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Advances in DNA sequencing technology

In recent years, technological developments in the life sciences have progressed enormously. 
In various –omics fields, such as proteomics, metabolomics, transcriptomics and genomics, the 
amount of data created and the complexity of the models inferred from such data are exploding. 
In genomics, for example, the continuously rapid development of DNA sequencing technology 
is enabling researchers to (re)construct genomes at an unprecedented pace. These –omics data, 
commonly referred to as big data [1], will help advance the understanding and possible application 
of biological systems, provided they can be stored and analyzed properly. The growing amount 
of biological data and the wider scope of research questions have resulted in a large increase of 
bioinformatics activities. In the research field of bioinformatics biologists, computer scientists, 
physicists and mathematicians collaborate to integrate life sciences, information technology, data 
mining and modeling approaches to store, process and analyze biological data. 

Major developments relevant to this thesis in both the life sciences and computer science will be 
outlined in the following sections focusing on genomics-related topics. 

1.1 Advances in DNA sequencing technology
The history of nucleic acid sequencing is documented well [2]. It started in 1972 with the sequence 
of a single RNA of bacteriophage MS2, followed in 1976 by the whole RNA genome of this 
organism. After a number of technological advances, the DNA genome of the Epstein-Barr virus 
was sequenced in 1984 and the genome of the first free-living organism Haemophilus influenzae 
was published in 1995. In the late 1990’s, researchers sequenced many model organisms such 
as yeast and Bacillus subtilis. These projects accelerated the use of whole-shotgun sequencing 
strategies, with the first draft sequence of the human genome in 2001 as notable achievement [2]. 

Subsequent advances in technology aimed at lower costs per base and speed-up by miniaturization 
and parallelization of the sequencing process. The first major commercial system was released 
in 2004. The 454 Life Science (later Roche) sequencing platform produced large quantities 
(over 20 Mb) of DNA reads of about 250 bases. The costs of sequencing a human genome with 
this platform dropped to about US$ 1 million [3]. In 2006, Solexa (later acquired by Illumina) 
introduced its HiSeq platform, capable of producing millions of reads of 35 bases in a single run. 
In consecutive updates the HiSeq improved significantly in terms of throughput and read length, 
reducing the costs per base further. The HiSeq has evolved into benchtop systems on the one hand 
and production-scale sequencers on the other. The benchtop MiSeq has less throughput than its 
big counterpart, but makes this type of sequencing technology available to many institutes. The 
price per base has dropped to US$ 0.0005 cents/base for the MiSeq [4]. The latter produces 1.5 
Gb of data per run compared to 600 Gb/run of the HiSeq 2000. The latest update of the HiSeq, the 
NovaSeq [5], produces even more reads, up to 6 Tb of data within two days, providing 30 times 
coverage of the human genome.
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Although these platforms are capable of producing large amounts of sequence data, the sequence 
reads are still relatively short, up to 300 bases in length, but of high quality (average 0.28% error 
rate [6]), limiting the applicability of the systems [7]. To be able to generate longer reads, other 
platforms have been introduced more recently, such as the RS II/ Sequel (Pacific BioSciences) 
and minION/promethION (Oxford Nanopore) systems [7]. These long-read sequencing platforms 
are a trade-off between the higher average and maximum length of the resulting read sets and 
the quality of the base-calling (average ~13% error rate) [6,7]. Two sequencing approaches that 
combine nucleotide data and long range contiguity information are Illumina-based: chromosome 
conformation capture using the Hi-C protocol [8] and synthetic long read library preparation 
using the 10x Genomics Chromium platform [9]. Although the underlying technologies and 
throughputs differ for the currently available platforms discussed above, all such modern DNA 
sequencing is here referred to as next-generation sequencing or high-throughput sequencing.

1.2 High-throughput sequencing technology
Various applications of high-throughput sequencing technology have been developed over the 
years or are being developed. Applications relevant to the work described in this thesis are 
outlined below.

1.2.1 De novo genome sequencing and assembly
Methods to determine the genome sequence of an organism when no suitable genome sequence 
is available for reference are referred to as de novo sequencing [10].

The NCBI database of complete genomes [11] currently contains 192,615 entries, of which 6,037 
correspond to eukaryotic species (June 2018). Although this is a considerable amount of data, 
there are an estimated 8.7 million eukaryotic species, 86% of which has not yet been described 
or sequenced [12]. Therefore, many complete genomes will likely be sequenced de novo in the 
(near) future. An essential step in such genome sequencing efforts is the assembly of the sequence 
data into a contiguous sequence, contig for short, in a procedure known as de novo assembly 
[10]. DNA sequencers deliver data sets containing millions of (short) reads, which need to be 
connected into contigs in a process called assembly. The problem resembles the construction of a 
giant jigsaw puzzle of which the image is unknown. The main challenge for de novo assemblers, 
such as Canu [13] and many others [10], are the repetitive parts of a genome, which can be 
several kilobases long [14]. The main issue with short read lengths is that they fail to span repeat 
regions longer than the read length. This limits their application in de novo assembly [10,15]. 
To unambiguously assemble reads into contigs, repeats need to be spanned by reads; short reads 
hence do not suffice [10,15–17]. 
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The Pacific Biosciences Sequel and Oxford Nanopore sequencers can create long reads, but 
these contain too many errors (~13%) [6,7] to be handled effectively and efficiently by currently 
available assembly software for large genomes. For small genomes (1-40 Mb), such as bacteria 
and most fungi, long read technologies have been shown to allow near-complete to fully complete 
de novo assemblies [18]. Hybrid approaches, where data from different sequencing platforms are 
combined, are gradually becoming commonplace, especially for large genomes, and will replace 
single-technology based approaches as the standard for de novo genome assembly [19,20]. In 
hybrid assembly short reads are used to create high-quality contigs and long reads are used to 
fill the gaps between these contigs and bridge the repetitive parts [17,21]. A useful addition 
to the challenges of hybrid de novo assembly is the BioNano Genomics Irys system and its 
successor the Saphyr [22]. In this technology of (high-throughput) optical mapping, very long 
molecules (high molecular weight DNA) are fluorescently labeled, separated and ordered [23]. 
The BioNano platforms are used for scaffolding genome assemblies as these molecules offer 
long-range contiguity information [24]. When the resulting assembly still contains scaffolds (sets 
of linked, oriented contigs) rather than full chromosomes, linked-read technology and/or optical 
mapping can be used to arrange the scaffolds, perform gap size predictions and visualize other 
structural information [24]. 

De novo assembly of large (>100 Mb) genomes is computationally complex. Several approaches 
are usually combined, including De Bruijn graphs for the initial assembly [25], read mapping 
for quality control [26] and filling of gaps between contigs [27]. Such approaches put strains on 
computational resources such as memory and CPU power [28]. Moreover, the size of the sequence 
data sets continues to grow, further challenging the computational requirements of assembly [29]. 
As a result, IT developments have difficulties keeping up with the speed of growing computational 
demands. New ways of tackling the assembly process are constantly being developed to allow 
proper de novo assembly, for example by removing the compute intensive error correction phase 
[30,31] or by changing the order in which the assembly process takes place [32]. 
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Figure 1.1. Read mapping in the process of genome resequencing. Each sequence read 
is mapped to the available reference genome (top line) to find the location(s) of the reads, 
allowing for mismatches and gaps. Computationally, reads are assembled in the new genome 
sequence. This (partial) image was created with Tablet [33].

1.2.2 Genome resequencing
If the genome of a species is available, there is no need to perform a de novo assembly. The 
available genome sequence is used as reference (similar to the image of a puzzle) and reads are 
aligned to it (Figure 1.1). This process is called read mapping [34] and is an important step in 
genome resequencing. With this approach, less data is required than for de novo assembly, but 
repetitive parts of the reference are still problematic: a short read from a repetitive part will map 
to more than one location. This ambiguity issue increases if mismatches and gaps are allowed. 
Also genetic variation, (poly)ploidy and sequencing errors make read mapping more challenging. 
After reads are mapped to the reference, a consensus is extracted, giving the reassembled genome 
of the sequenced organism. Several software tools assist in such genome assembly [34–37], such 
as BWA [38,39], Bowtie2 [40] and Minimap2 [41]. 

1.2.3 Variant discovery
At the DNA level, each individual organism differs from other organism of the same species. Such 
differences determine in large part how the organism (dis-) functions. It is therefore important 
to identify these small differences, or variants, between individuals. For variant discovery, reads 
are mapped to a reference genome prior to statistical analyses [42] (Figure 1.2). Changes with 
respect to the reference may indicate changes in biological function. Tools such as BWA [38] or 
Minimap2 [41] are used to map reads, but in these tools the number of mismatches, insertions 
or deletions allowed in a read [34,37,43] is limited. As a result, other variants, such as larger 
insertions or deletions require more accurate algorithms for read mapping (Chapters 3 and 4).
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Figure 1.2. Variant detection by mapping reads to a reference genome. The reads are 
highly similar, as shown by the many matching bases (grey). Nucleotides colored in red 
indicate where the reads differ from the reference sequence, with a star (*) indicating a gap. 
The G/C variant is an obvious single nucleotide polymorphism (SNP) and further statistical 
analysis will determine whether the other variants are read errors or true variants. This image 
was created with Tablet [33].

1.2.4 RNA sequencing
High-throughput sequencing technology also allows determining the RNA content of a cell (i.e. 
the transcriptome) [44]. As RNA sequences encode either protein sequences (messenger RNA 
or mRNA) or are regulatory molecules, the resulting data presents a snapshot of the ongoing 
processes within a living cell. Such RNA sequencing indicates for example transcriptionally 
active genes, whereas the number of sequences found indicates transcription levels. Tools similar 
to those used for read mapping outlined above are used to find the location of the RNA in the 
genome sequence, and to identify the corresponding gene. The phenomenon of splicing [45] 
and occurrence of splice variants make this mapping more challenging. The PacBio and Oxford 
Nanopore platforms allow sequencing the full-length mRNA, which increases the likelihood to 
include splicing variants [46,47]. The 10X Chromium platform and other technologies allow for 
RNA sequencing at a single-cell level [48], further advancing the accuracy of RNA analysis.

Besides mRNA sequencing, other types of RNA are of interest, for example long non-coding 
RNA [49], and small interfering RNA (siRNA) [50]. In recent years it has become clear that 
siRNAs play important roles in regulating transcription and translation [50]. For example, small 
RNA molecules bind to messenger RNA and block transcription or enable degeneration of 
messenger RNA before transcription takes place. A particular class of small interfering RNA 
sequences are microRNAs (or miRNAs) [51]. The biogenesis of miRNAs includes a pre-miRNA 
sequence of 50-600 bases (Figure 1.3) which is shortened to an active sequence of 17-22 bases. 
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When sufficiently expressed, pre-miRNA molecules can be detected through short-read RNA 
sequencing [44] that targets transcribed DNA. Expression levels of pre-miRNAs tend however 
to be low and to identify all possible pre-miRNA genes in a genome, the entire genome of the 
organism should be analyzed. Based on the genome sequence, miRNA genes and their targets 
are predicted [51]. Such predictions are compute-intensive and require considerable amounts of 
resources.
 

Figure 1.3. 2D structure of a pre-miRNA molecule. The pab-MIR160a [52] RNA molecule 
is folded in a hairpin structure, with a loop on the right. Such a hairpin structure is indicative for 
pre-miRNA molecules. The location of the mature miRNA is indicated by the box. Structure 
and image were created with the MFold website [53].

1.3 Advances in computer science
The developments in the life sciences outlined above demand significantly growing compute- and 
computer-intensive resources to store, process and analyze the data generated. In recent years, 
the field of computer science has seen several major developments relevant for these challenges. 
These will be outlined below.

Arguably the first computer in the world, the EDSAC1, was built in 1949 in the UK [54]. As early 
as 1950 the first biological application ran on this computer: the calculation of gene frequencies 
by the famous statistician Ronald A. Fisher [55]. One could therefore argue that the field of 
bioinformatics was born in 1950. From a modern perspective, the power of computers in those days 
was very low but it has since doubled about every 18 months, an observation known as Moore’s 
Law [56]. Supercomputers are nowadays installed all over the world and are used for data and 
compute-intensive research fields, such as medical science, astronomy, climate research, defense, 
national security and (population) genetics. BGI in China, nowadays the largest DNA sequencing 
facility in the world, has over 212 TeraFLOP/s of computing power available to process its output 
[57]. Such supercomputers are not easily accessible for a smaller research institute. Not only the 
costs of purchasing and running a supercomputer prevent many organizations to establish one, 
supercomputers also require dedicated software and highly skilled personnel for development and 
maintenance. However, nowadays several new technology platforms provide (smaller) research 
organizations with relatively low-cost, yet high-performance, computing power, such as grids, 
clouds and general-purpose graphics processing units (GPGPU). 
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1.3.1 Grid computing 
Desktop computers and servers are common-place in life science research organizations such 
as universities and other higher-education and/or research institutes. Such computers run a 
variety of operating software platforms, from Windows to Linux, and are used for many different 
tasks: word processing, calculations in spreadsheets, sequence alignments, protein modeling, 
etc. Desktop work such as word processing does not require much computing power and users 
typically require computation time at most 8 hours a day. Therefore, the computer is idle most 
of the day. To be able to use such computers for research tasks, dedicated software is available 
to create a so-called computer grid. For example IBM (www.ibm.com), Globus (www.globus.
org) or HTCondor (research.cs.wisc.edu/htcondor/) offer such software. Installing one of these 
packages on the desktops and servers creates a computer grid of tens up to thousands of nodes, 
limited only by the nodes available. When desktops are idle, they are automatically used for 
desired applications. Provided issues with security and privacy are tackled satisfactorily, these 
grid technologies give easy and affordable access to low-cost, high-throughput computing 
facilities without the need to rewrite software and/or the purchase of (costly) additional hardware. 
In bioinformatics, grids are used and useful for computationally intensive tasks, such as protein 
folding [58] or BLAST searches [59]. In Chapter 2 of this thesis, an example of the use of an 
HTCondor grid for RNA sequence calculations is given.

1.3.2 Cloud computing and storage
In case data is dynamic or larger than a standard desktop hard drive of several TB can handle, 
local storage and grid computing become ineffective: changes in the data need to be sent over 
the network to each of the nodes or entire data sets have to be redistributed. Companies such 
as Google and Amazon developed cloud technology [60] to deal with huge data volumes and 
continuously changing and highly dynamic data. Three design principles play a role in cloud 
technology: (a) low-end and cheap hardware, (b) cloud storage and (c) cloud computing [61]. 

The use of low-end and cheap hardware is similar to the hardware used in grids (see previous 
section). It makes cloud technology easily accessible and affordable for relatively small users. 
Also, costs remain manageable even when cloud technology is deployed on a large scale. Cloud 
storage is the concept of storing data locally, but not everything is stored on every node [60]. Data 
distributed over the network is split up in large blocks and each block is stored on two or three 
nodes simultaneously. In case a node fails, all data are still available. Cloud storage also reduces 
the need to send data many times over the network. Cloud computing is the concept to calculate 
locally what is stored locally. Each node performs only the calculations on the data which is stored 
on that node. There is almost no network traffic required to fetch the data. Intermediate results are 
stored locally and only the end result is gathered at a central point. Google uses cloud technology 
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to search through millions of web pages millions of times a day, reporting relevant results to 
the user within a tenth of a second. The underlying computational model is called MapReduce 
[62]. Detailed description of MapReduce [62] is beyond the scope of this introduction, yet its 
performance is obviously interesting for the data volumes and computations of bioinformatics 
[61,63]. 

Bioinformatics data sets and analyses are suitable to be placed in the cloud, either in a private 
cloud or in one of a commercial enterprise such as Amazon.com, where researchers can rent cloud 
space and computer time [64]. Data is stored and accessed in the cloud in a different way than in 
traditional network storage systems such as Network File System (NFS) and New Technology File 
System (NTFS), requiring a (partial) redesign of existing applications. If an application requires 
access to a cloud-based database, the database model and data transfer have to be redesigned. In 
case of a MapReduce-based approach, the entire data processing model of the application needs 
to be reconsidered. To date, only a limited number of bioinformatics applications are available for 
use in the cloud, such as BLAST [65], BAM sequence alignment processing [66] and CloudBrush 
[67]. It is expected that this number will rise rapidly in the future, because frameworks such 
as ADAM [68] and Apache Spark [69] will take away most of the developmental efforts from 
bioinformatics researchers, making them more accessible. 

1.3.3 General Purpose Graphics Processing Units (GPGPU)
Grid and cloud technology focus on networked use of many computer systems. However, single 
systems offer possibilities for high-performance computing as well. The Central Processing Unit 
(CPU) of a computer performs most of the logical instructions. In addition, contemporary desktop 
computers hold another processor: the Graphics Processing Unit (GPU). This GPU performs 
the calculations necessary to display information on the screen based on using a large number 
(hundreds) of small computing elements. Over the years GPUs have become complex processors 
able to generate high-resolution gaming environments for a realistic user experience. For many 
specific applications the GPU is faster than the CPU [70]. The development of CPU and GPU 
speed, expressed in floating point operations per second (FLOP/s), is depicted in Figure 1.4. 
In 2005 the GPU became faster than the CPU in single precision calculations and from 2008 
on it has been also faster in double precision calculations. The increase in GPU speed is also 
higher than the speed of a CPU, with the Sandy Bridge CPU reaching ~90 GFLOP/s and the 
Geforce GTX 580 reaching ~1500 GFLOP/s in 2010. The most recently released GPU, the high-
end NVIDIA Tesla V100 (2018), has a peak performance of 15.7 TFLOP/s. With the release of 
the CUDA general-purpose programming language by NVIDIA Corporation (www.nvidia.com) 
in 2007 and the open standard OpenCL (www.khronos.org/opencl) in 2008, the computational 
power of the GPU became accessible for other purposes than graphics processing. This makes the 
GPU a General-Purpose Graphics Procession Unit (GPGPU, www.gpgpu.org). 
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GPUs have two important advantages over CPUs: they deliver more FLOP/s per unit cost and 
they are more energy efficient: the FLOP/s/Watt is higher for a GPU than for a CPU [72,73]. In 
a research setting, GPUs therefore deliver low-cost, high-performance hardware, giving smaller 
research organizations access to computing power traditionally reserved for supercomputers, 
i.e. they help ‘democratizing’ supercomputing. GPUs are readily installed in standard desktop 
computers and specialized servers are available capable of holding several GPUs. Moreover, CPU 
vendors such as Intel recognize the increased use of GPU technology and have started integrating 
GPU hardware within their CPU (HD Graphics) and building accelerator cards with many CPU 
cores (Xeon Phi), similar to a GPU card. Combined with grid and/or cloud technology, GPGPU 
technology increases available computing resources even further.

A limitation in the use of a GPU is that the hardware has a completely different design than 
that of a CPU and performs calculations in parallel [71]. As the hardware is inherently parallel, 
it needs to be programmed as such [71]. Each individual processing unit on a GPU is slower 
than that of a CPU but there are a large number of these small units on a GPU. To harness the 
power of the GPU, any application needs to be re-designed, considering concurrency, thread 
synchronization and race conditions [74]. Resources on a GPU are also limited [71]. Currently 
only high-end Tesla high-performance GPUs and GeForce 20 series GPUs have 8 GB of main 
memory or more, which is the de facto standard for a basic desktop computer. Local memory is 
limited to 16 KB or 32 KB per processing unit. Making full use of the fast but limited memories 
on a GPU is therefore challenging, requiring trade-offs between storage efficiency (space) and the 
computational requirements of data conversion (time) [74].

Any implementation of a bioinformatics algorithm for a CPU has to be rewritten (in part) to make 
optimal use of the GPU [75]. Such parallel programming, often done in the C/C++-based CUDA 
or OpenCL programming language [76], is a complex task. Fortunately, more and more developers 
are using GPGPU solutions [75], as a result of which commonly used programming languages 
offer integration with CUDA and/or OpenCL. Applications written in for example Java, Python 
or Matlab can be extended through libraries that make use of GPGPU technology [77,78]. These 
recent developments have two advantages. First, applications need not be rewritten completely, 
but only the GPGPU part needs to be ported to CUDA/OpenCL. Second, the community of 
developers for, for example, Python is much larger and offers additional support for faster 
porting to GPUs. As a result, GPGPU computing is becoming better accessible for bioinformatics 
application development. Examples of GPGPU computing in bioinformatics include multiple 
sequence alignment, computing gene regulatory networks and many others [79–82], including the 
approaches towards sequence alignment in Chapters 3 and 4 of this thesis. 
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Figure 1.4. 
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1.3.4 Technologies for storing and processing data
Computational demands in other fields, such as social media, have accelerated the development of 
new database technologies, other than the relational (SQL) databases [83]. These new technologies 
are usually referred to as NoSQL databases [84]. HBase [85], for example, stores information in 
a key-value structure comparable to a dictionary or hash map data structure in a programming 
language: a tuple-store. Neo4j [86], amongst others, stores data using an object-relationship-
object data structure and is called a graph or triple store. Such data stores are highly scalable [84] 
and therefore attractive for use in bioinformatics research [85]. As data is structured in a different 
way than in relational databases, algorithms and tools using such tuple/triple stores need to adjust 
their approach to data storage, retrieval and analysis. Many datasets in biology and bioinformatics 
will however benefit from storage and analyses using NoSQL paradigms to advance biological 
research. Examples of such developments are presented in Chapter 6 of this thesis. 
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1.4 Outline of this thesis
In this thesis it is demonstrated that the incorporation of new developments in information 
technology with respect to both hardware and software allows for larger-scale analysis in 
bioinformatics at reasonable compute- and computer-intensive investments without the need for 
supercomputer infrastructure. These developments accommodate the continuous growth of data 
and data analyses in the life sciences and bioinformatics. State-of-the art technologies, such as 
GPUs and NoSQL databases, are combined with the latest developments and issues in DNA 
sequencing technology for bioinformatics analyses. In most cases, proof-of-principle is given for 
one or a few species or data types, yet the results outline the broader impact of the approaches 
developed.

In Chapter 2 it is demonstrated that genome-wide prediction of miRNA candidates is feasible on a 
much larger scale than before owing to the development of a large pre-calculated database of 2D 
RNA structure predictions. A database of millions of pre-calculated minimum free energy (MFE) 
values was created and used to estimate the MFE of any candidate miRNA sequence within a 
much shorter time frame than existing approaches needed. 

Chapter 3 shows the novel implementation of the widely used golden standard for sequence 
alignment, the Smith-Waterman (SW) algorithm, on GPUs. The Parallel Smith-Waterman 
Alignment Software (PaSWAS) allows parallel aligning DNA, RNA and protein sequences 
on a large scale on low-cost commodity hardware, while allowing inspection and selection of 
alignments. To the best of our knowledge, this is the first parallel implementation of the SW 
algorithm that allows such inspection and selection. PaSWAS is written in C and CUDA and it 
requires expert knowledge and skills to use, maintain and integrate PaSWAS in other software. 

Chapter 4 presents the need and development of a Python-based implementation of PaSWAS to 
improve the overall applicability and attraction of parallel SW analyses: pyPaSWAS. It presents 
a more user- and developer-friendly interface in Python, builds better on standard libraries such 
as bioPython, pyCUDA and pyOpenCL and supports different input and output formats. In 
pyPaSWAS, OpenCL versions for GPUs and CPUs are integrated to further support a wider 
variety of hardware. 

In Chapter 5, the pyPaSWAS approach is used to detect artificial chimeric sequences in long 
reads. These artefacts are unintentionally introduced when Whole Genome Amplification (WGA) 
is used in case only limiting amounts of DNA of the biological sample is available for sequencing. 
Such chimeric reads hamper de novo assembly and read mapping. The procedure for chimera 
detection and read-correction improves read mapping and de novo assembly to the point that 
WGA becomes feasible for accurate long-read sequencing technology in case of limiting DNA 
amounts. 
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Chapter 6 focuses on comparative functional genomics using graph databases and details the 
newly developed Cytoscape plug-in for querying, visualization and analyses of the type of 
graph structures generated in the comparative genomics. The thesis concludes with a general 
discussion (Chapter 7) evaluating the implications of this work in the context of future research 
and development issues in the life and computer sciences.
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Abstract

2.1 Abstract

Background
Small RNAs are important regulators of genome function, yet their prediction in genomes is still a 
major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 
2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of 
equivalently randomized sequences with the same nucleotide composition, in contrast to other 
classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow 
for genome-wide screenings.

Results
Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated 
on a large scale. These distributions follow a normal distribution and can be used to determine 
the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly 
calculation of the normal distribution for any candidate sequence composition.

Conclusions
The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA 
sequence practical. Although this particular property alone will not be able to distinguish 
miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be 
added to the parameters of choice to be included in the selection of potential miRNA candidates 

for experimental verification.

2.2 Background
Small RNAs are important molecules in the regulation of gene expression. Several classes of 
distinct small RNA molecules play vital roles in development, health and disease, as well as 
in many other biological pathways [1–4]. A particular class of regulatory small RNAs are  the 
microRNA (miRNA) molecules. A miRNA is a ~20-23 nucleotide (nt) short, non-protein coding 
RNA. Together with several protein components, miRNAs reduce the amount of a target mRNA 
by physical interaction to notably the 3’-untranslated region (3’-UTR) of the mRNA, resulting in 
either degradation of that mRNA, or arrest of translation [4–6]. In rare cases, miRNAs can also 
upregulate expression [4, 7]. Well over 25 thousand miRNAs (miRBase Release 19; August 2012 
[8]) have now been identified in many different species [9,10].

