

Application of high performance
compute technology in

bioinformatics

Sven Warris

Thesis committee

Promotor
Prof. Dr D. de Ridder
Professor of Bioinformatics
Wageningen University & Research

Co-promotor
Dr J.P. Nap
Professor of Life Sciences & Renewable Energy
Hanze University of Applied Sciences Groningen

Other members
Prof. Dr B. Tekinerdogan, Wageningen University & Research
Prof. Dr R.C.H.J. van Ham, Delft University of Technology & KeyGene N.V., Wageningen
Dr P. Prins, University of Tennessee, USA
Prof. Dr R.V. van Nieuwpoort, Netherlands eScience Center, Amsterdam

Application of high performance compute
technology in bioinformatics

Sven Warris

Thesis

submitted in fulfilment of the requirements for the degree of doctor

at Wageningen University

by the authority of the Rector Magnificus

Prof. Dr A.P.J. Mol

in the presence of the

Thesis Committee appointed by the Academic Board

to be defended in public

on Tuesday 22 October 2019

at 4:00 p.m. in the Aula

Sven Warris
Application of high performance compute technology in bioinformatics, 159 pages.
PhD thesis, Wageningen University, Wageningen, the Netherlands (2019)
With references, with summaries in English and Dutch
ISBN: 978-94-6395-112-8
DOI: https://doi.org/10.18174/499180

7

Table of contents

1 Introduction 9

2 Fast selection of miRNA candidates based on large-
scale pre-computed MFE sets of randomized sequences 27

3 Flexible, fast and accurate sequence alignment
profiling on GPGPU with PaSWAS 47

4 pyPaSWAS: Python-based multi-core CPU and GPU
sequence alignment 67

5 Correcting palindromes in long reads after whole-
genome amplification 81

6 Mining functional annotations across species 103

7 General discussion 125

Summary 141

Samenvatting 145

Acknowledgements 149

Curriculum vitae 153

List of publications 155

Propositions 159

9

1 Introduction

11

Advances in DNA sequencing technology

In recent years, technological developments in the life sciences have progressed enormously.
In various –omics fields, such as proteomics, metabolomics, transcriptomics and genomics, the
amount of data created and the complexity of the models inferred from such data are exploding.
In genomics, for example, the continuously rapid development of DNA sequencing technology
is enabling researchers to (re)construct genomes at an unprecedented pace. These –omics data,
commonly referred to as big data [1], will help advance the understanding and possible application
of biological systems, provided they can be stored and analyzed properly. The growing amount
of biological data and the wider scope of research questions have resulted in a large increase of
bioinformatics activities. In the research field of bioinformatics biologists, computer scientists,
physicists and mathematicians collaborate to integrate life sciences, information technology, data
mining and modeling approaches to store, process and analyze biological data.

Major developments relevant to this thesis in both the life sciences and computer science will be
outlined in the following sections focusing on genomics-related topics.

1.1 Advances in DNA sequencing technology
The history of nucleic acid sequencing is documented well [2]. It started in 1972 with the sequence
of a single RNA of bacteriophage MS2, followed in 1976 by the whole RNA genome of this
organism. After a number of technological advances, the DNA genome of the Epstein-Barr virus
was sequenced in 1984 and the genome of the first free-living organism Haemophilus influenzae
was published in 1995. In the late 1990’s, researchers sequenced many model organisms such
as yeast and Bacillus subtilis. These projects accelerated the use of whole-shotgun sequencing
strategies, with the first draft sequence of the human genome in 2001 as notable achievement [2].

Subsequent advances in technology aimed at lower costs per base and speed-up by miniaturization
and parallelization of the sequencing process. The first major commercial system was released
in 2004. The 454 Life Science (later Roche) sequencing platform produced large quantities
(over 20 Mb) of DNA reads of about 250 bases. The costs of sequencing a human genome with
this platform dropped to about US$ 1 million [3]. In 2006, Solexa (later acquired by Illumina)
introduced its HiSeq platform, capable of producing millions of reads of 35 bases in a single run.
In consecutive updates the HiSeq improved significantly in terms of throughput and read length,
reducing the costs per base further. The HiSeq has evolved into benchtop systems on the one hand
and production-scale sequencers on the other. The benchtop MiSeq has less throughput than its
big counterpart, but makes this type of sequencing technology available to many institutes. The
price per base has dropped to US$ 0.0005 cents/base for the MiSeq [4]. The latter produces 1.5
Gb of data per run compared to 600 Gb/run of the HiSeq 2000. The latest update of the HiSeq, the
NovaSeq [5], produces even more reads, up to 6 Tb of data within two days, providing 30 times
coverage of the human genome.

12

Ch. 1: Introduction

Although these platforms are capable of producing large amounts of sequence data, the sequence
reads are still relatively short, up to 300 bases in length, but of high quality (average 0.28% error
rate [6]), limiting the applicability of the systems [7]. To be able to generate longer reads, other
platforms have been introduced more recently, such as the RS II/ Sequel (Pacific BioSciences)
and minION/promethION (Oxford Nanopore) systems [7]. These long-read sequencing platforms
are a trade-off between the higher average and maximum length of the resulting read sets and
the quality of the base-calling (average ~13% error rate) [6,7]. Two sequencing approaches that
combine nucleotide data and long range contiguity information are Illumina-based: chromosome
conformation capture using the Hi-C protocol [8] and synthetic long read library preparation
using the 10x Genomics Chromium platform [9]. Although the underlying technologies and
throughputs differ for the currently available platforms discussed above, all such modern DNA
sequencing is here referred to as next-generation sequencing or high-throughput sequencing.

1.2 High-throughput sequencing technology
Various applications of high-throughput sequencing technology have been developed over the
years or are being developed. Applications relevant to the work described in this thesis are
outlined below.

1.2.1 De novo genome sequencing and assembly
Methods to determine the genome sequence of an organism when no suitable genome sequence
is available for reference are referred to as de novo sequencing [10].

The NCBI database of complete genomes [11] currently contains 192,615 entries, of which 6,037
correspond to eukaryotic species (June 2018). Although this is a considerable amount of data,
there are an estimated 8.7 million eukaryotic species, 86% of which has not yet been described
or sequenced [12]. Therefore, many complete genomes will likely be sequenced de novo in the
(near) future. An essential step in such genome sequencing efforts is the assembly of the sequence
data into a contiguous sequence, contig for short, in a procedure known as de novo assembly
[10]. DNA sequencers deliver data sets containing millions of (short) reads, which need to be
connected into contigs in a process called assembly. The problem resembles the construction of a
giant jigsaw puzzle of which the image is unknown. The main challenge for de novo assemblers,
such as Canu [13] and many others [10], are the repetitive parts of a genome, which can be
several kilobases long [14]. The main issue with short read lengths is that they fail to span repeat
regions longer than the read length. This limits their application in de novo assembly [10,15].
To unambiguously assemble reads into contigs, repeats need to be spanned by reads; short reads
hence do not suffice [10,15–17].

13

High-throughput sequencing technology

The Pacific Biosciences Sequel and Oxford Nanopore sequencers can create long reads, but
these contain too many errors (~13%) [6,7] to be handled effectively and efficiently by currently
available assembly software for large genomes. For small genomes (1-40 Mb), such as bacteria
and most fungi, long read technologies have been shown to allow near-complete to fully complete
de novo assemblies [18]. Hybrid approaches, where data from different sequencing platforms are
combined, are gradually becoming commonplace, especially for large genomes, and will replace
single-technology based approaches as the standard for de novo genome assembly [19,20]. In
hybrid assembly short reads are used to create high-quality contigs and long reads are used to
fill the gaps between these contigs and bridge the repetitive parts [17,21]. A useful addition
to the challenges of hybrid de novo assembly is the BioNano Genomics Irys system and its
successor the Saphyr [22]. In this technology of (high-throughput) optical mapping, very long
molecules (high molecular weight DNA) are fluorescently labeled, separated and ordered [23].
The BioNano platforms are used for scaffolding genome assemblies as these molecules offer
long-range contiguity information [24]. When the resulting assembly still contains scaffolds (sets
of linked, oriented contigs) rather than full chromosomes, linked-read technology and/or optical
mapping can be used to arrange the scaffolds, perform gap size predictions and visualize other
structural information [24].

De novo assembly of large (>100 Mb) genomes is computationally complex. Several approaches
are usually combined, including De Bruijn graphs for the initial assembly [25], read mapping
for quality control [26] and filling of gaps between contigs [27]. Such approaches put strains on
computational resources such as memory and CPU power [28]. Moreover, the size of the sequence
data sets continues to grow, further challenging the computational requirements of assembly [29].
As a result, IT developments have difficulties keeping up with the speed of growing computational
demands. New ways of tackling the assembly process are constantly being developed to allow
proper de novo assembly, for example by removing the compute intensive error correction phase
[30,31] or by changing the order in which the assembly process takes place [32].

14

Ch. 1: Introduction

Figure 1.1. Read mapping in the process of genome resequencing. Each sequence read
is mapped to the available reference genome (top line) to find the location(s) of the reads,
allowing for mismatches and gaps. Computationally, reads are assembled in the new genome
sequence. This (partial) image was created with Tablet [33].

1.2.2 Genome resequencing
If the genome of a species is available, there is no need to perform a de novo assembly. The
available genome sequence is used as reference (similar to the image of a puzzle) and reads are
aligned to it (Figure 1.1). This process is called read mapping [34] and is an important step in
genome resequencing. With this approach, less data is required than for de novo assembly, but
repetitive parts of the reference are still problematic: a short read from a repetitive part will map
to more than one location. This ambiguity issue increases if mismatches and gaps are allowed.
Also genetic variation, (poly)ploidy and sequencing errors make read mapping more challenging.
After reads are mapped to the reference, a consensus is extracted, giving the reassembled genome
of the sequenced organism. Several software tools assist in such genome assembly [34–37], such
as BWA [38,39], Bowtie2 [40] and Minimap2 [41].

1.2.3 Variant discovery
At the DNA level, each individual organism differs from other organism of the same species. Such
differences determine in large part how the organism (dis-) functions. It is therefore important
to identify these small differences, or variants, between individuals. For variant discovery, reads
are mapped to a reference genome prior to statistical analyses [42] (Figure 1.2). Changes with
respect to the reference may indicate changes in biological function. Tools such as BWA [38] or
Minimap2 [41] are used to map reads, but in these tools the number of mismatches, insertions
or deletions allowed in a read [34,37,43] is limited. As a result, other variants, such as larger
insertions or deletions require more accurate algorithms for read mapping (Chapters 3 and 4).

15

High-throughput sequencing technology

Figure 1.2. Variant detection by mapping reads to a reference genome. The reads are
highly similar, as shown by the many matching bases (grey). Nucleotides colored in red
indicate where the reads differ from the reference sequence, with a star (*) indicating a gap.
The G/C variant is an obvious single nucleotide polymorphism (SNP) and further statistical
analysis will determine whether the other variants are read errors or true variants. This image
was created with Tablet [33].

1.2.4 RNA sequencing
High-throughput sequencing technology also allows determining the RNA content of a cell (i.e.
the transcriptome) [44]. As RNA sequences encode either protein sequences (messenger RNA
or mRNA) or are regulatory molecules, the resulting data presents a snapshot of the ongoing
processes within a living cell. Such RNA sequencing indicates for example transcriptionally
active genes, whereas the number of sequences found indicates transcription levels. Tools similar
to those used for read mapping outlined above are used to find the location of the RNA in the
genome sequence, and to identify the corresponding gene. The phenomenon of splicing [45]
and occurrence of splice variants make this mapping more challenging. The PacBio and Oxford
Nanopore platforms allow sequencing the full-length mRNA, which increases the likelihood to
include splicing variants [46,47]. The 10X Chromium platform and other technologies allow for
RNA sequencing at a single-cell level [48], further advancing the accuracy of RNA analysis.

Besides mRNA sequencing, other types of RNA are of interest, for example long non-coding
RNA [49], and small interfering RNA (siRNA) [50]. In recent years it has become clear that
siRNAs play important roles in regulating transcription and translation [50]. For example, small
RNA molecules bind to messenger RNA and block transcription or enable degeneration of
messenger RNA before transcription takes place. A particular class of small interfering RNA
sequences are microRNAs (or miRNAs) [51]. The biogenesis of miRNAs includes a pre-miRNA
sequence of 50-600 bases (Figure 1.3) which is shortened to an active sequence of 17-22 bases.

16

Ch. 1: Introduction

When sufficiently expressed, pre-miRNA molecules can be detected through short-read RNA
sequencing [44] that targets transcribed DNA. Expression levels of pre-miRNAs tend however
to be low and to identify all possible pre-miRNA genes in a genome, the entire genome of the
organism should be analyzed. Based on the genome sequence, miRNA genes and their targets
are predicted [51]. Such predictions are compute-intensive and require considerable amounts of
resources.

Figure 1.3. 2D structure of a pre-miRNA molecule. The pab-MIR160a [52] RNA molecule
is folded in a hairpin structure, with a loop on the right. Such a hairpin structure is indicative for
pre-miRNA molecules. The location of the mature miRNA is indicated by the box. Structure
and image were created with the MFold website [53].

1.3 Advances in computer science
The developments in the life sciences outlined above demand significantly growing compute- and
computer-intensive resources to store, process and analyze the data generated. In recent years,
the field of computer science has seen several major developments relevant for these challenges.
These will be outlined below.

Arguably the first computer in the world, the EDSAC1, was built in 1949 in the UK [54]. As early
as 1950 the first biological application ran on this computer: the calculation of gene frequencies
by the famous statistician Ronald A. Fisher [55]. One could therefore argue that the field of
bioinformatics was born in 1950. From a modern perspective, the power of computers in those days
was very low but it has since doubled about every 18 months, an observation known as Moore’s
Law [56]. Supercomputers are nowadays installed all over the world and are used for data and
compute-intensive research fields, such as medical science, astronomy, climate research, defense,
national security and (population) genetics. BGI in China, nowadays the largest DNA sequencing
facility in the world, has over 212 TeraFLOP/s of computing power available to process its output
[57]. Such supercomputers are not easily accessible for a smaller research institute. Not only the
costs of purchasing and running a supercomputer prevent many organizations to establish one,
supercomputers also require dedicated software and highly skilled personnel for development and
maintenance. However, nowadays several new technology platforms provide (smaller) research
organizations with relatively low-cost, yet high-performance, computing power, such as grids,
clouds and general-purpose graphics processing units (GPGPU).

17

Advances in computer science

1.3.1 Grid computing
Desktop computers and servers are common-place in life science research organizations such
as universities and other higher-education and/or research institutes. Such computers run a
variety of operating software platforms, from Windows to Linux, and are used for many different
tasks: word processing, calculations in spreadsheets, sequence alignments, protein modeling,
etc. Desktop work such as word processing does not require much computing power and users
typically require computation time at most 8 hours a day. Therefore, the computer is idle most
of the day. To be able to use such computers for research tasks, dedicated software is available
to create a so-called computer grid. For example IBM (www.ibm.com), Globus (www.globus.
org) or HTCondor (research.cs.wisc.edu/htcondor/) offer such software. Installing one of these
packages on the desktops and servers creates a computer grid of tens up to thousands of nodes,
limited only by the nodes available. When desktops are idle, they are automatically used for
desired applications. Provided issues with security and privacy are tackled satisfactorily, these
grid technologies give easy and affordable access to low-cost, high-throughput computing
facilities without the need to rewrite software and/or the purchase of (costly) additional hardware.
In bioinformatics, grids are used and useful for computationally intensive tasks, such as protein
folding [58] or BLAST searches [59]. In Chapter 2 of this thesis, an example of the use of an
HTCondor grid for RNA sequence calculations is given.

1.3.2 Cloud computing and storage
In case data is dynamic or larger than a standard desktop hard drive of several TB can handle,
local storage and grid computing become ineffective: changes in the data need to be sent over
the network to each of the nodes or entire data sets have to be redistributed. Companies such
as Google and Amazon developed cloud technology [60] to deal with huge data volumes and
continuously changing and highly dynamic data. Three design principles play a role in cloud
technology: (a) low-end and cheap hardware, (b) cloud storage and (c) cloud computing [61].

The use of low-end and cheap hardware is similar to the hardware used in grids (see previous
section). It makes cloud technology easily accessible and affordable for relatively small users.
Also, costs remain manageable even when cloud technology is deployed on a large scale. Cloud
storage is the concept of storing data locally, but not everything is stored on every node [60]. Data
distributed over the network is split up in large blocks and each block is stored on two or three
nodes simultaneously. In case a node fails, all data are still available. Cloud storage also reduces
the need to send data many times over the network. Cloud computing is the concept to calculate
locally what is stored locally. Each node performs only the calculations on the data which is stored
on that node. There is almost no network traffic required to fetch the data. Intermediate results are
stored locally and only the end result is gathered at a central point. Google uses cloud technology

18

Ch. 1: Introduction

to search through millions of web pages millions of times a day, reporting relevant results to
the user within a tenth of a second. The underlying computational model is called MapReduce
[62]. Detailed description of MapReduce [62] is beyond the scope of this introduction, yet its
performance is obviously interesting for the data volumes and computations of bioinformatics
[61,63].

Bioinformatics data sets and analyses are suitable to be placed in the cloud, either in a private
cloud or in one of a commercial enterprise such as Amazon.com, where researchers can rent cloud
space and computer time [64]. Data is stored and accessed in the cloud in a different way than in
traditional network storage systems such as Network File System (NFS) and New Technology File
System (NTFS), requiring a (partial) redesign of existing applications. If an application requires
access to a cloud-based database, the database model and data transfer have to be redesigned. In
case of a MapReduce-based approach, the entire data processing model of the application needs
to be reconsidered. To date, only a limited number of bioinformatics applications are available for
use in the cloud, such as BLAST [65], BAM sequence alignment processing [66] and CloudBrush
[67]. It is expected that this number will rise rapidly in the future, because frameworks such
as ADAM [68] and Apache Spark [69] will take away most of the developmental efforts from
bioinformatics researchers, making them more accessible.

1.3.3 General Purpose Graphics Processing Units (GPGPU)
Grid and cloud technology focus on networked use of many computer systems. However, single
systems offer possibilities for high-performance computing as well. The Central Processing Unit
(CPU) of a computer performs most of the logical instructions. In addition, contemporary desktop
computers hold another processor: the Graphics Processing Unit (GPU). This GPU performs
the calculations necessary to display information on the screen based on using a large number
(hundreds) of small computing elements. Over the years GPUs have become complex processors
able to generate high-resolution gaming environments for a realistic user experience. For many
specific applications the GPU is faster than the CPU [70]. The development of CPU and GPU
speed, expressed in floating point operations per second (FLOP/s), is depicted in Figure 1.4.
In 2005 the GPU became faster than the CPU in single precision calculations and from 2008
on it has been also faster in double precision calculations. The increase in GPU speed is also
higher than the speed of a CPU, with the Sandy Bridge CPU reaching ~90 GFLOP/s and the
Geforce GTX 580 reaching ~1500 GFLOP/s in 2010. The most recently released GPU, the high-
end NVIDIA Tesla V100 (2018), has a peak performance of 15.7 TFLOP/s. With the release of
the CUDA general-purpose programming language by NVIDIA Corporation (www.nvidia.com)
in 2007 and the open standard OpenCL (www.khronos.org/opencl) in 2008, the computational
power of the GPU became accessible for other purposes than graphics processing. This makes the
GPU a General-Purpose Graphics Procession Unit (GPGPU, www.gpgpu.org).

19

Advances in computer science

GPUs have two important advantages over CPUs: they deliver more FLOP/s per unit cost and
they are more energy efficient: the FLOP/s/Watt is higher for a GPU than for a CPU [72,73]. In
a research setting, GPUs therefore deliver low-cost, high-performance hardware, giving smaller
research organizations access to computing power traditionally reserved for supercomputers,
i.e. they help ‘democratizing’ supercomputing. GPUs are readily installed in standard desktop
computers and specialized servers are available capable of holding several GPUs. Moreover, CPU
vendors such as Intel recognize the increased use of GPU technology and have started integrating
GPU hardware within their CPU (HD Graphics) and building accelerator cards with many CPU
cores (Xeon Phi), similar to a GPU card. Combined with grid and/or cloud technology, GPGPU
technology increases available computing resources even further.

A limitation in the use of a GPU is that the hardware has a completely different design than
that of a CPU and performs calculations in parallel [71]. As the hardware is inherently parallel,
it needs to be programmed as such [71]. Each individual processing unit on a GPU is slower
than that of a CPU but there are a large number of these small units on a GPU. To harness the
power of the GPU, any application needs to be re-designed, considering concurrency, thread
synchronization and race conditions [74]. Resources on a GPU are also limited [71]. Currently
only high-end Tesla high-performance GPUs and GeForce 20 series GPUs have 8 GB of main
memory or more, which is the de facto standard for a basic desktop computer. Local memory is
limited to 16 KB or 32 KB per processing unit. Making full use of the fast but limited memories
on a GPU is therefore challenging, requiring trade-offs between storage efficiency (space) and the
computational requirements of data conversion (time) [74].

Any implementation of a bioinformatics algorithm for a CPU has to be rewritten (in part) to make
optimal use of the GPU [75]. Such parallel programming, often done in the C/C++-based CUDA
or OpenCL programming language [76], is a complex task. Fortunately, more and more developers
are using GPGPU solutions [75], as a result of which commonly used programming languages
offer integration with CUDA and/or OpenCL. Applications written in for example Java, Python
or Matlab can be extended through libraries that make use of GPGPU technology [77,78]. These
recent developments have two advantages. First, applications need not be rewritten completely,
but only the GPGPU part needs to be ported to CUDA/OpenCL. Second, the community of
developers for, for example, Python is much larger and offers additional support for faster
porting to GPUs. As a result, GPGPU computing is becoming better accessible for bioinformatics
application development. Examples of GPGPU computing in bioinformatics include multiple
sequence alignment, computing gene regulatory networks and many others [79–82], including the
approaches towards sequence alignment in Chapters 3 and 4 of this thesis.

20

Ch. 1: Introduction

Figure 1.4.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

G
FL

O
P/

s

Date

Theoretical GFLOP/s at base clock

Intel CPU double precision
Intel CPU single precision
NVIDIA GPU double precision
NVIDIA GPU single precision

Development of capability of Intel CPUs and NVIDIA GPUs in giga floating
point operations per second (GFLOP/s) over years. From [71].

1.3.4 Technologies for storing and processing data
Computational demands in other fields, such as social media, have accelerated the development of
new database technologies, other than the relational (SQL) databases [83]. These new technologies
are usually referred to as NoSQL databases [84]. HBase [85], for example, stores information in
a key-value structure comparable to a dictionary or hash map data structure in a programming
language: a tuple-store. Neo4j [86], amongst others, stores data using an object-relationship-
object data structure and is called a graph or triple store. Such data stores are highly scalable [84]
and therefore attractive for use in bioinformatics research [85]. As data is structured in a different
way than in relational databases, algorithms and tools using such tuple/triple stores need to adjust
their approach to data storage, retrieval and analysis. Many datasets in biology and bioinformatics
will however benefit from storage and analyses using NoSQL paradigms to advance biological
research. Examples of such developments are presented in Chapter 6 of this thesis.

21

Outline of this thesis

1.4 Outline of this thesis
In this thesis it is demonstrated that the incorporation of new developments in information
technology with respect to both hardware and software allows for larger-scale analysis in
bioinformatics at reasonable compute- and computer-intensive investments without the need for
supercomputer infrastructure. These developments accommodate the continuous growth of data
and data analyses in the life sciences and bioinformatics. State-of-the art technologies, such as
GPUs and NoSQL databases, are combined with the latest developments and issues in DNA
sequencing technology for bioinformatics analyses. In most cases, proof-of-principle is given for
one or a few species or data types, yet the results outline the broader impact of the approaches
developed.

In Chapter 2 it is demonstrated that genome-wide prediction of miRNA candidates is feasible on a
much larger scale than before owing to the development of a large pre-calculated database of 2D
RNA structure predictions. A database of millions of pre-calculated minimum free energy (MFE)
values was created and used to estimate the MFE of any candidate miRNA sequence within a
much shorter time frame than existing approaches needed.

Chapter 3 shows the novel implementation of the widely used golden standard for sequence
alignment, the Smith-Waterman (SW) algorithm, on GPUs. The Parallel Smith-Waterman
Alignment Software (PaSWAS) allows parallel aligning DNA, RNA and protein sequences
on a large scale on low-cost commodity hardware, while allowing inspection and selection of
alignments. To the best of our knowledge, this is the first parallel implementation of the SW
algorithm that allows such inspection and selection. PaSWAS is written in C and CUDA and it
requires expert knowledge and skills to use, maintain and integrate PaSWAS in other software.

Chapter 4 presents the need and development of a Python-based implementation of PaSWAS to
improve the overall applicability and attraction of parallel SW analyses: pyPaSWAS. It presents
a more user- and developer-friendly interface in Python, builds better on standard libraries such
as bioPython, pyCUDA and pyOpenCL and supports different input and output formats. In
pyPaSWAS, OpenCL versions for GPUs and CPUs are integrated to further support a wider
variety of hardware.

In Chapter 5, the pyPaSWAS approach is used to detect artificial chimeric sequences in long
reads. These artefacts are unintentionally introduced when Whole Genome Amplification (WGA)
is used in case only limiting amounts of DNA of the biological sample is available for sequencing.
Such chimeric reads hamper de novo assembly and read mapping. The procedure for chimera
detection and read-correction improves read mapping and de novo assembly to the point that
WGA becomes feasible for accurate long-read sequencing technology in case of limiting DNA
amounts.

22

Ch. 1: Introduction

Chapter 6 focuses on comparative functional genomics using graph databases and details the
newly developed Cytoscape plug-in for querying, visualization and analyses of the type of
graph structures generated in the comparative genomics. The thesis concludes with a general
discussion (Chapter 7) evaluating the implications of this work in the context of future research
and development issues in the life and computer sciences.

1.5 References
1. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big Data: astronomical or genomical? PLoS

Biol. 2015;13.
2. Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107:1–8.
3. Human Genome Sequencing Consortium International. Finishing the euchromatic sequence of the human genome.

Nature. 2004;431:931–45.
4. Loman NJ, Misra R V, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of

benchtop high-throughput sequencing platforms. Nat. Biotechnol. 2012;30:434–9.
5. Illumina. NovaSeq 6000 Sequencing System [Internet]. Available from: https://www.illumina.com/content/dam/

illumina-marketing/documents/products/datasheets/novaseq-6000-system-specification-sheet-770-2016-025.pdf
6. Quail MA, Smith ME, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing

platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics.
2012;13:341.

7. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet.
2018;34:666–81.

8. Belton J-M, McCord RP, Gibcus JH, Naumova N, Zhan Y. Hi–C: A comprehensive technique to capture the
conformation of genomes. Methods. 2012;58:268–76.

9. Zheng GXY, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, et al. Haplotyping germline and cancer
genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016;34:303–11.

10. Khan AR, Pervez MT, Babar ME, Naveed N, Shoaib M. A comprehensive study of de novo genome assemblers:
current challenges and future prospective. Evol. Bioinforma. 2018;14.

11. NCBI. NCBI Genome website [Internet]. Available from: http://www.ncbi.nlm.nih.gov/genome
12. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on Earth and in the ocean? PLoS

Biol. 2011;9:e1001127.
13. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read

assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
14. Jiao W-B. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol.

2017;36:64–70.
15. Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat. Methods.

2011;8:61–5.
16. Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B. A practical comparison of de novo genome assembly software

tools for next-generation sequencing technologies. PLoS One. 2011;6.
17. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome

Res. 2010;20:1165–73.
18. Ee R, Lim Y-L, Yin W-F, Chan K-G. De novo assembly of the quorum-sensing Pandoraea sp. Strain RB-44

complete genome sequence using PacBio single-molecule real-time sequencing technology. Genome Announc.
2014;2.

19. Gao Y, Wang H, Liu C, Chu H, Dai D, Song S, et al. De novo genome assembly of the red silk cotton tree (Bombax
ceiba). Gigascience. 2018;7.

20. Yin D, Ji C, Ma X, Li H, Zhang W, Li S, et al. Genome of an allotetraploid wild peanut Arachis monticola: a de
novo assembly. Gigascience. 2018;7.

23

References

21. Diguistini S, Liao NY, Platt D, Robertson G, Seidel M, Chan SK, et al. De novo genome sequence assembly of a
filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol. 2009;10:R94.

22. Wang J, Wing Chun Pang A, Lam ET, Andrews W, Anantharaman T, Hastie A, et al. Building high quality,
chromosome scale, de novo genome assemblies by scaffolding next generation sequencing assemblies with Bionano
genome maps. AGBT 2018.

23. Tang H, Lyons E, Town CD. Optical mapping in plant comparative genomics. Gigascience. 2015;4:3.
24. Chaney L, Sharp AR, Evans CR, Udall JA, Allen P, Caicedo AL, et al. Genome mapping in plant comparative

genomics. Trends Plant Sci. 2016;0:545–7.
25. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol.

2011;29:987–91.
26. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for

comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9.
27. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap: upgrading genomes with Pacific

Biosciences RS long-read sequencing technology. PLoS One. 2012;7.
28. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel

short read sequencing. Genome Res. 2010;20:265–72.
29. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res.

2008;18:821–9.
30. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads.

Genome Res. 2017;27:737–46.
31. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.

2016;32:2103–10.
32. Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AWC, Pippel M, et al. The axolotl genome and the evolution of

key tissue formation regulators. Nature. 2018;554:50–5.
33. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. Tablet--next generation sequence assembly

visualization. Bioinformatics. 2010;26:401–2.
34. Schbath S, Martin V, Zytnicki M, Fayolle J, Loux V, Gibrat J-F. Mapping reads on a genomic sequence: an

algorithmic overview and a practical comparative analysis. J. Comput. Biol. 2012;19:796–813.
35. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read

alignment. Bioinformatics. 2009;25:1966–7.
36. Weese D, Emde A-K, Rausch T, Döring A, Reinert K. RazerS--fast read mapping with sensitivity control. Genome

Res. 2009;19:1646–54.
37. David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2: sensitive yet practical SHort Read Mapping.

Bioinformatics. 2011;27:1011–2.
38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009;25:1754–60.
39. Drozd A, Maruyama N. Fast GPU read alignment with Burrows Wheeler transform based index. Perform. Eval.

2011;1–4.
40. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–9.
41. Li H, Birol I. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
42. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data

to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics.
2013.

43. Bao S, Jiang R, Kwan W, Wang B, Ma X, Song Y-Q. Evaluation of next-generation sequencing software in mapping
and assembly. J. Hum. Genet. 2011;56:406–14.

44. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes
by RNA-Seq. Nat. Methods. 2008;5:621–8.

45. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional
spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 2017;18:637–50.

46. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics, proteomics & bioinformatics. 2015;13:278–
89.

24

Ch. 1: Introduction

47. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, et al. Highly parallel direct RNA sequencing
on an array of nanopores. Nat. Methods. 2018;15:201–6.

48. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical
research and clinical applications. Genome Med. 2017;9:75.

49. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 2009;10:155–
9.

50. Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat.
Struct. Mol. Biol. 2015;22:20–8.

51. Sarker R, Bandyopadhyay S, Maulik U. An overview of computational approaches for prediction of miRNA genes
and their targets. Curr. Bioinform. 2011;6:15.

52. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids
Res. 2008;36:D154–8.

53. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–
15.

54. Campbell-Kelly M. Programming the EDSAC: early programming activity at the university of cambridge. IEEE
Ann. Hist. Comput. 1980;2:7–36.

55. Fisher RA. Gene frequencies in a cline determined by selection and diffusion. Biometrics. 1950;6:353–61.
56. García-Risueño P, Ibáñez PE. A review of High Performance Computing foundations for scientists. Int. J. Mod.

Phys. C. 2012;33.
57. BGI [Internet]. Available from: https://www.bgi.com/global/
58. Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science. 2012;338:1042–6.
59. Krishnan A. GridBLAST: a Globus-based high-throughput implementation of BLAST in a Grid computing

framework. Concurr. Comput. Pract. Exp. 2005;17:1607–23.
60. Hadoop - Apache Software Foundation project home page [Internet]. Available from: http://hadoop.apache.org/
61. Thakur RS, Bandopadhyay R, Chaudhary B, Chatterjee S. Now and next-generation sequencing techniques: future

of sequence analysis using cloud computing. Front. Genet. 2012;3:280.
62. Rosen J, Polyzotis N, Borkar V, Bu Y, Carey MJ, Weimer M, et al. Iterative MapReduce for large scale machine

learning. CoRR. 2013;abs/1303.3.
63. Shanker A. Genome research in the cloud. OMICS. 2012;16:422–8.
64. Amazon. Amazon Cloud [Internet]. Available from: http://aws.amazon.com/ec2/
65. Matsunaga A, Tsugawa M, Fortes J. CloudBLAST: combining MapReduce and virtualization on distributed

resources for bioinformatics applications. 2008 IEEE Fourth Int. Conf. eScience. IEEE; 2008. p. 222–9.
66. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko K. Hadoop-BAM: directly

manipulating next generation sequencing data in the cloud. Bioinformatics. 2012;28:876–7.
67. Chang Y-J, Chen C-C, Ho J-M, Chen C-L. De novo assembly of high-throughput sequencing data with cloud

computing and new Operations on string graphs. 2012 IEEE Fifth Int. Conf. Cloud Comput. IEEE; 2012. p. 155–61.
68. Genomics BD. ADAM. Available from https://github.com/bigdatagenomics/adam
69. Guo R, Zhao Y, Zou Q, Fang X, Peng S. Bioinformatics applications on Apache Spark. Gigascience. Oxford

University Press; 2018;7.
70. Lee VW, Hammarlund P, Singhal R, Dubey P, Kim C, Chhugani J, et al. Debunking the 100X GPU vs. CPU myth.

