
ABSTRACT

In this study, we compared multiple logistic regres-
sion, a linear method, to naive Bayes and random for-
est, 2 nonlinear machine-learning methods. We used 
all 3 methods to predict individual survival to second 
lactation in dairy heifers. The data set used for pre-
diction contained 6,847 heifers born between January 
2012 and June 2013, and had known survival outcomes. 
Each animal had 50 genomic estimated breeding values 
available at birth and up to 65 phenotypic variables 
that accumulated over time. Survival was predicted at 
5 moments in life: at birth, at 18 mo, at first calving, at 
6 wk after first calving, and at 200 d after first calving. 
The data sets were randomly split into 70% training 
and 30% testing sets to evaluate model performance 
for 20-fold validation. The methods were compared for 
accuracy, sensitivity, specificity, area under the curve 
(AUC) value, contrasts between groups for the predic-
tion outcomes, and increase in surviving animals in a 
practical scenario. At birth and 18 mo, all methods 
had overlapping performance; no method significantly 
outperformed the other. At first calving, 6 wk after 
first calving, and 200 d after first calving, random for-
est and naive Bayes had overlapping performance, and 
both machine-learning methods outperformed multiple 
logistic regression. Overall, naive Bayes has the highest 
average AUC at all decision points up to 200 d after 
first calving. Random forest had the highest AUC at 
200 d after first calving. All methods obtained similar 
increases in survival in the practical scenario. Despite 
this, the methods appeared to predict the survival of 
individual heifers differently. All methods improved 
over time, but the changes in mean model outcomes 
for surviving and non-surviving animals differed by 
method. Furthermore, the correlations of individual 
predictions between methods ranged from r = 0.417 to 

r = 0.700; the lowest correlations were at first calving 
for all methods. In short, all 3 methods were able to 
predict survival at a population level, because all meth-
ods improved survival in a practical scenario. However, 
depending on the method used, predictions for indi-
vidual animals were quite different between methods.
Key words: machine learning, naive Bayes, regression, 
random forest, phenotypic prediction

INTRODUCTION

Machine learning, an invention from the field of com-
puter science originally intended to mimic human intel-
ligence (Michalski et al., 2013), has become a valuable 
tool for prediction in many fields. Machine-learning 
methods are versatile, because they can derive a model 
from available data without previous knowledge of the 
relations between variables (McQueen et al., 1995; Kot-
siantis et al., 2007). Machine-learning methods thrive 
on large data sets and make fewer assumptions about 
the data, allowing them to make use of non-normally 
distributed variables (Gahegan, 2003; Gianola et al., 
2011). In dairy science, machine learning has been used 
successfully to predict a whole range of different traits, 
such as mastitis (Kamphuis et al., 2010; Ebrahimie et 
al., 2018), methane production (Zheng et al., 2016), 
and milk production (Gianola et al., 2011). However, 
despite the advantages of machine learning, other re-
cent studies have used traditional linear methods to 
predict disease risk (Moretti et al., 2017), methane 
production (Engelke et al., 2018), and milk production 
(Wallén et al., 2018).

One of the reasons for the continued use of more 
traditional methods such as regression is that despite 
the potential of machine learning, it has not always 
proven superior to traditional linear modeling (Cortez 
et al., 2006; Van Hertem et al., 2014; Hempstalk et al., 
2015; Ghafouri-Kesbi et al., 2017). As well, compari-
sons between machine learning and traditional methods 
may not be possible in some cases: for example, data 
sets with missing records, which can be used by some 
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machine-learning methods but not by regression (Ben-
nett, 2001), or data sets that contain video data (Kabra 
et al., 2013). Furthermore, it is difficult to determine 
beforehand which method will result in the highest ac-
curacy for a particular prediction problem (White et 
al., 2018), because in practice many different machine-
learning techniques may be suitable for predicting a 
variable of interest. This challenge results in a trial-
and-error approach to finding the best method for each 
prediction problem (Amrine et al., 2014; Libbrecht and 
Noble, 2015).

