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Abstract

Above-Ground Biomass (AGB) product calibration and validation requires ground ref-1

erence plots at hectometric scales to match space-borne missions’ resolution. Traditional2

forest inventory methods that use allometric equations for single tree AGB estimation suffer3

from biases and low accuracy, especially when dealing with large trees. Terrestrial Laser4

Scanning (TLS) and explicit tree modelling show high potential for direct estimates of tree5

volume, but at the cost of time demanding fieldwork. This study aimed to assess if novel6

Unmanned Aerial Vehicle Laser Scanning (UAV-LS) could overcome this limitation, while7

delivering comparable results. For this purpose, the performance of UAV-LS in comparison8

with TLS for explicit tree modelling was tested in a Dutch temperate forest. In total,9

200 trees with Diameter at Breast Height (DBH) ranging from 6 to 91 cm from 5 stands,10

including coniferous and deciduous species, have been scanned, segmented and subsequently11

modelled with TreeQSM. TreeQSM is a method that builds explicit tree models from laser12

scanner point clouds. Direct comparison with TLS derived models showed that UAV-LS13

was reliably modelling volume of trunks and branches with diameter ≥30 cm in the mature14

beech and oak stand with Concordance Correlation Coefficient (CCC) of 0.85 and RMSE of15

1.12 m3. Including smaller branch volume led to a considerable overestimation and decrease16

in correspondence to CCC of 0.51 and increase in RMSE to 6.59 m3. Denser stands prevented17

sensing of trunks and further decreased CCC to 0.36 in the Norway spruce stand. Also small,18
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young trees posed problems by preventing a proper depiction of the trunk circumference and19

decreased CCC to 0.01. This dependence on stand indicated a strong impact of canopy struc-20

ture on the UAV-LS volume modelling capacity. Improved flight paths, repeated acquisition21

flights or alternative modelling strategies could improve UAV-LS modelling performance22

under these conditions. This study contributes to the use of UAV-LS for fast tree volume23

and AGB estimation on scales relevant for satellite AGB product calibration and validation.24

Keywords:

Laser Scanning, UAV, Forest, Above-Ground Biomass (AGB), Quantitative Structure

Model (QSM)

1. Introduction25

Terrestrial vegetation contains approximately 450 to 650 PgC, which is on the same order26

of magnitude as the atmospheric carbon pool (Ciais et al., 2013) and forests make up a27

significant contribution to the vegetation carbon pool. However, the forest carbon pool is28

only weakly constrained due to a low and possibly biased number of sample plots worldwide29

(Houghton et al., 2009). The future ESA BIOMASS (Le Toan et al., 2011), NASA GEDI30

(https://science.nasa.gov/missions/gedi) and NISAR (NASA ISRO SAR) missions31

aim to improve observations of Above-Ground Biomass (AGB) on global scales with a focus32

on forests. This underpins the space agencies’ commitment towards global AGB mapping33

capabilities.34

Even though general relationships between satellite sensor signals and AGB for the35

intended missions are well established — e.g., exponential relationship for Synthetic Aperture36

Radar (SAR) backscatter intensity and AGB — specific retrieval models have to be calibrated37

based on ground reference plots (Saatchi et al., 2011; Baccini et al., 2012; Thiel and Schmullius,38

2016). This means calibration at the scale of the satellite’s mapping unit are required, which39

are typically hectometric for AGB. If best practice for validation of geophysical products shall40

be followed, the observation’s geo-location error has to be considered, which usually means41

to triplicate the calibration unit side length (Fernandes et al., 2014). Additionally, a large42

number of plots is required to capture the heterogeneity of stand structural characteristics43

Preprint submitted to Remote Sensing of Environment July 24, 2019

https://science.nasa.gov/missions/gedi


across an area of interest. For example, Saatchi et al. (2011), Baccini et al. (2012) and44

Mitchard et al. (2014) used data from 4079, 283 and 413 inventory plots to build maps for45

(pan-)tropical forests, respectively. Furthermore, uncertainty in traditional field inventory46

biomass assessment based on allometric equations is high. Contributing to this is the47

limited availability of calibration samples for allometric model generation, which need to be48

destructively harvested, and application of allometric models outside of the area where they49

have been developed (Yuen et al., 2016).50

Given above-mentioned circumstances, calibration of satellite-based AGB products is51

already challenging. But in the light of systematic global AGB product validation, a significant52

number of globally and temporally representative in situ sites, and systematic re-validation53

of the product’s time series is required as envisaged by the Committee on Earth Observation54

Satellites (CEOS) Land Product Validation (LPV) subgroup. This requires accurate and55

fast techniques that cover the satellite footprint. Forest inventory techniques can achieve the56

speed and coverage, but lack accuracy in tropical forests (Disney et al., 2018).57

Terrestrial Laser Scanning (TLS) has been proposed as an alternative to traditional58

inventory techniques for AGB assessment (Disney et al., 2018). Compared to the latter it has59

shown nearly unbiased AGB estimates, which is particularly critical for large trees (Keller60

et al., 2001; Calders et al., 2015b; Gonzalez de Tanago et al., 2018). Another advantage of61

TLS is that it does not require destructive sampling. Several studies have demonstrated62

the effectiveness of TLS for AGB assessment (Calders et al., 2015b; Hackenberg et al., 2015;63

Rahman et al., 2017; Momo Takoudjou et al., 2018; Gonzalez de Tanago et al., 2018; Stovall64

et al., 2017; Stoval and Shugart, 2018) and best practices for field set-ups begin to be65

established (Wilkes et al., 2017). Currently, the LPV guideline for good practices in AGB66

validation is being compiled, which also includes a section on TLS.67

However, a drawback of TLS-based AGB inventories is the time consuming field work. For68

the acquisition of a dataset that allows reliable geometrical modelling, an experienced team69

requires 3 to 6 days for a 1 ha plot (Wilkes et al., 2017). Good quality data for geometrical70

modelling means low occlusion of canopy elements, which makes it necessary to use multiple71

scan locations in the plot and accurately co-register them.72
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Recently, miniaturisation and advancement in several Unmanned Aerial Vehicle (UAV)73

components has prepared the ground for the construction of Unmanned Aerial Vehicle Laser74

Scanning (UAV-LS) systems. The critical challenge in this context is the high position and75

orientation accuracy requirement of the scanner at any time during data acquisition. This76

determines the geometric accuracy of the produced point cloud. In the contrasting case of77

TLS, positioning of the scanning positions relative to each other is provided with common78

targets, most often retro-reflectors, and scan positions are limited to tens to few hundreds79

per plot (Wilkes et al., 2017). For UAV-LS, the position has to be determined several times80

per second for flight times of up to 30 min to provide the necessary information for accurate81

target localisation, which is more comparable to Airborne Laser Scanning (ALS) conditions.82

Another difference of UAV-LS to TLS is the perspective above the canopy. From this83

perspective trunks, which contain the largest part of biomass, are at least partly occluded84

by upper branches or leaves (Brede et al., 2017). For example, Schneider et al. (2019)85

found that 71 % of the canopy up to 25 m above ground are occluded in a temperate forest86

when observed with UAV-LS. Finally, UAV-LS point cloud densities are limited by scanner87

speed and flight time. Recent UAV-LS systems have produced point clouds with densities of88

around 50 (Wallace et al., 2012), 1500 (Jaakkola et al., 2010; Mandlburger et al., 2015) and89

