in the search for
the integration constants for di↵erential equations, consists of substituting the
probability distributions m (x), b (x), and a (x) with the respective cumulative
distribution functions, defined as

M (x) = 4⇡

Z x

0
dx

0
x
02
m (x0) ,

B (x) = 4⇡

Z x

0
dx

0
x
02
b (x0) ,

A (x) = 4⇡

Z x

0
dx

0
x
02
a (x0) ,

from which it follows that

m (x) =
1

4⇡x2

dM (x)

dx
,

and similarly for B (x) and A (x). With this substitution, Eqs. (5.5-5.12) become

0 = �v
+
M

00 (x)� rcM
0 (x)� rbs

M
0 (x)A0 (x)

4⇡x2
+ ruB

0 (x) , (5.13)

0 = �v
b
B

00 (x)� (rc + ru)B
0 (x) + rbs

M
0 (x)A0 (x)

4⇡x2
, (5.14)

0 = D


A

000 (x)� 2

x
A

00 (x) +
2

x2
A

0 (x)

�
� rbs

M
0 (x)A0 (x)

4⇡x2
+ (ru + rc)B

0 (x) ,

(5.15)
v
+
M

0 (0) = v
+
M

0 (R) + v
b
B

0 (R) + rcM, (5.16)

B
0 (0) = 0, (5.17)
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D


A

00 (R)� 2

R
A

0 (R)

�
= v

b
B

0 (R) , (5.18)

M (R)�M (0) +B (R)�B (0) = M, (5.19)

A (R)�A (0) +B (R)�B (0) = A. (5.20)

Now, we can numerically solve the system. As it is now a seventh order set of
di↵erential equations and we only have five conditions, the numerical solution yields
two unknown integration constants. However, given our interest in computing the
original distributions

m (x) =
1

4⇡x2

dM (x)

dx
,

b (x) =
1

4⇡x2

dB (x)

dx
,

and

a (x) =
1

4⇡x2

dA (x)

dx
,

the final derivation from the cumulative to the original cancels out the unknown
integration constants. Figure 5.6 shows the numerical solution of the set of Eqs.
(5.13-5.20), with the value for the model parameters taken from Table 5.1. We
can observe that, in this case, the interaction plays a minimal role in changing the
distribution of the free actin as a consequence of the transport mechanism, as the
distribution is roughly uniform (Figure 5.6C). On the contrary, we can observe a
peak in the distribution of bound microtubules very close to the nucleation point.
Indeed, as x ! 0, the density of microtubule plus ends is very high, since all
microtubules are nucleated at x = 0. Furthermore, those that capture an actin
filament reduce their growth speed from v

+ to v
b, resulting in the creation of

a trapping e↵ect for the actin close to the centre of the cell. In addition, the
di↵usion coe�cient is large enough to quickly redistribute the actin filaments that
detach from microtubule plus ends all over the volume of the sphere, allowing
the availability of a good amount of free actin in the central area of the cell, and
therefore, their possible capture. Finally, due to the dilution of microtubule plus
ends caused by their radial direction from the centre of the cell, we can observe that
the distribution of microtubules - both growing and bound, very quickly decreases
to low values, see Figure 5.6AB.

To test the hypothesis that the trapping mechanism is due to large D and slow
v
b, we numerically solve the set of Eqs. (5.13-5.20) for di↵erent values of these

two parameters. Figure 5.7A shows that, by reducing the di↵usion coe�cient for
the free actin, we can deplete the amount of free actin in the centre of the cell, as
the actin filaments released closer to the surface do not redistribute fast. Figure
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Figure 5.6: Distribution of the position of (A) growing microtubule plus ends, (B)
bound microtubule plus ends, and (C) actin filaments.
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Figure 5.7: (A) Distribution of the position of actin filaments for di↵erent values of
the di↵usion coe�cient D. (B) Distribution of the position of bound microtubule
plus ends for di↵erent values of the bound growth speed v

b. Model parameters not
explicitly tuned are taken from Table 5.1.
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Parameter Description Numerical value Units

v+ Free-growth speed 0.05 µms
�1

vb Transport speed 0.03 µms
�1

rc Catastrophe rate 0.005 s
�1

rb Binding rate 0.8 s
�1

s Actin-microtubule interaction volume 0.002 µm3

ru Unbinding rate 0.009 s
�1

D Free actin di↵usion coe�cient 1 µm2
s
�1

R Radius of the cell 10 µm
M Total number of microtubules 10

4
-

A Total number of actin filaments 5 · 104 -

Table 5.1: Model parameters. The choice for the numerical values is in agreement
with the experimental measurements of the same quantity (Alkemade et al., in
preparation).

5.7B, instead, shows that the increase of the transport speed v
b up to v

+ causes a
reduction of the trapping e↵ect, as the bound actin filaments are transported faster
toward the outer area of the cell. Therefore, the combination of a slow di↵usion
and a fast transport can cause localization of actin at the cell surface rather than
at its centre, see Figure 5.8. Figure 5.8 also exhibits another feature: even though
in the slow di↵usion and fast transport regime we can drive the actin filaments
toward the surface of the cell, a fraction of them is always trapped at the centre,
unless we further increase the transport speed to non-biologically realistic values.
In Section 5.4 we will give an analytical explanation of this mechanism.
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Figure 5.8: Total distribution a (x) + b (x) of the actin filaments for slow di↵usion
and fast transport, i.e. D = 0.01µm2

/s and v
b = 0.05µm/s.
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5.3 Fast di↵usion limit: an analytical solution

In this section we study the actin-microtubule system under the assumption that the
only e↵ect of their interaction is to change the dynamic properties of microtubules,
without any influence on the distribution of the free actin filaments. Practically,
assuming that the free actin distribution is not influenced by microtubule dynamics
means that the di↵usion coe�cient for actin filaments is D ! 1, i.e. actin is
always homogeneously distributed in the whole cell. We also assume that the
amount of free actin filaments is available in abundance. That allows us to keep the
binding rate constant or, in other words, to make the substitution rbsa (x) ! rb.
This change makes Eqs. (5.5-5.7) be decoupleable, and therefore, suitable to be
approached analytically.

Dynamic equations

Here, in contrast with the previous section, we work in the limit in which after a
catastrophe, shrinking microtubules need a finite amount of time to completely
depolymerize. Moreover, we assume that nucleation does not occur just after the
complete depolymerization, but a new microtubule is nucleated with pro capita
nucleation rate rn.

Given the radial symmetry of the problem and the absence of inhomogeneity in
the actin concentration, we limit the discussion to the radial part of the probability
distributions of the plus ends. In other words, we face the problem as if it was
1-dimensional. Furthermore, as every microtubule is nucleated at position x = 0,
we can identify the position of the plus end with the length of the microtubule.

In this case, the steady-state version of Eqs. (5.1-5.4) are

0 = �v
+ d

dx
m

+ (x)� rcm
+ (x)� rbm

+ (x) + rub (x) , (5.21)

0 = �v
b d

dx
b (x)� (rc + ru) b (x) + rbm

+ (x) , (5.22)

0 = v
� d

dx
m

� (x) + rc

⇥
m

+ (x) + b (x)
⇤
. (5.23)

Since all microtubules are nucleated in the growing state, at x = 0 the boundary
conditions are

v
+
m

+ (0) = rnMn,

b (0) = 0,

v
�
m

� (0) = v
+
m

+ (0) + v
b
b (0) = rnMn,
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whereMn is the number of microtubules in the dormant state, i.e. microtubules com-
pletely depolymerized and waiting to be re-nucleated, Mn = M�

�
M

+
0 +M

�
0 +B0

�
.

At x = R, instead, the boundary condition is

v
�
m

� (R) = v
+
m

+ (R) + v
b
b (R) .

For the sake of simplicity in the derivation, we make the following non-
dimensionalizations:

• microtubule length

� =
rc + rb

v+
x,

• microtubule length distribution in the growing/shrinking state

µ
± (�) =

v
+

rn
m

± (x) ,

• microtubule length distribution in the bound state

� (�) =
v
+

rn
b (x) ,

• unbinding rate

! =
ru

rc + rb
,

• catastrophe rate

⇢ =
rc

rc + rb
,

• growing/shrinking speed

⌫
± =

v
±

v+
,

• bound or transport speed

⌫
b =

v
b

v+
,

• re-scaled number of dormant microtubules

Mn =
rc + rb

rn
Mn,

119



Microtubule-based actin transport in a three dimensional confinement

and therefore, we rewrite Eqs. (5.21), (5.22), and (5.23) as

d

d�
µ
+ (�) = �µ

+ (�) + !� (�) , (5.24)

⌫
b d

d�
� (�) = � (⇢+ !)� (�) + (1� ⇢)µ+ (�) , (5.25)

�⌫
� d

d�
µ
� (�) = ⇢

⇥
µ
+ (�) + � (�)

⇤
, (5.26)

supported by the boundary conditions

µ
+ (0) = Mn, (5.27)

� (0) = 0, (5.28)

µ
� (0) =

Mn

⌫�
, (5.29)

and
µ
+ (⇤) + ⌫

b
� (⇤) = ⌫

�
µ
� (⇤) . (5.30)

Steady-state solution

By combining Eqs. (5.24) and (5.25) together, we can split them to obtain two
second order linear di↵erential equations

d
2

d�2
⇡ (�) +

✓
1 +

⇢+ !

⌫b

◆
d

d�
⇡ (�) +

⇢ (1 + !)

⌫b
⇡ (�) = 0, (5.31)

where ⇡ = µ
+
,�. Equation (5.31) has di↵erent solutions depending on the sign

of �2 ⌘
�
1 + ⇢+!