Two machine-learning methods that use very differ-
ent approaches but are applied competitively in the field 
of animal science, are naive Bayes and random forest. 
Naive Bayes is a family of classifiers that implements 
Bayesian techniques to form a simple network based on 
previous probabilities (Jensen, 1996). The naive Bayes 
method relies on independence between the input 
variables, but it performs surprisingly well even under 
conditions that might be considered suboptimal for the 
algorithm (Domingos and Pazzani, 1997; Friedman, 
1997). Despite the relative simplicity of its algorithm, 
naive Bayes is still widely used (Jensen et al., 2016; 
Drury et al., 2017). Random forest (Breiman, 2001) 
is another machine-learning method that is success-
fully implemented in a wide variety of fields, including 
animal science (Shahinfar et al., 2014; Machado et al., 
2015; Brieuc et al., 2018). This regression or classifica-
tion method makes use of decision trees: a sequence of 
rules that split the data in a way that most optimally 
reduces variation. Each tree receives a random subset 
of training samples, and then the algorithm randomly 
selects a subset of variables at each split in the tree 
(Breiman, 2001). These trees, which are relatively poor 
classifiers individually, are combined into an ensemble 
of trees called a random forest, which is used for predic-
tion. The prediction results of a random forest are a 
summation of the prediction outcomes of many indi-
vidual trees.

The aim of this study was to compare the traditional 
linear method of regression with the machine-learning 
methods naive Bayes and random forest. By discovering 
the advantages and disadvantages of each technique in 
a dairy cattle case study predicting longevity, we hoped 
to gain a better understanding of the wide variety of 
available tools for predicting complex biological traits.

MATERIALS AND METHODS

Data

The data used in this study were identical to data 
described in a previous study (E. van der Heide, R. 

Veerkamp, M. van Pelt, C. Kamphuis, and B. J. Ducro, 
unpublished data). The data set consisted of records 
on 6,847 heifers born between January 2012 and June 
2013, from 463 farms participating in a data-collection 
program that required the farmer to genotype all female 
heifers at birth. Each heifer was herd-book-registered 
and at least 87.5% Holstein. Survival was a binary clas-
sifying variable “survival until second calving plus 2 
wk,” including 2 additional wk to exclude heifers that 
died or were culled as a direct consequence of second 
calving. To have a known outcome for survival, all in-
cluded cows had to be born at least 46 mo before the 
end of data collection and were not exported abroad. 
In this data set, 85.8% of heifer calves reached second 
lactation.

The heifers had records on 50 genomically estimated 
breeding values, standardized to values between 1 and 
10. The genomic breeding values were calculated from
the genomic test results by cattle breeding cooperative
CRV. These genomic breeding values included only the
direct genomic values and did not include performance
records. The records also included up to 65 phenotypic
variables, including on birth weight and gestation length, 
insemination records up to second parity, first-parity
calving records, and first-parity lactation information
(see also Appendix Table A1). Not all animals had re-
cords for every variable: some were missing, and some
were not collected because the heifer died before the
information could be collected. All phenotypic continu-
ous variables were transformed into factors of at least 5
levels, containing a factor level for missing information
so that animals with missing records could be used in
the regression analysis. At the cost of losing some of
the original information, changing the continuous vari-
ables into factorial variables allowed us to include all
animals in the analyses, regardless of method. From the
complete data, we created 5 data sets that contained all
information available at 5 distinct moments in the life
of a dairy cow. These distinct “decision moments” were
points at which new information became available, and
when a management decision could be aided by predict-
ing the expected survival of the animal. The decision
moments were birth, 18 mo of age, first calving, 6 wk
after first calving, and 200 d after first calving. At the
first decision moment, genomic information and only
limited phenotypic information were available, but at
the last decision moment all information was available.
Appendix Table A1 shows all available variables and
the decision moments at which they were available. We
chose the decision moments to investigate the ability
of each model to predict survival at various points in
the life of a cow. Early prediction was preferred, but
because very little information was available early on,
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this was not feasible. Only animals still alive at the be-
ginning of a decision moment were used in the analysis.

