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1.1  Background 

Tropical forest ecosystems host at least two-thirds of the Earth’s terrestrial biodiversity and 
provide a wide range of valuable benefits in the provision of ecosystem function and services 
(Edelman et al. 2014). These forests are distributed between the Tropics of Cancer and 
Capricorn: with types ranging from tropical rainforests to moist forests, dry forests, to 
montane cloud forests and mangroves. They are characterized by warm temperatures, year-
round sunlight, high precipitation, and high biodiversity with specialized functions and 
services. In addition, tropical forests, being the most diverse system in the world, hold an 
essential role in preserving the genetic variation of species (Brandon 2014).  
 
Unfortunately, in spite of the valuable ecosystem functions and services they provide tropical 
forests are under pressure in the Anthropocene. The recent report from Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Díaz et al. 2019) 
states that regardless of the decrease in the net rate of global forest loss, high-biodiversity 
tropical forests continue to decline, mainly as a result of land-use change. Tropical countries; 
many of which are developing and are of low to middle income, largely rely on their natural 
resource to meet economic development requirements. Thus, the resulting over-exploitation 
of tropical forests: through deforestation for agricultural expansion and human settlement, as 
well as through forest degradation for logging and grazing purposes, plays a large role in 
tropical forest habitat loss. Tropical forest biodiversity decline associated with such 
anthropogenic drivers of habitat loss has been widely reported for decades now. Many have 
indicated on the increasing loss of forest biodiversity, and showed alarming future trajectories 
with business as usual scenarios (Sala et al. 2000, Brooks et al. 2002, Feeley and Silman 2010, 
Gibson et al. 2011, Laurance et al. 2012, Dirzo et al. 2014, Barlow et al. 2016, Alroy 2017). 
The IPBES report (Díaz et al. 2019) while showcasing the threat for the extinction of one 
million animal and plant species in the coming decades, also confirmed that tropical forest 
habitats are experiencing the highest losses of intact ecosystems despite hosting the highest 
levels of biodiversity. This calls for the urgency of global actions to deter the possible loss.  
 
Alongside the increasing loss in biodiversity, the last few decades have also shown progress 
in international efforts in assessing drivers of biodiversity change, monitoring species 
responses to disturbances, as well as conservation efforts. Such initiatives are mainly driven 
by international goals, such as the ambitious Aichi biodiversity targets of the United Nation 
Convention on Biological Diversity (CBD) (CBD 2010) that aim to reduce the direct 
pressures on biodiversity by 2020, and in compliance with the United Nations Sustainable 
Development Goals (SDG) (UN 2015); notably goal 15: Life on Land and goal 14: Life 
below water. Therefore, a growing demand for biodiversity data exists for the evaluation of 
National Biodiversity Strategies and Action Plans (NBSAPs) and progress in national SDGs. 
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The harmonization of global biodiversity observations is assisted by initiatives such as the 
Global Biodiversity Information Facility (GBIF), the group on geo-observation and 
biodiversity observation network (GEO-BON), and The Global Observation of Forest Cover 
and Land Dynamics (GOFC-GOLD). These initiatives provide free and open access to global 
biodiversity datasets and improve the acquisition, coordination, and delivery of biodiversity 
observations. These global efforts on monitoring of biodiversity have created a unique 
opportunity for tracking the dynamics of the vast biodiversity of tropical forests than ever 
before. The GOFC-GOLD - GEO-BON sourcebook (2017) is one of the leading documents 
that provided guidance on the harmonization of tropical forest biodiversity monitoring 
approaches with a combination of in-situ and remote sensing methods, on the bases of the 
Essential Biodiversity Variables (EBVs) (Pereira et al. 2013). In addition, climate change 
mitigation mechanisms for tropical forests, such as the Reduction of Emission from 
Deforestation and Forest Degradation (REDD+), creates an opportunity for the conservation 
of tropical forest habitats and ideally also for the unique biodiversity they host. Even though 
the impacts of such projects on biodiversity are regarded as safeguards, several opportunities 
exist for synergizing biodiversity and REDD+ monitoring (Goetz and Mora 2017). 

1.2  Assessing biodiversity with indicators 

Monitoring the impacts of disturbances and/or biodiversity conservation efforts are often 
challenged due to the lack of data on key elements of biodiversity and their response to 
changes in time (Turner 2014). The broad characteristics of biodiversity, having multiple 
taxonomic and spatio-temporal scales often make measurements complex and expensive. 
Noss (1990) proposed the use of measurable indicators to overcome the complexity of 
biodiversity measurements. The proposed indicators cover the three primary attributes of 
biodiversity: (i.e. composition, structure, and function), which could be analyzed over 
hierarchical organizations; (i.e. regional landscape, community-ecosystem, population-
species, and genetic) with suitable inventory and monitoring tools. Such indicators are 
assumed to provide synthesized information on the status of biodiversity over time. Similarly, 
the recently proposed GEO-BON EBVs are said to capture the essential scales and 
dimensions of biodiversity, while staying sensitive to changes and being technically, 
economically, and sustainably feasible to monitor (Pereira et al. 2013). The EBV classes 
cover the essential aspects of biodiversity ranging from genetic composition to measurement 
of ecosystem structure. In both cases, the measurement of biodiversity variables would 
require diversified means of measurement techniques which can easily be accessed, 
integrated and up-scaled.  
 
Ecosystem structure, which is stated as one of the EBVs, indicates the structural components 
of ecosystems that are essential for the existence and maintenance of biodiversity. Forest 
structure, which mainly represents the vertical stratification and the horizontal connectivity 
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of forests, is also found to relate to the species richness and productivity of forests (Poorter 
et al. 2015, Bohn and Huth 2017, Oliveira and Scheffers 2019). Tropical forests, being the 
most structurally complex ecosystem, provide diverse habitats at macro and micro levels for 
diverse species of flora, fauna, and microorganisms. The vertical stratification of tropical 
forest creates unique habitats with diverse availability of resources and microclimate (i.e. 
varying temperature and moisture conditions). The tropical forest floors are home for 
countless soil and litter arthropod communities (Decaëns et al. 2006, Hamilton et al. 2013) 
which have critical roles in the unique ecosystem process (Lavelle 1996). The understories 
provide a niche for flora species that grow under closed canopies, and for fauna species that 
live and hunt under such conditions, while the upper canopies are home for dominant tree 
species. Similarly, the horizontal connectivity of tropical forest habitats is essential for 
maintaining biotic interactions and seed dispersal (Hill et al. 2011). 
 
The vertical and horizontal complexity of habitats is however reduced mainly due to 
deforestation and forest degradation. Deforestation disrupts connected tropical forests with 
large clearings that are often converted to agricultural lands or settlements. Such changes are 
often detectable as their operational scale is large. Forest degradation, on the other hand, is a 
subtle driver of tropical habitat loss as the changes in the forest structure are not clearly 
visible through the commonly used forest change monitoring approaches. Most activities that 
lead to forest degradation occur below the dense canopies of tropical forests which would 
make them difficult to detect and to identify their impacts. Forest degradation which mainly 
takes place due to activities such as selective logging and grazing is referred as the ‘silent 
killer’, as it slowly diminishes the habitat quality and quantity of tropical forests as well as 
their irreplaceable biodiversity; leading to ‘silent forests’ (Sasaki and Putz 2009, Barlow et 
al. 2016). 

1.3  The use of remote sensing and other emerging technologies 
for forest biodiversity assessment 

The measurements of forest biodiversity and habitats have for long relied on conventional 
techniques such as counts, transects, trapping and diameter at breast height (DBH) 
measurements, which often provide direct and generally accurate observations of species and 
habitat status. However, these techniques are costly, laborious, invasive and time-consuming. 
Therefore, the use of Earth observation data and advanced in-situ measurements are 
growingly being explored to support affordable, scalable and reliable biodiversity 
assessments and monitoring systems. 
Remote sensing (RS), the acquisition of physical data of an object without touch or contact 
(Lintz and Simonent 1976), is key in mapping and understanding tropical forest ecosystems. 
The RS field is continuously advancing and is increasingly being used for several 
applications in ecological studies which for long relied on conventional field measurements. 
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Satellite remote sensing (SRS), which collects information about the earth surface using the 
reflected and/or emitted energy of the Earth in one or more regions of the electromagnetic 
spectrum is the most widely used RS approach (Campbell and Wynne 2011). The growing 
availability of SRS data with detail of information across spatial, spectral, and temporal 
scales has encouraged its ecological application. Biodiversity relevant forest structure 
parameters are increasingly being produced from SRS dataset following the increasing 
availability and the advancement in the field. Such efforts aim to use SRS as an alternative 
cost-effective means of collecting wide and rapid data in forest structure, instead of 
conventional forest measurements, which are often challenging to conduct in tropical forests. 
Optical SRS derived parameters are often used for estimation of canopy cover (Hansen et al. 
2013, Tyukavina et al. 2016), canopy gaps (Basset et al. 2001, Souza Jr et al. 2005, Marthews 
et al. 2008), and canopy height (Hansen et al. 2016). Even though the three-dimensional 
forest structure elements such as vegetation density and number of canopy layers are not yet 
directly extracted from the commonly used SRS dataset, the canopy reflectance in specific 
spectral domains can be used to assess biophysical parameters of forests. The sensitivity of 
the red-edge, near-infrared (NIR), and middle infrared bands to the canopy chlorophyll 
content, leaf structure, and water content respectively, have made vegetation indices using 
the combination of these bands to represent the amount and/or condition of vegetation (Dash 
et al. 2015, Meng et al. 2016, Baloloy et al. 2018). Synthetic aperture radar (SAR), an active 
SRS field with frequencies in the microwave region of the electromagnetic spectrum, has 
been found to provide more detailed information on vegetation volume and density based on 
the backscatter intensities in the short and the long wavelengths i.e: ( X-, C-, S-), (L-) bands 
respectively. The former bands are scattered back from the upper tree crown, thus represents 
canopy variables (Rüetschi et al. 2019), while the latter are capable of penetrating through 
tree canopies, and interacting with structural components of trees (trunks, branches, and 
leaves) that lead to typical volume scattering, relating with biomass (Nguyen et al. 2016, 
Ningthoujam et al. 2016, Rodríguez-Veiga et al. 2017). 
 