⌫b

�2 � 4⇢(1+!)
⌫b . However, given that from v

b
< v

+ it follows that
⌫
b
< 1, we can show that

�2 =

�
⇢� ⌫

b
�2

+ !
�
! + 2⌫b � 4⌫b⇢+ 2⇢

�

(⌫b)2

=

�
⇢� ⌫

b
�2

+ !
�
! + 2⌫b � 4⌫b⇢+ 4⇢� 2⇢

�

(⌫b)2

=

�
⇢� ⌫

b
�2

+ !
�
! + 2⌫b + 4⇢

�
1� ⌫

b
�
� 2⇢

�

(⌫b)2
>

�
⇢� ⌫

b
�2

+ !
�
! + 2⌫b � 2⇢

�

(⌫b)2
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=

�
⇢� ⌫

b
�2

+ !
2 � 2!

�
⇢� ⌫

b
�

(⌫b)2
=

�
⇢� ⌫

b � !
�2

(⌫b)2
� 0,

and hence the solution of Eq. (5.31) is

⇡ (�) = e
� 1

2 (1+
⇢+!
⌫ )�

h
c1,⇡ e

1
2�� + c2,⇡ e

� 1
2��

i
. (5.32)

By plugging this equation in Eq. (5.26), we can find the expression for µ
� (�)

as well. Another way to obtain µ
� (�) is to sum Eqs. (5.24), (5.25), and (5.26)

together. By doing this we obtain

d

d�

⇥
µ
+ (�) + ⌫

b
� (�)� ⌫

�
µ
� (�)

⇤
= 0,

that, together with the conditions at � ! 1, i.e. lim
�!1

µ
� (�) = 0, implies

µ
+ (�) + ⌫

b
� (�) = ⌫

�
µ
� (�) , 8 � 2 [0,1) . (5.33)

Consequently, µ� (�) is a linear combination of the other two distributions, and
we can summarize all of them as

⇡ (�) = e
� 1

2 (1+
⇢+!
⌫ )�

h
c1,⇡ e

1
2�� + c2,⇡ e

� 1
2��

i
, (5.34)

where here ⇡ = µ
±
,�, and

cj,� =
cj,+ + ⌫

b
cj,b

⌫�
. (5.35)

Unfortunately the four boundary conditions (5.27-5.30) are linearly dependent.
Thus we cannot find all four independent integration coe�cients c1,+/b and c2,+/b.
However, if we plug Eq. (5.34) for µ+ and � in Eq. (5.26), we can find a second
expression for µ�, namely

µ
� (�) =

Mn

⌫�
� 2⇢⌫b

⌫�

✓
c1,+ + c1,b

⌫b (1��) + ⇢+ !
+

c2,+ + c2,b

⌫b (1 +�) + ⇢+ !

◆

+ e
� 1

2 (1+
⇢+!

⌫b )�


2⇢⌫b (c1,+ + c1,b)

⌫� (⌫b (1��) + ⇢+ !)
e

1
2��

+
2⇢⌫b (c2,+ + c2,b)

⌫� (⌫b (1 +�) + ⇢+ !)
e
� 1

2��

�
.

(5.36)

The comparison between Eq. (5.34) for µ� and (5.36), together with the observation
that

a+ be
x = c e

x 8x ) a = 0 ^ b = c,
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imply that

c1,+ = Mn
�� 1 + ⇢+!

⌫b

2�
,

c2,+ = Mn � c1,+ = Mn
�+ 1� ⇢+!

⌫b

2�
,

c1,b = Mn
1� ⇢

⌫b�
,

c2,b = �c1,b = �Mn
1� ⇢

⌫b�
,

c1,� =
c1,+ + ⌫

b
c1,b

⌫�
= Mn

�+ ⇢+!
⌫b � 2⇢+ 1

2⌫��
,

c2,� =
c2,+ + ⌫

b
c2,b

⌫�
= Mn

�� ⇢+!
⌫b + 2⇢� 1

2⌫��
.

Finally, from

Mn = M�
�
M+

0 +M�
0 + B0

�
= M�

Z ⇤

0
d�
⇥
µ
+ (�) + µ

� (�) + � (�)
⇤
,

we can calculate the number of dormant microtubules

Mn =

(
1

+
rn

rc + rb

"
1� ⇢

⌫b�

✓
1 +

⌫
b

⌫�

◆
+

�� 1 + ⇢+!
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✓
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1

⌫�

◆#

⇥ 1� e
� 1

2 (1+
⇢+!

⌫b ��)⇤

1
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⌫b ��
�

+
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rc + rb

"
1 +

1

⌫�
� 1� ⇢

⌫b�

✓
1 +

⌫
b

⌫�

◆
�

�� 1 + ⇢+!
⌫b

2�

✓
1 +

1

⌫�

◆#

⇥ 1� e
� 1

2 (1+
⇢+!

⌫b +�)⇤

1
2

�
1 + ⇢+!

⌫b +�
�
)�1

.

(5.37)

Figure 5.9A shows the probability distributions for microtubule length. We can
observe that � (�) steeply increases to reach a peak that defines the length scale for
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microtubules to freely grow before binding to actin. Figure 5.9B, instead, compares
the total length distribution with those of the Dogterom-Leibler model. We can
observe that the change in the dynamic parameters implies a change in the shape
of the steady-state length distribution with respect to the basic model. In Chapter
2 we have already observed such an e↵ect. Here, however, we are interested in
discussing the causes of this change. The position �peak of such a peak can be
calculated via 0 = d�

d� , and it is

�peak =
1

�
log

1 + ⇢+!
⌫b +�

1 + ⇢+!
⌫b ��

. (5.38)

Figure 5.10 shows how the position of the peak changes when we change, in turn,
⇢, !, and ⌫

b. We observe that, besides the case in which ⇢ ! 0, the position of the
peak in the cell is shifted to shorter distance, less than halfway from the nucleation
point to the cell surface. This means that the only strategy to strongly control the
position of the peak is to considerably lower the catastrophe rate ⇢. Intuitively,
we can think that in the case of no catastrophe, every microtubule grows until
it reaches the surface, and therefore it generates a peak in the distribution of
the bound microtubules at � = ⇤. Except for this limit, the localization of the
peak in the central part of the cell confirms the existence of the trapping e↵ect
for actin filaments already observed in Section 5.2, due to the interaction with
microtubules. In other words, in the fast di↵usion limit, it is not possible to localize
actin filaments at the cell surface, since they are trapped by the microtubules at
�peak.

If we add Eq. (5.24) to Eq. (5.25), we obtain

d

d�

⇥
µ (�) + ⌫

b
� (�)

⇤
= �⇢ [µ (�) + � (�)] , (5.39)

which means that if we set ⌫b = 1, which corresponds to v
+ = v

b, the solution of
the last di↵erential equation for µ (�) + � (�) is

µ (�) + � (�) = Mn e
�⇢�

, (5.40)

i.e. the steady-state distribution for microtubule length in Dogterom-Leibler model.
Eq. (5.40) highlights an important feature of the model: the changed length
distribution for the microtubules does not come from the interaction with the actin
per se, but it is a consequence of the co-existence of two di↵erent states for growing
microtubules with di↵erent speeds. Notice that this argument holds in the case of
di↵erent catastrophe rates but same growing speeds as well.
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Figure 5.9: (A) Distribution of microtubule length for growing (green), shrinking
(red), and bound microtubules (turquoise). (B) Overall length distribution (green
straight line) compared with the length distribution of Dogterom-Leibler model
(black dashed line).
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Figure 5.10: Location of the peak of � (�) as a function of (A) ⇢, (B) !, and (C) ⌫b.
While ⇢ and ⌫

b are comprises between 0 and 1 as a consequence of their definitions,
! does not have any a priori upper bound.
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Probability to reach the surface

Next to the problem of finding the length distribution of microtubules, an interesting
question to address is what is the probability ⇧�⌧ (⇤|�0) that a microtubule initially
at � = �0 and in state ⌧ , reaches the surface at � = ⇤ in the state �. Given the
absence of rescues in the model, this problem has a trivial solution when the initial
state is the shrinking state, i.e.

⇧�� (⇤|�0) = 0.

In order to calculate ⇧�⌧ (⇤|�0) when ⌧ = +/b, we first introduce the survival
probability S� (t|t0) of a microtubule in the state �, as the probability that a
microtubule initially in the state � at time t0 is still in the state � at time t.
Consider a microtubule initially in the growing state. We can show (Mulder, Phys.
Rev. E, 2012) that its survival probability in the growing state obeys the backward
Kolmogorov equation as it evolves as

d

dt
S+ (t|t0) = �rcS+ (t|t0)� rbS+ (t|t0) , (5.41)

with initial condition S+ (t0|t0) = 1. However, since the growing speed of micro-
tubules is constant, we can make the substitution t = x

v+ and d
dt = v

+ d
dx . Therefore,

with the non-dimensionalized notation, our di↵erential equation becomes

d

d�
S+ (�|�0) = �⇢S+ (�|�0)� (1� ⇢)S+ (�|�0) = �S+ (�|�0) ,

the solution of which is
S+ (�|�0) = e

�(���0). (5.42)

Similarly, we can compute the survival probability in the bound state as

Sb (�|�0) = e
� ⇢+!

⌫b (���0)
. (5.43)

We call these two functions spatial survival probabilities in the growing/bound state,
respectively. Given that in both cases a microtubule can leave its original state -
growing/bound, for two possible distinct states - bound/growing and shrinking,
and because of the homogeneity of the system, we can factorize both S+ (�|�0)
and Sb (�|�0) as

S+ (�|�0) = e
�⇢(���0)e

�(1�⇢)(���0) ⌘ T�+ (�|�0)Tb+ (�|�0) , (5.44)

and
Sb (�|�0) = e

� ⇢

⌫b (���0)
e
� !