The overall biogenesis of miRNAs is well established [4,11], although details are still being 
discovered. In all cases except for intronic miRNAs [12], the miRNA is synthesized as a longer 
primary transcript known as primary miRNA (pri-miRNA), that is processed in the nucleus by 
the RNAse Drosha in animals and Dicer-like 1 in plants, to generate a precursor miRNA (pre-
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miRNA) of about 80-100 nt in animals, 60-300 nt in plants or 60-120 nt in (animal) viruses. The 
pre-miRNA sequence has degenerated palindromic sequence with the characteristic secondary 
structure of a stem-loop hairpin. The final verdict on the total number of miRNAs in a given 
genome is not out yet. The total count in Release 19 of miRBase is 25,141 for all organisms and 
many more miRNAs are described in the primary literature. Whereas the search for miRNAs in 
model genomes such as human or Arabidopsis will approach saturation, identification of the full 
miRNA complement in other genomes is still a challenge.

As mature miRNAs are only ~22 nt in length, straight-forward alignment-based heuristic 
methods such as BLAST are  less suitable for identifying miRNAs and their targets in a given 
genome or transcriptome [5,13]. The identification of miRNAs and their targets is therefore a 
challenge for computational pattern recognition [11,14]. Computational methods for miRNA 
identification focus on the typical extended stem-loop hairpin structure of the pre-miRNA, which 
is characterized by helical base pairing with a few internal bulges in the stem. To identify the 
stem-loop miRNA precursor structure from a given sequence, RNA folding programs are used, 
such as mfold [15], its update UNAfold [16], or RNAfold (also known as the Vienna package [17, 
18], to establish the minimal free energy (MFE) of the stem-loop structure. 

Increasingly sophisticated computational approaches have been proposed for the identification of 
pre-miRNAs, the mature miRNA sequence and its presumed target(s) [19–21], many of which 
are available online [22]. Many approaches are based on supposed or derived characteristics 
of miRNA sequences or combinations thereof [23–26]. Although all miRNAs are thought to 
have such properties in common, not a single property individually seems able to distinguish 
miRNAs sufficiently accurately from other RNA molecules with sufficient accuracy [27]. Several 
approaches therefore include evolutionary conservation of miRNA sequences between different 
species [1,28]. In these evolution-based strategies, species-specific and non -or less- conserved 
pre-miRNA molecules are likely to escape identification. Overall, methods available tend to show 
relatively high rates of false positives [22] and are possibly hampered by the use of inappropriate 
controls [29]. They generally result in lists too long to be feasible for experimental validation.

We here revisit a selective criterion proposed earlier, but largely unexplored because of 
computational costs. Statistical analyses of pre-miRNA hairpins indicated that such hairpins tend 
to have MFE values which are significantly lower than the MFE values based on randomized 
sequences with the same length and nucleotide composition, in contrast to other classes of RNA, 
such as transfer RNA, ribosomal RNA and messenger RNA [30–32]. In MFE analysis, the 
sequence composition of each candidate sequence is randomized and the MFE value based on the 
candidate is compared to the MFE distribution based on the randomized sequences. These data 
are used to calculate the probability that the MFE of the candidate is sufficiently small compared 
to randomized sequences [30]. This probability is here coined the empirical P-value (PE). This PE 
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establishes a useful discriminating criterion for pre-miRNA identification. It is implemented in the 
MiPred prediction tool [33], that helps to decide for a single sequence whether it is a pre-miRNA 
hairpin. However, the computation of large numbers of MFE values per candidate sequence to 
be able to calculate PE is computationally demanding, which precludes application to genome-
wide analyses. Solutions proposed in the literature are a probabilistic implementation of the MFE 
computation [34] or asymptotic Z-scores of the MFE distribution based on precomputed tables 
[35]. We here present a novel approach that requires the computation of only the MFE based 
on the candidate sequence. This approach enables the routine evaluation of potential miRNA 
structures on a genome-wide scale that could be integrated as part of an existing approach for 
processing potential miRNA sequences [20, 36].

2.3 Materials and methods

2.3.1 Data
The miRNA data set was downloaded from the miRbase repository [8–10] (releases 9.2 
and 15), consisting of 4,584 and 15,172 pre-miRNA sequences respectively. The genomic 
sequence of the Epstein Barr virus type 1 [37] was downloaded from Genbank NCBI 
[gi|82503188|ref|NC_007605.1]. The test set with 250,000 random sequences was generated with 
a small C program.

2.3.2 Hardware
Computations were performed on a 200+-node Debian Linux-based network. A dedicated server 
is running Network File System (NFS)-based software for file management and Condor software 
([38]; version 7.6.1) for grid management [39]. 

2.3.3 RNA folding software 
The minimal free energy of a sequence was computed with a local implementation of the Hybrid 
software (version 2.5) of the UNAFold software package [16,40]. UNAFold extends and replaces 
the earlier mfold application [15]. The software was adjusted to enhance the performance 
about three-fold by optimizing computation-intensive computational steps without changing 
the underlying algorithm. All RNA molecules were folded as single strands at 30°C, a sodium 
concentration of 1.0 M and the option –E (energy only, no plots). In case of sequences that are not 
able to fold properly, the Hybrid software assigns an MFE of + ∞. 

2.3.4 Randomization and visualization
Distribution fitting, P-values and other statistics were computed with the software suite R 
(version 2.7.1.) [41]. To randomize sequences while maintaining the nucleotide composition, the 
Fisher-Yates shuffling procedure for selection without replacement was implemented in C, with 
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appropriate unbiased randomization [42]. For any candidate sequence, the empirical P-value PE 
was computed as PE = X/(N+1) [30], where X is the number of sequences with an MFE lower 
than or equal to the MFE based on the candidate sequence and N is the number of randomized 
sequences considered. In this study, N is taken as 1,000, in correspondence with an earlier study 
[30]. As a consequence, the lower bound of PE is zero (for X = 0) and the next lowest value is 
0.000999 (for X=1). There are no additional assumptions necessary with respect to the shape of 
the distribution of the MFE values [30]. The computed MFE values based on the randomized 
sequences were transformed into a normal (Gaussian) distribution defined by the mean and 
standard deviation of the MFE values. The normal distribution-derived PN of the MFE based on 
the given candidate sequence is being computed using the mean and standard deviation of that 
distribution. Results were visualized with R and MatLab (release 13). 

2.3.5 Multidimensional interpolation
A database of entry RNA sequences, with a length of 50 to 300 nt and a step size of 5 nt, was 
generated by computer. This range covers the length of most known pre-miRNAs, except for 
some plant miRNAs [43]. For each sequence length, the nucleotide composition of the sequence 
was varied in such a way that each of the four nucleotides occurs at least once (for sequences 
< 100 nt) or at least at 1% (for sequences > 100 nt). Per sequence length, individual sequences 
were generated with a step size for an individual nucleotide of 2%, except in the range from 20-
70% for an individual nucleotide where a step size of 1% was used. The procedure in numbers is 
as follows: for a population of sequences with a length of 50nt, the first nucleotide composition 
consists of 1% A, 1% U, 1% C and 97%G. In the next step the composition is 2% A, 1% U, 1% C 
and 96% G and so on. Then the length is increased to 55 nt and the procedure is repeated for the 
nucleotide composition, etc. This procedure generated a set of 1.4 x 106 entry sequences. For each 
of the individual entry sequences, a sequence set of thousand randomized shuffles was generated 
by Fisher-Yates randomization [42]. This procedure represents a selection without replacement, 
therefore maintains the nucleotide composition (mononucleotide shuffling). Sequence sets 
in which one or more shuffled sequences had an MFE of + ∞ were discarded and only the 
sequence sets with 1,000 MFE values were considered to maintain statistical validity. This way, 
a total of 1.05 x 106 sequence sets were generated. For each population, the mean MFE and 
standard deviation were computed and stored in a MySQL database together with the sequence 
composition in absolute nucleotide counts. To calculate the mean and standard deviation for any 
candidate sequence, an interpolation algorithm was implemented in C++ using sparse matrix data 
management for optimal memory use [44]. A sparse matrix contains only the values of interest 
and all zero or unknown values are not stored. The resulting data structure contains only the 
nucleotide composition analyzed and not all possible compositions, therefore the data can be 
stored in memory and searched efficiently. The Hybrid software used for RNA folding [16] was 
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integrated within this application to enhance performance. 

2.3.6 Sliding window analysis 
To analyze whole genomes for the presence of potential pre-miRNA candidates using the pre-
computed MFE data outlined above, a sliding window approach was implemented in C++. The 
smallest window length was set at 50 nt, incremented with a step size of 10 nt to a maximum of 
300 nt. For each window length, the step size for sliding was set at 10% of the window length. 
For each window, the MFE was computed and the nucleotide composition of the sequence was 
determined. Based on the sequence composition, the appropriate mean and standard deviation 
were estimated by interpolation (see Results) using the data search space generated. The normal 
distribution function was used to calculate PN of the MFE of the window.

2.4 Results
In the identification of potential pre-miRNA candidates in genomic sequences, the MFE based 
on the sequence relative to the distribution of random sequences with the same nucleotide 
composition is a potentially valuable criterion. However, the estimation of the empirical PE as 
parameter for the distance between the MFE based on a candidate sequence and the MFEs of 
randomized sequences is computationally intensive. It requires the computation of the MFE for all 
randomized sequences. To use the MFE distribution as criterion more comfortably, computations 
should be considerably faster. We here show the feasibility of the use of the normal distribution 
for the computation of PN as approximation of PE and for the interpolation of the distribution for 
any given sequence with the help of pre-computed MFE distributions of random sequences. 

2.4.1 Pre-computed MFE distributions of random sequences
A total of 1.4 x 106 entry sequences covering the length classes representative for most known 
pre-miRNA (50 – 300nt), were generated. Each entry sequence was shuffled 1,000 times and 
based on each of the generated sequences the MFE was calculated giving a total of 1,053,248 
populations, each consisting of 1,000 random sequences. In 346,752 generated populations one 
or more random sequence could not fold properly. When the hybrid software is not able to give 
a stable structure, the random sequence is considered not to fold properly and is therefore not 
included because it skews the data. For a single sequence on a standard desktop PC, the MFE 
computation by the Hybrid software requires approximately 0.2 sec CPU time. The 1.4 x 106 x 
1,000 computations would therefore have taken about 8.8 CPU years on a standard PC. Using idle 
CPU cycles on our grid, it took about 2 months grid time to complete all computations. All MFE 
values were computed for an annealing temperature of 30°C, but as MFE values and distributions 
change in a linear way with temperature (results not shown), the approach presented and data 
generated are, if so desired, suitable for, or comparable with, other folding temperatures.
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Randomized sequence sets can reasonably be considered to reflect a normal distribution. The 
examples for sets with 25% nucleotide composition are shown in Figure 2.1. Other compositions 
give similar results (data not shown). Such a normal distribution was demonstrated earlier for 
randomized sequences [45], although the distribution may not be an exact Gaussian distribution 
[34]. The MFE data of random sequences are therefore suitable for deriving the normal estimate 
PN of PE, based on mean, standard deviation and the normal distribution function. This way, PN is 
equivalent to the Z-score of the MFE, defined as the number of standard deviations by which the 
MFE based on a candidate sequence deviates from the mean MFE of the set of shuffled sequences 
[31,45].

Figure 2.1. Distribution of PE and PN of sequences of different lengths. For a candidate 
sequence with the given length in nucleotides n (50 to 160) and a composition of 25% of each 
nucleotide (AUGC), the MFE of 1000 randomized sequences was calculated. The distribution 
was computed and plotted (green) using the distribution density function in R. The average 
mean and standard deviation of the resulting MFE sequence set was used to define the normal 
distribution function (red). The good correspondence between the two distributions shows 
that the normal distribution-based probability PN is a good approximation for the empirical 
probability PE.
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For each sequence set, the mean and standard deviation was stored in a database together with 
the sequence composition. An example of the distribution of the mean MFE value of all sequence 
sets of 100 nt in length with different sequence compositions is shown in Figure 2.2. The 3D 
contour plot shows that the sets of sequences with high percentages of C and G nucleotides have 
low mean MFE values, which reflects the higher energy in C-G pairing. RNA molecules with an 
abundance of for example A and G are much less likely to form a stable structure and the set of 
1,000 random sequences will therefore have a high mean MFE. The plot shows that the mean 
MFE values decrease in an almost linear fashion from the low values for sequences with high C 
and G compositions to the outer edges. 

2.4.2 Multidimensional interpolation for candidate sequences
For the on-the-fly computation of the MFE distribution based on a given candidate sequence, the 
pre-computed data are used for multidimensional interpolation. For each candidate sequence, 
the composition of the sequence is determined by counting nucleotides. Sequence compositions 
with a squared Euclidean distance up to 5 in the surrounding search space are identified: the 
length of the sequence is therefore not taken into account. This value was selected on the basis 
of the analysis of known miRNAs. These analyses showed this threshold gives the smallest 
difference in P-value (data not shown) when comparing the PN to the PE of mirbase entries. For 
sequence compositions that have no points within this distance no prediction can be made and 
a PN of 1.0 is given. From the selected near-by sequences, the mean and standard deviations are 
retrieved from the database. For the candidate sequence, both mean and standard deviation of 
the MFE distribution are determined by interpolation using the data from the nearby sequence 
compositions, weighted based on their Euclidean distance to the candidate sequence. The sum 
of the weighted values gives the estimated mean and standard deviation of the MFE distribution 
based on the randomized sequences from the candidate sequence. Mathematically, the formulae 
to derive the estimated average μe are expressed as:

where wi is the weight per data point based on Euclidean distance, di is the distance per point, 
for which xi and yi are the nucleotide counts of the sequence in the search space and dt is the 
total distance over N points. N varies per candidate sequence. Even in the case were the distance 
to a point is zero (di = 0), more points are used to estimate the population average. Testing on 
sequences with the same compositions during computations would slow the software down and 
this situation is unlikely therefore it was not included in the software.

The use of PN as normal approximation of PE was evaluated by comparing both probabilities for 
different sequences. In Figure 2.1, the comparison between many PE (green) and PN (red) is shown 
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for a range of sequences with different lengths but the same nucleotide compositions. Other 
compositions give similar results (data not shown). The excellent goodness-of-fit demonstrates 
the suitability of the normal approximation PN as criterion for the evaluation of pre-miRNA 
candidate sequences.

Figure 2.2. Mean MFE distribution of sequences 100 nt in length. (A) The mean MFE of 
1000 sequences with the indicated composition is plotted in a 3D contour plot (Matlab) with 
the percentage of three nucleotides in the sequence specified on the three axes. The false color 
scale indicates a relative measure of the mean MFE: red a relatively low MFE value with a 
ΔG (Gibbs free energy change) ≤ -80 kcal/mol, yellow an intermediate MFE value (-80 kcal/
mol < ΔG ≤ -40 kcal/mol) and blue a relatively high MFE value (ΔG > -40 kcal/mol). (B,C) 
The same distribution as in (A) is shown at two different angles to help interpretation and to 
prevent optical illusions.
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The estimation of the standard deviation of the MFE distribution based on the candidate sequence 
is based on the approach for estimating the mean as described in the previous section. The 
mean and standard deviation uniquely define the normal distribution function of the candidate 
sequence. With the two values, PN is computed as the normal probability of MFE values smaller 
than the MFE  based on the candidate sequence. This way, for each candidate sequence, only the 
MFE of the structure based on this sequence needs to be computed, speeding up computations 
approximately a thousand-fold when thousand shuffled sequences are used. As the calculations 
of the estimated mean, standard deviation and the P-value based on this normal distribution take 
time as well, the software is at least several hundred times faster for short sequences and faster 
for long candidates: the Hybrid software used is slower for longer sequences, as there are more 
secondary structures. Calculating the structures of 1000 candidates takes therefore considerably 
more time than the estimation process. Based on the running time of an example run it would 
take over 260 seconds to calculate 1000 MFE values. The calculation of PN takes approximate a 
second, including the calculation of the MFE. 

Figure 2.3. Relative performance of MFE-based P-value estimations. The percentage of 
pre-miRNAs with a P-value smaller than indicated is plotted for data previously published [30], 
newly computed values from release 9.2 of MirBase based on the same method and computed 
based on the interpolation method developed here. The previously published percentages based 
on PE were 97%, 91% and 76%, respectively, whereas based on the release 9.2 it is 95%, 87% 
and 65%, and PN 96%, 93% and 87%, respectively.

We evaluated the performance of PN compared to PE for selection with respect to the entries in 
the MiRBase registry. In Figure 2.3, the distribution of PE over the pre-miRNA molecules as 
published previously [30] is compared with the PE computed of the current pre-miRNAs from 
miRbase with the same method  [30] and the PN as estimated by interpolation. It shows that 
the interpolation approach performs well. The difference between PE and PN reflects that the 
PN distribution is continuous, whereas with 1,000 randomizations, the PE distribution is discrete 
with a step size of 1/1001 = 0.000999. Although also PN is estimated on the basis of 1,000 
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randomizations, the continuity of the distribution allows more strict settings for PN and allows a 
more sensitive ranking in the lower P-value ranges. In Table 2.1, the percentages of pre-miRNAs 
that conform to given settings of the P-value are shown. With a threshold of PN = 1x10-4, about 
66.8% of all known pre-miRNAs are characterized by an MFE value well outside the distribution 
of MFE values of randomized sequences. Only 1% could not be estimated: the sequence was 
either too long or had no populations in the data set within the given distance.

To verify the performance of the applications on random sequences, a test set of 250,000 sequences 
was generated; all of different lengths and composition. The MFE and PN were calculated for each 
of these sequences. The calculations were finished in 20 minutes. In Table 2.1 the results are 
shown. Of these random sequences, 4% had no stable structure and hence no MFE and 17% had 
no populations in the data set within the given distance. Of the remaining sequences only 3% had 
a PN < 0.05. 

Table 2.1. Percentage of sequences with low P-values. 

miRNA  
data set

Total # 
sequences 
analyzed

% sequences 
with an error 

/ not found

% sequences 
with  

P <0.05

% sequences 
with  

P <0.01

% sequences 
with  

P <=0.001

% sequences 
with  

P <=0.0001

Random 250000 21.3 3.0 1.5 0.8 0.5

MirBase 15172 1.0 89.9 84.4 75.9 66.8

EBV known 25 0.0 96.0 92.0 88.0 76.0

EBV genome 566988 0.1 19.1 10.7 5.7 3.6

This table shows the percentage of sequences below the given P-value in four different data 
sets. A data set of random sequences shows a very low percentage with a P-value <= 0.001. A 
high percentage of known miRNAs sequences is within the same range.

Figure 2.4. Hairpin with internal repeat structure. Example of an RNA sequence with 
a large difference in PN versus PE, depending on the method of randomization (see text for 
details).
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2.4.3 Shuffling inconsistencies
In the analyses above, a mononucleotide randomization method (Fisher-Yates algorithm) was 
used [42], whereas in the literature a dinucleotide randomization method was recommended and 
used [30, 31, 46]. In genome-wide analyses of candidate sequences based on PN, we observed that 
several candidate sequences behaved oddly: whereas dinucleotide shuffling yielded PN = 0,98, 
reflecting not a likely candidate, mononucleotide shuffling as performed here resulted in a PN<< 
0.001, indicating a possible candidate. An example of such a sequence is given in Figure 2.4, 
which shows a predicted hairpin structure for this sequence. To prevent such sequences interfering 
with the analysis of the distribution, the mononucleotide randomization method was used.

2.4.4 Added value for miRNA prediction
Having validated the PN interpolation method with known miRNAs, we now show the added 
value for whole genome screening. We have evaluated a small viral genome for putative pre-
miRNAs regions. According to miRBase (both in release 15 and 19), this viral genome has 25 
known pre-miRNA sequences. Of the 25 known Epstein-Barr virus (EBV) miRNAs, 24 have a PN 
< 0.05 with 22 having a PN <= 0.001 (Table 2.1). Both strands of the dsDNA genome sequence of 
the human Epstein-Barr virus type 1 [37] were converted into RNA and investigated for potential 
pre-miRNA sequence. For each of the total 566,988 windows of length 50-230 nt, the MFE and 
the PN were computed. In contrast to the test set with random sequences, in EBV only 0.05% of 
the windows could not be estimated due to no sequence compositions within the given distance or 
because the sequence did not have a stable 2D structure. This shows that the application performs 
very well for viral genomic DNA. The percentage of windows with a PN <=0.001 is higher than in 
the test set with random sequences (Table 2.1). There is also the effect of overlapping windows: 
a pre-miRNA of length 150 will be found in several windows of length 200. Many of these 
candidate windows are in repeat regions (Figure 2.5). These windows can be discarded as not 
being viable locations for miRNAs: there are no known miRNAs within the EBV repeat regions. 
Although current research shows that in some organisms miRNAs can be found in repeat regions 
[47], we suggest inspection of other regions first to limit the number of relevant candidate regions.

To visualize regions of interest, the windows with a PN <= 0.001 are placed in a separate data 
set and marked with a value of one. The windows of different lengths are then combined in the 
Integrated Genome Browser [48] (Figure 2.5). With 19 different window lengths, the maximum 
of the resulting graph is 19. This indicates that all windows covering this location have a PN 
<=0.001. The peaks in the graph show regions of interest which require further research. The 
graph shows 18 regions-of-interest in the plus strand where 9 or more windows have PN <= 0.001. 
Using these selection criteria, the regions of 12 known miRNAs are found (Figure 2.5). Using 
less than 9 windows will give more regions-of-interest and will also show more known miRNA 
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regions, but will introduce more false positives as well. The analysis of the EBV genome shows 
that a (small) whole genome screening using PN-estimation results in a limited number of regions-
of-interest for further investigation. 

Figure 2.5. Identification of potential pre-miRNA candidates in the Epstein-Barr virus 
genome sequence. The genomic sequence is shown on the x-axis. The upper track (red A) 
shows the amount of windows covering the particular region that have a PN <= 0.001. A distinct 
peak gives a region of interest for a candidate miRNA. By discarding peaks within a repeat 
region (here shown in blue) and selecting peaks at or above 9 hits, 18 new regions of interest 
are found (plus strand). Also, 12 known miRNA are found. The green bars indicated by the red 
B show the EBV genome annotation (gi|82503188|ref|NC_007605.1). The lower part of the 
graph (red C) shows the EBV genome locations with the red bars indicating locations of the 
known miRNAs. 

2.5 Conclusions
Previous research has indicated that the MFE based on a miRNA sequence is significantly 
lower than the MFE based on shuffled sequences with the same composition, in contrast to the 
MFE of other non-coding RNAs [30,31,49]. As the computation of an MFE is demanding, this 
characteristic of miRNAs precludes genome screening of sequences for their MFE distribution. 
With thousand randomizations per candidate sequence, the genome-wide screening of a million 
(106) candidates would require a billion (109) computations. These would take well over six year 
to finish on a current standard desktop computer. 

We have presented a method to speed up analyses of the MFE distribution considerably, based 
on the normal approximation of pre-calculated MFE distributions based on random sequences, 
combined with a fast implementation of a multidimensional interpolation of distributions in 
sequence space. The data cover the search space for all RNA molecules with a length from 50 
to 300 nt, in total roughly equaling the sum over 4i for i = 50….300 ≈ 5.5x10180 sequences. With 
three data points per sequence (mean, standard deviation and composition), this would generate 
an immense database, whereas the resulting data space here established is based on 1.1 x 106 
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sequences and takes about 30 Mb. The latter is easily handled by standard amounts of RAM. The 
results show that although the newer miRNAs added to miRBase since 2006 seems to comply 
somewhat less with this criterion than the miRNAs analyzed before [50], the new approach 
developed here performs well on known pre-miRNAs (Figure 2.3). 

Sequence sets of 1,000 with at least one non-folding member were discarded. Yet, it could be 
argued that higher accuracy would be gained with more sets. The data is well distributed over the 
sequence data space (Figure 2.2). The interpolation of MFE distributions is based on a threshold 
of the Euclidian distance of the surrounding data points. This implies that for different candidate 
sequences different amounts of pre-computed data are used to estimate the MFE distribution. This 
prevents interpolation issues at the boundaries of the data space where less points are available. 
The data reduction and interpolation results in considerably faster computation of the likelihood 
that the MFE of the sequence is markedly lower than equivalent randomized sequences. This 
obviates the need for on-the-fly computation of the MFE values based on the randomized 
sequences.