ACM SIGARCH Comput. Archit. News. 2010;38:451.
71. NVIDIA CUDA programming guide. NVIDIA Corporation; 2017.
72. Hamada T, Benkrid K, Nitadori K, Taiji M. A comparative study on ASIC, FPGAs, GPUs and general purpose

processors in the O(N^2) gravitational N-body simulation. 2009 NASA/ESA Conf. Adapt. Hardw. Syst. Ieee;
447–52.

73. Hobiger T, Kimura M, Takefuji K, Oyama T, Koyama Y, Kondo T, et al. GPU Based Software Correlators -
Perspectives for VLBI2010. IVS 2010 Gen. Meet. Proc. 2010;40–4.

74. Kirk DB, Hwu WW. Programming massively parallel processors. ISBN 978-0-12-811986-0. 2017.
75. Farber RM. Topical perspective on massive threading and parallelism. J. Mol. Graph. Model. 2011;30:82–9.

25

References

76. Demidov D, Ahnert K, Rupp K, Gottschling P. Programming CUDA and OpenCL: a case study using modern C++
libraries. SIAM J. Sci. Comput. 2013;35:C453–72.

77. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: A scripting-based approach
to GPU run-time code generation. Parallel Comput. 2012;38:157–74.

78. MathWorks. MathWorks GPU Computing. Available from: http://nl.mathworks.com/discovery/matlab-gpu.html
79. Hung C-L, Lin Y-S, Lin C-Y, Chung Y-C, Chung Y-F. CUDA ClustalW: An efficient parallel algorithm for

progressive multiple sequence alignment on Multi-GPUs. Comput. Biol. Chem. 2015;58:62–8.
80. Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling

CPU and GPU SIMD instructions. BMC Bioinformatics. 2013;14:117.
81. Korpar M, Šikic M. SW#-GPU-enabled exact alignments on genome scale. Bioinformatics. 2013;29:2494–5.
82. García-Calvo R, Guisado J, Diaz-del-Rio F, Córdoba A, Jiménez-Morales F. Graphics Processing Unit–enhanced

genetic algorithms for solving the temporal dynamics of gene regulatory networks. Evol. Bioinforma. 2018;14:11.
83. Alagic S. Relational database technology. ISBN 038796276X, 9780387962764 . 2012.
84. Gessert F, Wingerath W, Friedrich S, Ritter N. NoSQL database systems: a survey and decision guidance. Comput.

Sci. 2017;32:353–65.
85. Taylor RC, Baker M, Sansom C, Stein L, Schatz M, Langmead B, et al. An overview of the Hadoop/MapReduce/

HBase framework and its current applications in bioinformatics. BMC Bioinformatics. 2010;11 Suppl 1:S1.
86. Miller JJ. Graph database applications and concepts with Neo4j. Proc. South. Assoc. Inf. Syst. Conf. 2013.

27

2 Fast selection of miRNA
candidates based on large-
scale pre-computed MFE sets
of randomized sequences

Published as S. Warris, S. Boymans, I. Muiser, M. Noback, W. Krijnen, J.P. Nap, “Fast selection
of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences”,
BMC Research Notes, 2014, 7:34, https://doi.org/10.1186/1756-0500-7-34.

29

Abstract

2.1 Abstract

Background
Small RNAs are important regulators of genome function, yet their prediction in genomes is still a
major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their
2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of
equivalently randomized sequences with the same nucleotide composition, in contrast to other
classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow
for genome-wide screenings.

Results
Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated
on a large scale. These distributions follow a normal distribution and can be used to determine
the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly
calculation of the normal distribution for any candidate sequence composition.

Conclusions
The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA
sequence practical. Although this particular property alone will not be able to distinguish
miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be
added to the parameters of choice to be included in the selection of potential miRNA candidates

for experimental verification.

2.2 Background
Small RNAs are important molecules in the regulation of gene expression. Several classes of
distinct small RNA molecules play vital roles in development, health and disease, as well as
in many other biological pathways [1–4]. A particular class of regulatory small RNAs are the
microRNA (miRNA) molecules. A miRNA is a ~20-23 nucleotide (nt) short, non-protein coding
RNA. Together with several protein components, miRNAs reduce the amount of a target mRNA
by physical interaction to notably the 3’-untranslated region (3’-UTR) of the mRNA, resulting in
either degradation of that mRNA, or arrest of translation [4–6]. In rare cases, miRNAs can also
upregulate expression [4, 7]. Well over 25 thousand miRNAs (miRBase Release 19; August 2012
[8]) have now been identified in many different species [9,10].

The overall biogenesis of miRNAs is well established [4,11], although details are still being
discovered. In all cases except for intronic miRNAs [12], the miRNA is synthesized as a longer
primary transcript known as primary miRNA (pri-miRNA), that is processed in the nucleus by
the RNAse Drosha in animals and Dicer-like 1 in plants, to generate a precursor miRNA (pre-

30

Ch. 2: Fast selection of miRNA candidates

miRNA) of about 80-100 nt in animals, 60-300 nt in plants or 60-120 nt in (animal) viruses. The
pre-miRNA sequence has degenerated palindromic sequence with the characteristic secondary
structure of a stem-loop hairpin. The final verdict on the total number of miRNAs in a given
genome is not out yet. The total count in Release 19 of miRBase is 25,141 for all organisms and
many more miRNAs are described in the primary literature. Whereas the search for miRNAs in
model genomes such as human or Arabidopsis will approach saturation, identification of the full
miRNA complement in other genomes is still a challenge.

As mature miRNAs are only ~22 nt in length, straight-forward alignment-based heuristic
methods such as BLAST are less suitable for identifying miRNAs and their targets in a given
genome or transcriptome [5,13]. The identification of miRNAs and their targets is therefore a
challenge for computational pattern recognition [11,14]. Computational methods for miRNA
identification focus on the typical extended stem-loop hairpin structure of the pre-miRNA, which
is characterized by helical base pairing with a few internal bulges in the stem. To identify the
stem-loop miRNA precursor structure from a given sequence, RNA folding programs are used,
such as mfold [15], its update UNAfold [16], or RNAfold (also known as the Vienna package [17,
18], to establish the minimal free energy (MFE) of the stem-loop structure.

Increasingly sophisticated computational approaches have been proposed for the identification of
pre-miRNAs, the mature miRNA sequence and its presumed target(s) [19–21], many of which
are available online [22]. Many approaches are based on supposed or derived characteristics
of miRNA sequences or combinations thereof [23–26]. Although all miRNAs are thought to
have such properties in common, not a single property individually seems able to distinguish
miRNAs sufficiently accurately from other RNA molecules with sufficient accuracy [27]. Several
approaches therefore include evolutionary conservation of miRNA sequences between different
species [1,28]. In these evolution-based strategies, species-specific and non -or less- conserved
pre-miRNA molecules are likely to escape identification. Overall, methods available tend to show
relatively high rates of false positives [22] and are possibly hampered by the use of inappropriate
controls [29]. They generally result in lists too long to be feasible for experimental validation.

We here revisit a selective criterion proposed earlier, but largely unexplored because of
computational costs. Statistical analyses of pre-miRNA hairpins indicated that such hairpins tend
to have MFE values which are significantly lower than the MFE values based on randomized
sequences with the same length and nucleotide composition, in contrast to other classes of RNA,
such as transfer RNA, ribosomal RNA and messenger RNA [30–32]. In MFE analysis, the
sequence composition of each candidate sequence is randomized and the MFE value based on the
candidate is compared to the MFE distribution based on the randomized sequences. These data
are used to calculate the probability that the MFE of the candidate is sufficiently small compared
to randomized sequences [30]. This probability is here coined the empirical P-value (PE). This PE

31

Materials and methods

establishes a useful discriminating criterion for pre-miRNA identification. It is implemented in the
MiPred prediction tool [33], that helps to decide for a single sequence whether it is a pre-miRNA
hairpin. However, the computation of large numbers of MFE values per candidate sequence to
be able to calculate PE is computationally demanding, which precludes application to genome-
wide analyses. Solutions proposed in the literature are a probabilistic implementation of the MFE
computation [34] or asymptotic Z-scores of the MFE distribution based on precomputed tables
[35]. We here present a novel approach that requires the computation of only the MFE based
on the candidate sequence. This approach enables the routine evaluation of potential miRNA
structures on a genome-wide scale that could be integrated as part of an existing approach for
processing potential miRNA sequences [20, 36].

2.3 Materials and methods

2.3.1 Data
The miRNA data set was downloaded from the miRbase repository [8–10] (releases 9.2
and 15), consisting of 4,584 and 15,172 pre-miRNA sequences respectively. The genomic
sequence of the Epstein Barr virus type 1 [37] was downloaded from Genbank NCBI
[gi|82503188|ref|NC_007605.1]. The test set with 250,000 random sequences was generated with
a small C program.

2.3.2 Hardware
Computations were performed on a 200+-node Debian Linux-based network. A dedicated server
is running Network File System (NFS)-based software for file management and Condor software
([38]; version 7.6.1) for grid management [39].

2.3.3 RNA folding software
The minimal free energy of a sequence was computed with a local implementation of the Hybrid
software (version 2.5) of the UNAFold software package [16,40]. UNAFold extends and replaces
the earlier mfold application [15]. The software was adjusted to enhance the performance
about three-fold by optimizing computation-intensive computational steps without changing
the underlying algorithm. All RNA molecules were folded as single strands at 30°C, a sodium
concentration of 1.0 M and the option –E (energy only, no plots). In case of sequences that are not
able to fold properly, the Hybrid software assigns an MFE of + ∞.

2.3.4 Randomization and visualization
Distribution fitting, P-values and other statistics were computed with the software suite R
(version 2.7.1.) [41]. To randomize sequences while maintaining the nucleotide composition, the
Fisher-Yates shuffling procedure for selection without replacement was implemented in C, with

32

Ch. 2: Fast selection of miRNA candidates

appropriate unbiased randomization [42]. For any candidate sequence, the empirical P-value PE
was computed as PE = X/(N+1) [30], where X is the number of sequences with an MFE lower
than or equal to the MFE based on the candidate sequence and N is the number of randomized
sequences considered. In this study, N is taken as 1,000, in correspondence with an earlier study
[30]. As a consequence, the lower bound of PE is zero (for X = 0) and the next lowest value is
0.000999 (for X=1). There are no additional assumptions necessary with respect to the shape of
the distribution of the MFE values [30]. The computed MFE values based on the randomized
sequences were transformed into a normal (Gaussian) distribution defined by the mean and
standard deviation of the MFE values. The normal distribution-derived PN of the MFE based on
the given candidate sequence is being computed using the mean and standard deviation of that
distribution. Results were visualized with R and MatLab (release 13).

2.3.5 Multidimensional interpolation
A database of entry RNA sequences, with a length of 50 to 300 nt and a step size of 5 nt, was
generated by computer. This range covers the length of most known pre-miRNAs, except for
some plant miRNAs [43]. For each sequence length, the nucleotide composition of the sequence
was varied in such a way that each of the four nucleotides occurs at least once (for sequences
< 100 nt) or at least at 1% (for sequences > 100 nt). Per sequence length, individual sequences
were generated with a step size for an individual nucleotide of 2%, except in the range from 20-
70% for an individual nucleotide where a step size of 1% was used. The procedure in numbers is
as follows: for a population of sequences with a length of 50nt, the first nucleotide composition
consists of 1% A, 1% U, 1% C and 97%G. In the next step the composition is 2% A, 1% U, 1% C
and 96% G and so on. Then the length is increased to 55 nt and the procedure is repeated for the
nucleotide composition, etc. This procedure generated a set of 1.4 x 106 entry sequences. For each
of the individual entry sequences, a sequence set of thousand randomized shuffles was generated
by Fisher-Yates randomization [42]. This procedure represents a selection without replacement,
therefore maintains the nucleotide composition (mononucleotide shuffling). Sequence sets
in which one or more shuffled sequences had an MFE of + ∞ were discarded and only the
sequence sets with 1,000 MFE values were considered to maintain statistical validity. This way,
a total of 1.05 x 106 sequence sets were generated. For each population, the mean MFE and
standard deviation were computed and stored in a MySQL database together with the sequence
composition in absolute nucleotide counts. To calculate the mean and standard deviation for any
candidate sequence, an interpolation algorithm was implemented in C++ using sparse matrix data
management for optimal memory use [44]. A sparse matrix contains only the values of interest
and all zero or unknown values are not stored. The resulting data structure contains only the
nucleotide composition analyzed and not all possible compositions, therefore the data can be
stored in memory and searched efficiently. The Hybrid software used for RNA folding [16] was

33

Results

integrated within this application to enhance performance.

2.3.6 Sliding window analysis
To analyze whole genomes for the presence of potential pre-miRNA candidates using the pre-
computed MFE data outlined above, a sliding window approach was implemented in C++. The
smallest window length was set at 50 nt, incremented with a step size of 10 nt to a maximum of
300 nt. For each window length, the step size for sliding was set at 10% of the window length.
For each window, the MFE was computed and the nucleotide composition of the sequence was
determined. Based on the sequence composition, the appropriate mean and standard deviation
were estimated by interpolation (see Results) using the data search space generated. The normal
distribution function was used to calculate PN of the MFE of the window.

2.4 Results
In the identification of potential pre-miRNA candidates in genomic sequences, the MFE based
on the sequence relative to the distribution of random sequences with the same nucleotide
composition is a potentially valuable criterion. However, the estimation of the empirical PE as
parameter for the distance between the MFE based on a candidate sequence and the MFEs of
randomized sequences is computationally intensive. It requires the computation of the MFE for all
randomized sequences. To use the MFE distribution as criterion more comfortably, computations
should be considerably faster. We here show the feasibility of the use of the normal distribution
for the computation of PN as approximation of PE and for the interpolation of the distribution for
any given sequence with the help of pre-computed MFE distributions of random sequences.

2.4.1 Pre-computed MFE distributions of random sequences
A total of 1.4 x 106 entry sequences covering the length classes representative for most known
pre-miRNA (50 – 300nt), were generated. Each entry sequence was shuffled 1,000 times and
based on each of the generated sequences the MFE was calculated giving a total of 1,053,248
populations, each consisting of 1,000 random sequences. In 346,752 generated populations one
or more random sequence could not fold properly. When the hybrid software is not able to give
a stable structure, the random sequence is considered not to fold properly and is therefore not
included because it skews the data. For a single sequence on a standard desktop PC, the MFE
computation by the Hybrid software requires approximately 0.2 sec CPU time. The 1.4 x 106 x
1,000 computations would therefore have taken about 8.8 CPU years on a standard PC. Using idle
CPU cycles on our grid, it took about 2 months grid time to complete all computations. All MFE
values were computed for an annealing temperature of 30°C, but as MFE values and distributions
change in a linear way with temperature (results not shown), the approach presented and data
generated are, if so desired, suitable for, or comparable with, other folding temperatures.

34

Ch. 2: Fast selection of miRNA candidates

Randomized sequence sets can reasonably be considered to reflect a normal distribution. The
examples for sets with 25% nucleotide composition are shown in Figure 2.1. Other compositions
give similar results (data not shown). Such a normal distribution was demonstrated earlier for
randomized sequences [45], although the distribution may not be an exact Gaussian distribution
[34]. The MFE data of random sequences are therefore suitable for deriving the normal estimate
PN of PE, based on mean, standard deviation and the normal distribution function. This way, PN is
equivalent to the Z-score of the MFE, defined as the number of standard deviations by which the
MFE based on a candidate sequence deviates from the mean MFE of the set of shuffled sequences
[31,45].

Figure 2.1. Distribution of PE and PN of sequences of different lengths. For a candidate
sequence with the given length in nucleotides n (50 to 160) and a composition of 25% of each
nucleotide (AUGC), the MFE of 1000 randomized sequences was calculated. The distribution
was computed and plotted (green) using the distribution density function in R. The average
mean and standard deviation of the resulting MFE sequence set was used to define the normal
distribution function (red). The good correspondence between the two distributions shows
that the normal distribution-based probability PN is a good approximation for the empirical
probability PE.

35

Results

For each sequence set, the mean and standard deviation was stored in a database together with
the sequence composition. An example of the distribution of the mean MFE value of all sequence
sets of 100 nt in length with different sequence compositions is shown in Figure 2.2. The 3D
contour plot shows that the sets of sequences with high percentages of C and G nucleotides have
low mean MFE values, which reflects the higher energy in C-G pairing. RNA molecules with an
abundance of for example A and G are much less likely to form a stable structure and the set of
1,000 random sequences will therefore have a high mean MFE. The plot shows that the mean
MFE values decrease in an almost linear fashion from the low values for sequences with high C
and G compositions to the outer edges.

2.4.2 Multidimensional interpolation for candidate sequences
For the on-the-fly computation of the MFE distribution based on a given candidate sequence, the
pre-computed data are used for multidimensional interpolation. For each candidate sequence,
the composition of the sequence is determined by counting nucleotides. Sequence compositions
with a squared Euclidean distance up to 5 in the surrounding search space are identified: the
length of the sequence is therefore not taken into account. This value was selected on the basis
of the analysis of known miRNAs. These analyses showed this threshold gives the smallest
difference in P-value (data not shown) when comparing the PN to the PE of mirbase entries. For
sequence compositions that have no points within this distance no prediction can be made and
a PN of 1.0 is given. From the selected near-by sequences, the mean and standard deviations are
retrieved from the database. For the candidate sequence, both mean and standard deviation of
the MFE distribution are determined by interpolation using the data from the nearby sequence
compositions, weighted based on their Euclidean distance to the candidate sequence. The sum
of the weighted values gives the estimated mean and standard deviation of the MFE distribution
based on the randomized sequences from the candidate sequence. Mathematically, the formulae
to derive the estimated average μe are expressed as:

where wi is the weight per data point based on Euclidean distance, di is the distance per point,
for which xi and yi are the nucleotide counts of the sequence in the search space and dt is the
total distance over N points. N varies per candidate sequence. Even in the case were the distance
to a point is zero (di = 0), more points are used to estimate the population average. Testing on
sequences with the same compositions during computations would slow the software down and
this situation is unlikely therefore it was not included in the software.

The use of PN as normal approximation of PE was evaluated by comparing both probabilities for
different sequences. In Figure 2.1, the comparison between many PE (green) and PN (red) is shown

36

Ch. 2: Fast selection of miRNA candidates

for a range of sequences with different lengths but the same nucleotide compositions. Other
compositions give similar results (data not shown). The excellent goodness-of-fit demonstrates
the suitability of the normal approximation PN as criterion for the evaluation of pre-miRNA
candidate sequences.

Figure 2.2. Mean MFE distribution of sequences 100 nt in length. (A) The mean MFE of
1000 sequences with the indicated composition is plotted in a 3D contour plot (Matlab) with
the percentage of three nucleotides in the sequence specified on the three axes. The false color
scale indicates a relative measure of the mean MFE: red a relatively low MFE value with a
ΔG (Gibbs free energy change) ≤ -80 kcal/mol, yellow an intermediate MFE value (-80 kcal/
mol < ΔG ≤ -40 kcal/mol) and blue a relatively high MFE value (ΔG > -40 kcal/mol). (B,C)
The same distribution as in (A) is shown at two different angles to help interpretation and to
prevent optical illusions.

37

Results

The estimation of the standard deviation of the MFE distribution based on the candidate sequence
is based on the approach for estimating the mean as described in the previous section. The
mean and standard deviation uniquely define the normal distribution function of the candidate
sequence. With the two values, PN is computed as the normal probability of MFE values smaller
than the MFE based on the candidate sequence. This way, for each candidate sequence, only the
MFE of the structure based on this sequence needs to be computed, speeding up computations
approximately a thousand-fold when thousand shuffled sequences are used. As the calculations
of the estimated mean, standard deviation and the P-value based on this normal distribution take
time as well, the software is at least several hundred times faster for short sequences and faster
for long candidates: the Hybrid software used is slower for longer sequences, as there are more
secondary structures. Calculating the structures of 1000 candidates takes therefore considerably
more time than the estimation process. Based on the running time of an example run it would
take over 260 seconds to calculate 1000 MFE values. The calculation of PN takes approximate a
second, including the calculation of the MFE.

Figure 2.3. Relative performance of MFE-based P-value estimations. The percentage of
pre-miRNAs with a P-value smaller than indicated is plotted for data previously published [30],
newly computed values from release 9.2 of MirBase based on the same method and computed
based on the interpolation method developed here. The previously published percentages based
on PE were 97%, 91% and 76%, respectively, whereas based on the release 9.2 it is 95%, 87%
and 65%, and PN 96%, 93% and 87%, respectively.

We evaluated the performance of PN compared to PE for selection with respect to the entries in
the MiRBase registry. In Figure 2.3, the distribution of PE over the pre-miRNA molecules as
published previously [30] is compared with the PE computed of the current pre-miRNAs from
miRbase with the same method [30] and the PN as estimated by interpolation. It shows that
the interpolation approach performs well. The difference between PE and PN reflects that the
PN distribution is continuous, whereas with 1,000 randomizations, the PE distribution is discrete
with a step size of 1/1001 = 0.000999. Although also PN is estimated on the basis of 1,000

38

Ch. 2: Fast selection of miRNA candidates

randomizations, the continuity of the distribution allows more strict settings for PN and allows a
more sensitive ranking in the lower P-value ranges. In Table 2.1, the percentages of pre-miRNAs
that conform to given settings of the P-value are shown. With a threshold of PN = 1x10-4, about
66.8% of all known pre-miRNAs are characterized by an MFE value well outside the distribution
of MFE values of randomized sequences. Only 1% could not be estimated: the sequence was
either too long or had no populations in the data set within the given distance.

To verify the performance of the applications on random sequences, a test set of 250,000 sequences
was generated; all of different lengths and composition. The MFE and PN were calculated for each
of these sequences. The calculations were finished in 20 minutes. In Table 2.1 the results are
shown. Of these random sequences, 4% had no stable structure and hence no MFE and 17% had
no populations in the data set within the given distance. Of the remaining sequences only 3% had
a PN < 0.05.

Table 2.1. Percentage of sequences with low P-values.

miRNA
data set

Total #
sequences
analyzed

% sequences
with an error

/ not found

% sequences
with

P <0.05

% sequences
with

P <0.01

% sequences
with

P <=0.001

% sequences
with

P <=0.0001

Random 250000 21.3 3.0 1.5 0.8 0.5

MirBase 15172 1.0 89.9 84.4 75.9 66.8

EBV known 25 0.0 96.0 92.0 88.0 76.0

EBV genome 566988 0.1 19.1 10.7 5.7 3.6

This table shows the percentage of sequences below the given P-value in four different data
sets. A data set of random sequences shows a very low percentage with a P-value <= 0.001. A
high percentage of known miRNAs sequences is within the same range.

Figure 2.4. Hairpin with internal repeat structure. Example of an RNA sequence with
a large difference in PN versus PE, depending on the method of randomization (see text for
details).

39

Results

2.4.3 Shuffling inconsistencies
In the analyses above, a mononucleotide randomization method (Fisher-Yates algorithm) was
used [42], whereas in the literature a dinucleotide randomization method was recommended and
used [30, 31, 46]. In genome-wide analyses of candidate sequences based on PN, we observed that
several candidate sequences behaved oddly: whereas dinucleotide shuffling yielded PN = 0,98,
reflecting not a likely candidate, mononucleotide shuffling as performed here resulted in a PN<<
0.001, indicating a possible candidate. An example of such a sequence is given in Figure 2.4,
which shows a predicted hairpin structure for this sequence. To prevent such sequences interfering
with the analysis of the distribution, the mononucleotide randomization method was used.

2.4.4 Added value for miRNA prediction
Having validated the PN interpolation method with known miRNAs, we now show the added
value for whole genome screening. We have evaluated a small viral genome for putative pre-
miRNAs regions. According to miRBase (both in release 15 and 19), this viral genome has 25
known pre-miRNA sequences. Of the 25 known Epstein-Barr virus (EBV) miRNAs, 24 have a PN
< 0.05 with 22 having a PN <= 0.001 (Table 2.1). Both strands of the dsDNA genome sequence of
the human Epstein-Barr virus type 1 [37] were converted into RNA and investigated for potential
pre-miRNA sequence. For each of the total 566,988 windows of length 50-230 nt, the MFE and
the PN were computed. In contrast to the test set with random sequences, in EBV only 0.05% of
the windows could not be estimated due to no sequence compositions within the given distance or
because the sequence did not have a stable 2D structure. This shows that the application performs
very well for viral genomic DNA. The percentage of windows with a PN <=0.001 is higher than in
the test set with random sequences (Table 2.1). There is also the effect of overlapping windows:
a pre-miRNA of length 150 will be found in several windows of length 200. Many of these
candidate windows are in repeat regions (Figure 2.5). These windows can be discarded as not
being viable locations for miRNAs: there are no known miRNAs within the EBV repeat regions.
Although current research shows that in some organisms miRNAs can be found in repeat regions
[47], we suggest inspection of other regions first to limit the number of relevant candidate regions.

To visualize regions of interest, the windows with a PN <= 0.001 are placed in a separate data
set and marked with a value of one. The windows of different lengths are then combined in the
Integrated Genome Browser [48] (Figure 2.5). With 19 different window lengths, the maximum
of the resulting graph is 19. This indicates that all windows covering this location have a PN
<=0.001. The peaks in the graph show regions of interest which require further research. The
graph shows 18 regions-of-interest in the plus strand where 9 or more windows have PN <= 0.001.
Using these selection criteria, the regions of 12 known miRNAs are found (Figure 2.5). Using
less than 9 windows will give more regions-of-interest and will also show more known miRNA

40

Ch. 2: Fast selection of miRNA candidates

regions, but will introduce more false positives as well. The analysis of the EBV genome shows
that a (small) whole genome screening using PN-estimation results in a limited number of regions-
of-interest for further investigation.

Figure 2.5. Identification of potential pre-miRNA candidates in the Epstein-Barr virus
genome sequence. The genomic sequence is shown on the x-axis. The upper track (red A)
shows the amount of windows covering the particular region that have a PN <= 0.001. A distinct
peak gives a region of interest for a candidate miRNA. By discarding peaks within a repeat
region (here shown in blue) and selecting peaks at or above 9 hits, 18 new regions of interest
are found (plus strand). Also, 12 known miRNA are found. The green bars indicated by the red
B show the EBV genome annotation (gi|82503188|ref|NC_007605.1). The lower part of the
graph (red C) shows the EBV genome locations with the red bars indicating locations of the
known miRNAs.

2.5 Conclusions
Previous research has indicated that the MFE based on a miRNA sequence is significantly
lower than the MFE based on shuffled sequences with the same composition, in contrast to the
MFE of other non-coding RNAs [30,31,49]. As the computation of an MFE is demanding, this
characteristic of miRNAs precludes genome screening of sequences for their MFE distribution.
With thousand randomizations per candidate sequence, the genome-wide screening of a million
(106) candidates would require a billion (109) computations. These would take well over six year
to finish on a current standard desktop computer.

We have presented a method to speed up analyses of the MFE distribution considerably, based
on the normal approximation of pre-calculated MFE distributions based on random sequences,
combined with a fast implementation of a multidimensional interpolation of distributions in
sequence space. The data cover the search space for all RNA molecules with a length from 50
to 300 nt, in total roughly equaling the sum over 4i for i = 50….300 ≈ 5.5x10180 sequences. With
three data points per sequence (mean, standard deviation and composition), this would generate
an immense database, whereas the resulting data space here established is based on 1.1 x 106

41

Conclusions

sequences and takes about 30 Mb. The latter is easily handled by standard amounts of RAM. The
results show that although the newer miRNAs added to miRBase since 2006 seems to comply
somewhat less with this criterion than the miRNAs analyzed before [50], the new approach
developed here performs well on known pre-miRNAs (Figure 2.3).

Sequence sets of 1,000 with at least one non-folding member were discarded. Yet, it could be
argued that higher accuracy would be gained with more sets. The data is well distributed over the
sequence data space (Figure 2.2). The interpolation of MFE distributions is based on a threshold
of the Euclidian distance of the surrounding data points. This implies that for different candidate
sequences different amounts of pre-computed data are used to estimate the MFE distribution. This
prevents interpolation issues at the boundaries of the data space where less points are available.
The data reduction and interpolation results in considerably faster computation of the likelihood
that the MFE of the sequence is markedly lower than equivalent randomized sequences. This
obviates the need for on-the-fly computation of the MFE values based on the randomized
sequences.

The particular type and number of randomizations is an issue. Whereas it was thought to be
important to maintain not only the mononucleotide compositions, but also the dinucleotide
distribution [46], the results shown for the behavior of miRNAs in either way of shuffling [30,
51] indicate no relevant difference, or even a slightly better performance of mononucleotide
shuffling. These findings indicate that for miRNA prediction dinucleotide shuffling is not more
optimal than mononucleotide shuffling. This is in agreement with the demonstration that all base
pairings in an RNA molecule should be taken into account [52]. There is, in addition, uncertainty
over the quality of the dinucleotide shuffling algorithm [35,51]. As demonstrated here, particular
sequences behave oddly with respect to dinucleotide shuffling (Figure 2.4) and may distort the
distribution derived from the computed MFE values. Inspection of such sequences indicated
that these sequences contain a particular combination of repeat units in such a way that the
dinucleotide shuffling is not changing the sequence in terms of MFE distribution. As a result,
the candidate MFE is part of the distribution of shuffled sequences. As Fisher-Yates shuffling
is the most random, this would seem to be the better method. We have followed the earlier
recommendation of performing at least 1,000 randomizations [30], whereas other investigations
use 500 [31] or 10,000 [51]. As few as 100 randomizations were recommended as sufficient to
establish a reasonable Gaussian distribution [45].

In view of the gain in computing speed accomplished with PN, it has become feasible to consider
genome-wide screenings for pre-miRNA candidates based on PN. The analyses here presented for
the relatively small Epstein Barr virus demonstrate that indeed such analysis is now within reach.
For a human genome, however, the approach will still ask a considerable computational effort.
Moreover, the MFE alone is not able to distinguish miRNAs from other sequences sufficiently

42

Ch. 2: Fast selection of miRNA candidates

discriminative: it has to be integrated with other parameters. The PN approach presented here
can therefore be better implemented as part of, or next to, other approaches [20,22]. Such
approach would generate added value for such miRNA identification algorithms or pipelines. The
application of this criterion will add to enhanced selectivity of miRNA discovery pipelines and
help to limit the number of candidates for experimental validation and confirmation.

The advent of high throughput DNA sequencing technologies were shown to be particularly
suitable for the analyses of the small RNA complement of RNA populations [4]. The identification
of true miRNAs in such data sets is still a challenge to which the PN analysis may contribute. The
possibility of a one-time effort to pre-compute sequence parameters that will facilitate future
analyses should be considered an approach that could generate considerable added value for
larger grid environments in future bioinformatics.

2.6 Acknowledgements
We would like to thank Piet Plomp, MSc and Marcel Kempenaar, BASc for help with the computer
grid, Dr. Peter Terpstra (Department of Genetics, University Medical Center Groningen, The
Netherlands) and Rudi van Bavel BASc (now at Keygene NV) for sharing ideas and Dr. Mark
Fiers at Plant Research International, Wageningen University and Research Centre, Wageningen,
The Netherlands (now at Plant & Food Res. Ltd, New Zealand), for valuable discussion and
input. This research was funded in part by a PhD fellowship (Sven Warris) from Hanze University
of Applied Sciences Groningen.

2.7 References
1. Chapman EJ, Carrington JC: Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet.

2007, 8:884–896.
2. Almeida MI, Reis RM, Calin GA: MicroRNA history: Discovery, recent applications, and next frontiers. Mutat. Res.

2011.
3. Abbott AL: Uncovering new functions for microRNAs in Caenorhabditis elegans. Curr. Biol. 2011, 21:R668–71.
4. Pasquinelli AE: MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat.

Rev. Genet. 2012, 13:271–82.
5. Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136:215–233.
6. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281–297.
7. Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: MicroRNAs can up-regulate translation.

Science. 2007, 318:1931–1934.
8. MirBase [http://www.mirbase.org].
9. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res.

2008, 36:D154–D158.
10. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic

Acids Res. 2011, 39:D152–7.
11. Ghosh Z, Chakrabarti J, Mallick B: miRNomics-The bioinformatics of microRNA genes. Biochem. Biophys. Res.