⌫b (���0) ⌘ T�b (�|�0)T+b (�|�0) , (5.45)
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where T�⌧ (�|�0) is the spatial partial survival probability for a microtubule to
survive in the state ⌧ without switching specifically to the state �.

Knowing the spatial survival probabilities, we can define the function Q�⌧ (�|�0)
as the space dependent rate where a microtubule leaves the state ⌧ to enter the
state �. Such function is defined as

Q�⌧ (�|�0) =
Y

⌘ 6=�

T⌘⌧ (�|�0)


� d

d�
T�⌧ (�|�0)

�
. (5.46)

Intuitively, we can think that a microtubule initially in the growing state with
length �0 reaches the length � again in the growing state in two di↵erent ways:
either it never leaves the growing state, or it binds and unbinds to actin any number
of times, as long as from a certain moment when it is in the growing state it never
leaves it again. Therefore, we can finally write an expression for the probabilities
of reaching � in the growing state as

⇧++ (�|�0) = S+ (�|�0) +

Z �

�0

d�
0
Qb+ (�0|�0) ⇧+b (�|�0) , (5.47)

⇧+b (�|�0) =

Z �

�0

d�
0
Q+b (�

0|�0) ⇧++ (�|�0) . (5.48)

If we combine Eqs. (5.47) and (5.48) we can split them to obtain:

⇧++ (�|�0) =S+ (�|�0)

+
! (1� ⇢)

⌫b

Z �

�0

d�
0
S+ (�0|�0)

Z �

�0
d�

00
Sb (�

00|�0)⇧++ (�|�00) ,

(5.49)

⇧+b (�|�0) =
!

⌫b

1

1 + ⇢+!
⌫b

[1� Sb (�|�0)S+ (�|�0)]

+
! (1� ⇢)

⌫b

Z �

�0

d�
0
Sb (�

0|�0)

Z �

�0
d�

00
S+ (�00|�0)⇧+b (�|�00) .

(5.50)

We now focus on the resolution of Eq. (5.49). First of all, we notice that because
of the homogeneity of the system, all probabilities involved are functions of just
the distance between the starting and the final positions. Hence, by making use of
this property and by changing integration variables as � ! �+ �0, �0 ! �

0 + �0,
and �

00 ! �
00 + �0, we can rewrite Eq. (5.49)

⇧++ (�) = S+ (�) +
! (1� ⇢)

⌫b

Z �

0
d�

0
S+ (�0)

Z �

�0
d�

00
Sb (�

00 � �
0)⇧++ (�� �

00) .
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If we Laplace transform last equation we obtain

b⇧++ (s) =

Z 1

0
d� e

�s�⇧++ (�) = bS+ (s) +
! (1� ⇢)

⌫b
bI (s) , (5.51)

where

bI (s) =
Z +1

0
d� e

�s�

Z �

0
d�

0
Z �

�0
d�

00
S+ (�0)Sb (�

00 � �
0)⇧++ (�� �

00) .

By changing variables as

z1 = �
0
,

z2 = �
00 � z1 = �

00 � �
0
,

z3 = �� z2 � z1 = �� �
00
,

we can rewrite the integral as

bI (s) =
Z +1

0
dz1 e

�sz1S+ (z1)

Z +1

0
dz2 e

�sz2Sb (z2)

Z +1

0
dz3 e

�sz3⇧++ (z3) ,

i.e.
bI (s) = bSb (s) bS+ (s) b⇧++ (s) . (5.52)

If we combine Eq. (5.51) and Eq. (5.52) together we finally obtain

b⇧++ (s) =
bS+ (s)

1� !(1�⇢)
⌫b

bSb (s) bS+ (s)
,

and, by observing that bS+ (s) = (1 + s)�1 and bSb (s) =
�⇢+!

⌫b + s
��1

,

b⇧++ (s) =
!(1�⇢)

⌫b + s

s2 +
�
1 + ⇢+!

⌫b

�
s� !(1�⇢)

⌫b

, (5.53)

If we now define bf (s) = ⇢+!
⌫b + s, and bg (s) =

h
s
2 +

�
1 + ⇢+!

⌫b

�
s� !(1�⇢)

⌫b

i�1
,

using the relation between Laplace transform and convolution we can write

b⇧++ (s) = bf (s) bg (s) =
Z +1

0
d� e

�s�

Z �

0
d�

0
f (�0) g (�� �

0)

=

Z +1

0
d� e

�s� ⇧++ (�) ,
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where f and g are the inverse Laplace transforms of bf and bg, respectively. Therefore

⇧++ (�) =

Z �

0
d�

0

⇢+ !

⌫b
� (�0) +

d

d�0 � (�
0)

�

⇥
e
� 1

2 (1+
⇢+!

⌫b )(���0)
h
e

1
2�(���0) � e

� 1
2�(���0)

i

�
,

(5.54)

and finally, by integrating last integral by parts and going back to � ! �� �0, we
obtain

⇧++ (�|�0) = e
� 1

2 (1+
⇢+!

⌫b )(���0)

⇥
"
�+ ⇢+!

⌫b � 1

2�
e

1
2�(���0) +

�� ⇢+!
⌫b + 1

2�
e
� 1

2�(���0)

#
,

(5.55)

and similarly

⇧+b (�|�0) =
!

⌫b�
e
� 1

2 (1+
⇢+!

⌫b )(���0)
h
e

1
2�(���0) � e

� 1
2�(���0)

i
. (5.56)

Furthermore, with the same calculation we can as well compute

⇧b+ (�|�0) =
1� ⇢

�
e
� 1

2 (1+
⇢+!

⌫b )(���0)
h
e

1
2�(���0) � e

� 1
2�(���0)

i
, (5.57)

and

⇧bb (�|�0) = e
� 1

2 (1+
⇢+!

⌫b )(���0)

⇥
"
�� ⇢+!

⌫b + 1

2�
e

1
2�(���0) +

�+ ⇢+!
⌫b � 1

2�
e
� 1

2�(���0)

#
.

(5.58)

Intriguingly, we observe that

⇧++ (�|�0) =
1

Mn
µ
+ (�� �0) , (5.59)

and

⇧b+ (�|�0) =
1

Mn
� (�� �0) , (5.60)

i.e. the probability to reach the length � � �0 in the state � from the moment
of the nucleation coincides with the length probability distribution in the state �.
This property of the system will be studied in a more general way and in detail in
the Appendix A of this thesis.
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5.4 Fast transport localizes actin at the surface

In Section 5.2 we numerically studied a model with dynamics for both microtubules
and actin, since an analytical solution did not seem to be reachable. To find an
analytical solution for the model, we studied the case of fast actin di↵usion, see
Section 5.3. Even though that solution provided us information on the response
of the distribution of microtubules to the change of their dynamics, it completely
ignored the response of actin to the interaction between the two components of
cytoskeleton.

Here, like we did in the previous section, in order to analitically describe the
behaviour of actin due to the interaction with microtubules, we assume that the
interaction does not change the dynamic properties of microtubules, i.e. does not
change microtubule growing speed in the bound state.

Therefore, after some general considerations about the model equations pre-
sented in Section 5.2 - still with the assumption of no shrinking microtubules, we
set vb = v

+ ⌘ v to analytically study the model both in 1 and in 3-dimensions.

Analytical approach

If we sum Eqs. (5.6) and (5.7), we obtain

Dr2
a (x) = v

b ·rb (x) , (5.61)

suggesting that the the two equations can be, in principle decoupled.

1-dimensional case

In the 1-dimensional case, the steady-state dynamic equations of the model (5.5-5.7)
can be rewritten as

0 = �v
+ d

dx
m (x)� rcm (x)� rbsm (x) a (x) + rub (x) , (5.62)

0 = �v
b d

dx
b (x)� (rc + ru) b (x) + rbsm (x) a (x) , (5.63)

0 = D
d
2

dx2
a (x)� rbsm (x) a (x) + (ru + rc) b (x) , (5.64)

with boundary and normalization conditions

v
+
m (0) = v

+
m (R) + v

b
b (R) + rcM, (5.65)

b (0) = 0, (5.66)
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D
d

dx
a (x)

����
x=R

= v
b
b (R) , (5.67)

Z R

0
dx [m (x) + b (x)] = M, (5.68)

Z R

0
dx [a (x) + b (x)] = A. (5.69)

If we sum Eqs. (5.63) and (5.64), we obtain

d

dx


D

d

dx
a (x)� v

b
b (x)

�
= 0, (5.70)

which implies D d
dxa (x)� v

b
b (x) = const. for every x 2 [0, R]. Therefore, from the

condition (5.67) it follows that

D
d

dx
a (x) = v

b
b (x) 8x 2 [0, R] . (5.71)

This equation has a very interesting consequence: indeed b (x) is a distribution, and
therefore, always positive. Thus, also the derivative of the free actin distribution is
positive, meaning that a (x) monotonically increases with the position x. Notice
that, in the D

vb � R limit, Eq. (5.71) implies that a (x) ' const., and the system
reduces to the one previously studied in Section 5.3.

It follows that, if we want to control the slope and the steepness of the free actin
distribution, we need to tune D

vb , as it can be more clearly observed by integrating
Eq. (5.71). Such an integration yields

a (R)� a (0) =
v
b

D
B0. (5.72)

Figure 5.11 shows the increase in a (R)� a (0) as D
vb falls. Notice that, for a very

high value of D
vb , i.e. in the fast di↵usion limit, the free actin distribution is almost

uniform. This figure shows the importance of a fast transport and a slow di↵usion
for the actin localization at the surface.

