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Colloidal gels are space-spanning networks of aggregated particles. The mechanical response of
colloidal gels is governed, to a large extent, by the properties of the individual gel strands. To study
how colloidal gels respond to repeated deformations, we perform Brownian Dynamics simulations
on single strands of aggregated colloidal particles. While current models assume that gel failure is
due to the brittle rupture of gel strands, our simulations show that gel strands undergo large plastic
deformations prior to breaking. Rearrangement of particles within the strands leads to plastic
lengthening and softening of the strands, which may ultimately lead to strand necking and ductile
failure. This failure mechanism occurs irrespective of the thickness and length of the strands and
the range and strength of the interaction potential. Rupture of gel strands is more likely for long
and thin strands and for a long-ranged interaction potential.

I. Introduction

Upon introducing an attractive interaction colloidal par-
ticles can aggregate and form a space-spanning network
of dynamically arrested particles [1, 2]. Such a network,
called a colloidal gel, behaves as an elastic solid that
is able to withstand mechanical stress. Yet, when the
applied stress exceeds the yield stress, the gel fluidizes
and/or fractures and flows like a liquid [3–9]. This com-
bination of properties makes colloidal gels interesting for
a variety of applications, including food products, cos-
metics, and scaffolds for tissue engineering [10–14].

The macroscopic properties of colloidal gels, such as
their elasticity and yielding behaviour, are intimately
linked to the structure and connectivity of the particle
network at the microscale [15–17]. The main control pa-
rameters that determine the structure of a colloidal gel
are the magnitude of the attraction strength between the
particles [18–22], the particle volume fraction [18, 21, 22],
and the shear history of the gel [23–25]. In the limit of
very strong attraction and very low volume fraction, ir-
reversible aggregation leads to the formation of dilute,
diffusion-limited fractal gels [18]. In this regime, the me-
chanics and dynamics of the gel can be described us-
ing scaling approaches or by simulation models based on
percolating networks of gel strands that ignore the in-
ternal structure of the strands [26–29]. However, when
the attraction strength is only a few times the thermal
energy kBT , particle rearrangements can occur within
the gel, leading to a much coarser gel structure formed
by spinodal decomposition [19, 20]. The interplay be-
tween phase separation through spinodal decomposition
and kinetic arrest then leads to very heterogeneous gels.
As long as the volume fraction of particles is not too
high (i.e. significantly below the colloidal glass transi-
tion), the microstructure of these gels consists of inter-
connected gel strands with a length and thickness that
depends strongly on the interaction potential and the vol-
ume fraction [21, 22].

The linear elasticity of colloidal gels can be understood
by considering the colloidal gel as a random network of
gel strands, with an effective spring constant that de-
pends on the thickness of the strands [30]. However,
the non-linear response of colloidal gels remains much
less clear. Fracture and yielding of colloidal gels have
been attributed to the brittle-like rupture of individ-
ual gel strands due to force-activated breaking of inter
particle bonds [30, 31]. However, several authors have
shown evidence that this picture may not be very ac-
curate, and that failure of colloidal gels is preceded by
significant plastic particle rearrangements [32–34]. Re-
cently we have shown, using a combination of rheological
experiments and computer simulations, that these plas-
tic rearrangements within gel strands lead to irreversible
strand stretching and build-up of excess length, or slack,
rather than strand rupture. [35]

Our results also suggested that the rheological response
of colloidal gel networks can be understood by consider-
ing the mechanical and dynamic properties of the individ-
ual gel strands, which form the basic structural units of
the gel (at least, at moderate volume fractions). To relate
rheology to the structure of the colloidal gel, it is there-
fore necessary to know how the response of a gel strand
depends on its thickness and length and on the interac-
tion potential between the particles. Here, we will study
this relation using computer simulations of gel strands
under repeated deformation.

II. Method

We perform Brownian Dynamics simulation to study the
effect of repeated deformation on individual gel strands.
We consider colloidal particles that interact through a
Morse potential [36]:

βu(r) = βε exp(ρ0[a− r]) (exp[ρ0(a− r)]− 2) (1)
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FIG. 1. Visual representation of A) thick, B) intermediate
and C) thin strands before deformation. A2, B2 and C2,
show strands that are 2x longer compared to A1, B1 and C1,
whereas A3, B3 and A3 are 3x longer compared to the short-
est strands. The average thickness of the start configurations
〈D0〉 (expressed in particle diameters) is indicated next to the
strands (see equation 4).

with β = 1/kBT , ε the depth of the energy minimum
and a the particle diameter. The parameter ρ0 specifies
the width of the interaction [37]. The different potentials
used in the paper are shown in SI Fig. 1†.