Commun. 2007, 363:6–11.
12. Westholm JO, Lai EC: Mirtrons: microRNA biogenesis via splicing. Biochimie 2011, 93:1897–904.

43

References

13. Freyhult EK, Bollback JP, Gardner PP: Exploring genomic dark matter: A critical assessment of the performance of
homology search methods on noncoding RNA. Genome Res. 2007, 17:117–125.

14. Lindow M, Gorodkin J: Principles and limitations of computational microRNA gene and target finding. DNA Cell
Biol. 2007, 26:339–351.

15. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003,
31:3406–3415.

16. Markham NR, Zuker M: DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005,
33:W577–W581.

17. Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res. 2003, 31:3429–3431.
18. Gorodkin J, Hofacker IL: From structure prediction to genomic screens for novel non-coding RNAs. PLoS Comput.

Biol. 2011, 7:e1002100.
19. Oulas A, Karathanasis N, Louloupi A, Poirazi P: Finding cancer-associated miRNAs: methods and tools. Mol.

Biotechnol. 2011, 49:97–107.
20. Sarker R, Bandyopadhyay S, Maulik U: An overview of computational approaches for prediction of miRNA genes

and their Targets. Curr. Bioinform. 2011, 6:15.
21. Krzyzanowski PM, Muro EM, Andrade-Navarro MA: Computational approaches to discovering noncoding RNA.

RNA 2012, 3:567–79.
22. Tan Gana NH, Victoriano AFB, Okamoto T: Evaluation of online miRNA resources for biomedical applications.

Genes Cells 2012, 17:11–27.
23. Zheng Y, Hsu W, Lee ML, Wong L: Exploring essential attributes for detecting MicroRNA Precursors from

background sequences. Lect. Notes Bioinforma. 2006, 4316:131–145.
24. Van der Burgt A, Fiers MWJE, Nap J-P, van Ham RCHJ: In silico miRNA prediction in metazoan genomes:

balancing between sensitivity and specificity. BMC Genomics 2009, 10:204.
25. Tempel S, Tahi F: A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res. 2012,

40:e80.
26. Liu X, He S, Skogerbø G, Gong F, Chen R: Integrated sequence-structure motifs suffice to identify microRNA

precursors. PLoS One 2012, 7:e32797.
27. Bentwich I: Identifying human microRNAs. Curr. Top. Microbiol. Immunol. 2008, 320:257–269.
28. Lindow M, Jacobsen A, Nygaard S, Mang Y, Krogh A: Intragenomic matching reveals a huge potential for miRNA-

mediated regulation in plants. PLoS Comput Biol 2007, 3:e238.
29. Ritchie W, Gao D, Rasko JEJ: Defining and providing robust controls for microRNA prediction. Bioinformatics

2012, 28:1058–61.
30. Bonnet E, Wuyts J, Rouze P, Van de Peer Y: Evidence that microRNA precursors, unlike other non-coding RNAs,

have lower folding free energies than random sequences. Bioinformatics 2004, 20:2911–2917.
31. Freyhult E, Gardner PP, Moulton V: A comparison of RNA folding measures. BMC Bioinformatics 2005, 6:241.
32. Ng KLS, Mishra SK: De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using

global and intrinsic folding measures. Bioinformatics 2007, 23:1321–1330.
33. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z: MiPred: classification of real and pseudo microRNA precursors using

random forest prediction model with combined features. Nucleic Acids Res. 2007, 35:W339–W344.
34. Rivas E, Eddy SR: Secondary structure alone is generally not statistically significant for the detection of noncoding

RNAs. Bioinformatics 2000, 16:583–605.
35. Clote P, Ferre F, Kranakis E, Krizanc D: Structural RNA has lower folding energy than random RNA of the same

dinucleotide frequency. RNA 2005, 11:578–591.
36. Gomes CPC, Cho J-H, Hood L, Franco OL, Pereira RW, Wang K: A review of computational tools in microRNA

discovery. Front. Genet. 2013, 4:81.
37. De Jesus O, Smith PR, Spender LC, Karstegl CE, Niller HH, Huang D, Farrell PJ: Updated Epstein-Barr virus

(EBV) DNA sequence and analysis of a promoter for the BART (CST, BARFO) RNAs of EBV. J. Gen. Virol. 2003,
84:1443–1450.

38. Condor software website [http://www.cs.wisc.edu/condor].
39. Thain D, Tannenbaum T, Livny M: Distributed computing in practice: The Condor experience. Conc Comp Pr. Exp

2005, 17:323–356.

44

Ch. 2: Fast selection of miRNA candidates

40. UnaFold Package [http://dinamelt.bioinfo.rpi.edu/download.php].
41. R Project [http://www.r-project.org].
42. Black PE: Fisher-Yates shuffle. Dict. algorithms data struct. U.S. National Institute of Standards and Technology;

2005.
43. Thakur V, Wanchana S, Xu M, Bruskiewich R, Quick WP, Mosig A, Zhu X-G: Characterization of statistical

features for plant microRNA prediction. BMC Genomics 2011, 12:108.
44. Arnold G, Hölzl J, Köksal AS, Berkeley UC: Specifying and verifying sparse matrix codes. Discovery 2010:1–13.
45. Le SY, Maizel J V: A method for assessing the statistical significance of RNA folding. J. Theor. Biol. 1989,

138:495–510.
46. Workman C, Krogh A: No evidence that mRNAs have lower folding free energies than random sequences with the

same dinucleotide distribution. Nucleic Acids Res. 1999, 27:4816–4822.
47. Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L, Green J, Petherbridge L, Baigent SJ, Nair V: Critical role of the virus-

encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog. 2011, 7:e1001305.
48. Integrated Genome Browser [http://bioviz.org/igb/].
49. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH: Expression of artificial microRNAs in transgenic

Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 2006, 24:1420–1428.
50. Bonnet E, Van De Peer Y, Rouze P: The small RNA world of plants. New Phytol. 2006, 171:451–468.
51. Ng KLS, Mishra SK: Unique folding of precursor microRNAs: quantitative evidence and implications for de novo

identification. RNA 2007, 13:170–187.
52. Parisien M, Major F: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008,

452:51–55.

47

3 Flexible, fast and accurate
sequence alignment profiling
on GPGPU with PaSWAS

Published as S. Warris, F. Yalcin, K.J.L. Jackson, J.P. Nap, “Flexible, fast and accurate sequence
alignment profiling on GPGPU with PaSWAS”, PLoS ONE (2015), 10 (4), https://doi.

org/10.1371/journal.pone.0122524

49

Abstract

3.1 Abstract

Background
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the
analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW)
algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate
due to statistical issues. Current SW implementations that run on graphics hardware do not report
the alignment details necessary for further analysis.

Results
With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the
computational power of NVIDIA-based general purpose graphics processing units (GPGPUs)
to perform high-speed sequence alignments, and (b) retrieve relevant information such as score,
number of gaps and mismatches. The software reports multiple hits per alignment.

Conclusions
The added value of the new SW implementation is demonstrated with two test cases: (1) tag
recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin
454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-
Waterman implementation.

3.2 Background
Currently available next generation sequencing platforms [1] produce millions of short reads, from
30 bases up to several hundred bases, which are analyzed for SNPs [2], miRNAs [3] and other
short sequences, or used for purposes such as whole genome (re)sequencing [4]. Fast, flexible
and highly accurate alignment software is an important tool for analyzing such sequencing data.
The alignment software should be able to process the large amounts of data within a limited
timeframe, preferably on low cost and high-speed hardware. The software also needs to be highly
accurate, giving the exact locations of mismatches, gaps, etc. Moreover, it is important that the
application is flexible, so it can be used for many different purposes.

The Smith-Waterman (SW) algorithm is an exact method to perform local sequence alignments.
The algorithm provides a dynamic programming approach of order O(n2), which makes the
algorithm computationally slow [5]. BLAST [6] and related heuristic approaches [7] are used to
search sequence databases as well as aligning sequences. Through seeding and other statistical
methods, BLAST reduces the overall number of local alignments needed [6]. BLAST is very
flexible and in most cases fast enough to perform the analyses required. For short sequences and
highly accurate alignments, BLAST is however less suitable [8].

50

Ch. 3: PaSWAS

Dedicated software is used for finding single-nucleotide polymorphisms (SNPs) and other small
differences between sequences. SOAP, for example, gives the user the location of SNPs using
seeding and hash lookups, but is limited by the small number of SNPs allowed [9]. SOAP makes
assumptions about SNP frequencies and uses statistical filters [10] which makes it, like BLAST,
less accurate than a full SW alignment.

In recent years the use of graphics cards as platform for non-graphical data processing has taken
off [11]. This programming platform provides ease of access to the computing power of the
relatively cheap graphics processing unit (GPU). The programming language for NVIDIA GPUs
is CUDA, which is an extension of C/C++. Numerous SW implementations have been presented
upon the release of the first CUDA-enabled graphics cards and have shown that GPUs can deliver
significant speed-ups compared to CPU implementations [12–17]. Some implementations, aimed
at searching reads in large genome or protein databases, give a single location and highest score
for each sequence. These implementations are, therefore, not able to indicate multiple hits and
do not produce an alignment. Without the exact alignment it is for example impossible to find
the exact location of a base change in a SNP. Other implementations have specific functionality
such as accelerating protein BLAST [13]. GPGPU-based applications run on low cost, easily
available hardware. The graphics cards fit in most standard desktop PCs as well as in high-end,
high-performance servers. Compared to other dedicated hardware, the price-to-performance ratio
favors GPGPU solutions. With the release of other GPGPU-based bioinformatics tools such as
GPU-BLAST, the hardware can be used for other purposes, in contrast to dedicated hardware
such as field-programmable gate arrays.

In this paper we present a new GPGPU-implementation of the SW algorithm that is not only fast
and accurate, but which also generates detailed information about each alignment for inspection.
The alignment information supplied includes the location of the hit, the number of matches,
mismatches and gaps, as well as the alignment profile: the visual representation of the alignment.
The implementation is dubbed Parallel Smith-Waterman Alignment Software (PaSWAS).
PaSWAS can use any scoring matrix, so the application is able to align DNA, RNA or protein
sequences. The implementation also allows for more than one profile per sequence alignment,
which is useful when a sequence is contained in its target more than once or is split up in the target
with a large segment between the parts.

To show the added value of PaSWAS, we analyzed two datasets that each presented a different
scientific challenge. These examples are added to show the applicability of PaSWAS in general
research settings and are not intended as benchmarks of any available software for each case. In
the supporting information, we show how the results of PaSWAS compare to the BLAST-based
analysis that were routinely performed at the institutes involved (3.8 Supporting information S1).

51

Materials and methods

Dataset (1): identity (ID) tag recovery from 454 sequence reads. An essential part of most high-
throughput sequence analysis is sequence cleaning, i.e. the removal of adaptor sequences, tags or
vector contamination prior to subsequent analysis, for example, by using clustering algorithms or
genome assembly programs. ID tags are used to identify sample origins when biological samples
are mixed before sequencing.

Dataset (2): isotype assignment of immunoglobulin 454 sequence data. Immunoglobulins (Igs)
play a central role in the human immune response. Immunoglobulin genes are created through
a series of genomic recombinations that bring together a number of smaller genes to create the
functional rearranged genes. An Ig protein consists of two heavy and two light chains and is
broadly divided into constant and variable regions. An immunoglobulin’s isotype is determined
by the gene sequence which encodes the constant region. In human there are five isotypes; IgA,
IgD, IgG, IgE and IgM.

In the data here evaluated, the isotypes IgE and IgG are of interest. The IgE isotype is a key
component in type I allergic reactions [18]. The IgG isotype is mainly directed against invading
pathogens and includes six polymorphic sub-types. The issue addressed here is to confidently
classify sequence isotypes as either IgG or IgE. The portions of the constant regions captured
with 454 sequencing reads are relatively short: 32 bases for the IgE and 76 bases for the six IgG
isotypes. Assignment of isotype is required for downstream analyses of mutation spectras that
explore the roles of the different Igs in immune responses. For example, it has been observed that
non-allergic IgE sequences have significantly less mutations than allergic IgE and IgG’s [19].

3.3 Materials and methods

3.3.1 Hardware and software
CUDA is a C/C++ extension created by NVIDIA. The development kit and the CUDA drivers
are freely available from NVIDIA (www.nvidia.com). PaSWAS requires at least CUDA version
3.1 and GPU hardware version 1.2. The minimum requirements to run PaSWAS are a standard
desktop computer or laptop with a recent, low-cost, consumer-grade NVIDIA-based graphics
card. Development and testing were done on a single GTX285 fitted into a computer with an Intel
Core 2 Quad CPU running at 2.40GHz with 4GB of memory. The development machine also
holds a GTX295, with two cores each a fraction slower than a GTX285, combined almost twice
as fast. Further testing was also undertaken on a high performance computer with two C1060s
and two Intel Xeon CPU X5650s running at 2.67GHz, 96GB memory and 7 TB storage. The
processing environment utilized Condor [20], to provide a single grid with 19 GPU cores and
240 CPU nodes available in a single grid. The grid included fifteen GTX285, one GT295 and two
C1060 Tesla graphics cards.

52

Ch. 3: PaSWAS

3.3.2 Smith-Waterman algorithm
The Smith-Waterman (SW) algorithm [5] is used in sequence analysis to find local alignments
between two sequences. It requires a dynamic programming approach. In its naive form it is of
order O(n2) for both computational resources and memory. For memory, this can be reduced to
O(n) by storing only two rows from the alignment matrix [5]: during calculation of the alignment
score only the previous row and the current row of the matrix are stored, together with the
location of the highest value. When the calculations are finished, this location together with the
highest value, the final alignment score, is returned. This process is used for searching through
large databases when only the best hits are relevant and the alignment profile is not necessary in
downstream analyses.

For the exact local alignment an alignment matrix needs to be calculated (Figure 3.1A). This
procedure starts in the upper-left corner and steps through the matrix left to right, top to bottom
and ends bottom-right. The location of the maximum value in the matrix indicates the end of the
local alignment and this alignment needs to be traced back from this cell to the start.

Figure 3.1. Smith-Waterman approach. A. Calculating a score for the alignment starts at the
top-left and ends at the bottom-right of the matrix. The red cell is the next score that can be
calculated with the arrows indicating the cells used. B. Parallel Smith-Waterman approach.
With this algorithm the score of several cells is calculated in parallel (red cells). The arrows
point to the cells used for the calculation of each new score.

53

Results

3.3.3 Earlier parallel Smith-Waterman implementations
There are several parallel SW implementations available [12,14,15,17]. These implementations
are primarily focused on searching sequence databases. They do not produce alignment profiles,
which makes them fast and memory efficient but prevents visual inspection of the results. Other
implementations [21,22] are capable of producing the alignment profiles, but show only one
profile per alignment. These parallel SW implementations focus on two distinct properties of
how the alignment matrix is filled (Figure 3.1B). There is a diagonal dependency of cells: cell
at position (x,y) can only be processed when cells (x-1,y), (x,y-1) and (x-1,y-1) are known. In
the first step only one thread is active, for cell (0,0). In each subsequent step an additional thread
becomes active and halfway through the matrix the maximum number of threads are active:
minimum(n,m). The number of active threads then decreases to a single thread for the last step at
(n-1,m-1). This can be made more efficient by using idle threads to work on different sequence
alignments [17]. In case of many sequence alignments, the processing units will be very active.
For larger sequences this advantage disappears. In case the processor can calculate only a single
alignment because of the length of the two sequences, there are no other cells to update and threads
will remain idle. PaSWAS uses a similar approach in calculating the scores and tracebacks.

3.4 Results

3.4.1 Parallel Smith-Waterman Alignment Software (PaSWAS)
PaSWAS consists of three separate phases: (1) calculation of alignment scores, (2) determination
of tracebacks and (3) production of profiles as output of the results. These steps are outlined here
and the implementations are explained in more detail in the next sections. For the explanation
of the application the following setup is used. On the horizontal axis there are X number of
sequences, each of length N. These may be, for example reads from a sequencing platform. If a
sequence is shorter than N, it is padded to length N with a special character. All sequences are
placed in a single string x of length X*N. On the vertical axis the target sequences are placed.
There are Y target sequences, each of length M. These sequences are padded when shorter than
M. They are placed in a single string y of length Y*M.

In the first phase, the alignment matrix of each sequence alignment is calculated. The strings x
and y are copied to the main (global) memory of the GPU. Each sequence alignment is calculated
in parallel. Each alignment is updated over the diagonal of the matrix and starts at the top-left. At
the start there will be X*Y threads active and at peak performance there are X*Y*minimum(N,M)
threads active. During the entire phase the maximum value is tracked. This value is necessary to
decide which tracebacks need to be calculated.

54

Ch. 3: PaSWAS

In the second phase, the traceback of each alignment is determined. Based on user-defined
settings, such as the maximum value in the matrix required, the tracebacks are calculated in
parallel. This implies the reverse order of the previous phase, starting at the bottom-right (Figure
3.1B). The profiles are stored in main memory using host page-locked memory. This keeps the
data transfer between CPU and GPU to a minimum and there is no need to claim additional
memory on the GPU.

The last phase is run on the CPU and consists of producing the alignment profiles. Because of
the parallel nature of the algorithm, the profiles are presented in the output in random order. It
is, therefore, not possible to rely on the order of the input when parsing the output. The output
contains additional information about each profile, including the number of gaps, mismatches and
the start and end of the alignments.

3.4.2 Phase 1: calculation of alignment matrix
The GPU contains two types of memory: global memory and shared memory. Global memory is
the main memory and is usually several hundred megabytes up-to 12 gigabytes in size. Shared
memory is distributed across the GPU and is located physically close to the processors. It is
relative small in size, but also much faster to access than global memory. Global memory is used
to store the scores, the directional matrix and the strings. Because this is relatively slow memory
access is therefore minimized by using the much faster shared memory on the GPU. Although
shared memory can only contain 16 kilobytes per block, each of these memory blocks is shared
amongst threads in the same block.. For this reason, intermediate results during processing of the
alignments and scores are stored in shared memory.

Figure 3.2. Subdivision of the alignment in PaSWAS. Each cell indicates a sequence
alignment of 8 characters on the X-axis and Y-axis. The orange blocks are calculated in parallel
in the same way as is depicted in Figure 3.1B. The arrows indicate the blocks required for the
block being calculated.

55

Results

Each sequence alignment is subdivided into smaller matrices of 8x8 cells (Figure 3.2). The
occupancy calculator provided by NVIDIA (www.nvidia.com) indicates that an 8x8 block is the
most efficient setting to make optimal use of the current hardware and tests confirm these settings
(see Figure 3.6.S1). These 8x8 matrices map to thread blocks of 64 threads. The eight characters
of the two sequences, the scores and the maximum value are stored using shared memory. This
requires several data transfers from the host to global memory: the characters, the scores and
maximum values from the surrounding blocks are retrieved from global memory. Without scores
from a neighboring block, for example if it is the first block, scores are initialized to zero. This is
all calculated in parallel.

Within each block, calculations start at the top-left and pass through the matrix via the diagonal
to the bottom-right. To make use of idle threads in a block, the maximum value is determined
during this pass as well. Upon completion, the resulting information is copied to global memory.

Similar to the cells within the matrix, each block depends on the three surrounding blocks. At the
start, X*Y blocks of 64 threads are launched. The maximum number of thread blocks launched is
(X*N*Y*M) / 64. For example, 100 reads of 400bp versus 100 sequences of 500bp will launch
between 10,000 and 31,250,000 blocks at any given point in time, with each block having 64
threads. These numbers will vary between different types of graphics cards and depend on the
amount of global memory available.

3.4.3 Phase 2: Determination of tracebacks
After the alignment is calculated, traceback is necessary to generate the alignment profiles based
on the values in the matrix. If the maximum value within the alignment matrix complies with the
requirements set by the user, it is marked as the start of the traceback. This includes a check of the
value against a user-provided minimum value to give multiple profiles per alignment.

This phase is the opposite of the previous phase: the application starts at the bottom-right block
and the bottom-right cell of this block. When a cell is the starting point of an alignment profile,
the information about this starting point is copied to the memory of the computer (host). The x,
y and score are copied, as well as the direction the score was coming from: the cell located at the
left, up or upper-left. These starting points are calculated in parallel as well, which is taken into
account when copying the data to the host. A procedure has been implemented to ensure that each
starting point is stored without forcing the program into a sequential flow, which would otherwise
slow down execution. On the host an array is allocated to store the starting points. The GPU
has an integer index which points to the first available position. When a thread detects a starting
point this index is increased by one using the atomic function of the hardware [23]. This function
guarantees that this thread is the only process accessing this value. The host also has a matrix
allocated to store the direction. This directional value is also copied directly to the host.

56

Ch. 3: PaSWAS

The thread now marks the location where the score comes from as negative in the matrix. The SW
algorithm requires that all values are larger than, or equal to, zero. A negative sign is therefore
appropriate to mark the traceback on the GPU without the need for additional memory space.
Each thread mapped to a cell therefore checks not only for starting points, but also for negative
values. If a negative value is found, the direction is copied to the host and the score at that location
will be marked as negative. At the end of each block all negative values are copied to global
memory for the surrounding blocks to continue the traceback until the block in the upper-left
corner is reached.

Figure 3.3. Output of PaSWAS for a single alignment. The property column gives the name
of the property available, followed by an example of a value for each property. The last row
shows the alignment profile of X versus Y with ‘|’ indicating a match, ‘-‘ a gap and ‘.’ a
mismatch.

3.4.4 Phase 3: Production of profiles
This phase is relatively short. The list produced in phase 2 contains the locations in the direction
matrix where to start the traceback. This list is now processed. The application goes through this
matrix using the directional information and counts the number of gaps, mismatches and matches
and creates three strings: the sequence, the target with the gaps marked and the alignment profile.
An example of the output is shown in Figure 3.3.

57

Results

3.4.5 Test case 1: Tag recovery
In the first test case, PaSWAS is used for short adaptor and tag detection and subsequent cleaning
of a set of sequence reads. The data set contains 401,824 reads with lengths between 50 and
600 nucleotides from a 454 GS Titanium platform (www.roche.com), comprising 28 different
samples labeled by a sequence tag that defines the origin of each read. Each read has the following
structure:

[5’ ID tag][5’ primer sequence][genomic sequence][3’ primer sequence][3’ ID tag]

The 5’ ID tag is five nucleotides long. The neighboring 5’ primer sequence is either 19 or 21 bases
long and is used for sample identification. The 3’ primer sequence and 3’ ID tag have the same
functionality as their 5’ counterparts. In this study only the results of the 5’ data are used. The 3’
data is only used to support the 5’ analysis and is not used for primary identification.

Table 3.1. ID tag recovery in a 454 data set.

Data PaSWAS results

Number of reads processed 401,824

Number of primers used 2

Time (sec) 92

Recovery 5’ ID tags 357,395 (88.9% of reads)

Results of ID tag recovery in a 454 data set obtained with PaSWAS.

Identification of the exact start site of the primer is necessary to retrieve the tag and the exact
end of the primer is necessary to prevent contamination of the genomic sequence. During the
sequencing process small numbers of errors can be introduced. A read may therefore contain
gaps, nucleotide substitutions and nucleotide additions compared to the primers and tags used.
Perfect sequence matching of every read is therefore unlikely. Adding or deleting parts of the
genomic sequence makes detecting small changes such as SNPs in the genomic sequence more
difficult.

PaSWAS was used to align the 5’ primer sequences to the reads and the resulting alignments were
used to get the tag immediately adjacent to this primer sequence.

Including the reverse complement of the primer sequence, this resulted in 1,607,296 sequence
alignments. PaSWAS ran for 92 seconds, calculating 17,470 alignments per second (roughly 1.2
giga cell updates per second). In the 401,824 reads 357,395 5’ ID tags were identified by PaSWAS
(Table 3.1).

The performance of PaSWAS (Table 3.2) is based on a relative score. This score is defined as
the alignment score divided by the alignment length. The match score is set to 5.0, so a relative
score of 5.0 indicates a perfect match over the entire alignment. In this data set, 44.9% of reported

58

Ch. 3: PaSWAS

alignments contain the entire primer sequence with no mismatches and/or gaps. There are 53.5%
hits with a relative score of 5.0. 8.6% of the hits have mismatches/gaps at the start or end of the
primer and a full match over the local alignment (53.5-44.9). A substantial number of alignments
have a less-than-perfect match, which shows that detecting only perfect matches over the entire
length of the primer will result in substantial data loss.

Table 3.2. Performance of PaSWAS in ID tag recovery.

Description Relative score (score / length) Hits (%)

Full primer recovery X= 5.0 44.9

Perfect alignments X= 5.0 53.5

Some gaps / mismatches 4.0 ≤X ≤ 5.0 35.3

Low quality alignments 3.0 ≤ X ≤ 4.0 10.5

Very low quality alignments X ≤ 3.0 0.6

44.9% Of the hits contains the full primer sequence. PaSWAS presents an accurate alignment
tool able to retrieve degenerated tags. The relative score used is defined as the alignment score
divided by the alignment length.

Figure 3.4. Example sequence alignment with multiple hits per alignment. In this figure
the alignment of a primer sequence (1-1) to a 454 read (FSGIRH301EX46I) is shown. The top
profile shows the location of degenerated primer. The bottom profile shows the best alignment,
starting at position 19 in the read.

A possible source of errors is a primer that matches at more places, either because of sequencing
errors or by chance. PaSWAS is the only GPGPU-based SW implementation now available which
allows to investigate such cases. PaSWAS is able to produce multiple hits per sequence alignment
and is therefore capable of detecting the correct location of the primer. Figure 3.4 shows the
location of the primer in the top alignment profile and the best hit, starting at location 19 in the
read, in the bottom alignment. In this case the second-best hit allows for proper tag detection in
this read.

The results presented for this case show that the accurate alignment accomplished by PaSWAS
has considerably added value for retrieving degenerated tags.

3.4.6 Test case 2: Isotype assignment of immunoglobulin genes
To show the flexibility of PaSWAS with different data types, we used an immunoglobulin data set.
Given short (32-76 bases) sequences of immunoglobulin constant regions, the aim is to classify
the correct isotype of the immunoglobulins for downstream analysis of the spectra of mutations.

59

Results

The 454 data set consisted of 55,295 reads with candidate IgE and IgG sequences. Of these, the
IgE isotype classification required confirmation. This confirmation was based on comparison
with the known IgE and IgG sequences.

On a GTX285, it took PaSWAS 154 seconds to perform the 774,130 alignments (including
reverse complement), representing a rate of 5,026 alignments per second or 72 mega cell updates
per second.

Table 3.3. Classification of immunoglobulin sequences by PaSWAS.

Immunoglobulin classification IgE IgG Unclassified Total

Classified by PaSWAS 32,947 17,505 4,843 55,295

The table shows the number of sequences classified by PaSWAS as either IgE or IgG. A small
subset of the dataset (11.4%) could not be classified as either IgE or IgG.

Table 3.4. Number of mutations found in classified immunoglobulin IgE and IgG isotypes.

Identified by PaSWAS

IgE

Total mutations 89,895

Total unique sequences 7,120

IgG

Total mutations 115,335

Total unique sequences 6,109

For both the isotypes IgE and IgG the total number of mutations and number of unique
sequences identified with PaSWAS is given.

PaSWAS identified 32,947 IgE sequences and 17,505 IgG sequences in the data set (Table 3.3).
As a consequence, there are 4,843 sequences for which the isotype could not be confirmed. For
the sequences classified, the number of unique sequences and the number of mutations compared
to the sequences of the known isotypes (IgE or IgG) was determined with PaSWAS. In Table 3.4,
the number of mutations and unique sequences identified are presented. For the IgE sequences,
89,895 mutations became available for analysis and for the IgG sequences 115,335 mutations.
Figure 3.5 shows an example of the alignment profile generated by PaSWAS that is essential for
such mutational analyses.

Both cases presented show the applicability of PaSWAS. It is able to handle real-life sized data
sets fast enough while delivering the accuracy of a full SW.

60

Ch. 3: PaSWAS

Figure 3.5. Alignment generated by PaSWAS. The top entry is part of the sequence of the
IgE constant region and the bottom entry is part of a 454 read. A dot indicates a mismatch in
the alignment and a minus symbol indicates a gap. Mismatches are clearly distinguishable in
the profile, with two gaps and one mismatch.

3.5 Discussion and conclusions
In this paper we present PaSWAS as novel parallel implementation of the SW algorithm on a GPU.
There are several advantages of PaSWAS over other SW implementations. The first advantage is
that PaSWAS produces complete alignment profiles with gaps, mismatches and matches and is
not limited to one hit per sequence alignment. To our knowledge, the parallel SW implementations
currently put forward in the literature do not allow inspection of the actual alignments and do not
present multiple hits per alignment. PaSWAS can, if so desired, deliver a virtually unlimited
number of local alignments for a single sequence comparison (Figure 3.4). This is essential for
comparing short sequences (reads) to long sequences such as genomic regions.

PaSWAS is not limited to particular types or lengths of sequences. It can handle RNA and protein
sequences just as easily as DNA sequences and allows the use of different scoring matrices.
Moreover, PaSWAS is relatively fast.

Both test cases presented show that the innate accuracy of the SW algorithm as implemented
in PaSWAS can give added value such as detailed alignment information necessary for SNP or
degenerated tag detection . The example only shows the practical applicability of PaSWAS for
this type of application. Other software such as Reaper [24] or Trimmomatic [25] may be as
suitable or better than PaSWAS for tag detection. Proper benchmarking would require more and
more detailed comparisons of different software. This is considered a challenge for the future.

The current output of sequencing technology combined with the speed of PaSWAS implies
that thousands to millions of sequences can be recovered and/or identified for further analysis,
resulting in efficient use of sequence data and effective analysis.

PaSWAS is accurate and fast, but for large genome-wide analysis, for example analyses of millions
of sequence reads of the human genome, a cluster of GPUs is still required to make computations
feasible in time. Each year the number of floating point operations per second performed by a
GPU is increasing rapidly, so such genome-wide analyses will become feasible in the near future.

61

Acknowledgements

The added value of PaSWAS is particularly in producing alignment profiles. These profiles can
be inspected visually or automatically for gaps and mismatches to allow, for example, SNP
detection. To allow for multiple hits per sequence alignment and additional profile information,
PaSWAS requires additional storage and significantly more calculations compared to searching
through a database. It is therefore inappropriate to compare the speed of this algorithm with
search-only GPU-applications. PaSWAS is slower due to the additional calculations and memory
access. PaSWAS currently focuses on local alignments. Features to be included in the future
are gap extension penalties, codon insertion/deletion scoring and a user-friendly framework so
the application can be easily plugged into existing analysis pipelines. This is likely to result in
different versions of the software, because we expect that some of these features will present a
performance penalty. Such a penalty may not be attractive for all uses or users. Other features
will be faster than calculating local alignments, because they will require significantly less
administration and calculations.

A revised version of PaSWAS is under development (Chapter 4). The current implementation
is based on the vender-specific CUDA platform. This limits the use of PaSWAS to NVIDIA-
based graphics cards. These cards are widely available but to make PaSWAS run on other brands
of GPUs, on different types of CPUs and on other many-core architectures, we are currently
working on an OpenCL (https://www.khronos.org/opencl/) implementation of PaSWAS.

With such developments, the use of the SW algorithm on GPUs and CPUs will continue to present
even more attractive approaches for the analyses of (next generation) sequence data.

3.6 Acknowledgements
We would like to thank Harold Verstegen (formerly KeyGene NV, now at KWS SAAT AG)
for fruitful discussions and making the DNA tag data and other resources available, as well as
Bruno Gaeta (School of Computer Science and Engineering), Alan Wilton († 2011) and Andrew
Collins (School of Biotechnology and Biomolecular Sciences), all from the University of New
South Wales, who also helped with data, discussions and resources. We would also like to thank
the three anonymous reviewers for their comments, which helped us to improve the manuscript
considerably.

62

Ch. 3: PaSWAS

3.7 References
1. Metzker ML. Sequencing technologies - the next generation. Nat. Rev. Genet. 2010;11:31–46.
2. Chan EY. Next-generation sequencing methods: impact of sequencing accuracy on SNP discovery. Methods Mol.

Biol. 2009;578:95–111.
3. Naqvi AR, Islam MN, Choudhury NR, Haq QMR. The fascinating world of RNA interference. Int. J. Biol. Sci.

2009;5:97–117.
4. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel

short read sequencing. Genome Res. 2010;20:265–72.
5. Smith F. Comparison of biosequences. Adv. Appl. Math. 1981;2:482–9.
6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.

1990;215:403–10.
7. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
8. Emde AK, Grunert M, Weese D, Reinert K, Sperling SR. MicroRazerS: rapid alignment of small RNA reads.