If we now plug Eq. (5.71) in Eq. (5.64) we obtain

d
2

dx2
a (x) +

ru + rc

vb

d

dx
a (x)� rbs

D
m (x) a (x) = 0, (5.73)

i.e. a second order di↵erential equation for the distribution of free actin filaments,
split from the distribution of bound actin. Unfortunately, given the coupling term
m (x) a (x), this equation cannot be solved analytically.
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Figure 5.11: Distribution of free actin filaments for four di↵erent values of D
vb .

No change in microtubule growing speed

Here, similarly to the case of fast di↵usion for the actin, if we add Eq. (5.5) to Eq.
(5.6), we obtain

d

dx

⇥
v
+
m (x) + v

b
b (x)

⇤
= �rc [m (x) + b (x)] , (5.74)

which, in the v
+ = v

b ⌘ v case, can be solved for m (x) + b (x) to yield

m (x) + b (x) = m0 e
� rc

v x
, (5.75)

where the constant

m0 =
rc

v

⇣
1� e

� rc
v R
⌘�1

M (5.76)

comes from the normalization condition
R R
0 dx [m (x) + b (x)] = M . Eq. (5.75)

shows that, even in the case with di↵using actin, it is only the change in the
growing speed that modifies the steady-state distribution for microtubule length.
In other instances, Eq. (5.75) tells us that the changed length distribution is not
dependent on whether or not the rate of switch from the unbound to the bound
state is constant, as it depends only on the growing speed and the catastrophe rate.

In the scenario where v
+ = v

b ⌘ v we can use Eq. (5.75) together with Eq.
(5.71) to rewrite Eq. (5.73) in a closed form. Indeed

a
00 (x) +


ru + rc

v
+

rbs

v
a (x)

�
a
0 (x)� rbs

D

rc

v
M

e
� rc

v x

1� e
� rc

v R
a (x) = 0. (5.77)

Although Eq. (5.77) is still not analytically solvable, it highlights the fact that the
system is described by four typical lengths:
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• the typical microtubule length

l =
v

rc
,

• the transport length

lt =
v

rc + ru
,

that describes for how long an actin filament is transported by the tip of a
microtubule,

• the free growth length

lf (x) =
v

rbsa (x)
,

that describes how long a microtubule can grow before binding to an actin
filament,

• the di↵usion-transport length,

ldt =
D

v
,

that describes the competition between transport and di↵usion, i.e. how
well the free actin is redistributed in the cell after the detachment from a
microtubule plus end.

Moreover, from the solution of Eq. (5.77) for a (x) we can derive the solution for
b (x) through Eq. (5.71), and finally the solution for m (x) from Eq. (5.75).

To better highlight the dependency of Eq. (5.77) on the relationship between
dynamic parameters, we non-dimensionalize Eq. (5.77) by using l as the main
length scale of the system. Thus, we define:

• position

� =
x

l
=

rc

v
x,

• length of the cell

⇤ =
R

l
=

rc

v
R,

• transport rate

� =
l

lt
=

ru + rc

rc
,
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• binding rate

⌘ =
rbs

v
,

• transport-di↵usion length

� =
ldt

l
=

rcD

v2
,

• actin filament distribution
↵ =

v

rc
a,

• growing microtubule distribution

µ =
v

rc
m,

• re-scaled number of growing microtubules

µ0 =
v

rc
m0,

• bound microtubule distribution

� =
v

rc
b.

With the new variables, Eqs. (5.62-5.64) become

0 = � d

d�
µ (�)� µ (�)� ⌘µ (�)↵ (�) + (� � 1)� (�) , (5.78)

0 = � d

d�
� (�)� �� (�) + ⌘µ (�)↵ (�) , (5.79)

0 = �
d
2

d�2
↵ (�)� ⌘µ (�)↵ (�) + �� (�) , (5.80)

whilst Eq. (5.77) becomes

↵
00 (�) + [� + ⌘↵ (�)]↵0 (�)� ⌘

�
M

e
��

1� e�⇤
↵ (�) = 0. (5.81)

This last equation shows that the whole system is governed by three independent
parameters, namely the non-dimensional binding rate ⌘, transport rate �, and
transport-di↵usion length �. By tuning them we can control the spatial organization
of both actin and microtubules.
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Actin localization at the cell surface

Here, we study the relationship between the di↵erent model parameters in order to
have a strong localization of actin near the cell surface. A first requirement can be
that the total actin concentration is monotonically increasing in � 2 [0,⇤].

Using Eq. (5.71) and (5.79) we can observe that

d

d�
[↵ (�) + � (�)] =

✓
1

�
� �

◆
� (�) + ⌘µ (�)↵ (�) . (5.82)

The r.h.s. of last equation is positive if ��  1, or, going back to our dimensional
quantities, if ldt  lt, i.e. if the di↵usion-transport length is smaller than the
transport length. In such a situation, the distribution of the actin does not have
any maximum. Notice that the expression in Eq. (5.82) can be positive even if
�� > 1, because of the second term on the right hand side. In this case, the
positiveness of the expression is implied by

⌘µ (�)↵ (�) >

✓
� � 1

�

◆
� (�) ,

or, if we express all our distributions in terms of ↵ (�),

✓
�� � 1

↵ (�)
� ⌘�

◆
d↵ (�)

d�
� ⌘µ0e

��
< 0. (5.83)

As we already observed, d↵(�)
d� is always positive, and so is ⌘µ0e

��. Therefore, Eq.
(5.83) defines a necessary conditions that ↵ (�) needs to fulfill such that the total
actin distribution does not have any maximum, that is

↵ (�) >
�� � 1

⌘�
.

Although ↵ (�) parametrically depends on �, �, and ⌘, the last inequality can give
an idea on how to tune the parameters in order to make inequality (5.83) hold.
As the r.h.s. of the last inequality increases with � and �, while it decreases as ⌘
grows, we can hypothesize e.g. that a high binding rate is linked to the fulfillment
of inequality (5.83).

3-dimensional case

Here, we study whether or not the features highlighted by the model in the
1-dimensional case can be extended to 3 dimensions.
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If we add Eq. (5.6) to x
2 times Eq. (5.7), we obtain

D
d

dx


x
2 d

dx
a (x)

�
= v

d

dx

⇥
x
2
b (x)

⇤
,

that implies

x
2


d

dx
a (x)� v

D
b (x)

�
= const.,

and, from the boundary condition (5.10)

d

dx
a (x) =

v
b

D
b (x) 8x 2 [0, R] , (5.84)

which means that the relation between the distributions of the free and the bound
actin does not change when the dimension of the system increases.

Similarly, if we add Eqs. (5.5) to Eq. (5.6) we find

d

dx
x
2
⇥
v
+
m (x) + v

b
b (x)

⇤
= �rcx

2 [m (x) + b (x)] .

This equation is solvable in the v
+ = v

b ⌘ v case, and the solution is

m (x) + b (x) = m0
e
� rc

v x

4⇡x2
, (5.85)

where we used the normalization condition

M = 4⇡

Z R

0
dx x

2 [m (x) + b (x)] ,

to express the integration constant in terms of the model parameters, and were
m0 is defined by Eq. (5.76). This total distribution for the microtubules is the
distribution that microtubules would have in case they were undergoing dynamic
instability in a sphere of radius R without any interaction with actin filaments.
Then, Eq. (5.85) shows that in 3-dimensional case is the change in the growth
speed of microtubules due to the interaction with actin, rather than the interaction
itself, that causes the change in the distribution of microtubule plus end position,
as well as in the 1-dimensional scenario.

In this v
+ = v

b ⌘ v case, we can again write an expression for a (x) in a
closed-form by making use of Eqs. (5.84) and (5.85). Indeed

a
00 (x) +


2

x
+

ru + rc

v
+

rbsa (x)

v

�
a
0 (x)� rbs

D
m0

e
� rc

v x

4⇡x2
a (x) = 0. (5.86)

This equation bears similarities with its 1-dimensional counterpart and, as well as
in that case, from the (numerical) solution of Eq. (5.86) we can find the solution
for b (x) and m (x) as well.
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Probability to reach the surface

In this section, we calculate the probability ⇧ij (x|x0) that a microtubule with
initial state j and initial position x0 reaches for the first time the position x in the
state i.

As we already did in Section 5.3, in order to calculate ⇧ij (x|x0), we first need to
define the survival probability S� (t|t0) of a microtubule in the state �. In this case,
since actin is no longer a constant background, the backward Kolmogorov equation
(5.41) must be modified, in order to take into account the spatial organization of
the free actin. Consider a microtubule initially in the growing state. Its survival
probability in the growing state evolves as

d

dt
S+ (t|t0) = �rcS+ (t|t0)� rbsa [x (t)]S+ (t|t0) ,

with initial condition S+ (t0|t0) = 1. However, since the growing speed of micro-
tubules is constant, we can make the substitution t = x

v+ and d
dt = v

+ d
dx . Therefore,

previous equation becomes

d

dx
S+ (x|x0) = �rcS+ (x|x0)� rbsa (x)S+ (x|x0) ,

the solution of which is

S+ (x|x0) = exp


� rc

v+
(x� x0)�

rbs

v+

Z x

x0

dx
0
a (x0)

�
⌘ T�+ (x� x0)Tb+ (x|x0) ,

(5.87)
where we factorized the probability in the survival from the growing to the shrinking
state, and from the growing to the bound state. Similarly, we can compute the
survival probability in the bound state as

Sb (x|x0) = exp
h
� rc

vb
(x� x0)�

ru

vb
(x� x0)

i
⌘ T�b (x� x0)T+b (x� x0) .

(5.88)
Notice that, since the detachment of the actin from the tip of a microtubule is
not dependent on the concentration of actin, Sb (x|x0) coincides with the same
function in the case of fast di↵usion.