The particular type and number of randomizations is an issue. Whereas it was thought to be 
important to maintain not only the mononucleotide compositions, but also the dinucleotide 
distribution [46], the results shown for the behavior of miRNAs in either way of shuffling [30, 
51] indicate no relevant difference, or even a slightly better performance of mononucleotide 
shuffling. These findings indicate that for miRNA prediction dinucleotide shuffling is not more 
optimal than mononucleotide shuffling. This is in agreement with the demonstration that all base 
pairings in an RNA molecule should be taken into account [52]. There is, in addition, uncertainty 
over the quality of the dinucleotide shuffling algorithm [35,51]. As demonstrated here, particular 
sequences behave oddly with respect to dinucleotide shuffling (Figure 2.4) and may distort the 
distribution derived from the computed MFE values. Inspection of such sequences indicated 
that these sequences contain a particular combination of repeat units in such a way that the 
dinucleotide shuffling is not changing the sequence in terms of MFE distribution. As a result, 
the candidate MFE is part of the distribution of shuffled sequences. As Fisher-Yates shuffling 
is the most random, this would seem to be the better method. We have followed the earlier 
recommendation of performing at least 1,000 randomizations [30], whereas other investigations 
use 500 [31] or 10,000 [51]. As few as 100 randomizations were recommended as sufficient to 
establish a reasonable Gaussian distribution [45].

In view of the gain in computing speed accomplished with PN, it has become feasible to consider 
genome-wide screenings for pre-miRNA candidates based on PN. The analyses here presented for 
the relatively small Epstein Barr virus demonstrate that indeed such analysis is now within reach. 
For a human genome, however, the approach will still ask a considerable computational effort. 
Moreover, the MFE alone is not able to distinguish miRNAs from other sequences sufficiently 
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discriminative: it has to be integrated with other parameters. The PN approach presented here 
can therefore be better implemented as part of, or next to, other approaches [20,22]. Such 
approach would generate added value for such miRNA identification algorithms or pipelines. The 
application of this criterion will add to enhanced selectivity of miRNA discovery pipelines and 
help to limit the number of candidates for experimental validation and confirmation. 

The advent of high throughput DNA sequencing technologies were shown to be particularly 
suitable for the analyses of the small RNA complement of RNA populations [4]. The identification 
of true miRNAs in such data sets is still a challenge to which the PN analysis may contribute. The 
possibility of a one-time effort to pre-compute sequence parameters that will facilitate future 
analyses should be considered an approach that could generate considerable added value for 
larger grid environments in future bioinformatics. 
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Abstract

3.1 Abstract

Background
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the 
analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) 
algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate 
due to statistical issues. Current SW implementations that run on graphics hardware do not report 
the alignment details necessary for further analysis.

Results
With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the 
computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) 
to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, 
number of gaps and mismatches. The software reports multiple hits per alignment. 

Conclusions
The added value of the new SW implementation is demonstrated with two test cases: (1) tag 
recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 
454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-
Waterman implementation.

3.2 Background
Currently available next generation sequencing platforms [1] produce millions of short reads, from 
30 bases up to several hundred bases, which are analyzed for SNPs [2], miRNAs [3] and other 
short sequences, or used for purposes such as whole genome (re)sequencing [4]. Fast, flexible 
and highly accurate alignment software is an important tool for analyzing such sequencing data. 
The alignment software should be able to process the large amounts of data within a limited 
timeframe, preferably on low cost and high-speed hardware. The software also needs to be highly 
accurate, giving the exact locations of mismatches, gaps, etc. Moreover, it is important that the 
application is flexible, so it can be used for many different purposes. 

The Smith-Waterman (SW) algorithm is an exact method to perform local sequence alignments. 
The algorithm provides a dynamic programming approach of order O(n2), which makes the 
algorithm computationally slow [5].  BLAST [6] and related heuristic approaches [7] are used to 
search sequence databases as well as aligning sequences. Through seeding and other statistical 
methods, BLAST reduces the overall number of local alignments needed [6]. BLAST is very 
flexible and in most cases fast enough to perform the analyses required. For short sequences and 
highly accurate alignments, BLAST is however less suitable [8]. 
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Dedicated software is used for finding single-nucleotide polymorphisms (SNPs) and other small 
differences between sequences. SOAP, for example, gives the user the location of SNPs using 
seeding and hash lookups, but is limited by the small number of SNPs allowed [9]. SOAP makes 
assumptions about SNP frequencies and uses statistical filters [10] which makes it, like BLAST, 
less accurate than a full SW alignment.

In recent years the use of graphics cards as platform for non-graphical data processing has taken 
off [11]. This programming platform provides ease of access to the computing power of the 
relatively cheap graphics processing unit (GPU). The programming language for NVIDIA GPUs 
is CUDA, which is an extension of C/C++. Numerous SW implementations have been presented 
upon the release of the first CUDA-enabled graphics cards and have shown that GPUs can deliver 
significant speed-ups compared to CPU implementations [12–17]. Some implementations, aimed 
at searching reads in large genome or protein databases, give a single location and highest score 
for each sequence. These implementations are, therefore, not able to indicate multiple hits and 
do not produce an alignment. Without the exact alignment it is for example impossible to find 
the exact location of a base change in a SNP. Other implementations have specific functionality 
such as accelerating protein BLAST [13]. GPGPU-based applications run on low cost, easily 
available hardware. The graphics cards fit in most standard desktop PCs as well as in high-end, 
high-performance servers. Compared to other dedicated hardware, the price-to-performance ratio 
favors GPGPU solutions. With the release of other GPGPU-based bioinformatics tools such as 
GPU-BLAST, the hardware can be used for other purposes, in contrast to dedicated hardware 
such as field-programmable gate arrays. 

In this paper we present a new GPGPU-implementation of the SW algorithm that is not only fast 
and accurate, but which also generates detailed information about each alignment for inspection. 
The alignment information supplied includes the location of the hit, the number of matches, 
mismatches and gaps, as well as the alignment profile: the visual representation of the alignment. 
The implementation is dubbed Parallel Smith-Waterman Alignment Software (PaSWAS). 
PaSWAS can use any scoring matrix, so the application is able to align DNA, RNA or protein 
sequences. The implementation also allows for more than one profile per sequence alignment, 
which is useful when a sequence is contained in its target more than once or is split up in the target 
with a large segment between the parts.

To show the added value of PaSWAS, we analyzed two datasets that each presented a different 
scientific challenge. These examples are added to show the applicability of PaSWAS in general 
research settings and are not intended as benchmarks of any available software for each case. In 
the supporting information, we show how the results of PaSWAS compare to the BLAST-based 
analysis that were routinely performed at the institutes involved (3.8 Supporting information S1). 
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Dataset (1): identity (ID) tag recovery from 454 sequence reads. An essential part of most high-
throughput sequence analysis is sequence cleaning, i.e. the removal of adaptor sequences, tags or 
vector contamination prior to subsequent analysis, for example, by using clustering algorithms or 
genome assembly programs. ID tags are used to identify sample origins when biological samples 
are mixed before sequencing. 

Dataset (2): isotype assignment of immunoglobulin 454 sequence data. Immunoglobulins (Igs) 
play a central role in the human immune response. Immunoglobulin genes are created through 
a series of genomic recombinations that bring together a number of smaller genes to create the 
functional rearranged genes. An Ig protein consists of two heavy and two light chains and is 
broadly divided into constant and variable regions. An immunoglobulin’s isotype is determined 
by the gene sequence which encodes the constant region. In human there are five isotypes; IgA, 
IgD, IgG, IgE and IgM.   

In the data here evaluated, the isotypes IgE and IgG are of interest. The IgE isotype is a  key 
component in type I allergic reactions [18]. The IgG isotype is mainly directed against invading 
pathogens and includes six polymorphic sub-types. The issue addressed here is to confidently 
classify sequence isotypes as either IgG or IgE. The portions of the constant regions captured 
with 454 sequencing reads are relatively short: 32 bases for the IgE and 76 bases for the six IgG 
isotypes. Assignment of isotype is required for downstream analyses of mutation spectras that 
explore the roles of the different Igs in immune responses. For example, it has been observed that 
non-allergic IgE sequences have significantly less mutations than allergic IgE and IgG’s [19]. 

3.3 Materials and methods

3.3.1 Hardware and software
CUDA is a C/C++ extension created by NVIDIA. The development kit and the CUDA drivers 
are freely available from NVIDIA (www.nvidia.com). PaSWAS requires at least CUDA version 
3.1 and GPU hardware version 1.2. The minimum requirements to run PaSWAS are a standard 
desktop computer or laptop with a recent, low-cost, consumer-grade NVIDIA-based graphics 
card. Development and testing were done on a single GTX285 fitted into a computer with an Intel 
Core 2 Quad CPU running at 2.40GHz with 4GB of memory. The development machine also 
holds a GTX295, with two cores each a fraction slower than a GTX285, combined almost twice 
as fast. Further testing was also undertaken on a high performance computer with two C1060s 
and two Intel Xeon CPU X5650s running at 2.67GHz, 96GB memory and 7 TB storage. The 
processing environment utilized Condor [20], to provide a single grid with 19 GPU cores and 
240 CPU nodes available in a single grid. The grid included fifteen GTX285, one GT295 and two 
C1060 Tesla graphics cards.    
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3.3.2 Smith-Waterman algorithm
The Smith-Waterman (SW) algorithm [5] is used in sequence analysis to find local alignments 
between two sequences. It requires a dynamic programming approach. In its naive form it is of 
order O(n2) for both computational resources and memory. For memory, this can be reduced to 
O(n) by storing only two rows from the alignment matrix [5]: during calculation of the alignment 
score only the previous row and the current row of the matrix are stored, together with the 
location of the highest value. When the calculations are finished, this location together with the 
highest value, the final alignment score,  is returned. This process is used for searching through 
large databases when only the best hits are relevant and the alignment profile is not necessary in 
downstream analyses.    

For the exact local alignment an alignment matrix needs to be calculated (Figure 3.1A). This 
procedure starts in the upper-left corner and steps through the matrix left to right, top to bottom 
and ends bottom-right. The location of the maximum value in the matrix indicates the end of the 
local alignment and this alignment needs to be traced back from this cell to the start.

Figure 3.1. Smith-Waterman approach. A. Calculating a score for the alignment starts at the 
top-left and ends at the bottom-right of the matrix.  The red cell is the next score that can be 
calculated with  the arrows indicating the cells used. B. Parallel Smith-Waterman approach. 
With this algorithm the score of several cells is calculated in parallel (red cells). The arrows 
point to the cells used for the calculation of each new score.
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3.3.3 Earlier parallel Smith-Waterman implementations
There are several parallel SW implementations available [12,14,15,17]. These implementations 
are primarily focused on searching sequence databases. They do not produce alignment profiles, 
which makes them fast and memory efficient but prevents visual inspection of the results. Other 
implementations [21,22] are capable of producing the alignment profiles, but show only one 
profile per alignment. These parallel SW implementations focus on two distinct properties of 
how the alignment matrix is filled (Figure 3.1B). There is a diagonal dependency of cells: cell 
at position (x,y) can only be processed when cells (x-1,y), (x,y-1) and (x-1,y-1) are known. In 
the first step only one thread is active, for cell (0,0). In each subsequent step an additional thread 
becomes active and halfway through the matrix the maximum number of threads are active: 
minimum(n,m). The number of active threads then decreases to a single thread for the last step at 
(n-1,m-1). This can be made more efficient by using idle threads to work on different sequence 
alignments [17]. In case of many sequence alignments, the processing units will be very active. 
For larger sequences this advantage disappears. In case the processor can calculate only a single 
alignment because of the length of the two sequences, there are no other cells to update and threads 
will remain idle. PaSWAS uses a similar approach in calculating the scores and tracebacks.

3.4 Results

3.4.1 Parallel Smith-Waterman Alignment Software (PaSWAS)
PaSWAS consists of three separate phases: (1) calculation of alignment scores, (2) determination 
of tracebacks and (3) production of profiles as output of the results. These steps are outlined here 
and the implementations are explained in more detail in the next sections. For the explanation 
of the application the following setup is used. On the horizontal axis there are X number of 
sequences, each of length N. These may be, for example reads from a sequencing platform. If a 
sequence is shorter than N, it is padded to length N with a special character. All sequences are 
placed in a single string x of length X*N. On the vertical axis the target sequences are placed. 
There are Y target sequences, each of length M. These sequences are padded when shorter than 
M. They are placed in a single string y of length Y*M.

In the first phase, the alignment matrix of each sequence alignment is calculated. The strings x 
and y are copied to the main (global) memory of the GPU. Each sequence alignment is calculated 
in parallel. Each alignment is updated over the diagonal of the matrix and starts at the top-left. At 
the start there will be X*Y threads active and at peak performance there are X*Y*minimum(N,M) 
threads active. During the entire phase the maximum value is tracked. This value is necessary to 
decide which tracebacks need to be calculated.
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In the second phase, the traceback of each alignment is determined. Based on user-defined 
settings, such as the maximum value in the matrix required, the tracebacks are calculated in 
parallel. This implies the reverse order of the previous phase, starting at the bottom-right (Figure 
3.1B). The profiles are stored in main memory using host page-locked memory. This keeps the 
data transfer between CPU and GPU to a minimum and there is no need to claim additional 
memory on the GPU. 

The last phase is run on the CPU and consists of producing the alignment profiles. Because of 
the parallel nature of the algorithm, the profiles are presented in the output in random order. It 
is, therefore, not possible to rely on the order of the input when parsing the output. The output 
contains additional information about each profile, including the number of gaps, mismatches and 
the start and end of the alignments.

3.4.2 Phase 1: calculation of alignment matrix
The GPU contains two types of memory: global memory and shared memory. Global memory is 
the main memory and is usually several hundred megabytes up-to 12 gigabytes in size. Shared 
memory is distributed across the GPU and is located physically close to the processors. It is 
relative small in size, but also much faster to access than global memory. Global memory is used 
to store the scores, the directional matrix and the strings. Because this is relatively slow memory 
access is therefore minimized by using the much faster shared memory on the GPU. Although 
shared memory can only contain 16 kilobytes per block, each of these memory blocks is shared 
amongst threads in the same block.. For this reason, intermediate results during processing of the 
alignments and scores are stored in shared memory. 

Figure 3.2. Subdivision of the alignment in PaSWAS. Each cell indicates a sequence 
alignment of 8 characters on the X-axis and Y-axis. The orange blocks are calculated in parallel 
in the same way as is depicted in Figure 3.1B. The arrows indicate the blocks required for the 
block being calculated.
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Each sequence alignment is subdivided into smaller matrices of 8x8 cells (Figure 3.2). The 
occupancy calculator provided by NVIDIA (www.nvidia.com) indicates that an 8x8 block is the 
most efficient setting to make optimal use of the current hardware and tests confirm these settings 
(see  Figure 3.6.S1). These 8x8 matrices map to thread blocks of 64 threads. The eight characters 
of the two sequences, the scores and the maximum value are stored using shared memory. This 
requires several data transfers from the host to global memory: the characters, the scores and 
maximum values from the surrounding blocks are retrieved from global memory. Without scores 
from a neighboring block, for example if it is the first block, scores are initialized to zero. This is 
all calculated in parallel.

Within each block, calculations start at the top-left and pass through the matrix via the diagonal 
to the bottom-right. To make use of idle threads in a block, the maximum value is determined 
during this pass as well. Upon completion, the resulting information is copied to global memory.

Similar to the cells within the matrix, each block depends on the three surrounding blocks. At the 
start, X*Y blocks of 64 threads are launched. The maximum number of thread blocks launched is 
(X*N*Y*M) / 64. For example, 100 reads of 400bp versus 100 sequences of 500bp will launch 
between 10,000 and 31,250,000 blocks at any given point in time, with each block having 64 
threads. These numbers will vary between different types of graphics cards and depend on the 
amount of global memory available.

3.4.3 Phase 2: Determination of tracebacks
After the alignment is calculated, traceback is necessary to generate the alignment profiles based 
on the values in the matrix. If the maximum value within the alignment matrix complies with the 
requirements set by the user, it is marked as the start of the traceback. This includes a check of the 
value against a user-provided minimum value to give multiple profiles per alignment.

This phase is the opposite of the previous phase: the application starts at the bottom-right block 
and the bottom-right cell of this block. When a cell is the starting point of an alignment profile, 
the information about this starting point is copied to the memory of the computer (host). The x, 
y and score are copied, as well as the direction the score was coming from: the cell located at the 
left, up or upper-left. These starting points are calculated in parallel as well, which is taken into 
account when copying the data to the host. A procedure has been implemented to ensure that each 
starting point is stored without forcing the program into a sequential flow, which would otherwise 
slow down execution. On the host an array is allocated to store the starting points. The GPU 
has an integer index which points to the first available position. When a thread detects a starting 
point this index is increased by one using the atomic function of the hardware [23]. This function 
guarantees that this thread is the only process accessing this value. The host also has a matrix 
allocated to store the direction. This directional value is also copied directly to the host.
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The thread now marks the location where the score comes from as negative in the matrix. The SW 
algorithm requires that all values are larger than, or equal to, zero. A negative sign is therefore 
appropriate to mark the traceback on the GPU without the need for additional memory space. 
Each thread mapped to a cell therefore checks not only for starting points, but also for negative 
values. If a negative value is found, the direction is copied to the host and the score at that location 
will be marked as negative. At the end of each block all negative values are copied to global 
memory for the surrounding blocks to continue the traceback until the block in the upper-left 
corner is reached.

Figure 3.3. Output of PaSWAS for a single alignment. The property column gives the name 
of the property available, followed by an example of a value for each property. The last row 
shows the alignment profile of X versus Y with ‘|’ indicating a match, ‘-‘ a gap and ‘.’ a 
mismatch.

3.4.4 Phase 3: Production of profiles
This phase is relatively short. The list produced in phase 2 contains the locations in the direction 
matrix where to start the traceback. This list is now processed. The application goes through this 
matrix using the directional information and counts the number of gaps, mismatches and matches 
and creates three strings: the sequence, the target with the gaps marked and the alignment profile. 
An example of the output is shown in Figure 3.3.
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3.4.5 Test case 1: Tag recovery
In the first test case, PaSWAS is used for short adaptor and tag detection and subsequent cleaning 
of a set of sequence reads. The data set contains 401,824 reads with lengths between 50 and 
600 nucleotides from a 454 GS Titanium platform (www.roche.com), comprising 28 different 
samples labeled by a sequence tag that defines the origin of each read. Each read has the following 
structure:

[5’ ID tag][5’ primer sequence][genomic sequence][3’ primer sequence][3’ ID tag]

The 5’ ID tag is five nucleotides long. The neighboring 5’ primer sequence is either 19 or 21 bases 
long and is used for sample identification. The 3’ primer sequence and 3’ ID tag have the same 
functionality as their 5’ counterparts. In this study only the results of the 5’ data are used. The 3’ 
data is only used to support the 5’ analysis and is not used for primary identification. 

Table 3.1. ID tag recovery in a 454 data set. 

Data PaSWAS results

Number of reads processed 401,824

Number of primers used 2

Time (sec) 92

Recovery 5’ ID tags 357,395 (88.9% of reads)

Results of ID tag recovery in a 454 data set obtained with PaSWAS. 

Identification of the exact start site of the primer is necessary to retrieve the tag and the exact 
end of the primer is necessary to prevent contamination of the genomic sequence. During the 
sequencing process small numbers of errors can be introduced. A read may therefore contain 
gaps, nucleotide substitutions and nucleotide additions compared to the primers and tags used. 
Perfect sequence matching of every read is therefore unlikely. Adding or deleting parts of the 
genomic sequence makes detecting small changes such as SNPs in the genomic sequence more 
difficult. 

PaSWAS was used to align the 5’ primer sequences to the reads and the resulting alignments were 
used to get the tag immediately adjacent to this primer sequence. 

Including the reverse complement of the primer sequence, this resulted in 1,607,296 sequence 
alignments. PaSWAS ran for 92 seconds, calculating 17,470 alignments per second (roughly 1.2 
giga cell updates per second). In the 401,824 reads 357,395 5’ ID tags were identified by PaSWAS 
(Table 3.1). 

The performance of PaSWAS (Table 3.2) is based on a relative score. This score is defined as 
the alignment score divided by the alignment length. The match score is set to 5.0, so a relative 
score of 5.0 indicates a perfect match over the entire alignment. In this data set, 44.9% of reported 
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alignments contain the entire primer sequence with no mismatches and/or gaps. There are 53.5% 
hits with a relative score of 5.0. 8.6% of the hits have mismatches/gaps at the start or end of the 
primer and a full match over the local alignment (53.5-44.9). A substantial number of alignments 
have a less-than-perfect match, which shows that detecting only perfect matches over the entire 
length of the primer will result in substantial data loss.

Table 3.2. Performance of PaSWAS in ID tag recovery. 

Description Relative score (score / length) Hits (%)

Full primer recovery X= 5.0 44.9

Perfect alignments X= 5.0 53.5

Some gaps / mismatches 4.0 ≤X ≤ 5.0 35.3

Low quality alignments 3.0 ≤ X ≤ 4.0 10.5

Very low quality alignments X ≤ 3.0 0.6

44.9% Of the hits contains the full primer sequence. PaSWAS presents an accurate alignment 
tool able to retrieve degenerated tags. The relative score used is defined as the alignment score 
divided by the alignment length.

Figure 3.4. Example sequence alignment with multiple hits per alignment. In this figure 
the alignment of a primer sequence (1-1) to a 454 read (FSGIRH301EX46I) is shown. The top 
profile shows the location of degenerated primer. The bottom profile shows the best alignment, 
starting at position 19 in the read.

A possible source of errors  is a primer that matches at more places, either because of sequencing 
errors or by chance. PaSWAS is the only GPGPU-based SW implementation now available which 
allows to investigate such cases. PaSWAS is able to produce multiple hits per sequence alignment 
and is therefore capable of detecting the correct location of the primer. Figure 3.4 shows the 
location of the primer in the top alignment profile and the best hit, starting at location 19 in the 
read, in the bottom alignment. In this case the second-best hit allows for proper tag detection in 
this read. 

The results presented for this case show that the accurate alignment accomplished by PaSWAS 
has considerably added value for retrieving degenerated tags.

3.4.6 Test case 2: Isotype assignment of immunoglobulin genes 
To show the flexibility of PaSWAS with different data types, we used an immunoglobulin data set. 
Given short (32-76 bases) sequences of immunoglobulin constant regions, the aim is to  classify 
the correct isotype of the immunoglobulins for downstream analysis of the spectra of mutations. 
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The 454 data set consisted of 55,295 reads with candidate IgE and IgG sequences. Of these, the 
IgE isotype classification required confirmation. This confirmation was based on comparison 
with the known IgE and IgG sequences.  

On a GTX285, it took PaSWAS 154 seconds to perform the 774,130 alignments (including 
reverse complement), representing a rate of 5,026 alignments per second or 72 mega cell updates 
per second. 

Table 3.3. Classification of immunoglobulin sequences by PaSWAS. 

Immunoglobulin classification IgE IgG Unclassified Total

Classified by PaSWAS 32,947 17,505 4,843 55,295

The table shows the number of sequences classified by PaSWAS as either IgE or IgG. A small 
subset of the dataset (11.4%) could not be classified as either IgE or IgG. 

Table 3.4. Number of mutations found in classified immunoglobulin IgE and IgG isotypes.

Identified by PaSWAS

IgE

Total mutations 89,895

Total unique sequences 7,120

IgG

Total mutations 115,335

Total unique sequences 6,109

For both the isotypes IgE and IgG the total number of mutations and number of unique 
sequences identified with PaSWAS is given. 

PaSWAS identified 32,947 IgE sequences and 17,505 IgG sequences in the data set (Table 3.3). 
As a consequence, there are 4,843 sequences for which the isotype could not be confirmed.  For 
the sequences classified, the number of unique sequences and the number of mutations compared 
to the sequences of the known isotypes (IgE or IgG) was determined with PaSWAS.  In Table 3.4, 
the number of mutations and unique sequences identified are presented. For the IgE sequences, 
89,895 mutations became available for analysis and for the IgG sequences 115,335 mutations. 
Figure 3.5 shows an example of the alignment profile generated by PaSWAS that is essential for 
such mutational analyses.  

Both cases presented show the applicability of PaSWAS. It is able to handle real-life sized data 
sets fast enough while delivering the accuracy of a full SW. 
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Figure 3.5. Alignment generated by PaSWAS. The top entry is part of the sequence of the 
IgE constant region and the bottom entry is part of a 454 read. A dot indicates a mismatch in 
the alignment and a minus symbol indicates a gap. Mismatches are clearly distinguishable  in 
the profile, with two gaps and one mismatch. 

3.5 Discussion and conclusions
In this paper we present PaSWAS as novel parallel implementation of the SW algorithm on a GPU. 
There are several advantages of PaSWAS over other SW implementations. The first advantage is 
that PaSWAS produces complete alignment profiles with gaps, mismatches and matches and is 
not limited to one hit per sequence alignment. To our knowledge, the parallel SW implementations 
currently put forward in the literature do not allow inspection of the actual alignments and do not 
present multiple hits per alignment. PaSWAS can, if so desired, deliver a virtually unlimited 
number of local alignments for a single sequence comparison  (Figure 3.4). This is essential for 
comparing short sequences (reads) to long sequences such as genomic regions.

PaSWAS is not limited to particular types or lengths of sequences. It can handle RNA and protein 
sequences just as easily as DNA sequences and allows the use of different scoring matrices. 
Moreover, PaSWAS is relatively fast.

