

Toxicity of 3 water samples tested with the Algae growth inhibition test using *Raphidocelis subcapitata*

Author(s): M.C. Keur & N.H.B.M. Kaag

Wageningen University & Research report C081/19

Toxicity of 3 water samples tested with the Algae growth inhibition test using *Raphidocelis subcapitata*

Test report

Author(s): M.C.Keur & N.H.B.M. Kaag

Wageningen Marine Research

Den Helder, August 2019

CONFIDENTIAL NO

Wageningen Marine Research report C081/19

Keywords: Run-off, fresh, ecotoxicity, Raphidocelis subcapitata, growth inhibition, acute, chronic

TNO Client:

> P.W.H.G. Coenen Locatie Utrecht UT Princetonlaan 6 3584 CB Utrecht

Order No. 3100246022

This report can be downloaded for free from https://doi.org/10.18174/499252 Wageningen Marine Research provides no printed copies of reports

Wageningen Marine Research is ISO 9001:2015 certified.

© Wageningen Marine Research

within the legal entity Stichting Dutch private law) represented by Dr. M.C.Th. Scholten, Managing Director

KvK nr. 09098104,

WMR BTW nr. NL 8113.83.696.B16. Code BIC/SWIFT address: RABONL2U IBAN code: NL 73 RABO 0373599285

Wageningen Marine Research, an institute Wageningen Marine Research accepts no liability for consequential damage, nor for damage resulting from applications of the results of work or other data Wageningen Research (a foundation under obtained from Wageningen Marine Research. Client indemnifies Wageningen Marine Research from claims of third parties in connection with this application. All rights reserved. No part of this publication may be reproduced and / or published, photocopied or used in any other way without the written permission of the publisher or author.

Contents

1	Intr	oduction	4
2	Mate	erials and Methods	4
	2.1	Abbreviations	4
	2.2	Test material	4
	2.3	Test method	4
3	Resi	ults	5
	3.1	Water quality	5
	3.2	Growth inhibition	6
4	Con	clusion	8
5	Qua	lity Assurance	9
Just	ification	n	10

1 Introduction

A risk assessment concerning the potential environmental risk of highway run-off water is performed by WMR, under the assignment of TNO. To support the risk assessment, the potential toxicity of three samples from run-off and surface water from different highways in Europe, is tested by WMR. Fresh water WET tests are performed for species from multiple tropic levels, namely bacteria (*Vibrio fischeri*), algae (*Raphidocelis subcapitata*) and crustacean (*Daphnia magna*).

This report describes the results of the algae growth inhibition tests with the algae *Raphidocelis* subcapitata.

Reported are the 72h NOEC and/or EC_{10} and EC_{25} as indication for chronic effects and the 72h EC_{50} as indication for acute toxicity. Furthermore the TU_C is reported.

2 Materials and Methods

2.1 Abbreviations

Milli-Q Ultra-pure water

EC_{xx} Calculated concentration causing xx% (growth inhibition) effect

NOEC No Observed effect concentration; i.e. the highest test concentration without

significant negative effects

TUC Chronic Toxicity Units (100/EC₂₅)

2.2 Test material

Sample 1 52019067-015 (E18) Sample 2 52019067-001 (A61) Sample 3 52019067-007 (A2)

Sample transport: The samples were delivered at WMR's laboratory in Den Helder on August 6^{th} and 15^{th} , 2019. At arrival the samples were stored at 7°C and gradually brought back to room temperature before used in the test.

2.3 Test method

The test was carried out according to the procedure detailed in SOP E_4_052 'Zoetwater algengroeiremmingstest', which is summarised below. The test procedure is based upon ISO 8692:2012 'Fresh water algal growth inhibition test with unicellular green algae', but adapted for use on a plate reader with small volumes.