Now, we can finally calculate the probabilities

⇧++ (x|x0) = S+ (x|x0) +

Z x

x0

dx
0
Qb+ (x0|x0)⇧+b (x|x0) , (5.89)

and

⇧+b (x|x0) =

Z x

x0

dx
0
Q+b (x

0|x0)⇧++ (x|x0) , (5.90)
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where Q�⌧ is defined by Eq. (5.46). The meaning of Eq. (5.89) is the following:
either a microtubule in the growing state at x0 does not leave the growing state until
it reaches the position x, or it switches to the bound state at a certain x

0 2 (x0, x).
From that moment it reaches x in the growing state starting from x

0 in the bound,
according to the probability ⇧+b. If we plug Eq. (5.90) in (5.89), we find

⇧++ (x|x0) =S+ (x|x0)

+
rurbs

v+vb

Z x

x0

dx
0
Z x

x0
dx

00
a (x0)S+ (x0|x0)Sb (x

00|x0)⇧++ (x|x00) .

(5.91)

By changing the order of integration with the rule

[x0 2 (x0, x) ^ x
00 2 (x0

, x)] ! [x00 2 (x0, x) ^ x
0 2 (x0, x

00)] ,

we can rewrite last integral as a Volterra integral (Polyanin & Manzhirov, Handbook
of Integral Equation, 1998)

⇧++ (x|x0) = S+ (x|x0) +
rurbs

v+vb

Z x

x0

dx
0
K (x0|x0)⇧++ (x|x0) , (5.92)

where we defined K as the kernel

K (x0|x0) =

Z x0

x0

dx
00
a (x00)S+ (x00|x0)Sb (x

0|x00) .

Similarly, we find

⇧+b (x|x0) =
ru

vb

J (x|x0)

a (x)
+

rurbs

v+vb

Z x
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dx
0
J (x0|x0)⇧+b (x|x0) , (5.93)

where

J (x|x0) = a (x)

Z x

x0

dx
00
S+ (x|x00)Sb (x

00|x0) .

With the same procedure, we can calculate the last two probabilities ⇧b+ (x|x0)
and ⇧bb (x|x0). We find

⇧bb (x|x0) = Sb (x|x0) +
rurbs

v+vb

Z x

x0

dx
0
J (x0|x0)⇧bb (x|x0) , (5.94)

and

⇧b+ (x|x0) =
rbs

v+
K (x|x0) +

rurbs

v+vb

Z x

x0

dx
0
K (x0|x0)⇧b+ (x|x0) . (5.95)
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Unfortunately without knowing the analytical expression of a (x) we cannot solve
the previous integral equations. However, since we can numerically calculate a (x),
we can use it to find a numerical solution for ⇧�⌧ as well. In this way, we could in
principle check whether or not the probability of reaching a certain length in the
state � coincides with the length probability distribution in the same state �, as
well as in the fast di↵usion case.

Finally, as a check, notice that, if we set sa (x) = 1, Eqs. (5.92-5.95) reduce to
Eqs. (5.55-5.58).

5.5 Conclusions

In this chapter, we theoretically described a representation of a cell composed of
only two interacting elements: microtubules and actin. In particular, we developed
a mathematical model with microtubules nucleated at the centre of the cell and
undergoing dynamic instability on the radial direction, and with di↵using actin.
Starting from the experimental observation that the interaction between actin and
microtubules had two e↵ects - to change the dynamic properties of the microtubules,
and to transport actin toward the surface by microtubule plus end, we explored
the possible consequences of these e↵ects.

In particular, we showed that the coexistence of two states for growing micro-
tubules with two di↵erent growing speeds changes the steady-state distribution
of the microtubule length, with respect to the steady-state length distribution in
the Dogterom-Leibler model. This is the consequence of the diminished speed for
microtubules bound to the actin, that results in a trapping mechanism of actin
filaments close to the nucleation point.

Then, we showed that the key factor to win the competition against the trapping
e↵ect and localize actin filaments closer to the cell surface is the di↵usion-transport
length, defined as the fraction between the di↵usion coe�cient and the transport
speed, i.e. ldt = D/v

b. For short ldt, indeed, we observed a significant monotonic
increase of the actin distribution from the centre of the cell to the surface. The
interpretation is that the motion of the actin after its release from a transporting
microtubule is not fast enough to uniformly redistribute it in the cell volume before
being captured again by a growing microtubule, resulting in a localization close
to the surface. The observation that the di↵usion coe�cient of actin filaments is
inversely proportional to the filaments length (Janmey et al., J. Biol. Chem., 1986),
opens up the possibility of experimentally testing the outcomes of our theoretical
predictions about the transport mechanism.

Interestingly, the comparison between the equations of the model and their
dependency on model parameters in 1 and 3-dimensions does not reveal substantial
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qualitative di↵erences between the two, except for the dilution terms that emerge
from the increased dimension of the 3D case.

5.6 Appendix

Actin transport in the case of a radial driving force

Here, we want to briefly study the case in which the dynamics of microtubules is
not altered by the interaction with the actin, and moreover, all microtubules act
as a constant background that impulsively push actin toward the external part of
the cell. Hence, in this case, we can consider actin undergoing a di↵usive process
with a drift force proportional to the microtubule density m (x), and with reflective
boundary conditions at both boundaries x = 0, R.

This di↵usive process for the actin is described by the Smoluchowski equation
(Chandrasekhar, Rev. Mod. Phys, 1943). Since a general solution in the steady-
state had been found only in the 1-dimensional case, in the rest of the section we
will discuss only that very specific case.

Therefore, steady-state dynamic equations for microtubules and actin are

0 = �v
d

dx
m (x)� rcm (x) , (5.96)

and

0 = D
d
2

dx2
a (x)� d

dx
[km (x) a (x)] , (5.97)

where k is a dimensional term proportional to the intensity of the drift force, such
that the average velocity field that an actin filament is moving with at position
x is V (x) = km (x). Eqs. (5.96) and (5.97) are supported by the boundary and
normalization conditions

M =

Z R

0
dxm (x) ,

A =

Z R

0
dx a (x) ,

and
d

dx
a (x)

����
x=0

� km (0) a (0) = 0 =
d

dx
a (x)

����
x=R

� km (R) a (R) .

From Eq. (5.96) and relative normalization condition it follows that

m (x) = m0e
� rc

v x
, (5.98)
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From Eq. (5.97), instead, it follows that
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i.e. a first order linear di↵erential equation, the solution of which is
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is the exponential integral.
Both reflecting boundary conditions at x = 0 and x = R imply
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The final solution for the distribution of the actin is then

a (x) =
A

v
rc

h
Ei
⇣
� k

D
v
rc
m0

⌘
� Ei

⇣
� k

D
v
rc
m0e

� rc
v R
⌘i exp


� k

D

v

rc
m0e

� rc
v x

�
.

(5.99)
Figure 5.12 shows that, for the right choice of the force intensity k, the approxi-
mation of considering the transport of actin as the result of a velocity field that
drives the filaments toward the surface of the cell is reasonable.
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Figure 5.12: Distribution of free actin filaments from Eq. (5.99) (straight line),
compared to the distribution of the original model (dashed line) in the case of
D
v = 3 µm, see Figure 5.11. We choose k = 0.001 µm2 s-1.





Conclusions

In this thesis, we developed several stochastic models aimed at studying how the
spatial organization of the cellular cytoskeleton is a↵ected by the dynamics of its
components. In particular, we studied two distinct mechanisms: the reorientation
of the cortical microtubule array, and the transport of actin via microtubule tip.

Reorientation of the cortical microtubule array

The cortical microtubules in plant cells are a network of aligned microtubules
localized close to the cell cortex. In the rapidly elongating phase of the cell cycle
they are arranged transversely to the growth direction of the cell axis. In this
way, they guide the transport and deposition of the building material for the cell
cortex to expand. However, in vivo experiments have shown that, as a response to
the exposure to blue light, cortical microtubules of dark-grown hypocotyls cell of
Arabidopsis thaliana rapidly reorient from a transverse to a longitudinal direction
to the long axis of the cell (Lindeboom et al., Science, 2013). Here, we set up two
stochastic models of dynamic microtubules aimed at explaining the underlying
mechanism behind the reorientation, at finding the key factors that enable it, and
at understanding how a maintained reorientation can be achieved.
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Microtubule tip stabilization promotes the reorientation

The reorientation of the cortical microtubule array is a self-organizing process,
consisting of a new population of longitudinal microtubules that replaces the initial
transverse one. It is a process mediated by the severing protein katanin, that
localizes at crossovers between di↵erently oriented microtubules and preferentially
severs the newer ones, resulting in the e↵ective creation of a new microtubule. In
most cases, newer microtubules are longitudinal. Typically, the newly-created plus
end of a severed microtubule is destabilized and depolymerizes after a severing
event. When the cell is illuminated with blue light, however, a fraction of these plus
ends is stabilized and immediately grows (Lindeboom et al., Science, 2013). In this
way, it has more opportunities to create other crossovers with other microtubules,
and thus to be severed again and make the reorientation occur.

Further experiments have revealed that two key factors that enable the amplifi-
cation of the number of longitudinal microtubules, and hence the reorientation, are:
a high probability of rescue after severing, and a stable minus end (Lindeboom
et al., J. Cell. Biol., 2018 - Nakamura et al., J. Cell Biol., 2018). While the first
factor is thought to be responsible for the creation of a large number of crossovers,
the second is thought to be correlated to the maintenance of crossovers for longer
periods of time, with respect to a case where the minus end depolymerizes fast.
Either way, the result is the occurrence of many severing events, and thus, an
e�cient and fast amplification. To test whether or not these factors play an im-
portant role for the amplification mechanism, in Chapter 2 we designed a model
of longitudinal microtubules undergoing dynamic instability in a background of
transverse microtubules. As we were interested only in understanding the reason
of the initial amplification of the longitudinal array, in our model we ignored the
dynamics of the transverse microtubules. This is a realistic choice only for the
first time period of the reorientation process, namely the first 500 seconds. After
that time, experiments revealed that the transverse array started to exhibit a
considerable degree of suppression, and therefore its microtubule dynamics could
not be ignored any longer.