4000 points/m2 (Brede et al., 2017). TLS plot scans have typically point densities of tens of90

thousands points/m2 (Brede et al., 2017; Wilkes et al., 2017).91

Recent forestry related applications with UAV-LS cover Digital Elevation Model (DEM)92

generation (Wei et al., 2017), Canopy Height Model (CHM) generation, Leaf Area Index (LAI)93

estimation, AGB estimation via allometric equations based on tree height and crown area94

(Guo et al., 2017), Diameter at Breast Height (DBH) estimation (Brede et al., 2017; Wieser95

et al., 2017), tree height estimation and localisation (Wallace et al., 2014b), and tree detection96

and segmentation (Wallace et al., 2014a; Balsi et al., 2018). With these UAV-LS systems97

available now, the question can be investigated how UAV-LS point clouds compare to TLS98

point clouds for explicit structural tree modelling.99

The aim of this study was to compare tree volume estimation performance of high100

density UAV-LS (>1000 points/m2) with TLS point clouds for different canopy architectures,101
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including deciduous and coniferous species. Tree volume was investigated instead of AGB,102

because AGB is a product of tree volume and wood density, the latter being equal for both103

laser scanning systems. The work flow strongly builds on established TLS methods. This104

will make fast tree volume estimation possible at the plot scale, and support calibration and105

validation of future AGB missions at hectometric scale.106

2. Data107

2.1. Study Site108

This study was performed at the Speulderbos Reference site in the Veluwe forest area109

(N52◦15.15′ E5◦42.00′), The Netherlands (Brede et al. 2016, www.wur.eu/fbprv). Five stands110

were scanned on May 10, 2017 (Figure 1, Table 1). The first and in terms of area largest111

consisted of maturing European beech (Fagus sylvatica) and oak (Quercus robur, Q. petraea),112

here referred to as old beech and oak. Crown heights of sampled trees reached up to 32 m,113

but were 27 m on average. During the data acquisitions, leaves were only emerging or not114

present on these trees. The understorey was sparse with only few seedlings and young trees,115

and occasional European holly (Ilex aquifolium). A forest road separated this beech and116

oak stand from the second stand consisting of young beech with trees of on average 23 m117

height. These beeches were markedly different from the old beech stand in terms of age118

and consequently stem diameter (Table 1). Additionally, their branching behaviour was less119

complex with most tree volume concentrated in the central trunk. In contrast to this, the120

old beech trees showed more complex structure with major branching occasionally occurring121

below 10 m height. In addition, the young beech trees almost all carried new leaves.122

Located north of the young beech stand was the third stand consisting of Norway spruce123

(Picea abies) with maximum tree height of 25 m. Located further east was the fourth stand,124

a Giant fir (Abies grandis) stand with maximum heights of 27 m. Both Norway spruce and125

Giant fir trees were characterised by numerous small branches along the main stem.126

The fifth stand was in the South-East of the study area and consisted of Douglas fir127

(Pseudotsuga menziesii) with maximum tree heights of 35 m, making up the highest trees in128
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Table 1: Stand sample characteristics. Tree density was estimated based on manually identified trees in the

TLS point cloud, tree height based on segmented tress range in height, and DBH based on optimised TLS

Quantitative Structure Models (QSMs).

Giant Norway Douglas Young Old beech

fir spruce fir beech & oak

Tree density (ha−1) 588 714 231 554 142

Minimum tree height (m) 11.3 14.6 18.7 4.6 18.4

Average tree height (m) 21.1 19.9 30.6 16.4 27.2

Maximum tree height (m) 27.4 25.1 35.3 22.5 31.6

Minimum DBH (cm) 11.2 14.4 15.6 6.2 22.9

Average DBH (cm) 28.5 28.5 40.1 21.3 59.2

Maximum DBH (cm) 58.4 46.9 56.5 37.1 91.0

the study area. This stand had only little understorey, and had been thinned in recent years129

as could be recognised by tractor tracks and stumps. Additionally, the lower tree trunks130

were mostly free of branches.131

2.2. UAV-LS Data132

UAV-LS data were collected with a RIEGL RiCOPTER with VUX-1UAV (RIEGL133

Laser Measurement Systems GmbH, Horn, Austria). The VUX-1UAV is a survey-grade134

laser scanner with an across-track Field Of View (FOV) of 330◦ (Table 2). UAV-LS data135

acquisition were conducted in the course of 2 hours (Brede et al., 2017). The take-off site was136

chosen in the western part of the study area in a clearing, which allowed operation within137

Visual Line of Sight (VLOS). The study area of 100 m x 180 m was covered with a total138

of 8 parallel flight lines (Figure 1) and one diagonal cross-line at an altitude of 90 m above139

ground.140

The collected raw data were processed with the VUX-1UAV accompanying software141

package RiPROCESS. This included (i) post-processing of the Global Navigation Satellite142

System (GNSS) and Inertial Measurement Unit (IMU) records to reconstruct the flight143
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with colour scale on right in meters. Trihedron shows project coordinate system axis direction.

Figure 1: Study site views in map and perspective view.
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Table 2: VZ-400 and VUX R©-1UAV main characteristics

Characteristic VZ-4001 VUX-1UAV2

Maximum Pulse Repition Rate (PRR) (kHz) 300 550

Maximum effective measurement rate (kHz) 120 500

Minimum / Maximum range (m) 1.5 / 3503 3 / 9204

Accuracy / Precision (mm) 5 / 3 10 / 5

Laser wavelength (nm) 1550 1550

Beam divergence (mrad) 0.35 0.5

Weight (kg)5 9.6 3.75
1high speed mode, incl. online waveform processing

2550 kHz mode 3at target ρ ≥ 0.9 4at target ρ ≥ 0.6

5without battery and tilt mount

trajectory, (ii) LIght Detection And Ranging (LiDAR) waveform analysis for target detection144

in scanner geometry and (iii) translation of the detected points into global coordinate system145

under consideration of the trajectory information. Additionally, single flight geometry was146

optimised with automatically detected control-planes in the point cloud. Finally, all flight147

lines were manually fine-registered based on 12 ground control targets, which were placed148

throughout the study area. A detailed description of the acquisition and processing work-flow149

is described in Brede et al. (2017). The resulting UAV-LS point cloud had densities between150

2965 and 5344 points/m2 depending on the position of the flight lines and tree heights with151

an average of 4059 points/m2.152

2.3. TLS Data153

TLS data were collected with a RIEGL VZ-400 scanner from 58 scan positions during154

two days (Table 2). This scanner was used in several studies dealing with explicit, three-155

dimensional tree modelling (Lau et al., 2018) and AGB estimation (Calders et al., 2015b;156

Gonzalez de Tanago et al., 2018). The scan positions were spaced on a 20 m grid across157

the study area, but with slightly wider spacing in the old beech and oak stand due to good158
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visibility (Figure 1). The angular scan resolution was set to 0.06◦. Due to the limitation159

of the VZ-400 to a minimum viewing zenith angle of 30◦, a second scan was performed160

at each position with a 90◦ tilted scanner to capture the canopy directly above the scan161

position. Five to ten retro-reflective targets were placed in between scan positions to facilitate162

co-registration following row pattern described by Wilkes et al. (2017). Fine-registration163

between positions was achieved with RIEGL’s multi-station adjustment routine built into164

the RiSCAN PRO software (Wilkes et al., 2017). This automatically searches for planar165

surfaces in the point clouds and uses them for co-registration between the point clouds. The166

fitting residual standard deviation was 0.62 cm. The final TLS point cloud was co-registered167

to the UAV-LS point cloud with the help of five Ground Control Points (GCPs) distributed168

over the study area.169

3. Methods170

The work-flow consisted of mixed manual and automatic steps and an overview is given in171