Both test cases presented show that the innate accuracy of the SW algorithm as implemented 
in PaSWAS can give added value such as detailed alignment information necessary for SNP or 
degenerated tag detection . The example only shows the practical applicability of PaSWAS for 
this type of application. Other software such as Reaper [24] or Trimmomatic [25] may be as 
suitable or better than PaSWAS for tag detection. Proper benchmarking would require more and 
more detailed comparisons of different software. This is considered a challenge for the future. 

The current output of sequencing technology combined with the speed of PaSWAS implies 
that thousands to millions of sequences can be recovered and/or identified for further analysis, 
resulting in efficient use of sequence data and effective analysis. 

PaSWAS is accurate and fast, but for large genome-wide analysis, for example analyses of millions 
of sequence reads of the human genome, a cluster of GPUs is still required to make computations 
feasible in time. Each year the number of floating point operations per second performed by a 
GPU is increasing rapidly, so such genome-wide analyses will become feasible in the near future.  
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The added value of PaSWAS is particularly in producing alignment profiles. These profiles can 
be inspected visually or automatically for gaps and mismatches to allow, for example, SNP 
detection. To allow for multiple hits per sequence alignment and additional profile information, 
PaSWAS  requires additional storage and significantly more calculations compared to searching 
through a database. It is therefore inappropriate to compare the speed of this algorithm with 
search-only GPU-applications. PaSWAS is slower due to the additional calculations and memory 
access. PaSWAS currently focuses on local alignments. Features to be included in the future 
are gap extension penalties, codon insertion/deletion scoring and a user-friendly framework so 
the application can be easily plugged into existing analysis pipelines.  This is likely to result in 
different versions of the software, because we expect that some of these features will present a 
performance penalty. Such a penalty may not be attractive for all uses or users. Other features 
will be faster than calculating local alignments, because they will require significantly less 
administration and calculations. 

A revised version of PaSWAS is under development (Chapter 4). The current implementation 
is based on the vender-specific CUDA platform. This limits the use of PaSWAS to NVIDIA-
based graphics cards. These cards are widely available but to make PaSWAS run on other brands 
of GPUs, on different types of CPUs and on other many-core architectures, we are currently 
working on an OpenCL (https://www.khronos.org/opencl/) implementation of PaSWAS.

With such developments, the use of the SW algorithm on GPUs and CPUs will continue to present 
even more attractive approaches for the analyses of (next generation) sequence data.
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3.8 Supporting information S1

3.8.1 Comparison of PaSWAS to BLAST-based approaches
To show the value of PaSWAS relative to ongoing procedures in laboratories, we here show the 
comparison of the results from PaSWAS with the results from routinely used  BLAST-based 
approaches. The Blast-based analyses were used as standard in the labs we collaborated with. 
Such standard analysis should be considered as matter of fact; it may not be of have been the 
best possible solution for such analyses. Many more options for software are available. However, 
often biology-oriented laboratories stick to known procedures and do not go or dare to go into 
benchmarking or implementing new software. Although we show that PaSWAS outperforms these 
standards, the comparison here shown is not meant  as benchmark of any available alternative 
software. As the comparison is not meant as or suitable as benchmark, default BLAST settings 
were used and the BLAST was not necessarily optimized for this particular case .The results only 
demonstrate that PaSWAS is suitable for such analyzes and PaSWAS out-performs the methods 
used routinely. 

3.8.2 Tag recovery
PaSWAS is used for short adaptor and tag detection and subsequent cleaning of 454 sequence 
reads. The results are compared to the output and performance of a hardware-accelerated (FPGA) 
platform. This platform consists of dedicated hardware running a BLAST-like algorithm setup 
with default settings and is routinely used but not optimized for this particular case. Filtering of 
the data was performed after the BLAST analysis. Details of the data are given in the main text 
of the paper.

The number and identity of tags retrieved  by PaSWAS were compared to the results of the 
hardware platform analysis.  The results are given in Table 3.5 S1. PaSWAS ran for 92 seconds, 
calculating 17,470 alignments per second (roughly 1.2 giga cell updates per second). In the 
401,824 reads 357,395 5’ ID tags were identified by PaSWAS, compared to 287,995 by the 
BLAST-based hardware platform. These 287,995 tags are for 99.7%  contained in the set of the 
ID tags identified by PaSWAS. Hence only 0.3% of the tags identified by the hardware platform 
are not identified by PaSWAS. Compared to the standard set-up, PaSWAS retrieves 19.5% more 
tags, involving 88,9% of the reads. As a consequence, considerably more useful information is 
extracted from the sequence data set.



64

Ch. 3: PaSWAS

3.8.3 Isotype assignment of immunoglobulin genes 
Aim is to  classify the correct isotype of the immunoglobulins for downstream analysis of the 
spectra of mutations based on the 32-76 bases short sequences of the Ig constant regions. 

The result of  the BLAST analysis used in the laboratory is compared to the results of a PaSWAS 
analysis. Details of the data are given in the main paper.

The 454 data set consisted of 55,295 reads with candidate IgE and IgG sequences. Of these, the 
IgE isotype classification required confirmation. This confirmation was based on comparison with 
the known IgE and IgG sequences.  On a GTX285, it took 154 seconds to perform the 774,130 
alignments (including reverse complement), representing a rate of 5,026 alignments per second or 
72 mega cell updates per second. The BLAST analysis used for comparison was part of a larger 
grid application, that ran for several hours on a multicore grid. The pre- and post-processing 
was part of the analysis on the grid implementation used. The results are shown in Table 3.6 S2. 
PaSWAS identified 15.4% more IgE sequences and 5.3% more IgG sequences in the data set 
compared to the BLAST approach. As a consequence, there are 52.1% fewer sequences for which 
the isotype could not be confirmed.  For the sequences classified, the number of unique sequences 
and the number of mutations compared to the sequences of the known isotypes (IgE or IgG) was 
also compared between PaSWAS and BLAST (Table 3.7 S3).  For the IgE sequences, PaSWAS 
identified  8,906 (11.0%) more mutations for analysis and for the IgG sequences 3,001 (2.7%) 
more than the BLAST approach .Both laboratories were pleased with the way PaSWAS extracted 
more useful data from the data than the methods they were used to.  For proper benchmarking, 
however, it will be interesting and necessary to compare the results of PaSWAS with the results 
of other dedicated software and validation in the lab. 

Table 3.5. S1. ID tag recovery in a 454 data set.

PaSWAS Hardware platform

Number of reads 401,824

Number of primers 2

Time (sec) 92 120

Recovery 5’ ID tags 357,395 (88.9% of reads) 287,995 (71.7% of reads)

Overlap 99.7%

Relative performance 119.5%

Comparison of the results of ID tag recovery in a 454 data set obtained with PaSWAS and the 
hardware platform.
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Table 3.6. S2. Classification of immunoglobulin sequences by PaSWAS and BLAST. 

Immunoglobulin classification IgE IgG Unclassified Total

PaSWAS 32,947 17,505 4,843 55,295

BLAST 28,549 16,628 10,118 55,295

% change +15.4 +5.3 -52.1

The percentage change indicates the difference in number of sequences classified by PaSWAS 
compared to the BLAST-based approach.

Table 3.7. S3. Number of mutations found in the classified immunoglobulin IgE and IgG 
isotype data. 

IgE

PaSWAS BLAST Difference Difference (%)

Total mutations 89895 80989 8906 11.0

Total unique sequences 7120 6387 733 11.5

IgG

Total mutations 115335 112334 3001 2.7

Total unique sequences 6109 5917 192 2.0

For both the isotypes IgE and IgG the total number of mutations and number of unique 
sequences identified with either PaSWAS or BLAST is given. 

3.8.4 Supporting information figure S1
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Figure 3.6. S1: Timing per block size. This plot shows the speed of the PaSWAS algorithm 
(y-axis) for different thread block sizes (x-axis).     
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Abstract

4.1 Abstract

Background
Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence 
alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore 
adopted less than could be. The OpenCL language is supported more widely and allows use on 
a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel 
computing in bioinformatics by making its use and extension more simple through more and 
better application of high-level languages commonly used in bioinformatics, such as Python.

Results
The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed 
in Python. It is a generic SW implementation running on several hardware platforms with multi-
core systems and/or GPUs that provides accurate sequence alignments that also can be inspected 
for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries 
are used for automated system configuration, I/O and logging. This way, the Python environment 
will stimulate further extension and use of pyPaSWAS.

Conclusions
pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel 
SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python 
with high-performance parallel compute languages to create a developer- and user-friendly 
environment should be considered for other computationally intensive bioinformatics algorithms.

4.2 Background
A major challenge in applied bioinformatics is the adoption of advanced high-performance tools 
and algorithms by end-users with possibly low-to-moderate software engineering skills in the 
context of their biological research questions. Earlier, we presented the CUDA-only application 
PaSWAS (Chapter 3) that performs Smith-Waterman (SW) sequence alignment for any type of 
sequence on NVIDIA-based GPUs [1]. PaSWAS is relatively fast and combined the accuracy of 
SW alignment with the possibility to retrieve alignment information relevant for biologists, in 
contrast to most other parallel SW implementations. Yet, adoption of PaSWAS can be improved: it 
may be too complex to install and use. In addition, use of the application was limited to NVIDIA-
based hardware. Also in other cases, the adoption of highly promising tools and approaches is 
slower than expected. For example, the de novo assembly tool CloudBrush [2] uses MapReduce 
on Hadoop [3,4], but has seen no biological applications yet. The three versions of the NVIDIA 
CUDA-based sequence alignment tool CUDASW++ [5–7] are cited often, but citations deal in 
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the larger majority with novel software implementations. The latest version CUDASW++ 3 [7], 
for example, has been cited 116 times (as of July 2017) but none of these citations deal with a 
direct biological question. The lack of adoption of promising new developments in algorithms 
and hardware may indicate that we as developers underestimated the complexity of setting up and 
running such a new application, especially when it is limited to a certain platform. 

Another important limiting factor in the use of PaSWAS is the absence of the affine gap penalty. 
This scoring method produces biologically more relevant alignments than using only a gap open 
penalty [8]. It is therefore an important feature missing from the Smith-Waterman implementation 
in PaSWAS.  

To improve the accessibility and use of PaSWAS, we have developed an entirely new software 
package, pyPaSWAS, based on OpenCL and CUDA integrated with Python. Python is a platform-
independent programming language, with many libraries appropriate for bioinformatics, such as 
BioPython [9] and SciPy [10]. The open compute language OpenCL [11]  is the current standard 
for clusters and/or multi-core CPU/GPU’s to speed-up analyses up to several orders of magnitude 
compared to single core CPU versions. OpenCL is similar to CUDA, but is supported by a 
growing number of manufacturers, including Intel, NVIDIA, Apple and IBM. By supporting 
both CUDA and OpenCL, pyPaSWAS runs on many platforms, including CPUs, GPUs other 
than NVIDIA-based GPUs and so-called accelerator cards. We integrated the PaSWAS CUDA 
(Chapter 3) and OpenCL codebases with Python through pyCUDA [12] and pyOpenCL [12]. The 
original PaSWAS code was extended to add support for the affine gap penalty scoring method [8]. 
The result is a versatile Python-based user-friendly application for SW sequence alignment on a 
variety of multi-core systems. We propose this strategy as showcase for the integration of new 
software based on these compute languages with common programming tools such as Python to 
promote the adoption of advanced tools and applications in applied bioinformatics. 

4.3 Implementation
The new software package pyPaSWAS is implemented in Python (2.7 and up) and is run from 
the command line. It uses the libraries pyOpenCL [12] and pyCUDA [12] for device handling, 
memory allocation and kernel invocations to run the core PaSWAS Smith-Waterman code on 
the parallel device. pyPaSWAS depends on OpenCL 1.2+ [11] or Cuda 2.0+ [13], numpy[14] 
and biopython [9]. All other processing, such as Input / Output handling, logging and exception 
handling, are done in standard Python. The SeqIO class from bioPython [9] is used for file input. 
Its reference manual [15] lists all formats supported, including multi-fasta, genbank and fastq. 
Input file formats not supported by bioPython can be implemented by extending the Core.Reader 
class. Output can be formatted in a custom format by extending the Core.DefaultFormatter 
class. The Core.SAMFormatter class generates SAM output and can also be used as template 
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for other custom output. The SAM descriptors (Table 4.1) are particularly useful for further 
processing output data. File-based configurations allow for storing settings and consistent reruns 
of the application. The user can supply appropriate scoring values for alignment, for example 
substitution matrices, to adjust the analyses to the desired specifications. The Core.Score module 
can be adjusted to support any 255 by 255 scoring matrix. The accompanying wiki [16] provides 
a complete description of the command line arguments as well as examples of how to run 
pyPaSWAS. 

The structure of CPU hardware differs from GPU hardware and running OpenCL code designed 
for GPUs is not optimal [17]. Therefore, two OpenCL versions based on the CUDA-based 
implementation in PaSWAS were developed, one for GPUs and one for CPUs [18]. The latter makes 
better use of CPU hardware for faster sequence alignments. The two OpenCL implementations 
differ from the previous CUDA implementation only in the use of specific OpenCL calls; no 
changes have been made to the underlying algorithms. 

The OpenCL implementation runs on multi-core hardware supporting OpenCL 1.2, such as 
Intel/AMD CPUs and accelerator cards (GPUs and Xeon Phi). With the CUDA implementation, 
pyPaSWAS runs on all NVIDIA GPUs with compute capability 1.2 and above, which includes 
support for all recent NVIDIA GPUs, including laptop versions, Teslas and the GTX-based cores. 
By default, pyPaSWAS runs on the CPU using the CPU-optimized OpenCL code. To use other 
parallel devices than the CPU, the user changes the configuration or selects the appropriate device 
through command line options.

pyPaSWAS opens the platform selected, sets the appropriate memory usage and other parameters 
relevant for the parallel device automatically, based on settings and data to be analyzed. 
pyPaSWAS allows for fine grained control over the use of the parallel device, such as memory 
usage and number of compute cores to be used. CPU hardware allows for limiting the number 
of cores used by an application. This enables using the computer for other tasks and is necessary 
when pyPaSWAS runs in a cluster environment.  This fine-grained control level presents a major 
improvement over the earlier PaSWAS (Chapter 3) [1] in addition to the integration with Python. 
All options are listed on the wiki-page [16] and are accessible through the command line (‘-h’).  

As its predecessor (Chapter 3) [1], pyPaSWAS documents all alignment details and allows for 
filtering of the resulting alignments. Parameters for filtering are listed in Table 4.1. Parameters 
can be set through the configuration file or through command line options. This gives the ability 
to select which hits are relevant and will be sent to the output file. The scoring value and all 
related values, such as query coverage, are present in the output and can also be used to filter the 
results further afterwards (Table 4.1).
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4.3.1 Affine gap penalty
For biologically more relevant alignments, the affine gap penalty method [8] scores the opening 
of a gap differently than for extending a gap. The original PaSWAS code only supported the gap 
penalty scoring method, which means that each gap has the same score, no matter how many 
gaps are in front of it. The affine gap penalty implementation requires a scoring matrix M, to keep 
track of the match scores and scoring matrices I and J to keep track of the scores for gaps in the 
target (I) and query (J) sequences. The PaSWAS implementation of the direction matrix has been 
extended to record which of the three matrices resulted in the highest score. The downside of 
using an affine gap method is that it requires creating two additional matrices (I, J) of the same 
size as the already existing scorings matrix (M). This means that a 100x100 sequence alignment 
using the affine gap requires not 10,000 scoring values, but 30,000 scorings values. Next to an 
increase in memory usage, additional calculations compared to the original SW implementation 
are needed, making the affine gap method slower (see S3). The affine gap penalty method is 
required in all cases, for example when the gaps originated from technical (NGS) issues and 
do not have any biological meaning. In such cases, the PaSWAS code is used to perform a SW-
alignment without a gap extension penalty. The user controls the use of the affine gap penalties by 
setting a value other than zero for the gap extension penalty (the ‘-g’ option). 

Table 4.1. Options in PyPaSWAS for selecting and filtering the alignments.

Filter 
name*

Value range** Default SAM 
descriptor

Description

lower_
limit_score

0.0 < x <= 1.0 1.0 Allows for more hits per alignment. All hits with a score 
within this fraction of the maximum score found are 
reported. Used during the backtracing procedure for 
reducing the number of alignments to be processed.

minimum_
score

0 < x 30 AS:i: Minimum score of an alignment. Used during the 
backtracing procedure for reducing the number 
alignments to be processed.

filter_factor 0.0 < x <= 1.0 0.2 AS:i: For each alignment the theoretical maximum score 
is calculated: length of the shortest sequence times 
the maximum score for a match (eg. the score for a 
perfect alignment). Only alignments with a score above 
filter_factor times this theoretical maximum score are 
returned. 

query_
coverage

0.0 <= x <= 1.0 0.2 QC:f: Minimum fraction of the query covered in the alignment 

query_
identity

0.0 <= x <= 1.0 0.2 QI:f: Minimum fraction of matches relative to the query

relative_
score

0.0 < x <= score 
match

2.0 RS:f: Minimum score relative to the shortest sequence. A full 
match will give a relative score of the match score, for 
DNA/RNA sequences the default is 5.0

base_score 0.0 < x <= score 
match

2.0 BS:f: Score of the alignment divided by the length of the 
alignment.

*Filter name: all parameters available for filtering; ** value range: the boundaries for the settings of the 
corresponding parameter.    
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4.4 Results and discussion
The performance of pyPaSWAS is expressed as the time required for the number of SW alignments 
processed. Six different configurations were tested for performance (Table 4.2), with variations  
in hardware (Intel or NVIDIA), parallel device (CPU or GPU), code usage (optimized for CPU or 
GPU), number of cores used and the language involved (OpenCL or CUDA). 

Table 4.2. Configurations for testing the performance of pyPaSWAS.

Configu-
ration

Hardware Parallel 
device

Code 
optimized for

Nr. of 
cores

Language Time 
for 2720 
alignments 
(s)

GCUPS* Speedup 
compared 
to F

A

Intel i7 CPU

CPU
1

OpenCL

119.2 0.70 0.21

B 8 106.4 0.82 0.21

C
GPU

1 812.6 0.10 0.03

D 8 192.3 0.44 0.12

E NVIDIA 
GTX 1070 GPU GPU 1920

OpenCL 57.8 1.48 0.36

F** CUDA 17.6 4.64 1.00

*GCUPS: giga cell updates per second. **Configuration (F) is equivalent to the earlier PaSWAS [1], and 
is therefore used as reference here. The last two columns give the amount of time spent on the largest set of 
alignments in the performance analysis and the speedup compared to the configuration (F).  

In all cases, pyPaSWAS was run on a standard desktop (Intel i7 -2600K) running Ubuntu 
16.02 and holding an NVIDIA GeForce GTX 1070 GPU. Timing of alignments was done by 
determining the run time of the application between first and last API calls to the Python libraries 
(either pyOpenCL or pyCUDA), so overhead such as file I/O is not taken into account. The full 
report is in Supporting Information S1. Performance analysis with the same data set on a standard 
laptop is in Supporting Information S2. 
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Figure 4.1. Performance of six different configurations for pyPaSWAS in Smith 
Waterman (SW) alignments. The time required (Y-axis) for processing an incremental 
number of alignments (X-axis) is plotted. For details of the different configurations A-F see 
Table 4.2.
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As test set for the performance analysis of pyPaSWAS on the different hardware configurations, 
the Ankyrin repeat protein set from the domestic dog (Canis lupus familiaris; CanFAM 3.1, 
GCA_000002285.2), consisting of 348 proteins was used. For the performance analysis, the 
eight proteins not labeled ‘PRED’ were selected and aligned to an increasing number of proteins 
from the total data set. The time required to calculate the increasing number of SW alignments 
by the six configurations is shown in Figure 4.1. The time for performing the maximum of 2720 
sequence alignments is also given in Table 4.2. As these protein sequences differ in length, it is 
common to indicate the speed of the SW computations in giga cell updates per second (GCUPS) to 
create an performance indicator independent of sequence length. The alignment output itself and 
the biological context were not considered. In this example data set the CUDA implementation 
running on the GPU (F) is the fastest configuration and is 2.8 times faster than the OpenCL version 
optimized for the GPU (E). The data also shows that the fastest configuration (F) is 33.3 times 
faster than the for GPU optimized OpenCL version on single CPU core, showing the advantages 
of parallel processing of SW alignments on a GPU. The for CPUs optimized OpenCL version (B) 
is 1.8 times faster than the for GPUs optimized version (D) on the same CPU. This shows that 
creating an OpenCL version of an application optimized for a particular hardware platform can 
speed up the application further. The performance tests using only a single core demonstrate the 
ability of pyPaSWAS to scale-down the number of cores used for the sequence alignments. The 
CUDA version (configuration F) is faster than the OpenCL version on a GPU (configuration E) , 
showing the added value of having a CUDA version in this case. There are several other reasons 
for having CUDA support in pyPaSWAS. In general, CUDA is faster than OpenCL [17]. Also, on 
some systems we tested, notably Apple Macs, OpenCL is not fully supported on NVIDIA GPUs, 
so CUDA is the only option available. Furthermore, several NVIDIA GPU products support only 
32 bits memory allocation for OpenCL, which limits the amount of usable memory to 2 GB, but 
allow 64 bits memory for CUDA.      

Analyses of the impact of the affine gap penalty on overall performance when the using the same 
data sets show that, on a desktop PC, all configurations are slower: from 1.14 times to 2.0 times 
slower (Supporting Information S3). Combined with the fact that memory requirement is also 
three times higher, it is therefore opportune to make sure that the affine gap is relevant for the 
task at hand.  

A major advantage of PaSWAS for biological analyses is that it documents all alignment details 
necessary for further analysis, in marked contrast to other parallel SW implementations that focus 
on computational speed of the best alignment (Chapter 3) [1]. When for example compared to 
CUDASW++ version 3.0 getting the alignment profile comes with a performance penalty of about 
25x (119.0 GCUPS [7] compared to 4.64 GCUPS) on similar hardware. The novel implementation 
pyPaSWAS here presented is more versatile for biological analysis then the original PaSWAS 
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code-base: not only full alignment details are stored and available for inspection, it also allows for 
gap extension penalties in scoring the alignment. In addition, the output can now also be formatted 
as a SAM file. Also, pyPaSWAS has more command line options and the output contains more 
relevant information, such as query coverage and query identity scores. The Python codebase 
enables bioinformatics researchers to add other output formats, store the alignments directly in 
a database or connect the application with workflow systems such as Galaxy [19]. In addition, 
the source repository holds configuration files to build Docker containers, including one Docker 
container with CUDA and OpenCL support, to allow for easy installation of pyPaSWAS and the 
required drivers and libraries.    

As data volumes continue to grow and analyses tend to become more complex in every branch 
of bioinformatics, the added value of advanced high-performance IT solutions such as multicore 
CPUs and GPUs is transforming into a need for such solutions. Multicore CPUs for Blast [20]  
and BWA [21], cluster computing for Interproscan [22] and cloud infrastructure for a wide range 
of biomedical/bioinformatics applications are available [23]. High performance technology 
used in mathematics [24,25] and audio/video processing [26] rely on GPUs and OpenCL. Wider 
acceptance of OpenCL -based GPU applications in bioinformatics is likely to be promoted 
by packaging the C++ code for parallelization in a much more common used language such 
as Python as demonstrated here. The pyPaSWAS integration of Python with OpenCL should 
promote further use of advanced algorithms in bioinformatics. Given this successful showcase for 
the integration of OpenCL with new or existing software in Python, it could be considered to port 
bioinformatics algorithms that make use of advanced high performance technology to Python, R 
[27], Matlab [28] or Java [29] in a way similar to pyPaSWAS.  This will promote use, maintenance 
and development of high-performance implementations of bioinformatics applications further. 
Such an approach could benefit for example algorithms for genome wide association studies [30], 
eQTL analyses [31] or phylogenetics [32]. 

4.5 Conclusions
pyPaSWAS is the implementation in Python of a general-purpose SW alignment supporting both 
the basic gap penalty method as well as the affine gap penalty method. The application runs fast 
on many multi-core systems, including GPUs and Xeon Phis, while still offering the desired 
flexibility to inspect any given alignment and all its parameters. The Python-based application 
will increase the use and utility of the parallel SW approach of PaSWAS. The smooth integration 
of Python with the much more complex languages OpenCL and CUDA for parallel execution of 
the SW algorithm makes pyPaSWAS easier to develop and maintain than its predecessor. The 
relative ease of Python, as well as the much larger community of programmers in Python, is likely 
to promote adoption and use, as well as facilitate addition of novel features to pyPaSWAS. 
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Abstract

5.1 Abstract

Background
Next-generation sequencing requires sufficient DNA to be available. If limited, whole-genome 
amplification is applied to generate additional amounts of DNA. Such amplification often results 
in many chimeric DNA fragments, in particular artificial palindromic sequences, which limit the 
usefulness of long sequencing reads.

Results
Here, we present Pacasus, a tool for correcting such errors. Two datasets show that it markedly 
improves read mapping and de novo assembly, yielding results similar to these that would be 
obtained with non-amplified DNA.