The motion of a particle i with position ri is obtained
by solving the overdamped Langevin equation:

ṙi(t) = βD0[−∇iU(t)] +
√

2D0ξi(t) (2)

where ξi(t) is random white noise, sampled with zero
mean and unit variance, to model the thermal fluctua-
tions of the particles. D0 = kBT/ζf is the short-time
diffusion coefficient with ζf the friction coefficient, set
to unity. The time step δt for the numerical integration
is set to δt = 1 × 10−6 τB , where τB = a2/D0 is the
Brownian time scale, which defines the unit of time in
our simulations.

Gel strands are formed between two attractive flat
walls. The parameters for the particle-wall interaction
are the same as those for the particle-particle interac-
tions, to make this interaction as inert as possible. The
simulation box is periodic in the y- and z direction. The
initial configuration of the gel strands is formed by plac-
ing a number of particles on a face centered cubic (fcc)
lattice in a certain H ×W × L, with H, W , and L the
height, width, and length, respectively, expressed in num-
bers of particles. We consider nine types of gel strands

that vary in thickness and length. For a thick gel strand,
H = W = 5 particles (type A), for intermediate gel
strands, H = W = 4 (type B), and for thin gel strands,
H = W = 3 (type C). For each strand thickness, we
consider three different lengths (specified as 1, 2, and 3),
which gives the following number of particles for the dif-
ferent configurations: A1 = 200, B1 = 128, C1 = 77,
A2 = 400, B2 = 256, C2 = 144, A3 = 600, B3 = 384
and C3 = 216. The equilibration time before applying
oscillatory deformation is set to t = 568 τB . As dis-
tances between particles in the initial configuration are
larger than the range of the potential, particles aggre-
gate randomly. Thus, the initial fcc lattice affects the
approximate thickness of the gel strand but does not in-
fluence how particles are structured after equilibration.
In Fig. 1 examples of these equilibrated gel strands are
shown. The average thickness for each type of strand
before deformation 〈D0〉 expressed in particle diameters
equals 2.6, 2.0 and 1.4, respectively (see also equation 4
below).

After equilibration, the gel strand is deformed through
14 oscillations in which the distance between the two
walls is varied in a cyclic manner by moving the posi-
tion of the left wall outwards. This leads to a sawtooth
strain profile with a maximum strain γmax = 0.04 and
a fixed strain rate γ̇ = 0.00284τ−1B . Data for different
amplitudes and strain rates are shown in the SI (Fig. 6
and 7). To make sure that observations are statistically
relevant, each data point contains simulation data for
at least 30 different gel strands. Here, we only consider
strands that stay intact during the entire deformation.

III. Results and discussion

We cyclically deform the gel strands at constant strain
rate and measure the resulting force f exerted on the
walls. For strain cycles at small amplitude (γmax =
0.005), the force increases linearly with deformation, with
a spring constant that increases with the strand thickness
(SI Fig. 2). However, for larger amplitude (γmax = 0.04),
the force-strain curves are highly non-linear for all gel
strands and show a pronounced hysteresis loop (Fig. 2a),
which indicates significant energy dissipation during the
deformation cycles. The dissipated energy is highest in
the first deformation cycle (Fig. 2b), which is found to
differ qualitatively from the subsequent cycles: the force
first increases with increasing strain until a threshold
value is reached, after which it levels off. This plateau in
the force indicates plastic flow inside the gel strand due
to irreversible particle rearrangements. The threshold
force for plastic flow is proportional to the cross-section
of the strands (SI, Fig. 3a), and increases with increas-
ing strain rate (SI, Fig. 7), in agreement with models
based on Kramers theory for force-activated dissociation
of particle-particle bonds [38]. As we have shown pre-
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FIG. 2. (a) Force-strain curves upon 14 oscillatory expansions of gel strands of different diameter (γmax = 0.04). The solid line
indicates the loading- and the dotted line the unloading curve. (b) Dissipated energy per oscillation cn, obtained by integration
of the force-strain curves. The shaded area indicates the standard deviation. (a) and (b) contain data of the longest gel strands
(A3 − C3) (c) Average elastic force of the 3th, 4th and 5th oscillation cycle for gel strands of different diameter and length
(γmax = 0.04). The color gradient indicates the length of the strands from short (light) to long (dark). The inset shows the
spring constant k (units kBT a−1 γ−1) for the different strands at a deformation of γmax = 0.04 (◦) and γmax = 0.005 (�).