Figure 2. All manual steps combined took approximately 20 to 40 min per tree sample. The172

principal steps included identification and segmentation of single trees from the overall point173

clouds (Segmentation steps in Figure 2, Section 3.1), filtering foliage and normalising point174

cloud density in preparation for 3D modelling (Filtering/Normalisation steps, Section 3.2),175

fitting explicit, geometric 3D models with the TreeQSM routine (QSM modelling steps,176

Section 3.3), optimising TreeQSM parameter selection (Section 3.4) as well as intercomparison177

of UAV-LS and TLS models (Section 3.5). TreeQSM is a method that builds explicit tree178

models from laser scanner point clouds based on single tree point clouds by first identifying179

tree elements like trunks and branches, and then fitting cylinders to them (Raumonen et al.,180

2013).181

3.1. Tree Segmentation182

In recent years, several automatic tree segmentation algorithms for ALS have been183

proposed (Duncanson et al., 2014; Heinzel and Huber, 2016; Parkan and Tuia, 2018). However,184

understorey trees are usually hard to detect (Eysn et al., 2015). Also, methods based on185
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Figure 2: Processing work-flow for individual tree volume estimation based on UAV-LS and TLS point clouds.

Steps with time specifications indicate needed time required for manual work. Steps with an asterisk are

per sampled tree. As indicated, manual steps on the tree sample were performed for combined UAV-LS and

TLS point clouds. Later, the combined point clouds were separated again based on a dedicated point cloud

attribute.
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the CHM potentially separate elements from trees especially when crowns are inter-locked.186

This was particularly the case with the old beech and oak stand. As tree segmentation in187

this study needed to be of best quality to leave tree architecture in place, a semi-automatic188

procedure was chosen that took advantage of both UAV-LS and TLS datasets.189

The segmentation was essentially a marker-based inverse watershed segmentation (Koch190

et al., 2006) followed by manual correction. The co-registration allowed to segment the191

UAV-LS and TLS point clouds together. Tree trunks were manually identified to serve as192

initial markers with Quantum GIS 2.18 (QGIS Development Team, https://qgis.org)193

based on 0.2 m resolution TLS point density maps. The tree trunks were clearly visible in194

this map as they were hit often and cover only a small ground area compared to upper195

branches and crowns. A 0.2 m resolution CHM was derived as the difference between DEM196

and Digital Surface Model (DSM) based on the UAV-LS point cloud (Brede et al., 2017).197

Then, the inverse watershed segmentation implemented in the R ForestTools package198

(https://cran.r-project.org/web/packages/ForestTools/) was applied based on the199

TLS markers and UAV-LS CHM. Only crowns with a height of at least 5 m were considered200

for the automatic segmentation. The single segments were exported for inspection. UAV-LS201

and TLS points were exported together, but marked with different labels for later filtering.202

From the range of automatically segmented trees, sample trees for later modelling were203

manually selected. The selection was aiming to sample trees from across different locations204

within the stands (Figure 1) to cover the different levels of point densities produced by the205

flight pattern, as well as tree size indicated by the trunk and crown size in order to maximise206

the range of sizes to evaluate tree volume modelling with small and large trees. Next, the207

single tree point clouds were manually inspected and points not belonging to the specific tree208

were removed. In some cases, neighbouring trees had to be inspected together to transfer209

significant branch points from one to the other. Also, tree and branch identification was much210

easier with the TLS than with the UAV-LS point clouds. Additionally, points representing211

ground were removed. Finally, UAV-LS and TLS points were separated based on their labels.212

All manual work was performed by the same operator to assure comparable quality over all213
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the selected trees. CloudCompare 2.10 was used in this analysis (http://cloudcompare.org)214

to perform the 3D work.215

3.2. Point Cloud Foliage Filtering and Density Normalisation216

In the next step, the point clouds were filtered and normalised. During the filtering foliage217

was removed, as this was not focus of this study. Also, foliage is not modelled with TreeQSM218

and can only be recognised by the routine to a limited extent. Filtering was especially219

important for the coniferous species in the study area, but also some of the deciduous trees220

already showed young leaves. Density normalisation is a necessary step prior to 3D model221

fitting, as the model routines assume equal density of the point clouds across the tree. In this222

study, this assumption was particularly violated by the UAV-LS data with a much higher223

number of hits in the upper crown (Brede et al., 2017).224

Foliage filtering was based on a supervised Random Forest classification (Breiman, 2001;225

Belgiu and Drăgu, 2016; Zhu et al., 2018). For this, training samples representing hard226

(trunk, branches) and soft (leaves) tissue were manually selected from the tree point clouds.227

Based on the radiometric properties of these points, individual models were trained for each228

stand, and separately for UAV-LS and TLS, resulting in a total of 10 models. Radiometric229

features were apparent reflectance, RIEGL deviation number — a measure of pulse waveform230

deviation from the expected shape (Calders et al., 2017) — and return characteristic (i.e.,231

first, intermediate, last return). Other studies proposed to involve additional geometric232

features such as local neighbourhood relationships to improve classification results (Wang233

et al., 2018; Zhu et al., 2018). However, classification accuracy based solely on radiometric234

features was considered sufficient for hard tissue candidate selection in this study as these235

already provided good classification results.236

For each Random Forest model, 2000 samples were picked for both soft and hard tissue237

for training. Model performance was checked with a 5-fold cross-validation. The final models238

were trained on all 4000 samples to produce the class probability rather than the class. In the239

filtering step, only points with a hard tissue probability of more than 90 % were selected for240

each tree. During the density normalisation the class probability was utilised as a selection241
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criterion. The points were segmented into voxels and within each voxel the point with the242

highest hard tissue probability was selected. The grid size for TLS was 2.5 cm, which closely243

follows Calders et al. (2018) and recommendations by Wilkes et al. (2017). The UAV-LS grid244

size was set to 10 cm, which is in line with the lower density of the UAV-LS point clouds.245

3.3. Tree Modelling with TreeQSM246

Explicit 3D cylinder models of trees were produced with TreeQSM in this study. TreeQSM247

was introduced as a way to effectively fit cylinder models to detailed TLS point clouds, taking248

into account tree inherent structure like connectivity, branching and branch tapering (Raumo-249

nen et al. 2013, https://github.com/InverseTampere/TreeQSM). Additionally, TreeQSM250

neither makes assumptions based on tree species nor distinguishes between deciduous and251

coniferous tree architectures. TreeQSM was used in several studies to automatically produce252

3D tree models, and estimate tree volume and subsequently AGB (Calders et al., 2015b;253

Gonzalez de Tanago et al., 2018).254

The TreeQSM fitting procedure is extensively explained in Raumonen et al. (2013),255