Conclusions
With Pacasus long-read technologies become available for sequencing targets with very small 
amounts of DNA, such as single cells or even single chromosomes.

5.2 Background
Modern sequencers require sufficient material to work with: the Illumina and Pacific Bioscience 
(PacBio) platforms prescribe at least three micrograms, but recommend at least five [1] 
micrograms. Long-read sequencing technologies such as those offered by PacBio and Oxford 
Nanopore Technology (ONT) additionally require high molecular weight (HMW) DNA as a 
starting material, i.e. material in which individual DNA stretches are long. In many biological 
settings, obtaining sufficient amounts of DNA of the required quality and length is problematic, 
such as in studies on single cells [2,3] or single selected chromosomes [4]. To overcome this 
limitation DNA is amplified, starting from as little as picograms, in a process called whole-
genome amplification (WGA) [5].

A major issue with the WGA process is that it introduces specific chimeric fragments [6,7] 
consisting of one or more inverted repeats (Figure 5.1), so-called palindromes. This effect is 
partially alleviated by de-branching, however, chimeric fragments still remain [8]. In Illumina 
paired-end (PE) sequencing these fragments are then sheared into small sub-fragments before 
library preparation, which reduces the effect on subsequent analyses of the palindromic fragments 
as they will occur in only few reads. In other approaches to sequencing, however, the full fragments 
are used. For Illumina mate-pair (MP) sequencing, long palindromic fragments will result in pairs 
with incorrect directions and unpredictable insert sizes. As a result, short read MP libraries based 
on WGA are problematic for read mapping and de novo assembly. 
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Figure 5.1. The introduction of palindromes by whole-genome amplification (WGA) 
and correction of these sequences with Pacasus. The colored squares in this figure indicate 
the four different nucleotides. In whole-genome amplification a DNA-polymerase binds to 
the DNA and starts making a copy of that strand (left-side of the image). Palindromes are 
introduced when during WGA the DNA-polymerase continues with elongation (indicated by 
the arrow) along an already created WGA product (a), generating a palindrome. In this example 
this incorrect elongation occurs several times (b), resulting in a DNA fragment containing 
four copies of the original fragment (c), which is sequenced. Pacasus detects the palindrome 
sequence by aligning the read’s reverse complement to itself (d) and splits the read in two 
smaller reads at the center of the alignment (split 1). This process is repeated and splits the 
two resulting reads again (split 2), yielding four separate, ‘clean’, reads. The full set of reads, 
corrected and left intact, is then used in, for example, read mapping or de novo assembly.

Tools specifically aiming to detect and correct chimeric reads have been proposed (e.g. uchime 
[9]) and work well for paired-end and single-end short-read technologies. For long reads however, 
the palindromic nature of the sequence hinders read mapping and renders de novo assembly 
highly problematic. Due to the high base-calling error rate of the long read technologies (11-
38%) [10,11], finding and correcting these palindromic constructs in long reads cannot be done 
by exact string matching. Algorithms for improving long-read quality in general are available: 
Proovread [12], PBcR [13] and ECTools [14] use either Illumina HiSeq reads or assembled 
contigs based on HiSeq data to increase the quality of base calling. While Proovread can also 
detect chimeric fragments, it specifically aims at detecting PCR artifacts joining fragments 
originating from different regions in the genome. This is done by mapping HiSeq reads, assumed 
to be available, which do not have these chimeras.  The location of the chimera in the long read 
is then detected by finding discrepancies in the short-read mappings. This approach is unfit for 
solving the chimeras occurring due to WGA: the HiSeq reads are based on the same fragments 
as the long reads and will therefore contain the same nucleotide sequence information. As a 
consequence of this lack of suitable methods to correct these chimeras, the use of WGA with 
long-read technologies was usually not advised [6], which precludes the application of long read 
technology to answer essential biological questions at the single-chromosome or single-cell level.

Here, we introduce a new method, Pacasus, for correcting palindromic, long, error-rich reads 
without the loss of nucleotide information and with only very limited impact on repeats and 
palindrome sequences of biological origin. The method relies on a Smith-Waterman alignment 
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implementation called pyPaSWAS [15,16], which supports fast processing on multicore CPUs, 
GPUs and Xeon Phis to detect palindromes and iteratively corrects them by splitting up reads. 
We demonstrate its performance on PacBio sequencing data of Arabidopsis thaliana as well as 
on flow-sorted gorilla Y chromosome data, by using the multiple displacement amplification kit 
REPLI-g for the amplification process. 

The gorilla Y chromosome was selected because primate Y chromosomes are relatively short and 
contain many repeats, rendering them difficult to sequence and assemble. Even in one of the most 
complete assemblies, that of Homo sapiens, more than half of the sequence of Y is still unknown 
[17]. To obtain a higher read coverage of the gorilla Y chromosome, a recent paper [4] used flow-
sorting and WGA. PacBio long reads, Illumina HiSeq PE and MP-libraries, transcriptome data 
and PCR sequences were used by the authors as well (Bioproject PRJNA293447). The RecoverY 
tool [4,18] presented in same paper was designed to identify short reads originating from the 
Y chromosome. Based on these data, the authors created a hybrid (PacBio + HiSeq) assembly, 
here labeled ‘GorY’. The authors also used HGAP [19] and MHAP [20] to create PacBio-only 
assemblies, but these resulting assemblies were of suboptimal quality. In this manuscript, we used 
the PacBio data after WGA generated by Tomaszkiewicz and colleagues [4] to show the benefits 
of correcting palindrome sequences in this data set with an improved quality of the PacBio-only 
de novo genome assembly.

5.3 Results

5.3.1 Pacasus corrects many palindromic sequences found in WGA data
To demonstrate the added value of Pacasus in the analysis of PacBio reads generated from WGA 
DNA samples, we applied it to several data sets of Arabidopsis thaliana and a data set of the 
gorilla Y chromosome [4]. Table 5.1 lists the original number of reads, the number of reads that 
were found to have chimeras and the number of clean reads after correcting the palindromes. In 
the Arabidopsis samples, 40-50% of reads contained at least one palindrome, with some reads 
containing up to 15 (Figure 5.5 S1). This demonstrates the extent to which palindromes pose a 
problem in PacBio WGA data and illustrates that Pacasus effectively detects and corrects these. 

Table 5.1 shows that Pacasus decreases the average read length of the A. thaliana set by about 
48%, i.e. preserving much of the long-range information. In the gorilla read set, 11.8% of the 
reads contain palindromes, less than in the A. thaliana sets. The average length of the gorilla reads 
before processing with Pacasus is 5468b, i.e. 61.2% of the average length in the total Ath-WGA 
data set (8934b); after correcting the palindromes this is increased to 90.3%: 4234b compared to 
4689b. Pacasus finds palindromes in only in 0.5% of the reads in the non-amplified control data 
set, Ath-Ctrl. These reads will be a mixture of false-positives and missed/missing SMRTBell 
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adaptors, which also cause palindromic sequences. The low number of palindromes found in the 
control set by Pacasus means that there is no need to perform subsequent analyses on ‘Ath-Ctrl-
Clean’: the resulting de novo assembly for example will not be different from the one based on 
the original ‘Ath-Ctrl’ set.

The GC contents of the read sets were compared to that of the A. thaliana reference genome 
and no biases were observed for both the amplification process and the palindrome detection by 
Pacasus (Figure 5.2).

Table 5.1. Effect of correcting palindromes on number of reads and average read length.

Sample Before cleaning Reads with detectable  
palindromes

After correcting

Number of 
reads

Average 
length (b)

Number of 
reads

Number of 
reads (%)

Number of 
reads

Average 
length (b)

Ath-WGA1 462,138 9,326 221,001 47.8 869,826 4,660

Ath-WGA2 447,364 8,544 195,263 43.6 769,027 4,721

Ath-Ctrl 940,162 5,680 4,714 0.5 938,196 5,681

GorY-WGA 3,596,236 5,468 426,188 11.8 4,546,488 4,234

Effect of correcting palindromes on the number reads and average lengths of these reads. Note: 
the Ath-Ctrl shows a small increase in average read length after correction and a lower number 
of reads. This is because Pacasus removes very short reads from the output.

5.3.2 Correcting palindromes improves read mapping
Using the BLASR default settings and an additional filter of at least 80% nucleotide identity 
between read and reference, both the raw and clean read sets map well (Table 5.2). Palindromic 
reads map partially, leaving a (potentially large) proportion of the reads unmapped. This becomes 
clear when only mappings are considered where 80% and 95% of the complete read can be 
aligned: mapping efficiency for the raw read set drops from 99% to 44% and finally to 34%. 
For the clean reads, the mapping rates are 99%, 81% and 66% respectively, higher than for the 
noWGA read set (95%, 72% and 57%). Average coverages show similar effects. These mappings 
statistics indicate that the clean reads map more accurately and with higher read coverage than 
the raw reads do. The complete mapping reports are presented in Supplementary materials 2-4.

To verify the palindromic nature of the reads, the locations of the clean reads were also 
investigated. If the raw reads indeed contain palindromic sequences, the parts of the clean reads 
should map to the same region in the genome (in contrast to chimeric reads, where the parts 
originate from different regions in the genome). To verify this, the longest distance between the 
mapping locations of each part of the corrected reads was calculated and related to the length of 
the original raw read. 96.5% of these mapping distances are within the read length of the original 
read, showing that most of the clean reads map to the same region in the genome and that the 
original raw reads indeed contain palindromes, not other types of chimeras.
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Figure 5.2. %GC density plot of Ath-Ctrl (green), Ath-WGA (blue), Ath-Clean (red) and 
the A. thaliana reference genome (black). The curves for Ath-WGA and Ath-Clean overlap 
completely. None of the three read sets show biases towards a certain GC-content when 
compared to the reference genome.

5.3.3 Assembly quality of corrected WGA reads approaches that of non-
amplified data
To assess whether correcting palindromes also benefits assembly, we investigated two realistic 
scenarios using the A. thaliana data (Ath-WGA, Ath-Clean, Ath-Ctrl): PacBio-only assembly 
using Canu and a hybrid assembly, combining PacBio and Illumina HiSeq data, using DBG2OLC/
Sparse. On the control data set Ath-Ctrl, this results in assemblies with overall good assembly 
statistics, with DBG2OLC yielding the best results  (Table 5.3). Repeating the process with the 
original WGA data gives far worse results; the DBG2OLC assembly has, for example, an N50 
value about 26-fold smaller than the N50 value of the control data and the assembly covers only 
about half (49.7%) of the reference genome.

Correcting the palindromic reads improves the hybrid assembly: although the N50 is lower than 
that of the Ath-Ctrl assembly, the assembly length and genome coverage are higher. 

The Ath-Clean PacBio-only assembly is even better than the assembly based on the Ath-Ctrl data, 
with a higher N50 and genome coverage (Table 5.3). This is also reflected by the contig length 
distribution (Supplementary materials 5). Apparently, the removal of conflicting information 
outweighs the loss of long-range information. 
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The hybrid assembly and the PacBio-only assembly based on Ath-Clean are longer than the 
TAIR10 reference genome (119.7Mb), being 123.9Mb and 131.0Mb respectively. The full 
genome is thought to be approximately 135Mb [21], so this additional sequence information 
could be new genomic data. No further testing has been done to verify this.

Table 5.2. Read mapping statistics

Reads mapped (%) Average coverage Average read length

Alignment filter - 80%  95% - 80%  95% - 80%  95%

Ath-WGA 99 44 34 40.5 17.4 13.4 8,987 5,568 5,397

Ath-Clean 99 81 66 55.1 48.1 41.2 4,690 4,532 4,697

Ath-Ctrl 95 72 57 34.2 29.2 24.8 5,799 5,583 5,852

Statistics of read mappings with BLASR to the TAIR10 reference genome, calculated without 
filtering for a minimum read alignment length (‘-’) and after filtering for reads aligned with at 
least 80% or 95% nucleotide identity. 

Table 5.3. Statistics of the de novo assemblies 

PacBio-only (Canu) Hybrid (DBG2OLC/Sparse)

Read set Ath-Ctrl 
(C1)

Ath-WGA 
(C2)

Ath-Clean 
(C3)

Ath-Ctrl 
(D1)

Ath-WGA 
(D2)

Ath-Clean 
(D3)

No. contigs 852 2,128 1,015 476 4,818 1,753

Length (Mbp) 115.6 116.8 123.9 110.9 108.9 131.0

Longest contig (Kbp) 1,181 655 3,402 5,667 246 2,239

GC (%) 36.0 36.2 36.12 35.97 36.57 36.21

N50 (Kbp) 293 73 302 823 32 278

L50 117 479 109 33 951 113

Covered  (%) 86.6 91.2 97.3 85.1 49.7 96.3

Dupl. ratio 1.09 1.07 1.06 1.08 1.34 1.13

Statistics on the PacBio-only and hybrid assemblies of the various datasets. Note that the 
TAIR10 reference genome is 119.7 Mbp, with the full genome thought to be approximately 
135 Mbp [21].

5.3.4 De novo assembly based solely on long reads of flow-sorted 
chromosomes is now possible 
After correcting the palindromes in the original gorilla PacBio reads (see section 5.3.1) we were 
able to create two PacBio-only assemblies: GorY-WGA based on the raw data set and GorY-
Clean, based on the clean reads. The GorY-WGA assembly was added to the comparison to 
stay in line with the Arabidopsis thaliana analyses described in the previous section and also 
to verify that the increase in quality is not only due to a better performing software application. 
Figure 5.3 shows the length distributions of both the contigs and the scaffolds in the previously 
published GorY hybrid assembly and the contigs in the new GorY-Clean / Gory-WGA PacBio-
only assemblies. The GorY scaffolds were created by using long-range information to connect 
the contigs [4]. The scaffolds contain no additional information, except sequence contiguity. Gaps 
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between contigs in the scaffolds are filled with Ns. The top-10 longest contigs of GorY-Clean 
are as long as the top-10 longest GorY scaffolds (Figure 5.3), showing that the new contigs 
already contain the same contiguity except that the gaps are filled with sequence information. 
The scaffolded GorY assembly seems larger than the GorY-Clean one (Table 5.4, Supplementary 
materials 6). However, this is misleading as it contains 2.4 Mbp of Ns; the actual nucleotide 
content of the GorY assembly is 1.3 Mbp less than that of GorY-Clean. This is corroborated by 
further assembly statistics (Table 5.4). In terms of structure, the GorY-Clean assembly resembles 
the human Y chromosome assembly more than the original assembly (Supplementary materials 
7). The GorY-WGA assembly is also of higher quality compared to the GorY contigs, but not as 
good as the GorY-Clean assembly. We attribute the quality increase of GorY-WGA compared to 
the GorY assembly to the use of Canu [22];  the improvement of GorY-Clean over GorY-WGA is 
most likely due to correcting the palindromic reads with Pacasus. 

Figure 5.3. Contig length distributions. Contig length (y-axis) distribution of the published 
gorilla Y chromosome (GorY), the contigs underlying this assembly (GorY contigs), the de 
novo assembly based on raw PacBio data set (GorY-WGA) and of the de novo assembly of 
the cleaned reads (GorY-Clean). The x-axis shows the fraction of the assembly (e.g. the N20, 
N50, etcetera).

The accuracy of the newly constructed GorY-Clean contigs becomes more apparent when looking 
at the read mapping statistics (Table 5.5). To calculate these, only contigs are used as these contain 
sequence information: reads will not map to Ns in the scaffolds. The gorilla Illumina HiSeq reads 
map better to the human reference genome (HumY) than to the original GorY assembly (in terms 
of genome coverage) and overall mapping accuracy is highest for both newly created assemblies. 
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The GorY-Clean assembly is better covered by the read data than the GorY-WGA assembly is, 
regardless of whether corrected or non-corrected reads are used for evaluation. These results 
indicate that, apparently, currently available assemblers (in our case Canu) are better at handling 
chimeric reads than previous software and that the newly created assemblies (GorY-WGA and 
GorY-Clean) are more accurate than GorY. 

The average coverage when using the raw reads increased from 73.15x to 83.21x for the GorY-
WGA and GorY-Clean respectively and with the corrected reads from 97.08x to 109.67x. These 
results show that the de novo GorY-Clean assembly fits the read data best and, as seen with the 
Arabidopsis thaliana data, mapping accuracy increases  after correcting the palindromic reads.

Table 5.4. Human and gorilla Y-chromosome assembly statistics

Assembly 
size (Mbp)

Ns  
(Mbp)

Non-Ns 
(Mbp)

No. 
sequences

N50  
(Kbp)

Longest seq. 
(Kbp)

HumY 57.2 30.4 26.8 1 57,227

GorY, contigs 23.0 0 23.0 3,001 18 143

GorY, scaffolds 25.4 2.4 23.0 697 98 486

GorY-WGA, contigs 26.5 0 26.5 1,128 32 256

GorY-Clean, contigs 24.3 0 24.3 1,062 42 494

Assembly statistics for the published human and gorilla Y chromosome assemblies and the 
new assemblies.

Table 5.5. Read mapping statistics on the human and different GorY assemblies.

 HiSeq GorY-WGA GorY-Clean

Assembly Length 
(Mbp)

Genome 
coverage 

Read 
cov.

Genome 
coverage 

Read 
cov.

Genome 
coverage 

Read 
cov.

(Mbp) (%) (Mbp) (%) (Mbp) (%)

HumY 26.8 22.3 83 1897 18.2 68 58.87 18.5 69 74.84

GorY 23.0 18.3 80 1169 21.1 92 71.33 21.1 92 99.15

GorY-
WGA

26.5 24.9 94 1353 26.5 100 73.15 26.5 100 97.08

GorY-
Clean

24.3 22.4 92 1586 24.3 100 83.21 24.3 100 109.67

Mapping of HiSeq, PacBio WGA and PacBio cleaned reads on the human Y chromosome 
(HumY), the gorilla Y chromosome (GorY) and the newly created gorilla Y assemblies (GorY-
WGA, GorY-Clean). The read coverage is the average number of reads that a nucleotide has 
aligned to it.
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5.3.5 Resolving artificial duplications provides a higher coverage of 
genes on the Gorilla Y chromosome  
The gorilla Y chromosome contains 12 single-copy X-degenerate genes [23]. To evaluate 
completeness of these  genes in the assemblies, their corresponding transcript sequences were 
mapped to the GorY and GorY-Clean assemblies using the mRNA aligner GMAP [24]. The 
resulting alignments were subsequently used to identify the contigs/scaffolds that harbor these 
genes. For these 12 genes, the transcript coverage was on average higher in GorY-Clean contigs 
(84.9%) than in GorY scaffolds (74.9%), while sequence identity was similar (Supplementary 
materials 8-9). Additionally, the complete (exons and introns) sequences of the orthologous 
genes in the human genome (GRCh38) were aligned to the contigs/scaffolds harboring these 
genes in the GorY and GorY-Clean assemblies. Visual inspection of the dotplots (Supplementary 
materials 10-15) identified fewer inversions and duplications in the GorY-Clean contigs than in 
the GorY scaffolds (Supplementary materials 16). In the alignment of the contigs from the GorY-
Clean to the GorY scaffolds containing the same genes (Supplementary materials 17-22), no 
inverted duplications were detected in the GorY-Clean sequences. In contrast, numerous inverted 
duplications were visible in GorY sequences (Supplementary materials 23). Thus, many inverted 
duplications were resolved in the assembly generated from the sequencing reads corrected by 
Pacasus, suggesting that such duplications indeed are an artefact of WGA.

5.3.6 Effects on repeats and palindromic sequences of biological origin
DNA sequences are known to contain many different types and families of repeat sequences [25], 
including palindrome sequences [26]. These repeat sequences are present in the long reads after 
sequencing and can be detected by Pacasus as false positive palindromic sequences. When all 
repeats of biological origin are split, the subsequent de novo assembly will contain only collapsed 
regions effectively removing the repeats from the assembly. However, we speculate that most 
if not all of the true repetitive sequence are contained in sufficiently long reads to cover the 
repeats and therefore will not be considered by Pacasus for correction. In real data sets it is not 
known a priori which reads contain the true repetitive sequences, but evaluation is possible after 
performing the de novo assemblies: for both the A. thaliana and the gorilla Y chromosome the 
repeat content is known. 

Table 5.6 shows the by RepeatMasker [27] detected repeat content of the A. thaliana assembly, 
including the reference assembly TAIR10.  The repeat content of the assembly based on Ath-
Clean (C3) is close to that of the reference and is higher than found in the assemblies based on 
Ath-Ctrl (C1) and Ath-WGA (C2), which is in line with the overall genome assembly statistics 
(Table 5.3).
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To study the effect of Pacasus on actual biological palindromes present on the Y chromosome, 
1-kb non-overlapping windows in GorY and GorY-Clean assemblies were identified  which have 
high identity (>80%) to well-defined human chromosome Y palindromes P1-P8 (arm lengths 8.7-
1450 kb) [28] and X-degenerate gene (XDG) regions. Since the two arms of each palindrome have 
high identity, the windows representing the palindrome arms should have twice the read depth 
compared to the windows overlapping with the single-copy XDG regions on the Y chromosome.  
In order to obtain the read depth of these regions, Illumina-based flow-sorted gorilla Y paired end 
reads were aligned to GorY and GorY-clean assembly, and the read depth for the windows specific 
to palindrome regions and XDG regions were extracted. Figure 5.4 shows that each palindrome 
is represented separately and Pacasus decreases the read depth for several palindromes, e.g., 
P3, P4, and P7. Nevertheless, the median read depth for each palindrome (except for P8) is still 
higher than XDG for both GorY and GorY-clean. This indicates that the biological palindromes 
are preserved by Pacasus.

Table 5.6. Repeat content of the different assemblies.

Assembly Overall repeat content (% of assembly)

Canu Ath-Ctrl (C1) 15.73

Canu Ath-WGA (C2) 15.49

Canu Ath-Clean (C3) 16.76

TAIR10 16.88

Repeat content found by RepeatMasker in the different A. thaliana assemblies.

 

Figure 5.4. Illumina read depth of known palindromes. Illumina read depth of the known 
palindrome sequences P1-P8 and the X-degenerated gene (XDG) region in the GorY assembly 
(A) and GorY-Clean (B). Overal read depth is decrease in GorY-Clean, however in both 
assemblies the median read depths for P1-P7 are twice of that of XDG.

A B
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5.4 Discussion
After processing of the long reads, Pacasus has limited effect on the number of nucleotides in the 
read set and decreases the average read length by less than 50%. A downside of this process is 
that inverted repeats present in the genome will be treated as chimera, so that the repeat will be 
split into its separate elements, if the read does not span the full repeat. However, as shown in this 
manuscript, not all long reads suffer from chimeras. In most cases there will be sufficient reads 
long enough to cover the inverted repeat and palindrome sequences that are not split by Pacasus 
as shown in the assessment of the A. thaliana assemblies. It should be noted that Y chromosomes 
naturally possess non-artificial palindromes [28] and our analyses show that these palindromic 
sequences are also present in the de novo assembly after processing the reads by Pacasus.  

Flow-sorted chromosomal DNA is usually contaminated with DNA from other chromosomes. 
Also with the gorilla sample, the original estimate is that approximately a third of the reads 
originate from the Y chromosome [4]. This is supported by our results, with 1,742,887 PacBio 
reads out of 4,546,488 reads mapping to the GorY-Clean assembly (38%). Consequently, 
some of the assembled contigs are not part of the gorilla Y chromosome but are from other 
chromosomes. Further analyses need to be performed to verify which contigs indeed originate 
from the Y chromosome. One suggestion is to look at read coverage: high coverage could point 
to Y chromosome sequences (see Suppl. Materials Figure 4d). The next step to further improve 
the quality of the assembly could be to scaffold the contigs using the RNA-Seq data from the 
previous study [4] with for example SSPACE [29] and polish the final assembly with the HiSeq 
paired-end data using Pilon [30]. 

Tissue-specific analysis at the genome level is becoming more important in, for example, 
studying cancer genomes, but for genome assembly approaches they are currently limited to 
short-read sequencing [31] and hence result in more fragmented assemblies than is possible with 
long reads. For polyploid plant species is possible to select pollen and extract DNA from these 
cells, effectively decreasing the ploidy by half and therefor also decreasing the complexity of 
subsequent assembly process. And recent research shows that CRISPR-Cas9 introduces unwanted 
changes in the genome best detectable by long-read sequencing [32]. By combining WGA and 
Pacasus on these types of tissues it is now possible to isolate low amounts of DNA and to produce 
a high-quality genome to find these alterations in the genome.

A possible application not discussed in this paper is the detection of a SMRTbell adapter that is 
missed by the PacBio software pipeline, producing a raw read with the same structure as created 
with WGA. These incorrect reads, although perhaps present in low numbers, can have an impact 
on quality of the de novo assembly. When a non-WGA PacBio dataset with high genome coverage 
produces a fragmented assembly, it is worthwhile to run Pacasus on this dataset to correct the 
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palindrome sequences created due to the missed SMRTbell adapter

The detection of the palindrome sequences requires a full Smith-Waterman alignment due to 
the high error rate of the long-read technologies, which takes a considerable amount of compute 
power. Using high performance software and several GPUs we were able to process one SMRTcell 
per day, roughly keeping pace with sequencing speed of the PacBio RSII. The throughput of the 
PacBio Sequel is higher, hence processing these SMRTcells will require more time or compute 
resources, but we believe the results presented in this manuscript warrant the investment.    