Terrestrial LIght Detection and Ranging (LiDAR), a field-based RS technique, is considered 
as the most reliable and accurate RS source for obtaining information on forest structure 
(Brede et al. 2017). This active remote sensing technique emits laser beam pulses to targets 
and calculates the distance and position of the objects in a three-dimensional space based on 
the reception of returned signals to the instrument. Such three-dimensional forest structure 
information has been used to calculate habitat parameters such as vegetation layers (Palace 
et al. 2016), vegetation density (Calders et al. 2015c), canopy height (Palace et al. 2015), and 
tree volume (Calders et al. 2015b). The parameters derived would provide insight not only 
on the quantity (i.e. abundance of vegetation) but also on the quality (i.e. the arrangement of 
vegetation) of forest habitats. Other platforms supporting LiDAR measurements are also 
important for upscaling and acquiring detailed structural data on larger areas. Airborne Laser 
Scanning (ALS), where the LiDAR equipment is mounted on (un)manned aircraft, provide a 
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lower density of point clouds in comparison to Terrestrial LiDAR. However, ALS provides 
a good representation of canopy tops, which Terrestrial LiDAR measurements cannot always 
detect (Brede et al. 2017). In addition, the upcoming SRS LiDAR acquisitions by the NASA’s 
Global Ecosystem Dynamics Investigation (GEDI) mission is expected to provide systematic 
point cloud acquisition over the tropics to derive forest canopy height, canopy vertical 
structure, and surface elevation which are essential for forest habitat characterization (Stysley 
et al. 2015). 
 
The technological advancement of in-situ measurements is also supporting the direct 
assessment of tropical forest biodiversity by facilitating the species sampling and analysis 
process. DNA metabarcoding, allows a rapid and relatively cheap sampling, analysis, and 
identification of biological samples (Ji et al. 2013). With parallel sequencing of DNA 
barcodes from the bulk trap samples, identification of taxonomic composition without the 
conventional approaches of specimen sorting is possible (Cristescu 2014, Beng et al. 2016, 
Barsoum et al. 2019). In addition, the identification of individual species using camera-trap 
(Buxton et al. 2018), acoustic monitoring (Wrege et al. 2017), and drone images (Koh and 
Wich 2012) are also introducing a new era in forest biodiversity monitoring. 
 
Considering the availability of very high spatial resolution images, the increasing free access 
to SRS images, as well as the new satellite missions (e.g. GEDI, BIOMASS) that are designed 
to acquire detailed data on tropical forest conditions, new opportunities are surfacing for 
employing RS in biodiversity assessments than ever before. On top of that, the advancement 
and the growing incorporation of in-situ sensors into field measurements serves with detailed 
insight. The combined potential of such emerging technologies provides unprecedented 
opportunities for the assessment of the largely unknown biodiversity dynamics of tropical 
forests. 

1.4  Research gaps 

The application of remote sensing and in-situ based technologies need to be further explored 
in tropical forests, as most approaches have been developed and applied in forest ecosystems 
where the complexity of habitats and diversity of species are lower in comparison to tropical 
forests (Vaglio Laurin et al. 2014, Rocchini et al. 2016, Lopes et al. 2017).  
 
Due to the complex structure of tropical forests, vegetation conditions under the canopy are 
often eluded from the commonly used SRS datasets. Thus, acquiring detailed information on 
structural variations, which makes up their unique forest habitats, would require 
measurements through efficient in-situ techniques. The applicability of TLS for deriving 
detailed structural parameters such as canopy height (Palace et al. 2015), number of layers 
(Palace et al. 2016), Plant Area Volume Density (PAVD) (Calders et al. 2015c) and tree 
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volume (Calders et al. 2015b, Ferraz et al. 2016) have been demonstrated. However, due to 
the complexity of tropical trees, TLS measurements are found to be limited in delivering 
certain parameters such as identification of tree species and tree volume (Gonzalez de Tanago 
et al. 2018), which are mainly acquired through conventional approaches. In addition, the 
applicability of  TLS for estimation of forest structure on a larger area is limited considering 
its costliness. Thus, investigating the possibilities of linking plot-level TLS measurements to 
the growingly available SRS dataset would be feasible for up-scaling purposes. An 
integration of conventional field data, TLS measurements, and SRS estimations would then 
be required to acquire scalable structural information on tropical forest habitats. 
 
Understanding of species response to the structural complexity of tropical habitats would 
require linking structural information to species data. However, considering the vast diversity 
in tropical ecosystems, performing detailed analysis on species-habitat relationship and 
dynamics would be extremely complicated, if not impossible. Thus, the use of proxies, 
indicator taxon that quickly responds to habitat change and that are also easy to sample would 
be necessary. Generally, connecting information on forest habitat conditions and the diversity 
they host using efficient, reliable, and repeatable approaches is a topic of interest for both the 
scientific and conservation communities. This is especially true for parts of the tropical 
forests that are experiencing severe disturbances despite being classified as biodiversity 
hotspots, such as the study area investigated in this thesis, the Kafa biosphere reserve, in 
Ethiopia. This study site is an internationally recognized protected area that is subject to 
different types and intensities of human disturbances. In addition, the understory of this moist 
evergreen montane rainforest is the origin of Coffea arabica with rich wild varieties (Schmitt 
2006, Schmitt et al. 2010). Human-induced disturbances are posing threats on the original 
forest habitat and genetic diversity of Coffea arabica (Schmitt et al. 2010). Furthermore, the 
Kafa forest also poses important policy challenges, from the conservation of charismatic 
species, to designing an efficient Reduction of Emission for Deforestation and forest 
Degradation (REDD+) payment mechanism for carbon storage, and to the preservation of 
important genetic stocks (DeVries et al. 2012, NABU 2017). 

1.5 Objectives 

The main objective of this thesis is to investigate the application of emerging satellite remote 
sensing and in-situ measurements for the assessment of forest biodiversity in changing 
tropical forests. A particular focus is given to the use of terrestrial LiDAR and satellite remote 
sensing for deriving forest structure parameters that inform on the state of different tropical 
forest habitats. For this purpose, field plots were established in the UNESCO Kafa biosphere 
reserve, Ethiopia. The use of satellite remote sensing, terrestrial LiDAR, and DNA 
metabarcoding approaches were examined to track forest habitat differences and the 
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associated biodiversity dynamics. These objectives were addressed by asking the following 
research questions: 
 

1. What is the potential of state-of-the-art and novel technologies to assess biodiversity 
in changing tropical forests? 

2. How can Terrestrial LiDAR be used to derive biodiversity relevant forest structure 
parameters? 

3. How does multi-modal satellite data relate to Terrestrial LiDAR-derived forest 
structure?  

4. How can the integration of novel data sources (i.e. remote sensing and DNA 
metabarcoding) help to better understand and link forest structure and biodiversity? 

1.6 Thesis structure 

This thesis is composed of six chapters, including this chapter as an introductory to the main 
research that is presented from Chapter 2 to Chapter 5. The four research questions presented 
in section 1.5 are addressed through the contents of Chapters 2 to 5, while Chapter 6 provides 
a synthesis of the thesis. Figure 1.1 provides an overview of the chapters in this thesis. 
 
Chapter 2 explores the application of the state-of-the-art technologies in the monitoring of 
tropical forest biodiversity dynamics, and how their potential integration can increase the 
detail and accuracy of biodiversity monitoring. Moreover, the relevance of these biodiversity 
monitoring techniques in support of the UNCBD Aichi targets was explored using the 
Essential Biodiversity Variables (EBVs) as a framework (Research question 1). 
 
Chapter 3 investigates the applicability of the combination of TLS and conventional forest 
inventory measures to estimate forest structural parameters in four different forest types in a 
tropical montane cloud forest in Kafa, Ethiopia (Research question 2). 
 
Chapter 4 relates TLS and conventionally measured forest structure parameters with SRS 
derived variables in order to explore the sensitivity of SRS to retrieve structural differences 
of tropical forests and the potential to be used to upscale biodiversity relevant field-based 
forest structure estimates (Research question 3). 
 
Chapter 5 investigates the relationship and potential integration of remote sensing and DNA 
metabarcoding approaches to inform on biodiversity dynamics. Doing so, generating the 
hypothesis that structural variations would be able to explain species diversity in degrading 
tropical forests. This chapter relates DNA metabarcoding based identification of leaf litter 
arthropods with forest structure parameters that are derived through in-situ and SRS 
approaches (Research question 4). 
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Chapter 6 synthesizes the major findings of this thesis in relation to the research questions in 
section 1.5 and provides a reflection and outlook on key research topics related to forest 
biodiversity monitoring, based on the lessons learned from this thesis. 
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Abstract 

Tropical forests host at least two-thirds of the world’s flora and fauna diversity and store 25% 
of the terrestrial above and belowground carbon. However, biodiversity decline due to 
deforestation and forest degradation of tropical forest is increasing at an alarming rate. 
Biodiversity dynamics due to natural and anthropogenic disturbances are mainly monitored 
using established field survey approaches. However, such approaches appear to fall short at 
addressing complex disturbance factors and responses. We argue that the integration of state-
of-the-art monitoring approaches can improve the detection of subtle biodiversity 
disturbances and responses in changing tropical forests, which are often data-poor. We assess 
the state-of-the-art technologies used to monitor biodiversity dynamics of changing tropical 
forests, and how their potential integration can increase the detail and accuracy of biodiversity 
monitoring. Moreover, the relevance of these biodiversity monitoring techniques in support 
of the UNCBD Aichi targets was explored using the Essential Biodiversity Variables (EBVs) 
as a framework. Our review indicates that although established field surveys were generally 
the dominant monitoring systems employed, the temporal trend of monitoring approaches 
indicates the increasing application of remote sensing and in -situ sensors in detecting 
disturbances related to agricultural activities, logging, hunting and infrastructure. The 
relevance of new technologies (i.e., remote sensing, in situ sensors, and DNA barcoding) in 
operationalising EBVs (especially towards the ecosystem structure, ecosystem function, and 
species population classes) and the Aichi targets has been assessed. Remote sensing 
application is limited for EBV classes such as genetic composition and species traits but was 
found most suitable for ecosystem structure class. The complementarity of remote sensing 
and emerging technologies were shown in relation to EBV candidates such as species 
distribution, net primary productivity, and habitat structure. We also developed a framework 
based on the primary biodiversity attributes, which indicated the potential of integration 
between monitoring approaches. In situ sensors are suitable to help measure biodiversity 
composition, while approaches based on remote sensing are powerful for addressing 
structural and functional biodiversity attributes. We conclude that, synergy between the 
recent biodiversity monitoring approaches is important and possible. However, testing the 
suitability of monitoring methods across scales, integrating heterogeneous monitoring 
technologies, setting up metadata standards, and making interpolation and/or extrapolation 
from observation at different scales is still required to design a robust biodiversity monitoring 
system that can contribute to effective conservation measures. 