Calders et al. (2015b) and Gonzalez de Tanago et al. (2018). Essentially, tree modelling is256

performed in two main steps. First, the point cloud is segmented into trunk and individual257

branches. The segmentation uses small subsets or patches in two phases. In the first phase258

large constant size patches with radius Patch Diameter 1 (PD1) are used across the tree. This259

segmentation serves to identify the tree’s coarse architecture and branches. Second, a finer260

cover with patch size varying from Patch Diameter 2 (min) (PD2Min) to Patch Diameter 2261

(max) (PD2Max) determines the final branch topology. Finally, individual branch elements262

are reconstructed by least squares fitting of cylinders.263

PD2Min plays a central role in the TreeQSM tuning, as it defines the smallest possible264

features that will be modelled. Hence, it has to be adapted to the smallest features that265

can be resolved with the data available. Additionally, there is a random component in the266

initialisation of the patches. This makes it necessary to run the same parameter settings267

multiple times for each tree and aggregate the produced models, which provides a measure268

of modelling confidence.269

13

https://github.com/InverseTampere/TreeQSM


In this study, parameters were chosen based on experience from previous studies (Calders270

et al., 2015b; Gonzalez de Tanago et al., 2018; Lau et al., 2018), while parameters for UAV-LS271

parameters were adapted in accordance with the UAV-LS lower point density. PD1 was272

kept constant for all trees. In the case of UAV-LS and TLS, it was chosen as 20 and 18 cm,273

respectively. PD2Min was varied from 2 to 31 cm in steps of 2 cm for UAV-LS and 2 to274

11 cm in steps of 0.5 cm for TLS. PD2Max was varied from 10 to 70 cm in steps of 10 cm275

for UAV-LS and between 10 to 14 cm for TLS. The variation was conducted in a full-grid276

approach and each parameter combination was run 10 times, to derive statistics about the277

modelling uncertainty of the respective parameter set.278

3.4. Best Fit QSM Identification279

Although TreeQSM produces inherently valid models with respect to topology and280

tapering for a range of input parameters, the best fitting model for a given point cloud has281

to be identified independently. Calders et al. (2015a) proposed an automatic framework for282

parameter tuning that was successfully applied to TLS data in Calders et al. (2015b) and283

Calders et al. (2018). This framework is based on selecting segments along the trunk and284

fitting circles to each via least squares optimisation. These circles provide a robust measure285

of the trunk diameter at the respective height. Then, the QSM is selected that matches the286

circle radii best. This procedure has the advantage that the circles deliver measures of the287

trunk that are independent from the QSM. However, in a previous study circle fitting at288

DBH height for 19 out of 58 trees (33 %) was unsuccessful for the dataset used in this study289

due to too low point density (Brede et al., 2017).290

Therefore, the procedure of Calders et al. (2015a) was adapted to use cylinders instead,291

which are the extension of circles into the third dimension. This has the advantage to take292

more space and potentially more points into account, thereby overcoming the problem of293

low point density at specific positions at the trunk for the UAV-LS data. For the purpose of294

cylinder fitting, three to six straight parts of the trunk or big branches were manually selected295

from each tree. The parts had to contain at least 10 returns to be taken into consideration296

for cylinder fitting. Cylinders were fitted in two steps: first, the orientation of each cylinder297
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was estimated based on point normals and Hough transformation (Rabbani and Heuvel,298

2005). Then, the points were projected onto the plane that was orthogonal to the cylinder299

central axis. This allowed to estimate radius and central axis with least squares circle fitting.300

Based on the radii of these derived control cylinders the tuning followed the framework301

of Calders et al. (2015a) per tree, and independently for UAV-LS and TLS. For all QSMs,302

the QSM cylinders that were closest to the control cylinder centres were identified. The303

maximum allowed angle and distance between QSM and control cylinder were 15◦ and304

50 cm, respectively. Per TreeQSM parameter combination, the QSM model cylinder radii305

rQSM were related to the control cylinder radii rcontrol: ∆r = 1 − (rcontrol − rQSM)/rcontrol.306

The absolute average over all control cylinders was defined as cmatch. Subsequently, the307

mean cmatch, standard deviation σc and coefficient of variation CVc were derived. Then308

the parameter combination with the largest PD2Min was chosen where CVc < CVthreshold309

and cmatch > cconformity, where cconformity = 5 × min(CVc) and cconformity = 0.95. If no such310

parameter set existed, the parameter set with the lowest CVc was selected. If no control311

cylinders could be derived from the segments, the model with the parameter set with the312

lowest standard deviation in volume was chosen.313

3.5. QSM Comparison314

For the assessment of UAV-LS correspondence to TLS QSMs total volume across samples315

in a stand, Concordance Correlation Coefficient (CCC) — a measure for the agreement of316

two methods measuring the same quantity (Lin, 1989) — was used. The CCC is a measure317

of the orthogonal distance of the two methods from the 1:1 line through. An advantage of318

the CCC over Pearson’s correlation coefficient is its ability to detect offset and gain shifts of319

the measures. It is computed as:320

CCC =
2ρσ12

σ2
1 + σ2

2 + (µ1 − µ2)2
(1)

where ρ is the correlation coefficient of the two measures, and σ2 and µ are the corre-321

sponding variances and means, respectively.322
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RMSE was used to quantify the magnitude of the deviation of modelled volume and323

Mean Signed Difference (MSD) to assess the bias. The averaged Coefficient of Variation (CV)324

across samples of a stand gave an indication of the model uncertainty.325

In order to get further insights into how the estimated volume was distributed over the326

vertical dimension of QSMs, vertical volume distribution profiles were computed. For this,327

volume was summed up across 30 height layers relative to the maximum height and to328

the total volume of each individual tree. The height layers were defined by the minimum329

and maximum height coordinate of each segmented TLS tree point cloud. This allowed330

comparison across all trees within the same stand as well as across stands.331

4. Results332

4.1. Tree Segmentation333

The CHM was segmented based on 767 manually selected markers (Figure 3). Some334

of the sampled tree point clouds also included additional non-dominant understorey trees,335

especially in the old beech and oak stand. These trees were also considered for the further336

processing. In total, 40 trees per stand were selected, summing up to a total of 200.337

4.2. Foliage Filtering338

Table 3 summarises the foliage identification performance for the UAV-LS and TLS point339

clouds. All models achieved classification accuracies ≥ 0.71, while all except UAV-LS in the340

Norway spruce stand and in the young beech stand achieved accuracies ≥ 0.91. The Norway341

spruce trees seemed to provide challenges due to their high number of small branches close342

to the trunks, which resulted in only few trunk returns. These were prone to be higher order343

returns, which could lead to degradation in the reflectance signal in the selected training344

data. In the case of the young beech trees, the trunks were small in diameter even though345

they were more sparsely covered by branches than for example the Norway spruce. However,346

the small trunk surfaces might have led to partial returns at the trunk edges, which also347

could have effects on the reflectance signal. Nonetheless, classification accuracy was generally348

high, and UAV-LS and TLS showed comparable results.349
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0 5025 mSeeds for segmentation Selected trees

Figure 3: Manually selected seeds for watershed segmentation, segmented CHM and selected trees for 3D

modelling in project coordinate system. Some selected segments contained more than one tree and some

contained none.

Table 3: Classification performance for point cloud filtering from 5-fold cross-validation.