Model and Analysis

The analyses were performed in the statistical pro-
gram R version 3.3.1 (R Core Team 2016), using the 
packages “caret” for logistic multiple regression (Kuhn, 
2008), “randomForest” for the random forest approach 
(Liaw and Wiener, 2002), and “naivebayes” for the 
naive Bayes method (Majka, 2018). Because the ran-
domForest package was unable to make predictions on 
factorial data exceeding 53 levels, we transformed farm 
identification number variables (such as birth farm, 
farm of first calving, and farm of first milking) into 
sets of dummy variables. No other changes were made 
to the data, to ensure that the 5 distinct data sets (1 
for each distinct decision moment) presented to each 
model were identical as possible. Our linear method 
was logistic multiple regression, using the Akaike infor-
mation criterion in forward stepwise selection to deter-
mine the best possible model at each decision moment. 
The selected regression models included phenotypic 
variables at the different decision moments, and a set 
of 6 genomic EBV (gEBV) related to longevity, fertil-
ity, feet and leg score, conformation score, udder score, 
and udder health. We did not include production gEBV 
because the lifespan gEBV was uncorrected for produc-
tion. Because the Bayesian method we selected was na-
ive Bayes, we did not need to set a priori values for the 
variables. For the random forest, the number of trees 
was set to 500 and the number of variables selected at 
each split was set to the square root of the number of 
variables available [ranging from 6 to 12 for our data 
sets, because these values were recommended and gave 
the highest area under the curve (AUC) values]. All 3 
methods were trained on a random selection of 70% of 
each of the 5 data sets, and then validated using the 
remaining 30%. We repeated this process 20 times for 
all 5 decision moments and methods.

Unbalanced response variables are challenging to 
both linear and machine-learning techniques (Kotsian-
tis and Pintelas, 2003), so we adapted both the regres-
sion model and the random forest model to predict the 
unbalanced response variable survival (85.8% survivors 
vs. 14.2% non-survivors in the data). For random forest, 
we tested 3 adaptation methods: stratified sampling, 
changing the voting rule (or cutoff) of the model, and 
adding weights to the underrepresented class. Strati-
fied sampling was chosen for further analysis because 
this method provided the highest AUC value on a 
single trial run (results not shown). Stratified sampling 
meant that the model would sample from the train-

ing data until it obtained an equal number of samples 
of both classes. This meant that in a given validation 
run, not all surviving animals would be used, and non-
surviving animals could be included multiple times. For 
the regression method, the cutoff had to be specified 
manually. In this case, we chose the random chance of 
survival of an animal in the data set: 0.858. Animals 
that received a predicted probability of survival equal 
or above this cutoff were predicted to be survivors, and 
animals that scored below this cutoff were predicted 
to be non-survivors. Naive Bayes has been reported 
to have issues only with extremely unbalanced data 
(predictor class of interest occurring in 1% or less of 
the cases; Domingos and Pazzani, 1997), so no changes 
were made for this study, because the class imbalance 
was not extreme.

The performance of the methods was evaluated by 
measuring the following: contrasts between the mean 
probabilities of survival for both survival groups; ac-
curacy; sensitivity; and specificity. Contrasts were 
the differences between the means of the 2 groups, 
expressed in units of standard deviation, and they al-
lowed us to compare the model outputs for the 2 groups 
across methods. Accuracy was the proportion of cor-
rectly predicted animals; sensitivity was the proportion 
of surviving heifers correctly predicted to survive; and 
specificity was the proportion of non-surviving heifers 
correctly predicted not to survive. However, because 
survival to second lactation was an unbalanced trait, 
using accuracy as an indicator of superiority could have 
been biased. Therefore, we also evaluated the perfor-
mance of the models by determining the area under 
the receiver operating characteristic curve (AUC) value 
using the R package “pROC” (Robin et al., 2011). The 
AUC metric measured the performance of the methods 
over the full range of specificities and sensitivities and 
was not affected by the tradeoff between specificity and 
accuracy. Finally, we tested a scenario in which only 
the heifers with scores in the top 50% were kept on 
a farm at a specific decision moment. We considered 
this latter evaluation approach an example of how the 
models could be used in practice as part of a decision-
support system.