Keywords 

Tropical forests; biodiversity monitoring; disturbances; remote sensing; in situ sensors; DNA 
barcoding 
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2.1 Introduction 

Biodiversity decline due to habitat disturbance of tropical forests is increasing at an alarming 
rate (Barlow et al. 2016) and has led to growing interest in assessing the changing trend of 
their biological diversity by, for example, implementing and monitoring conservation efforts 
(Turnhout et al. 2016). The reason tropical forests are in the spotlight is that they host at least 
two-thirds of the world’s flora and fauna diversity (Thomas and Baltzer 2001) and store 25% 
of the terrestrial above and belowground carbon (Bonan 2008). Moreover, their sustainable 
existence is threatened as a result of major anthropogenic and natural disturbances (Malhi et 
al. 2014). Yet the complexity of the biological diversity present and the variety of disturbance 
factors at work has made the monitoring process difficult. This situation is primarily 
attributable to the technological and resource limitations of tropical developing countries 
(Herold et al. 2011, Romijn et al. 2015). 

Loss of tropical forests due to deforestation, forest degradation and forest fragmentation 
alters the habitat of many flora and fauna species. These threats mainly originate from 
anthropogenic pressure, which ranges from small-scale agricultural activities and selective 
logging practices that introduce subtle disturbances, to large-scale commercial agriculture, 
plantations, logging and mining activities that result in large-scale habitat disturbance and 
forest fragmentation (Scholes et al. 2012). When their habitat is modified, some species 
manage to adapt, some become threatened, others migrate and a few go extinct (Vié et al. 
2009). Such resulting change in biological diversity is a complex process that is increasingly 
attracting research attention. This is due to the growing need to assess and report on the 
performance of policy regimes, such as those agreed in the Paris Climate Agreement and on 
efforts to reduce deforestation and forest degradation (Turnhout et al. 2016), and on the Aichi 
targets set by the Convention on Biological Diversity (CBD 2010). Accordingly, the United 
Nations (UN) Convention on Biological Diversity (CBD), the Intergovernmental Platform 
on Biodiversity and Ecosystem Services (IPBES), and the Group on Earth Observations and 
Biodiversity Observation Network (GEO BON) are among the international initiatives that 
are addressing the increasing threat to forest biodiversity. The UNCBD’s Aichi Biodiversity 
Targets (ABT) have 20 measurable components and are aimed at reducing the pressure on 
global biodiversity and halting it by the year 2020 (CBD 2010). Countries that ratified the 
CBD Convention (Article 6) (Diversity 2001), have since developed National Biodiversity 
Strategies and Action Plans (NBSAPs), while countries that have embraced the UN 
Sustainable Development Goals (SDG) (goal 15: Life on Land and goal 14: Life below water, 
notably) (UN 2015) have developed national SDGs, with the result that when planning and 
executing national activities the impacts on biodiversity and on environmental sustainability 
are taken into account (Lucas et al. 2013). In support of the ABT, GEO BON has defined the 
concept of Essential Biodiversity Variables (EBVs) (Pereira et al. 2013) to globally 
standardise the monitoring of biodiversity change over time, across taxa and ecosystem types 
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(Pereira et al. 2013). EBVs are a transposition of what Essential Climate Variables (ECVs) 
are for climate change. Such ECVs are defined by Global Climatic Observation System 
(GCOS). EBVs aim to address the demand of biodiversity observation communities for 
establishing consistent and harmonised studying, reporting and management of biodiversity 
change at a global level (Pereira et al. 2013). It contributes towards policy initiatives at 
national and global levels through platforms such as IPBES and UNCBD, as well as towards 
actual biodiversity change monitoring practices. The EBVs have six classes (namely: genetic 
composition, species populations, species traits, community composition, ecosystem 
function, and ecosystem structure), with a total of 22 EBV candidates under them. These 
classes address relevant dimensions of biodiversity change with measurable parameters at 
different spatial, temporal, and taxonomic scales. EBV data products are to be used for 
deriving suitable indicators, thus EBVs lie between raw data and indicators (Kissling et al. 
2017). Currently, several efforts are being made to assess the suitability of existing and 
emerging technologies to produce EBV products, and thus of progress towards the Aichi 
targets (CBD 2010). 

Tropical countries have struggled to establish biodiversity monitoring systems and 
particularly for providing consistent time series for assessing trends and progress towards 
targets (Romijn et al. 2015). Hence the policy requirements for biodiversity data and 
monitoring systems are highlighting the need for consistent observations over time, both from 
on-the-ground observations and from satellite time series. This is to enable tracking and 
quantifying of ecosystem dynamics and the direct and indirect impacts of human activities 
(and related policy measures) that result change in biodiversity (i.e., from land use, climate 
change) (Pereira et al. 2013, Newbold et al. 2014). While this need is becoming more 
pressing, a key question is how previous research experiences and evolving technologies can 
help to better characterise tropical forest changes and the associated relationships and impacts 
on biodiversity. 
 
Countries mainly rely on national forest and biodiversity inventories to acquire information 
on changes and trends. These inventories mostly use established field survey approaches, 
such as counts, transects, trapping and diameter at breast height (DBH) measurements, which 
yield direct and generally accurate observations of species status and trends. Such 
approaches, however, are costly, laborious, invasive and time-consuming (Lee et al. 2015, 
Thomsen and Willerslev 2015).  
 
Remote sensing, in situ activity sensors and, more recently, Deoxyribonucleic Acid (DNA) 
barcoding techniques are seen as promising tools for designing a new generation of 
biodiversity monitoring systems (Pimm et al. 2015, Marvin et al. 2016, Bush et al. 2017). 
They are assumed to be able to address data gaps and to allow scalable studies which 
complement established field survey approaches (Lindenmayer et al. 2012, Lausch et al. 
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2016). From the genomics domain, DNA barcoding presents a new opportunity for 
establishing a robust biodiversity monitoring system.  
 
From the remote sensing domain, free access to satellite images, the availability of very high 
spatial, spectral, and temporal resolution satellite images and of open source analytical 
software, and the development of algorithms for analysing and interpreting complex datasets 
are providing good opportunities for the ecological community to detect and monitor forest 
and biodiversity changes through time (Kuenzer et al. 2014, Rose et al. 2015). Remote 
sensing based biodiversity monitoring provides an opportunity of extended spatial and 
temporal resolution to the existing biodiversity monitoring systems. This approach not only 
has the potential to map indirect indicators such as human induced habitat disturbances 
(Mildrexler et al. 2007, Newbold et al. 2014) and forest cover changes (Butchart et al. 2010, 
Hansen et al. 2013) but it can also be used to measure direct physical parameters, such as 
individual trees (Schäfer et al. 2016) and large mammals (Koh and Wich 2012). Moreover, 
Light Detection And Ranging (LiDAR) and Synthetic Aperture Radar (SAR) data have 
demonstrated capabilities for mapping detailed forest structure and estimating biomass 
(Calders et al. 2015b). Thanks to the ongoing advancement of remote sensing technology, 
new satellite images with even higher spatial, spectral and temporal resolutions are often 
available for free (Lausch et al. 2016, Pettorelli et al. 2016b). In addition, the availability of 
remote-sensing -derived datasets such as the Global Forest Watch (Hansen et al. 2013) are 
used to derive indirect species occurrence indicators such as forest fragmentation (Riitters et 
al. 2000, Riitters et al. 2016). 
 
The recent advances in in situ sensors such as bioacoustics, tags, and camera traps are 
providing non-destructive and semi-automated ground surveying opportunities (Butchart et 
al. 2010, Hansen et al. 2013). In situ activity sensors are non-invasive surveying techniques 
that often provide opportunities for measuring biodiversity directly, thereby revealing the 
presence or absence of species, and their behaviour (Kays et al. 2015). Recent technological 
advancements in this field have made possible real-time observation and rapid collection of 
biodiversity data (Pimm et al. 2015). 
 
DNA barcoding techniques are emerging as monitoring systems that are rapidly evolving to 
further facilitate biodiversity data collection and species identification. This DNA barcoding 
technology ranges from using standardised barcodes to identify individual specimens, to 
identifying multiple specimens from bulk samples (the latter process is called 
metabarcoding). Such technology makes rapid biodiversity assessment possible through bulk 
sampling, and with automated species identification processes (Ji et al. 2013, Thomsen and 
Willerslev 2015). Furthermore, Environmental DNA (eDNA) technique is being used to 
extract cellular and extracellular DNA from environmental samples (water, soil, faeces, etc.), 
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enabling a rapid assessment of past and present biodiversity (Taberlet et al. 2012, Thomsen 
and Willerslev 2015). 
 
Many scholars argue that the recent technologies (i.e., remote sensing and in situ sensors) 
and emerging opportunities (i.e., DNA barcoding) have not been well exploited for ecological 
studies, regardless of their immense potential to inform on subtle changes and to indicate 
future directions of study (Turner 2014, Pimm et al. 2015, Marvin et al. 2016, Pettorelli et al. 
2016b). This is with regards to the limited application of the state-of-the-art technologies 
towards biodiversity studies, as well as the existing gap in exploration of the potential 
integration of such technologies for detailed studies and conservation efforts. 
 
Taking into account the increasing need for reliable data to inform international policy 
processes, the current status of biodiversity monitoring activities and research, and the 
potential of new technologies, this paper aims to: 
 

1. Give an overview of the state of the art and synthesise previous research on 
biodiversity monitoring in the context of changing tropical forests; 
2. Assess the potential of using evolving technologies and tools to further increase the 
detail and accuracy of biodiversity monitoring; 
3. Identify remaining gaps and opportunities on biodiversity monitoring approaches 
through evaluating their contribution to addressing the primary biodiversity attributes 
according to Noss (1990); 
4. Assess how evolving technologies can help operationalise relevant EBVs for 
tropical forest environments. 
 