Species Raphidocelis subcapitata
Strain Algae beads MicroBioTests™

Cultivation Continuously shaking 250ml Erlenmeyer's

Growth phase exponential

Growth medium ISO, <12 months old

Test vessels 96-multiwell plates (polystyrene)

Dilution water Milli-Q pH dilution water+ media 8.1 ± 1.0 pH test water 6-9

Water treatment Prior to the test, the dilution water was aerated to ensure dissolved

oxygen was >90%. The samples were homogenised 24 hours before the test to enable particles to settle out before using the water in the test. Furthermore the test water was $0.45\mu m$ filtered to remove indigenous

organisms that might interfere with the test results.

Test concentrations 0% (blank), 31.6%, 42.2%, 56.2%, 75.0% and 100%

These are nominal concentrations. For the test $10\mu l$ algae concentrate is added to 240 μl of the test concentration, which is 4% of the volume.

Start density 10,000 cells/ml

Test volume 0.25 ml Replicates 8

Temperature 23 ± 2 °C Photoperiod Continuous

Light intensity 6000-10000 lux with LED light

Test duration 72 h

Endpoint Growth inhibition

Observations Fluorescence (every 24h±2)

Water quality In the test water pH is measured in 0% and 100% test concentrations at

start and after 72h.

Quality parameters

Control growth $\mu_c > 1.4 \text{ r}^{-1}$ (increase 16x)

Control growth variance <7%, after T=72

Day to day growth variance <35%, after T=72

Control pH <1.5 unit increase

Reference toxicant Several times per year, the reference $K_2Cr_2O_7$ is tested. The results are

added to a control chart.

variable slope and is based on inhibition of growth in the test concentrations relative to the 0% blank. The calculated effect concentrations are not corrected for dilution by algal stock.

The NOEC is derived from the data noting that the effect at the NOEC

should not exceed 10% (ECB, 2003).

The TU_C is derived from the data by calculating 100/EC₂₅.

3 Results

3.1 Water quality

Table 1 shows that the pH after 72 hours did not increase more than 1.5 units compared to the starting pH. So the test meets this test validity requirement.

Table 1 pH of control (C0) and 100% (C5) at start and end of the test

Sample	pH start	pH end
Sample 1 (C0)	8.46	8.74
Sample 1 (C5)	8.22	8.22
Sample 2 (C0)	8.46	8.85
Sample 2 (C5)	7.58	8.12
Sample 3 (C0)	8.46	9.06
Sample 3 (C5)	7.86	9.22

3.2 Control validity

Table 2 and Table 3 show that the mean growth rate of the control wells is always above the requirement of 1.5 μ^{d-1} . And the coefficient of this growth is <7% after 72 hours, which also meets the test requirement.

Table 2 Mean growth rate in μ^{d-1} , after 24, 48 and 72 hours in the control wells

Growth rate (μ d ⁻¹)	24 hours	48 hours	72 hours
Sample 1	1.85	1.88	1.76
Sample 2	1.63	1.74	1.68
Sample 3	1.90	1.86	1.71

Table 3 Coefficient of variation (in %) in the control wells after 72 hours

Coefficient of variation (%)	72 hours
Sample 1	2.3
Sample 2	4.4
Sample 3	3.9

Table 4 and Table 5 show that the day to day growth rate of the control wells does decrease a little bit in the last 24 hours of the test. However, the algae are still in exponential growth phase. Figure 1 shows that the growth of the algae is still linear, plotting it on a log scale. The coefficient of variation for the day to day growth should be <35%, which is met for all 3 samples.

Table 4 Day to day growth rate in the control wells for day 0-1, 1-2 and 2-3

Day to day growth rate	0-1	1-2	2-3
Sample 1	1.84	1.88	1.52
Sample 2	1.63	1.87	1.50
Sample 3	1.90	1.81	1.35

Table 5 Day to day growth rate variance in the control wells in % for day 0-1, 1-2 and 2-3

Coefficient of variation (%)	0-1	1-2	2-3
Sample 1	6.7	2.2	2.9
Sample 2	12.2	3.4	17.4
Sample 3	9.2	3.3	12.0

Figure 1 cell density of the control wells of all 3 samples plotted on log scale

3.3 Growth inhibition

Table 6, Table 7 and Table 8 show the day to day growth in measured fluorescence units for all 3 samples for all measurement times. Also the corresponding growth inhibition after 72h is shown. These tables show that both sample 1 and sample 2 show significant inhibition effects that are clearly dose-related. Sample 3 does not show growth inhibition effects.