Bioinformatics. 2010;26:123–4.
9. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.
10. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, et al. SNP detection for massively parallel whole-genome

resequencing. Genome Res. 2009;19:1124–32.
11. Farber RM. Topical perspective on massive threading and parallelism. J. Mol. Graph. Model. 2011;30:82–9.
12. Khajeh-Saeed A, Poole S, Blair Perot J. Acceleration of the Smith–Waterman algorithm using single and multiple

graphics processors. J. Comput. Phys. 2010;229:4247–58.
13. Vouzis PD, Sahinidis N V. GPU-BLAST: using graphics processors to accelerate protein sequence alignment.

Bioinformatics. 2011;27:182–8.
14. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-

enabled graphics processing units. BMC Res. Notes. 2009;2:73.
15. Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman

sequence alignment. BMC Bioinformatics. 2008;9:S10.
16. Schatz MC, Trapnell C, Delcher AL, Varshney A. High-throughput sequence alignment using Graphics Processing

Units. BMC Bioinformatics. 2007;8:474.
17. Liu Y, Huang W, Johnson J, Vaidya S. GPU Accelerated Smith-Waterman. Int. Conf. Comput. Sci. 2006;3994:188–

95.
18. Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic

response. Pharmacol. Ther. 2003;100:157–70.
19. Dahlke I, Nott DJ, Ruhno J, Sewell WA, Collins AM. Antigen selection in the IgE response of allergic and

nonallergic individuals. J. Allergy Clin. Immunol. 2006;117:1477–83.
20. Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the Condor experience. Concurr. Comput.

Pract. Exp. 2005;17:323–56.
21. Korpar M, Šikic M. SW#-GPU-enabled exact alignments on genome scale. Bioinformatics. 2013;29:2494–5.
22. de O. Sandes EF, de Melo ACMA. Retrieving Smith-Waterman alignments with optimizations for megabase

biological sequences using GPU. IEEE Trans. Parallel Distrib. Syst. IEEE; 2013;24:1009–21.
23. NVIDIA. NVIDIA CUDA programming guide. NVIDIA Corporation; 2017.
24. Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control

and analysis of high-throughput sequence data. Methods. 2013;63:41–9.
25. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014

63

Supporting information S1

3.8 Supporting information S1

3.8.1 Comparison of PaSWAS to BLAST-based approaches
To show the value of PaSWAS relative to ongoing procedures in laboratories, we here show the
comparison of the results from PaSWAS with the results from routinely used BLAST-based
approaches. The Blast-based analyses were used as standard in the labs we collaborated with.
Such standard analysis should be considered as matter of fact; it may not be of have been the
best possible solution for such analyses. Many more options for software are available. However,
often biology-oriented laboratories stick to known procedures and do not go or dare to go into
benchmarking or implementing new software. Although we show that PaSWAS outperforms these
standards, the comparison here shown is not meant as benchmark of any available alternative
software. As the comparison is not meant as or suitable as benchmark, default BLAST settings
were used and the BLAST was not necessarily optimized for this particular case .The results only
demonstrate that PaSWAS is suitable for such analyzes and PaSWAS out-performs the methods
used routinely.

3.8.2 Tag recovery
PaSWAS is used for short adaptor and tag detection and subsequent cleaning of 454 sequence
reads. The results are compared to the output and performance of a hardware-accelerated (FPGA)
platform. This platform consists of dedicated hardware running a BLAST-like algorithm setup
with default settings and is routinely used but not optimized for this particular case. Filtering of
the data was performed after the BLAST analysis. Details of the data are given in the main text
of the paper.

The number and identity of tags retrieved by PaSWAS were compared to the results of the
hardware platform analysis. The results are given in Table 3.5 S1. PaSWAS ran for 92 seconds,
calculating 17,470 alignments per second (roughly 1.2 giga cell updates per second). In the
401,824 reads 357,395 5’ ID tags were identified by PaSWAS, compared to 287,995 by the
BLAST-based hardware platform. These 287,995 tags are for 99.7% contained in the set of the
ID tags identified by PaSWAS. Hence only 0.3% of the tags identified by the hardware platform
are not identified by PaSWAS. Compared to the standard set-up, PaSWAS retrieves 19.5% more
tags, involving 88,9% of the reads. As a consequence, considerably more useful information is
extracted from the sequence data set.

64

Ch. 3: PaSWAS

3.8.3 Isotype assignment of immunoglobulin genes
Aim is to classify the correct isotype of the immunoglobulins for downstream analysis of the
spectra of mutations based on the 32-76 bases short sequences of the Ig constant regions.

The result of the BLAST analysis used in the laboratory is compared to the results of a PaSWAS
analysis. Details of the data are given in the main paper.

The 454 data set consisted of 55,295 reads with candidate IgE and IgG sequences. Of these, the
IgE isotype classification required confirmation. This confirmation was based on comparison with
the known IgE and IgG sequences. On a GTX285, it took 154 seconds to perform the 774,130
alignments (including reverse complement), representing a rate of 5,026 alignments per second or
72 mega cell updates per second. The BLAST analysis used for comparison was part of a larger
grid application, that ran for several hours on a multicore grid. The pre- and post-processing
was part of the analysis on the grid implementation used. The results are shown in Table 3.6 S2.
PaSWAS identified 15.4% more IgE sequences and 5.3% more IgG sequences in the data set
compared to the BLAST approach. As a consequence, there are 52.1% fewer sequences for which
the isotype could not be confirmed. For the sequences classified, the number of unique sequences
and the number of mutations compared to the sequences of the known isotypes (IgE or IgG) was
also compared between PaSWAS and BLAST (Table 3.7 S3). For the IgE sequences, PaSWAS
identified 8,906 (11.0%) more mutations for analysis and for the IgG sequences 3,001 (2.7%)
more than the BLAST approach .Both laboratories were pleased with the way PaSWAS extracted
more useful data from the data than the methods they were used to. For proper benchmarking,
however, it will be interesting and necessary to compare the results of PaSWAS with the results
of other dedicated software and validation in the lab.

Table 3.5. S1. ID tag recovery in a 454 data set.

PaSWAS Hardware platform

Number of reads 401,824

Number of primers 2

Time (sec) 92 120

Recovery 5’ ID tags 357,395 (88.9% of reads) 287,995 (71.7% of reads)

Overlap 99.7%

Relative performance 119.5%

Comparison of the results of ID tag recovery in a 454 data set obtained with PaSWAS and the
hardware platform.

65

Supporting information S1

Table 3.6. S2. Classification of immunoglobulin sequences by PaSWAS and BLAST.

Immunoglobulin classification IgE IgG Unclassified Total

PaSWAS 32,947 17,505 4,843 55,295

BLAST 28,549 16,628 10,118 55,295

% change +15.4 +5.3 -52.1

The percentage change indicates the difference in number of sequences classified by PaSWAS
compared to the BLAST-based approach.

Table 3.7. S3. Number of mutations found in the classified immunoglobulin IgE and IgG
isotype data.

IgE

PaSWAS BLAST Difference Difference (%)

Total mutations 89895 80989 8906 11.0

Total unique sequences 7120 6387 733 11.5

IgG

Total mutations 115335 112334 3001 2.7

Total unique sequences 6109 5917 192 2.0

For both the isotypes IgE and IgG the total number of mutations and number of unique
sequences identified with either PaSWAS or BLAST is given.

3.8.4 Supporting information figure S1

0

1

2

3

4

5

6

2x2 4x4 8x8 12x12

ru
n

tim
e

(s
ec

on
ds

)

block size

Figure 3.6. S1: Timing per block size. This plot shows the speed of the PaSWAS algorithm
(y-axis) for different thread block sizes (x-axis).

67

4 pyPaSWAS: Python-based
multi-core CPU and GPU
sequence alignment

Published as S. Warris, N.R.N. Timal, M. Kempenaar, A.M. Poortinga, H. van de Geest, A.L.
Varbanescu, J.P. Nap, “pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.”
PLoS ONE (2018) 13(1): e0190279. https://doi.org/10.1371/journal.pone.0190279

69

Abstract

4.1 Abstract

Background
Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence
alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore
adopted less than could be. The OpenCL language is supported more widely and allows use on
a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel
computing in bioinformatics by making its use and extension more simple through more and
better application of high-level languages commonly used in bioinformatics, such as Python.

Results
The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed
in Python. It is a generic SW implementation running on several hardware platforms with multi-
core systems and/or GPUs that provides accurate sequence alignments that also can be inspected
for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries
are used for automated system configuration, I/O and logging. This way, the Python environment
will stimulate further extension and use of pyPaSWAS.

Conclusions
pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel
SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python
with high-performance parallel compute languages to create a developer- and user-friendly
environment should be considered for other computationally intensive bioinformatics algorithms.

4.2 Background
A major challenge in applied bioinformatics is the adoption of advanced high-performance tools
and algorithms by end-users with possibly low-to-moderate software engineering skills in the
context of their biological research questions. Earlier, we presented the CUDA-only application
PaSWAS (Chapter 3) that performs Smith-Waterman (SW) sequence alignment for any type of
sequence on NVIDIA-based GPUs [1]. PaSWAS is relatively fast and combined the accuracy of
SW alignment with the possibility to retrieve alignment information relevant for biologists, in
contrast to most other parallel SW implementations. Yet, adoption of PaSWAS can be improved: it
may be too complex to install and use. In addition, use of the application was limited to NVIDIA-
based hardware. Also in other cases, the adoption of highly promising tools and approaches is
slower than expected. For example, the de novo assembly tool CloudBrush [2] uses MapReduce
on Hadoop [3,4], but has seen no biological applications yet. The three versions of the NVIDIA
CUDA-based sequence alignment tool CUDASW++ [5–7] are cited often, but citations deal in

70

Ch. 4: pyPaSWAS

the larger majority with novel software implementations. The latest version CUDASW++ 3 [7],
for example, has been cited 116 times (as of July 2017) but none of these citations deal with a
direct biological question. The lack of adoption of promising new developments in algorithms
and hardware may indicate that we as developers underestimated the complexity of setting up and
running such a new application, especially when it is limited to a certain platform.

Another important limiting factor in the use of PaSWAS is the absence of the affine gap penalty.
This scoring method produces biologically more relevant alignments than using only a gap open
penalty [8]. It is therefore an important feature missing from the Smith-Waterman implementation
in PaSWAS.

To improve the accessibility and use of PaSWAS, we have developed an entirely new software
package, pyPaSWAS, based on OpenCL and CUDA integrated with Python. Python is a platform-
independent programming language, with many libraries appropriate for bioinformatics, such as
BioPython [9] and SciPy [10]. The open compute language OpenCL [11] is the current standard
for clusters and/or multi-core CPU/GPU’s to speed-up analyses up to several orders of magnitude
compared to single core CPU versions. OpenCL is similar to CUDA, but is supported by a
growing number of manufacturers, including Intel, NVIDIA, Apple and IBM. By supporting
both CUDA and OpenCL, pyPaSWAS runs on many platforms, including CPUs, GPUs other
than NVIDIA-based GPUs and so-called accelerator cards. We integrated the PaSWAS CUDA
(Chapter 3) and OpenCL codebases with Python through pyCUDA [12] and pyOpenCL [12]. The
original PaSWAS code was extended to add support for the affine gap penalty scoring method [8].
The result is a versatile Python-based user-friendly application for SW sequence alignment on a
variety of multi-core systems. We propose this strategy as showcase for the integration of new
software based on these compute languages with common programming tools such as Python to
promote the adoption of advanced tools and applications in applied bioinformatics.

4.3 Implementation
The new software package pyPaSWAS is implemented in Python (2.7 and up) and is run from
the command line. It uses the libraries pyOpenCL [12] and pyCUDA [12] for device handling,
memory allocation and kernel invocations to run the core PaSWAS Smith-Waterman code on
the parallel device. pyPaSWAS depends on OpenCL 1.2+ [11] or Cuda 2.0+ [13], numpy[14]
and biopython [9]. All other processing, such as Input / Output handling, logging and exception
handling, are done in standard Python. The SeqIO class from bioPython [9] is used for file input.
Its reference manual [15] lists all formats supported, including multi-fasta, genbank and fastq.
Input file formats not supported by bioPython can be implemented by extending the Core.Reader
class. Output can be formatted in a custom format by extending the Core.DefaultFormatter
class. The Core.SAMFormatter class generates SAM output and can also be used as template

71

Implementation

for other custom output. The SAM descriptors (Table 4.1) are particularly useful for further
processing output data. File-based configurations allow for storing settings and consistent reruns
of the application. The user can supply appropriate scoring values for alignment, for example
substitution matrices, to adjust the analyses to the desired specifications. The Core.Score module
can be adjusted to support any 255 by 255 scoring matrix. The accompanying wiki [16] provides
a complete description of the command line arguments as well as examples of how to run
pyPaSWAS.

The structure of CPU hardware differs from GPU hardware and running OpenCL code designed
for GPUs is not optimal [17]. Therefore, two OpenCL versions based on the CUDA-based
implementation in PaSWAS were developed, one for GPUs and one for CPUs [18]. The latter makes
better use of CPU hardware for faster sequence alignments. The two OpenCL implementations
differ from the previous CUDA implementation only in the use of specific OpenCL calls; no
changes have been made to the underlying algorithms.

The OpenCL implementation runs on multi-core hardware supporting OpenCL 1.2, such as
Intel/AMD CPUs and accelerator cards (GPUs and Xeon Phi). With the CUDA implementation,
pyPaSWAS runs on all NVIDIA GPUs with compute capability 1.2 and above, which includes
support for all recent NVIDIA GPUs, including laptop versions, Teslas and the GTX-based cores.
By default, pyPaSWAS runs on the CPU using the CPU-optimized OpenCL code. To use other
parallel devices than the CPU, the user changes the configuration or selects the appropriate device
through command line options.

pyPaSWAS opens the platform selected, sets the appropriate memory usage and other parameters
relevant for the parallel device automatically, based on settings and data to be analyzed.
pyPaSWAS allows for fine grained control over the use of the parallel device, such as memory
usage and number of compute cores to be used. CPU hardware allows for limiting the number
of cores used by an application. This enables using the computer for other tasks and is necessary
when pyPaSWAS runs in a cluster environment. This fine-grained control level presents a major
improvement over the earlier PaSWAS (Chapter 3) [1] in addition to the integration with Python.
All options are listed on the wiki-page [16] and are accessible through the command line (‘-h’).

As its predecessor (Chapter 3) [1], pyPaSWAS documents all alignment details and allows for
filtering of the resulting alignments. Parameters for filtering are listed in Table 4.1. Parameters
can be set through the configuration file or through command line options. This gives the ability
to select which hits are relevant and will be sent to the output file. The scoring value and all
related values, such as query coverage, are present in the output and can also be used to filter the
results further afterwards (Table 4.1).

72

Ch. 4: pyPaSWAS

4.3.1 Affine gap penalty
For biologically more relevant alignments, the affine gap penalty method [8] scores the opening
of a gap differently than for extending a gap. The original PaSWAS code only supported the gap
penalty scoring method, which means that each gap has the same score, no matter how many
gaps are in front of it. The affine gap penalty implementation requires a scoring matrix M, to keep
track of the match scores and scoring matrices I and J to keep track of the scores for gaps in the
target (I) and query (J) sequences. The PaSWAS implementation of the direction matrix has been
extended to record which of the three matrices resulted in the highest score. The downside of
using an affine gap method is that it requires creating two additional matrices (I, J) of the same
size as the already existing scorings matrix (M). This means that a 100x100 sequence alignment
using the affine gap requires not 10,000 scoring values, but 30,000 scorings values. Next to an
increase in memory usage, additional calculations compared to the original SW implementation
are needed, making the affine gap method slower (see S3). The affine gap penalty method is
required in all cases, for example when the gaps originated from technical (NGS) issues and
do not have any biological meaning. In such cases, the PaSWAS code is used to perform a SW-
alignment without a gap extension penalty. The user controls the use of the affine gap penalties by
setting a value other than zero for the gap extension penalty (the ‘-g’ option).

Table 4.1. Options in PyPaSWAS for selecting and filtering the alignments.

Filter
name*

Value range** Default SAM
descriptor

Description

lower_
limit_score

0.0 < x <= 1.0 1.0 Allows for more hits per alignment. All hits with a score
within this fraction of the maximum score found are
reported. Used during the backtracing procedure for
reducing the number of alignments to be processed.

minimum_
score

0 < x 30 AS:i: Minimum score of an alignment. Used during the
backtracing procedure for reducing the number
alignments to be processed.

filter_factor 0.0 < x <= 1.0 0.2 AS:i: For each alignment the theoretical maximum score
is calculated: length of the shortest sequence times
the maximum score for a match (eg. the score for a
perfect alignment). Only alignments with a score above
filter_factor times this theoretical maximum score are
returned.

query_
coverage

0.0 <= x <= 1.0 0.2 QC:f: Minimum fraction of the query covered in the alignment

query_
identity

0.0 <= x <= 1.0 0.2 QI:f: Minimum fraction of matches relative to the query

relative_
score

0.0 < x <= score
match

2.0 RS:f: Minimum score relative to the shortest sequence. A full
match will give a relative score of the match score, for
DNA/RNA sequences the default is 5.0

base_score 0.0 < x <= score
match

2.0 BS:f: Score of the alignment divided by the length of the
alignment.

*Filter name: all parameters available for filtering; ** value range: the boundaries for the settings of the
corresponding parameter.

73

Results and discussion

4.4 Results and discussion
The performance of pyPaSWAS is expressed as the time required for the number of SW alignments
processed. Six different configurations were tested for performance (Table 4.2), with variations
in hardware (Intel or NVIDIA), parallel device (CPU or GPU), code usage (optimized for CPU or
GPU), number of cores used and the language involved (OpenCL or CUDA).

Table 4.2. Configurations for testing the performance of pyPaSWAS.

Configu-
ration

Hardware Parallel
device

Code
optimized for

Nr. of
cores

Language Time
for 2720
alignments
(s)

GCUPS* Speedup
compared
to F

A

Intel i7 CPU

CPU
1

OpenCL

119.2 0.70 0.21

B 8 106.4 0.82 0.21

C
GPU

1 812.6 0.10 0.03

D 8 192.3 0.44 0.12

E NVIDIA
GTX 1070 GPU GPU 1920

OpenCL 57.8 1.48 0.36

F** CUDA 17.6 4.64 1.00

*GCUPS: giga cell updates per second. **Configuration (F) is equivalent to the earlier PaSWAS [1], and
is therefore used as reference here. The last two columns give the amount of time spent on the largest set of
alignments in the performance analysis and the speedup compared to the configuration (F).

In all cases, pyPaSWAS was run on a standard desktop (Intel i7 -2600K) running Ubuntu
16.02 and holding an NVIDIA GeForce GTX 1070 GPU. Timing of alignments was done by
determining the run time of the application between first and last API calls to the Python libraries
(either pyOpenCL or pyCUDA), so overhead such as file I/O is not taken into account. The full
report is in Supporting Information S1. Performance analysis with the same data set on a standard
laptop is in Supporting Information S2.

74

Ch. 4: pyPaSWAS

Figure 4.1. Performance of six different configurations for pyPaSWAS in Smith
Waterman (SW) alignments. The time required (Y-axis) for processing an incremental
number of alignments (X-axis) is plotted. For details of the different configurations A-F see
Table 4.2.

75

Results and discussion

As test set for the performance analysis of pyPaSWAS on the different hardware configurations,
the Ankyrin repeat protein set from the domestic dog (Canis lupus familiaris; CanFAM 3.1,
GCA_000002285.2), consisting of 348 proteins was used. For the performance analysis, the
eight proteins not labeled ‘PRED’ were selected and aligned to an increasing number of proteins
from the total data set. The time required to calculate the increasing number of SW alignments
by the six configurations is shown in Figure 4.1. The time for performing the maximum of 2720
sequence alignments is also given in Table 4.2. As these protein sequences differ in length, it is
common to indicate the speed of the SW computations in giga cell updates per second (GCUPS) to
create an performance indicator independent of sequence length. The alignment output itself and
the biological context were not considered. In this example data set the CUDA implementation
running on the GPU (F) is the fastest configuration and is 2.8 times faster than the OpenCL version
optimized for the GPU (E). The data also shows that the fastest configuration (F) is 33.3 times
faster than the for GPU optimized OpenCL version on single CPU core, showing the advantages
of parallel processing of SW alignments on a GPU. The for CPUs optimized OpenCL version (B)
is 1.8 times faster than the for GPUs optimized version (D) on the same CPU. This shows that
creating an OpenCL version of an application optimized for a particular hardware platform can
speed up the application further. The performance tests using only a single core demonstrate the
ability of pyPaSWAS to scale-down the number of cores used for the sequence alignments. The
CUDA version (configuration F) is faster than the OpenCL version on a GPU (configuration E) ,
showing the added value of having a CUDA version in this case. There are several other reasons
for having CUDA support in pyPaSWAS. In general, CUDA is faster than OpenCL [17]. Also, on
some systems we tested, notably Apple Macs, OpenCL is not fully supported on NVIDIA GPUs,
so CUDA is the only option available. Furthermore, several NVIDIA GPU products support only
32 bits memory allocation for OpenCL, which limits the amount of usable memory to 2 GB, but
allow 64 bits memory for CUDA.

Analyses of the impact of the affine gap penalty on overall performance when the using the same
data sets show that, on a desktop PC, all configurations are slower: from 1.14 times to 2.0 times
slower (Supporting Information S3). Combined with the fact that memory requirement is also
three times higher, it is therefore opportune to make sure that the affine gap is relevant for the
task at hand.

A major advantage of PaSWAS for biological analyses is that it documents all alignment details
necessary for further analysis, in marked contrast to other parallel SW implementations that focus
on computational speed of the best alignment (Chapter 3) [1]. When for example compared to
CUDASW++ version 3.0 getting the alignment profile comes with a performance penalty of about
25x (119.0 GCUPS [7] compared to 4.64 GCUPS) on similar hardware. The novel implementation
pyPaSWAS here presented is more versatile for biological analysis then the original PaSWAS

76

Ch. 4: pyPaSWAS

code-base: not only full alignment details are stored and available for inspection, it also allows for
gap extension penalties in scoring the alignment. In addition, the output can now also be formatted
as a SAM file. Also, pyPaSWAS has more command line options and the output contains more
relevant information, such as query coverage and query identity scores. The Python codebase
enables bioinformatics researchers to add other output formats, store the alignments directly in
a database or connect the application with workflow systems such as Galaxy [19]. In addition,
the source repository holds configuration files to build Docker containers, including one Docker
container with CUDA and OpenCL support, to allow for easy installation of pyPaSWAS and the
required drivers and libraries.

As data volumes continue to grow and analyses tend to become more complex in every branch
of bioinformatics, the added value of advanced high-performance IT solutions such as multicore
CPUs and GPUs is transforming into a need for such solutions. Multicore CPUs for Blast [20]
and BWA [21], cluster computing for Interproscan [22] and cloud infrastructure for a wide range
of biomedical/bioinformatics applications are available [23]. High performance technology
used in mathematics [24,25] and audio/video processing [26] rely on GPUs and OpenCL. Wider
acceptance of OpenCL -based GPU applications in bioinformatics is likely to be promoted
by packaging the C++ code for parallelization in a much more common used language such
as Python as demonstrated here. The pyPaSWAS integration of Python with OpenCL should
promote further use of advanced algorithms in bioinformatics. Given this successful showcase for
the integration of OpenCL with new or existing software in Python, it could be considered to port
bioinformatics algorithms that make use of advanced high performance technology to Python, R
[27], Matlab [28] or Java [29] in a way similar to pyPaSWAS. This will promote use, maintenance
and development of high-performance implementations of bioinformatics applications further.
Such an approach could benefit for example algorithms for genome wide association studies [30],
eQTL analyses [31] or phylogenetics [32].

4.5 Conclusions
pyPaSWAS is the implementation in Python of a general-purpose SW alignment supporting both
the basic gap penalty method as well as the affine gap penalty method. The application runs fast
on many multi-core systems, including GPUs and Xeon Phis, while still offering the desired
flexibility to inspect any given alignment and all its parameters. The Python-based application
will increase the use and utility of the parallel SW approach of PaSWAS. The smooth integration
of Python with the much more complex languages OpenCL and CUDA for parallel execution of
the SW algorithm makes pyPaSWAS easier to develop and maintain than its predecessor. The
relative ease of Python, as well as the much larger community of programmers in Python, is likely
to promote adoption and use, as well as facilitate addition of novel features to pyPaSWAS.

77

Acknowledgements

4.6 Acknowledgements
We thank Tim te Beek (former Netherlands Bioinformatics Centre) and Shruti Srivastava
(Wageningen University & Research) for support during the development process, as well as
Piet Plomp (Hanze University of Applied Sciences) for developing and maintaining the IT
infrastructure. This work was partly carried out on the Dutch national e-infrastructure with the
support of SURF Cooperative. Dick de Ridder (Wageningen University & Research) was helpful
in suggesting the performance experiments and discussing the results.

4.7 References
1. Warris S, Yalcin F, Jackson KJL, Nap JP. Flexible, Fast and accurate sequence alignment profiling on GPGPU with

PaSWAS. PLoS One. 2015;10:e0122524.
2. Chang Y-J, Chen C-C, Ho J-M, Chen C-L. De novo assembly of high-throughput sequencing data with cloud

computing and new Operations on string graphs. 2012 IEEE Fifth Int. Conf. Cloud Comput. IEEE; 2012. p. 155–61.
3. Hadoop - Apache Software Foundation project home page [Internet]. Available from: http://hadoop.apache.org/
4. Taylor RC, Baker M, Sansom C, Stein L, Schatz M, Langmead B, et al. An overview of the Hadoop/MapReduce/

HBase framework and its current applications in bioinformatics. BMC Bioinformatics. 2010;11 Suppl 1:S1.
5. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-

enabled graphics processing units. BMC Res. Notes. 2009;2:73.
6. Liu Y, Schmidt B, Maskell DL. CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-

enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Res. Notes. BioMed Central; 2010;3:93.
7. Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling

CPU and GPU SIMD instructions. BMC Bioinformatics. 2013;14:117.
8. Gotoh O. An improved algorithm for matching biological sequences. J. Mol. Biol. 1982;162:705–8.
9. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for

computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.
10. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python [Internet]. Available from: http://

www.scipy.org
11. Munshi A, others. The opencl specification. Khronos OpenCL Work. Gr. p. l1-15; 2009;
12. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: A scripting-based approach

to GPU run-time code generation. Parallel Comput. 2012;38:157–74.
13. NVIDIA. CUDA Download [Internet]. http://developer.nvidia.com/cuda-downloads.
14. NumPy [Internet]. http://numpy.scipy.org/.
15. bioPython [Internet]. http://biopython.org/wiki/Biopython.
16. Warris S. pyPaSWAS Wiki [Internet]. Available from: https://github.com/swarris/pyPaSWAS/wiki
17. Fang J, Varbanescu AL, Sips H. A Comprehensive performance comparison of CUDA and OpenCL. 2011 Int. Conf.

Parallel Process. IEEE; 2011. p. 216–25.
18. Timal NRN. Accelerating protein sequence alignment with different parallel hardware platforms (MSc Thesis). Delft

University of Technology; 2015.
19. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Genome Biol. 2010;11:R86.
20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.

1990;215:403–10.
21. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics.

2010;26:589–95.
22. Zdobnov EM, Apweiler R. InterProScan - an integration platform for the signature-recognition methods in InterPro.

Bioinformatics. 2001;17:847–8.

78

Ch. 4: pyPaSWAS

23. Luo J, Wu M, Gopukumar D, Zhao Y. Big Data application in biomedical research and health care: a literature
review. Biomed. Inform. Insights. 2016;8:1.

24. Demidov D, Ahnert K, Rupp K, Gottschling P. Programming CUDA and OpenCL: a case study using modern C++
libraries. SIAM J. Sci. Comput. Society for Industrial and Applied Mathematics; 2013;35:C453–72.

25. OpenCL Libraries and toolkits [Internet]. Available from: http://www.iwocl.org/resources/opencl-libraries-and-
toolkits/

26. Kola G, Kosar T, Livny M. A fully automated fault-tolerant system for distributed video processing and off-site
replication. Proc. 14th Int. Work. Netw. Oper. Syst. Support Digit. Audio Video. Kinsale, Ireland; 2004.

27. Urbanek S. R OpenCL [Internet]. Available from: https://cran.r-project.org/web/packages/OpenCL/index.html
28. MathWorks. MathWorks GPU Computing [Internet]. Available from: http://nl.mathworks.com/discovery/matlab-

gpu.html
29. Jocl.org. JOCL [Internet]. [cited 2016 Sep 1]. Available from: http://www.jocl.org/
30. Standish KA, Carland TM, Lockwood GK, Pfeiffer W, Tatineni M, Huang CC, et al. Group-based variant calling

leveraging next-generation supercomputing for large-scale whole-genome sequencing studies. BMC Bioinformatics.
2015;16:304.

31. Jansen RC, Nap JP. Genetical genomics: the added value from segregation. Trends Genet. 2001;17:388–91.
32. Stivala AD, Stuckey PJ, Wirth AI. Fast and accurate protein substructure searching with simulated annealing and

GPUs. BMC Bioinformatics. 2010;11:446.

81

5 Correcting palindromes
in long reads after whole-
genome amplification

Published as S. Warris, E. Schijlen, H. van de Geest, R. Vegesna, T. Hesselink, B. te Lintel
Hekkert, G. Sanchez Perez, P. Medvedev, K. D. Makova, D. de Ridder, “Correcting palindromes
in long reads after whole-genome amplification“, BMC Genomics (2018) 19:798, https://doi.
org/10.1186/s12864-018-5164-1

83

Abstract

5.1 Abstract

Background
Next-generation sequencing requires sufficient DNA to be available. If limited, whole-genome
amplification is applied to generate additional amounts of DNA. Such amplification often results
in many chimeric DNA fragments, in particular artificial palindromic sequences, which limit the
usefulness of long sequencing reads.

Results
Here, we present Pacasus, a tool for correcting such errors. Two datasets show that it markedly
improves read mapping and de novo assembly, yielding results similar to these that would be
obtained with non-amplified DNA.

Conclusions
With Pacasus long-read technologies become available for sequencing targets with very small
amounts of DNA, such as single cells or even single chromosomes.

5.2 Background
Modern sequencers require sufficient material to work with: the Illumina and Pacific Bioscience
(PacBio) platforms prescribe at least three micrograms, but recommend at least five [1]
micrograms. Long-read sequencing technologies such as those offered by PacBio and Oxford
Nanopore Technology (ONT) additionally require high molecular weight (HMW) DNA as a
starting material, i.e. material in which individual DNA stretches are long. In many biological
settings, obtaining sufficient amounts of DNA of the required quality and length is problematic,
such as in studies on single cells [2,3] or single selected chromosomes [4]. To overcome this
limitation DNA is amplified, starting from as little as picograms, in a process called whole-
genome amplification (WGA) [5].

A major issue with the WGA process is that it introduces specific chimeric fragments [6,7]
consisting of one or more inverted repeats (Figure 5.1), so-called palindromes. This effect is
partially alleviated by de-branching, however, chimeric fragments still remain [8]. In Illumina
paired-end (PE) sequencing these fragments are then sheared into small sub-fragments before
library preparation, which reduces the effect on subsequent analyses of the palindromic fragments
as they will occur in only few reads. In other approaches to sequencing, however, the full fragments
are used. For Illumina mate-pair (MP) sequencing, long palindromic fragments will result in pairs
with incorrect directions and unpredictable insert sizes. As a result, short read MP libraries based
on WGA are problematic for read mapping and de novo assembly.

84

Ch. 5: Correcting palindromes after WGA

Figure 5.1. The introduction of palindromes by whole-genome amplification (WGA)
and correction of these sequences with Pacasus. The colored squares in this figure indicate
the four different nucleotides. In whole-genome amplification a DNA-polymerase binds to
the DNA and starts making a copy of that strand (left-side of the image). Palindromes are
introduced when during WGA the DNA-polymerase continues with elongation (indicated by
the arrow) along an already created WGA product (a), generating a palindrome. In this example
this incorrect elongation occurs several times (b), resulting in a DNA fragment containing
four copies of the original fragment (c), which is sequenced. Pacasus detects the palindrome
sequence by aligning the read’s reverse complement to itself (d) and splits the read in two
smaller reads at the center of the alignment (split 1). This process is repeated and splits the
two resulting reads again (split 2), yielding four separate, ‘clean’, reads. The full set of reads,
corrected and left intact, is then used in, for example, read mapping or de novo assembly.

Tools specifically aiming to detect and correct chimeric reads have been proposed (e.g. uchime
[9]) and work well for paired-end and single-end short-read technologies. For long reads however,
the palindromic nature of the sequence hinders read mapping and renders de novo assembly
highly problematic. Due to the high base-calling error rate of the long read technologies (11-
38%) [10,11], finding and correcting these palindromic constructs in long reads cannot be done
by exact string matching. Algorithms for improving long-read quality in general are available:
Proovread [12], PBcR [13] and ECTools [14] use either Illumina HiSeq reads or assembled
contigs based on HiSeq data to increase the quality of base calling. While Proovread can also
detect chimeric fragments, it specifically aims at detecting PCR artifacts joining fragments
originating from different regions in the genome. This is done by mapping HiSeq reads, assumed
to be available, which do not have these chimeras. The location of the chimera in the long read
is then detected by finding discrepancies in the short-read mappings. This approach is unfit for
solving the chimeras occurring due to WGA: the HiSeq reads are based on the same fragments
as the long reads and will therefore contain the same nucleotide sequence information. As a
consequence of this lack of suitable methods to correct these chimeras, the use of WGA with
long-read technologies was usually not advised [6], which precludes the application of long read
technology to answer essential biological questions at the single-chromosome or single-cell level.