We have deliberately focused on tropical forests and the issue of assessing changes and trends 
in biodiversity. Tropical areas are not only undergoing considerable forest changes of global 
relevance but are also particularly data-poor. In this context, we aim to help address these 
challenges by assessing new opportunities and to complement other review studies that have 
had a much broader scope (Kuenzer et al. 2014, Turner 2014, Pimm et al. 2015, Lausch et al. 
2016). 
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2.2 Analytical Framework and Data Analysis 

In this study, in order to categorise biodiversity groups and monitoring elements, we have 
adapted the CBD (2017) definition of forest biological diversity: “Forest biological diversity 
is a broad term that refers to all life forms found within forested areas and the ecological roles 
they perform. As such, forest biological diversity encompasses not just trees, but the 
multitude of plants, animals and micro-organisms that inhabit forest areas and their 
associated genetic diversity.” 
 
We performed a systematic search of the scientific literature on the Web of Science platform, 
using the paired search terms: tropical forest biodiversity monitoring—forest change; and 
tropical forest biodiversity monitoring—forest disturbance. Further screening was made by 
reading the abstract of the articles, to identify those that are focusing on disturbed tropical 
forests and provide detailed description of their biodiversity monitoring approaches. Based 
on these search criteria, we identified 153 scientific papers (Supplementary) that are 
conducted across 38 tropical countries. Next, an analytical framework was developed to 
define systematic criteria for classifying and analysing monitoring details across essential 
biodiversity components. We considered six essential biodiversity monitoring components 
that align with our research objectives: (1) the spatial scale of the study (i.e., spatial extent of 
the study area); (2) the disturbance type reported (i.e., anthropogenic or natural sourced event 
that results alteration of natural tropical forest habitat); (3) the targeted groups studied (incl. 
taxa and their biotope); (4) the monitoring methods employed; (5) the relationship with EBV 
classes; and (6) the primary biodiversity attributes addressed (i.e., compositional 
biodiversity, functional biodiversity and structural biodiversity). 
 
In regards to spatial scales of the study, we deemed studies of sites of <100 ha and transects 
10 m to 20 m long as being local; those of 100 ha –500 ha and transects 200 m–500 m long 
as landscape; and those of >500 ha with transects >500 m long to be regional-scale studies 
(Whittaker et al. 2001). Studies were also categorised according to their source of 
disturbance, anthropogenic and natural. The types of monitoring approaches employed were 
studied in relation to targeted biodiversity groups, and disturbance types reported. In addition, 
we used subset of the series of EBVs that are relevant to tropical forests to frame our review 
findings, in relation to the use of new monitoring technologies and emerging opportunities 
(Figure 2.1). Finally, we synchronise our findings with two reference studies: the one by of 
Noss (1990), which identified the three primary attributes of biodiversity (i.e., compositional 
biodiversity, functional biodiversity and structural biodiversity). Noss (1990) defined 
compositional diversity as ‘the identity and variety of elements in a collection’, while 
structural diversity encompasses ‘physical organisation and pattern of a system’, finally 
functional diversity involves ‘ecological and evolutionary processes’. Another reference 
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study by Turner (2014), indicated on the role of upcoming technologies for biodiversity 
monitoring. These fundamental studies were used to explore and propose avenues of 
methodological complementarity and opportunities for integration. 

 

 
Figure 2.1: Criteria and categories defined to set up the review database. 

2.3 Results 

2.3.1 Spatial Scale 

The weight of the spatial scale of study sites in determining the choice of an appropriate 
biodiversity monitoring approach was revealed by the review. Most of the studies (58%) had 
been done at a local scale, followed by regional studies (32%), and with only a few studies 
(10%) performed at the landscape scale (Figure 2.2). Established field surveys had higher 
application on local and landscape scales, while remote sensing was used at all scales but 
found higher applicability in regional-scale studies. In situ activity sensors had higher 
association with studies at a local and regional scale, while its use was limited at landscape 
scale studies. The use of DNA barcoding methods was only at a local spatial scale. 
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Figure 2.2: Spatial scale of studies and biodiversity monitoring techniques employed. Note: some studies address 
multiple spatial scales. 

2.3.2 Disturbance Types 

Anthropogenic factors accounted for 82% of disturbances related to biodiversity change, with 
the remaining 18% being accounted for natural events. Agricultural activities (32%) and 
logging (27%) were among the major anthropogenic drivers, followed by infrastructure (9%); 
hunting (7%) and mining (7%). Natural events included events like wildfire, disease 
outbreaks and extreme weather events. Established field surveys dominated the monitoring 
of all disturbance types, especially in the case of natural events, mining and infrastructure 
(Figure 2.3). In situ sensors were used in tandem with remote sensing, especially for detecting 
biodiversity changes in relation to infrastructure, agricultural activities, hunting and logging 
(Rovero et al. 2014, Beaudrot et al. 2016, Ellis et al. 2016). However, these approaches were 
also used independently, remote sensing contributed significantly to detect mining, while in 
situ sensors showed substantial capacity for tracking hunting activities. Finally, DNA 
barcoding was found to contribute to detecting changes related to agricultural activities and 
logging. 
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Figure 2.3: The use of monitoring methods for each disturbance type. 

2.3.2.1 Disturbance Types per Country 

The disturbance types were further analysed to identify drivers of biodiversity loss at country 
and regional scales. The reviewed studies were carried out in 38 tropical countries, distributed 
across five regions. The contrast of disturbance factors across the regions can be observed 
where human induced land use changes such as agriculture and logging were highly 
represented in South America, South East Asia, and East Africa (Figure 2.4). Infrastructure-
related disturbances had their peak in South America and South Asia, but showed small 
impact in East African countries. Other disturbance factors such as hunting and mining had 
varying occurrence across regions, where the former had considerable appearance in Africa 
and the later in South American countries. Finally, the impact of natural events appeared 
dominant over the other disturbance factors in Oceania countries. 
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Figure 2.4: Global distribution of forest biodiversity disturbance factors. 

2.3.3 Targeted Groups in Monitoring of Disturbed Tropical Forests 

Vegetation and arthropods were the major targeted groups for monitoring in relation to 
changing tropical forests, and were also often used as surrogates for other biodiversity groups 
(Figure 2.5). Habitat condition, birds and mammals were studied much more often than 
herpetofauna and microorganisms. 
 
Overall, established field surveys predominated over the other monitoring methods, except 
in the case of habitat monitoring, where remote sensing was applied the most (Figure 2.5). 
Similarly, remote sensing was employed appreciably to monitor vegetation, and to some 
extent for monitoring arthropods, birds, and mammals, but it was hardly used to monitor 
herpetofauna and microorganisms. Even though the overall application of in situ sensors to 
the different taxa was limited, they were employed in all groups except microorganisms. 
Finally, DNA barcoding was found to have been applied to only three taxa (i.e., vegetation, 
arthropods and microorganisms). 
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Figure 2.5: Biodiversity groups monitored and monitoring techniques applied. Note: some studies addresses multiple 
biodiversity groups. 

2.3.4 Monitoring Approaches over Time 

The temporal trend of integration of new technologies into the biodiversity monitoring of 
disturbed tropical forests has been indicated on the targeted article pool (Figure 2.6). In all 
years except 2015 and 2016, the dominant method was established field surveys. However, 
the trends show the growing incorporation of state-of-the-art technologies in to the 
monitoring system. Remote sensing approaches are the most consistently employed after 
established field surveys, and their application even dominated over the rest in the recent 
years. In situ sensors and DNA barcoding approaches are recent additions to the monitoring 
system.  

 
Figure 2.6: Temporal trends towards incorporation of new biodiversity monitoring techniques. 

2.3.4.1 Monitoring Approaches vs. Biodiversity Estimation Significance Values 
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The accuracy results maintained from applying the different biodiversity monitoring 
approaches has been investigated looking into the statistical significance and accuracy values 
reported in the reviewed paper. These were used to compare the methods accuracy in terms 
of their estimation of biodiversity. Majority of the results from established field surveys 
(59%), and integrated approaches (i.e., established field surveys coupled with remote sensing) 
(71%) provide significant values (i.e., p = 0.01–p = 0.05, R2 = 0.5–R2 = 0.7, classification 
accuracy = 50%–70%), while 26% of established field surveys, and 21% of integrated 
approaches had highly significant results (i.e., p < 0.01, R2 > 0.7, classification accuracy 
>70%). Yet, established field surveys also had its high share (16%) of non-significant results 
(i.e., p > 0.05, R2 < 0.5, classification accuracy <50%). Remote sensing approaches also had 
majority (35%) of their results as highly significant and significant (47%), but also with 
considerable (18%) non-significant values. Even though there are few studies that used in 
situ sensors, 25% of the studies had both non-significant and highly significant results, and 
50% had significant results. Finally, all DNA barcoding studies resulted significant values. 
 

2.3.5 Recent Technologies and New Opportunities for EBVs  

Satellite remote sensing techniques were found to be dominantly employed for three of the 
EBV classes, namely species population, ecosystem function and ecosystem structures but 
its application was limited in the classes of species traits and community composition (Figure 
2.7). Hyperspectral and LiDAR remote sensing were found to be appropriate for species 
population and ecosystem function classes, while LiDAR also contributed substantially to 
assessing ecosystem structure and community composition. Similarly, in situ sensors were 
applied to all EBV classes except for genetic composition, and notably applied for monitoring 
of the species population. Finally, DNA barcoding was found appropriate for addressing 
genetic composition, species population, ecosystem function and ecosystem structure classes. 
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Figure 2.7:The use of new technologies and emerging opportunities in reviewed studies in relation to EBV classes. 
SAR: Synthetic aperture radar, LiDAR: Light Detection and Ranging. Note: some studies address multiple EBVs. 