Because consistency across methods was also of inter-
est, we looked at the correlations between the methods. 
All heifers from the testing set had 3 predicted prob-
abilities of survival, one for each method. We calculated 
the Pearson’s r and Spearman’s ρ between all 3 methods 
for all 5 decision moments (Chok, 2010), and obtained 
averages for these correlations over the 20 validation 
runs. We did this because not only was the similarity 
of the predicted probabilities between the methods im-
portant, but also the assigned rank of the heifer in the 
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group; in practice, the decision to cull an animal would 
be based on rank.

RESULTS

Table 1 shows the contrasts between the average 
predicted probabilities of surviving and non-surviving 
heifers. All contrasts were positive and increasing, 
which means that the average predicted probability 
of survival was always higher for the surviving group, 
and increased over time. This indicated that the model 
could predict survival at least at a population level, and 
that all model performances increased with additional 
information, regardless of method. At birth and at 18 
mo, naive Bayes showed the highest contrast between 
the 2 groups; after first calving, regression showed the 
highest contrasts.

Naive Bayes outperformed regression and random 
forest for the first 2 decision moments in terms of ac-
curacy (Figure 1). After the second decision moment, 
regression and naive Bayes alternated in terms of best 
performance for the third, fourth, and fifth decision 
moments, respectively. Of the 3 methods, naive Bayes 
had the highest sensitivity at birth and 18 mo, but the 
lowest specificity at the first 2 decision moments (Fig-
ure 2). Regression had the lowest sensitivity, but also 
the highest specificity at the first 2 decision moments, 
and random forest had intermediate scores. There ap-
peared to be a tradeoff between high specificity and 
high accuracy. Because in practice a smaller propor-
tion of heifers are non-survivors, negative predictions 
were significantly less likely to be true than positive 
predictions (i.e., for a random heifer from the data, 
its odds of surviving were higher than its odds of not 
surviving). If the model could very accurately predict 
non-surviving heifers, this would not be a problem. 
However, because survival is a complex trait and dif-
ficult to predict, models that made fewer predictions of 
non-survival were more likely to be correct by chance. 
Thus, a model with high specificity made more negative 
predictions, resulting in a loss of accuracy. The AUC 
was not biased by this tradeoff, because it considered 
all possible specificity and sensitivity values (Figure 
3). At birth and 18 mo, all methods had overlapping 
performance; no method significantly outperformed the 

other. At first calving, 6 wk after first calving, and 200 
d after first calving, random forest and naive Bayes 
had overlapping performance: both machine-learning 
methods outperformed multiple logistic regression. 
Overall, naive Bayes had the highest average AUC 
at all decision moments up to 200 d after first calv-
ing. At 200 d after first calving, random forest had 
the highest AUC. All methods performed significantly 
better than AUC 0.5 (random chance) at all decision 
moments, indicating that even at birth it was possible 
to some extent to predict survival to second lactation. 
In a practical scenario that selected 50% of the heifer 
calves with the highest probability of survival (Figure 
4), all methods performed similarly. Again, naive Bayes 
scored highest in the first decision moments, before be-
ing outperformed by regression in the fourth and fifth 
decision moments, but the differences in additional 
survival realized were marginal. All 3 methods resulted 
in increased survival compared with a random selection 
of heifers for every decision moment.

All methods could predict survival and improve over 
time, but they did not make identical predictions. In 
all cases, the means of the surviving and non-surviving 
groups moved apart over time (Figures 5, 6, and 7), al-
though the groups always overlapped. Using regression, 
the mean predicted probability of survival for surviving 
heifers increased, but the mean for non-surviving heif-
ers remained stable (Figure 5). We had the opposite 
finding for naive Bayes; the mean for non-surviving 
heifers decreased and the mean for surviving heifers 
remained stable (Figure 6). Naive Bayes also had the 
largest standard deviation, because it classified cases 
closer to 0 or 1 than the other methods, making it more 
sensitive to data partitioning. Random forest had an 
intermediate approach: the mean model output for sur-
viving heifers increased and the mean for non-surviving 
heifer decreased slightly (Figure 7). The random forest 
method was centered on 0.50 because of the stratified 
sampling, whereas the mean for the other 2 methods 
was closer to 0.86, random chance of survival. The dif-
ferences in approach between the methods were also 
reflected in the correlations between the predictions on 
the same set of animals. Correlations were always posi-
tive, indicating that high scores or ranks in one method 
also indicated high scores or ranks in another, as ex-