Here, we introduce a new method, Pacasus, for correcting palindromic, long, error-rich reads
without the loss of nucleotide information and with only very limited impact on repeats and
palindrome sequences of biological origin. The method relies on a Smith-Waterman alignment

85

Results

implementation called pyPaSWAS [15,16], which supports fast processing on multicore CPUs,
GPUs and Xeon Phis to detect palindromes and iteratively corrects them by splitting up reads.
We demonstrate its performance on PacBio sequencing data of Arabidopsis thaliana as well as
on flow-sorted gorilla Y chromosome data, by using the multiple displacement amplification kit
REPLI-g for the amplification process.

The gorilla Y chromosome was selected because primate Y chromosomes are relatively short and
contain many repeats, rendering them difficult to sequence and assemble. Even in one of the most
complete assemblies, that of Homo sapiens, more than half of the sequence of Y is still unknown
[17]. To obtain a higher read coverage of the gorilla Y chromosome, a recent paper [4] used flow-
sorting and WGA. PacBio long reads, Illumina HiSeq PE and MP-libraries, transcriptome data
and PCR sequences were used by the authors as well (Bioproject PRJNA293447). The RecoverY
tool [4,18] presented in same paper was designed to identify short reads originating from the
Y chromosome. Based on these data, the authors created a hybrid (PacBio + HiSeq) assembly,
here labeled ‘GorY’. The authors also used HGAP [19] and MHAP [20] to create PacBio-only
assemblies, but these resulting assemblies were of suboptimal quality. In this manuscript, we used
the PacBio data after WGA generated by Tomaszkiewicz and colleagues [4] to show the benefits
of correcting palindrome sequences in this data set with an improved quality of the PacBio-only
de novo genome assembly.

5.3 Results

5.3.1 Pacasus corrects many palindromic sequences found in WGA data
To demonstrate the added value of Pacasus in the analysis of PacBio reads generated from WGA
DNA samples, we applied it to several data sets of Arabidopsis thaliana and a data set of the
gorilla Y chromosome [4]. Table 5.1 lists the original number of reads, the number of reads that
were found to have chimeras and the number of clean reads after correcting the palindromes. In
the Arabidopsis samples, 40-50% of reads contained at least one palindrome, with some reads
containing up to 15 (Figure 5.5 S1). This demonstrates the extent to which palindromes pose a
problem in PacBio WGA data and illustrates that Pacasus effectively detects and corrects these.

Table 5.1 shows that Pacasus decreases the average read length of the A. thaliana set by about
48%, i.e. preserving much of the long-range information. In the gorilla read set, 11.8% of the
reads contain palindromes, less than in the A. thaliana sets. The average length of the gorilla reads
before processing with Pacasus is 5468b, i.e. 61.2% of the average length in the total Ath-WGA
data set (8934b); after correcting the palindromes this is increased to 90.3%: 4234b compared to
4689b. Pacasus finds palindromes in only in 0.5% of the reads in the non-amplified control data
set, Ath-Ctrl. These reads will be a mixture of false-positives and missed/missing SMRTBell

86

Ch. 5: Correcting palindromes after WGA

adaptors, which also cause palindromic sequences. The low number of palindromes found in the
control set by Pacasus means that there is no need to perform subsequent analyses on ‘Ath-Ctrl-
Clean’: the resulting de novo assembly for example will not be different from the one based on
the original ‘Ath-Ctrl’ set.

The GC contents of the read sets were compared to that of the A. thaliana reference genome
and no biases were observed for both the amplification process and the palindrome detection by
Pacasus (Figure 5.2).

Table 5.1. Effect of correcting palindromes on number of reads and average read length.

Sample Before cleaning Reads with detectable
palindromes

After correcting

Number of
reads

Average
length (b)

Number of
reads

Number of
reads (%)

Number of
reads

Average
length (b)

Ath-WGA1 462,138 9,326 221,001 47.8 869,826 4,660

Ath-WGA2 447,364 8,544 195,263 43.6 769,027 4,721

Ath-Ctrl 940,162 5,680 4,714 0.5 938,196 5,681

GorY-WGA 3,596,236 5,468 426,188 11.8 4,546,488 4,234

Effect of correcting palindromes on the number reads and average lengths of these reads. Note:
the Ath-Ctrl shows a small increase in average read length after correction and a lower number
of reads. This is because Pacasus removes very short reads from the output.

5.3.2 Correcting palindromes improves read mapping
Using the BLASR default settings and an additional filter of at least 80% nucleotide identity
between read and reference, both the raw and clean read sets map well (Table 5.2). Palindromic
reads map partially, leaving a (potentially large) proportion of the reads unmapped. This becomes
clear when only mappings are considered where 80% and 95% of the complete read can be
aligned: mapping efficiency for the raw read set drops from 99% to 44% and finally to 34%.
For the clean reads, the mapping rates are 99%, 81% and 66% respectively, higher than for the
noWGA read set (95%, 72% and 57%). Average coverages show similar effects. These mappings
statistics indicate that the clean reads map more accurately and with higher read coverage than
the raw reads do. The complete mapping reports are presented in Supplementary materials 2-4.

To verify the palindromic nature of the reads, the locations of the clean reads were also
investigated. If the raw reads indeed contain palindromic sequences, the parts of the clean reads
should map to the same region in the genome (in contrast to chimeric reads, where the parts
originate from different regions in the genome). To verify this, the longest distance between the
mapping locations of each part of the corrected reads was calculated and related to the length of
the original raw read. 96.5% of these mapping distances are within the read length of the original
read, showing that most of the clean reads map to the same region in the genome and that the
original raw reads indeed contain palindromes, not other types of chimeras.

87

Results

Figure 5.2. %GC density plot of Ath-Ctrl (green), Ath-WGA (blue), Ath-Clean (red) and
the A. thaliana reference genome (black). The curves for Ath-WGA and Ath-Clean overlap
completely. None of the three read sets show biases towards a certain GC-content when
compared to the reference genome.

5.3.3 Assembly quality of corrected WGA reads approaches that of non-
amplified data
To assess whether correcting palindromes also benefits assembly, we investigated two realistic
scenarios using the A. thaliana data (Ath-WGA, Ath-Clean, Ath-Ctrl): PacBio-only assembly
using Canu and a hybrid assembly, combining PacBio and Illumina HiSeq data, using DBG2OLC/
Sparse. On the control data set Ath-Ctrl, this results in assemblies with overall good assembly
statistics, with DBG2OLC yielding the best results (Table 5.3). Repeating the process with the
original WGA data gives far worse results; the DBG2OLC assembly has, for example, an N50
value about 26-fold smaller than the N50 value of the control data and the assembly covers only
about half (49.7%) of the reference genome.

Correcting the palindromic reads improves the hybrid assembly: although the N50 is lower than
that of the Ath-Ctrl assembly, the assembly length and genome coverage are higher.

The Ath-Clean PacBio-only assembly is even better than the assembly based on the Ath-Ctrl data,
with a higher N50 and genome coverage (Table 5.3). This is also reflected by the contig length
distribution (Supplementary materials 5). Apparently, the removal of conflicting information
outweighs the loss of long-range information.

88

Ch. 5: Correcting palindromes after WGA

The hybrid assembly and the PacBio-only assembly based on Ath-Clean are longer than the
TAIR10 reference genome (119.7Mb), being 123.9Mb and 131.0Mb respectively. The full
genome is thought to be approximately 135Mb [21], so this additional sequence information
could be new genomic data. No further testing has been done to verify this.

Table 5.2. Read mapping statistics

Reads mapped (%) Average coverage Average read length

Alignment filter - 80% 95% - 80% 95% - 80% 95%

Ath-WGA 99 44 34 40.5 17.4 13.4 8,987 5,568 5,397

Ath-Clean 99 81 66 55.1 48.1 41.2 4,690 4,532 4,697

Ath-Ctrl 95 72 57 34.2 29.2 24.8 5,799 5,583 5,852

Statistics of read mappings with BLASR to the TAIR10 reference genome, calculated without
filtering for a minimum read alignment length (‘-’) and after filtering for reads aligned with at
least 80% or 95% nucleotide identity.

Table 5.3. Statistics of the de novo assemblies

PacBio-only (Canu) Hybrid (DBG2OLC/Sparse)

Read set Ath-Ctrl
(C1)

Ath-WGA
(C2)

Ath-Clean
(C3)

Ath-Ctrl
(D1)

Ath-WGA
(D2)

Ath-Clean
(D3)

No. contigs 852 2,128 1,015 476 4,818 1,753

Length (Mbp) 115.6 116.8 123.9 110.9 108.9 131.0

Longest contig (Kbp) 1,181 655 3,402 5,667 246 2,239

GC (%) 36.0 36.2 36.12 35.97 36.57 36.21

N50 (Kbp) 293 73 302 823 32 278

L50 117 479 109 33 951 113

Covered (%) 86.6 91.2 97.3 85.1 49.7 96.3

Dupl. ratio 1.09 1.07 1.06 1.08 1.34 1.13

Statistics on the PacBio-only and hybrid assemblies of the various datasets. Note that the
TAIR10 reference genome is 119.7 Mbp, with the full genome thought to be approximately
135 Mbp [21].

5.3.4 De novo assembly based solely on long reads of flow-sorted
chromosomes is now possible
After correcting the palindromes in the original gorilla PacBio reads (see section 5.3.1) we were
able to create two PacBio-only assemblies: GorY-WGA based on the raw data set and GorY-
Clean, based on the clean reads. The GorY-WGA assembly was added to the comparison to
stay in line with the Arabidopsis thaliana analyses described in the previous section and also
to verify that the increase in quality is not only due to a better performing software application.
Figure 5.3 shows the length distributions of both the contigs and the scaffolds in the previously
published GorY hybrid assembly and the contigs in the new GorY-Clean / Gory-WGA PacBio-
only assemblies. The GorY scaffolds were created by using long-range information to connect
the contigs [4]. The scaffolds contain no additional information, except sequence contiguity. Gaps

89

Results

between contigs in the scaffolds are filled with Ns. The top-10 longest contigs of GorY-Clean
are as long as the top-10 longest GorY scaffolds (Figure 5.3), showing that the new contigs
already contain the same contiguity except that the gaps are filled with sequence information.
The scaffolded GorY assembly seems larger than the GorY-Clean one (Table 5.4, Supplementary
materials 6). However, this is misleading as it contains 2.4 Mbp of Ns; the actual nucleotide
content of the GorY assembly is 1.3 Mbp less than that of GorY-Clean. This is corroborated by
further assembly statistics (Table 5.4). In terms of structure, the GorY-Clean assembly resembles
the human Y chromosome assembly more than the original assembly (Supplementary materials
7). The GorY-WGA assembly is also of higher quality compared to the GorY contigs, but not as
good as the GorY-Clean assembly. We attribute the quality increase of GorY-WGA compared to
the GorY assembly to the use of Canu [22]; the improvement of GorY-Clean over GorY-WGA is
most likely due to correcting the palindromic reads with Pacasus.

Figure 5.3. Contig length distributions. Contig length (y-axis) distribution of the published
gorilla Y chromosome (GorY), the contigs underlying this assembly (GorY contigs), the de
novo assembly based on raw PacBio data set (GorY-WGA) and of the de novo assembly of
the cleaned reads (GorY-Clean). The x-axis shows the fraction of the assembly (e.g. the N20,
N50, etcetera).

The accuracy of the newly constructed GorY-Clean contigs becomes more apparent when looking
at the read mapping statistics (Table 5.5). To calculate these, only contigs are used as these contain
sequence information: reads will not map to Ns in the scaffolds. The gorilla Illumina HiSeq reads
map better to the human reference genome (HumY) than to the original GorY assembly (in terms
of genome coverage) and overall mapping accuracy is highest for both newly created assemblies.

90

Ch. 5: Correcting palindromes after WGA

The GorY-Clean assembly is better covered by the read data than the GorY-WGA assembly is,
regardless of whether corrected or non-corrected reads are used for evaluation. These results
indicate that, apparently, currently available assemblers (in our case Canu) are better at handling
chimeric reads than previous software and that the newly created assemblies (GorY-WGA and
GorY-Clean) are more accurate than GorY.

The average coverage when using the raw reads increased from 73.15x to 83.21x for the GorY-
WGA and GorY-Clean respectively and with the corrected reads from 97.08x to 109.67x. These
results show that the de novo GorY-Clean assembly fits the read data best and, as seen with the
Arabidopsis thaliana data, mapping accuracy increases after correcting the palindromic reads.

Table 5.4. Human and gorilla Y-chromosome assembly statistics

Assembly
size (Mbp)

Ns
(Mbp)

Non-Ns
(Mbp)

No.
sequences

N50
(Kbp)

Longest seq.
(Kbp)

HumY 57.2 30.4 26.8 1 57,227

GorY, contigs 23.0 0 23.0 3,001 18 143

GorY, scaffolds 25.4 2.4 23.0 697 98 486

GorY-WGA, contigs 26.5 0 26.5 1,128 32 256

GorY-Clean, contigs 24.3 0 24.3 1,062 42 494

Assembly statistics for the published human and gorilla Y chromosome assemblies and the
new assemblies.

Table 5.5. Read mapping statistics on the human and different GorY assemblies.

 HiSeq GorY-WGA GorY-Clean

Assembly Length
(Mbp)

Genome
coverage

Read
cov.

Genome
coverage

Read
cov.

Genome
coverage

Read
cov.

(Mbp) (%) (Mbp) (%) (Mbp) (%)

HumY 26.8 22.3 83 1897 18.2 68 58.87 18.5 69 74.84

GorY 23.0 18.3 80 1169 21.1 92 71.33 21.1 92 99.15

GorY-
WGA

26.5 24.9 94 1353 26.5 100 73.15 26.5 100 97.08

GorY-
Clean

24.3 22.4 92 1586 24.3 100 83.21 24.3 100 109.67

Mapping of HiSeq, PacBio WGA and PacBio cleaned reads on the human Y chromosome
(HumY), the gorilla Y chromosome (GorY) and the newly created gorilla Y assemblies (GorY-
WGA, GorY-Clean). The read coverage is the average number of reads that a nucleotide has
aligned to it.

91

Results

5.3.5 Resolving artificial duplications provides a higher coverage of
genes on the Gorilla Y chromosome
The gorilla Y chromosome contains 12 single-copy X-degenerate genes [23]. To evaluate
completeness of these genes in the assemblies, their corresponding transcript sequences were
mapped to the GorY and GorY-Clean assemblies using the mRNA aligner GMAP [24]. The
resulting alignments were subsequently used to identify the contigs/scaffolds that harbor these
genes. For these 12 genes, the transcript coverage was on average higher in GorY-Clean contigs
(84.9%) than in GorY scaffolds (74.9%), while sequence identity was similar (Supplementary
materials 8-9). Additionally, the complete (exons and introns) sequences of the orthologous
genes in the human genome (GRCh38) were aligned to the contigs/scaffolds harboring these
genes in the GorY and GorY-Clean assemblies. Visual inspection of the dotplots (Supplementary
materials 10-15) identified fewer inversions and duplications in the GorY-Clean contigs than in
the GorY scaffolds (Supplementary materials 16). In the alignment of the contigs from the GorY-
Clean to the GorY scaffolds containing the same genes (Supplementary materials 17-22), no
inverted duplications were detected in the GorY-Clean sequences. In contrast, numerous inverted
duplications were visible in GorY sequences (Supplementary materials 23). Thus, many inverted
duplications were resolved in the assembly generated from the sequencing reads corrected by
Pacasus, suggesting that such duplications indeed are an artefact of WGA.

5.3.6 Effects on repeats and palindromic sequences of biological origin
DNA sequences are known to contain many different types and families of repeat sequences [25],
including palindrome sequences [26]. These repeat sequences are present in the long reads after
sequencing and can be detected by Pacasus as false positive palindromic sequences. When all
repeats of biological origin are split, the subsequent de novo assembly will contain only collapsed
regions effectively removing the repeats from the assembly. However, we speculate that most
if not all of the true repetitive sequence are contained in sufficiently long reads to cover the
repeats and therefore will not be considered by Pacasus for correction. In real data sets it is not
known a priori which reads contain the true repetitive sequences, but evaluation is possible after
performing the de novo assemblies: for both the A. thaliana and the gorilla Y chromosome the
repeat content is known.

Table 5.6 shows the by RepeatMasker [27] detected repeat content of the A. thaliana assembly,
including the reference assembly TAIR10. The repeat content of the assembly based on Ath-
Clean (C3) is close to that of the reference and is higher than found in the assemblies based on
Ath-Ctrl (C1) and Ath-WGA (C2), which is in line with the overall genome assembly statistics
(Table 5.3).

92

Ch. 5: Correcting palindromes after WGA

To study the effect of Pacasus on actual biological palindromes present on the Y chromosome,
1-kb non-overlapping windows in GorY and GorY-Clean assemblies were identified which have
high identity (>80%) to well-defined human chromosome Y palindromes P1-P8 (arm lengths 8.7-
1450 kb) [28] and X-degenerate gene (XDG) regions. Since the two arms of each palindrome have
high identity, the windows representing the palindrome arms should have twice the read depth
compared to the windows overlapping with the single-copy XDG regions on the Y chromosome.
In order to obtain the read depth of these regions, Illumina-based flow-sorted gorilla Y paired end
reads were aligned to GorY and GorY-clean assembly, and the read depth for the windows specific
to palindrome regions and XDG regions were extracted. Figure 5.4 shows that each palindrome
is represented separately and Pacasus decreases the read depth for several palindromes, e.g.,
P3, P4, and P7. Nevertheless, the median read depth for each palindrome (except for P8) is still
higher than XDG for both GorY and GorY-clean. This indicates that the biological palindromes
are preserved by Pacasus.

Table 5.6. Repeat content of the different assemblies.

Assembly Overall repeat content (% of assembly)

Canu Ath-Ctrl (C1) 15.73

Canu Ath-WGA (C2) 15.49

Canu Ath-Clean (C3) 16.76

TAIR10 16.88

Repeat content found by RepeatMasker in the different A. thaliana assemblies.

Figure 5.4. Illumina read depth of known palindromes. Illumina read depth of the known
palindrome sequences P1-P8 and the X-degenerated gene (XDG) region in the GorY assembly
(A) and GorY-Clean (B). Overal read depth is decrease in GorY-Clean, however in both
assemblies the median read depths for P1-P7 are twice of that of XDG.

A B

93

Discussion

5.4 Discussion
After processing of the long reads, Pacasus has limited effect on the number of nucleotides in the
read set and decreases the average read length by less than 50%. A downside of this process is
that inverted repeats present in the genome will be treated as chimera, so that the repeat will be
split into its separate elements, if the read does not span the full repeat. However, as shown in this
manuscript, not all long reads suffer from chimeras. In most cases there will be sufficient reads
long enough to cover the inverted repeat and palindrome sequences that are not split by Pacasus
as shown in the assessment of the A. thaliana assemblies. It should be noted that Y chromosomes
naturally possess non-artificial palindromes [28] and our analyses show that these palindromic
sequences are also present in the de novo assembly after processing the reads by Pacasus.

Flow-sorted chromosomal DNA is usually contaminated with DNA from other chromosomes.
Also with the gorilla sample, the original estimate is that approximately a third of the reads
originate from the Y chromosome [4]. This is supported by our results, with 1,742,887 PacBio
reads out of 4,546,488 reads mapping to the GorY-Clean assembly (38%). Consequently,
some of the assembled contigs are not part of the gorilla Y chromosome but are from other
chromosomes. Further analyses need to be performed to verify which contigs indeed originate
from the Y chromosome. One suggestion is to look at read coverage: high coverage could point
to Y chromosome sequences (see Suppl. Materials Figure 4d). The next step to further improve
the quality of the assembly could be to scaffold the contigs using the RNA-Seq data from the
previous study [4] with for example SSPACE [29] and polish the final assembly with the HiSeq
paired-end data using Pilon [30].

Tissue-specific analysis at the genome level is becoming more important in, for example,
studying cancer genomes, but for genome assembly approaches they are currently limited to
short-read sequencing [31] and hence result in more fragmented assemblies than is possible with
long reads. For polyploid plant species is possible to select pollen and extract DNA from these
cells, effectively decreasing the ploidy by half and therefor also decreasing the complexity of
subsequent assembly process. And recent research shows that CRISPR-Cas9 introduces unwanted
changes in the genome best detectable by long-read sequencing [32]. By combining WGA and
Pacasus on these types of tissues it is now possible to isolate low amounts of DNA and to produce
a high-quality genome to find these alterations in the genome.

A possible application not discussed in this paper is the detection of a SMRTbell adapter that is
missed by the PacBio software pipeline, producing a raw read with the same structure as created
with WGA. These incorrect reads, although perhaps present in low numbers, can have an impact
on quality of the de novo assembly. When a non-WGA PacBio dataset with high genome coverage
produces a fragmented assembly, it is worthwhile to run Pacasus on this dataset to correct the

94

Ch. 5: Correcting palindromes after WGA

palindrome sequences created due to the missed SMRTbell adapter

The detection of the palindrome sequences requires a full Smith-Waterman alignment due to
the high error rate of the long-read technologies, which takes a considerable amount of compute
power. Using high performance software and several GPUs we were able to process one SMRTcell
per day, roughly keeping pace with sequencing speed of the PacBio RSII. The throughput of the
PacBio Sequel is higher, hence processing these SMRTcells will require more time or compute
resources, but we believe the results presented in this manuscript warrant the investment.

To find the location in the read at which it needs to be split, the backtrace part of the Smith-
Waterman alignment algorithm needs to be performed [15]. In the current implementation of the
PaSWAS module used for SW, the memory requirements are quadratic in the length of the read.
For reads above 100kb this memory requirement may limit the use of Pacasus. Currently the
PacBio platforms generate reads below this length, but we expect the Oxford Nanopore platforms
to go beyond this limit for at least some the reads in the near future. We will continue to work
on Pacasus to decrease the memory requirements of the software to ensure that future output of
sequencing platforms can be handled properly. The presented settings for the SW alignment are
based on the error model of the RSII and our in-house experience with PacBio sequencing read
qualities. For application on PacBio Sequel and Oxford Nanopore data, their respective error
models may warrant minor changes to these settings.

5.5 Conclusions
Whole-genome amplification is required for sequencing when a biological sample contains
insufficient DNA for direct use in library preparation, but the process creates chimeric fragments.
We have developed a new method, Pacasus, to correct long, error-rich reads containing such
chimeras, based on high-speed Smith-Waterman alignment. We demonstrated the performance of
Pacasus in terms of read mapping accuracy and assembly quality, showing that the loss in read
length is clearly offset by the removal of incorrect contiguity information. On the Arabidopsis
data, the hybrid assembly improves markedly in quality; and on the gorilla data, a PacBio-only
assembly on clean reads is even of higher quality than a hybrid assembly including the original
reads. The differences between the GorY-Clean and GorY-WGA assemblies are, however, not
as large as in the A. thaliana case. The underlying reason for this is the much lower number of
detectable palindromes in the gorilla read set: 11.8% of the reads contain palindromes, compared
to 45.8% of the reads in the A. thaliana set. Correcting the relatively low number of reads
containing palindromes in the gorilla data set already gave an improvement in assembly statistics,
which indicates that the impact of these incorrect reads on the assembly quality is high. We expect
that longer reads contain more palindromes, as indicated by the differences in average lengths
before and after correcting in both examples.

95

Material and methods

In summary, Pacasus now allows to analyze PacBio data obtained from low amounts of DNA,
making it possible to apply the power of long read technology to, for example, the study of single
cells (e.g. in cancer research) and the study of single chromosomes (also in polyploid organisms).

5.6 Material and methods

5.6.1 The Pacasus algorithm
To detect chimeras created during WGA, raw PacBio reads are aligned to their reverse-complement
sequence with Smith-Waterman (Figure 5.1) using pyPaSWAS [16,33]. The parameters used for
alignment are: gap score, -3; match score, 3; mismatch score, -4. For filtering, the parameters are:
filter factor, 0.01; query coverage, 0.01; query identity, 0.01; relative score, 0.01; and base score,
1.0. When no overlap is found in the alignment, the read is left intact and stored in the output file;
otherwise the read is split at the center of alignment (see Figure 5.1(d)). Both resulting fragments
are again processed as if they were original reads, to allow the detection of nested palindrome
sequences, until no overlap is detected anymore. If a fragment becomes shorter than a minimum
length (default 50 bp) it is discarded. Note that the nucleotide information in the reads is neither
removed nor changed. Pacasus is implemented in Python 2.7 and, besides pyPaSWAS (version
>= 2.0), depends on Biopython [34] (version >= 1.67), numpy (http://numpy.org) (version >=
1.8.0) and scipy [35] (version >= 0.12.0).

5.6.2 Data for Arabidopsis evaluation
DNA was isolated from two Arabidopsis thaliana plants, labeled “Ath-WGA1” and “Ath-WGA2”,
and amplified using the REPLI-g Mini Kit (QIAGEN Benelux BV, Venlo, The Netherlands). The
Arabidopsis thaliana are in-house samples based on low-input plant materials (for more details
on DNA isolation, library preparation and sequencing see [36]). Both samples were sequenced on
both an Illumina HiSeq2000 sequencer and a PacBio RSII sequencer. A third DNA sample was
used to generate PacBio RSII data without WGA (“Ath-Ctrl”). Table 5.7 shows the number of
reads generated by each platform and for each sample. To evaluate mapping performance, PacBio
reads were mapped to the TAIR10 Arabidopsis thaliana Columbia reference genome (http://
www.arabidopsis.org) using BLASR version 1.3.1.124201 [37], and alignments with identity <
80% were filtered out by a Python script. Mapping reports were generated in CLCBio version
8.0.2 (http://www.clcbio.com).

96

Ch. 5: Correcting palindromes after WGA

Table 5.7. Datasets used for the performance analysis of Pacasus.

Species Sample WGA Illumina HiSeq2000 PacBio RSII

reads length reads avg. length

Arabidopsis
thaliana

Ath-WGA1 yes 31,233,196 100 462,138 9,326

Ath-WGA2 yes 43,810,780 100 447,364 8,544

Ath-Ctrl no 940,162 5,680

Gorilla gorilla GorY-WGA yes 279,601,852 150 3,596,236 5,468

PacBio-only de novo assemblies of the A. thaliana genome were created using Canu version 1.3
[22]. Hybrid assemblies, combining the HiSeq2000 and RSII data, were created with DBG2OLC
(released in 2016) [38]. DBG2OLC requires as input a HiSeq-only assembly; which we created
using Sparse (released in 2015) [39], as recommended on the website by the authors of DGB2OLC,
based on the HiSeq data from the WGA samples in all cases. The assembly was finalized with the
PacBio reads.

We combined Ath-WGA1 and Ath-WGA2 into a single set, Ath-WGA, and created assemblies
combining the HiSeq contigs with the raw Ath-WGA reads, with corrected (or ‘clean’) Ath-WGA
reads (Ath-Clean) and with Ath-Ctrl reads. To evaluate quality, assemblies were compared to the
reference genome using QUAST version 4.3 [40].

5.6.3 Data for the gorilla Y chromosome evaluation
PacBio RSII data of a flow-sorted and amplified gorilla Y chromosome, GorY-WGA (Table
5.7), was downloaded from the NCBI Short Read Archive (SRA SRX1161235). The previously
published assembly of the gorilla Y chromosome and the publicly available data from the
flow-sorted, whole-genome amplified and de-branched gorilla Y chromosome, GorY [4], were
downloaded as well (GCA_001484535.2). Canu version 1.3 was used for the assembly of the
PacBio reads. For comparison, the human chromosome Y assembly (NC_000024.10), HumY,
was downloaded. QUAST [40] was used for assembly comparison and statistics. PacBio reads
were mapped to HumY, GorY and the new assemblies using BLASR (>80% identity and >80%
read coverage); Illumina HiSeq 2500 PE reads (SRA SRR2176191) were mapped using CLCBio
version 8.0.2. Statistics for all mapping results were calculated in CLCBio. For calculating the
contig length distribution of the GorY assembly, scaffolds were broken up and N’s were removed.
The gorilla X-degenerate gene transcripts were retrieved from a previous study [23]. GMAP
version 2017-03-17 [24] was used to align the transcripts to the assemblies.

5.6.4 Repeats and palindrome detection
RepeatMasker [27] was configured with rmblastn (2.2.27+) [41,42] and RepBase (20140131)
[43] for masking the A. thaliana assemblies and TAIR10 reference genome.

Following Tomaszkiewicz et al. [4] , the gorilla Y contigs were broken into 1-kb windows and each

97

Availability of data and materials

window was aligned to human reference hg38 using lastz [44], with settings --scores=human_
primate.q, --seed=match12, --markend. RepeatMasker was also run on gorilla Y contigs to mask
repeats and later for each window the total number of masked sites ‘N’ within a window were
calculated. The windows which overlap with human Y chromosome palindromes and XDG genes
were identified and filtered to make sure that they have at least 80% match with the human
reference and less than 20% of N’s throughout the window.

BWA mem [45] was used to align the flow-sorted gorilla Y paired-end reads (SRX1160374) to the
GorY-clean and GorY assemblies (unmasked). The bedtools [46] coverage function was used to
calculate the read depth and coverage of each window. If the windows had > 80% coverage they
were used to create boxplots within their respective palindromes. The boxplots were generated
using R boxplot command with outline=TRUE parameter set.

The Human_primate.q file used for primate to primate alignments in lastz is as below:
gap_open_penalty = 500 # O
gap_extend_penalty = 30 # E
hsp_threshold = 3000 # K
gapped_threshold = 4500 # L
x_drop = 900 # X
y_drop = 15000 # Y
 A C G T
A 90 -330 -236 -356
C -330 100 -318 -236
G -236 -318 100 -330
T -356 -236 -330 90

5.7 Availability of data and materials
The datasets supporting the conclusions of this article are available at the European Nucleotide
Archive under accession number PRJEB21791. The Arabidopsis thaliana HiSeq read sets are
available under accessions ERX2095148 and ERX2095149. The PacBio data sets are available
under accessions ERX2095150 and ERX2095151. The gorilla Y chromosome assembly has been
assigned accession number GCA_900199665.

5.8 Disclosure declaration
Gabino Sanchez Perez and Henri van de Geest moved to Genetwister Technologies BV after
contributing to this research. Genetwister technologies BV is not affiliated with this research
and is not financially or otherwise linked to the project. The authors declare that they have no
competing interests.

98

Ch. 5: Correcting palindromes after WGA

5.9 Acknowledgments
We would like to thank Jan-Peter Nap (Hanze University of Applied Sciences, Groningen) for his
comments and suggestions.

5.10 References
1. Buermans HPJ, den Dunnen JT. Next generation sequencing technology: Advances and applications. Biochim.

Biophys. Acta - Mol. Basis Dis. 2014;1842:1932–41.
2. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism

science. Nat. Rev. Genet. 2013;14:618–30.
3. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet.

2016;17:175–88.
4. Tomaszkiewicz M, Rangavittal S, Cechova M, Sanchez RC, Fescemyer HW, Harris R, et al. A time- and cost-

effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y.
Genome Res. 2016;26:530–40.

5. Czyz ZT, Kirsch S, Polzer B. Principles of whole-genome amplification. Methods Mol. Biol. 2015;1347:1–14.
6. Lasken RS, Stockwell TB. Mechanism of chimera formation during the Multiple Displacement Amplification

reaction. BMC Biotechnol. 2007;7:19.
7. Sabina J, Leamon JH. Bias in whole genome Amplification: causes and considerations. Methods Mol. Biol.

2015;1347:15–41.
8. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, et al. Sequencing genomes from single cells

by polymerase cloning. Nat. Biotechnol. 2006;24:680.
9. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera

detection. Bioinformatics. 2011;27:2194–200.
10. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics. 2015;13:278–

89.
11. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the

genomics community. Genome Biol. 2016;17:239.
12. Hackl T, Hedrich R, Schultz J, Förster F. proovread: large-scale high-accuracy PacBio correction through iterative

short read consensus. Bioinformatics. Oxford University Press; 2014;30:3004–11.
13. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al. Hybrid error correction and de novo

assembly of single-molecule sequencing reads. Nat. Biotechnol. Nature Research; 2012;30:693–700.
14. Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. Error correction and assembly complexity of

single molecule sequencing reads. bioRxiv. Cold Spring Harbor Labs Journals; 2014;006395.
15. Warris S, Yalcin F, Jackson KJL, Nap JP. Flexible, Fast and Accurate Sequence Alignment Profiling on GPGPU with

PaSWAS. Zhang M, editor. PLoS One. 2015;10:e0122524.
16. Warris S, Timal NRN, Kempenaar M, Poortinga AM, van de Geest H, Varbanescu AL, et al. pyPaSWAS: Python-

based multi-core CPU and GPU sequence alignment. PLoS One. 2018;13.
17. Human Genome Sequencing Consortium International. Finishing the euchromatic sequence of the human genome.