2.4 Discussion 

2.4.1 State of the Art  

The monitoring of biodiversity changes is scale-sensitive: the biodiversity elements to be 
monitored, indicators to be used and monitoring methods employed appeared to be 
determined by the spatial scale of the study areas (i.e., geographical coverage of the study 
area), the temporal scale (i.e., availability of longitudinal biodiversity data), and the thematic 
scale (i.e., targeted groups for monitoring and disturbance types). Different observation 
scales provide varying insight into changes, at times yielding contrasting outlooks (Henle et 
al. 2014). Even though established field surveys are assumed to be the most accurate sources 
of information on biodiversity data, ecological data acquired through this method are mostly 
collected at local spatial scale, which often makes it challenging to extrapolate results. In 
contrast, biodiversity indicators based on remote sensing have been demonstrated to be easily 
up-scalable by virtue of the nature of the data (Marvin et al. 2016), which is why species 
distribution models are now using remote-sensing-based environmental datasets to scale up 
ground observations. Rocchini (2013) and Pettorelli et al. (2014) indicated that the use of 
remote sensing data has opened up new opportunities for predicting the effect of 
anthropogenic activities and environmental conditions on the spatial distribution of species. 
Moreover, apart from the role of remote sensing in monitoring forest cover-change related 
habitat disturbances and its indication on biodiversity dynamics (Hansen et al. 2013, Haddad 
et al. 2015), very high spatial resolution satellite images (Fretwell et al. 2012) and airborne 
remote sensing (Anderson and Gaston 2013) are being used to estimate the occurrence and 
abundance of mammals, and large birds. 
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In situ activity sensors were found to have been used in multiple spatial scale studies (Figure 
2.2) and across different taxa (Figure 2.5), allowing real-time observation. Such method 
allows insight into the spatial and temporal scales over which individuals and populations 
interact. It also allows a remote and non-invasive opportunity to survey on species, detect 
anthropogenic disturbances, assess social dynamics of species, and track responses to factors 
such as climate change and habitat disturbance (Blumstein et al. 2011). The drawbacks of 
this method (e.g., signal recognition across taxa) are being resolved with the development of 
automated visual and sound identification software (Yu et al. 2013). 
 
Finally, DNA barcoding was found to be suitable for studies at a local level, and in general 
it appears to have been used only in few studies for monitoring changing tropical forests. 
However, it has been increasingly incorporated and tested in biodiversity studies of other 
ecosystem types, such as subtropical forest (Yu et al. 2012), temperate woodland (Hänfling 
et al. 2016) and the Arctic (Willerslev et al. 2014). Such a technology provides a unique 
opportunity for collecting and analysing mass biodiversity samples and rapid estimation of 
the total biodiversity. However, the use of this technology, especially in developing tropical 
countries, could be restricted due to high installation and processing costs as well as limited 
human resource. The drawbacks of this technology were reported to be high cost, 
contamination, errors during DNA amplification and a lack of high-quality taxonomic 
reference databases (Taberlet et al. 2012, Collins and Cruickshank 2013, Thomsen and 
Willerslev 2015). However, with the ongoing intensive research and technological 
advancements in the field, it seems likely to evolve into a valuable tool for measuring and 
monitoring of tropical biodiversity(Bush et al. 2017). 
 
The temporal aspect of scale relates to the building and obtaining of longitudinal biodiversity 
monitoring datasets (Figure 2.6). This allows consistent estimation of changes in biodiversity 
and their drivers. Crucial for this is the availability of local, national, continental and global 
biodiversity data. In reality, such data are scarce due to inconsistency in monitoring 
approaches, data storage and sharing policies and shortcomings in the technical capacity of 
countries, as well as financial and human resource limitations (Proença et al. 2016). 
Established field surveys have great potential to provide historical data (Figure 2.6), while 
Landsat missions (dating back 40 years), the Copernicus Sentinel constellations (recently 
launched), as well other commercial satellite data providers provide long term, free, and open 
access data. The potential of emerging technologies is also important to populate biodiversity 
observation data. There is, however, a need for researchers, institutions and countries to 
systematically archive and share such datasets. There have been several independent 
initiatives to build long-term time series of biodiversity data. Ji et al. (2013) presented 
available databases for DNA sequence data, while GEO BON provides accessible datasets 
for EBVs through its portal (https://boninabox.geobon.org/). Similarly, in the case of the in 
situ activity sensors, open databases are becoming available through the Tropical Ecology 



Biodiversity monitoring in changing tropical forests 

25 
 

Assessment & Monitoring (TEAM) Network Education Portal (Sanderson 2004), TRY plant 
trait database (Kattge et al. 2011) and through the Bioacoustica online repository and analysis 
platform (Baker et al. 2015). Overall, the temporal trend also shows the growing inclusion of 
tropical biodiversity studies towards new monitoring techniques. 
 
The thematic aspect of scale relates to the complexity of disturbance types and targeted 
biodiversity groups for monitoring. Overall, the major sources of tropical forest disturbance 
with associated impact on biodiversity are anthropogenic pressures (Morris 2010). The two 
main sources of anthropogenic forest disturbance (i.e., agricultural activities and logging) 
produce features that can be detected by all monitoring methods examined in our review. 
While large-scale agricultural activities and mining show a clear signal of change with 
canopy cover loss, other disturbance types that often take place below canopy (e.g., selective 
logging, and surface fire) introduce subtle changes. The role of remote sensing and in situ 
sensors in monitoring such drivers of change is especially noteworthy. Large-scale changes 
that result from deforestation and forest fragmentation have been well picked up by Landsat 
and other medium to coarse spatial resolution satellite images (De Sy et al. 2012, Hansen et 
al. 2013, Sexton et al. 2013). However, when it comes to understory disturbances and those 
that do not have spatially quantifiable features (such as hunting), there is a data gap. Peres et 
al. (2006) similarly described the nature of such disturbances in tropical forests and advised 
on the use of new technologies for identifying the ‘almost undetectable’ disturbance types 
such as hunting, selective logging, sub-canopy roads and invasive species. Newbold et al. 
(2014) discussed how such habitat alteration influences local richness and total abundance of 
species, and hence affects ecosystem functions and services. Our review indicated that 
vegetation and arthropods are the groups most studied in disturbed environments, while 
herpetofauna and microorganisms are poorly investigated. Most importantly, vegetation and 
arthropods embrace sensitive species that can quickly respond to habitat alteration and 
environmental changes, thus making them good to be used as surrogates. Our review revealed 
that arthropods were the major surrogates for other biodiversity groups. Yet, criticism occurs 
regarding the choice and use of surrogates and therefore systematic ways of selecting suitable 
indicators have been proposed to promote cost-effective and efficient biodiversity monitoring 
(Souza et al. 2016). In general, the identification of country specific biodiversity loss drivers 
and potential indicators can lead to e the design of targeted mitigation and conservation 
programs (Wintle, Runge, and Bekessy 2010).  
 
Over all, the role of biodiversity in ecosystem services needs to be properly assessed and 
understood in order to mainstream biodiversity across governments and society. Such a 
complex topic can only be clearly understood when the necessary data are acquired and 
analysed using proper tools. Unravelling of changes and trends in biodiversity can help us to 
understand not just about species composition and abundance but it can also inform on how 
forests adapt to pressures, indicates on the resilience of the forest ecosystem, and the impact 
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of mitigation and adaptation actions on the environment. Many argue that biodiversity 
conservation is placed in the background of climate change mitigation actions and carbon 
reduction efforts. However, Mant et al. (2014) pointed out that adaptation and mitigation 
actions that do not consider the role of, and potential impacts on, biodiversity can have 
adverse consequences. Therefore, such possible impacts on biodiversity must be measured 
and monitored alongside forest status and carbon stock assessments. Contrasting results 
appear when looking in to the relationship between carbon and biodiversity in tropical forest. 
Talbot (2010) found complex and limited correlation between the two, while Poorter et al. 
(2015) proved diversity’s positive role in enhancing carbon storage of tropical forests. Even 
though there is a need for continuous research in the area, there are already promising steps 
towards promoting an all-inclusive measuring and monitoring of degrading tropical forest 
environments. Here, the role of remote sensing is especially recognised where same data that 
is collected to report on forest and carbon stock status can also be used to derive direct and 
indirect indicators of biodiversity status (Turner 2014, Bustamante et al. 2016). 

2.4.2 Potential and Progress of Evolving Technologies 

To detect and monitor changes at different spatial, temporal and thematic scale not only a 
variety of monitoring approaches is required but also their integrated deployment. The 
application of remote sensing has been limited to deriving indirect indicators of biodiversity; 
mostly through using coarse to high spatial resolution satellite images for habitat analysis. 
However, advances in the field are bringing opportunities to develop direct indicators, e.g., 
using very high spatial resolution satellite images to identify large trees and animals (Yang 
et al. 2015, Leblanc et al. 2016), using hyper spectral sensors to ascertain vegetation 
biochemistry (Thenkabail et al. 2016), and using LiDAR sensors to map the three-
dimensional vegetation structure (Badreldin and Sanchez-Azofeifa 2015, Ioki et al. 2016). 
Moreover, such scale-related limitations can be overcome by coupling remote sensing with 
in situ sensors and DNA barcoding (Bush et al. 2017). The ability of in situ based sensors to 
provide real-time observation and automated data acquisition could overcome the limitations 
that emerge when established field survey methods are used independently (O'Brien et al. 
2010). Moreover, the role of DNA barcoding is crucial for studying species that are elusive, 
and to acquire insight into ancient environments (Thomsen and Willerslev 2015). The 
accuracy of biodiversity estimation is expected to benefit from the integration of monitoring 
techniques as can be observed from the results of the review. However, one should be 
cautious of publication bias towards reporting only positive and significant results (Lortie et 
al. 2007, Peplow 2014).  
 
 

2.4.3 Gaps and Opportunities 

2.4.3.1 Monitoring of Primary Biodiversity Attributes  
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Based on our review, we map the actual and optimal application of biodiversity monitoring 
approaches (Table 2.1) specified by Turner (2014) in relation to primary biodiversity 
attributes specified by Noss (1990). classified between in situ and remote sensing based on 
their data acquisition technique. 
 
Table 2.1: Complementarity of monitoring methods for assessing biodiversity change in tropical forests along 
primary biodiversity attributes. Brown: suitable, Orange: very suitable, Green: ideal; up arrow: well exploited 
potential, horizontal arrow: potential reasonably exploited, down arrow: used insufficiently. Note: Monitoring 
methods are classified between in situ and remote sensing based on their data acquisition technique. 
 