By tuning the dynamic parameters of the model, we in turn isolated the
response of the system to the change of the probability of rescue after severing and
the dynamic instability parameters of microtubule minus end. Our simulations
confirmed the experimental hypothesis that without either of those factors the
amplification occurs more di�cultly and, when it did, it is much slower than with
a high probability of rescue after severing and a stable minus end. The observed
occurrence of some amplification events even for fast depolymerizing microtubules
at the minus end and low probability of rescue after severing, is linked to the
observation that all microtubules under investigation were in the unbounded-growth

144



Conclusions

regime. This means that, on average, their lifetime is infinite and therefore can be
severed an increasing amount of times.

However, although we identified two key factors for a successful reorientation,
some questions still remained unanswered. Firstly, longitudinal microtubules under
study were in the unbounded-growth regime. Can the amplification occur in case
of bounded-growth microtubules as well? We addressed this question in Chapter
3. Secondly, what happens to the system for time scales longer than 500 seconds?
As here we are dealing with microtubules in the unbounded-growth regime that
amplify in number, we can easily hypothesized that our proposed mechanism cannot
be sustained by the cell for longer periods of time. We addressed this question in
Chapter 4.

In Chapter 3 we analytically studied the computational model introduced in
the previous chapter. Contrarily to the the previous case, however, we investigated
the amplification mechanism for microtubules in the bounded-growth regime,
the lifetime of which was finite. Our theoretical model predicted that in this
regime, in order to have amplification, the probability of rescue after severing must
be larger than a certain critical threshold defined by the dynamic parameters of
longitudinal microtubules and the parameters of the background of transverse. With
a combination of computer simulations and analytical calculations, we calculated
the critical threshold. In order to do so, we introduced an approximate theory
in which the possible number of crossovers for longitudinal microtubules was a
priori reduced to two. To that end, we developed an approximate technique to
calculate the first passage time distribution for a microtubule to reach a relatively
close target.

In conclusion, we showed that the regulation of microtubule ends dynamics
plays a crucial role in the amplification phase of the longitudinal population of
cortical microtubules. We showed that, in particular, two factors play a major
role: a high probability of rescue after severing, as it increases the possibility for a
microtubule to be severed more than one time, and a stable, non-depolymerizing
minus end, as it does not let the possible severing spot disappear due to the
shrinkage of the microtubule. Furthermore, we showed that, even though for
unbounded-growth microtubules a high probability of rescue after severing is not
strictly required in order to observe the amplification, it plays a very important
role in making it occur fast. On the contrary, for bounded-growth microtubules,
a high probability of rescue after severing is a necessary ingredient to enable the
amplification mechanism, as it is required to be higher than a certain critical
threshold.
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Small advantage for longitudinal microtubules can explain a

maintained reorientation

In Chapters 2 and 3 we studied the first stage of the the reorientation process, and
we identified the key factors for a rapid reorientation. However, the mechanisms
as described in those chapters, cannot explain the later stage of the process, i.e.
the maintenance of the newly-created longitudinal array. Indeed, the exponential
amplification of microtubules implies that also the demand of tubulin to build them
increases exponentially. Given that cells do not have enough dispersed tubulin in
the cytoplasm to satisfy the request, it follows that the model proposed in Chapters
2 and 3 lacks of realism for long time periods. Therefore, in Chapter 4 we introduced
a new model in which two di↵erent populations of microtubules - transverse and
longitudinal, competed for a finite amount of tubulin. Our model revealed that
the asymmetry induced by the experimentally observed preferential severing for
longitudinal microtubules does not explain a sustained reorientation. Hence, we
studied the e↵ect of another asymmetry. We hypothesized that the growing speed
of the longitudinal microtubules was slightly higher than that of the transverse
microtubules. We observed that this di↵erence in the growing speeds explains the
maintained reorientation, whilst the preferential severing it is neither a necessary
nor a su�cient ingredient for the reorientation to be maintained, although it helps
the cortical microtubule array in reorienting rapidly. However, it is important
to underline that with our result we do not state that the maintenance of the
reorientation in cell is due to a di↵erence in the growing speed between the two
populations. Rather, we claim that if the di↵erence existed, it would be enough to
explain the mechanism.

In conclusion, we showed that a combination of a small advantage for the
growth of a microtubule belonging to one population, and with a mechanism that
rewards the overall length of a population with a higher a�nity for new microtubule
nucleation, causes the “victory” of that population when it competes against a
second for the same amount of building material.

Outlook

Our study of the reorientation of the cortical microtubule array raised some ques-
tions and problems. Firstly, from the experiments it is possible to observe a
correlation between preferential severing at a crossover, and age of the two micro-
tubules involved in the crossover. We can speculate that, since new microtubules
lay on top of old ones, the former might act as shields for the latter. However,
at the moment, no experiments have been performed in order to understand the
underlying mechanism behind the preferential severing, and therefore a combination
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of further experiments and analytical modelling should be designed to address this
problem.

A second problem comes from the model proposed in Chapter 4. Indeed, there
we assumed that the overall nucleation rate for microtubules is constant and split
between possible nucleation in the two directions. However, the experiments showed
that, after illuminating the cell with blue light, the number of nucleation events
considerably depletes, in favor of a higher rate of microtubule creation due to the
severing mechanism, see Figure 2.3. Mathematically, we can obtain this result only
by changing the amount of the available tubulin in the free pool. Indeed, from Eq.
4.5 it follows that the less tubulin is available for microtubule growth, the lower
is the overall nucleation rate. From Figure 4.11 we can observe that increasing
the bias in the growing speed has an e↵ect on the amount of free tubulin. This
shows that, in principle, it is possible to control the availability of tubulin by acting
on the other dynamic parameters of the model. Of course, further theoretical
investigations should be aimed at confirming or refuting this hypothesis.

Therefore, a direct experimental observation of a di↵erence in the growing
speeds (or in any other dynamic parameter) of di↵erently oriented microtubules
could confirm not only the correctness of our prediction, but also the observed
reduction in the number of nucleation events as the new longitudinal population
takes over the initial transverse array. However, given that we showed that a
small bias in the growth speed would be enough to explain the maintenance of
the reoriented array, this speed di↵erence could be, in principle, di�cult to detect
experimentally. Hence, in order to observe it, a very cautious interpretation of the
data could be required, as well as a large amount of data points.

Nevertheless, it is convenient to point out that, even if a future experiment
would refute our hypothesis that a di↵erence growing speed exists, our model has
the potential to be applied to other systems as well, together with its implications.
For example, can be adapted to model the competition between di↵erent colonies of
bacteria for space and resources (Hibbing et al., Nat. Rev. Microbiol., 2010), when
one of the two colonies has a small advantage in obtaining the needed resources.

Besides the search for an experimental confirmation of our hypothesis on the
underlying mechanism behind a maintained reorientation, our investigation also
lacks a full, comprehensive computational verification. Indeed, although our model
can explain the long time maintenance of the reoriented array, it is still too idealized
to completely represent the dynamics of cortical microtubules in the cell. More
precisely, in our model microtubules live in two non-physical spaces, with the
possibility to interact only through the overall properties of the entire population
they belong to. Thus, a computational approach that takes into account the
geometry of the cell, the creation of crossovers, and the dynamics induced by
the interaction between di↵erent microtubules, like e.g. severing events, induced
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catastrophes or zippering could be used to further prove or disprove our theoretical
predictions. A computational framework that could be used to better simulate our
system already exists. It has been initially developed by Tindemans (Tindemans
et al., Front. Phys., 2014) and refined by Chakrabortty (Chakrabortty, 2017 -
Chakrabortty et al., Plos Comp. Biol., 2018), and consists of a set of triangular
approximations of arbitrary areas of the cell surface, where microtubules undergo
dynamic instability and can interact with each other for crossover creation events,
as well as severing or zippering. This computational approach has the potential to
give a computational explanation of our theoretical predictions. This model can
already predict the reaching of an ordered state for microtubules that align in an
oriented state while starting from an isotropic condition (Tindemans et al., Phys.
Rev. Lett., 2010). A possible test for our theoretical prediction could consist of
implementing the bias in the growing speed for microtubules randomly nucleated
in a di↵erent, orthogonal direction with respect to that of the aligned microtubules,
to check whether or not this bias can explain a reorientation of the array and its
maintenance.

Actin-microtubule interaction

Although the interaction between actin and microtubules has been recognized as
very important for many cellular mechanisms already sixty years ago (Abercrombie,
Exp. Cell. Res., 1961 - Vasiliev et al., Development, 1970), no extensive studies
have been made to give a description of the underlying mechanisms behind the
interaction and its consequences. Here, starting from recently performed experi-
ments (Alkemade et al., in preparation), we developed a theory to predict how the
interaction between the two cytoskeletal components a↵ects the spatial organization
of the cytoskeleton. In particular, the main consequences of the TipAct-mediated
interaction between actin filaments and microtubules, are two: a changed dynamics
for the microtubules, the growing speed of which decreases while the catastrophe
rate increments, and the transport of di↵using actin filaments by the tip of the
microtubules.

The interaction-induced change in microtubule dynamics

qualitatively changes the steady-state distribution of

microtubules

Our theoretical model is based on the existence of two di↵erent growing speeds for
microtubules, depending on whether they are growing freely or bound to an actin
filament. In particular, it consists of dynamic microtubules undergoing dynamic
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instability in a three-dimensional cell, where actin filaments can di↵use, bind and
unbind to the microtubule plus end. We predicted that the coexistence of two
di↵erent speeds induces a change in the steady-state distribution of the microtubule
length with respect to the exponential distribution of the Dogterom-Leibler model.