To find the location in the read at which it needs to be split, the backtrace part of the Smith-
Waterman alignment algorithm needs to be performed [15]. In the current implementation of the 
PaSWAS module used for SW, the memory requirements are quadratic in the length of the read. 
For reads above 100kb this memory requirement may limit the use of Pacasus. Currently the 
PacBio platforms generate reads below this length, but we expect the Oxford Nanopore platforms 
to go beyond this limit for at least some the reads in the near future. We will continue to work 
on Pacasus to decrease the memory requirements of the software to ensure that future output of 
sequencing platforms can be handled properly.  The presented settings for the SW alignment are 
based on the error model of the RSII and our in-house experience with PacBio sequencing read 
qualities. For application on PacBio Sequel and Oxford Nanopore data, their respective error 
models may warrant minor changes to these settings.      

5.5 Conclusions
Whole-genome amplification is required for sequencing when a biological sample contains 
insufficient DNA for direct use in library preparation, but the process creates chimeric fragments. 
We have developed a new method, Pacasus, to correct long, error-rich reads containing such 
chimeras, based on high-speed Smith-Waterman alignment. We demonstrated the performance of 
Pacasus in terms of read mapping accuracy and assembly quality, showing that the loss in read 
length is clearly offset by the removal of incorrect contiguity information. On the Arabidopsis 
data, the hybrid assembly improves markedly in quality; and on the gorilla data, a PacBio-only 
assembly on clean reads is even of higher quality than a hybrid assembly including the original 
reads. The differences between the GorY-Clean and GorY-WGA assemblies are, however, not 
as large as in the A. thaliana case. The underlying reason for this is the much lower number of 
detectable palindromes in the gorilla read set: 11.8% of the reads contain palindromes, compared 
to 45.8% of the reads in the A. thaliana set. Correcting the relatively low number of reads 
containing palindromes in the gorilla data set already gave an improvement in assembly statistics, 
which indicates that the impact of these incorrect reads on the assembly quality is high. We expect 
that longer reads contain more palindromes, as indicated by the differences in average lengths 
before and after correcting in both examples.
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In summary, Pacasus now allows to analyze PacBio data obtained from low amounts of DNA, 
making it possible to apply the power of long read technology to, for example, the study of single 
cells (e.g. in cancer research) and the study of single chromosomes (also in polyploid organisms). 

5.6 Material and methods

5.6.1 The Pacasus algorithm
To detect chimeras created during WGA, raw PacBio reads are aligned to their reverse-complement 
sequence with Smith-Waterman (Figure 5.1) using pyPaSWAS [16,33]. The parameters used for 
alignment are: gap score, -3; match score, 3; mismatch score, -4. For filtering, the parameters are: 
filter factor, 0.01; query coverage, 0.01; query identity, 0.01; relative score, 0.01; and base score, 
1.0. When no overlap is found in the alignment, the read is left intact and stored in the output file; 
otherwise the read is split at the center of alignment (see Figure 5.1(d)). Both resulting fragments 
are again processed as if they were original reads, to allow the detection of nested palindrome 
sequences, until no overlap is detected anymore. If a fragment becomes shorter than a minimum 
length (default 50 bp) it is discarded. Note that the nucleotide information in the reads is neither 
removed nor changed. Pacasus is implemented in Python 2.7 and, besides pyPaSWAS (version 
>= 2.0),  depends on Biopython [34] (version >= 1.67), numpy (http://numpy.org) (version >= 
1.8.0) and scipy [35] (version >= 0.12.0).

5.6.2 Data for Arabidopsis evaluation
DNA was isolated from two Arabidopsis thaliana plants, labeled “Ath-WGA1” and “Ath-WGA2”, 
and amplified using the REPLI-g Mini Kit (QIAGEN Benelux BV, Venlo, The Netherlands). The 
Arabidopsis thaliana are in-house samples based on low-input plant materials (for more details 
on DNA isolation, library preparation and sequencing see [36]). Both samples were sequenced on 
both an Illumina HiSeq2000 sequencer and a PacBio RSII sequencer. A third DNA sample was 
used to generate PacBio RSII data without WGA (“Ath-Ctrl”). Table 5.7 shows the number of 
reads generated by each platform and for each sample. To evaluate mapping performance, PacBio 
reads were mapped to the TAIR10 Arabidopsis thaliana Columbia reference genome (http://
www.arabidopsis.org) using BLASR version 1.3.1.124201 [37], and alignments with identity < 
80% were filtered out by a Python script. Mapping reports were generated in CLCBio version 
8.0.2 (http://www.clcbio.com).
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Table 5.7. Datasets used for the performance analysis of Pacasus.

Species Sample WGA Illumina HiSeq2000 PacBio RSII

reads  length reads avg. length

Arabidopsis 
thaliana

Ath-WGA1 yes 31,233,196 100 462,138 9,326

Ath-WGA2 yes 43,810,780 100 447,364 8,544

Ath-Ctrl no 940,162 5,680

Gorilla gorilla GorY-WGA yes 279,601,852 150 3,596,236 5,468

PacBio-only de novo assemblies of the A. thaliana genome were created using Canu version 1.3 
[22]. Hybrid assemblies, combining the HiSeq2000 and RSII data, were created with DBG2OLC 
(released in 2016) [38]. DBG2OLC requires as input a HiSeq-only assembly; which we created 
using Sparse (released in 2015) [39], as recommended on the website by the authors of DGB2OLC, 
based on the HiSeq data from the WGA samples in all cases. The assembly was finalized with the 
PacBio reads. 

We combined Ath-WGA1 and Ath-WGA2 into a single set, Ath-WGA, and created assemblies 
combining the HiSeq contigs with the raw Ath-WGA reads, with corrected (or ‘clean’) Ath-WGA 
reads (Ath-Clean) and with Ath-Ctrl reads. To evaluate quality, assemblies were compared to the 
reference genome using QUAST version 4.3 [40]. 

5.6.3 Data for the gorilla Y chromosome evaluation
PacBio RSII data of a flow-sorted and amplified gorilla Y chromosome, GorY-WGA (Table 
5.7), was downloaded from the NCBI Short Read Archive (SRA SRX1161235). The previously 
published assembly of the gorilla Y chromosome and the publicly available data from the 
flow-sorted, whole-genome amplified and de-branched gorilla Y chromosome, GorY [4], were 
downloaded as well (GCA_001484535.2). Canu version 1.3 was used for the assembly of the 
PacBio reads. For comparison, the human chromosome Y assembly (NC_000024.10), HumY, 
was downloaded. QUAST [40] was used for assembly comparison and statistics. PacBio reads 
were mapped to HumY, GorY and the new assemblies using BLASR (>80% identity and >80% 
read coverage); Illumina HiSeq 2500 PE reads (SRA SRR2176191) were mapped using CLCBio 
version 8.0.2. Statistics for all mapping results were calculated in CLCBio. For calculating the 
contig length distribution of the GorY assembly, scaffolds were broken up and N’s were removed. 
The gorilla X-degenerate gene transcripts were retrieved from a previous study [23]. GMAP 
version 2017-03-17 [24] was used to align the transcripts to the assemblies.

5.6.4 Repeats and palindrome detection
RepeatMasker [27] was configured with rmblastn (2.2.27+) [41,42] and RepBase (20140131) 
[43] for masking the A. thaliana assemblies and TAIR10 reference genome.

Following Tomaszkiewicz et al. [4] , the gorilla Y contigs were broken into 1-kb windows and each 
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window was aligned to human reference hg38 using lastz [44], with settings --scores=human_
primate.q, --seed=match12, --markend. RepeatMasker was also run on gorilla Y contigs to mask 
repeats and later for each window the total number of masked sites ‘N’ within a window were 
calculated. The windows which overlap with human Y chromosome palindromes and XDG genes 
were identified and filtered to make sure that they have at least 80% match with the human 
reference and less than 20% of N’s throughout the window. 

BWA mem [45] was used to align the flow-sorted gorilla Y paired-end reads (SRX1160374) to the 
GorY-clean and GorY assemblies (unmasked). The bedtools [46] coverage function was used to 
calculate the read depth and coverage of each window. If the windows had > 80% coverage they 
were used to create boxplots within their respective palindromes. The boxplots were generated 
using R boxplot command with outline=TRUE parameter set.

The Human_primate.q file used for primate to primate alignments in lastz is as below:
gap_open_penalty   =   500 # O
gap_extend_penalty =    30 # E
hsp_threshold      =  3000 # K
gapped_threshold   =  4500 # L
x_drop             =   900 # X
y_drop             = 15000 # Y
     A    C    G    T
A   90 -330 -236 -356
C -330  100 -318 -236
G -236 -318  100 -330
T -356 -236 -330   90

5.7 Availability of data and materials
The datasets supporting the conclusions of this article are available at the European Nucleotide 
Archive under accession number PRJEB21791. The Arabidopsis thaliana HiSeq read sets are 
available under accessions ERX2095148 and ERX2095149. The PacBio data sets are available 
under accessions ERX2095150 and ERX2095151. The gorilla Y chromosome assembly has been 
assigned accession number GCA_900199665.     
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Figure 5.5. S1. Number of Pacasus iterations per read in the cleaned data set. Level 0 
indicates that the original read had no detectable palindromic sequence. level 1 indicates the 
read was processed only once, level 2 twice, etcetera.
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Abstract

6.1 Abstract

Background
Numerous tools and databases exist to annotate and interpret the functions encoded in a 
genome (InterProScan, KEGG, Gene Ontology (GO) etc.). However, analyzing and comparing 
functionality across several genomes is not trivial, whereas such comparative analyses are 
essential for identifying genes related to a particular biological function. 

Results
We present a novel approach for comparative functional analyses in which KEGG, GO, CAZyme 
and InterProScan results from several species are collected and stored in a Neo4j graph database: 
Multi-Species Whole Annotation System Database (MuSWAS db). Using a developed plug-in for 
Cytoscape to connect to Neo4j, the database can be queried and visualized. The visualization of 
functional annotation (sub)graphs facilitates comparisons and grouping of functional annotation 
across species. The approach is presented in the context of the functional analysis of the fungal 
species Synchytrium endobioticum, the causal agent of potato wart disease, compared to other 
fungal species with comparable taxonomy or lifestyle. 

Conclusions
The combination of the functional annotations of different species in a single graph database and 
the ability to visualize and identify overlaps and differences through scripts and in Cytoscape 
generates novel insights in functions of genome components of a single species or a group 
of organisms. The approach we present is generic and suitable for a large number of species. 
The developed plug-in supports the analyses of any graph stored in Neo4j.  The analyses of  
several fungal genomes identify genes that are likely to play a role in the obligate biotrophic and 
pathogenic lifestyle of Synchytrium endobioticum.

6.2 Background
A first step following in silico reconstruction of a genome [1] is usually to produce a structural 
annotation of the genome to identify repeats [2], genes [3,4] and other genomic features [5]. In 
combination with sequence information, these data are used for comparative genomics efforts 
to interpret the functional make-up of the organism under study, often compared to that of a 
related organism. Genes are functionally annotated using (a) InterProScan [6] or Blast2GO 
[7], (b) analyses of the presence or absence of pathway elements in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [8,9], and (c) Gene Ontology (GO) term enrichment [10]. These 
approaches largely focus on comparing a single species of interest to a single known reference 
species. In our research, we aim to find overlap and difference between groups of species on a 
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functional level. To the best of our knowledge however, no tools are currently available to store, 
visualize and analyze the functional annotation of several species combined. Both GO and KEGG 
databases contain highly connected information, suitable for storing in a graph database [11] 
and subsequently performing queries on the relationships within these datasets. InterProScan 
results can be added, and the resulting graph can be queried to perform analyses on the integrated 
data for complex relationships. Additionally we performed an analysis of carbohydrate-active 
enzymes (CAZymes), as the ability to use different types of carbohydrates is an important feature 
of plant pathogens [12], and added these results to the graph database. Here, we present a new 
approach building on such graph database technology [13] and Cytoscape [14] to mine functional 
annotations of several species. It enables comparison of for example GO terms and KEGG 
pathways and on-the-fly visualization of the results [15] across multiple species.

The approach is presented in the context of the comparative functional analyses of the genome 
of the fungal species Synchytrium endobioticum. This fungus is the causal agent of potato wart 
disease, or black scab, currently one of the most important quarantine diseases of cultivated 
potato [16]. Synchytrium is the type genus of the family Synchytiaceae, order Chytridiomycetes, 
division Chytridiomycota, also called chytrids, a basal lineage of fungi (lower fungi) with 
motile zoospores. The genus Synchytrium contains over 200 species, most of which are obligate 
pathogens on flowering plants, ferns, mosses or algae, although a saprobic free-living Synchytrium 
species, S. microbalum, has also been reported [17]. Synchytrium endobioticum is by far the 
best-studied species of the genus, yet little is still known about the molecular mechanisms of its 
obligate biotrophic and pathogenic lifestyle. More insight into the pathogenicity mechanisms 
of S. endobioticum is likely to come from comparative functional genomics of different fungi 
with similar or contrasting lifestyles. Thus far, only a few genomes of species from the chytrid 
phylum have been sequenced and studied.  Therefore, to gain insights into the lifestyle of S. 
endobioticum we compared the genomes of two isolates with those of nine other chytrids and six 
so-called higher fungi (members of the Ascomycetes and Basidiomycetes) that produce hyphae or 
a mycelium [27] and are either obligatory biotrophs as S. endobiotium, or culturable as the other 
chytrids. For all seventeen fungal genomes, we ran InterProScan to annotate their genes with GO 
terms and KEGG enzymes. The analysis and determination of CAZymes encoding genes were 
performed using a similar methodology described in [18]. Results were combined in a Neo4j 
graph database, named Multi-Species Whole Annotation System Database (MuSWAS db). We 
aimed to identify and characterise genes linked to obligate biotrophy, cell wall degradation, 
pathogenicity and sexual cycle of chytrid fungi compared to non-chytrid fungi. In this chapter, we 
focus on the aspects of graph technology for such functional annotation of the different genomes 
and subsequent comparisons. Detailed descriptions of the fungal material included, as well as the 
full results of the integral genome comparisons of all fungi are presented elsewhere [19]. 
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6.3 Materials and methods

6.3.1 Genome data
The data consists of the genes of seventeen fungal species [19], in total 157,709 genes. The 
seventeen genomes were divided into four groups: ‘Chytrid, obligatory biotroph’ (ChytObl) with 
two isolates of S. endobiotium; ‘Chytrid, culturable’ (ChytCult) with nine culturable Chytrid 
species; ‘Control, obligate biotroph’ (CtrlObl), with three obligate biotrophic non-Chytrid (higher) 
fungi, and ‘Control, culturable’ (CtrlCult), with three culturable non-Chytrid (higher) fungi. 

6.3.2 Software and databases
InterProScan version 5.16-55.0 [6] was used to annotate the function of genes using the default 
settings. Python version 3 [20] and the BioPython package [21] were used for processing protein 
files, InterProScan output and the GO-basic dataset from the Gene Ontology (GO) database (May 
2017) [10]. The Python modules Bio.KEGG and Bio.graphics were used to connect to the KEGG 
API [22] and process the results. The Python package Neo4j V1 [23] was used to connect to the 
Neo4j database [11]. Queries to the database were written in the Neo4j Cypher query language 
version 3.4+ [24]. CAZyme [25] information was retrieved from the web site http://www.cazy.
org/.

The Cytoscape plug-in was developed for Cytoscape version 3.6+ [14] and was written in 
Java 1.8. The already available cyNeo4j plug-in [26] was used as a starting point for the newly 
developed plug-in.  

6.4 Results 

6.4.1 Gene Ontology data
To process InterProScan results for GO terms, the GO-basic data set was downloaded from the 
Gene Ontology Consortium (GOC) website (http://geneontology.org/) and stored in MuSWAS 
db. Each node in the graph corresponds to a GO term, and the “ISA” edges correspond to the 
is-a relationships as defined by the GOC. Figure 6.1 shows an example of the top-level node 
‘biological process’ and some of its descendants based on these relationships. It is important to 
note that the GO data set does not follow a tree structure, but rather constitutes a general Directed 
Acyclic Graph (DAG), i.e. many GO terms have more than one parent. With the InterProScan 
output, the number of times a particular GO term is found in a given species is determined and 
added as an attribute to the node representing that particular GO term. As a result, each GO term 
node includes the total number of times it has been assigned to a particular organism. Counts per 
species group are determined by summing individual species counts. By propagating the counts 
from the leaves to the three top-level GO terms “biological process”, “molecular function” and 
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“cellular component”, each level in the GO graph contains the number of times that GO term or 
its descendants are found by InterProScan. As the GO graph is a DAG, a descendant can be linked 
more than once to a level; yet species count values should only be used once otherwise the GO 
term assignments will be overrepresented in the higher-level terms. To prevent double counting a 
query in Cypher was used to select only distinct GO terms below a given level in the GO graph. 

Figure 6.1. The GO-basic data set is stored in MuSWAS db with nodes for each of the GO 
terms connected to the more generic term using the ISA relationship. Part of this GO term 
DAG showing the top-level node ‘biological process’ and some of its descendants. GO terms 
are depicted using yellow circles and the ISA relationships are shown here as light grey arrows. 

6.4.2 KEGG pathways
To link the enzyme annotation to KEGG pathways, pathway identifiers and Enzyme Commission 
(EC) numbers were extracted from the InterProScan output. Using the KEGG API, the structures 
of the pathways are downloaded in XML (KGML) format and stored in the MuSWAS db. 
Pathway elements are directly translated into nodes (‘enzyme’, ‘pathway’, ‘map’, etc.) and 
relationships (‘ECrel’, ‘maplink’, ‘reaction’ etc.). Enzymes are linked to a pathway using the ‘in’ 
relationship. An enzyme can occur in more than one pathway and can, therefore, have more than 
one outgoing ‘in’ relationship. The XML data also contains graphical properties to place enzymes 
on the KEGG pathway images. These are set as attributes of the ‘in’ relationship to establish 
unique enzyme-pathway links. Relationships between an enzyme and its substrates and products 
are not represented in the XML data. Therefore, to complete the pathway graph, for each enzyme 
the KEGG annotation is retrieved through the KEGG API and the relationships ‘usedby’ and 
‘produces’ are created to connect enzymes with compounds. The result is a Directed Cyclic Graph 
(DCG).  In Figure 6.2, an example of such a DCG is shown.
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6.4.3 Connecting KEGG and GO to CAZy
The cell wall degradation pathway of S. endobioticum is likely catalysed by carbohydrate-active 
enzymes (CAZymes), large families of enzymes that degrade, modify, or create glycosidic bonds 
[25] as documented in the CAZy database [34]. In all fungal genomes, CAZymes were predicted 
using the on-line tool dbCAN [33] using default parameters. The number of times a particular 
CAZyme was found in a genome was determined and subsequently normalized by dividing 
the counts by the total number of proteins in present in the genome. These data were added to 
MuSWAS db. Links from CAZymes to GO terms were retrieved from the CAZy website and also 
added to MuSWAS db.

Figure 6.2. Structure of the KEGG pathway graph as DCG. The small KEGG pathway 
ec:00300 (“Lysine biosynthesis”, pink rounded box) with its enzymes (blue circles) and 
compounds (pink diamonds) is shown as an example of a DCG. For clarity of presentation, 
the ‘in’ relationships from the compound and enzyme nodes to the pathway node are not 
shown, which would otherwise connect all nodes to the pathway node. Relationships shown 
are the ‘usedby’ and ‘produces’ edges between enzymes and compounds (blue), the ‘ECrel’ 
relationships between enzymes (green) and the ‘reaction’ relationship between compounds 
(grey). Shapes and colors were set by Cytoscape styles.   

For each of the seventeen organisms, the number of times an enzyme is predicted by InterProScan 
is added to the particular enzyme node. Similar as for the GO terms, counts are aggregated for 
species groups and added to the enzyme nodes. 
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6.4.4 Connecting KEGG to GO
The on-line KEGG database contains links to GO terms for many of its enzymes. Using the 
same data as for connecting compounds to enzymes, these GO terms are linked to the enzymes 
with the ‘crossConnect’ relationship (Figure 6.3). This linkage allows for visualization of these 
otherwise implicit relationships and, more importantly, shows further evidence of additional or 
missing functions: when both enzyme and associated GO terms are missing in one group of 
species compared to another group, the likelihood of a false negative result decreases.  

Figure 6.3. Linking KEGG enzymes to GO terms. KEGG enzymes (blue circles) and GO 
terms (yellow hexagons) are linked through the ‘crossConnect’ relationship (red edges). 
The green edges are the ‘ECrel’ relationships between the different enzymes. Again, for clarity, 
not all relationships and nodes stored in MuSWAS db are shown. Shapes and colours were set 
by Cytoscape styles.   

6.4.5 Overview of the data in MuSWAS db
With the collected and aggregated data, the resulting graph database of the fungal species 
considered contains a total of 54,684 nodes (Table 6.1) and 162,056 relationships (Table 6.2). With 
inclusion of the functional annotation from InterProScan, 4,872 new relationships (crossConnect) 
were established (Table 6.2). The next step was to develop appropriate ways of mining these data, 
for the various groups of fungi that can be distinguished (Table 6.3).
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6.4.6 Cytoscape and the Neo4j plug-in
Cytoscape is a powerful graph visualization tool with many built-in features and many external 
tools available through the plug-in app store [12]. Within Cytoscape, it is easy to color and shape 
(‘style’) nodes and edges based on the information in a graph. Also, information can be linked to 
external websites such as NCBI. This makes Cytoscape [14] a popular tool for the visualization 
and analyses of biological networks, such as protein-protein interaction networks [27] or gene 
co-expression networks [28]. However, loading all data stored in our Neo4j database (Tables 6.1 
and 6.2) in Cytoscape is impossible on a standard desktop computer due to memory constraints. 
To visualize subgraphs and query them within Cytoscape, it needs a connection to the Neo4j 
database. Therefore, a Java implementation of a basic yet outdated Neo4j Cytoscape plug-
in, cyNeo4j [26,29], was refactored and extended to connect Cytoscape directly with a Neo4j 
database [11]. The plug-in allows for querying the database and storing created networks within 
Cytoscape, and for storing networks imported from other sources in Cytoscape in the database. 
The plug-in also can read an XML file with predefined Cypher queries which allows for storing 
important and/or often used queries on disk as templates for future use. The network resulting 
from running such a query is then visualized in Cytoscape. Additional features of the plug-in 
include interactively expanding and connecting nodes in Cytoscape based on the graph structure 
in the database. These features are independent of the structure of the graph, as the database is 
queried for the nodes and relationships available for the selected node(s). A more descriptive list 
of features is given in Supp. Materials.

Table 6.1. Number of nodes in MuSWAS db after processing the functional annotation from 
InterProScan.

Node Number 

GO term 47,059

Enzyme 3,019

Pathway 114

Map 164

Compound 4,328

Total 54,684
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Table 6.2. Number of relationships in MuSWAS db after processing the functional 
annotation from InterProScan.

Relationship  Number 

crossConnect 4,872

isa 71,400

is 228

usedby 11,248

maplink 5,300

ECrel 25,878

in 22,948

produces 12,150

reaction 8,032

Total 162,056

Table 6.3. Subgrouping of fungal species for comparative analyses.

Group name (number of 
genomes)

Coloring ChytObl (2) ChytCult (9) CtrlCult (3) CtrlObl (3)

All (17) Green + + + +

Only in culturables (12) Orange - + + -

Only in obl. (5) Blue + - - +

Absent in obl. Chytrids (15) Purple - + + +

Only in obl. Chytrids (2) Red + - - -

Higher fungi (6) Silver - - + +

Unclassified Yellow - - - -

Other Pink

Grouping based on present (+) or absent (-) of enzymes, GO terms, etc. in one of the four main 
groups used for a more detailed comparison of the different species based on their lifestyle. 
‘Unclassified’ in this context means that the element (e.g.. an enzyme) was not predicted to be 
present in any of the genomes and ‘Other’ means that the combination of genomes containing 
the predicted element does not fit in any of the other groups.

6.4.7 Detection of differences between species
With Cytoscape and the newly developed Neo4j plug-in, the graph database is mined for the 
functional annotation of the individual species and the four specified groups. For the comparison 
of multiple species, a first step is to subclassify them: which elements are found in all species, 
which are specific for the culturable species, for the obligatory biotrophs, obligatory biotrophic 
chytrids and so on (Table 6.3). Such multi-species comparisons allow inferences on components 
of lifestyle. This information is extracted from MuSWAS db with dedicated Cypher queries and 
Python scripts. Each of these classes is then assigned a different color with the style filters of 
Cytoscape. Examples of the classifications outlined in Table 6.3, as visualized in Cytoscape after 
extraction of the data from MuSWAS db, are shown in Figures 6.5-6.7. Figure 6.4 shows the 
compounds connected to and the GO terms associated with four example enzymes. Node colors 
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indicate to which of the classes each element in the graph belongs and show that these four 
enzymes and their associated GO terms are not predicted to be present in this species group. 
These results indicate that the obligatory biotrophic chytrids are missing four enzymes in the 
“Glyoxylate and dicarboxylate metabolism” pathway (path:ec00630). If confirmed, these missing 
enzymes could be of interest to investigate their role in the obligatory biotrophic lifestyle of S. 
endobioticum. Many similar biological inferences on lifestyle and other characteristics of fungi 
can be made by comparisons based on the data in the resulting fungal Neo4j database; a number 
of results are presented elsewhere [17].