 
 
In the synthesis table (Table 2.1), we quantified how many of the reviewed articles used a 
certain method to monitor the biodiversity attributes that are defined by Noss (1990). This 
was further related to the potential application that the methods can provide according to key 
literatures in the field (Kuenzer et al. 2014, Turner 2014, Pimm et al. 2015, Lausch et al. 
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2016). It appears that none of the monitoring methods presented here are in themselves 
sufficient to properly address the three primary biodiversity attributes. However, this 
overview shows that there is complementarity between methods. As can be observed, in situ 
approaches perform well in biodiversity composition, while remote sensing based approaches 
are powerful for addressing structural and functional biodiversity. It can also be observed 
that despite their remarkable potential, these tools are underexploited. For instance, DNA 
barcoding, TLS and citizen science were among the methods least employed (not used in 
>80% of the reviewed studies). However, the role of citizen science on conservation efforts 
was demonstrated through various successful projects such as the breeding bird survey in the 
United States (Pardieck et al. 2017), global bird observation network—eBird (Sullivan et al. 
2009), the Dutch phenological network (Dutch phenological network 2017), and ranger’s 
forest and biodiversity status observation in Ethiopia (Nature and Biodiversity Conservation 
Union 2017). Neither were in situ sensors, LiDAR, SAR, and hyperspectral sensors that are 
ranked from very suitable to ideal for monitoring some biodiversity attributes used to their 
full potential in tropical forest biodiversity monitoring studies. Such shortcomings can lead 
to the development of monitoring techniques that produce under-or overestimations of 
biodiversity metrics. Whereas remote sensing data can be used to detect changes, provide a 
stratified sampling scheme for efficient monitoring and to identify certain species 
characteristics, in situ methods can be used for calibration and validation. While it is 
advantageous to have various methods of detecting biodiversity changes, a difficulty arises 
when trying to combine the different types of data for modelling the characteristics of species, 
their association with their environment and their response to changes (Honrado et al. 2016). 
For instance, differences among datasets in terms of spatial/temporal/ taxonomic resolution, 
extrapolation, data standardisation, calibration and data format can be an obstacle. Thus, 
practicable spatial and ecological models need to be developed to map species distribution 
and ecosystem services, as well as to make projections. For these purposes, there is a pressing 
need to establish and strengthen networks such as GEO BON, which promote dialogue and 
collaboration between ecologists, biologists, remote sensing experts, modellers and 
statisticians. Such platforms can be used not only to overcome technological limitations and 
domain segregation, but also to address technical issues such as big-data processing 
capabilities and the skills needed to implement methods. Here, we can mention exemplary 
platforms, such as the Biodiversity Observation Network in a Box (BON in a Box), which 
provide information and access to biodiversity-relevant remote sensing datasets, protocols, 
and tools (https://boninabox.geobon.org/). Similarly, in situ data sources and analytical tools 
are provided by the Global biodiversity Information Facility (https://www.gbif.org/).  
 

2.4.4 Operationalising EBVs with State-of-the-Art Technologies 

EBVs are expected to promote standardised data workflows for harmonised monitoring and 
reporting of biodiversity change at a global scale, as a means to achieving the Aichi 
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biodiversity targets (CBD 2010). However, biodiversity monitoring methods operate at 
different spatial, temporal, and taxonomic scales (Kissling et al. 2017). The 
operationalisation of EBVs requires a statement of measurable EBV candidates that can be 
matched with multiple monitoring tools. Several studies assessed the possibilities of putting 
EBVs to practice and investigated how relevant indicators can be derived from them. Kissling 
(2017) investigated the necessary data and tools in order to operationalise species distribution 
and species abundance EBV candidates at a global level. Here, the requirement for multiple 
data sources was acknowledged, and limitations in the process of harmonizing and 
integrating observations from different data sources were indicated. Satellite remote sensing-
based EBVs (SRS-EBVs) are being researched to provide scalable, rapid, and cost efficient 
global monitoring solutions towards operationalising EBVs (Pettorelli et al. 2016b). 
However, SRS-EBVs are proven to contribute towards direct derivable of only few EBVs, 
as most of them require higher resolution (in terms of spatial, temporal, and taxonomic details) 
datasets (Bush et al. 2017). 
 
We developed a synthesis matrix that indicates the relevance of the state-of-the-art 
technologies in operationalising tropical forest-relevant EBV candidates (Tables 2.2 and 2.3). 
These synthesise are developed based on GEO BON strategy for EBVs (GEO BON 2017) 
(Table 2.3) and studies (Skidmore and Pettorelli 2015, Pettorelli et al. 2016b, Bush et al. 2017, 
GOFC-GOLD 2017, Kissling et al. 2017) that assessed avenues for multi sensor approaches 
in EBV product development (Table 2.2), especially focussing on remote sensing. In Table 
2, the suitability of remote sensing in relation to multiple EBVs as well as Aichi biodiversity 
targets is presented. Most importantly, the application of the range of remote sensing 
techniques in relation to specific candidates is presented. Most remote sensing tools are 
applied towards vegetation and habitat-related EBV candidates. Here EBV products such as 
vegetation types and land use/cover maps can be produced using spectral characteristics’ of 
the remote sensing data. These maps are often produced with medium or high spatial 
resolution images such as those from Landsat or Sentinel 2 sensors, respectively. Remote 
sensing can also be used in relation to EBV candidates that require finer details such as 
taxonomic diversity and population structure by age/size class. In the latter case, data sources 
with higher spectral and spatial resolution are required from the remote sensing domain such 
as hyperspectral and LiDAR remote sensing; however, associated costs could hamper their 
applicability in several countries from the tropics. 
 
Alternative approaches to deriving species diversity indices from satellite remote sensing 
datasets exist;, however, acquiring a reliable estimation of beta-diversity and gamma-
diversity is challenging (Rocchini et al. 2016). Remote sensing application is especially 
limited for EBV classes such as genetic composition and species traits that require monitoring 
at genetic (e.g., co-ancestry, population genetic differentiation) and species level (e.g., body 
mass, demographic traits). The spatial and spectral resolution of satellite remote sensing 
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products limits the ability to identify individual trees or animal species. Very high spatial 
resolution images that can help identify large mammals are costly (Kissling et al. 2017) and 
often have high cloud coverage over tropical forests, which makes them unsuitable for 
deriving tropical forest EBVs. The use of remote sensing is, however, suitable for ecosystem 
structure EBV class (i.e., habitat structure, ecosystem extent and fragmentation EBV 
candidates), where EBV data products can be directly derived from medium to high spatial 
resolution data sources (e.g., Landsat, Sentinel 2) that are often freely available, while 
habitats’ three-dimensional structure can be accurately mapped using LiDAR. The role of 
SRS for ecosystem function classes is also recognised. Pettorelli et al. (2017) and Mora et al. 
(2017) listed EBV products that can be derived from current and future SRS datasets. 

Table 2.2: State-of-the-art monitoring tools for tropical forest-relevant EBV candidates and related Aichi targets. 
SR: spatial resolution. 

EBV Classes EBV Candidates 
Aichi Target 

(CBD 2010) 
Remote Sensing 

Emerging 

Opportunities 

Species 

Populations 

Species distribution 4–12, 14, 15 

High to very high SR 

(Fretwell et al. 2012), 

Hyperspectral (Carlson 

et al. 2007) 

In situ activity 

sensors (Ahumada 

et al. 2011), 

DNA barcoding (Ji 

et al. 2013) 

Population 

abundance 
4–12, 14, 15 

High to very high SR 

(Fretwell et al. 2012),  

Hyperspectral (Carlson 

et al. 2007) 

In situ activity 

sensors (Ahumada 

et al. 2011) 

Population structure 

by age/size class 
4–12, 14, 15 

LiDAR (Yao et al. 

2012) 
 

Species Traits 

Phenology 10, 15 

High to very high SR 

(Fisher et al. 2006), 

coarse to medium SR 

(Atkinson et al. 2012), 

hyperspectral 

(Thenkabail et al. 

2016) 

 

Migratory behaviour 5, 6, 10, 11, 12  

In situ activity 

sensors (Kays et al. 

2015) 
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Community 

Composition 
Taxonomic diversity 8, 10, 12, 14 

Hyperspectral (Schäfer 

et al. 2016) 

In situ activity 

sensors  

DNA barcoding (Ji 

et al. 2013) 

Ecosystem 

Function 

Net primary 

productivity 
5, 8, 14 

High to very high SR 

(Jay et al. 2016), coarse 

to medium SR 

(Cleveland et al. 2015), 

hyperspectral (Smith et 

al. 2002) 

In situ activity 

sensors (Verma et 

al. 2015) 

Nutrient retention 5, 8, 14 
Hyperspectral (Smith et 

al. 2002) 
 

Disturbance regime 
5, 7, 9, 10, 11, 

14, 15 

High to very high SR 

(Flores et al. 2014), 

coarse to medium SR 

(Jin and Sader 2005) 

In situ activity 

sensors (Ngoprasert 

et al. 2007) 

Ecosystem 

Structure 

Habitat structure 5, 11, 14, 15 

High to very high SR 

(Hansen et al. 2016), 

Coarse to medium SR 

(Tuanmu and Jetz 

2015b),  LiDAR 

(Simonson et al. 

2014b), SAR (Betbeder 

et al. 2015) 

In situ activity 

sensors (Leblanc 

and Fournier 2017) 

Ecosystem extent 

and fragmentation 
5, 7, 10, 14, 15 

coarse to medium SR 

(Lehner and Döll 2004) 
 

 
 
Even though several SRS and Earth observation datasets are being identified as suitable for 
monitoring of EBVs, there is still remaining work to be done towards a better definition of 
some EBV classes such as the ecosystem function class (Pettorelli et al. 2017). In addition, 
testing the suitability of methods across scales, integration of heterogeneous monitoring 
technologies, setting up metadata standards, and making interpolation and/or extrapolation 
from observation at different scales is required (Bush et al. 2017, Kissling et al. 2017). This 
is especially true for EBV classes such as genetic composition and species traits where little 
data are directly available. 
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Finally, using the GEO BON strategy for development of EBVs (GEO BON 2017), the 
integration of remote sensing with emerging tools appear as necessary to operationalise EBVs 
(Table 2.3). The complementary nature of the monitoring approaches highlights that synergy 
is required between the approaches to up/downscale observations between different 
spatiotemporal and taxonomic scales. EBV candidates such as species distribution, 
population abundance, net primary productivity, and habitat structure will benefit from such 
synergies. However, issues related with data standards, uncertainties, documentation of 
protocols and guidance, data sharing, as well as consensus on the usability of EBV derived 
products need to be dealt with to enable consistent global reporting of biodiversity changes 
using EBVs.  