Nature. 2004;431:931–45.
18. Rangavittal S, Harris RS, Cechova M, Tomaszkiewicz M, Chikhi R, Makova KD, et al. RecoverY: K-mer based read

classification for Y-chromosome specific sequencing and assembly. Bioinformatics. 2017;
19. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome

assemblies from long-read SMRT sequencing data. Nat. Methods. 2013;10:563–9.
20. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM, et al. Assembling large genomes with single-

molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015;33:623–30.
21. Schmuths H, Meister A, Horres R, Bachmann K. Genome size variation among accessions of Arabidopsis thaliana.

Ann. Bot. 2004;93:317–21.
22. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read

99

References

assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
23. Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, et al. Origins and functional evolution of

Y chromosomes across mammals. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited.
All Rights Reserved.; 2014;508:488–93.

24. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences.
Bioinformatics. 2005;21:1859–75.

25. Qian Z, Adhya S. DNA repeat sequences: diversity and versatility of functions. Curr. Genet. 2017;63:411–6.
26. Inagaki H, Kato T, Tsutsumi M, Ouchi Y, Ohye T, Kurahashi H. Palindrome-mediated translocations in humans: a

new mechanistic model for gross chromosomal rearrangements. Front. Genet. 2016;7:125.
27. Smit AFA, Hubley R, Green P. RepeatMasker [Internet]. Available from: http://repeatmasker.org
28. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. The male-specific region of

the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–37.
29. Boetzer M, Henkel C V, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE.

Bioinformatics. 2011;27:578–9.
30. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for

comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9.
31. Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer

Sci. 2018;109:513–22.
32. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large

deletions and complex rearrangements. Nat. Biotechnol. 2018;
33. Warris S, Timal R. pyPaSWAS [Internet]. Available from: https://doi.org/10.5281/zenodo.51155
34. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for

computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.
35. Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python [Internet]. Available from: http://

www.scipy.org
36. Schouten HJ, van de Geest H, Papadimitriou S, Bemer M, Schaart JG, Smulders MJM, et al. Re-sequencing

transgenic plants revealed rearrangements at T-DNA inserts, and integration of a short T-DNA fragment, but no
increase of small mutations elsewhere. Plant Cell Rep. 2017;36:493–504.

37. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory. BMC Bioinformatics. 2012;13:238.

38. Ye C, Hill C, Ruan J, Zhanshan, Ma. DBG2OLC: Efficient assembly of large genomes using the compressed overlap
graph. 2014;

39. Ye C, Ma ZS, Cannon CH, Pop M, Yu DW. Exploiting sparseness in de novo genome assembly. BMC
Bioinformatics. 2012;13 Suppl 6:S1.

40. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies.
Bioinformatics. 2013;29:1072–5.

41. Smit A, Hubley R. rmblast [Internet]. Available from: http://www.repeatmasker.org/RMBlast.html
42. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and

applications. BMC Bioinformatics. 2009;10:421.
43. Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob.

DNA. BioMed Central; 2015;6:11.
44. Harris RS. Improved pairwise alignment of genomic DNA. Thesis, Pennsylvania State University. 2007;
45. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013;
46. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics.

2010;26:841–2.

100

Ch. 5: Correcting palindromes after WGA

5.11 Supplementary materials

0

50000

100000

150000

200000

250000

300000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f r
ea

ds

Level

ATH-WGA1
ATH-WGA2

Figure 5.5. S1. Number of Pacasus iterations per read in the cleaned data set. Level 0
indicates that the original read had no detectable palindromic sequence. level 1 indicates the
read was processed only once, level 2 twice, etcetera.

103

6 Mining functional annotations
across species

Sven Warris, Bart van de Vossenberg, Steven Dijkxhoorn, Teije van Sloten, Theo van der Lee,
Jan-Peter Nap, Dick de Ridder

Published in part as Bart van de Vossenberg & Sven Warris, et al., Comparative genomics of
chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium
endobioticum, Nature Scientific Reports, https://doi.org/10.1038/s41598-019-45128-9, 2019

105

Abstract

6.1 Abstract

Background
Numerous tools and databases exist to annotate and interpret the functions encoded in a
genome (InterProScan, KEGG, Gene Ontology (GO) etc.). However, analyzing and comparing
functionality across several genomes is not trivial, whereas such comparative analyses are
essential for identifying genes related to a particular biological function.

Results
We present a novel approach for comparative functional analyses in which KEGG, GO, CAZyme
and InterProScan results from several species are collected and stored in a Neo4j graph database:
Multi-Species Whole Annotation System Database (MuSWAS db). Using a developed plug-in for
Cytoscape to connect to Neo4j, the database can be queried and visualized. The visualization of
functional annotation (sub)graphs facilitates comparisons and grouping of functional annotation
across species. The approach is presented in the context of the functional analysis of the fungal
species Synchytrium endobioticum, the causal agent of potato wart disease, compared to other
fungal species with comparable taxonomy or lifestyle.

Conclusions
The combination of the functional annotations of different species in a single graph database and
the ability to visualize and identify overlaps and differences through scripts and in Cytoscape
generates novel insights in functions of genome components of a single species or a group
of organisms. The approach we present is generic and suitable for a large number of species.
The developed plug-in supports the analyses of any graph stored in Neo4j. The analyses of
several fungal genomes identify genes that are likely to play a role in the obligate biotrophic and
pathogenic lifestyle of Synchytrium endobioticum.

6.2 Background
A first step following in silico reconstruction of a genome [1] is usually to produce a structural
annotation of the genome to identify repeats [2], genes [3,4] and other genomic features [5]. In
combination with sequence information, these data are used for comparative genomics efforts
to interpret the functional make-up of the organism under study, often compared to that of a
related organism. Genes are functionally annotated using (a) InterProScan [6] or Blast2GO
[7], (b) analyses of the presence or absence of pathway elements in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [8,9], and (c) Gene Ontology (GO) term enrichment [10]. These
approaches largely focus on comparing a single species of interest to a single known reference
species. In our research, we aim to find overlap and difference between groups of species on a

106

Ch. 6: Mining functional annotations

functional level. To the best of our knowledge however, no tools are currently available to store,
visualize and analyze the functional annotation of several species combined. Both GO and KEGG
databases contain highly connected information, suitable for storing in a graph database [11]
and subsequently performing queries on the relationships within these datasets. InterProScan
results can be added, and the resulting graph can be queried to perform analyses on the integrated
data for complex relationships. Additionally we performed an analysis of carbohydrate-active
enzymes (CAZymes), as the ability to use different types of carbohydrates is an important feature
of plant pathogens [12], and added these results to the graph database. Here, we present a new
approach building on such graph database technology [13] and Cytoscape [14] to mine functional
annotations of several species. It enables comparison of for example GO terms and KEGG
pathways and on-the-fly visualization of the results [15] across multiple species.

The approach is presented in the context of the comparative functional analyses of the genome
of the fungal species Synchytrium endobioticum. This fungus is the causal agent of potato wart
disease, or black scab, currently one of the most important quarantine diseases of cultivated
potato [16]. Synchytrium is the type genus of the family Synchytiaceae, order Chytridiomycetes,
division Chytridiomycota, also called chytrids, a basal lineage of fungi (lower fungi) with
motile zoospores. The genus Synchytrium contains over 200 species, most of which are obligate
pathogens on flowering plants, ferns, mosses or algae, although a saprobic free-living Synchytrium
species, S. microbalum, has also been reported [17]. Synchytrium endobioticum is by far the
best-studied species of the genus, yet little is still known about the molecular mechanisms of its
obligate biotrophic and pathogenic lifestyle. More insight into the pathogenicity mechanisms
of S. endobioticum is likely to come from comparative functional genomics of different fungi
with similar or contrasting lifestyles. Thus far, only a few genomes of species from the chytrid
phylum have been sequenced and studied. Therefore, to gain insights into the lifestyle of S.
endobioticum we compared the genomes of two isolates with those of nine other chytrids and six
so-called higher fungi (members of the Ascomycetes and Basidiomycetes) that produce hyphae or
a mycelium [27] and are either obligatory biotrophs as S. endobiotium, or culturable as the other
chytrids. For all seventeen fungal genomes, we ran InterProScan to annotate their genes with GO
terms and KEGG enzymes. The analysis and determination of CAZymes encoding genes were
performed using a similar methodology described in [18]. Results were combined in a Neo4j
graph database, named Multi-Species Whole Annotation System Database (MuSWAS db). We
aimed to identify and characterise genes linked to obligate biotrophy, cell wall degradation,
pathogenicity and sexual cycle of chytrid fungi compared to non-chytrid fungi. In this chapter, we
focus on the aspects of graph technology for such functional annotation of the different genomes
and subsequent comparisons. Detailed descriptions of the fungal material included, as well as the
full results of the integral genome comparisons of all fungi are presented elsewhere [19].

107

Materials and methods

6.3 Materials and methods

6.3.1 Genome data
The data consists of the genes of seventeen fungal species [19], in total 157,709 genes. The
seventeen genomes were divided into four groups: ‘Chytrid, obligatory biotroph’ (ChytObl) with
two isolates of S. endobiotium; ‘Chytrid, culturable’ (ChytCult) with nine culturable Chytrid
species; ‘Control, obligate biotroph’ (CtrlObl), with three obligate biotrophic non-Chytrid (higher)
fungi, and ‘Control, culturable’ (CtrlCult), with three culturable non-Chytrid (higher) fungi.

6.3.2 Software and databases
InterProScan version 5.16-55.0 [6] was used to annotate the function of genes using the default
settings. Python version 3 [20] and the BioPython package [21] were used for processing protein
files, InterProScan output and the GO-basic dataset from the Gene Ontology (GO) database (May
2017) [10]. The Python modules Bio.KEGG and Bio.graphics were used to connect to the KEGG
API [22] and process the results. The Python package Neo4j V1 [23] was used to connect to the
Neo4j database [11]. Queries to the database were written in the Neo4j Cypher query language
version 3.4+ [24]. CAZyme [25] information was retrieved from the web site http://www.cazy.
org/.

The Cytoscape plug-in was developed for Cytoscape version 3.6+ [14] and was written in
Java 1.8. The already available cyNeo4j plug-in [26] was used as a starting point for the newly
developed plug-in.

6.4 Results

6.4.1 Gene Ontology data
To process InterProScan results for GO terms, the GO-basic data set was downloaded from the
Gene Ontology Consortium (GOC) website (http://geneontology.org/) and stored in MuSWAS
db. Each node in the graph corresponds to a GO term, and the “ISA” edges correspond to the
is-a relationships as defined by the GOC. Figure 6.1 shows an example of the top-level node
‘biological process’ and some of its descendants based on these relationships. It is important to
note that the GO data set does not follow a tree structure, but rather constitutes a general Directed
Acyclic Graph (DAG), i.e. many GO terms have more than one parent. With the InterProScan
output, the number of times a particular GO term is found in a given species is determined and
added as an attribute to the node representing that particular GO term. As a result, each GO term
node includes the total number of times it has been assigned to a particular organism. Counts per
species group are determined by summing individual species counts. By propagating the counts
from the leaves to the three top-level GO terms “biological process”, “molecular function” and

108

Ch. 6: Mining functional annotations

“cellular component”, each level in the GO graph contains the number of times that GO term or
its descendants are found by InterProScan. As the GO graph is a DAG, a descendant can be linked
more than once to a level; yet species count values should only be used once otherwise the GO
term assignments will be overrepresented in the higher-level terms. To prevent double counting a
query in Cypher was used to select only distinct GO terms below a given level in the GO graph.

Figure 6.1. The GO-basic data set is stored in MuSWAS db with nodes for each of the GO
terms connected to the more generic term using the ISA relationship. Part of this GO term
DAG showing the top-level node ‘biological process’ and some of its descendants. GO terms
are depicted using yellow circles and the ISA relationships are shown here as light grey arrows.

6.4.2 KEGG pathways
To link the enzyme annotation to KEGG pathways, pathway identifiers and Enzyme Commission
(EC) numbers were extracted from the InterProScan output. Using the KEGG API, the structures
of the pathways are downloaded in XML (KGML) format and stored in the MuSWAS db.
Pathway elements are directly translated into nodes (‘enzyme’, ‘pathway’, ‘map’, etc.) and
relationships (‘ECrel’, ‘maplink’, ‘reaction’ etc.). Enzymes are linked to a pathway using the ‘in’
relationship. An enzyme can occur in more than one pathway and can, therefore, have more than
one outgoing ‘in’ relationship. The XML data also contains graphical properties to place enzymes
on the KEGG pathway images. These are set as attributes of the ‘in’ relationship to establish
unique enzyme-pathway links. Relationships between an enzyme and its substrates and products
are not represented in the XML data. Therefore, to complete the pathway graph, for each enzyme
the KEGG annotation is retrieved through the KEGG API and the relationships ‘usedby’ and
‘produces’ are created to connect enzymes with compounds. The result is a Directed Cyclic Graph
(DCG). In Figure 6.2, an example of such a DCG is shown.

109

Results

6.4.3 Connecting KEGG and GO to CAZy
The cell wall degradation pathway of S. endobioticum is likely catalysed by carbohydrate-active
enzymes (CAZymes), large families of enzymes that degrade, modify, or create glycosidic bonds
[25] as documented in the CAZy database [34]. In all fungal genomes, CAZymes were predicted
using the on-line tool dbCAN [33] using default parameters. The number of times a particular
CAZyme was found in a genome was determined and subsequently normalized by dividing
the counts by the total number of proteins in present in the genome. These data were added to
MuSWAS db. Links from CAZymes to GO terms were retrieved from the CAZy website and also
added to MuSWAS db.

Figure 6.2. Structure of the KEGG pathway graph as DCG. The small KEGG pathway
ec:00300 (“Lysine biosynthesis”, pink rounded box) with its enzymes (blue circles) and
compounds (pink diamonds) is shown as an example of a DCG. For clarity of presentation,
the ‘in’ relationships from the compound and enzyme nodes to the pathway node are not
shown, which would otherwise connect all nodes to the pathway node. Relationships shown
are the ‘usedby’ and ‘produces’ edges between enzymes and compounds (blue), the ‘ECrel’
relationships between enzymes (green) and the ‘reaction’ relationship between compounds
(grey). Shapes and colors were set by Cytoscape styles.

For each of the seventeen organisms, the number of times an enzyme is predicted by InterProScan
is added to the particular enzyme node. Similar as for the GO terms, counts are aggregated for
species groups and added to the enzyme nodes.

110

Ch. 6: Mining functional annotations

6.4.4 Connecting KEGG to GO
The on-line KEGG database contains links to GO terms for many of its enzymes. Using the
same data as for connecting compounds to enzymes, these GO terms are linked to the enzymes
with the ‘crossConnect’ relationship (Figure 6.3). This linkage allows for visualization of these
otherwise implicit relationships and, more importantly, shows further evidence of additional or
missing functions: when both enzyme and associated GO terms are missing in one group of
species compared to another group, the likelihood of a false negative result decreases.

Figure 6.3. Linking KEGG enzymes to GO terms. KEGG enzymes (blue circles) and GO
terms (yellow hexagons) are linked through the ‘crossConnect’ relationship (red edges).
The green edges are the ‘ECrel’ relationships between the different enzymes. Again, for clarity,
not all relationships and nodes stored in MuSWAS db are shown. Shapes and colours were set
by Cytoscape styles.

6.4.5 Overview of the data in MuSWAS db
With the collected and aggregated data, the resulting graph database of the fungal species
considered contains a total of 54,684 nodes (Table 6.1) and 162,056 relationships (Table 6.2). With
inclusion of the functional annotation from InterProScan, 4,872 new relationships (crossConnect)
were established (Table 6.2). The next step was to develop appropriate ways of mining these data,
for the various groups of fungi that can be distinguished (Table 6.3).

111

Results

6.4.6 Cytoscape and the Neo4j plug-in
Cytoscape is a powerful graph visualization tool with many built-in features and many external
tools available through the plug-in app store [12]. Within Cytoscape, it is easy to color and shape
(‘style’) nodes and edges based on the information in a graph. Also, information can be linked to
external websites such as NCBI. This makes Cytoscape [14] a popular tool for the visualization
and analyses of biological networks, such as protein-protein interaction networks [27] or gene
co-expression networks [28]. However, loading all data stored in our Neo4j database (Tables 6.1
and 6.2) in Cytoscape is impossible on a standard desktop computer due to memory constraints.
To visualize subgraphs and query them within Cytoscape, it needs a connection to the Neo4j
database. Therefore, a Java implementation of a basic yet outdated Neo4j Cytoscape plug-
in, cyNeo4j [26,29], was refactored and extended to connect Cytoscape directly with a Neo4j
database [11]. The plug-in allows for querying the database and storing created networks within
Cytoscape, and for storing networks imported from other sources in Cytoscape in the database.
The plug-in also can read an XML file with predefined Cypher queries which allows for storing
important and/or often used queries on disk as templates for future use. The network resulting
from running such a query is then visualized in Cytoscape. Additional features of the plug-in
include interactively expanding and connecting nodes in Cytoscape based on the graph structure
in the database. These features are independent of the structure of the graph, as the database is
queried for the nodes and relationships available for the selected node(s). A more descriptive list
of features is given in Supp. Materials.

Table 6.1. Number of nodes in MuSWAS db after processing the functional annotation from
InterProScan.

Node Number

GO term 47,059

Enzyme 3,019

Pathway 114

Map 164

Compound 4,328

Total 54,684

112

Ch. 6: Mining functional annotations

Table 6.2. Number of relationships in MuSWAS db after processing the functional
annotation from InterProScan.

Relationship Number

crossConnect 4,872

isa 71,400

is 228

usedby 11,248

maplink 5,300

ECrel 25,878

in 22,948

produces 12,150

reaction 8,032

Total 162,056

Table 6.3. Subgrouping of fungal species for comparative analyses.

Group name (number of
genomes)

Coloring ChytObl (2) ChytCult (9) CtrlCult (3) CtrlObl (3)

All (17) Green + + + +

Only in culturables (12) Orange - + + -

Only in obl. (5) Blue + - - +

Absent in obl. Chytrids (15) Purple - + + +

Only in obl. Chytrids (2) Red + - - -

Higher fungi (6) Silver - - + +

Unclassified Yellow - - - -

Other Pink

Grouping based on present (+) or absent (-) of enzymes, GO terms, etc. in one of the four main
groups used for a more detailed comparison of the different species based on their lifestyle.
‘Unclassified’ in this context means that the element (e.g.. an enzyme) was not predicted to be
present in any of the genomes and ‘Other’ means that the combination of genomes containing
the predicted element does not fit in any of the other groups.

6.4.7 Detection of differences between species
With Cytoscape and the newly developed Neo4j plug-in, the graph database is mined for the
functional annotation of the individual species and the four specified groups. For the comparison
of multiple species, a first step is to subclassify them: which elements are found in all species,
which are specific for the culturable species, for the obligatory biotrophs, obligatory biotrophic
chytrids and so on (Table 6.3). Such multi-species comparisons allow inferences on components
of lifestyle. This information is extracted from MuSWAS db with dedicated Cypher queries and
Python scripts. Each of these classes is then assigned a different color with the style filters of
Cytoscape. Examples of the classifications outlined in Table 6.3, as visualized in Cytoscape after
extraction of the data from MuSWAS db, are shown in Figures 6.5-6.7. Figure 6.4 shows the
compounds connected to and the GO terms associated with four example enzymes. Node colors

113

Results

indicate to which of the classes each element in the graph belongs and show that these four
enzymes and their associated GO terms are not predicted to be present in this species group.
These results indicate that the obligatory biotrophic chytrids are missing four enzymes in the
“Glyoxylate and dicarboxylate metabolism” pathway (path:ec00630). If confirmed, these missing
enzymes could be of interest to investigate their role in the obligatory biotrophic lifestyle of S.
endobioticum. Many similar biological inferences on lifestyle and other characteristics of fungi
can be made by comparisons based on the data in the resulting fungal Neo4j database; a number
of results are presented elsewhere [17].

As a second example, an inspection of the GO terms related to motility, such as “motile cilium” and
“cilium”, showed these were indeed only detected in the chytrid species which are characterized
by motile zoospores rather than hyphae or mycelium (Figure 6.5).

Figure 6.4. Data in MuSWAS db showed that four enzymes (blue circles) of pathway
ec:00630 (“Glyoxylate and dicarboxylate metabolism”) are missing in the two obligate
biotrophs (i.e. the two S. endobioticum isolates). The compounds associated with the enzymes
are visualized by diamond shaped nodes. GO terms linked to these enzymes by the
‘crossConnect’-edge are shown as hexagons with the paths to the top-level node ‘molecular
function’ (text in red). Other edges shown are the GO ‘ISA’ relationship to connect the GO
terms and the KEGG pathway relationships ‘produces’ and ‘usedby’ to connect enzymes with
compounds.

114

Ch. 6: Mining functional annotations

Figure 6.5. GO-terms associated with flagella and movement, and their occurrences in
chytrid species and higher fungi. Shapes in the network indicate the different GO-terms, with
“Cellular Component” as the highest-level term. Grey arrows indicate the “ISA” relationship
between the GO-terms as defined in the Gene Ontology database. The different shapes indicate
if a given GO-term is present in culturable and obligate biotrophic chytrid species but not
in higher fungi (green diamond), present in one or more culturable chytrid species (orange
hexagon), or unclassified (yellow circles). Shapes and colors are set by using the styles in
Cytoscape and are filtered based on the information in the graph database.

115

Results

6.4.8 Accuracy and consistency
The results presented here are based on InterProScan analyses. As InterProScan is a predictive
method, false positive (FP) and false negative (FN) predictions are expected to be found. To
investigate the impact of these FP/FN predictions, the KEGG pathway analysis was benchmarked
using the six control species with known biochemical reference pathways included in the KEGG
database. Overall accuracy (84.5%) was mainly influenced by false negative results (Supplementary
Report). Such a case is illustrated by aconitate hydratase (EC:4.2.1.3), an enzyme from the citrate
cycle, which was detected in all genomes analyzed using InterProScan but was not colored in the
KEGG pathway because of a missing link in the KEGG database (Figure 6.6). In case a functional
element appears to be missing in a genome, additional independent methods should be used to
confirm these findings. The high accuracy implies a low number of false positives in the control
species, so a particular function predicted in a genome is likely to be true .

Combining the KEGG, GO and CAZyme annotations gave new insights into the lifestyle of S.
endobioticum. However, during our analyses discrepancies between different online resources
became apparent, hampering further research. KEGG, GO and CAZymes databases are data
sources which contain redundant information: KEGG contains which GO terms are associated
with enzymes and visa-versa and CAZymes are linked to enzymes and these data should be
the same across the three databases. We found several discrepancies which, at first glance,
gave inconclusive results. Manual curation was required to correct these findings [19]. These
results show that links of terms and features are not necessarily consistent between the different
databases combined in MuSWAS db. By adding the information of the three databases in a single
data source (MuSWAS db) discrepancies are more apparent and hence can be corrected in the
original sources.

116

Ch. 6: Mining functional annotations

Figure 6.6. KEGG reference pathway 20: citrate cycle (TCA). Numbers (a, b, c, d) replacing
the KEGG Orthology (KO) numbers in the enzymatic steps indicate the number of isolates in
a given group for which the corresponding gene was detected. a: obligate biotrophic chytrids
(maximum number of genomes = 2); b: culturable chytrids (max = 9); c: culturable higher
fungi (max = 3); and d: obligate biotrophic higher fungi (max = 3). The maximum score that
can be obtained is “2,9,3,3”, which is the case for all green boxes. White boxes are unassigned
enzymes. Boxed in red is the enzyme aconitate hydratase (EC:4.2.1.3), which should be found
in all genomes. The green colored enzymes show that all required enzymes for the TCA cycle
except aconitate hydratase were found in all genomes.

117

Discussion and conclusions

6.5 Discussion and conclusions
We have demonstrated how the combination of a Neo4j graph database and Cypher with
Cytoscape enables comparative analyses of GO, KEGG, CaZy and InterProScan data across
multiple genomes that would otherwise be hard and time-consuming. Genomes can easily be
grouped based on any criterion set, allowing comparisons at different levels of biology. In the
example dataset of S. endobioticum with other chytrid and non-chytrid fungal species, various
aspects of fungal lifestyle and the pathogenicity of S. endobioticum on potato have given leads
for new research and insights in biology described in more detail elsewhere [17]. The connection
with Cytoscape adds intuitive and easy visualization to the analyses. The developed Cytoscape
plug-in is generic: other publicly available databases such as the Reactome [30] pathway database
or any other Neo4j database can also be queried with the plug-in. The plug-in allows for sending
any valid query to the connected database, but these queries still need to be designed by the user.
These queries can become long and complex quickly, hence a good understanding of Neo4j and
Cypher is still needed. Fortunately the plug-in allows for storing and re-using of queries, allowing
for sharing these queries with others.

A possible additional application of the approach is in metagenomics. In environments, such as
soil, natural waters and gastric systems [31–35], communities of (micro-)organisms collaborate
or compete for space and food. The first step in any metagenomics analysis is to functionally
annotate all genes found in the DNA or RNA data [36–38]. With the approach shown here, this
results in a graph database allowing to identify which pathways are present, which compounds are
produced and which biological processes occur. It would not be limited to a single metagenomics
sample: by grouping annotations, it will be possible to perform easy comparative analyses of
different samples. Especially when combined with the annotation of individual microbial
genomes, functional analyses of metagenome data is likely to get a huge boost.

For simplicity, the GO-basic dataset (with only “ISA” relationships) was used, making the graph
less complex than when using the full GO-plus dataset. This selection is not an intrinsic limitation:
when the GO-plus dataset is more appropriate, it can be used in the same way, although the
resulting relationships are likely to become more difficult to interpret.

Results indicate that the obligatory biotrophic chytrids miss four enzymes in the “Glyoxylate
and dicarboxylate metabolism” pathway (path:ec00630), potentially of importance in the
obligatory biotrophic lifestyle of S. endobioticum. However, caution is advised: although the
GO term ‘catalase activity’ is not predicted for this group of fungi, the higher-level GO term
‘peroxidase activity’ is predicted to be present in all species groups, so other enzymes may take
over. Also, the detailed analyses of the cellulase activity (CAZymes) show that links of terms
and features are not necessarily consistent between databases combined in MuSWAS. Therefore,

118

Ch. 6: Mining functional annotations

relying on a single data source is not recommended, and predictions based on multiple sources of
data continue to need scrutiny and preferably independent validation: data can be contradictory,
inconclusive or incorrect. Adding information from different sources and linking them through
known relationship in MuSWAS db will make these irregularities more obvious. Such results
should be taken as motivation to contact database managers to improve the consistency and
interoperability of biological data and databases. The downside of combining these data in a
single data source is that updates in the original sources (such as corrections in the links) are not
automatically updated in MuSWAS db and this update process would require a rerun of (parts
of) the analyses. Adding additional genomes to an existing data set in MuSWAS db requires
running InterProScan and CAzyme analyses on these genomes and adding the resulting counts to
MuSWAS db. Aggregated counts then need to be recalculated based on this new information and
from that point on data can be visualized again. Main bottlenecks in adding more genomes are
therefore the genome annotation analytics (in CPU time) and visualization plus interpreting the
results (in time spent by the researcher).

If such issues are taken into account, the concept and use of graph databases presents considerable
added value to biological analyses and is likely to get more attention. An increasing number of
bioinformatics tools, including sequence alignment [39], support Neo4j databases, creating more
demand for user-friendly graph visualization. Our focus on the functional annotation of genes did
not take genome structure into account. Pan-genome methods [40], such as PanTools [41], allow
storing genome structures in a graph database. The combination of the approach presented here
with a pan-genome graph will allow new ways of querying and visualizing data across multiple
genomes. This combination will make it possible, for example, to retrieve the locations of genes
in a pathway of interest and assess functional sequence variation much easier and faster than
currently available.

6.6 Authors’ contributions
SW wrote all Python scripts, performed the Interproscan data analysis, designed the cypher queries
and created the plots. SW, SD and TvS redesigned, refactored and extended the Neo4j plugin for
Cytoscape. BvdV supplied the biological data, created the groups of species and designed the
biological experiments. SW and BvdV made the biological interpretations of the results. SW
wrote the manuscript and edited the manuscript after comments by DdR and JPN. Both DdR and
JPN supervised SW during this research.

119

Acknowledgements

6.7 Acknowledgements
Part of the research was funded through the Big Data strategic project at Wageningen UR.
Ordina provided time and resources through its JTech research program. We thank Ordina and
Genetwister allow SD and TvS to contribute to the Open Source plug-in in company time, without
these companies having any financial, legal or other benefits from this research, nor any say in the
content of the project.

6.8 References
1. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read

assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
2. Qian Z, Adhya S. DNA repeat sequences: diversity and versatility of functions. Curr. Genet. 2017;63:411–6.
3. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome

annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2015;32:767–9.
4. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation

genome projects. BMC Bioinformatics. 2011;12:491.
5. Warris S, Boymans S, Muiser I, Noback M, Krijnen W, Nap J-P. Fast selection of miRNA candidates based on large-

scale pre-computed MFE sets of randomized sequences. BMC Res. Notes. 2014;7:34.
6. Zdobnov EM, Apweiler R. InterProScan - an integration platform for the signature-recognition methods in InterPro.

Bioinformatics. 2001;17:847–8.
7. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional

annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
8. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
9. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals

high biological diversity and specific adaptations in the industrially and medically important fungal genus
Aspergillus. Genome Biol. 2017;18:28.

10. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation
data. Bioinformatics. 2009;25:288–9.

11. Neo4J [Internet]. [cited 2016 Sep 1]. Available from: https://neo4j.com/
12. Amselem J, Cuomo CA, Van Kan JAL, Viaud M, Benito EP, Couloux A, et al. Genomic analysis of the necrotrophic

fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011;7:e1002230.
13. Miller JJ. Graph database applications and concepts with Neo4j. Proc. South. Assoc. Inf. Syst. Conf. Atlanta, GA,

USA. 2013.
14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
15. Dijkxhoorn S, Sloten T van, Warris S. Cytoscape Neo4J Plugin [Internet]. 2017. Available from: https://github.com/

corwur/cytoscapeneo4j
16. Smith IM, Burger B. Quarantine pests for Europe. C.A.B. International; 1997.
17. Longcore JE, Simmons DR, Letcher PM. Synchytrium microbalum sp. nov. is a saprobic species in a lineage of

parasites. Fungal Biol. 2016;120:1156–64.
18. Zerillo MM, Adhikari BN, Hamilton JP, Buell CR, Lévesque CA, Tisserat N. Carbohydrate-Active Enzymes in

pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS One. 2013;8:e72572.
19. Vossenberg BTLH van de, Warris S, Nguyen HDT, Gent-Pelzer MPE van, Joly DL, Geest HC van de, et al.

Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of
Synchytrium endobioticum. Sci. Rep. 2019;9.

20. Python [Internet]. http://www.python.org. Available from: http://www.python.org
21. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for

computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.

120

Ch. 6: Mining functional annotations

22. Kawashima S, Katayama T, Sato Y, Kanehisa M. KEGG API: a web service using SOAP/WSDL to access the
KEGG system. Genome Informatics. 2003;14:673–4.

23. Neo4J Team. Neo4J Python driver [Internet]. Available from: https://github.com/neo4j/neo4j-python-driver
24. Neo4j. Cypher language [Internet]. Available from: https://neo4j.com/developer/cypher-query-language/
25. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database

(CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.
26. Summer G, Kelder T, Ono K, Radonjic M, Heymans S, Demchak B. cyNeo4j: connecting Neo4j and Cytoscape.

Bioinformatics. 2015;31:3868–9.
27. Browne F, Wang H, Zheng H. Investigating the impact human protein–protein interaction networks have on disease-

gene analysis. Int. J. Mach. Learn. Cybern. 2018;9:455–64.
28. Liu W, Li L, Long X, You W, Zhong Y, Wang M, et al. Construction and analysis of gene co-expression networks in

Escherichia coli. Cells. 2018;7:19.
29. Summer G. cyNeo4j [Internet]. 2014. Available from: https://github.com/gsummer/cyNeo4j
30. Fabregat A, Korninger F, Viteri G, Sidiropoulos K, Marin-Garcia P, Ping P, et al. Reactome graph database: Efficient

access to complex pathway data. PLOS Comput. Biol. 2018;14:e1005968.
31. Jansson JK, Hofmockel KS. The soil microbiome — from metagenomics to metaphenomics. Curr. Opin. Microbiol.