viously [35], the plastic rearrangements are associated
with the irreversible stretching of the gel strand and the
build-up of slack. Here, slack is defined as excess length
that is created due to lengthening of the strands. This
softens the gel strand, so that in subsequent cycles the
observed force is lower than in the first cycle. The force-
strain curve then quickly reaches a limit cycle, with an
enclosed area that accounts for the viscoelastic dissipa-
tion due to reversible particle rearrangements. The dis-
sipated energy is highest for the thick gel strands and
lowest for the thin strands (Fig. 2b). As shown in SI
Fig. 3b, the dissipated energy is roughly proportional
to the cross-section A of the strands, with each particle
contributing 3-4% of the interaction energy ε to the en-
ergy dissipation. Increasing the strain amplitude from
γmax = 0.04 to γmax = 0.06 (SI, Fig. 6) results in a
single particle contribution of 5-6% of ε to the dissipated
energy. The total energy dissipation thus scales with the
applied strain amplitude and with the interaction energy.

To analyze the softening of the gel strands in more de-
tail, we disentangle the elastic and viscous contributions
to the measured response by averaging the loading and
unloading curve for each cycle [39]. This averages out the
viscous contribution, so that only the elastic contribution
remains. The resulting elastic force goes through zero at
a finite strain (Fig. 2c), which reflects the increase in
the rest length due to the expansion cycles. The relative
increase in rest length is highest for the thick strands
(approximately 1.7%) and smallest for the thin strands
(∼ 0.3%), indicating that thicker strands have more pos-
sibilities to deform plastically.

The plastic stretching of the gel strand leads to the
build-up of slack. In subsequent deformation cycles, the
slack induced in previous cycles is pulled out first, which
results in little resistance and a strong decrease in the

effective spring constant. Indeed, the effective spring
constants measured after deforming the gel at a strain
γmax = 0.04 is significantly smaller than those measured
in the linear deformation regime (γmax = 0.005) (inset
Fig. 2c). When the strain amplitude of the cycles be-
comes larger, the accumulated slack increases so that the
effective spring constant decreases even further [35] (see
SI, Fig. 6). As expected, the spring constant increases
with strand thickness and is approximately proportional
to the cross-section of the the strands (SI, Fig. 3c), indi-
cating that each inter-particle bond contributes roughly
equally to the spring constant.

As the rest length of the gel strands increases in the
loading cycle, it must be compressed in the return cycle.
This could lead to bending or buckling of the strand. To
investigate this, we follow the contour of the gel strand
during the deformation cycles. We do this by dividing
the strand into equally sized bins (σ = 0.9) and calcu-
lating the average coordinates in each bin [40]. Since the
ends of the strand are not fixed in our simulation, the
strand fluctuates significantly, both during the deforma-
tion cycles and in rest (Fig. 3a). To analyze the shape
of the strand and the amount of bending that occurs, we
draw a line through the two ends of the strand and cal-
culate the local distance of the contour from this straight
line for each bin. The average distance over all bins α
(Fig. 3b) is a measure for how much the shape of the gel
strand deviates from a straight line, and indicates bend-
ing of the strand. For a gel strand that is not deformed,
α does not change significantly, indicating that the shape
of the gel strand remains more or less the same. However,
when the gel strands are deformed α increases gradually
with each deformation cycle, indicating that the strands
must bend more to accommodate the increase in rest
length. The increase in α is more pronounced for the
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FIG. 3. (a) Projected 3D coordinates of a single gel strand (B3, γmax = 0.04) at the start of each oscillation (cycle number
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markers represent an undeformed gel strand (zero measurement). (c) Average number of bonds per particle in time (A2 - C2).

thicker gel strands, which is in agreement with our ob-
servation that the thick strands show a larger increase in
rest length upon deformation [41]. Thus, thick strands
are more prone to plastically elongate and develop slack,
thereby contributing more strongly to this unusual non-
linear response.