Table 2.3: The relevance of state-of-the-art monitoring approaches in the context of GEO BON strategy to 
operationalise EBVs. Colours represent readiness level for each subcategory. Brown = low level, Orange = medium 
level, Green = high level (adapted from GEO BON strategy for development of EBVs). 

EBV Criteria 
Components 

Remote Sensing In situ DNA Barcoding 

Spatial extent Global (Proença et al. 2016) 

Global with gaps. 
Example: TEAM network 
(http://www.teamnetwork.
org/), http://bio.acousti.ca 
Bioacoustics (Baker et al. 
2015) 

Local/regional 
(Bruford et al. 2017) 

Spatial 
resolution 

Optical satellite: coarse spatial 
resolution 250–1200 m (e.g., 
MODIS), Medium to high 
spatial resolution: 5–30 m (e.g., 
Landsat, sentinel 2, RapidEye), 
Very high spatial resolution 
(e.g., Ikonos, GeoEye): 0.5–4 m.  
Airborne Hyperspectral: 1–2 m 
(according to flight height).  
Active remote sensing (radar): 
1–100 m (Vihervaara et al. 
2017). Upcoming: GEDI 
(satellite LiDAR): 25 m 
footprint, EnMAP (satellite 
hyperspectral): 250 narrow 
bands (Mora et al. 2017) 

Field based. Example: 
TEAM has 23 tropical 
forest sites (120–200 km2 
resolution) (Kissling et al. 
2017) 

Requires physical 
sampling (Bruford et 
al. 2017) 

Periodicity 

Continuous long term time-
series data, with high revisit-
time period for high-resolution 
data (e.g., Landsat: every 16 
days, Sentinel 2: every 10 days, 
RapidEye: Daily ) (Vihervaara 
et al. 2017) 

From real-time to 
different times of the day 
and seasons (Obrist et al. 
2010) 

No clear understanding 
(Bruford et al. 2017) 

Taxonomic 
coverage 

Multiple taxa can be covered 
(Pereira et al. 2017) 

Multiple taxa can be 
covered (Pereira et al. 
2017) 

Multiple taxa can be 
covered (Pereira et al. 
2017) 
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uncertainty 

Imperfect detections, data 
uncertainties, model 
uncertainties (Rocchini et al. 
2013) 

Measurement error, 
detection algorithms 
(Wrege et al. 2017), 
spatial mismatches 
(Bustamante et al. 2016) 

Reference datasets 
(Kissling et al. 2017), 
variation in primer use, 
amplification steps and 
sequencing platforms 
(Bucklin et al. 2016) 

Operational 
definition 

Several demonstrations are 
made to derive EBVs (Paganini 
et al. 2016, Geller et al. 2017, 
GOFC-GOLD 2017, Pettorelli 
et al. 2017) 

The technology has been 
identified as candidate 
(Proença et al. 2016) 

The technology has 
been identified as 
candidate (Creer et al. 
2016, Bush et al. 2017) 

Documentation 

Documentations is available 
(Geller et al. 2017, GOFC-
GOLD 2017, Pettorelli et al. 
2017)  

Lack of documentation 
and established protocols 

Lack of documentation 
and established 
protocols  

Abstraction 

Few to several steps involved in 
derivation of products (GOFC-
GOLD 2017, Pettorelli et al. 
2017) 

Few steps involved in 
derivation of products 
(Pereira et al. 2017) 

Several steps in 
derivation of products 
(Creer et al. 2016) 

Measurement 
and sampling 

schema  

Sampling and measuring 
strategies are often well defined 
(Pettorelli et al. 2017) 

Limited sampling and 
measuring strategies are 
available [14]. Camera 
traps: 
www.teamnetwork.org/pr
otocols  

Few sampling and 
measuring strategies 
are available (Creer et 
al. 2016) 
(www.biocodecommon
s.org/, 
www.gensc.org/)  

Automatisation 
Automation of data acquisition 
and processing is possible 
(Geller et al. 2017) 

Automation of data 
acquisition, processing, 
and management are 
possible. Example: 
automated and semi-
automated sound 
recognition (Jeliazkov et 
al. 2016, Jahn et al. 2017), 
automated camera traps 
and image recognition 
(O'Brien 2008)  

Automated DNA 
extraction is possible 
(Ivanova et al. 2006) 

Interoperability 

Global standards and protocols 
exist for harmonised data and 
metadata formats (e.g., 
http://docs.opengeospatial.org/is
/10-157r4/10-157r4.html) 

Camera traps: individual 
initiatives exist (Forrester 
et al. 2016), Bioacoustics: 
metadata standards are 
proposed (Roch et al. 
2016)  

Data standards are 
defined (Ratnasingham 
and Hebert 2007) 

Data 
availability 

Data available for multiple 
EBVs (GOFC-GOLD 2017, 
Pettorelli et al. 2017). (e.g. 
https://scihub.copernicus.eu/dhu
s/#/home, 
https://gcmd.nasa.gov/, 
https://boninabox.geobon.org/) 

Data mobilisation 
opportunities exist 
www.TEAMNetwork.org, 
http://bio.acousti.ca/, 
https://boninabox.geobon.
org/, 
https://www.movebank.or
g/ 

Data mobilisation 
opportunities exist 
http://www.barcodingli
fe.org, 
https://www.ncbi.nlm.n
ih.gov/, 
https://boninabox.geob
on.org/ 

Temporal 
sustainability 

Data have been available from 
satellite agencies for 40 years 
now (e.g., Landsat) and is 
secured until the end of the 

Data availability and 
methods are evolving 
(Aide et al. 2013) 

Data availability and 
methods are evolving 
(Thomsen and 
Willerslev 2015) 
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2020’s (Paganini et al. 2016, 
Vihervaara et al. 2017) 

Baseline 

Historical satellite datasets are 
available: e.g., Landsat program 
(since 1972) (Vihervaara et al. 
2017) 

Baselines can be made 
from past field inventories 
(Wrege et al. 2017) 

Ancient DNA (e.g., 
from museum 
collections) (Bohmann 
et al. 2014), 
https://www.ncbi.nlm.n
ih.gov/  

Relevancy 

Relevance for multiple EBVs 
has been demonstrated 
(Pettorelli et al. 2017, 
Vihervaara et al. 2017) 

Relevance for multiple 
EBVs has been 
demonstrated (Pereira et 
al. 2017, Wrege et al. 
2017) 

Relevance for multiple 
EBVs has been 
demonstrated (Bruford 
et al. 2017, Pereira et 
al. 2017) 

Consensus 
Large consensus exists (GOFC-
GOLD 2017) 

Consensus underway 
(Pereira et al. 2017) 

Consensus underway 
(Bruford et al. 2017) 

Scalability 
Robust to scalability (e.g., 
diversity indices) (Rocchini et 
al. 2016) 

Robust to scalability (e.g., 
Wildlife Picture Index) 
(O'Brien et al. 2010) 

Robust to scalability 
using statistical models 
(e.g., species 
distribution models) 
(Bush et al. 2017) 

Institutional 
support 

Several institutions are 
contributing. Example: GEO 
BON 
(http://geobon.org/essential-
biodiversity-
variables/monitoring/), GOFC-
GOLD: 
(http://www.gofcgold.wur.nl) 

Several institutions are 
contributing. Example: 
GEO BON (Pereira et al. 
2013) , Map Of Life 
(https://mol.org/), Move 
bank 
(https://www.movebank.o
rg/) 

GEO BON 
(http://geobon.org/esse
ntial-biodiversity-
variables/monitoring/), 
GOFC-GOLD: 
(http://www.gofcgold.
wur.nl) 

 

2.5 Future Directions and Recommendations 

Our review has shown that the potential of some of the most recent technologies for 
monitoring biodiversity dynamics in tropical forests has been initially investigated but still 
needs to be explored further—notably their operational synergy across biophysical scales and 
extended taxonomic levels. This underlines the need to support further research and 
development activities to demonstrate the added value of such technologies; and learn from 
existing efforts such as the National Ecological Observatory Network 
(http://www.neonscience.org). Networks like GEO BON could, for instance, influence the 
formulation of research calls targeted specifically at closing such research and development 
gaps. To this end, the development of a Technology Readiness Level (TRL) framework could 
be initiated. Such TRLs could also be used to monitor scientific and technical progress and 
provide guidance to countries for the development of their monitoring systems. For instance, 
the GEO BON could build on the assessment framework for tropical forest monitoring 
developed by the Global Forest Observations Initiative (GFOI). 
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The lack of integration of the novel technologies also stresses the necessity to link up the 
different research communities that work on tropical forest environments. Different policy 
contexts with overlapping requirements co-exist, such as climate change mitigation and 
adaptation from the United Nations Framework Convention on Climate Change, but also the 
UN SDGs. More particularly, experts in the fields of genomics, Earth observation and 
information technology fields need to strengthen collaborations to tackle the challenges of 
the big-data era. In this context, successful efforts from the research community to incentivise 
free and open access to Earth observation data need to be maintained. Finally, guidance 
documents synthesising the operational monitoring methods and reviewing the state-of-the-
art research should be developed. An appropriate platform for achieving this is the BON-in-
a-Box concept tool (https://boninabox.geobon.org/) supported by the GEO initiative. One 
recent bon-in-a-box release is the sourcebook for biodiversity monitoring in tropical forests 
with SRS developed by GOFC-GOLD and the GEO BON presents techniques related to 
EBVs relevant to tropical forests (GOFC-GOLD 2017). 
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Abstract 

 
Increasing anthropogenic pressure leads to loss of habitat through deforestation and 
degradation in tropical forests. While deforestation can be monitored relatively easily, forest 
management practices are often subtle processes, that are difficult to capture with for example 
satellite monitoring. Conventional measurements are well established and can be useful for 
management decisions, but it is believed that Terrestrial Laser Scanning (TLS) has a role in 
quantitative monitoring and continuous improvement of methods. In this study we used a 
combination of TLS and conventional forest inventory measures to estimate forest structural 
parameters in four different forest types in a tropical montane cloud forest in Kafa, Ethiopia. 
Here, the four forest types (intact forest, coffee forest, silvopasture, and plantations) are a 
result of specific management practices (e.g. clearance of understory in coffee forest), and 
not different forest communities or tree types. Both conventional and TLS derived parameters 
confirmed our assumptions that intact forest had the highest biomass, silvopasture had the 
largest canopy gaps, and plantations had the lowest canopy openness. Contrary to our 
expectations, coffee forest had higher canopy openness and similar biomass as silvopasture, 
indicating a significant loss of forest structure. The 3D vegetation structure (PAVD – Plant 
area vegetation density) was different between the forest types with the highest PAVD in 
intact forest and plantation canopy. Silvopasture was characterised by a low canopy but high 
understorey PAVD, indicating regeneration of the vegetation and infrequent fuelwood 
collection and/or non-intensive grazing. Coffee forest canopy had low PAVD, indicating that 
many trees had been removed, despite coffee needing canopy shade. These findings may 
advocate for more tangible criteria such as canopy openness thresholds in sustainable coffee 
certification schemes. TLS as tool for monitoring forest structure in plots with different forest 
types shows potential as it can capture the 3D position of the vegetation volume and open 
spaces at all heights in the forest. To quantify changes in different forest types, consistent 
monitoring of 3D structure is needed and here TLS is an add-on or an alternative to 
conventional forest structure monitoring. However, for the tropics, TLS-based automated 
segmentation of trees to derive DBH and biomass is not widely operational yet, nor is species 
richness determination in forest monitoring. Integration of data sources is needed to fully 
understand forest structural diversity and implications of forest management practices on 
different forest types. 