Table 1. Contrasts between the mean probability of survival for surviving and non-surviving heifers

Item Regression Naive Bayes Random forest

Birth 0.279 0.327 0.231
18 mo 0.409 0.446 0.331
First calving 0.525 0.435 0.393
6 wk after first calving 0.583 0.554 0.494
200 d after first calving 0.800 0.606 0.747
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pected. Spearman’s ρ was generally higher than Pear-
son’s r. At birth, the correlations between all methods 
were moderate to high (Table 2), and ranged from r = 
0.653 between naive Bayes and random forest to r = 
0.539 between regression and naive Bayes. Correlations 
decreased toward first calving, and all correlations were 
lowest at first calving (from r = 0.557 between regres-
sion and random forest to r = 0.417 between regression 
and naive Bayes). Overall, correlations ranged from 
moderate to high (0.4 to 0.7) and were consistently low-
est between naive Bayes and regression. Figure 8 gives 
an example of the correlations in 1 of the 20 validation 

runs. Note that naive Bayes had a different distribution 
of predicted probability of survival than the other 2 
methods, favoring predicted probabilities close to 1 or 0, 
and the other 2 methods favored predicted probabilities 
closer to their respective mean predicted probabilities 
of survival. This was in part because of the different 
methods chosen to deal with the class imbalance issue. 
Over time, the predicted probabilities moved further 
apart, with more predictions moving closer to 1 or 0. 
This was more visible for the lower scores, because we 
found fewer low scores, and because for regression and 
random forest, high scores begin to approach 1, but low 

Figure 1. Accuracy of prediction of the regression (linear), naive Bayes, and random forest models.

Figure 2. Sensitivity and specificity of the regression (linear), naive Bayes (NB), and random forest (RF) models. This figure shows the bal-
ance between sensitivity (lines with circles) and specificity (lines with triangles).
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scores do not approach 0 to the same extent. In gen-
eral, the trend was that high-scoring heifers from one 
method also scored high with the other methods, but as 
we expected because the correlations were medium to 
high, we also found exceptions, in which a heifer scored 
very differently between methods.

DISCUSSION

We showed that regression, naive Bayes, and ran-
dom forest could predict survival to second lactation 
for dairy cows at a population level. Naive Bayes had 

the highest AUC value at all decision moments except 
200 d after calving, although performance overlapped 
with random forest at all decision moments. Logistic 
multiple regression performed similarly to naive Bayes 
and random forest for the first 2 decision moments, but 
was outperformed at first calving, 6 wk after first calv-
ing, and at 200 d after calving. All methods were sig-
nificantly different from an AUC of 0.5, but in general 
AUC values were low; only random forest achieved an 
average accuracy above 0.7 in the last decision moment. 
The use of AUC has some limitations as a metric for 
evaluating methods (Lobo et al., 2008), but in general 

Figure 3. Area under the curve (AUC) of multiple logistic regression (linear), naive Bayes, and random forest methods at the 3 decision 
moments. Outliers were removed. The box of the boxplot indicates the first quartile, mean, and third quartile borders, and the whiskers show 
the highest and lowest values found. PC = postcalving.

Figure 4. Surviving proportion of the heifer population when selecting 50% of the highest-scoring heifers using regression (linear), naive 
Bayes, and random forest models.
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a model with an AUC score of 0.9 indicates a good 
accuracy, an AUC score between 0.7 and 0.9 indicates 
moderate accuracy, and an AUC score between 0.5 and 
0.7 indicates low accuracy (Akobeng, 2007). In short, 
although it was possible to determine which method 
had the best performance at each decision moment, 
none of these methods was able to accurately predict 
individual cow survival. Accurate individual predictions 
are important for the practical application of a model, 
because a farmer is interested in the accuracy of predic-
tion for a single animal or small group of animals, not 
the average outcome success for all Dutch Holsteins.