2018;43:162–8.
32. Cochran AT, Bauer J, Metcalf JL, Lovecka P, Sura de Jong M, Warris S, et al. Plant selenium hyperaccumulation

affects rhizosphere: enhanced species richness and altered species composition. Phytobiomes. 2018;
33. Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P. Insect gut microbiome - An

unexploited reserve for biotechnological application. Asian Pac. J. Trop. Biomed. 2014;4:S16-21.
34. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based

metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.
35. Kennedy J, Flemer B, Jackson SA, Lejon DPH, Morrissey JP, O’Gara F, et al. Marine metagenomics: new tools for

the study and exploitation of marine microbial metabolism. Mar. Drugs. 2010;8:608–28.
36. Meyer IM. A practical guide to the art of RNA gene prediction. Brief. Bioinform. 2007;8:396–414.
37. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–

63.
38. Thudi M, Li Y, Jackson S a, May GD, Varshney RK. Current state-of-art of sequencing technologies for plant

genomics research. Brief. Funct. Genomics. 2012;11:3–11.
39. Warris S, Timal NRN, Kempenaar M, Poortinga AM, van de Geest H, Varbanescu AL, et al. pyPaSWAS: Python-

based multi-core CPU and GPU sequence alignment. PLoS One. 2018;13.
40. Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics: status,

promises and challenges. Brief. Bioinform. 2016;19:bbw089.
41. Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation, storage and exploration of

pan-genomic data. Bioinformatics. 2016;32:i487–93.

121

Supplementary information

6.9 Supplementary information

Features of the Cytoscape Neo4j Plug-in
The plug-in allows the user to connect to Neo4j with a username/password using the Bolt interface.

Importing graphs
There are three main methods of importing a graph:

• Import all nodes and edges from Neo4j into Cytoscape
• Import a cypher query into Cystoscape
• Import a stored query (template) into Cytoscape

Exporting networks
The plug-in allows you to export any Cytoscape Network to Neo4j. This network can be an
updated version of an imported graph or a network from a different source. Nodes / relationships
removed from a graph in Cytoscape will also result in these elements being removed from the
Neo4j database after the export.

Expanding nodes
The plugin allows you to expand a single node, selected nodes or all nodes in the network at once.
This way you can browse through your graph.

Main menu:
• Expand all (selected) nodes in the network through all edges (bidirectional)
• Expand all (selected) nodes, incoming edges only
• Expand all (selected) nodes, outgoing edges only

Context menu:
• Expand single node, bidirectional, incoming or outgoing edges
• Expand single node, bidirectional, incoming or outgoing edges, based on the available edges
connected to this node

• Expand single node, bidirectional, incoming or outgoing edges, based on the available nodes
connected to this node

Other features
• Show all edges (relationships) between all nodes in the network or only between selected
nodes.

• Get the shortest paths from the database between the selected nodes. When more than two
nodes are selected, all combinations will be queried: Neo4j does not allow shortest path
calculations between more than two nodes (a.k.a. ‘via’).

122

Ch. 6: Mining functional annotations

6.10 Supplementary Report
This report shows the predictive value of Interproscan for KEGG pathway analyses. For this six
different reference species are used.

Definitions
Positive: number of positive elements in the pathway: these elements are present in the reference
species (P)

Negative: number of negative elements in the pathway: these elements are not present in the
reference species (N)

True positive (TP): element in the reference pathway correctly predicted by Interproscan

True negative (TN): element in the not reference pathway and not predicted by Interproscan

False positive (FP): element in the not reference pathway but predicted by Interproscan. Note
could also be a valid new prediction

False negative (FN): element in the reference pathway but not predicted by Interproscan.

No EC (noEC): Some elements in the pathways have no EC number record in the database. These
cannot be mapped to the interproscan output containing only EC numbers and are left out of the
calculations

Sensitivity or true positive rate (TPR): TPR=TP/P=TP/(TP+FN)

Specificity (SPC) or true negative rate: SPC=TN/N=TN/(TN+FP)

Accuracy (ACC) : ACC=(TP+TN)/(TP+FP+FN+TN)

Pathway analyses
Each of the six reference species have a different set of reference pathways. For the following
statistical overview, all pathways which are not part of the reference sets are left out: determining
positive and negatives is impossible for these.

Species Culturable Pathways Sensitivity Specificity Accuracy
CNE CULT 72 0.63 0.92 0.84
MLR OBL 75 0.64 0.93 0.85
NCR CULT 74 0.63 0.92 0.83
PGR OBL 74 0.63 0.93 0.85
SCE CULT 71 0.62 0.95 0.86
UMA OBL 74 0.65 0.92 0.84

125

7 General discussion

127

Computational developments for bioinformatics

The work presented in this thesis contributes to new high-performance approaches and tools for
high-throughput biological and bioinformatics research, mainly using low-cost, standard computer
hardware. The main aim is speeding up computation to enable analyses previously unfeasible as a
way to approach new biological research questions. The focus has been on genomics, in particular
on DNA/RNA sequence analyses (Chapters 2-5) and genome annotation (Chapters 2 and 6).

In addition to new tools, this thesis presents the application of these new tools to the analyses of
biological systems (Chapters 5 and 6). In this way different aspects of bioinformatics research
are covered: bioinformatics, i.e. the development of new technologies, methods and concepts
(Chapters 3 and 6); applied bioinformatics, i.e. the translation of fundamental concepts into
applications, packages and/or plugins (Chapters 2 and 4); and computational biology (Chapters 5
and 6), using the tools and/or methods to study biology.

Below, the contributions of the research presented in this thesis are discussed in the context of
recent developments and issues in novel computer technologies, notably grid and GPU computing,
concerning algorithmic design, software engineering and software testing.

7.1 Computational developments for bioinformatics
One of the major developments in computational infrastructure has been the concept of
heterogeneous distributed computing on standard hardware, as effectively used by the still-running
SETI@Home project [1–3], i.e. the Search for Extraterrestrial Intelligence (SETI) by analyzing
radio signals. SETI demonstrates the viability of the use of a grid of standard desktop computers
for scientific data processing. For example, the HTCondor grid management software allows
setting up a heterogeneous distributed computing environment on personal computers in local
networks (see Chapter 1) [4]. This approach may be advantageous in office surroundings that use
many personal computers for relatively modest tasks, such as writing, teaching or administration.
The use of office desktop computers for large-scale computations also has its downsides. For
one, the hardware is designed for office use and not for large-scale data analyses. As a result,
computers, hard drives and other components will fail more often than with normal desktop use.
Moreover, desktop computers can overheat, graphics cards (GPUs) can fail, or computers can
stop working altogether. All this may happen in desktops much faster than in dedicated servers.
Another concern with a grid of desktop computers is that data have to be shared across the
network, making it difficult to ensure privacy and security of these data. Despite these limitations,
a grid infrastructure can be very beneficial for bioinformatics research. It is a cost-effective way
of creating computational power for institutes that otherwise would have less access to such
systems. Many of the analyses presented in this thesis (Chapters 2-5) were performed on the

128

Ch. 7: General discussion

HTCondor grid of the Bioinformatics group at the Institute for Life Science and Technology from
the Hanze University of Applied Sciences Groningen. Without the Hanze grid, a large part of the
results presented in this thesis would have been much harder, if not impossible, to create in-house.

A second important computational development has been the release of General Purpose Graphics
Processing Units (GPGPUs; see Introduction) [5]. A major challenge for the use of GPGPUs
in bioinformatics was the application of so-called graphics programming languages, such as
OpenGL [6], for tasks they have not been designed for [7]. With the release of the CUDA general
purpose programming language and GPUs such as the GeForce 8800 GTX, NVIDIA opened up
the platform for a wide array of applications [5]. In bioinformatics, the sequence alignment tool
MUMmerGPU [8] was one of the first to demonstrate the benefits of using GPGPU technology
for biological data analyses. More recently, the Open Compute language OpenCL has been
released, which supports parallel computing on many other platforms, including AMD GPUs,
Intel CPUs, ARM chips, etc. For this reason, we created an OpenCL version of PaSWAS and
integrated it in Python in the same way as the CUDA version (Chapter 4). Such approaches show
the added value of GPGPU computing in bioinformatics. It is likely that many more examples
will be accomplished in the future.

7.1.1 Precomputing for predicting pre-miRNAs
MicroRNAs (or miRNAs) are short RNA sequences which regulate gene expression [9,10] and
play important roles in biological processes. Computational methods are used to detect these
miRNAs and their precursors in genomes [11–13]. In Chapter 2, it is shown that pre-calculation
of the minimal free energy (MFE) [14] of tens of millions of sequences brute-force on a large
computing grid makes it feasible to screen whole genomes for pre-miRNA candidates. This
result demonstrates that distributing calculations on already available infrastructure across many
compute units opens up new avenues to do bioinformatics research. The method was applied to
the Epstein-Barr genome for the identification of potential pre-miRNA candidates (Chapter 2),
and the approach was used by others to identify pre-miRNA candidates in the Tibetan naked carp
(Gymnocypris przewalskii) [15]. In silico prediction of (pre-)miRNA candidate sequences can
now be supported by additional evidence [16], including Illumina RNA-Seq [17] and CRISPR-
Cas9 experimentation [18]. Moreover, better defined sequence characteristics and machine
learning approaches will be helpful in further reducing the number of false positives in pre-
miRNA candidate prediction.

The underlying idea of pre-calculation can be applied to other computational challenges. In
robotics, for example, it is commonly used for scene/map reconstruction and path estimation,
because it is computationally impossible to have 100% accuracy in these cases [19]. In

129

Computational developments for bioinformatics

bioinformatics, the number of such existing computational examples may be limited, although
the indices built by mapping software [20–22] could be considered pre-calculated databases of
sequence information to find related (short) sequences quickly.

7.1.2 Developing GPU applications for bioinformatics research
To get the most out of parallel hardware [23], existing software needs to be rewritten and, in
many cases, redesigned. This process can be time-consuming and difficult. The development of
PaSWAS, an implementation of Smith-Waterman (SW) sequence alignment on NVIDIA GPUs,
demonstrates, however, that such re-development is worth the effort (Chapter 3): the parallel
version is much faster than a single-core implementation. The MFold software used to calculate
MFEs (Chapter 2) is a valuable yet slow dynamic programming algorithm. It could benefit from a
GPU-based implementation [24] and a presumably much faster parallel OpenCL-based extension
of MFold could be based on the PaSWAS approach for SW sequence alignment.

GPU-based implementations provide a stable and relatively programmer-friendly platform for
parallel processing of data. Moreover, several higher-level programming languages, such as
Matlab and R, now offer hardware abstractions for GPUs in the form of software libraries, so
that programmers do not need to program GPUs themselves [25–27]. As more of these high-
performance compute libraries become available, the need to develop CUDA or OpenCL code
decreases, making the compute platforms readily available to a wide range of researchers. In the
future, people preparing, for example, R or Matlab code will likely not even be aware that GPUs
are used for calculations: a GPU will automatically be used when detected by the software.

The desire for better usability and broader applicability of the CUDA-based application PaSWAS
prompted the development of pyPaSWAS (Chapter 4). We integrated the CUDA/OpenCL [28]
codebase and combined it with the flexibility of the programming language Python [29,30] to
allow it to run on a range of platforms. The code of pyPaSWAS can be used as a library for other
applications requiring Smith-Waterman-based alignments. This concept steered the development
of Pacasus, a tool requiring high-speed SW to detect erroneous palindromic sequences in long
reads with high base-calling error rates after whole-genome amplification (Chapter 5). Pacasus
illustrates the attraction of GPGPUs for novel bioinformatics applications.

OpenCL promises to be a generic compute language for parallel systems [31] and should be able
to be translated into a single code-base for all parallel devices. However, due to differences in
hardware design, the OpenCL code should still be adjusted to get the most out of a particular
device [32]. For pyPaSWAS, optimization of the OpenCL code resulted in a significant speed-
up when running OpenCL-code optimized for CPUs on a CPU, compared to running the code
optimized for the GPU on a CPU. OpenCL optimization is therefore still required to obtain
maximum computational efficiency for a specific platform, and code cannot be transferred from

130

Ch. 7: General discussion

one hardware architecture to another without performance penalties. Writing optimized code also
takes time, so a balance between investing time in optimization and running a less-optimized
application needs to be found. If future implementations of OpenCL develop into a hardware-
independent or hardware-detecting code-base, the use of GPUs for bioinformatics applications is
likely to gain further attraction.

7.1.3 Future enhancements
The tools presented in this thesis are not completely finished and probably never will. Feature
requests and other issues continue to appear in software [33–35] and the tools presented in
this thesis are no exception. Some of the potential additions to and extensions of the tools are
discussed below.

PaSWAS has been updated intensively after publication (Chapter 3; https://github.com/swarris/
pyPaSWAS/commits/master) during development of pyPaSWAS. A gap extension penalty was
added, as well as the OpenCL GPU and CPU implementations. Also, pyPaSWAS has seen updates.
After publication of pyPaSWAS (Chapter 4, Release V3.1.1), open source developers from the
company StreamComputing have made performance enhancements in the parallel code as well
as in the Python code which resulted in Release V3.6. Obviously, there is more to be desired. For
example, pyPaSWAS is limited in the length of the sequences it can process by the amount of
memory available. Hence it could benefit from distributing computations across multiple GPUs,
which would give access to the total memory of all devices used. pyPaSWAS then needs to keep
track of which parts of the alignment have been calculated and store these intermediate results
in memory or on disk. It is however to be expected that storing these data on disk adds latency
because of the required file I/O, which will slow down pyPaSWAS.

Pacasus is developed using pyPaSWAS as a library to detect the chimera introduced in long reads
by whole genome amplification (WGA). Two parts of Pacasus are currently not optimized for
efficiency, resulting in an implementation which can be improved further. Firstly, pyPaSWAS
evaluates all tracebacks through the dynamic programming matrix to return all alignments with
the best score, but for Pacasus only the one best hit is needed. As a consequence, the traceback can
be calculated during the construction of the matrix, resulting in a speedup of about 30 % because
the third phase of PaSWAS can be skipped. Secondly, pyPaSWAS performs an all-versus-all
alignment when provided with multiple sequences, whereas Pacasus only needs to align each
sequence to itself. Therefore, the current implementation processes a single read at once, which
in many cases is not efficient: available memory could allow for detecting palindromes in several
sequences in parallel. With short reads <10kb) this inefficiency is large compared to processing
long (>10kb) reads. This efficiency of Pacasus can be improved in at least two ways. One
adjustment would allow Pacasus to process many (shorter) reads in parallel, requiring fewer

131

Software engineering principles

context switches between CPU and GPU. Pacasus also suffers from the O(n2) memory usage,
which limits the length of the reads to be aligned to approx. 25,000 bases on GPUs, versus
100,000 bases on CPUs. This limitation on read length is likely to become a serious issue in the
near future: both PacBio and Oxford Nanopore technologies are expected to deliver ever-larger
read lengths. A banded alignment implementation [36] could help as this will require less memory
but might result in false negatives for Pacasus. Whether or not this trade-off between memory
usage and loss of precision is a good balance needs to be investigated.

7.2 Software engineering principles
Several software engineering principles (SEPs) [37] have been used in the design, implementation
and testing of the new software presented in this thesis without explicit specification. For example,
PaSWAS, pyPaSWAS and Pacasus include documentation on how to use the software in README-
files and through Wiki pages. pyPaSWAS is provided with test data and a Docker container [38]
to install and run the application on any platform. During development of the CUDA and OpenCL
code of pyPasWAS, extensive test runs validated the outcomes of the algorithms, verifying that
all code-bases produce the same output given the same input and software settings. End-users
were also involved in testing the software, with the focus on examples from their respective
research topics. Furthermore, the Cytoscape plugin contains several unit-tests and source code
for all developed applications has been made available through Open Source licenses. Such SEPs
aim to assist in, structure and direct software development to reduce errors, make software more
stable, and deliver the required functionality [37,39]. Many SEPs have been developed over the
years.

The use of such SEPs in the research setting of this thesis is thought to have had a positive
effect on the overall quality (usability, reliability) of the tools developed in this thesis. Although
formal scientific demonstration of such effects is notoriously difficult and costly, it is here
argued that explicit demonstration and use of SEPs should get more attention and appreciation
in bioinformatics. Bioinformatics research and software development requires scientific rigor
and peer review. The added value of SEPs for future bioinformatics research and software
development is discussed in more detail below.

7.2.1 Development of bioinformatics software
Issues around the testing and validating software, including bioinformatics software, have been
around for several years, questioning the quality, stability and predictability [40] of the software
involved [41,42]. Small errors in the code have resulted in retractions of high-impact papers
[43], even though the results as published raised no suspicion. To prevent such issues with
quality, software development in bioinformatics could incorporate SEPs much more formally

132

Ch. 7: General discussion

than now is often common practice. For example, any application should be divided into parts
or modules that can be developed independently and tested separately. These so-called unit tests
should be described with well-defined inputs and expected outputs and executed on a variety
of relevant data to provide confidence in proper and intended functioning [44]. This approach
will create more stable and predictable software, although testing in practice can be challenging
[45], time-consuming and costly. The use of other approaches for assessing quality [46], such as
coding standards (PEP for Python [47]) and code analytics (Error-Prone [48], IntelliJ [49], Pylint
[50]), will further enhance code quality. Any source code should be made publicly available
on code sharing sites, such as Github. It is a good development that BioMed Central [51] and
Oxford University Press [52] now demand that compiled code is uploaded to open repositories,
preferably including the source code. This way, peers can, if so desired, evaluate and test the code.
One could even argue that this evaluation should be a mandatory part of the peer-review process.
Automated tools to detect code smells [53] are available to detect potential problems and any
software submitted or made public should preferably add such analyses upfront. In developing
the Cytoscape plugin we started with such analysis on the existing code-base to find and fit
problems in the source code before extending the implementation.

7.2.2 Delivery of bioinformatics software to an end-user
Every user of bioinformatics software is helped with a simple, predictable and well-documented
interface. Over the years, many graphical user interfaces (GUIs) have been developed that
facilitate access to tools in a consistent environment. Some of these GUIs are commercial, such
as CLCBio, acquired and further developed by QIAGEN Bioinformatics [54]. Others are open
source, such as Galaxy [55]. Power users also benefit from a user-friendly interface. The Canu
de novo assembler [56] is an excellent example of how experienced users are assisted in the
use of a relatively complex command line: Canu auto-detects the type of cluster management
software installed, as well as the type(s) of hardware available. Based on the given genome size
and other parameters, it distributes calculations automatically. These features make running the
software relatively easy and straightforward, also on complex systems as compute clusters. The
development of pyPaSWAS (Chapter 4) was motivated by the desire to make PaSWAS (Chapter
3) more user-friendly and better usable by a broader audience. In addition to the additional
programming efforts, extensive documentation has been added on how to use the application,
including best practices and example uses. Likewise, the Cytoscape plugin (Chapter 6) has several
built-in menu options to query the database in an attempt to hide at least some of the complexity
of graph databases for biology-trained users. Such approaches for delivering more user-friendly
and well-documented software to broaden the applicability and user-base of software developed
should be considered part of the research process. They deserve more attention, appreciation and
possibly a dedicated platform for publication.

133

Software engineering principles

7.2.3 Software engineering skills
The making of good bioinformatics software is a challenge that depends on training and experience.
In education, future (and current) bioinformatics software developers should, therefore, be made
well aware of existing approaches to and best practices [39,57,58] for the quality, proper testing
and appeal to end-users of software.

Recently (in 2018) the Curriculum Task Force of the International Society of Computational
Biology (ISCB) Education Committee has proposed to make a clear distinction between a
‘bioinformatics engineer’ and a ‘bioinformatics user’ and to adjust educational programs/tracks
and training accordingly [59], which I fully support as a bioinformatics researchers and former
bioinformatics lecturer.

In the Netherlands, already in 2001 a Bachelor of Applied Sciences (BaSc, in 2017 upgraded
to BSc) curriculum for bioinformatics was offered at the Hanze University of Applied Sciences
Groningen. This educational track anticipated the need for a bioinformatics engineer as a research
technician, in addition to MSc and Ph.D. curricula. In 2002, the Universities of Applied Sciences
Arnhem/Nijmegen and Leiden followed. Over the years, bioinformatics software skills have
received more attention in biological MSc and Ph.D. curricula, first steered by the Netherlands
Bioinformatics Centre (NBIC) and now the Netherlands Bioinformatics and Systems Biology
Research school (BioSB) [60]. Internationally, initiatives as GOBLET, the Global Organization
for Bioinformatics Learning, Education and Training [61], as well as ELIXIR [62], also gives
ample attention to the development of proper bioinformatics software skills as part of scientific
training. It is generally acknowledged that there are many challenges in creating and maintaining
an appropriate bioinformatics curriculum. There are many topics that compete for limited time.
Given the broad nature of knowledge and skills important for bioinformatics, from -omics data
(DNA, RNA, protein, metabolites) to databases, statistics and data visualization, decisions on
what to give priority are essential. The rapid developments in the field complicate such decisions,
as technologies and platforms may quickly become obsolete, sometimes even within the time
span of an educational program. It is therefore recommended that focus should not solely go to
adjusting current curricula, but also include developing courses, workshops [63] and post-doctoral
programs. By adjusting or renewing such elements regularly, bioinformatics practitioners and
researchers can stay up to date on current technologies and other developments, and develop a
personal education track focused on needs, interests and skill sets. Such life-long learning will be
crucial for continued contributions to the field of bioinformatics.

134

Ch. 7: General discussion

7.3 The road ahead
This thesis shows that the application of new technologies from computer science helps to generate
novel approaches for advanced bioinformatics tools and new scientific questions. Given the three
major challenges for (applied) bioinformatics in the future described below, the implementation
of technologies from computer science is likely to become much more important in the years to
come.

7.3.1 Dealing with data volume
The most recent DNA sequencing platform from Illumina, the NovaSeq 6000, currently produces
6 TB of data in two days [64]. By extrapolating the growth of the data generation capacity in
biology of the last decade [65], data volumes can safely be predicted to reach the petabyte range
on a daily basis in a few years. Compute facilities need to keep up. The use of high-performance
infrastructure and technology, such as Hadoop and cloud computing, is becoming common
practice [65,66] and tools using hardware such as GPUs are now published frequently [67,68].
Companies as Google submit patents on storing and handling biological data [69,70], indicating
commercial interest in these types of data and hence in addressing their capacity problems. In case
compute power and storage capacities will not be able to handle the data volumes, researchers
are already considering not storing all data and results, but to keep track of the data analytics
used, and redo experiments, including sequencing, when needed [71]. Such an approach could
work well if the original biological samples are stored properly and the experiments and analyses
can be repeated sufficiently fast. This strategy should, however, be considered suboptimal.
Appropriate storage of biological material is already a challenge by itself [72]. Moreover, redoing
computations carries additional costs that should not be underestimated: repeating a de novo
assembly of 150,000 hours [73] is not a viable option. The ever-increasing volumes of data will
require bioinformatics to adopt appropriate new technology quickly and efficiently. For example,
a promising new technology to deal with increasing numbers of genomes is an approach called
pan-genomics [74]. In such pan-genomics, graph theory [75,76] is used to store multiple genomes
and process these genomes in the database directly [77]. To able to get the most out of graph
technology, software for read mappers or variant callers [20,78] will have to be redesigned to
work with this new type of storage [79], similar to the need for redesigning software to make
efficient use of parallel systems (Chapters 3 and 4). Therefore, the need to redesign software
seems a recurrent problem for adopting new technologies in bioinformatics research. As the data
volumes require such new technologies, the efforts should be seen as necessary investments in
the progress of science, rather than avoidable costs. Moreover, such a redesign could lead to new
insights. Possibly computer scientists could focus on design patterns for software development
that allow more easy adjustment to any new technology.

135

The road ahead

7.3.2 Dealing with data types
Not only the data volume poses a significant challenge, but also the number of different data
types that are used continues to grow. New data types produced by, for example, automated
phenotyping [80–82], sensors based on the IoT [83] or satellite imaging [84] are continuously
added to an already wide range of data types available [85]. To be able to address new avenues of
research questions, different data types have to be combined. This combination of data types is
foremost a technological challenge: each data source has its way of exposing its content (Chapter
6). There are many different standards, not only on how to structure data, such as XML [86]
or RDF [87] [88], but also on how machines communicate and exchange data [89]. The latter
requires agreement on how (meta)data are annotated. Many approaches to the integration of
heterogeneous and multilayer data are in development, such as ontologies or graph databases. An
approach in computer science that would seem to deserve more attention for data integration is the
use of microservices [90]. The approach of microservices involves making small, independent,
applications (services) which perform only single tasks. These services are grouped into a larger
application based on a microservice architecture as a counterpart of a single, do-it-all, monolithic
architecture [90]. With the help of microservices, a developer can focus on a single task, reducing
the complexity of the problem. As a result, the application is easier to maintain and adding new
features is a relatively simple task as the feature will be a new microservice. For example, one
microservice handles retrieving enzyme information from KEGG [91], and a second microservice
stores the results of a read mapping in a database. In theory, each microservice can be built in a
different compute language, the one best suited to address the issue at hand. The microservice
approach also has downsides. One of the issues is that the microservices need to communicate
with each other. The development relies on developers agreeing on how this communication
will take place and that they stick to the agreed protocols while continuously developing the
microservices. Another issue is that microservices can become entangled in such a way that the
overall application becomes unstable and difficult to maintain. Fortunately, several key concepts,
such as REST APIs, ontologies and metadata are becoming commonplace. The use of such
concepts will facilitate access to data of different types through a generic interface, and should
help preventing developers creating yet other data types.

7.3.3 Dealing with complexity
The complexity of data creates the third major challenge that bioinformatics will face in the
years to come [92]. Data complexity means that data are heterogeneous, are often obtained
from many different sources, can contain missing values and can be contradictory (Chapter 6).
The complexity is expected to grow even further, which will make algorithm and tool design
increasingly difficult [93]. These three challenges are by themselves complex, but also very much
intertwined. To get a grip on these challenges we need to integrate further the research fields

136

Ch. 7: General discussion

involved, i.e. bioinformatics, applied bioinformatics, computational biology, biology computer
science, and applied computer science, as well as different fields of (bio)technology and (bio)
engineering. In the post-genomic era, acquiring more data from more organisms in more different
ways and in less time is no longer the challenge; analyzing it all is. Contributions to improving
the quality of life sustainably will require biology, technology and computer science connected in
ways we cannot even imagine yet.

7.4 References
1. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: an experiment in public-resource

computing. Commun. ACM. 2002;45:56–61.
2. Sullivan III WT, Werthimer D, Bowyer S, Cobb J, Gedye D, Anderson D. A new major SETI project based on

Project Serendip data and 100,000 personal computers. IAU Colloq. 161 Astron. Biochem. Orig. Search Life
Universe. 1997.

3. Korpela E, Anderson D, Bankay R, Cobb J, Howard A, Lebofsky M, et al. Status of the UC-Berkeley SETI efforts.
Conference on Instruments, Methods, and Missions for Astrobiology XIV. 2011.

4. Chapman C, Wilson P, Tannenbaum T, Farrellee M, Livny M, Brodholt J, et al. Condor services for the global grid:
interoperability between Condor and OGSA. Proc. 2004 UK e-Science All Hands Meet. Nottingham, UK; 2004. p.
870–7.

5. NVIDIA. NVIDIA Unveils CUDA-The GPU computing revolution begins. 2006. Available from: http://www.nvidia.
com/object/IO_37226.html

6. Neider J, Davis T, Woo M. OpenGL programming guide. Addison-Wesley Reading. 1993.
7. Weiguo Liu, Schmidt B, Voss G, Schroder A, Muller-Wittig W. Bio-sequence database scanning on a GPU. Proc. 20th

IEEE Int. Parallel Distrib. Process. Symp. IEEE; 2006.
8. Schatz MC, Trapnell C, Delcher AL, Varshney A. High-throughput sequence alignment using Graphics Processing

Units. BMC Bioinformatics. 2007.
9. Yang T, Xue L, An L. Functional diversity of miRNA in plants. Plant Sci. 2007.
10. Dragomir MP, Knutsen E, Calin GA. SnapShot: unconventional miRNA functions. Cell. 2018.
11. Doran J, Strauss WM. Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA

Cell Biol. 2007;26.
12. Sarker R, Bandyopadhyay S, Maulik U. An overview of computational approaches for prediction of miRNA genes

and their targets. Curr. Bioinform. 2011;6.
13. Tempel S, Tahi F. A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res.

2012;40:e80.
14. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary

information. Nucleic Acids Res. 1981;9:133–48.
15. Tong C, Tian F, Zhang C, Zhao K. The microRNA repertoire of Tibetan naked carp Gymnocypris przewalskii: A case

study in Schizothoracinae fish on the Tibetan Plateau. PLoS One. 2017;12:e0174534.
16. Tian T, Wang J, Zhou X. A review: microRNA detection methods. Org. Biomol. Chem. 2015;13:2226–38.
17. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for

RNA-seq data analysis. Genome Biol. 2016;17:13.
18. Qiu X-Y, Zhu L-Y, Zhu C-S, Ma J-X, Hou T, Wu X-M, et al. Highly effective and low-cost microRNA detection

with CRISPR-Cas9. ACS Synth. Biol. 2018;7:807–13.
19. Whelan T, Kaess M, Johannsson H, Fallon M, Leonard JJ, McDonald J. Real-time large-scale dense RGB-D SLAM

with volumetric fusion. Int. J. Rob. Res. 2015;34:598–626.
20. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv.org. 2013;
21. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–9.

137

References

22. Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N, et al. Fast and sensitive mapping of nanopore
sequencing reads with GraphMap. Nat. Commun. 2016;7:11307.

23. Farber RM. Topical perspective on massive threading and parallelism. J. Mol. Graph. Model. 2011;30:82–9.
24. Januszewski M, Ptok A, Crivelli D, Gardas B. GPU-based acceleration of free energy calculations in solid state

physics. Comput. Phys. Commun. 2015;192:220–7.
25. Ishizaki K, Hayashi A, Koblents G, Sarkar V. Compiling and optimizing Java 8 programs for GPU execution. 2015

Int. Conf. Parallel Archit. Compil. IEEE; 2015. p. 419–31.
26. Marowka A. Python accelerators for high-performance computing. J. Supercomput. 2018;74:1449–60.
27. MathWorks. MathWorks GPU Computing [Internet]. Available from: http://nl.mathworks.com/discovery/matlab-

gpu.html
28. Munshi A, others. The opencl specification. Khronos OpenCL Work. Gr. 2009;1:l1--15.
29. Python [Internet]. Available from: http://www.python.org
30. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: A scripting-based approach

to GPU run-time code generation. Parallel Comput. 2012;38:157–74.
31. Khronos. OpenCL [Internet]. Available from: www.khronos.org/opencl/
32. Fang J, Varbanescu AL, Sips H. A comprehensive performance comparison of CUDA and OpenCL. 2011 Int. Conf.

Parallel Process. IEEE; 2011. p. 216–25.
33. pyPaSWAS issues page [Internet]. Available from: https://github.com/swarris/pyPaSWAS/

issues?q=is%3Aissue+is%3Aclosed
34. Pacasus issues page [Internet]. Available from: https://github.com/swarris/Pacasus/

issues?q=is%3Aissue+is%3Aclosed
35. Cytoscape Neo4j plugin issues page [Internet]. Available from: https://github.com/corwur/cytoscapeneo4j/

issues?q=is%3Aissue+is%3Aclosed
36. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–

60.
37. Lawlor B, Walsh P. Engineering bioinformatics: building reliability, performance and productivity into

bioinformatics software. Bioengineered. 2015;6:193–203.
38. Docker [Internet]. Available from: http://www.docker.com
39. Jiménez RC, Kuzak M, Alhamdoosh M, Barker M, Batut B, Borg M, et al. Four simple recommendations to

encourage best practices in research software. F1000Research. 2017;6.
40. Arar ÖF, Ayan K. Deriving thresholds of software metrics to predict faults on open source software: Replicated case

studies. Expert Syst. Appl. Pergamon; 2016;61:106–21.
41. Soergel DAW. Rampant software errors may undermine scientific results. F1000Research. 2014;3.
42. Ryan P, Allen A, Teuben P. Schroedinger’s code: Source code availability and transparency in astrophysics. Am.

Astron. Soc. Meet. Abstr. #231. 2018.
43. Miller G. Scientific publishing. A scientist’s nightmare: software problem leads to five retractions. Science.

2006;314:1856–7.
44. Toure F, Badri M, Lamontagne L. Predicting different levels of the unit testing effort of classes using source code

metrics: a multiple case study on open-source software. Innov. Syst. Softw. Eng. 2018;14:15–46.
45. Prado MP, Vincenzi AMR. Towards cognitive support for unit testing: A qualitative study with practitioners. J. Syst.