Stand Accuracy UAV-LS Accuracy TLS

Douglas fir 0.96 0.95

Giant fir 0.91 0.95

Norway spruce 0.71 0.93

Old beech and oak 0.94 0.92

Young beech 0.82 0.88
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4.3. Control Cylinders350

Cylinder fitting was successful for at least one cylinder for all TLS-based tree point clouds351

and in 185 out of 200 cases (92.5 %) for the UAV-LS. Figure 4 summarises the estimated352

cylinder diameters compared with TLS. Generally, cylinders could be fitted best for the old353

beech and oak trees with CCC of 0.99 and RMSE of 2.3 cm in diameter. Foliage was least354

developed in this stand, exposing trunks, so that they could be sampled well from above.355

Giant fir and Norway spruce control cylinders were estimated about equally with CCC356

of 0.96 and 0.93, and RMSE of 2.38 and 2.26 cm, respectively. However, for 6 (15 %) and357

5 (12.5 %) trees no control cylinders could be successfully fitted, respectively. The foliage358

and small branches of these species shielded their trunks, which made already the cylinder359

selection in the TLS point cloud difficult during manual segmentation.360

In the case of young beech trees, four individuals could not produce acceptable control361

cylinders. UAV-LS fitting performance compared to TLS was lower with CCC of 0.88 and362

RMSE of 3.69 cm when compared to the old beech trees. The young beech stand was relatively363

open, but tree diameters were small, so that the chance of trunk hits was much lower than364

for larger trees. Additionally, UAV-LS estimated cylinders were on average 1.18 cm larger365

compared to TLS. This was due to cylinders only partially covered with points.366

The effect of partial coverage was even stronger in the Douglas fir stand due to its position367

in the corner of the stand. This position prevented good visibility of the trunks from the last368

diagonally crossing flight line (Figure 1). In combination with the relatively large trunks369

this led to the largest RMSE of all stands of 7.90 cm and on average 4.71 cm larger cylinder370

diameters compared to TLS.371

4.4. QSM Comparison372

Figure 5 and 6 compare acquired (segmented) point clouds, normalised point clouds373

and QSM samples for the largest beech tree found in the study area and a Douglas fir,374

respectively. In both cases, UAV-LS delivered sufficient points to visually delineate the lower375

part of the trunk, i.e., the volume of the trunk could be delineated clearly on all sides. The376

normalisation with foliage filtering typically removed a significant part of points, especially377
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Figure 4: UAV-LS estimated cylinder diameter compared to TLS. Grey lines are 1:1.

in the upper crown area. For TLS, this were 92.7 % and 94.9 % of the points in case of the378

beech and the Douglas fir, respectively. For UAV-LS, 77.6 % and 88.8 % of the points were379

removed, respectively. However, the identification of foliage in the UAV-LS point clouds380

seemed to be less effective, despite high cross-validation classification accuracy between 0.71381

and 0.96 (Table 3). Also, the UAV-LS normalised point clouds did not show upper branches382

as clearly, compared to the TLS normalised point cloud. This means branches could be383

recognised, but only after careful checking and turning of the point cloud. Also, some branch384

surfaces were not sampled completely, so that guessing the occupied volume visually was385

more difficult. A consequence of this incompleteness is that the QSM derived from UAV-LS386

resulted in a much less coherent upper crown modelling: cylinders did not follow natural387

growth directions and a much higher number of cylinders was fitted than seemed necessary,388

when compared to TLS.389

Considering all sampled trees, UAV-LS tree volume estimation in comparison to TLS390

volume varied markedly across the different stands in the study area (Figure 7). As was391

the case in the control cylinder diameter estimation (Section 4.3), UAV-LS based old beech392

and oak QSMs showed overall the closest correspondence to TLS based QSMs in terms of393

volume with CCC of 0.51. Additionally, the modelling uncertainty expressed as mean CV394

was lowest among all stands with a value of 0.10. The structural characteristics of this stand395

were probably the most favourable for UAV-LS sampling of all the considered stands. The396

relatively wide spacing between individuals, the large trunks with reconstructed DBH of up397

to 91.0 cm and the comparably low shielding of lower canopy elements by upper branches and398
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(a) Segmented UAV-LS

(P = 1 088 317)

(b) UAV-LS normalised

(P = 243 680)

(c) UAV-LS QSM

(C = 2464)

(d) Segmented TLS

(P = 4 626 368)

(e) TLS normalised

(P = 337 326)

(f) TLS QSM

(C = 3471)

Figure 5: Tree segmentation, point density normalisation and QSM example for beech. Point cloud colour

represents reflectance, QSM colour refers to branching order (maximum 7 for UAV-LS and 8 for TLS) (see

scale). Number of points P or cylinders C in caption.

20



(a) Segmented UAV-LS

(P = 197 484)

(b) UAV-LS normalised

(P = 22 012)

(c) UAV-LS QSM

(C = 141)

(d) Segmented TLS

(P = 1 613 021)

(e) TLS normalised

(P = 81 888)

(f) TLS QSM

(C = 588)

Figure 6: Same as Figure 5, but for a Douglas fir. Maximum branching orders 4 for UAV-LS and 5 for TLS.
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foliage when seen from above had a positive effect on volume estimation. However, UAV-LS399

volume estimates for large specimen in this stand were positively biased as indicated by the400

MSD of 3.44 m3. This bias in combination with the fact that the old beech and oak stand401

contained the largest trees in the study area produced the largest RMSE among all stands402

of 6.59 m3. Inspecting the distribution of the volume over differently sized cylinders gave403

further insights how this could be traced to differently sized branches (Figure 9): Considering404

only large cylinders with diameter ≥30 cm resulted in high correspondence between UAV-LS405

and TLS with CCC> 0.85, RMSE as low as 0.65 m3 and MSD as low as 0.1 m3. But taking406

smaller cylinders into account, considerably degraded UAV-LS volume estimates for this407

stand in terms of all performance metrics. CCC of minimum 0.42, and RMSE and MSD408

of maximum 6.70 and 3.57 m3, respectively, were reached. Furthermore, it was possible to409

trace the differences between UAV-LS and TLS volume estimates to the vertical distribution410

of cylinder volume (Figure 8). It could be seen that UAV-LS overestimated volume in the411

upper half of trees with an average contribution of this part of 41.3 % to the total tree412

volume for UAV-LS compared to 27.6 % for TLS. The reason for this could be observed in413

the sample (Figure 5), but also in all other old beech and oak trees’ QSMs. The upper crown414

was modelled as a large number of small cylinders that were apparently not corresponding to415

real branches. Probably the quality of the point clouds was not sufficient in terms of point416

count and point registration accuracy.417

Apart from these general observations for the old beech and oak stand, an outlier could418

be observed when only considering large cylinders (Figure 9). This specimen was located at419

the southern edge of study area. Inspecting the point cloud together with QSM realisations420

revealed that the stem was not modelled with cylinders as large as those of the TLS QSM,421

but with many smaller cylinders. The UAV-LS point cloud mainly contained points from one422

side of the tree and trunk, which were not sufficient to model the whole circumference. The423

most southern UAV-LS flight line was nearly directly over this tree effectively preventing424

registration of points on the southern trunk sites. The corresponding UAV-LS point cloud425

covered only the trunk surfaces facing into the stand, which resulted in a QSM with undersized426

trunk cylinders.427
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Figure 7: Tree volume reconstruction for UAV-LS compared to TLS. Error bars represent 1 standard

deviation of the 10 QSM realisations. Grey lines are 1:1 match. CV is mean UAV-LS coefficient of variance.