We showed that the length distribution of microtubules bound to actin filaments
exhibits a maximum located close to the centre of the cell. This implies the existence
of a trapping e↵ect for actin filaments bound to microtubules that cannot di↵use
anymore as they are stuck at microtubule tips. Intriguingly, we revealed that by
tuning the dynamic parameters of microtubules that govern the position of the
maximum we cannot significantly shift it towards the outer regions of the cell.
As a consequence, acting on the microtubule dynamic parameters cannot avoid
the trapping e↵ect close to the centre. However, we observed that the di↵usion
coe�cient plays an important role in reducing or amplifying the trapping e↵ect,
depending on whether the system was in a slow or fast di↵usion regime, respectively.
Therefore, even if such an e↵ect is unavoidable, it can be reduced by the decrease
of the di↵usion coe�cient of the di↵using actin.

Intriguingly, we noticed that the change in the steady-state behaviour for the
length distribution of microtubules seems to be independent on the type of process
that governs the binding and the unbinding of actin to and from the microtubule
plus end.

Fast transport by microtubule tip localizes actin close to the

cell surface

By making use of a combination of analytical derivations and numerical calculations,
with our model we identified the key factors that control the localization of the
actin filaments in the cell. Specifically, although we could not remove the trapping
e↵ect at the centre of the cell by changing the model parameters, mainly because of
the large number of short microtubules that capture actin filaments in combination
with the divergent distribution of freely growing microtubules in the centre due to
the geometry of the system, we observed that a fast transport coupled to a slow
di↵usion causes localization of actin at the surface of the cell. This is a consequence
of the fact that a slow di↵usion does not allow actin to uniformly redistribute in
the entire volume before binding again to a microtubule plus end, that transports
it back close to the surface.

Finally, we showed that by assuming that there is no change in the microtubule
dynamic parameters when they bind to actin filaments, it is possible to find a
closed-form expression for the distribution of the latter. Even though this expression
cannot be solved with analytical methods, its numerical solution allows us to find
a numerical solution for the distribution of microtubules as well.
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Outlook

In our model, in order to find an analytically tractable solution, we have worked
in a limit where rescues where not allowed. This is the case of the in vitro
experiments we based our theoretical research on. However, in cells, the situation
is more complicated, as microtubules can undergo rescues and be, in principle,
also in the unbounded-growth regime. Therefore, the model we proposed could
be in the future extended to account rescues as well. The introduction of rescue
events, unfortunately, would give a further degree of complication to the already
complicated set of Eqs. (5.1-5.4). For this reason, even if we can realistically
expect to find only a numerical solution, we can anyway study whether or not our
theoretical predictions would apply also in the full model with rescues.

A possible outlook for future experiments, instead, could be to verify if the
presence of two possible speeds for growing microtubules that can switch from the
growing to the bound state and viceversa, changes the steady-state microtubule
length distribution. Such a verification is, in principle, possible. Indeed, in the
experiments our model is based on, it has been observed that the growing speed
of microtubules when in presence of TipAct is slower than in the control case
without that cytolinker. Unfortunately, when in presence of TipAct, there is no
evidence of a changed growing speed between the free growth state and the bound
state. We can think that this is a consequence of the fact that the binding of
TipAct on the tip of a microtubule via EB causes the change in the dynamic
properties of the microtubule, rather than the binding with actin. Indeed, the
experiments show that microtubules always exhibit TipAct localization at their
plus end, and therefore, are always a↵ected by the change that the cytolinker
induces on their dynamics. An idea for future experiments could be to work with
lower concentrations of TipAct. In this way, binding and unbinding events of
TipAct from the plus end of microtubules could be detected, and the growing
speed of microtubules in both states could be measured, as well as the length
distribution of all microtubules. This could, in principle, verify our hypothesis
that the coexistence of two di↵erent speeds causes a changed steady-state length
distribution with respect to the Dogterom-Leibler model.

As regards the actin localization at the surface of the cell, although our results
obtained in a three-dimensional confinement can be easily generalized to two
dimensions, the quasi 2D in vitro experiments our model is based on cannot
confirm the actin localization as a consequence of the transport. Indeed, in the
experiments, microtubules are nucleated isotropically and from dispersed sites.
Thus, they lack both a common nucleation site and a clear radial transport direction,
with the consequence of redistributing actin over the entire area under observation.
Nevertheless, some preliminary experimental observations of actin transport in
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three dimensions have been achieved with droplet experiments (Vendel et al.,
Methods in Molecular Biology, in press). Therefore, given that it has been observed
that the di↵usion coe�cient of actin filaments can be tuned by acting on the
filament length (Janmey et al., J. Biol. Chem., 1986), it is, in principle, possible to
experimentally test our theoretical predictions about the actin localization as a
consequence of the microtubule-based transport.

Finally, since here we focused on the analytical properties of the model, we still
lack a comprehensive computational study of the system. Moreover, our model
for a cell is very idealized, as many e↵ects observed in the experiments or in in
vivo observations have been ignored. As an example, the experiments our model is
based on have revealed the existence of a di↵usion mechanism for actin filaments on
the lattice of microtubules, as well as they have detected some cases of backward
transport of actin by depolymerizing microtubules. Furthermore, actin in the cell
organizes in bundles and networks, while in our model we assumed that all actin
filaments where freely di↵using non-interacting particles. A computational model
would have less limitations than an analytical model in the implementation of an
actin-actin interaction that forms the actin network. We can speculate that with
this further ingredient, the actin localization at the surface would be even more
pronounced. Indeed, an eventual filament that unbinds from the plus end of a
microtubule next to the cortex would have a high probability of being “captured”
by a second actin filament already there. The repetition of this mechanism could,
in principle, create a trapping mechanism next to the cell cortex for actin filaments,
resulting in the creation of the actin network. A computational framework able to
verify this speculation and quantify this e↵ect, could in principle raise intriguing
(and philosophical) questions such as: is the actin network localized at the cell
cortex because actin is nucleated there, or because it is brought by microtubules?





APPENDIX A

Probability distribution for a multi-state ageing process

In both Chapters 2 and 5, we have studied the dynamics of microtubules with
two possible di↵erent growing states, and we have seen that their co-existence
with two di↵erent growing speeds leads to a changed steady-state distribution
for the length of the microtubules with respect to the exponential distribution of
the Dogterom-Leibler model. Moreover, we have shown that the assumption of
constant rate to switch from one growing state to the other is a su�cient condition
to obtain relations (5.59) and (5.60), i.e. the steady-state length distribution of
microtubules in a specific state is directly proportional to the probability that a
microtubule reaches a specific length in the same state.

Here, we extend the model to the case in which there are N possible states.
Given our goal of building a general theory, hereafter we will refer to individuals
rather than microtubules, and to age of an individual in place of length of a
microtubule.

A.1 The model

The model consists of new individuals born in the state n0 with initial age ⌧ = 0.
At any time any individual in a state n can switch to the state k with rate rnk

as well as it can die with death rate dn. Finally, di↵erent states are associated to

153



Appendix

di↵erent ageing speeds vn, i.e. individuals get older with di↵erent rates, depending
on their state, see Figure A.1.

Figure A.1: Schematic of the model.

Therefore, if pn (t, ⌧) is the probability distribution for the age of individuals in
the state n at time t, its dynamic equation is

d

dt
pn (t, ⌧) = �vn

d

d⌧
pn (t, ⌧)�

NX

k=1

rnk pn (t, ⌧)� dn pn (t, ⌧) +
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rkn pk (t, ⌧) ,

(A.1)
with rkk = 0, 8 k = 1, . . . , N . Notice that the presence of the death rate dn in
the previous equation ensures that the system eventually reaches the steady-state.
Therefore, we can rewrite Eq. (A.1) for the steady-state case,
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If we define wkn = rkn
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k=1
rnk + dn

◆
, we can rewrite Eqs. (A.2) as

d

d⌧
pn (⌧) = �Zn pn (⌧) +

NX

k=1

wkn pk (⌧) , (A.3)

or, in matrix form,
d

d⌧
p (⌧) = L

T
p (⌧) ,
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where

L =

0

BBBBB@

�Z1 w12 w13 · · · w1N

w21 �Z2 w23 · · · w2N

w31 w32 �Z3 · · · w3N
...

. . .
...

wN1 wN2 wN3 · · · �ZN

1

CCCCCA
. (A.4)

Since all individuals are born in the initial state n0, the boundary conditions are
pn (0) = µ�nn0 , where µ is the birth rate of new individuals. Thus, for n = n0,
from Eq. (A.3) it follows

d

d⌧
pn0 (⌧)

����
⌧=0

= � 1

vn0

"
NX

k=1

rn0k + dn0

#
µ = �Zn0µ,

and, for n 6= n0,
d

d⌧
pn (⌧)

����
⌧=0

=
rn0n

vn
µ = wn0nµ,

showing the non-surprising result that all pns are initially increasing at ⌧ = 0,
except pn0 which is initially decreasing.

A.2 Age distribution

Solution in Laplace space

Let n be the birth state of new individuals, i.e. n = n0. Then, by Laplace
transforming Eq. (A.3), we obtain

�µ+ s p̂n = �Zn p̂n +
NX

k1=1
k1 6=n

wk1n p̂k1 ,

s p̂k1 = �Zk1 p̂k1 + wnk1 p̂n +
NX

k2=1
k2 6=n

wk2k1 p̂k2 .