The internal rearrangements in the gel strands lead
to the breaking and reformation of inter-particle bonds.
Surprisingly, the average number of bonds per particle
Nb increases as the strands are deformed and become
longer (Fig. 3c). This suggests that the applied deforma-
tion leads to accelerated aging and coarsening of the gel
strand, driving it gradually into a more favorable state
by forming more inter-particle bonds [25, 42]. A similar
strain-induced increase of the number of inter-particle
bonds has been seen in computer simulations [43] and
in experiments [24] on colloidal gel networks. We note
that the strain-induced increase in the number of bonds
is more pronounced and continues for a longer period as
the gel strands get thicker (see also SI, Fig. 8b where
data for even thicker gel strands are shown). This is fur-
ther confirmed by the dissipated energy per cycle, which
takes much longer to reach a plateau for thicker strands
(SI, Fig. 8a). Again, this indicates that thick strands
have more possibilities for local particle rearrangements
and plastic deformation than thinner strands. The over-
all coarsening must imply that the deformation of the
strands upon stretching occurs heterogeneously, so that
thicker regions can form that are connected by thinner
sections. This is reminiscent of the Rayleigh-Plateau in-
stability in liquid jets (see Fig. 4b), and highlights the
arrested liquid state of the colloidal gel. We further note
that, even though the total number of bonds gradually
increases, the force sustained by the strand does not in-
crease. Our data suggests that this is because these newly
formed bonds only stiffen the parts of the gel strand that

are already strong, while the overall stiffness is deter-
mined mainly by the weak regions. A similar conclusion
was obtained in recent computer simulations on large gel
networks [43].

We can further quantify the heterogeneity of the inter-
nal rearrangements by considering the displacement for
each particle during a deformation cycle cn:

mi(cn) =
1

Nia2

Ni∑
j=1

〈(rij(0)− rij(t))
2〉n (3)

where rij(0) and rij(t) denote the separation vector be-
tween particle i and neighbouring particles j at the start
of the cycle and after a time t, respectively, and Ni is
the number of nearest neighbours of particle i. Here, the
average is taken over the entire oscillation.

As shown in Fig. 4, particles in thin strands on aver-
age rearrange over larger distances compared to particles
in thick strands. Upon deformation, many particles in
a thin strand participate in movement, whereas only a
few particles in the thicker strands move. Note, that
the displacements of the particles contain both the elas-
tic and plastic contributions. From the rest length of
the strands we know that thick strands lengthen more
and have a higher plastic deformation. Here, we see that
these plastic deformations are indeed very heterogeneous
and strongly localized to certain regions in the gel strand.
The same heterogeneity is seen in thin strands, but these
strands are also largely elastically deformed. The strong
strain localization leads to the formation of thin necks,
where the strand will eventually rupture.

We also monitor strand rupture in our simulations and
find that the percentage of broken gel strands increases
strongly with increasing strand length and decreasing
strand thickness (Fig. 5a). Long strands break more
easily, because the probability that a weak spot forms



5

FIG. 4. (a) Average mobility of the particles per oscillation (for strand types A2 - C2). (b) Visual representation of parti-
cle displacements, highlighting the heterogeneity of the strain. The depicted strands are from oscillation cycle 1, 7 and 14
respectively.
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during the deformation increases as strands get longer.
Thin strands are held together by fewer inter-particle
bonds, making them more prone to breakage. For the
longest gel strands, the moment of rupture appears to
shift to longer times as the strands get thicker: most of
the thin strands (C3) rupture in the first cycles, while for
the thicker strands (A3) rupture occurs more frequently
in the later cycles, probably because more plastic defor-
mation is needed before a sufficiently weak spot is formed.
For the shorter strands, we do not observe such a trend,
but this could be due to poor statistics, as the num-
ber of broken strands is much smaller for short chains.
The fraction of broken gel strands also increases strongly
with increasing strain amplitude (SI, Fig. 6), and with
increasing strain rate (SI, Fig. 7), the latter indicating a

transition to a more brittle response at higher rates due
to fewer possibilities for plastic rearrangements [35]. In
the breakage statistics we specifically show the amount of
breakage at the walls. This breakage does not dominate.
Only for thin gel strands we see that the connection with
the wall becomes a weak spot. We note that failure at
the walls of the container is also observed experimentally
in the yielding of some colloidal gels [5, 6].

To follow the ductile deformation leading to strand
rupture, we consider the local thickness of the gel strand
by dividing the strand into a number of segments and
calculating the root-mean square thickness in each seg-



6

10 20 30

βε

0

20

40

60

80

100
B

%
a

0.00 0.01 0.02 0.03 0.04

γ

−150

−50

50

150

250

350

450

f
a

k
B
T

b

0.00 0.01 0.02 0.03 0.04

γ

−100

0

100

200

300

400

f
a

k
B
T

c
βε = 10
βε = 20
βε = 30

FIG. 6. (a) Breakage statistics for gel strands at different interaction energies. We distinguish breakage at the wall (gray) and
breakage into clusters at oscillation cycles interval 1-5, 6-10 and 11-14 (dark till light) respectively. (b) Force-strain curves of
14 subsequent oscillatory deformations. (c) Average elastic force of the 3th, 4th and 5th oscillation cycle.