Positive MSD means overestimation by UAV-LS. RMSE and MSD in m3.
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Figure 8: QSM volume aggregated over height. Solid centre lines represent the mean volume contribution of

a height layer to the total tree volume. Relative tree height was based on the TLS point cloud height range.

Coloured ribbons indicate 1 standard deviation from the mean. Each panel summarises all modelled trees of

the corresponding stand.
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Figure 9: Accumulative tree volume for different diameter bins reconstruction for UAV-LS compared to TLS

for old beech and oak trees. Error bars represent 1 standard deviation of the 10 QSM realisations. Grey

lines are 1:1 match. Positive MSD means overestimation by UAV-LS. RMSE and MSD in m3.

The Douglas fir comprised the second largest trees in the study area with DBH of up to428

56.5 cm diameter. It was most similar to old beech and oak stand with respect to canopy429

opennesses. Nonetheless, UAV-LS reconstruction was less successful here with lower CCC of430

0.37 and higher CV of 0.22. The bias in terms of MSD was with 0.71 m3 substantially lower431

than for the old beech and oak. However, this stemmed mainly from the cancelling effect of432

two groups, for which volume was over- and underestimated, respectively. The overestimation433

could be traced to the same mechanism as in the old beech and oak stand. The crown tended434

to be modelled with a high number of small cylinders. The effect on the vertical distribution435

of volume was even stronger than in the old beech and oak stand, with 49.1 % of the total436

volume in the upper half of the tree in the case of UAV-LS compared to 25.7 % in the case437

of TLS (Figure 8). The group of underestimated trees turned out to be positioned at the438

southern and south-western edges of the study area. Here, the effect was the same as for the439

single outlier in the old beech and oak stand. This means due to the location of the flight440

lines, the trees’ southern sides could not be sensed from the UAV resulting in incomplete441

point clouds and QSMs with many small instead of few properly sized cylinders for trunks.442

In the case of giant fir, UAV-LS agreed with TLS reconstructed models with CCC of 0.44443

and RMSE of 1.13 m3. Outliers could not be explained by their position within the stand as444

was the case for the Douglas fir trees. In fact, this stand could be observed from a UAV-LS445
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flight line outside of the stand in the North plus from the diagonal cross line (Figure 1),446

which provided better observations from multiple directions. The vertical distribution of447

volume indicated a similar bias as was the case for old beech, oak and Douglas fir, but with a448

much lower magnitude across the tree vertical profiles (Figure 8). The upper halves of trees449

contained 35.5 % in the case of UAV-LS, while this was 25.6 % for TLS.450

Despite the similar levels of agreement of UAV-LS modelled control cylinders with TLS451

control cylinders between giant fir and Norway spruce (Section 4.3), Norway spruce modelled452

QSMs showed less agreement in terms of QSM volume with CCC of 0.36 and RMSE of453

1.32 m3. Also, Norway spruce QSM models showed less modelling confidence than giant fir454

QSMs in terms of a higher CV of 0.33 for Norway spruce and 0.24 for giant fir. The denser455

tree coverage of the Norway spruce could be an explanation for that (Table 1), as it results in456

mutual shielding of trees from above canopy view points and therefore observation of lower457

and larger tree elements by UAV-LS. Additionally, the higher tree density leads to a lower458

number of points per tree.459

The young beech stand showed the lowest comparability between UAV-LS and TLS QSMs460

with CCC of 0.01. Especially the RMSE of 2.14 m3 indicated low modelling performance461

with respect to the maximum individual TLS QSM volume of 0.84 m3. In particular, volume462

was generally overestimated with a MSD of 1.62 m3. When inspecting the corresponding463

point clouds, it became clear that the point density on the trunk and branch surfaces was464

too low to actually represent the volume of the individuals, i.e. points formed lines for trunks465

instead of covering them on multiple sites. In contrast to the old beeches, the young beech466

trees were positioned much denser (Table 1) and had already almost flushed all their leaves,467

which hindered visibility of the lower canopy elements.468

5. Discussion469

5.1. Tree Segmentation470

Overall, UAV-LS point clouds show potential in combination with semi-automatic seg-471

mentation of trees. Even young trees in the understorey of the old beech and oak could be472
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identified. This study used a combined approach that segmented both UAV-LS and TLS473

point clouds at the same time, both during automatic segmentation and during manual474

cleaning. If only UAV-LS point clouds were to be used, the automatic step would remain475

the same. However, the manual cleaning step would be affected to a certain extent. Crown476

parts of trees with interlocked branches would possibly be wrongly assigned to neighbouring477

trees, especially in complex canopies like the mature beech and oak stand. Nonetheless, the478

expected overall effect on tree wood volume estimation is low, because these edges typically479

consist of small branches. Additionally, this misclassification would have small effect on the480

overall estimated forest wood volume, since wrongly assigned parts would be modelled as481

branches on the neighbouring tree.482

If a fully automatic approach is desired to achieve fast plot scale results, it can be said483

that recent automatic algorithms have moved away from incremental adaptation of initial484

algorithms and make more use of the characteristics of LiDAR data (Duncanson et al.,485

2014; Eysn et al., 2015; Zhen et al., 2016). Algorithms exploit more and more the full486

vertical profile of high density ALS point clouds (Str̂ımbu and Str̂ımbu, 2015) and can even487

deliver segmentation uncertainty (Parkan and Tuia, 2018). Wallace et al. (2014a) achieved488

detection rates of up to 98 % with another UAV-LS system that produced point clouds with489

50 points/m2. This suggests that automatic detection and segmentation with the dataset490

underlying this study has the potential to achieve excellent segmentation results. These491

approaches should be targeted in the future.492

5.2. Foliage Filtering493

The foliage classification cross-validation with UAV-LS based on manually selected494

training samples generally produced high accuracies in this study (Table 3). However, a495

certain extent of foliage points remained that were subsequently modelled as small branches496

(Figure 5 and 6). This portion was larger for UAV-LS than for TLS and led to a much higher497

number of small cylinders in the upper crown for UAV-LS. Previous TLS-based studies using498

TreeQSM have skipped leaf-wood separation, but still achieved high correspondence with499

destructively measured AGB (Calders et al., 2015b; Gonzalez de Tanago et al., 2018; Lau500
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et al., 2018). Together this suggests that foliage filtering prior to wood volume assessment501

with TreeQSM based on UAV-LS will require a higher attention in the future.502

For improved classification of foliage, new classification approaches based on geometric503

features, e.g., local cluster orientation, have been proposed to overcome the ambiguity of504

radiometric LiDAR features (Zhu et al., 2018; Wang et al., 2018; Vicari et al., 2019). However,505

these methods rely on high density TLS point clouds and tests with lower density point506

clouds are still to be performed (Vicari et al., 2019). This is especially relevant for UAV-LS507

as observation geometry, point registration accuracy and point cloud density markedly differ508

from TLS. Another alternative for the whole volume estimation work-flow for coniferous509

species could be a hybrid approach as suggested by Stovall et al. (2017): they model stems of510

coniferous Pinus contorta explicitly with cylinders and make use of allometric relationships511

to estimate branch and needle biomass. Unfortunately, such an approach would require the512

establishment of an extensive database for foliage density allometric relationships.513