In the literature, cow pregnancy status was similar 
to cow survival, because they are both complex traits 
with binary outcomes. Furthermore, survival and fer-
tility are both genetically and phenotypically related 
(Pritchard et al., 2013), because fertility issues are 
among the main reasons for culling a cow (Brickell and 
Wathes, 2011; Zijlstra et al., 2013). Several studies have 
compared linear and machine-learning methods for the 
prediction of insemination outcome or cow pregnancy 
status (Shahinfar et al., 2014; Hempstalk et al., 2015; 
Fenlon et al., 2016), and the results of these papers 
were similar to our study: naive Bayes performed well 

Figure 5. Mean model output of the multiple logistic regression method for surviving and non-surviving animals at all 5 decision moments. 
Error bars represent standard deviation.

Figure 6. Mean model output of the naive Bayes method for surviving and non-surviving animals at all 5 decision moments. Error bars 
represent standard deviation. The error bars were exceptionally large because naive Bayes attempts to classify cases closer to 0 or 1 than the 
other methods.
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when few data were available. Contrary to our results, 
however, regression outperformed machine-learning 
methods such as naive Bayes, support vector machines, 
and random forest in other studies (Hempstalk et al., 
2015; Fenlon et al., 2016). Another study that inves-
tigated no linear methods found random forest to be 
superior to Bayesian methods (Shahinfar et al., 2014). 
When looking closely at these studies, however, the per-
formance of the methods they tested was very similar. 
Furthermore, none of the methods tested could predict 
individual pregnancy outcomes well enough to be of use 
in practice (Hempstalk et al., 2015; Fenlon et al., 2016; 
Rutten et al., 2016). So although insight was gained 
into the best methods and mechanisms for predicting a 
complex trait, ultimately none of the prediction meth-
ods used in our study or in previous research is useful 
for individual prediction of a complex binary trait.

We selected 3 different methods for evaluation: 
multiple logistic regression, naive Bayes, and random 
forest. We selected these methods because they each 
represented large groups of similar methods, but many 
other methods can predict survival. A linear method 

that we did not include in our study was survival analy-
sis, a method commonly used for the genetic evaluation 
of survival traits (Cox and Oates, 1984; Ducrocq et 
al., 1988). This method is used instead of regression 
because it can use uncensored records, giving it an ad-
vantage (Carlén et al., 2005). Because the data we used 
in the present study were already censored, survival 
analysis was not necessary to make optimal use of the 
data. Another possibility would be to investigate more 
advanced machine-learning methods such as neural net-
works. Indeed, neural networks outperformed regres-
sion and random forest for the individual prediction of 
pregnancy status (Fenlon et al., 2017). Neural networks 
are powerful but complex methods that often require a 
large number of records to be trained. Although neural 
networks would have been difficult to apply with our 
current data set, they may be of use in future research.

Accurate individual prediction of survival to second 
lactation cannot be achieved by optimizing the choice 
of prediction method alone; in future research, other 
ways to improve prediction performance should be con-
sidered. Prediction performance may be improved by 

Figure 7. Mean model output of the random forest method for surviving and non-surviving animals at all 5 decision moments. Error bars 
represent standard deviation. The mean for the random forest model output was set to 0.5 because of stratified sampling.