ment [44]:

D(x) =
1

Nxra

Nx∑
k=1

√
(rk(x)− rmean(x))2 (4)

where rmean is the average coordinate of the particles
in a specific segment, rk is the position of particle k in
this segment (projected onto the xz-plane of the average
coordinate), Nx equals the total number of particles
per segment and ra is the radius of the particles. We
plot the local thickness along the gel strand for different
times (Fig. 5b). Before the deformation cycles, the
thickness is quite uniform along the strand. However, as
the deformation cycles continue, a necking region arises
locally. This necking region forms rather abruptly, as
shown in Fig. 5c, where the thickness for a few locations
along the gel strand (see arrows Fig. 5b) is plotted as a
function of time. This rapid decrease in local thickness
finally results in breakage of the gel strand.

The necking process leading to strand fracture raises
the question whether strand rupture occurs at pre-
existing defects in the gel strands, formed during gel
formation as suggested previously [30], or at random
locations along the strand where plastic deformations
happen to localize during deformation of the gel. In
other words, is there a correlation between the thinnest
region of the gel strand before deformation and the
location where the strand finally breaks? To test this, we
deform the initial configurations of 15 strands multiple
times and monitor the initial thickness at the location
where the strand is found to break. We find that the
strand is indeed more likely to break at a thin region: the
average initial thickness at the location of rupture, nor-
malized by the average strand thickness, 〈Dbreak〉/〈D0〉
is 0.74, 0.82 and 0.82 for the thick, intermediate, and
thin strands, respectively. Thus, strain localization and
subsequent strand rupture tend to occur predominantly
in low density regions of gel strands.

In 46 % of the cases, thick strands break at the
thinnest part Dmin of the start configuration. For
intermediate and thin strands, this is only 37 % and
18 %, respectively. It can be concluded, therefore, that
thick strands are more likely to break at a weak spot
or defect in the original strand, while thin strands tend
to break at more random locations. Previously, we
noted that in thick strands only a few particles have
large rearrangements at the weak spots. As a result,
the initial structure of these strands is more likely to
determine where failure will occur, in line with previous
work [30].

Now that we have shown how the thickness and length
of colloidal gel strands affect their mechanical and
plastic response, we consider the effect of the interaction
potential between the particles (for potentials see SI
Fig. 1). Increasing the attraction strength between the
particles makes the strands more resistant to rupture,
as indicated by a lower percentage of broken strands
(Fig. 6a). The force-strain relations for the different
interaction energies show a similar plastic flow regime
in the first deformation cycle, with a threshold force for
plastic flow that increases approximately proportionally
to the attraction strength (Fig. 6b). These findings are
in agreement with theoretical models based on Kramers
theory for force-activated bond rupture, which predict
a rupture probability that decreases exponentially with
the interaction strength and a threshold force that,
for a given strain rate, is proportional to the effective
spring constant and thus to the attraction strength
ε [4, 38, 45]. From the elastic contribution to the force,
we observe that the change in rest length induced by the
deformation cycles does not depend on the attraction
strength (Fig. 6c). This indicates that the mechanism
by which colloidal gels weaken due to local plasticity
does not depend on the strength of the interaction, even
when this attraction strength is as large as 30 kBT . This
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is further confirmed by the amount of particle displace-
ments, which is nearly independent of the attraction
strength (SI Fig. 4a), and the total dissipated energy
in the cycles, which is proportional to the attraction
strength (SI Fig. 4b). The spring constant of the strands
after the deformation cycles increases with increasing
attraction energy (Fig. 6c), and after rescaling with
ε, we find that the elastic contribution to the force is
proportional to ε (SI Fig. 4c).

In addition to varying the strength of the interac-
tions, we also change the range of the attraction by
changing the range parameter ρ0, giving well widths of
approximately ∆ = 0.528 a, 0.264 a, and 0.160 a (for
ρ0 = 10, 20, and 33 respectively) (see SI Fig. 1). This is
an interesting property to vary as the range over which
interactions are sticky influences the deformation of the
strands. Note that for simulations of a full colloidal
gel a given pair potential and volume fraction φ gives
an average length and thickness distribution of the gel
strands. Here, we try to uncouple these two, by looking
at strands of a single length and thickness with different
pair potentials. To a certain extent this gives some
’artificial’ effects, as in real gels the potential width and
network structure are coupled. Still, we can show some
interesting observations.