5.3. QSM Modelling514

The tree modelling performance of UAV-LS compared to TLS in this study needs to515

be regarded in the context of the challenges to produce accurate point clouds from a516

UAV platform. Four principal mechanisms come into question that have a stronger effect517

on UAV-LS point cloud accuracy than on TLS. First, the overall LiDAR sensor ranging518

accuracy and precision is lower for the VUX-1UAV than the VZ-400 (Table 2). This is likely519

to be the general case for miniaturised LiDAR sensors. However, LiDAR ranging accuracy520

is typically the smallest error source in the whole point cloud production chain, both for521

UAV-LS and TLS. It can only be improved by exchanging the LiDAR sensor with a higher522

quality device.523

Second, the larger beam divergence of the VUX-1UAV additionally decreases point cloud524

accuracy. For example, at an average canopy height of 20 m and a flight height of 90 m525

the VUX-1UAV produces an effective footprint of 3.5 cm at the top of the canopy based526

on a beam divergence of 0.5 mrad specified for long distances from the scanner. For short527

distance applications like in this study, the beam exit diameter, which was neglected here,528
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will further increase the effective footprint. For the same canopy, the effective footprint529

would be 0.6 cm for the VZ-400 due to its closer distance to the canopy and smaller beam530

divergence of 0.3 mrad. This larger footprint for the VUX-1UAV leads to larger ambiguity531

in the point registration, hence lower spatial accuracy. This effect is also confirmed by the532

return statistics of the point clouds. On the one hand, UAV-LS returns were made up of a533

larger proportion of higher order returns, with up to 7th order and only 14.6 % single returns.534

On the other hand, the TLS point cloud contained only up to maximum 4th order returns535

and 58.7 % single returns. This suggests that UAV-LS returns were triggered at much lower536

return energy levels than TLS returns, i.e. when canopy elements only partially intercepted537

the beam, possibly at the beam edge. As is the case for the LiDAR ranging accuracy, beam538

divergence is bound to the system in use. Nevertheless, the effective footprint size can be539

reduced by flying at lower altitudes. In forest set-ups, the flight height lower limit is restricted540

by the tree height and UAV observing opportunities from openings for VLOS operation,541

influenced by local topography.542

Third, the free moving mounting of the LiDAR on a UAV produces many more degrees543

of freedom for the scanner positioning and orientation. In this study, the trajectory was544

sampled at 200 Hz for a flight time of approximately 20 min, resulting in roughly 240 000545

positions. For the TLS only 118 positions — 58 upright and 58 tilted — had to be estimated.546

For accurate co-registration of scan lines and scan positions, planar features extracted from547

the point clouds are usually used to achieve the fine registration (Wilkes et al., 2017). TLS548

point clouds with higher point density provide more opportunities to find those features,549

such as even trunk surfaces or ground patches. These have to be larger in size for UAV-LS550

with a lower point cloud density and are therefore rarer in forests. Additionally, UAV-LS551

registration has to be optimised within flight lines, which can be regarded as the equivalent552

to scan positions in TLS. Positioning and orientation errors can be controlled to some extent553

with the flight path planning, with straight flight lines delivering best results, and by avoiding554

weather conditions with strong gusts that abruptly change flight speed and orientation.555

Fourth, the perspective of the TLS from below the canopy favours correct modelling of556

the trunk and lower branches. UAV-LS point clouds are less dense in this region, leading to557
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higher uncertainty in cylinder fitting. These modelling errors at lower heights can propagate558

into higher areas of the canopy. Especially the upper crown becomes very difficult to model559

under these conditions.560

All together, the above-mentioned factors determine a threshold on the diameter for561

modelling of branches. Here, a diameter of 30 cm appeared to be the threshold for reliable562

volume modelling with UAV-LS (Figure 9). Different thresholds have been observed in TLS-563

based studies using cylinder fitting approaches: Hackenberg et al. (2015) found that elements564

with diameter ≥10 cm can be modelled accurately, while elements with diameter ≤4 cm were565

often overestimated. Momo Takoudjou et al. (2018) modelled branches with diameter ≥5 cm566

reliable. However, Lau et al. (2018) found that TreeQSM reconstructed actual branching567

architecture as opposed to cumulative volume only for branches with diameter ≥30 cm.568

Additionally, the above results showed that canopy structure as exemplified by the569

different stands in this study has a significant impact on UAV-LS QSM modelling capability570

when modelled with TreeQSM. UAV-LS QSMs showed higher agreement in terms of tree571

volume with TLS in open stands, and decreasing agreement in denser stands or in stands with572

smaller trees. The direction of this trend can also be observed when using Structure from573

Motion (SfM) techniques of passive camera systems (Wallace et al., 2017). The principal574

effect behind this trend is increasing occlusion of canopy elements by other elements with575

increasing stand density. This is a well-known problem in TLS, and largely overcome by576

using multiple scan locations and co-registration (Wilkes et al., 2017). For UAV-LS, this577

effect was only recently quantified by Schneider et al. (2019) at the Laegern temperate forest578

site during leaf-on conditions. Up to a height of 25 m, 71 % of all 10 cm3 voxels were occluded579

when viewed with a VUX-1UAV. Occlusion of trunks was probably the leading cause for580

cases of low QSM quality in the dense Giant fir and Norway spruce stands (Figure 7). Under581

these circumstances, the chosen flight paths with dominantly parallel lines (Figure 1) proved582

probably less optimal to overcome occlusion in these stands. A larger diversity of flight583

directions could make better use of canopy gaps to detect lower canopy elements like trunks.584

Due to the leaf-off conditions under which data were acquired in this study, occlusion585

caused by the deciduous species’ leaves was largely avoided in this study. Nonetheless,586
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UAV-LS showed low agreement with TLS QSMs in the upper crown parts of the beech and587

oak stand with on average 13.7 % more relative tree volume attributed to the upper tree half588

for UAV-LS than for TLS (Figure 8), where occlusion should actually be low for UAV-LS.589

This suggests that other mechanisms like non-sufficient point registration accuracy in case of590

UAV-LS, led to ill registered branch points and subsequent low quality QSMs. On the side591

of TLS, observations probably suffered from occlusion of the upper canopy by lower branches592

and upper branches were omitted, which increased the disagreement between UAV-LS and593

TLS.594

Still, the detection of small understorey trees and the moderate modelling success even in595

dense stands speak for the application of UAV-LS in complex vertically structured forests.596

In comparison to TLS, UAV-LS has the advantage of fast acquisition speed and thereby597

larger coverage of plot area. In this study, UAV-LS acquisition required 2 h, while TLS took598

approximately 16 h, which is factor of eight difference. This should be considered together599

with possible improvements to the UAV-LS processing chain.600

There are some ways that possibly improve UAV-LS QSM agreement with TLS. First,601

repeated flights with point cloud acquisition over the study area would increase the number of602

points, which increases the chance to collect trunk returns in dense stands such as the giant603

fir and Norway spruce stands or to penetrate the foliage of the young beech stand. Second,604

varying flight patterns with different headings would improve the sampling of different trunk605

sides and prevent edge effects such as those observed for the Douglas firs (Section 4.4).606