Table 2. Pearson and Spearman correlation coefficients between the model output of the regression (R), naive Bayes (NB), and random forest 
(RF) models, averaged over 20 runs

Item

Pearson correlation Spearman correlation

R–NB R–RF RF–NB R–NB R–RF RF–NB

Birth 0.539 0.627 0.653 0.564 0.623 0.714
18 mo 0.566 0.666 0.686 0.573 0.692 0.710
First calving 0.417 0.547 0.557 0.429 0.601 0.606
6 wk after first calving 0.560 0.632 0.700 0.532 0.626 0.688
200 d after first calving 0.488 0.694 0.578 0.488 0.732 0.621
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increasing the number of records. In the case of preg-
nancy status, results did improve with a large number 
of additional records (Shahinfar et al., 2014). With over 
200,000 records, the AUC reported was 0.76, but the 
accuracy was still only 72 to 74%, meaning that a full 
quarter of the animals would be incorrectly classified 
in practice. In addition to increasing the number of 
records, increasing the number of available variables 
may also be necessary to improve accuracy enough for 
individual prediction. For example, this study lacked 
some variables known to be relevant for individual sur-
vival, such as animal growth, health, housing, and other 

farm-management factors (Wathes et al., 2008; Brickell 
and Wathes, 2011). We chose the variables in this study 
because they were readily available on most Dutch 
farms. In contrast, information on animal health and 
growth are often not available and require additional 
data collection and cost. Finally, although additional 
records and variables may improve prediction accuracy, 
additional information will not solve all difficulties. A 
model can predict a non-surviving animal accurately 
only when the cause of death is the result of a pattern 
found in the data. This requirement is problematic; for 
example, because our study lacked calf health variables, 

Figure 8. Visualization of the correlations between the 3 methods of 1 of the 20 validation runs. Plotted are the model output values (be-
tween 0 and 1) for all 3 methods. The first row depicts correlations at birth, the second row shows correlations at first calving, and the third row 
shows correlations at 200 d after calving. The first column shows the regression method versus the naive Bayes method, the second column shows 
the regression method versus the random forest method, and the third column shows the random forest method versus the naive Bayes method.
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calf deaths due to illness would be difficult to predict 
correctly. Furthermore, not all causes of death follow 
identifiable patterns. Some deaths may be caused by 
unpredictable accidents (Brickell and Wathes, 2011), 
or based on individual farmer’s decisions, which can-
not always be explained by the available information 
(Hadley et al., 2006; Huijps et al., 2010). Thus although 
we expect that additional information will increase ac-
curacy, a certain degree of uncertainty will remain.

CONCLUSIONS

All 3 methods (logistic multiple regression, naive 
Bayes, and random forest) were able to predict survival 
at a population level. At birth and at 18 mo, all 3 meth-
ods reported similar AUC values and increased survival 
in a practical scenario by similar amounts. Naive Bayes 
obtained the highest AUC value in all decision moments 
up to 200 d after calving, but it always overlapped with 
random forest. At 200 d after first calving, random for-
est had the highest AUC, but the overlap with naive 
Bayes persisted. Interestingly, the 3 methods appeared 
to predict outcomes for individual heifers differently. 
Correlations between individual predictions for animals 
were lower than expected, and the models appeared to 
improve by predicting different groups of animals bet-
ter. It was possible to choose a “best method” for each 
moment, but all methods would have resulted in similar 
improvements in practice.
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APPENDIX

Table A1. All 66 phenotypic variables and 50 genomic EBV (gEBV) available and the decision moment in which each variable is available