As a second example, an inspection of the GO terms related to motility, such as “motile cilium” and 
“cilium”, showed these were indeed only detected in the chytrid species which are characterized 
by motile zoospores rather than hyphae or mycelium (Figure 6.5).  

Figure 6.4. Data in MuSWAS db showed that four enzymes (blue circles) of pathway 
ec:00630 (“Glyoxylate and dicarboxylate metabolism”) are missing in the two obligate 
biotrophs (i.e. the two S. endobioticum isolates). The compounds associated with the enzymes 
are visualized by diamond shaped nodes. GO terms linked to these enzymes by the 
‘crossConnect’-edge are shown as hexagons with the paths to the top-level node ‘molecular 
function’ (text in red). Other edges shown are the GO  ‘ISA’ relationship to connect the GO 
terms and the KEGG pathway relationships ‘produces’ and ‘usedby’ to connect enzymes with 
compounds. 



114

Ch. 6: Mining functional annotations

Figure 6.5. GO-terms associated with flagella and movement, and their occurrences in 
chytrid species and higher fungi. Shapes in the network indicate the different GO-terms, with 
“Cellular Component” as the highest-level term. Grey arrows indicate the “ISA” relationship 
between the GO-terms as defined in the Gene Ontology database. The different shapes indicate 
if a given GO-term is present in culturable and obligate biotrophic chytrid species but not 
in higher fungi (green diamond), present in one or more culturable chytrid species (orange 
hexagon), or unclassified (yellow circles). Shapes and colors are set by using the styles in 
Cytoscape and are filtered based on the information in the graph database.
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6.4.8 Accuracy and consistency
The results presented here are based on InterProScan analyses. As InterProScan is a predictive 
method, false positive (FP) and false negative (FN) predictions are expected to be found. To 
investigate the impact of these FP/FN predictions, the KEGG pathway analysis was benchmarked 
using the six control species with known biochemical reference pathways included in the KEGG 
database. Overall accuracy (84.5%) was mainly influenced by false negative results (Supplementary 
Report). Such a case is illustrated by aconitate hydratase (EC:4.2.1.3), an enzyme from the citrate 
cycle, which was detected in all genomes analyzed using InterProScan but was not colored in the 
KEGG pathway because of a missing link in the KEGG database (Figure 6.6). In case a functional 
element appears to be missing in a genome, additional independent methods should be used to 
confirm these findings. The high accuracy implies a low number of false positives in the control 
species, so a particular function predicted in a genome is likely to be true . 

Combining the KEGG, GO and CAZyme annotations gave new insights into the lifestyle of S. 
endobioticum. However, during our analyses discrepancies between different online resources 
became apparent, hampering further research. KEGG, GO and CAZymes databases are data 
sources which  contain redundant information: KEGG contains which GO terms are associated 
with enzymes and visa-versa and CAZymes are linked to enzymes and these data should be 
the same across the three databases. We found several discrepancies which, at first glance, 
gave inconclusive results. Manual curation was required to correct these findings [19]. These 
results show that links of terms and features are not necessarily consistent between the different 
databases combined in MuSWAS db. By adding the information of the three databases in a single 
data source (MuSWAS db) discrepancies are more apparent and hence can be corrected in the 
original sources. 
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Figure 6.6. KEGG reference pathway 20: citrate cycle (TCA). Numbers (a, b, c, d) replacing 
the KEGG Orthology (KO) numbers in the enzymatic steps indicate the number of isolates in 
a given group for which the corresponding gene was detected. a: obligate biotrophic chytrids 
(maximum number of genomes = 2); b: culturable chytrids (max = 9); c: culturable higher 
fungi (max = 3); and d: obligate biotrophic higher fungi (max = 3). The maximum score that 
can be obtained is “2,9,3,3”, which is the case for all green boxes. White boxes are unassigned 
enzymes. Boxed in red is the enzyme aconitate hydratase (EC:4.2.1.3), which should be found 
in all genomes. The green colored enzymes show that all required enzymes for the TCA cycle 
except aconitate hydratase were found in all genomes. 
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6.5 Discussion and conclusions
We have demonstrated how the combination of a Neo4j graph database and Cypher with 
Cytoscape enables comparative analyses of GO, KEGG, CaZy and InterProScan data across 
multiple genomes that would otherwise be hard and time-consuming. Genomes can easily be 
grouped based on any criterion set, allowing comparisons at different levels of biology. In the 
example dataset of S. endobioticum with other chytrid and non-chytrid fungal species, various 
aspects of fungal lifestyle and the pathogenicity of S. endobioticum on potato have given leads 
for new research and insights in biology described in more detail elsewhere [17]. The connection 
with Cytoscape adds intuitive and easy visualization to the analyses. The developed Cytoscape 
plug-in is generic: other publicly available databases such as the Reactome [30] pathway database 
or any other Neo4j database can also be queried with the plug-in. The plug-in allows for sending 
any valid query to the connected database, but these queries still need to be designed by the user. 
These queries can become long and complex quickly, hence a good understanding of Neo4j and 
Cypher is still needed. Fortunately the plug-in allows for storing and re-using of queries, allowing 
for sharing these queries with others. 

A possible additional application of the approach is in metagenomics. In environments, such as 
soil, natural waters and gastric systems [31–35], communities of (micro-)organisms collaborate 
or compete for space and food. The first step in any metagenomics analysis is to functionally 
annotate all genes found in the DNA or RNA data [36–38]. With the approach shown here, this 
results in a graph database allowing to identify which pathways are present, which compounds are 
produced and which biological processes occur. It would not be limited to a single metagenomics 
sample: by grouping annotations, it will be possible to perform easy comparative analyses of 
different samples. Especially when combined with the annotation of individual microbial 
genomes, functional analyses of metagenome data is likely to get a huge boost. 

For simplicity, the GO-basic dataset (with only “ISA” relationships) was used, making the graph 
less complex than when using the full GO-plus dataset. This selection is not an intrinsic limitation: 
when the GO-plus dataset is more appropriate, it can be used in the same way, although the 
resulting relationships are likely to become more difficult to interpret.

Results indicate that the obligatory biotrophic chytrids miss four enzymes in the “Glyoxylate 
and dicarboxylate metabolism” pathway (path:ec00630), potentially of importance in the 
obligatory biotrophic lifestyle of S. endobioticum. However, caution is advised: although the 
GO term ‘catalase activity’ is not predicted for this group of fungi, the higher-level GO term 
‘peroxidase activity’ is predicted to be present in all species groups, so other enzymes may take 
over. Also, the detailed analyses of the cellulase activity (CAZymes) show that links of terms 
and features are not necessarily consistent between databases combined in MuSWAS. Therefore, 
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relying on a single data source is not recommended, and predictions based on multiple sources of 
data continue to need scrutiny and preferably independent validation: data can be contradictory, 
inconclusive or incorrect. Adding information from different sources and linking them through 
known relationship in MuSWAS db will make these irregularities more obvious. Such results 
should be taken as motivation to contact database managers to improve the consistency and 
interoperability of biological data and databases. The downside of combining these data in a 
single data source is that updates in the original sources (such as corrections in the links) are not 
automatically updated in MuSWAS db and this update process would require a rerun of (parts 
of) the analyses. Adding additional genomes to an existing data set in MuSWAS db requires 
running InterProScan and CAzyme analyses on these genomes and adding the resulting counts to 
MuSWAS db. Aggregated counts then need to be recalculated based on this new information and 
from that point on data can be visualized again. Main bottlenecks in adding more genomes are 
therefore the genome annotation analytics (in CPU time) and visualization plus interpreting the 
results (in time spent by the researcher).    

If such issues are taken into account, the concept and use of graph databases presents considerable 
added value to biological analyses and is likely to get more attention. An increasing number of 
bioinformatics tools, including sequence alignment [39], support Neo4j databases, creating more 
demand for user-friendly graph visualization.  Our focus on the functional annotation of genes did 
not take genome structure into account. Pan-genome methods [40], such as PanTools [41], allow 
storing genome structures in a graph database. The combination of the approach presented here 
with a pan-genome graph will allow new ways of querying and visualizing data across multiple 
genomes. This combination will make it possible, for example, to retrieve the locations of genes 
in a pathway of interest and assess functional sequence variation much easier and faster than 
currently available. 
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6.9 Supplementary information

Features of the Cytoscape Neo4j Plug-in
The plug-in allows the user to connect to Neo4j with a username/password using the Bolt interface.

Importing graphs
There are three main methods of importing a graph:

• Import all nodes and edges from Neo4j into Cytoscape
• Import a cypher query into Cystoscape
• Import a stored query (template) into Cytoscape

Exporting networks
The plug-in allows you to export any Cytoscape Network to Neo4j. This network can be an 
updated version of an imported graph or a network from a different source. Nodes / relationships 
removed from a graph in Cytoscape will also result in these elements being removed from the 
Neo4j database after the export.

Expanding nodes
The plugin allows you to expand a single node, selected nodes or all nodes in the network at once. 
This way you can browse through your graph.

Main menu:
• Expand all (selected) nodes in the network through all edges (bidirectional)
• Expand all (selected) nodes, incoming edges only
• Expand all (selected) nodes, outgoing edges only

Context menu:
• Expand single node, bidirectional, incoming or outgoing edges
• Expand single node, bidirectional, incoming or outgoing edges, based on the available edges 
connected to this node

• Expand single node, bidirectional, incoming or outgoing edges, based on the available nodes 
connected to this node

Other features
• Show all edges (relationships) between all nodes in the network or only between selected 
nodes.

• Get the shortest paths from the database between the selected nodes. When more than two 
nodes are selected, all combinations will be queried: Neo4j does not allow shortest path 
calculations between more than two nodes (a.k.a. ‘via’).
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6.10 Supplementary Report
This report shows the predictive value of Interproscan for KEGG pathway analyses. For this six 
different reference species are used.

Definitions
Positive: number of positive elements in the pathway: these elements are present in the reference 
species (P)

Negative: number of negative elements in the pathway: these elements are not present in the 
reference species (N)

True positive (TP): element in the reference pathway correctly predicted by Interproscan

True negative (TN): element in the not reference pathway and not predicted by Interproscan

False positive (FP): element in the not reference pathway but predicted by Interproscan. Note 
could also be a valid new prediction

False negative (FN): element in the reference pathway but not predicted by Interproscan.

No EC (noEC): Some elements in the pathways have no EC number record in the database. These 
cannot be mapped to the interproscan output containing only EC numbers and are left out of the 
calculations

Sensitivity or true positive rate (TPR): TPR=TP/P=TP/(TP+FN)

Specificity (SPC) or true negative rate: SPC=TN/N=TN/(TN+FP)

Accuracy (ACC) : ACC=(TP+TN)/(TP+FP+FN+TN)

Pathway analyses
Each of the six reference species have a different set of reference pathways. For the following 
statistical overview, all pathways which are not part of the reference sets are left out: determining 
positive and negatives is impossible for these.

Species Culturable Pathways Sensitivity Specificity Accuracy
CNE CULT 72 0.63 0.92 0.84
MLR OBL 75 0.64 0.93 0.85
NCR CULT 74 0.63 0.92 0.83
PGR OBL 74 0.63 0.93 0.85
SCE CULT 71 0.62 0.95 0.86
UMA OBL 74 0.65 0.92 0.84
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The work presented in this thesis contributes to new high-performance approaches and tools for 
high-throughput biological and bioinformatics research, mainly using low-cost, standard computer 
hardware. The main aim is speeding up computation to enable analyses previously unfeasible as a 
way to approach new biological research questions. The focus has been on genomics, in particular 
on DNA/RNA sequence analyses (Chapters 2-5) and genome annotation (Chapters 2 and 6).

In addition to new tools, this thesis presents the application of these new tools to the analyses of 
biological systems (Chapters 5 and 6). In this way different aspects of bioinformatics research 
are covered: bioinformatics, i.e. the development of new technologies, methods and concepts 
(Chapters 3 and 6); applied bioinformatics, i.e. the translation of fundamental concepts into 
applications, packages and/or plugins (Chapters 2 and 4); and computational biology (Chapters 5 
and 6), using the tools and/or methods to study biology.  

Below, the contributions of the research presented in this thesis are discussed in the context of 
recent developments and issues in novel computer technologies, notably grid and GPU computing, 
concerning algorithmic design, software engineering and software testing.

7.1 Computational developments for bioinformatics
One of the major developments in computational infrastructure has been the concept of 
heterogeneous distributed computing on standard hardware, as effectively used by the still-running 
SETI@Home project [1–3], i.e. the Search for Extraterrestrial Intelligence (SETI) by analyzing 
radio signals. SETI demonstrates the viability of the use of a grid of standard desktop computers 
for scientific data processing. For example, the HTCondor grid management software allows 
setting up a heterogeneous distributed computing environment on personal computers in local 
networks (see Chapter 1) [4]. This approach may be advantageous in office surroundings that use 
many personal computers for relatively modest tasks, such as writing, teaching or administration. 
The use of office desktop computers for large-scale computations also has its downsides. For 
one, the hardware is designed for office use and not for large-scale data analyses. As a result, 
computers, hard drives and other components will fail more often than with normal desktop use. 
Moreover, desktop computers can overheat, graphics cards (GPUs) can fail, or computers can 
stop working altogether. All this may happen in desktops much faster than in dedicated servers. 
Another concern with a grid of desktop computers is that data have to be shared across the 
network, making it difficult to ensure privacy and security of these data. Despite these limitations, 
a grid infrastructure can be very beneficial for bioinformatics research. It is a cost-effective way 
of creating computational power for institutes that otherwise would have less access to such 
systems. Many of the analyses presented in this thesis (Chapters 2-5) were performed on the 
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HTCondor grid of the Bioinformatics group at the Institute for Life Science and Technology from 
the Hanze University of Applied Sciences Groningen. Without the Hanze grid, a large part of the 
results presented in this thesis would have been much harder, if not impossible, to create in-house. 

A second important computational development has been the release of General Purpose Graphics 
Processing Units (GPGPUs; see Introduction) [5]. A major challenge for the use of GPGPUs 
in bioinformatics was the application of so-called graphics programming languages, such as 
OpenGL [6], for tasks they have not been designed for [7]. With the release of the CUDA general 
purpose programming language and GPUs such as the GeForce 8800 GTX, NVIDIA opened up 
the platform for a wide array of applications [5]. In bioinformatics, the sequence alignment tool 
MUMmerGPU [8] was one of the first to demonstrate the benefits of using GPGPU technology 
for biological data analyses. More recently, the Open Compute language OpenCL has been 
released, which supports parallel computing on many other platforms, including AMD GPUs, 
Intel CPUs, ARM chips, etc. For this reason, we created an OpenCL version of PaSWAS and 
integrated it in Python in the same way as the CUDA version (Chapter 4). Such approaches show 
the added value of GPGPU computing in bioinformatics. It is likely that many more examples 
will be accomplished in the future.

7.1.1 Precomputing for predicting pre-miRNAs
MicroRNAs (or miRNAs) are short RNA sequences which regulate gene expression [9,10] and 
play important roles in biological processes. Computational methods are used to detect these 
miRNAs and their precursors in genomes [11–13]. In Chapter 2, it is shown that pre-calculation 
of the minimal free energy (MFE) [14] of tens of millions of sequences brute-force on a large 
computing grid makes it feasible to screen whole genomes for pre-miRNA candidates. This 
result demonstrates that distributing calculations on already available infrastructure across many 
compute units opens up new avenues to do bioinformatics research. The method was applied to 
the Epstein-Barr genome for the identification of potential pre-miRNA candidates (Chapter 2), 
and the approach was used by others to identify pre-miRNA candidates in the Tibetan naked carp 
(Gymnocypris przewalskii) [15]. In silico prediction of (pre-)miRNA candidate sequences can 
now be supported by additional evidence [16], including Illumina RNA-Seq [17] and CRISPR-
Cas9 experimentation [18]. Moreover, better defined sequence characteristics and machine 
learning approaches will be helpful in further reducing the number of false positives in pre-
miRNA candidate prediction. 

The underlying idea of pre-calculation can be applied to other computational challenges. In 
robotics, for example, it is commonly used for scene/map reconstruction and path estimation, 
because it is computationally impossible to have 100% accuracy in these cases [19]. In 
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bioinformatics, the number of such existing computational examples may be limited, although 
the indices built by mapping software [20–22] could be considered pre-calculated databases of 
sequence information to find related (short) sequences quickly. 

7.1.2 Developing GPU applications for bioinformatics research
To get the most out of parallel hardware [23], existing software needs to be rewritten and, in 
many cases, redesigned. This process can be time-consuming and difficult. The development of 
PaSWAS, an implementation of Smith-Waterman (SW) sequence alignment on NVIDIA GPUs, 
demonstrates, however, that such re-development is worth the effort (Chapter 3): the parallel 
version is much faster than a single-core implementation. The MFold software used to calculate 
MFEs (Chapter 2) is a valuable yet slow dynamic programming algorithm. It could benefit from a 
GPU-based implementation [24] and a presumably much faster parallel OpenCL-based extension 
of MFold could be based on the PaSWAS approach for SW sequence alignment.  

GPU-based implementations provide a stable and relatively programmer-friendly platform for 
parallel processing of data. Moreover, several higher-level programming languages, such as 
Matlab and R, now offer hardware abstractions for GPUs in the form of software libraries, so 
that programmers do not need to program GPUs themselves [25–27]. As more of these high-
performance compute libraries become available, the need to develop CUDA or OpenCL code 
decreases, making the compute platforms readily available to a wide range of researchers. In the 
future, people preparing, for example, R or Matlab code will likely not even be aware that GPUs 
are used for calculations: a GPU will automatically be used when detected by the software. 

The desire for better usability and broader applicability of the CUDA-based application PaSWAS 
prompted the development of pyPaSWAS (Chapter 4). We integrated the CUDA/OpenCL [28] 
codebase and combined it with the flexibility of the programming language Python [29,30] to 
allow it to run on a range of platforms. The code of pyPaSWAS can be used as a library for other 
applications requiring Smith-Waterman-based alignments. This concept steered the development 
of Pacasus, a tool requiring high-speed SW to detect erroneous palindromic sequences in long 
reads with high base-calling error rates after whole-genome amplification (Chapter 5). Pacasus 
illustrates the attraction of GPGPUs for novel bioinformatics applications. 

OpenCL promises to be a generic compute language for parallel systems [31] and should be able 
to be translated into a single code-base for all parallel  devices. However, due to differences in 
hardware design, the OpenCL code should still be adjusted to get the most out of a particular 
device [32]. For pyPaSWAS, optimization of the OpenCL code resulted in a significant speed-
up when running OpenCL-code optimized for CPUs on a CPU, compared to running the code 
optimized for the GPU on a CPU. OpenCL optimization is therefore still required to obtain 
maximum computational efficiency for a specific platform, and code cannot be transferred from 
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one hardware architecture to another without performance penalties. Writing optimized code also 
takes time, so a balance between investing time in optimization and running a less-optimized 
application needs to be found. If future implementations of OpenCL develop into a hardware-
independent or hardware-detecting code-base, the use of GPUs for bioinformatics applications is 
likely to gain further attraction.

7.1.3 Future enhancements 
The tools presented in this thesis are not completely finished and probably never will. Feature 
requests and other issues continue to appear in software [33–35] and the tools presented in 
this thesis are no exception. Some of the potential additions to and extensions of the tools are 
discussed below. 

PaSWAS has been updated intensively after publication (Chapter 3; https://github.com/swarris/
pyPaSWAS/commits/master) during development of pyPaSWAS. A gap extension penalty was 
added, as well as the OpenCL GPU and CPU implementations. Also, pyPaSWAS has seen updates. 
After publication of pyPaSWAS (Chapter 4, Release V3.1.1), open source developers from the 
company StreamComputing have made performance enhancements in the parallel code as well 
as in the Python code which resulted in Release V3.6. Obviously, there is more to be desired. For 
example, pyPaSWAS is limited in the length of the sequences it can process by the amount of 
memory available. Hence it could benefit from distributing computations across multiple GPUs, 
which would give access to the total memory of all devices used. pyPaSWAS then needs to keep 
track of which parts of the alignment have been calculated and store these intermediate results 
in memory or on disk. It is however to be expected that storing these data on disk adds latency 
because of the required file I/O, which will slow down pyPaSWAS.  

Pacasus is developed using pyPaSWAS as a library to detect the chimera introduced in long reads 
by whole genome amplification (WGA). Two parts of Pacasus are currently not optimized for 
efficiency, resulting in an implementation which can be improved further. Firstly, pyPaSWAS 
evaluates all tracebacks through the dynamic programming matrix to return all alignments with 
the best score, but for Pacasus only the one best hit is needed. As a consequence, the traceback can 
be calculated during the construction of the matrix, resulting in a speedup of about 30 % because 
the third phase of PaSWAS can be skipped. Secondly, pyPaSWAS performs an all-versus-all 
alignment when provided with multiple sequences, whereas Pacasus only needs to align each 
sequence to itself. Therefore, the current implementation processes a single read at once, which 
in many cases is not efficient: available memory could allow for detecting palindromes in several 
sequences in parallel. With short reads <10kb) this inefficiency is large compared to processing 
long (>10kb) reads. This efficiency of Pacasus can be improved in at least two ways. One 
adjustment would allow Pacasus to process many (shorter) reads in parallel, requiring fewer 
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context switches between CPU and GPU. Pacasus also suffers from the O(n2) memory usage, 
which limits the length of the reads to be aligned to approx. 25,000 bases on GPUs, versus 
100,000 bases on CPUs. This limitation on read length is likely to become a serious issue in the 
near future: both PacBio and Oxford Nanopore technologies are expected to deliver ever-larger 
read lengths. A banded alignment implementation [36] could help as this will require less memory 
but might result in false negatives for Pacasus. Whether or not this trade-off between memory 
usage and loss of precision is a good balance needs to be investigated. 

7.2 Software engineering principles
Several software engineering principles (SEPs) [37] have been used in the design, implementation 
and testing of the new software presented in this thesis without explicit specification. For example, 
PaSWAS, pyPaSWAS and Pacasus include documentation on how to use the software in README-
files and through Wiki pages. pyPaSWAS is provided with test data and a Docker container [38] 
to install and run the application on any platform. During development of the CUDA and OpenCL 
code of pyPasWAS, extensive test runs validated the outcomes of the algorithms, verifying that 
all code-bases produce the same output given the same input and software settings. End-users 
were also involved in testing the software, with the focus on examples from their respective 
research topics. Furthermore, the Cytoscape plugin contains several unit-tests and source code 
for all developed applications has been made available through Open Source licenses. Such SEPs 
aim to assist in, structure and direct software development to reduce errors, make software more 
stable, and deliver the required functionality [37,39]. Many SEPs have been developed over the 
years. 

The use of such SEPs in the research setting of this thesis is thought to have had a positive 
effect on the overall quality (usability, reliability) of the tools developed in this thesis. Although 
formal scientific demonstration of such effects is notoriously difficult and costly, it is here 
argued that explicit demonstration and use of SEPs should get more attention and appreciation 
in bioinformatics. Bioinformatics research and software development requires scientific rigor 
and peer review. The added value of SEPs for future bioinformatics research and software 
development is discussed in more detail below.   

7.2.1 Development of bioinformatics software
Issues around the testing and validating software, including bioinformatics software, have been 
around for several years, questioning the quality, stability and predictability [40]  of the software 
involved [41,42]. Small errors in the code have resulted in retractions of high-impact papers 
[43], even though the results as published raised no suspicion. To prevent such issues with 
quality, software development in bioinformatics could incorporate SEPs much more formally 
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than now is often common practice. For example, any application should be divided into parts 
or modules that can be developed independently and tested separately. These so-called unit tests 
should be described with well-defined inputs and expected outputs and executed on a variety 
of relevant data to provide confidence in proper and intended functioning [44]. This approach 
will create more stable and predictable software, although testing in practice can be challenging 
[45], time-consuming and costly. The use of other approaches for assessing quality [46], such as 
coding standards (PEP for Python [47]) and code analytics (Error-Prone [48], IntelliJ [49], Pylint 
[50]), will further enhance code quality. Any source code should be made publicly available 
on code sharing sites, such as Github. It is a good development that BioMed Central [51] and 
Oxford University Press [52] now demand that compiled code is uploaded to open repositories, 
preferably including the source code. This way, peers can, if so desired, evaluate and test the code. 
One could even argue that this evaluation should be a mandatory part of the peer-review process. 
Automated tools to detect code smells [53] are available to detect potential problems and any 
software submitted or made public should preferably add such analyses upfront. In developing 
the Cytoscape plugin we started with such analysis on the existing code-base to find and fit 
problems in the source code before extending the implementation.