Third, additional layout of ground control panels could improve the flight line-to-flight607

line registration and therefore internal consistency of the point cloud, which could improve608

the modelling of smaller branches. Fourth, in closed stands like the giant fir or Norway609

spruce stands fitting procedures that apply more constrains could be utilised. For instance,610

successful identification and modelling of the trunk as a single large cylinder or cone in611

these coniferous species would capture the larger part of total tree volume. Also slice-wise612

fitting as applied in Stovall et al. (2017) for the trunk could deliver more robust results.613

Pitkänen et al. (2019) present another complementary procedure for coniferous species that614

applies modelling and quality checking over height slices. UAV-LS control cylinders showed615
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acceptable agreement with CCC of at least 0.93 (Figure 4), indicating that a large cylinder616

or cone-shaped geometry, or slice-wise fits could be successful.617

6. Conclusions618

Recent technological developments have allowed UAV-LS to produce high density point619

clouds. This study compares UAV-LS explicit tree modelling with a TLS benchmark in terms620

of tree volume estimation. UAV-LS point cloud acquisition was considerably faster than621

TLS at scales relevant for satellite AGB calibration and validation. In total, 200 trees of 5622

stands have been segmented and automatically modelled. UAV-LS control cylinders, which623

were used during model selection, generally agreed well with TLS cylinders with RMSE in624

diameter between 2.26 and 7.90 cm. Full tree volume based on reconstructed QSMs showed625

differences between the examined stands. Mature beech and oak volumes were reproduced626

best by UAV-LS with CCC of 0.51 and RMSE of 6.59 m3. Young beech trees showed lowest627

correspondence with CCC of 0.01 and RMSE of 2.82 m3. This pointed to the fact that canopy628

structure, in this case tree and branch size, branch arrangement and foliage, plays a major629

role in tree volume estimation capabilities. Also, the impact of flight path planning could be630

observed to some extent with improved volume modelling when trunks were observed from631

multiple sites. Future studies should aim to overcome the limitations in dense canopies by632

increasing the point cloud density through repeated flights and adapting the flight path with633

respect to maximising viewing angles on the trunks.634
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multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS Journal of721

Photogrammetry and Remote Sensing 65, 514–522. URL: http://dx.doi.org/10.1016/j.isprsjprs.722

2010.08.002, doi:10.1016/j.isprsjprs.2010.08.002.723

Keller, M., Palace, M., Hurtt, G., 2001. Biomass estimation in the Tapajos National Forest, Brazil.724

Forest Ecology and Management 154, 371–382. URL: http://linkinghub.elsevier.com/retrieve/725

pii/S0378112701005096, doi:10.1016/S0378-1127(01)00509-6.726

Koch, B., Heyder, U., Weinacker, H., 2006. Detection of Individual Tree Crowns in Airborne Lidar Data. Pho-727

togrammetric Engineering & Remote Sensing 72, 357–363. URL: http://openurl.ingenta.com/content/728

xref?genre=article{&}issn=0099-1112{&}volume=72{&}issue=4{&}spage=357, doi:10.14358/PERS.729

72.4.357.730

Lau, A., Bentley, L.P., Martius, C., Shenkin, A., Bartholomeus, H., Raumonen, P., Malhi, Y., Jackson,731

T., Herold, M., 2018. Quantifying branch architecture of tropical trees using terrestrial LiDAR and732

3D modelling. Trees 32, 1219–1231. URL: http://dx.doi.org/10.1007/s00468-018-1704-1http:733

//link.springer.com/10.1007/s00468-018-1704-1, doi:10.1007/s00468-018-1704-1.734

Le Toan, T., Quegan, S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou, K., Plummer, S.,735

Rocca, F., Saatchi, S., Shugart, H., Ulander, L., 2011. The BIOMASS mission: Mapping global forest736

biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment 115, 2850–2860.737

URL: http://dx.doi.org/10.1016/j.rse.2011.03.020, doi:10.1016/j.rse.2011.03.020.738

Lin, L.I.K., 1989. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 45, 255.739

URL: https://www.jstor.org/stable/2532051?origin=crossref, doi:10.2307/2532051.740

34

http://doi.wiley.com/10.1111/2041-210X.12904
http://dx.doi.org/10.1111/2041-210X.12904
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1285083
http://dx.doi.org/10.1080/01431161.2017.1285083
http://dx.doi.org/10.1080/01431161.2017.1285083
http://dx.doi.org/10.1080/01431161.2017.1285083
http://dx.doi.org/10.3390/f6041274
http://www.mdpi.com/2072-4292/9/1/9
http://dx.doi.org/10.3390/rs9010009
http://dx.doi.org/10.3390/rs9010009
http://dx.doi.org/10.3390/rs9010009
http://dx.doi.org/10.1029/2009JG000935
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.002
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.002
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.002
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.002
http://linkinghub.elsevier.com/retrieve/pii/S0378112701005096
http://linkinghub.elsevier.com/retrieve/pii/S0378112701005096
http://linkinghub.elsevier.com/retrieve/pii/S0378112701005096
http://dx.doi.org/10.1016/S0378-1127(01)00509-6
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0099-1112{&}volume=72{&}issue=4{&}spage=357
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0099-1112{&}volume=72{&}issue=4{&}spage=357
http://openurl.ingenta.com/content/xref?genre=article{&}issn=0099-1112{&}volume=72{&}issue=4{&}spage=357
http://dx.doi.org/10.14358/PERS.72.4.357
http://dx.doi.org/10.14358/PERS.72.4.357
http://dx.doi.org/10.14358/PERS.72.4.357
http://dx.doi.org/10.1007/s00468-018-1704-1 http://link.springer.com/10.1007/s00468-018-1704-1
http://dx.doi.org/10.1007/s00468-018-1704-1 http://link.springer.com/10.1007/s00468-018-1704-1
http://dx.doi.org/10.1007/s00468-018-1704-1 http://link.springer.com/10.1007/s00468-018-1704-1
http://dx.doi.org/10.1007/s00468-018-1704-1
http://dx.doi.org/10.1016/j.rse.2011.03.020
http://dx.doi.org/10.1016/j.rse.2011.03.020
https://www.jstor.org/stable/2532051?origin=crossref
http://dx.doi.org/10.2307/2532051


Mandlburger, G., Hollaus, M., Glira, P., Wieser, M., Riegl, U., Pfennigbauer, M., 2015. First examples from741

the RIEGL VUX-SYS for forestry applications, in: Proceedings of Silvilaser, La Grande Motte, France.742

pp. 105–107.743

Mitchard, E.T., Feldpausch, T.R., Brienen, R.J., Lopez-Gonzalez, G., Monteagudo, A., Baker, T.R., Lewis,744

S.L., Lloyd, J., Quesada, C.A., Gloor, M., ter Steege, H., Meir, P., Alvarez, E., Araujo-Murakami, A.,745

Aragão, L.E., Arroyo, L., Aymard, G., Banki, O., Bonal, D., Brown, S., Brown, F.I., Cerón, C.E., Chama746

Moscoso, V., Chave, J., Comiskey, J.A., Cornejo, F., Corrales Medina, M., Da Costa, L., Costa, F.R., Di747

Fiore, A., Domingues, T.F., Erwin, T.L., Frederickson, T., Higuchi, N., Honorio Coronado, E.N., Killeen,748

T.J., Laurance, W.F., Levis, C., Magnusson, W.E., Marimon, B.S., Marimon Junior, B.H., Mendoza Polo,749
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