We find that increasing the range of the attraction
makes the strands more prone to rupture (Fig. 7a).
However, note that due to a larger potential width
strands are aged substantially more (see SI Fig. 5) and
thus contain a higher number of weak spots.

The force-strain curves again look similar, showing a
plastic flow regime in the first cycle. The threshold force
for plastic deformation appears to be rather insensitive
to the range of the attraction, while the amount of
dissipated energy increases significantly as the attraction
range decreases (SI Fig. 5), reflecting a higher number of
broken bonds. When looking at the elastic component of
the force-strain curve for the deformed strands (Fig. 7c),

we find a much larger increase in rest length for the
shorter-ranged attraction. We thus conclude that plastic
deformation, leading to strand stretching and softening,
is more pronounced in gels with a short-ranged attrac-
tion, while a gel with long-ranged attraction only shows
a linear deformation response at γmax = 0.04.

Note also that the stiffness of the deformed gel
strands, as indicated by the slope of the force-strain
curves in Fig. 7c, becomes almost independent of the
attraction range. This might seem surprising, as the
stiffness of a single bond is given by the second derivative
of the potential, k ∼ ερ20 ∼ ε/∆2, so that one would
expect the highest stiffness for the smallest well width.
Yet, we know that for small ∆ the strand is plastically
deformed and softening occurs, resulting in a decrease of
the spring constant in the linear regime. The effective
resulting stiffness is set by the threshold force f∗ where
the plastic flow regime starts, keff ≈ f∗/γmax.

Conclusions

Our results highlight how failure and yielding of colloidal
gels result from plasticity at the scale of individual
gel strands. While previous models for colloidal gel
rheology and failure were based on the brittle rupture
of gel strands, we show that this rupture is preceded by
significant plastic deformations that cause irreversible
lengthening and softening of gel strands. We observe
this mechanism of failure for strands of different length
and thickness and for interaction potentials of different
strength and range, suggesting that it should be relevant
for a wide range of experimental colloidal systems.
Recently, we showed experimental results that support
this finding [35]. Our findings are also in agreement with
earlier experiments that showed a two-step yielding in
colloidal gels under shear [32]; here, the first yielding



8

event was attributed to restructuring and effective
lengthening of gel elements in the shear direction, while
the second step was attributed to strand rupture. Our
results underpin this hypothesis and provide a micro-
scopic mechanism. Furthermore, our results indicate
that the amount of plastic deformation that a gel can
undergo before it ruptures is determined by the structure
of the gel and by the interaction potential. Coarser gels,
consisting of short and thick gel strands, will deform
much more plastically than dilute gels with long and
thin strands. Plasticity is also promoted by a large
attraction strength and a short attraction range.
Our simulations have focused on single gel strands.
While our recent results have shown that the macro-
scopic rheological properties of a colloidal gel can indeed
be linked to the properties of the individual strands that
constitute the gel [35], it remains an open question how
the network topology influences the non-linear response.
Combining our results for single strands with a full char-
acterization of the network structure may be a first step
towards a fully predictive model for colloidal gel rheology.
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FIG. 1: (left) Morse potential with different depths of the potential, βε = 10, 20 and 30 respectively. (right) Morse
potential (βε = 30) with different well widths corresponding to ∆ = 0.16, 0.26 and 0.53 a (ρ0 = 33, 20 and 10).
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FIG. 2: Average elastic force of the 3th, 4th and 5th oscillation cycle for gel strands of different diameter
(A3, B3, C3, γmax = 0.005). The inset shows the spring constant k (units kBT a−1 γ−1) for the different strands at a
deformation of γmax = 0.005 (�).
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FIG. 3: All data is normalized by the cross-section A = π · (D0

2 )2 of the strands. (a) Force-strain curves upon 14
oscillatory expansions of gel strands of different diameter (γmax = 0.04). The solid line indicates the loading- and
the dotted line the unloading curve. (b) Dissipated energy per oscillation cn, obtained by integration of the
force-strain curves. The shaded area indicates the standard deviation. (a) and (b) contain data of the longest gel
strands (A3 − C3). (c) Average elastic force of the 3th, 4th and 5th oscillation cycle for gel strands of different
diameter and length (γmax = 0.04). The color gradient indicates the length of the strands from short (light) to long
(dark). The inset shows the spring constant k (units kBT a−1 γ−1) for the different strands at a deformation of
γmax = 0.04 (◦) and γmax = 0.005 (�).
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