7.2.2 Delivery of bioinformatics software to an end-user
Every user of bioinformatics software is helped with a simple, predictable and well-documented 
interface. Over the years, many graphical user interfaces (GUIs) have been developed that 
facilitate access to tools in a consistent environment. Some of these GUIs are commercial, such 
as CLCBio, acquired and further developed by QIAGEN Bioinformatics [54]. Others are open 
source, such as Galaxy [55]. Power users also benefit from a user-friendly interface. The Canu 
de novo assembler [56] is an excellent example of how experienced users are assisted in the 
use of a relatively complex command line: Canu auto-detects the type of cluster management 
software installed, as well as the type(s) of hardware available. Based on the given genome size 
and other parameters, it distributes calculations automatically. These features make running the 
software relatively easy and straightforward, also on complex systems as compute clusters. The 
development of pyPaSWAS (Chapter 4) was motivated by the desire to make PaSWAS (Chapter 
3) more user-friendly and better usable by a broader audience. In addition to the additional 
programming efforts, extensive documentation has been added on how to use the application, 
including best practices and example uses. Likewise, the Cytoscape plugin (Chapter 6) has several 
built-in menu options to query the database in an attempt to hide at least some of the complexity 
of graph databases for biology-trained users. Such approaches for delivering more user-friendly 
and well-documented software to broaden the applicability and user-base of software developed 
should be considered part of the research process. They deserve more attention, appreciation and 
possibly a dedicated platform for publication.
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7.2.3 Software engineering skills 
The making of good bioinformatics software is a challenge that depends on training and experience. 
In education, future (and current) bioinformatics software developers should, therefore, be made 
well aware of existing approaches to and best practices [39,57,58] for the quality, proper testing 
and appeal to end-users of software.

Recently (in 2018) the Curriculum Task Force of the International Society of Computational 
Biology (ISCB) Education Committee has proposed to make a clear distinction between a 
‘bioinformatics engineer’ and a ‘bioinformatics user’ and to adjust educational programs/tracks 
and training accordingly [59], which I fully support as a bioinformatics researchers and former 
bioinformatics lecturer. 

In the Netherlands, already in 2001 a Bachelor of Applied Sciences (BaSc, in 2017 upgraded 
to BSc) curriculum for bioinformatics was offered at the Hanze University of Applied Sciences 
Groningen. This educational track anticipated the need for a bioinformatics engineer as a research 
technician, in addition to MSc and Ph.D. curricula. In 2002, the Universities of Applied Sciences 
Arnhem/Nijmegen and Leiden followed. Over the years, bioinformatics software skills have 
received more attention in biological MSc and Ph.D. curricula, first steered by the Netherlands 
Bioinformatics Centre (NBIC) and now the Netherlands Bioinformatics and Systems Biology 
Research school (BioSB) [60]. Internationally, initiatives as GOBLET, the Global Organization 
for Bioinformatics Learning, Education and Training [61], as well as ELIXIR [62], also gives 
ample attention to the development of proper bioinformatics software skills as part of scientific 
training. It is generally acknowledged that there are many challenges in creating and maintaining 
an appropriate bioinformatics curriculum. There  are many topics that compete for limited time. 
Given the broad nature of knowledge and skills important for bioinformatics, from -omics data 
(DNA, RNA, protein, metabolites) to databases, statistics and data visualization, decisions on 
what to give priority are essential. The rapid developments in the field complicate such decisions, 
as technologies and platforms may quickly become obsolete, sometimes even within the time 
span of an educational program. It is therefore recommended that focus should not solely go to 
adjusting current curricula, but also include developing courses, workshops [63] and post-doctoral 
programs. By adjusting or renewing such elements regularly, bioinformatics practitioners and 
researchers can stay up to date on current technologies and other developments, and develop a 
personal education track focused on needs, interests and skill sets. Such life-long learning will be 
crucial for continued contributions to the field of bioinformatics. 
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7.3 The road ahead
This thesis shows that the application of new technologies from computer science helps to generate 
novel approaches for advanced bioinformatics tools and new scientific questions. Given the three 
major challenges for (applied) bioinformatics in the future described below, the implementation 
of technologies from computer science is likely to become much more important in the years to 
come.

7.3.1 Dealing with data volume
The most recent DNA sequencing platform from Illumina, the NovaSeq 6000, currently produces 
6 TB of data in two days [64]. By extrapolating the growth of the data generation capacity in 
biology of the last decade [65], data volumes can safely be predicted to reach the petabyte range 
on a daily basis in a few years. Compute facilities need to keep up. The use of high-performance 
infrastructure and technology, such as Hadoop and cloud computing, is becoming common 
practice [65,66] and tools using hardware such as GPUs are now published frequently [67,68]. 
Companies as Google submit patents on storing and handling biological data [69,70], indicating 
commercial interest in these types of data and hence in addressing their capacity problems. In case 
compute power and storage capacities will not be able to handle the data volumes, researchers 
are already considering not storing all data and results, but to keep track of the data analytics 
used, and redo experiments, including sequencing, when needed [71]. Such an approach could 
work well if the original biological samples are stored properly and the experiments and analyses 
can be repeated sufficiently fast. This strategy should, however, be considered suboptimal. 
Appropriate storage of biological material is already a challenge by itself [72]. Moreover, redoing 
computations carries additional costs that should not be underestimated: repeating a de novo 
assembly of 150,000 hours [73] is not a viable option. The ever-increasing volumes of data will 
require bioinformatics to adopt appropriate new technology quickly and efficiently. For example, 
a promising new technology to deal with increasing numbers of genomes is an approach called 
pan-genomics [74]. In such pan-genomics, graph theory [75,76] is used to store multiple genomes 
and process these genomes in the database directly [77]. To able to get the most out of graph 
technology, software for read mappers or variant callers [20,78] will have to be redesigned to 
work with this new type of storage [79], similar to the need for redesigning software to make 
efficient use of parallel systems (Chapters 3 and 4). Therefore, the need to redesign software 
seems a recurrent problem for adopting new technologies in bioinformatics research. As the data 
volumes require such new technologies, the efforts should be seen as necessary investments in 
the progress of science, rather than avoidable costs. Moreover, such a redesign could lead to new 
insights. Possibly computer scientists could focus on design patterns for software development 
that allow more easy adjustment to any new technology.             
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7.3.2 Dealing with data types
Not only the data volume poses a significant challenge, but also the number of different data 
types that are used continues to grow. New data types produced by, for example, automated 
phenotyping [80–82], sensors based on the IoT [83] or satellite imaging [84] are continuously 
added to an already wide range of data types available [85]. To be able to address new avenues of 
research questions, different data types have to be combined. This combination of data types is 
foremost a technological challenge: each data source has its way of exposing its content (Chapter 
6). There are many different standards, not only on how to structure data, such as XML [86] 
or RDF [87] [88], but also on how machines communicate and exchange data [89]. The latter 
requires agreement on how (meta)data are annotated. Many approaches to the integration of 
heterogeneous and multilayer data are in development, such as ontologies or graph databases. An 
approach in computer science that would seem to deserve more attention for data integration is the 
use of microservices [90]. The approach of microservices involves making small, independent, 
applications (services) which perform only single tasks. These services are grouped into a larger 
application based on a microservice architecture as a counterpart of a single, do-it-all, monolithic 
architecture [90]. With the help of microservices, a developer can focus on a single task, reducing 
the complexity of the problem. As a result, the application is easier to maintain and adding new 
features is a relatively simple task as the feature will be a new microservice. For example, one 
microservice handles retrieving enzyme information from KEGG [91], and a second microservice 
stores the results of a read mapping in a database. In theory, each microservice can be built in a 
different compute language, the one best suited to address the issue at hand. The microservice 
approach also has downsides. One of the issues is that the microservices need to communicate 
with each other. The development relies on developers agreeing on how this communication 
will take place and that they stick to the agreed protocols while continuously developing the 
microservices. Another issue is that microservices can become entangled in such a way that the 
overall application becomes unstable and difficult to maintain. Fortunately, several key concepts, 
such as REST APIs, ontologies and metadata are becoming commonplace. The use of such 
concepts will facilitate access to data of different types through a generic interface, and should 
help preventing developers creating yet other data types.  

7.3.3 Dealing with complexity
The complexity of data creates the third major challenge that bioinformatics will face in the 
years to come [92]. Data complexity means that data are heterogeneous, are often obtained 
from many different sources, can contain missing values and can be contradictory (Chapter 6). 
The complexity is expected to grow even further, which will make algorithm and tool design 
increasingly difficult [93]. These three challenges are by themselves complex, but also very much 
intertwined. To get a grip on these challenges we need to integrate further the research fields 



136

Ch. 7: General discussion

involved, i.e. bioinformatics, applied bioinformatics, computational biology, biology computer 
science, and applied computer science, as well as different fields of (bio)technology and (bio)
engineering.  In the post-genomic era, acquiring more data from more organisms in more different 
ways and in less time is no longer the challenge; analyzing it all is. Contributions to improving 
the quality of life sustainably will require biology, technology and computer science connected in 
ways we cannot even imagine yet.
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Summary
Bioinformatics and computational biology are driven by growing volumes of data in biological 
systems that also tend to increase in complexity. The research presented in this thesis focuses on 
the need to analyze such data volumes in such complexity. The results show that the application 
of high-performance compute technologies, preferably combined with low-cost hardware, is a 
successful approach to generate new bioinformatics approaches that allow addressing new types 
of data analyses and research questions in biology. 

An overview of the technologies and recent developments in biology and computer science 
relevant for this thesis (Chapter 1) identifies current high-throughput sequencing platforms 
as a key technology. Sequencing platforms now deliver data sets up to terabytes in size for 
elucidating genome structure, gene content, gene activity, as well as gene variants. The concepts 
and technologies from computer science to handle these large amounts of data include (a) grid 
technologies for compute parallelization while making more efficient use of existing low-cost 
infrastructure; (b) graphics cards for increased compute power and (c) graph databases for large 
data volume storage and advanced methods for analyses. This thesis presents novel applications 
and added value of these three concepts for bioinformatics research.   

Small RNAs are important regulators of genome function, yet their prediction in genomes is 
still a major computational challenge (Chapter 2). They tend to have a minimal free energy 
(MFE) significantly lower than the MFE of non-small RNA sequences with the same nucleotide 
composition. Evaluation of many MFEs is, however, too compute-intensive for genome-wide 
screening. With a local grid infrastructure of desktop computers, MFE distributions of a very 
large collection of sequence compositions were pre-calculated and used to determine the MFE 
distribution for any given sequence composition by interpolation. This approach allows on-the-
fly calculation for any candidate sequence composition and makes genome-wide screening with 
this characteristic of a pre-miRNA sequence feasible. This way, MFE evaluation can be added as 
a new parameter for genome-wide selection of potential small RNA candidates (Chapter 2). The 
concept of large-scale pre-calculation of compute-intensive parameters is one of the options for 
future bioinformatics analyses.  

Sequence alignment is essential in the analysis of next-generation sequencing data. The 
gold standard for sequence alignment is the Smith-Waterman (SW) algorithm. Existing 
implementations of the full SW algorithm are either not fast enough, or limited to dedicated tasks, 
usually to optimize for speed, whereas popular heuristic SW versions (such as BLAST) suffer 
from statistical issues. Graphics hardware is well-suited to speed up SW alignments, but SW on 
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graphics cards does not report the alignment details desired by biologists for further analysis. 
This thesis presents the CUDA-based Parallel SW Alignment Software (PaSWAS) (Chapter 3). 
PaSWAS gives (a) easy access to the computational power of NVIDIA-based graphics cards for 
high-speed sequence alignments, (b) information such as score, number of gaps and mismatches 
with the accuracy of the full SW algorithm and (c) a report of multiple hits per alignment. Two 
use cases show the usability and versatility of the new parallel Smith-Waterman implementation 
for bioinformatics analyses. It demonstrates the added value of the use of low-cost graphics cards 
in bioinformatics software.

To further promote the use of PaSWAS, a new implementation, pyPaSWAS, provides the SW 
sequence alignment code fully packed in Python and the more widely accepted OpenCL language 
(Chapter 4). Moreover, pyPaSWAS now supports an affine gap penalty. This way, pyPaSWAS 
presents an easy Python-based environment for accurate and retrievable parallel SW sequence 
alignments on GPUs and multi-core systems. The strategy of integrating Python with high-
performance parallel compute languages to create a developer- and user-friendly environment is 
worth to be considered for other computationally-intensive bioinformatics algorithms.

Thanks to the accuracy and retrieval characteristics of (py)PaSWAS, it was noted that long 
sequencing reads on the PacBio platform can contain many artificial palindromic sequences. 
These palindromes are due to errors introduced by whole-genome amplification (WGA). Next-
generation sequencing requires sufficient amounts of DNA. If not available, WGA is routinely 
used to generate the amounts of DNA required. The introduction of artificial palindromic 
sequences hampers assembly and severely limits the value of long sequencing reads. Pacasus 
is a novel software tool to identify and resolve such artificial palindromic sequences in long 
sequencing reads (Chapter 5). Two use cases show that Pacasus markedly improves read mapping 
and assembly of WGA DNA. In comparison, the quality of mapping and assembly is similar to 
the quality obtained with non-amplified DNA. Therefore, with Pacasus, long-read technology 
becomes feasible for the sequencing of samples for which only very small amounts of DNA are 
available, such as single cells or single chromosomes. 

Numerous tools and databases exist to annotate and investigate the functions encoded in properly 
assembled genomes, such as InterProScan, KEGG, GO and many more. Comparisons of 
functionalities across multiple genomes is, however, not trivial. The concept of graph databases 
is a promising novel approach from computer science for such multi-genome comparisons. For a 
data set of all (> 150,000) genes of 17 fungal species functionally annotated with InterProScan, 
the associated KEGG, GO and annotation data are imported and interconnected in a new Neo4j 
graph database (Chapter 6).  Relationships in this database are visualized and mined with a newly 
refurbished and extended Neo4j plugin for Cytoscape. Inspection of (sub)graphs of functional 
annotations is an attractive way to compare and group functional annotation across species. In the 



143

 

use case of the seventeen fungal genomes, it helped to outline, compare and explain details of the 
life style of groups of individual species. 

The general discussion of this thesis provides an outlook on the future of bioinformatics in the 
context of the results here presented (Chapter 7). A grid infrastructure is recommended as a 
feasible and attractive cost-effective strategy to create compute power, as is the further inclusion 
of graphics cards. Full implementation of graph technology is considered necessary for advancing 
bioinformatics.  The work presented in this thesis also shows that use of grids, graphics cards and 
graph technology imply the redesign of existing software applications. To be able to create novel 
stable, predictable and user-friendly applications in bioinformatics, formal training in software 
engineering principles is highly recommended. Courses and other programs are necessary for 
the life-long learning that will be crucial for the future of bioinformatics. The main challenges 
for bioinformatics in the years to come are all data centered: issues with growing data volumes, 
with more data types and with higher data complexity. To deal with these challenges, further 
integration of now separate fields of science is warranted in ways we cannot even image yet.  
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Bioinformatica en computationele biologie worden geconfronteerd met voortdurend groeiende 
hoeveelheden data die ook steeds complexer worden. Het onderzoek in dit proefschrift richt 
zich op de wens en noodzaak om deze grote en complexe datasets goed te kunnen analyseren. 
De resultaten laten zien dat het gebruik van hoogwaardige rekentechnieken op -bij voorkeur- 
goedkope hardware kan leiden tot nieuwe aanpakken voor data-analyse in de bioinformatica en 
tot nieuwe onderzoeksvragen in de biologie.  

Hoofdstuk 1 geeft een overzicht van recente ontwikkelingen in de biologie en de informatica met 
betrekking tot technologieën die relevant zijn voor het onderzoek in dit proefschrift, waarbij de 
ontwikkeling van de high-throughput sequencing platformen als belangrijkste wordt aangemerkt. 
Deze platformen genereren tot terabytes aan data welke inzicht geven in (structuren in) genomen, 
genen, gen-activiteiten alsmede genetische variatie. Technologieën uit de informatica die het 
mede mogelijk maken om deze datasets goed te verwerken zijn (a) grid infrastructuren voor 
de efficiënte parallelle verwerking op bestaande goedkope infrastructuur (b) grafische kaarten 
voor meer rekenkracht en (c) graph databases voor grootschalige opslag en geavanceerde 
analysetechnieken. Dit proefschrift presenteert nieuwe toepassingen op basis van deze drie 
concepten en hun toegevoegde waarde voor de bioinformatica.   

Kleine RNA-moleculen zijn belangrijk voor het reguleren van vele functies van het genoom, 
maar het voorspellen van deze kleine moleculen in het genoom is nog steeds een computationele 
uitdaging (Hoofdstuk 2). Deze RNA-moleculen hebben in de meeste gevallen een significant 
lagere minimale vrije energie (minimal free energy, MFE) vergeleken met andere RNA-
moleculen met dezelfde nucleotidesamenstelling. De evaluatie van een groot aantal MFE-
waarden maakt een scan van een heel genoom te rekenintensief. Door gebruik te maken van 
een lokale grid infrastructuur gebaseerd op een netwerk van desktopcomputers is een grote set 
van MFE-waarden uitgerekend, waarmee de MFE-verdeling bepaald kan worden voor elke 
gewenste nucleotidesequentie met behulp van interpolatie. Hiermee is het mogelijk om voor elke 
kandidaatsequentie in korte tijd de MFE-verdeling te bepalen, waardoor het analyseren van een 
heel genoom haalbaar wordt. De MFE-waarde kan toegevoegd worden als nieuwe parameter voor 
het classificeren van RNA-moleculen (Hoofdstuk 2). Het concept van het vooraf grootschalig 
uitrekenen van rekenintensieve berekeningen is een mogelijkheid voor toekomstig onderzoek aan 
grote datasets, bijvoorbeeld in de bioinformatica.

Het vergelijken van sequenties is een essentieel onderdeel bij het analyseren van sequentiedata. 
De gouden standaard hiervoor is het Smith-Waterman (SW) algoritme. Bestaande implementaties 
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van het volledige SW-algoritme zijn niet snel genoeg, of gelimiteerd tot een bepaalde taak die 
meestal geoptimaliseerd is voor snelheid. Andere aanpakken, zoals BLAST, zijn heuristisch 
en hebben ingebouwde statistische onbetrouwbaarheden. Grafische kaarten zijn heel geschikt 
voor SW analyses, maar bestaande implementaties geven niet voldoende details voor verdere 
biologische analyses of interpretaties. Dit proefschrift presenteert (Hoofdstuk 3) een op de 
CUDA programmeertaal gebaseerde parallelle implementatie van het SW algoritme: Parallele 
Smith-Waterman Alignment Software (PaSWAS).  PaSWAS geeft (a) makkelijk toegang tot de 
rekenkracht van op NVIDIA-technologie gebaseerde grafische kaarten voor snelle analyses, 
(b) informatie over bv. de score, het aantal gaten en het aantal niet-overeenkomstige letters 
met behoud van de volledige accuratesse van het SW-algoritme en (c) de mogelijkheid om 
meerdere resultaten per vergelijking te geven. Twee voorbeelden laten zien dat PaSWAS een 
bruikbare en veelzijdige nieuwe parallelle implementatie van het SW-algoritme is voor analyses 
in de bioinformatica. Het laat ook zien dat het gebruik van relatief goedkope grafische kaarten 
meerwaarde heeft voor de bioinformatica.

Om het gebruik van PaSWAS verder te stimuleren/vergemakkelijken heeft een nieuwe 
implementatie, pyPaSWAS, de SW analyses samengevoegd met Python code. Deze implementatie 
bevat ook een versie in de breed geaccepteerde OpenCL programmeertaal (Hoofdstuk 4). Ook 
heeft pyPaSWAS de mogelijkheid om gebruik te maken van de meest geavanceerde wijze van 
het meenemen van gaten in de vergelijking (‘affine gap penalty’). pyPaSWAS geeft op deze 
wijze via een toegankelijke Python omgeving de mogelijkheid om accurate en volledige SW 
analyses uit te voeren op verschillende merken grafische kaarten en computers met meerdere 
CPU kernen. De strategie van het samenvoegen van Python met parallelle rekentalen om tot 
een ontwikkelaar(s)- en gebruikersvriendelijke omgeving te komen kan overwogen worden voor 
toekomstige rekenintensieve taken in de bioinformatica. 

Dankzij de accuratesse en informatie van (py)PaSWAS werd zichtbaar dat lange sequenties 
afkomstig van het PacBio sequentieplatform op grote schaal palindromen kunnen bevatten. Deze 
palindromen bleken kunstmatig tot stand te komen tijdens het proces van genoomvermeerdering 
(whole genome amplication (WGA)). De huidige sequentieplatformen vereisen voldoende DNA 
om de sequentie te kunnen bepalen. Als de benodigde hoeveelheid DNA niet aanwezig is, wordt 
routinematig WGA ingezet om meer DNA te genereren. Door de introductie van kunstmatige 
palindromen kunnen dergelijke lange sequenties niet goed ingezet worden bij de opheldering van 
genoomstructuren (‘assembly’). Dit beperkt de inzet van de WGA-technologie enorm. Pacasus 
is nieuwe software die het mogelijk maakt om deze palindromen te detecteren en hun informatie 
ook te gebruiken (Hoofdstuk 5). Voorbeelden laten zien dat Pacasus belangrijke verbeteringen 
oplevert bij de kartering (‘mapping’) van WGA DNA-sequenties op een genoom en bij het de 
novo assembleren van een genoom. De resultaten zijn goed vergelijkbaar met de resultaten 
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van DNA dat niet via WGA is verkregen. Met Pacasus wordt het dus mogelijk om lange DNA-
sequenties te gebruiken van biologische specimen waarvan maar heel weinig DNA beschikbaar 
is, zoals in het geval van een enkele cel of een enkel chromosoom. 

Er zijn talloze softwarepakketten en databases beschikbaar, zoals InterProScan, KEGG en GO, 
om de functies te analyseren in een genoom waarvan de structuur is opgehelderd. Het vergelijken 
van functies tussen verschillende genomen is echter niet triviaal. Het concept van graph databases 
is een nieuwe en interessante aanpak voor dit soort meervoudige-genoomvergelijkingen. Voor 
een dataset van alle (> 150.000) genen van zeventien schimmels, die functioneel beschreven 
(geannoteerd) zijn met InterProScan, zijn alle KEGG, GO en andere functionele beschrijvingen 
in een Neo4j graph database gecombineerd (Hoofdstuk 6). Relaties in deze database zijn 
gevisualiseerd en doorzocht via een aangepaste en uitgebreide Neo4j plug-in voor Cytoscape. 
Analyse van (sub)graphs van functionele annotaties is een attractieve methode voor het vergelijken 
en groeperen van functionele annotaties van meerdere soorten. In het voorbeeld van zeventien 
schimmelgenomen werd het mogelijk om nieuwe vergelijkingen te maken tussen groepen van 
verschillende organismen en nieuwe inzichten te verkrijgen over de verschillende levensstijlen 
van die groepen van organismen.  

De algemene discussie van dit proefschrift (Hoofdstuk 7) geeft vergezichten op de toekomst 
van bioinformatica in het licht van de hier gepresenteerde resultaten. Een grid infrastructuur 
is een aantrekkelijke en goedkope wijze om de beschikking te krijgen over meer rekenkracht. 
De toevoeging van grafische kaarten aan dit geheel vergroot de rekenkracht verder. Voor veel 
vraagstukken in de bioinformatica is het even aantrekkelijk als noodzakelijk om meer gebruik te 
maken van graph-technologieën. Het proefschrift laat zien dat voor het gebruik van grids, grafische 
kaarten en graph technologieën het nodig is om bestaande softwareapplicaties te herschrijven. Om 
de vereiste nieuwe, stabiele, voorspelbare en gebruikersvriendelijke bioinformatica-applicaties 
te maken is training in software engineering principes zeer aan te raden. Cursussen en andere 
lesprogramma’s zijn nodig voor het leven-lang-leren dat cruciaal zal zijn voor de toekomst van 
de bioinformatica. Deze toekomst draait rond data: uitdagingen met de verdere groei van datasets 
met meer verschillende soorten data en toenemende complexiteit bepalen het beeld. Om met 
deze uitdagingen om te kunnen gaan zullen nu nog gescheiden onderzoeksgebieden geïntegreerd 
moeten worden op manieren die we ons nu nog niet kunnen voorstellen.
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Propositions
1.  General-Purpose Graphics Processing Unit (GPGPU) technologies are 

highly undervalued in bioinformatics research.  
(this thesis) 

2.  Proven applicability and novelty are the chicken and egg of bioinformatics.  
(this thesis) 

3.  More funds should be moved from traditional research-oriented universities 
to Universities of Applied Sciences for higher return-on-investment and 
higher impact of research on society. 

4.  Human intelligence as basis for Artificial Intelligence (AI) is too scary to be 
considered safe. 

5.  Given the current state of biological databases, FAIR stands for Freakishly 
Ambiguous and Incomplete Resources. 

6.  Dreaming of a next Frisian Eleven Cities Tour is the ultimate denial of 
climate change.

Propositions belonging to the thesis, entitled 
Application of high performance compute technology in bioinformatics
Sven Warris
Wageningen, 22 October 2019
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