Softw. 2018;141:66–84.
46. Mukherjee S. Source Code Analytics With Roslyn and JavaScript Data Visualization. Berkeley, CA; 2016. p. 15–44.
47. Python.org. PEP [Internet]. Available from: https://www.python.org/dev/peps/
48. Google. Error-Prone [Internet]. Available from: https://errorprone.info/
49. JetBrains. IntelliJ [Internet]. Available from: https://www.jetbrains.com/idea/
50. Pylint [Internet]. Available from: https://www.pylint.org/
51. BMC. BMC Bioinformatics: Instruction to authors [Internet]. Available from: https://bmcbioinformatics.

biomedcentral.com/submission-guidelines/preparing-your-manuscript/software-article
52. Bioinformatics. Bioinformatics: Instruction to authors [Internet]. Available from: https://academic.oup.com/

bioinformatics/pages/instructions_for_authors

138

Ch. 7: General discussion

53. Mansoor U, Kessentini M, Maxim BR, Deb K. Multi-objective code-smells detection using good and bad design
examples. Softw. Qual. J. 2017;25:529–52.

54. CLCBio Company. [Internet]. Available from: htttp://www.clcbio.com.
55. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Genome Biol. 2010;11:R86.
56. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read

assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
57. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices for scientific computing.

PLoS Biol. 2014;12:e1001745.
58. Leprevost F da V, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC. On best practices in the development

of bioinformatics software. Front. Genet. 2014;5:199.
59. Mulder N, Schwartz R, Brazas MD, Brooksbank C, Gaeta B, Morgan SL, et al. The development and application

of bioinformatics core competencies to improve bioinformatics training and education. PLoS Comput. Biol.
2018;14:e1005772.

60. BioSB [Internet]. Available from: https://www.biosb.nl/
61. Atwood TK, Bongcam-Rudloff E, Brazas ME, Corpas M, Gaudet P, Lewitter F, et al. GOBLET: The Global

Organisation for Bioinformatics Learning, Education and Training. Welch L, editor. PLOS Comput. Biol. Public
Library of Science; 2015;11:e1004143.

62. Elixir [Internet]. Available from: https://www.elixir-europe.org/
63. Software Carpentry [Internet]. Available from: https://software-carpentry.org/
64. Illumina. NovaSeq 6000 Sequencing System [Internet]. Available from: https://www.illumina.com/content/dam/

illumina-marketing/documents/products/datasheets/novaseq-6000-system-specification-sheet-770-2016-025.pdf
65. Luo J, Wu M, Gopukumar D, Zhao Y. Big Data application in biomedical research and health care: a literature

review. Biomed. Inform. Insights. 2016;8:1.
66. Ko G, Kim P-G, Yoon J, Han G, Park S-J, Song W, et al. Closha: bioinformatics workflow system for the analysis of

massive sequencing data. BMC Bioinformatics. 2018;19:43.
67. García-Calvo R, Guisado J, Diaz-del-Rio F, Córdoba A, Jiménez-Morales F. Graphics Processing Unit–enhanced

genetic algorithms for solving the temporal dynamics of gene regulatory networks. Evol. Bioinforma. 2018;14:11.
68. Kovac T, Haber T, Reeth F Van, Hens N. Heterogeneous computing for epidemiological model fitting and

simulation. BMC Bioinformatics. 2018;19:101.
69. Google. Compressing, storing and searching sequence data. 2017. Patent US20170323052A1.
70. Sqream Technologies Ltd. Method and system for compressing genome sequences using graphic processing units.

2016. Patent US20180011870A1
71. Hart EM, Barmby P, LeBauer D, Michonneau F, Mount S, Mulrooney P, et al. Ten simple rules for digital data

storage. Markel S, editor. PLOS Comput. Biol. 2016;12:e1005097.
72. Huang L-H, Lin P-H, Tsai K-W, Wang L-J, Huang Y-H, Kuo H-C, et al. The effects of storage temperature and

duration of blood samples on DNA and RNA qualities. PLoS One. 2017;12:e0184692.
73. Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AWC, Pippel M, et al. The axolotl genome and the evolution of

key tissue formation regulators. Nature. 2018;554:50–5.
74. Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics: status,

promises and challenges. Brief. Bioinform. 2016;19:bbw089.
75. Biggs N, Lloyd EK, Wilson RJ. Graph Theory, 1736-1936. Oxford University Press; 1976.
76. Deo N. Graph theory with applications to engineering and computer science. Courier Dover Publications; 2017.
77. Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation, storage and exploration of

pan-genomic data. Bioinformatics. 2016;32:i487–93.
78. Valenzuela D, Norri T, Välimäki N, Pitkänen E, Mäkinen V. Towards pan-genome read alignment to improve

variation calling. BMC Genomics. 2018;19:87.
79. Zekic T, Holley G, Stoye J. Pan-Genome Storage and Analysis Techniques. Humana Press. 2018. p. 29–53.
80. Czedik-Eysenberg A, Seitner S, Güldener U, Koemeda S, Jez J, Colombini M, et al. The ‘PhenoBox’, a flexible,

automated, open-source plant phenotyping solution. New Phytol. 2018;

139

References

81. Lee U, Chang S, Putra GA, Kim H, Kim DH. An automated, high-throughput plant phenotyping system using
machine learning-based plant segmentation and image analysis. PLoS One. 2018;13:e0196615.

82. Krajewski P, Chen D, Ćwiek H, van Dijk ADJ, Fiorani F, Kersey P, et al. Towards recommendations for metadata
and data handling in plant phenotyping. J. Exp. Bot. 2015;66:5417–27.

83. Oppitz M, Tomsu P. Internet of Things. Invent. Cloud Century. Cham. 2018. p. 435–69.
84. Rudd JD, Roberson GT, Classen JJ. Application of satellite, unmanned aircraft system, and ground-based sensor

data for precision agriculture: a review. 2017 ASABE Annu. Int. Meet. 2017.
85. Rigden DJ, Fernández XM. The 2018 Nucleic Acids Research database issue and the online molecular biology

database collection. Nucleic Acids Res. 2018;46:D1–7.
86. W3C. XML specifications [Internet]. Available from: https://www.w3.org/TR/REC-xml/
87. W3C. RDF specifications [Internet]. Available from: https://www.w3.org/RDF/
88. Koehorst JJ, van Dam JCJ, Saccenti E, Martins dos Santos VAP, Suarez-Diez M, Schaap PJ. SAPP: functional

genome annotation and analysis through a semantic framework using FAIR principles. Hancock J, editor.
Bioinformatics. Oxford University Press; 2018;34:1401–3.

89. API technical and data standards [Internet]. Available from: https://www.gov.uk/guidance/gds-api-technical-and-
data-standards

90. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, et al. Microservices: yesterday, today,
and tomorrow. Present Ulterior Softw. Eng. Cham; 2017. p. 195–216.

91. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
92. Fan J, Han F, Liu H. Challenges of Big Data analysis. Natl. Sci. Rev. 2014;1:293–314.
93. Sivarajah U, Kamal MM, Irani Z, Weerakkody V. Critical analysis of Big Data challenges and analytical methods. J.

Bus. Res. 2017;70:263–86.

141

Summary
Bioinformatics and computational biology are driven by growing volumes of data in biological
systems that also tend to increase in complexity. The research presented in this thesis focuses on
the need to analyze such data volumes in such complexity. The results show that the application
of high-performance compute technologies, preferably combined with low-cost hardware, is a
successful approach to generate new bioinformatics approaches that allow addressing new types
of data analyses and research questions in biology.

An overview of the technologies and recent developments in biology and computer science
relevant for this thesis (Chapter 1) identifies current high-throughput sequencing platforms
as a key technology. Sequencing platforms now deliver data sets up to terabytes in size for
elucidating genome structure, gene content, gene activity, as well as gene variants. The concepts
and technologies from computer science to handle these large amounts of data include (a) grid
technologies for compute parallelization while making more efficient use of existing low-cost
infrastructure; (b) graphics cards for increased compute power and (c) graph databases for large
data volume storage and advanced methods for analyses. This thesis presents novel applications
and added value of these three concepts for bioinformatics research.

Small RNAs are important regulators of genome function, yet their prediction in genomes is
still a major computational challenge (Chapter 2). They tend to have a minimal free energy
(MFE) significantly lower than the MFE of non-small RNA sequences with the same nucleotide
composition. Evaluation of many MFEs is, however, too compute-intensive for genome-wide
screening. With a local grid infrastructure of desktop computers, MFE distributions of a very
large collection of sequence compositions were pre-calculated and used to determine the MFE
distribution for any given sequence composition by interpolation. This approach allows on-the-
fly calculation for any candidate sequence composition and makes genome-wide screening with
this characteristic of a pre-miRNA sequence feasible. This way, MFE evaluation can be added as
a new parameter for genome-wide selection of potential small RNA candidates (Chapter 2). The
concept of large-scale pre-calculation of compute-intensive parameters is one of the options for
future bioinformatics analyses.

Sequence alignment is essential in the analysis of next-generation sequencing data. The
gold standard for sequence alignment is the Smith-Waterman (SW) algorithm. Existing
implementations of the full SW algorithm are either not fast enough, or limited to dedicated tasks,
usually to optimize for speed, whereas popular heuristic SW versions (such as BLAST) suffer
from statistical issues. Graphics hardware is well-suited to speed up SW alignments, but SW on

142

Summary

graphics cards does not report the alignment details desired by biologists for further analysis.
This thesis presents the CUDA-based Parallel SW Alignment Software (PaSWAS) (Chapter 3).
PaSWAS gives (a) easy access to the computational power of NVIDIA-based graphics cards for
high-speed sequence alignments, (b) information such as score, number of gaps and mismatches
with the accuracy of the full SW algorithm and (c) a report of multiple hits per alignment. Two
use cases show the usability and versatility of the new parallel Smith-Waterman implementation
for bioinformatics analyses. It demonstrates the added value of the use of low-cost graphics cards
in bioinformatics software.

To further promote the use of PaSWAS, a new implementation, pyPaSWAS, provides the SW
sequence alignment code fully packed in Python and the more widely accepted OpenCL language
(Chapter 4). Moreover, pyPaSWAS now supports an affine gap penalty. This way, pyPaSWAS
presents an easy Python-based environment for accurate and retrievable parallel SW sequence
alignments on GPUs and multi-core systems. The strategy of integrating Python with high-
performance parallel compute languages to create a developer- and user-friendly environment is
worth to be considered for other computationally-intensive bioinformatics algorithms.

Thanks to the accuracy and retrieval characteristics of (py)PaSWAS, it was noted that long
sequencing reads on the PacBio platform can contain many artificial palindromic sequences.
These palindromes are due to errors introduced by whole-genome amplification (WGA). Next-
generation sequencing requires sufficient amounts of DNA. If not available, WGA is routinely
used to generate the amounts of DNA required. The introduction of artificial palindromic
sequences hampers assembly and severely limits the value of long sequencing reads. Pacasus
is a novel software tool to identify and resolve such artificial palindromic sequences in long
sequencing reads (Chapter 5). Two use cases show that Pacasus markedly improves read mapping
and assembly of WGA DNA. In comparison, the quality of mapping and assembly is similar to
the quality obtained with non-amplified DNA. Therefore, with Pacasus, long-read technology
becomes feasible for the sequencing of samples for which only very small amounts of DNA are
available, such as single cells or single chromosomes.

Numerous tools and databases exist to annotate and investigate the functions encoded in properly
assembled genomes, such as InterProScan, KEGG, GO and many more. Comparisons of
functionalities across multiple genomes is, however, not trivial. The concept of graph databases
is a promising novel approach from computer science for such multi-genome comparisons. For a
data set of all (> 150,000) genes of 17 fungal species functionally annotated with InterProScan,
the associated KEGG, GO and annotation data are imported and interconnected in a new Neo4j
graph database (Chapter 6). Relationships in this database are visualized and mined with a newly
refurbished and extended Neo4j plugin for Cytoscape. Inspection of (sub)graphs of functional
annotations is an attractive way to compare and group functional annotation across species. In the

143

use case of the seventeen fungal genomes, it helped to outline, compare and explain details of the
life style of groups of individual species.

The general discussion of this thesis provides an outlook on the future of bioinformatics in the
context of the results here presented (Chapter 7). A grid infrastructure is recommended as a
feasible and attractive cost-effective strategy to create compute power, as is the further inclusion
of graphics cards. Full implementation of graph technology is considered necessary for advancing
bioinformatics. The work presented in this thesis also shows that use of grids, graphics cards and
graph technology imply the redesign of existing software applications. To be able to create novel
stable, predictable and user-friendly applications in bioinformatics, formal training in software
engineering principles is highly recommended. Courses and other programs are necessary for
the life-long learning that will be crucial for the future of bioinformatics. The main challenges
for bioinformatics in the years to come are all data centered: issues with growing data volumes,
with more data types and with higher data complexity. To deal with these challenges, further
integration of now separate fields of science is warranted in ways we cannot even image yet.

145

Samenvatting
Bioinformatica en computationele biologie worden geconfronteerd met voortdurend groeiende
hoeveelheden data die ook steeds complexer worden. Het onderzoek in dit proefschrift richt
zich op de wens en noodzaak om deze grote en complexe datasets goed te kunnen analyseren.
De resultaten laten zien dat het gebruik van hoogwaardige rekentechnieken op -bij voorkeur-
goedkope hardware kan leiden tot nieuwe aanpakken voor data-analyse in de bioinformatica en
tot nieuwe onderzoeksvragen in de biologie.

Hoofdstuk 1 geeft een overzicht van recente ontwikkelingen in de biologie en de informatica met
betrekking tot technologieën die relevant zijn voor het onderzoek in dit proefschrift, waarbij de
ontwikkeling van de high-throughput sequencing platformen als belangrijkste wordt aangemerkt.
Deze platformen genereren tot terabytes aan data welke inzicht geven in (structuren in) genomen,
genen, gen-activiteiten alsmede genetische variatie. Technologieën uit de informatica die het
mede mogelijk maken om deze datasets goed te verwerken zijn (a) grid infrastructuren voor
de efficiënte parallelle verwerking op bestaande goedkope infrastructuur (b) grafische kaarten
voor meer rekenkracht en (c) graph databases voor grootschalige opslag en geavanceerde
analysetechnieken. Dit proefschrift presenteert nieuwe toepassingen op basis van deze drie
concepten en hun toegevoegde waarde voor de bioinformatica.

Kleine RNA-moleculen zijn belangrijk voor het reguleren van vele functies van het genoom,
maar het voorspellen van deze kleine moleculen in het genoom is nog steeds een computationele
uitdaging (Hoofdstuk 2). Deze RNA-moleculen hebben in de meeste gevallen een significant
lagere minimale vrije energie (minimal free energy, MFE) vergeleken met andere RNA-
moleculen met dezelfde nucleotidesamenstelling. De evaluatie van een groot aantal MFE-
waarden maakt een scan van een heel genoom te rekenintensief. Door gebruik te maken van
een lokale grid infrastructuur gebaseerd op een netwerk van desktopcomputers is een grote set
van MFE-waarden uitgerekend, waarmee de MFE-verdeling bepaald kan worden voor elke
gewenste nucleotidesequentie met behulp van interpolatie. Hiermee is het mogelijk om voor elke
kandidaatsequentie in korte tijd de MFE-verdeling te bepalen, waardoor het analyseren van een
heel genoom haalbaar wordt. De MFE-waarde kan toegevoegd worden als nieuwe parameter voor
het classificeren van RNA-moleculen (Hoofdstuk 2). Het concept van het vooraf grootschalig
uitrekenen van rekenintensieve berekeningen is een mogelijkheid voor toekomstig onderzoek aan
grote datasets, bijvoorbeeld in de bioinformatica.

Het vergelijken van sequenties is een essentieel onderdeel bij het analyseren van sequentiedata.
De gouden standaard hiervoor is het Smith-Waterman (SW) algoritme. Bestaande implementaties

146

Samenvatting

van het volledige SW-algoritme zijn niet snel genoeg, of gelimiteerd tot een bepaalde taak die
meestal geoptimaliseerd is voor snelheid. Andere aanpakken, zoals BLAST, zijn heuristisch
en hebben ingebouwde statistische onbetrouwbaarheden. Grafische kaarten zijn heel geschikt
voor SW analyses, maar bestaande implementaties geven niet voldoende details voor verdere
biologische analyses of interpretaties. Dit proefschrift presenteert (Hoofdstuk 3) een op de
CUDA programmeertaal gebaseerde parallelle implementatie van het SW algoritme: Parallele
Smith-Waterman Alignment Software (PaSWAS). PaSWAS geeft (a) makkelijk toegang tot de
rekenkracht van op NVIDIA-technologie gebaseerde grafische kaarten voor snelle analyses,
(b) informatie over bv. de score, het aantal gaten en het aantal niet-overeenkomstige letters
met behoud van de volledige accuratesse van het SW-algoritme en (c) de mogelijkheid om
meerdere resultaten per vergelijking te geven. Twee voorbeelden laten zien dat PaSWAS een
bruikbare en veelzijdige nieuwe parallelle implementatie van het SW-algoritme is voor analyses
in de bioinformatica. Het laat ook zien dat het gebruik van relatief goedkope grafische kaarten
meerwaarde heeft voor de bioinformatica.

Om het gebruik van PaSWAS verder te stimuleren/vergemakkelijken heeft een nieuwe
implementatie, pyPaSWAS, de SW analyses samengevoegd met Python code. Deze implementatie
bevat ook een versie in de breed geaccepteerde OpenCL programmeertaal (Hoofdstuk 4). Ook
heeft pyPaSWAS de mogelijkheid om gebruik te maken van de meest geavanceerde wijze van
het meenemen van gaten in de vergelijking (‘affine gap penalty’). pyPaSWAS geeft op deze
wijze via een toegankelijke Python omgeving de mogelijkheid om accurate en volledige SW
analyses uit te voeren op verschillende merken grafische kaarten en computers met meerdere
CPU kernen. De strategie van het samenvoegen van Python met parallelle rekentalen om tot
een ontwikkelaar(s)- en gebruikersvriendelijke omgeving te komen kan overwogen worden voor
toekomstige rekenintensieve taken in de bioinformatica.

Dankzij de accuratesse en informatie van (py)PaSWAS werd zichtbaar dat lange sequenties
afkomstig van het PacBio sequentieplatform op grote schaal palindromen kunnen bevatten. Deze
palindromen bleken kunstmatig tot stand te komen tijdens het proces van genoomvermeerdering
(whole genome amplication (WGA)). De huidige sequentieplatformen vereisen voldoende DNA
om de sequentie te kunnen bepalen. Als de benodigde hoeveelheid DNA niet aanwezig is, wordt
routinematig WGA ingezet om meer DNA te genereren. Door de introductie van kunstmatige
palindromen kunnen dergelijke lange sequenties niet goed ingezet worden bij de opheldering van
genoomstructuren (‘assembly’). Dit beperkt de inzet van de WGA-technologie enorm. Pacasus
is nieuwe software die het mogelijk maakt om deze palindromen te detecteren en hun informatie
ook te gebruiken (Hoofdstuk 5). Voorbeelden laten zien dat Pacasus belangrijke verbeteringen
oplevert bij de kartering (‘mapping’) van WGA DNA-sequenties op een genoom en bij het de
novo assembleren van een genoom. De resultaten zijn goed vergelijkbaar met de resultaten

147

van DNA dat niet via WGA is verkregen. Met Pacasus wordt het dus mogelijk om lange DNA-
sequenties te gebruiken van biologische specimen waarvan maar heel weinig DNA beschikbaar
is, zoals in het geval van een enkele cel of een enkel chromosoom.

Er zijn talloze softwarepakketten en databases beschikbaar, zoals InterProScan, KEGG en GO,
om de functies te analyseren in een genoom waarvan de structuur is opgehelderd. Het vergelijken
van functies tussen verschillende genomen is echter niet triviaal. Het concept van graph databases
is een nieuwe en interessante aanpak voor dit soort meervoudige-genoomvergelijkingen. Voor
een dataset van alle (> 150.000) genen van zeventien schimmels, die functioneel beschreven
(geannoteerd) zijn met InterProScan, zijn alle KEGG, GO en andere functionele beschrijvingen
in een Neo4j graph database gecombineerd (Hoofdstuk 6). Relaties in deze database zijn
gevisualiseerd en doorzocht via een aangepaste en uitgebreide Neo4j plug-in voor Cytoscape.
Analyse van (sub)graphs van functionele annotaties is een attractieve methode voor het vergelijken
en groeperen van functionele annotaties van meerdere soorten. In het voorbeeld van zeventien
schimmelgenomen werd het mogelijk om nieuwe vergelijkingen te maken tussen groepen van
verschillende organismen en nieuwe inzichten te verkrijgen over de verschillende levensstijlen
van die groepen van organismen.

De algemene discussie van dit proefschrift (Hoofdstuk 7) geeft vergezichten op de toekomst
van bioinformatica in het licht van de hier gepresenteerde resultaten. Een grid infrastructuur
is een aantrekkelijke en goedkope wijze om de beschikking te krijgen over meer rekenkracht.
De toevoeging van grafische kaarten aan dit geheel vergroot de rekenkracht verder. Voor veel
vraagstukken in de bioinformatica is het even aantrekkelijk als noodzakelijk om meer gebruik te
maken van graph-technologieën. Het proefschrift laat zien dat voor het gebruik van grids, grafische
kaarten en graph technologieën het nodig is om bestaande softwareapplicaties te herschrijven. Om
de vereiste nieuwe, stabiele, voorspelbare en gebruikersvriendelijke bioinformatica-applicaties
te maken is training in software engineering principes zeer aan te raden. Cursussen en andere
lesprogramma’s zijn nodig voor het leven-lang-leren dat cruciaal zal zijn voor de toekomst van
de bioinformatica. Deze toekomst draait rond data: uitdagingen met de verdere groei van datasets
met meer verschillende soorten data en toenemende complexiteit bepalen het beeld. Om met
deze uitdagingen om te kunnen gaan zullen nu nog gescheiden onderzoeksgebieden geïntegreerd
moeten worden op manieren die we ons nu nog niet kunnen voorstellen.

149

Acknowledgements
This thesis is the result of a long journey, during which many people have contributed to, helped with,
or have influenced me and my work. Or may have been influenced by me and my work. I here try
to acknowledge as many people as possible, but in case I forget any, I offer my sincere apologies in
advance.

First and foremost, I like to thank Jan Peter Nap for coaching me into a PhD project and, more importantly,
for his supervision, patience and guidance. We might not always have agreed on everything, but the
trust you gave me in finding my way and letting me structure this PhD with topics I found appealing
has been of great importance. You also taught me how to become a better researcher. And indeed,
scientific writing will never be one of my favourite activities. The support from the management team
of the Hanze Institute for Life Science & Technology, including Ida, Rob and Victorine, has been key in
providing me the opportunity to work on my research projects and include these in my classes. It made
the lectures and lab work more attractive for the students and helped my research.

I thank all my students, notably Jerven, Heleen, Iris, Wil, Patrick and Marc Jan, for all intense discussions
on GPU technology, dingoes and machine learning. Several students are a co-author on papers in this
thesis, and I am grateful that Sander, Feyruz, Iwe and Marcel helped me with these topics. My direct
colleagues at Hanze Applied Bioinformatics have been essential for the work presented: Michiel never
stopped asking questions and was always willing to brainstorm and help out. Piet, your help has been
invaluable. You set up the grid infrastructure for me on one of the best computer networks I have ever
seen. You never got angry for freezing up a computer or making the temperature in the lecture rooms
rise beyond tropical values. For questions related to statistics, Wim was always happy to help. Arne
made highly appreciated contributions in code and comments. I have really enjoyed my time at the
Institute for Life Science and Technology. I have had good fun with colleagues and students from the
other three educational programs. Suzanne, Josina, Grietinus, Peter, Henk, Wietske and the students
Julia and Tessa all deserve special mention.

I started my PhD project with Willem Stiekema as intended promotor. As my PhD took a bit longer
than planned, he left science before the finalisation of my thesis. Dick de Ridder as professor of
Bioinformatics at WUR was willing to take over the role as promotor. I am very happy Dick accepted
this PhD project: your technological knowledge and insights are excellent and have been instrumental
for finishing. You have not only commented on my writing, but you have also been willing to clone my
repository and perform extensive user-tests on the software. Your push-to-finish mentality combined
with your friendly personality helped a great deal in getting this thesis job done!

During my PhD I have had the opportunity to visit the University of New South Wales twice for a
couple of months. I enjoyed my time at the lab there, and I am grateful Bruna, Bill and Alan gave me
a chance to work in the most important lab on dingo research in the world. I also look back with joy
on our walks in the Blue Mountains and salmon on the barbie. Also, Kylie, Katherina and the other
team members of BABS taught me a lot about working in the lab and the challenges you face when
performing biological research.

150

Acknowledgements

After almost ten years working at the Hanze UAS, I switched to the job of bioinformatics researcher at
Applied Bioinformatics (WUR). I like to thank Gabino for hiring me and allowing me to integrate my
earlier PhD research with my new work assignments. Otherwise I would have had much more struggle
to finish this PhD project. Within these projects I worked closely with Elio and Henri on Pacasus. The
support I also got from the other team members, Linda, Jan, Thamara, Bas, Aalt-Jan, Saulo, Ronald and
Sander helped me to stay focused and enjoy my PhD. Also I have appreciated the help and support I
received from the chair group staff, mainly Harm and Sandra. I will never forget my office roommate
and fellow-PhD-enthusiast: Sevgin. Although you seemed to think I was doing a PhD ‘just as a hobby’,
I will treasure the talks we had on all things concerning doing a PhD and beyond.

For one project at WUR, Theo asked me to help a PhD student with some bioinformatics work. This
work got a little bit out of hand and resulted in a comprehensive genome comparison of several fungal
species. Bart, it was an honour and a pleasure to work with you!

My PhD could not have been possible with the help of many other scientists. In particular I like to thank
Ana and Roshan for their important contributions to PaSWAS and pyPaSWAS. The same gratitude goes
to Paul and Kateryna for their work on the gorilla Y chromosome.

Sadly, we lost two Hanze colleagues, Ko and Jos, during my time at Hanze. With the passing of Alan, I
lost a friend, and the dingo world lost one of its key supporters.

As with any PhD, but especially with one that took place for a large part in spare time, people in my
personal life played important roles. My dearest friends Michael and Ivor were there from the start
and supported me all the way. Coming from IT backgrounds, they also helped in shaping the computer
science part of my PhD. My family, Arja, Daphne and my parents, were very supportive and helpful
where they could. Halfway through my PhD I met Judith and her loving family. Anny and Harry helped
out by taking care of Tobias when needed, and Arthur was so kind to allow me to work in his apartment.
But most of all I am forever grateful for the love and support I got from my partner Judith. It was not
always easy, and she had to make sacrifices so I could work on my PhD and finish my thesis. Our sons
Tobias and Kasper have now no idea, but hopefully someday they will read this thesis to see what their
dad was up to in their first years.

153

Curriculum vitae
Sven Warris was born in Assen, The Netherlands on December 10th,
1975. His family moved to Emmen in 1976, where he had his primairy
education and he started pre-university (VWO) education. Halfway, the
family moved to Uden, where he graduated in 1994. The same year, Sven
started the study Computer Science at the University of Groningen, as
the prerequisite for the MSc (Drs) program Technical Cognitive Science,
currently the MSc program Artificial Intelligence. Sven graduated in 2002
at the Neurobiophysics department of the University of Groningen with a

thesis on biologically plausible neural networks. He worked as software engineer before joining Hanze
University of Applied Sciences Groningen in 2004 as lecturer/researcher, investigating topics in applied
bioinformatics and teaching computer science and data science-related topics to bachelor (now BSc)
students of (applied) bioinformatics. In 2007, Sven started the PhD project the results of which are
presented in this thesis, in addition to ongoing teaching responsibilities. As part of his PhD, he spent in
total four-and-a-half months (2008 and 2010) at the University of New South Wales, Sydney, Australia.
In 2012, he started as researcher bioinformatics in the Cluster Applied Bioinformatics of Wageningen
University & Research, focusing on applying computer/data science technologies to (plant-)biological
questions and research topics, part of which also features in this thesis. He will continue his work as a
senior researcher in the same cluster.

155

List of publications
Warris, Sven; Boymans, Sander; Muiser, Iwe; Noback, Michiel; Krijnen, Wim; Nap, Jan-
Peter; Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of
randomized sequences, BMC Research Notes. 2014 (Chapter 2)

Warris, Sven; Yalcin, Feyruz; Jackson, Katherine JL; Nap, Jan Peter; Flexible, fast and accurate
sequence alignment profiling on GPGPU with PaSWAS, PloS ONE. 2015 (Chapter 3)

Vanheule, Adriaan; Audenaert, Kris; Warris, Sven; van de Geest, Henri; Schijlen, Elio; Höfte,
Monica; De Saeger, Sarah; Haesaert, Geert; Waalwijk, Cees; van der Lee, Theo; Living apart
together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen,
BMC Genomics. 2016

van der Wolf, JM; Kastelein, P; Krijger, MC; Hendriks, MJA; van der Lee, TAJ; Taparia, T;
Warris, S; Stol, W; Amsing, J; Suppressiveness of casing material against bacterial blotch,
KNPV meeting Fytobacteriologie. 2016

van der Wolf, JM; Kastelein, P; Krijger, MC; Hendriks, MJA; Baars, JJP; Amsing, JGM; van
der Lee, TAJ; Warris, S; Characterization of Pseudomonas species causing brown blotch of
Agaricus bisporis., 19th ISMS Congress proceeding. 2016

Waalwijk, Cees; Vanheule, Adriaan; Audenaert, Kris; Zhang, Hao; Warris, Sven; van de Geest,
Henri; van der Lee, Theo; Fusarium in the age of genomics, Tropical Plant Pathology. 2017

van der Wolf, JM; Coipan, EC; Kastelein, P; Krijger, MC; Tom, Jolanda; Riksen, Natasja; Nijhuis,
EH; Warris, S; Fokkema, Jenny; Suppressiveness of Potato against Dickeya solani, Euphresco
III Dickeya/Pectobacterium workshop. 2017

Schulze, Stefan; Urzica, Eugen; Reijnders, Maarten JMF; Geest, Henri; Warris, Sven; Bakker,
Linda V; Fufezan, Christian; Martins dos Santos, Vitor AP; Schaap, Peter J; Peters, Sander
A; Identification of methylated GnTI-dependent N-glycans in Botryococcus brauni, New
Phytologist, 215, 4, 1361-1369, 2017

Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri;
Varbanescu, Ana L; Nap, Jan-Peter; pyPaSWAS: Python-based multi-core CPU and GPU
sequence alignment, PloS ONE. 2018 (Chapter 4)

Warris, Sven; Dijkxhoorn, Steven; van Sloten, Teije; van de Vossenberg, Bart TLH; Mining
functional annotations across species, bioRxiv. 2018 (Chapter 6)

Cochran, Alyssa T; Bauer, Jemma; Metcalf, Jessica L; Lovecka, Petra; Sura de Jong, Martina;
Warris, Sven; Mooijman, Paul JW; Van der Meer, Ingrid; Knight, Rob; Pilon-Smits, Elizabeth

156

Publications

AH; Plant Selenium Hyperaccumulation Affects Rhizosphere: Enhanced Species Richness
and Altered Species Composition, Phytobiomes. 2018

Warris, Sven; Schijlen, Elio; van de Geest, Henri; Vegesna, Rahulsimham; Hesselink, Thamara;
te Lintel Hekkert, Bas; Perez, Gabino Sanchez; Medvedev, Paul; Makova, Kateryna D; de
Ridder, Dick; Correcting palindromes in long reads after whole-genome amplification, BMC
Genomics. 2018 (Chapter 5)

Warris, Sven; van der Lee, T; Professional, easy to use and robust bioinformatic tools, Scientific
Symposium FAIR Data Sciences for Green Life Sciences. 2018

B.T.L.H. van de Vossenberg & S. Warris, H.D.T. Nguyen, M. van Gent-Pelzer, D.L. Joly, H.C.
van de Geest, P.J.M. Bonants, D.S. Smith, C.A. Lévesque, T.A.J. van der Lee, Comparative
genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle
of Synchytrium endobioticum, Nature Scientific Reports. 2019 (Basis for Chapter 6)

159

Propositions
1. General-Purpose Graphics Processing Unit (GPGPU) technologies are

highly undervalued in bioinformatics research.
(this thesis)

2. Proven applicability and novelty are the chicken and egg of bioinformatics.
(this thesis)

3. More funds should be moved from traditional research-oriented universities
to Universities of Applied Sciences for higher return-on-investment and
higher impact of research on society.

4. Human intelligence as basis for Artificial Intelligence (AI) is too scary to be
considered safe.

5. Given the current state of biological databases, FAIR stands for Freakishly
Ambiguous and Incomplete Resources.

6. Dreaming of a next Frisian Eleven Cities Tour is the ultimate denial of
climate change.

Propositions belonging to the thesis, entitled
Application of high performance compute technology in bioinformatics
Sven Warris
Wageningen, 22 October 2019

The research described in this thesis was financially supported by the Hanze University of Applied
Sciences Groningen. Sections of the work have been part of the research programme “Application of
High-Performance, Low-Cost Biocomputing in Genomics (BioCOMP)”, which was a SIA RAAK-
PRO project financed in part by the Task Force for Applied Research SIA, now a unit of the Dutch
Research Council (NWO).

Additional financial support for printing this thesis from the Research Centre BioBased Economy of the
Hanze University of Applied Sciences Groningen is gratefully acknowledged.