Phenotypic variable Decision moment Continuous

Animal identification number Birth No
Year of birth Birth No
Birth farm UBN1 Birth No
Month of birth Birth No
Birth season Birth No
Parity Birth Yes
Breed Birth No
Holstein, % Birth No
Red factor Birth No
Calving ease Birth No
Gestation duration Birth Yes
Birth weight Birth Yes
Survival status at 18 mo 18 mo No
Insemination farm 18 mo No
Insemination season 18 mo No
Countable inseminations 18 mo Yes
Nonreturn status at 18 mo 18 mo No
No insemination information at 18 mo 18 mo No
Number of farm movements before 18 mo 18 mo Yes
Age at first insemination 18 mo Yes
Type of first insemination 18 mo No
Number of inseminations 18 mo Yes
Survival status at 2 yr of age First calving No
Raised at a specialty calf-rearing farm First calving No
Calving season First calving No
Total number of farm movements before calving First calving Yes
Age at first calving First calving Yes
Calving farm UBN First calving No
Calf sex First calving No
Calf survival first 24 h First calving No
Calving ease, calf First calving No
Calf gestation duration First calving Yes
Calf birth weight First calving Yes
Calf survival, first wk First calving No
Calf survival, second wk First calving No
Calving records exist First calving No
Twins First calving No
Milk at 6 wk, kg 6 wk after first calving Yes
Milk fat percentage at 6 wk 6 wk after first calving Yes
Milk protein percentage at 6 wk 6 wk after first calving Yes
Milk SCC at 6 wk 6 wk after first calving Yes
Milk urea at 6 wk 6 wk after first calving Yes
Milk lactose percentage at 6 wk 6 wk after first calving Yes
Cow status indicator at 6 wk 6 wk after first calving No
Number of negative indications at 6 wk 6 wk after first calving Yes
Number of days in lactation at 6 wk 6 wk after first calving Yes
Complete milk measurement available at 6 wk 6 wk after first calving No
First-parity insemination farm UBN 200 d after first calving No
First-parity insemination season 200 d after first calving No
First-parity first insemination type 200 d after first calving No
Number of inseminations in first parity 200 d after first calving Yes
Nonreturn status at 200 d after calving 200 d after first calving No
Age at 200 d after calving 200 d after first calving Yes
Insemination known in the first parity 200 d after first calving No
Age at first insemination in the first parity 200 d after first calving Yes
Number of farm movements at 200 d after calving 200 d after first calving Yes
Number of known milk testing at 200 d after calving 200 d after first calving Yes
Milk average kg 200 d after first calving Yes
Milk average fat percentage 200 d after first calving Yes
Milk average protein percentage 200 d after first calving Yes
Milk average SCC 200 d after first calving Yes
Milk average urea 200 d after first calving Yes
Milk average lactose percentage 200 d after first calving Yes
Number of negative indications at 200 d after calving 200 d after first calving Yes

Continued
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Table A1 (Continued). All 66 phenotypic variables and 50 genomic EBV (gEBV) available and the decision moment in which each variable 
is available

Phenotypic variable Decision moment Continuous

Survival status at 200 d after calving 200 d after first calving No
Number of farm movements in the first parity 200 d after first calving Yes
gEBV
 NVI, Dutch breeding goal standard Birth Yes
 Milk, kg Birth Yes
 Fat, kg Birth Yes
 Protein, kg Birth Yes
 Lactose, kg Birth Yes
 Inet, Dutch production index Birth Yes
 Cell count Birth Yes
 Subclinical mastitis Birth Yes
 Clinical mastitis Birth Yes
 Udder health Birth Yes
 Lifespan Birth Yes
 Lifespan with predictors Birth Yes
 Birth index Birth Yes
 Calving ease Birth Yes
 Post-calving ease Birth Yes
 Livability calving (maternal) Birth Yes
 Livability birth (direct) Birth Yes
 Overall fertility Birth Yes
 Nonreturn status at 56 d Birth Yes
 Interval calving to first insemination Birth Yes
 Calving interval Birth Yes
 Interval first to last insemination Birth Yes
 Conception ratio Birth Yes
 Claw health Birth Yes
 Calf vitality 3 to 365 d Birth Yes
 Milking speed Birth Yes
 Dairy strength Birth Yes
 Stature Birth Yes
 Chest width Birth Yes
 Body depth Birth Yes
 Angularity Birth Yes
 Body condition Birth Yes
 Rump angle Birth Yes
 Rump width Birth Yes
 Rear legs hind view Birth Yes
 Rear leg side view Birth Yes
 Foot angle Birth Yes
 Locomotion Birth Yes
 Fore udder attachment Birth Yes
 Front teat placement Birth Yes
 Teat length Birth Yes
 Udder depth Birth Yes
 Rear udder height Birth Yes
 Udder support Birth Yes
 Rear teat placement Birth Yes
 Frame Birth Yes
 Robustness Birth Yes
 Overall udder score Birth Yes
 Feet and legs Birth Yes
 Overall exterior score Birth Yes
 Milking robot efficiency Birth Yes
1UBN = unique business number, farm identifier.
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