The combination of the last two equations, yields

(Zn + s) p̂n = µ+
NX

k1=1
k1 6=n

wk1n wnk1

Zk1 + s
p̂n +

NX

k1,k2=1
k1,k2 6=n

wk1n wk2k1

Zk1 + s
p̂k2 ,
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and, if we iterate by replacing all p̂kj s

0

@Zn + s�
+1X

i=1

NX

k1,...,ki=1

wk1n wk2k1 . . . wnki

(Zk1 + s) . . . (Zki + s)

1

A p̂n = µ.

By renaming the summation labels we finally obtain

p̂n (s) =
µ

Zn + s�
+1P
i=1

P
k1,...,ki

wnk1 wk1k2 ...wkin

(Zk1+s)...(Zki
+s)

. (A.5)

Unfortunately, given that we are unable to rewrite the summation in Eq. (A.5)
in a closed-form, we can not invert p̂n (s) to find the distribution in the direct
space. However, we can find some general solutions in specific cases, e.g., when the
switches between states are cyclic.

Cyclic switch

If we assume that an individual in the state n either switches to state n+1 or dies,
with the possibility for an individual in the state n = N to switch to state n = 1,
the matrix L from Eq. (A.4) becomes

L =

0

BBBBB@

�Z1 w12 0 · · · 0
0 �Z2 w23 · · · 0
0 0 �Z3 · · · 0
...

. . .
...

wN1 0 0 · · · �ZN

1

CCCCCA
, (A.6)

where Zn = rn,n+1+dn

vn
. Then the secular equation det (�� L) = 0 becomes

NY

n=1

(�+ Zn)� w12w23 · · ·wN�1NwN1 = 0. (A.7)

Cyclic switch: general solution

By Laplace transforming the equation dp(⌧)
d⌧ = L

T
p (⌧), with L defined by Eq.

(A.6) and with initial condition pk (0) = µ�kn, we obtain the set of equations

�µ+ sp̂n = �Znp̂n + wn�1,np̂n�1,

sp̂k = �Zkp̂k + wk�1,kp̂k�1,
(A.8)
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the solution of which is

p̂n (s) =
µ

NQ
k=1

(s+ Zk)�
NQ

k=1
wk,k+1

. (A.9)

We notice that the denominator of Eq. (A.9) is such that

NY

k=1

(s+ Zi)�
NY

k=1

wk,k+1 = det (s� L) =
NY

k=1

(s� �k) ,

where �k are the zeroes of the polynomial det (s� L). However, the zeroes of
det (s� L) are the solutions of the secular equation det (�� L) = 0 of previous
section, hence �k are the eigenvalues of L. Therefore, if we have M distinct
eigenvalues �kj , with respective algebraic multiplicity ajk , Eq. (A.9) becomes, in
direct space,

pn (⌧) = µ

MX

jk=1

qajk
,n (⌧) e

�jk
⌧
, (A.10)

where qajk
,n (⌧) is a polynomial of degree ajk in ⌧ .

Similarly, for k 6= n, we find

p̂k (s) = µ

 
k�1Y

i=n

wi,i+1

!
(s+ Z1) · · · (s+ Zk�1) (s+ Zn+1) (s+ ZN )

det (s� L)
,

and therefore

pk (⌧) = µ

MX

ji=1

qaji ,k
(⌧) e�ji⌧ .

More compactly,

p (⌧) = µ

MX

ji=1

qaji
(⌧) e�ji⌧ . (A.11)

A.3 Age probability

Here, we calculate the probability that an individual born in n0 = n is in state
k = 1, . . . , N at age ⌧ .

In order to do so, we first define the survival probability of an individual from
age ⌧0 to age ⌧ in the state k as

Sk (⌧ |⌧0) = e
�Zk(⌧�⌧0). (A.12)
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We notice that Sk (⌧ |⌧0) = Sk (⌧ � ⌧0). Let n0 = n be the initial state. Then, the
probability that an individual reaches age ⌧ starting from ⌧0 = 0 in state k is

⇧nn (⌧) = Sn (⌧) +

Z ⌧

0
d⌧1

NX

k=1
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2

664wkn ⇧nn (⌧ � ⌧1) +
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j 6=n

wkj ⇧nj (⌧ � ⌧1)

3

775 .

By combining iteratively the two equations, we obtain
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+ · · · .
(A.13)

Solution in Laplace space

We take the Laplace transform of one integral in Eq. (A.13), i.e.

Îi =

Z +1

0
d⌧ e

�s⌧

Z ⌧

0
d⌧1

Z ⌧

⌧1

d⌧2 · · ·
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d⌧i Sn (⌧1)Sk1 (⌧2) . . .Ski�1 (⌧i)

⇥⇧nn (⌧ � ⌧i) .
(A.14)
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We first change the order of integration,

Îi =

Z +1

0
d⌧1

Z +1
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d⌧2 · · ·
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and after we substitute the integration variables with the rule

x1 = ⌧1,

x2 = ⌧2 � x1,

· · · ,
xi = ⌧i � (x1 + · · ·+ xi�1) ,
x = ⌧ � (x1 + · · ·+ xi) .

This substitution yields

Îi =
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0
dx1 e

�sx1Sn (x1)

Z +1

0
dx2 e

�sx2Sk1 (x2) · · ·
Z +1

0
dxi e
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⇥
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0
dx e

�sx⇧nn (x) ,

(A.16)

or
Îi = Ŝn Ŝk1 · · · Ŝki ⇧̂nn, (A.17)

with Ŝj =
1

Zj+s . We plug this result in Eq. (A.13) to obtain

⇧̂nn = Ŝn + Ŝn

+1X

i=1

NX

k1,...,ki=1
k1,...,ki 6=n

wnk1wk1k2 . . . wkinŜk1 · · · Ŝki⇧̂nn,

from which

⇧̂nn (s) =
1

Zn + s�
+1P
i=1

P
k1,...,ki

wnk1 wk1k2 ...wkin

(Zk1+s)...(Zki
+s)

. (A.18)

Since Eqs. (A.5) and (A.18) coincide in the Laplace space, by the Lerch’s theorem
(Lerch, 1903) the two functions are the same function also in the direct space ⌧ , i.e.

pn (⌧ � ⌧0) = µ⇧nn (⌧ |⌧0) .
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English summary

English summary

In this thesis, we aimed at understanding how the dynamics of cytoskeletal compo-
nents a↵ects the spatial organization of the cytoskeleton. In particular, we focused
on two systems: the cortical microtubule array, and an idealized cell consisting of
only actin filaments and microtubules.

In the Introduction, we presented the main biological features of microtubules
and the general model for dynamic microtubules we based the models we developed
in the thesis on, and we outlined the research questions we addressed in the rest of
the thesis.

In Chapter 2, we built a computational model for dynamic microtubules that
reproduced the first phase of the reorientation of the cortical microtubule array
observed the experiments. With our model, we identified two crucial dynamic
factors of microtubules that enable the reorientation mechanism: a high probability
of rescue after severing for newly-created plus end of microtubules, and a stable,
non-depolymerizing microtubule minus end. Our findings confirmed the previous
experimental observations, in which the presence of the two factors was hypothesized
to be required for the reorientation in order to occur.

In Chapter 3, we theoretically performed an in-depth study of the model
introduced in Chapter 2. In particular, we focused on the probability of rescue after
severing for the newly-created plus end of a microtubule. To better understand
the contribution of this parameter to the reorientation, we tuned it to study the
response of the system. We observed that, in a certain area of the parameters space,
the system exhibited a non-zero probability to reorient only if the probability of
rescue after severing was larger than a critical threshold, defined by the remaining
model parameters.

In Chapter 4, we studied the long time phase of the reorientation mechanism
for the cortical microtubule array. More specifically, we built a second model
where two populations of microtubules competed for the same amount of building
material. We observed that a small advantage for the growth of microtubules of
one of the two populations, made it prevail against the other. In this way, the
cortical microtubule array could maintain the new orientation, as observed in the
experiments.

In Chapter 5, we studied a di↵erent system in which dynamic microtubules
interacted with di↵using actin filaments. Taking the cue from recently performed
experiments, we built a stochastic model to make predictions on how microtubules
and actin mutually influenced their spatial organization in a three dimensional
confinement. Our model identified the factors that control this spatial organization,
and in this way opened the possibility for future experimental tests on the predicted
behaviour.
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English summary

In the Conclusions, we highlighted the main conclusions this work came to in
the previous chapters. Furthermore, we presented some ideas for future research
and investigations, that could be performed with a theoretical, computational, or
experimental approach.

Finally, in the Appendix, we presented a stochastic model for individuals ageing
in di↵erent possible states, with the possibility of switching from one state to
another with constant rates. We showed that the model predicted an equality
between the distribution of the age in a certain state and the probability for an
individual to reach the same age in the state.
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Propositions

1. The regulation of tip stability of dynamic cortical microtubules is crucial for the
success of the katanin-driven reorientation of the cortical microtubule array.
(this thesis)

2. A small advantage in terms of growth of microtubules of one of two populations
competing for the same pool of tubulin dimers, can cause a full, persistent
reorientation of the cortical microtubule array.
(this thesis)

3. The history of the exact sciences shows that scientists should aim for beauty in
conducting their research, rather than just focusing on applications.

4. Good mathematical modelling is like cooking: there are mandatory ingredients,
but the real di↵erence is made by the creative choice of additional ones by the
modeller.

5. Since doing sports is an excellent way to release stress accumulated during o�ce
hours, employers should promote these activities for employees to foster a relaxed
and, therefore, productive working environment.

6. Late night surfing on Wikipedia entails a trade-o↵: on the one hand it boosts
the general knowledge of the surfer, yet on the other hand it deprives him/her of
necessary sleep.

Propositions belonging to the thesis, entitled
Dynamic reorganization of microtubule networks: building the new by breaking down
the old
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