Table 6 Day-to-day growth (fluorescence units) for sample 1 and mean % inhibition after 3 days

Concentration/Day	0	1	2	3	Inhibition
0.00	100	638	4174	19073	0%
30.3	100	606	4595	18200	0%
40.5	100	615	4609	18312	0%
54.0	100	522	2912	9458	12%
72.0	100	474	2202	6453	19%
96.0	100	344	1185	2940	35%

Table 7 Day-to-day growth (fluorescence units) for sample 2 and mean % inhibition after 3 days

Concentration/Day	0	1	2	3	Inhibition
0.00	108	560	3619	16369	0%
30.3	108	123	197	254	84%
40.5	108	109	73	81	99%
54.0	108	116	61	60	100%
72.0	108	108	48	44	100%
96.0	108	116	61	61	100%

Table 8 Day-to-day growth (fluorescence units) for sample 2 and mean % inhibition after 3 days

Concentration/Day	0	1	2	3	Inhibition
0.00	116	788	4787	18604	0%
30.3	116	1045	6795	22047	-5%
40.5	116	936	6253	19351	-2%
54.0	116	870	5845	16528	0%
72.0	116	767	5095	13525	4%
96.0	116	715	4823	11732	6%

Conclusion and recommendation 4

Table 9 shows the endpoints for the algae growth inhibition test with Raphidocelis subcapitata. Sample 1 shows significant dose-related growth inhibition with a NOEC at 42.2% sample, but an EC50 could not be calculated as the effect at the highest concentration was only 35%. Chronic effect concentrations could be calculated, however. Sample 2 shows clear growth inhibition and even at the lowest concentration of 30.3%, 84% effect was observed. A NOEC could not be established, and acute, as well as chronic effect parameters were too far below the lowest concentration tested to enable calculation. In order to be able to calculate an EC50-value, the test should be repeated, using a further diluted concentration range. Furthermore, for both the samples 1 and 2, a TIE (Toxicity Identification Evaluation) assessment might be performed. This may help identifying the type of toxicant responsible for the observed effects. Sample 3 did not show significant growth inhibition.

Table 9 Endpoints for all 3 samples after 72 hours

72 hours	EC ₅₀	Effects	NOEC	EC ₁₀	EC ₂₅	TUc
Sample 1	>96%	35% effect at	C2	58%	84.5%	0.845
		highest	(42.2%)			
		concentration				
Sample 2	<30.3%	84% effect at	<31.6%	<31.6%	<31.6%	<0.316
		lowest				
		concentration				
Sample 3	>96%	6% effect at	n.a.	>100%	>100%	>1
		highest				
		concentration				

5 Quality Assurance

Wageningen Marine Research utilises an ISO 9001:2015 certified quality management system. This certificate is valid until 15 December 2021. The organisation has been certified since 27 February 2001. The certification was issued by DNV GL.

Justification

Report C081/19

Project Number: 431.51001.27

The scientific quality of this report has been peer reviewed by a colleague scientist and a member of the Management Team of Wageningen Marine Research

Approved: Dr. E.M. Foekema

Senior Researcher

Signature:

Date: 4 September 2019

Approved: Drs. J. Asjes

Manager integration

Signature:

Date: 4 September 2019

Wageningen Marine Research T +31 (0)317 48 09 00 E: marine-research@wur.nl www.wur.eu/marine-research

Visitors' address

- Ankerpark 27 1781 AG Den Helder
- Korringaweg 7, 4401 NT Yerseke
- Haringkade 1, 1976 CP IJmuiden

With knowledge, independent scientific research and advice, **Wageningen**Marine Research substantially contributes to more sustainable and more careful management, use and protection of natural riches in marine, coastal and freshwater areas.

Wageningen Marine Research is part of Wageningen University & Research. Wageningen University & Research is the collaboration between Wageningen University and the Wageningen Research Foundation and its mission is: 'To explore the potential for improving the quality of life'