 
Keywords 

Plant Area Volume Density (PAVD), canopy openness, canopy gaps, coffee forests, 
Ethiopia, 3D structural heterogeneity. 
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3.1 Introduction 

Tropical forests typically have high diversity, as they are characterized by a more complex 
canopy structure when compared to other forest types (Ghazoul and Sheil, 2010; Whitmore, 
1982). Structurally complex habitats provide a large number of niches for different animal 
and plant species (habitat heterogeneity hypothesis; Tews et al., 2004). Increasing 
anthropogenic pressure leads to habitat loss, from deforestation that reduces the total forest 
area into smaller, isolated forest patches (Zipkin et al., 2009). In addition, degradation of 
remaining forests through selective logging, unsustainable use and extensive hunting leads 
to habitat loss (Harrison, 2011; Ticktin, 2004). In many seemingly intact forests the 
understorey has been heavily affected by human use, through cutting of poles for 
construction or fire wood, or planting of understorey species that are important 
commodities, such as coffee and cocoa (Harrison, 2011). Both processes lead to a steep 
decline in flora and fauna diversity with increasing degradation (Barlow et al., 2016; 
Pettorelli et al., 2014) and can for instance lead to ‘empty forests’ with no large animals 
remaining under an intact forest canopy (Redford, 1992). Accurate characterization and 
measurement of the intensity of forest management and use is required to understand the 
drivers of forest degradation, to prevent further degradation and to plan restoration actions 
(Ghazoul et al., 2015; Ghazoul and Chazdon, 2017). Anthropogenic pressure not only 
affects forest biodiversity, but also the provision of other ecosystem functions, such as 
carbon storage (Kissinger et al., 2012), soil stabilization, and water provision (Ellison et al., 
2017). Besides the type, also the intensity and frequency of the disturbance events, and the 
time elapsed since the last event is important (Barlow et al., 2012). The combined effects 
of different management practices and the way they affect forest structure is not always 
clear, hampering the identification of management priorities for avoiding further forest loss 
and for restoring degraded forests (Berenguer et al., 2014).  
 
To what extent, and in what way, forest structure is affected through forest degradation likely 
depends on the type of forest management. In this study, we assess the difference in forest 
structure between four forest types, characterized by different forest management practices, 
in the montane cloud forest of the UNESCO Kafa Biosphere Reserve, southwest Ethiopia. 
This area is a biodiversity hotspot and is considered the origin of the Arabica coffee (Coffea 

arabica). However, in the last decades large areas of these unique forests have been 
converted to other land-uses (Tadesse et al., 2014). Many of the previously untouched intact 
forests are currently managed, for example as semi-forest coffee systems, or as forests used 
for fuelwood collection and/or grazing by cattle (i.e. silvopasture). Other types of 
management in the area include the total clearance of natural forest for plantations for wood 
production and agriculture. In intact forest, the vegetation is dense in both understory 
vegetation (i.e. < 10m) and in the canopy, with little light reaching the understory vegetation. 
Management in the coffee forests often imply the removal of most understory vegetation, 
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while still leaving most of the canopy intact to provide shade for the coffee plants (Schmitt 
et al., 2009). Coffea arabica grows up to 10 m high, but is often pruned for easier harvesting 
and is planted with enough spacing, leaving a less dense vegetation structure. Management 
in the silvopasture system are diverse and can include fuelwood collection, grazing by cattle, 
and forests can be left to regrow after earlier use, which can result in a heterogeneous forest 
structure. Overall, silvopasture areas have a more open understory and canopy, and large 
canopy gaps. For plantations we assume a homogeneous canopy, with no canopy gaps and 
very little light reaching the ground floor, limiting the development of understory vegetation.  
 
Generally, 3D (three dimensional) structural changes in forests are monitored in permanent 
sample plots in which trees are measured for their stem diameter and height, are mapped, and 
species are identified. Such conventional forest inventory methods capture some of the 
horizontal and vertical forest structural parameters, like aboveground biomass (Day et al., 
2014), frequency distributions of canopy height (Brockelman, 1998), occupation of 
vegetation in space within canopy gaps (Bongers, 2001; van der Meer, 1997), and canopy 
openness (Chazdon and Pearcy, 1991; Oliver and Larson, 1996). However, to characterize 
the full spatial heterogeneity in forest structure, detailed 3D imagery is needed to measure an 
array of structural parameters, including the location of vegetation volumes (and in absence 
of this, empty-ness) in 3D space. These parameters are important for guiding management 
priorities or monitoring sustainable practices. Terrestrial Laser Scanning (TLS) provides 
high-accuracy data on both vertical and horizontal forest canopy structure (Liang et al., 2016; 
Palace et al., 2016; Wilkes et al., 2017) and therefore is promising for detailed monitoring of 
forest structure. It is well established that conventional measurements can be useful for 
management decisions, but it is believed that TLS has a role in quantitative monitoring and 
continuous improvement of methods. TLS provides a rapid, full coverage of the surrounding 
area and produces a high-detail 3D point cloud, which allows the estimation of a range of 
parameters such as canopy height (Palace et al., 2015), number of layers (Palace et al., 2016), 
Plant Area Volume Density (PAVD) (Calders et al., 2015a) and tree volume (Calders et al. 
2015c, Ferraz et al. 2016). PAVD indicates the plant surface area to volume ratio, and 
provides a consistent, detailed quantification of vegetation elements (e.g. leaves, branches 
and stems) in a certain space. Consistent monitoring of changes in 3D structure is needed to 
monitor forest management implications, and here TLS could be an add-on or an alternative 
for monitoring conventional forest structure parameters. TLS-derived PAVD has been used 
to assess forest phenology (Calders et al., 2015a) and structural differences among forest 
types (Ashcroft et al., 2014), but effects of forest degradation have not been assessed. Small 
changes are difficult to detect by conventional satellite sensors due to their limited canopy 
penetration (Lefsky et al., 2002). Although synthetic aperture radar (SAR) and airborne laser 
scanning (ALS) have been successfully used to measure the 3D forest structure (Disney et 
al., 2006; Mura et al., 2015) and disturbances in the canopy (Joshi et al., 2015a), the data are 
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still limited to the birds-eye view of the canopy. TLS fills this gap by measuring both forest 
understorey vegetation and the canopy. 
 
In this study we assess the forest structure in the Kafa region in Ethiopia of plots under four 
management types: (i) untouched natural forest (intact forest) with no signs of management, 
(ii) coffee forest, (iii) silvopasture and (iv) plantation. We compare 3D forest structure 
between these types based on conventional forest inventory methods and on TLS. We 
hypothesize that (1) aboveground biomass (AGB), tree density, basal area (BA), and diameter 
at breast height (DBH) are highest in intact forest and plantation, and slightly lower in coffee 
forest through creating space for coffee production. We expect that these parameters will be 
lowest in silvopasture, due to removal of trees e.g. for fuelwood; (2) the number and size of 
canopy gaps and canopy openings are expected to be lowest in intact forest and plantation; 
and (3) 3D forest structure, measured as PAVD, will be highest in intact forest, for both 
understory and canopy. Coffee forest is expected to have a lower PAVD in the understory, 
but values similar to intact forest in the canopy. Silvopasture is expected to have the lowest 
PAVD values in both understory and canopy, while plantation has canopy PAVD values 
similar to intact forest, but a very low understorey PAVD. 

3.2 Methods 

3.2.1 Study site 

The research was conducted in the montane cloud forests of the Kafa Biosphere Reserve in 
Ethiopia (36°3’22.51” E, 7°22’13.67” N – Figure 3.1) which has an altitudinal range from 
500 to 3500 m above sea level. The Kafa Biosphere Reserve is a hotspot for biodiversity with 
around 244 plant species, including 110 tree species, and over 300 mammal species 
(Mittermeier et al., 2004; NABU, 2014). The Kafa Biosphere Reserve is covered by more 
than 50% with forest, including 7% of protected intact forests and 48% of buffer zones or 
candidate core zones. About 45% of the Kafa Biosphere Reserve consists of agriculture and 
pasture. The candidate core zones include zones designated for coffee cultivation. Farmers 
producing coffee are doing so under a Participatory Forest Management (PFM) scheme. The 
idea behind the PFM scheme is to ensure a long-term source of income by sustainable 
management of forest resources. 
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Figure 3.1: The location of the Kafa Biosphere Reserve in Ethiopia and location of the plots. Source: Dresen 2011. 

 

3.2.2 Plot design and conventional measurements 

Plots were selected according to a stratified sampling design. The stratification was based on 
an overlay between several GIS data layers: a fragmentation map (Mulatu, 2013), a land 
use/cover map (Dresen, 2011) and a topographic map. Within the four forest types, a total of 
27 plots were established (Intact: 9 plots, coffee forest: 8 plots, silvopasture: 7 plots and 
plantation: 3 plots). From the 27 plots, 21 plots had a 20 m radius and six plots a 10 m radius 
due to difficult terrain (e.g. slope). We used a nested design, where all trees of ≥ 20 cm 
diameter at breast height (DBH) were measured for their diameter and identified to species 
in the 20 m (or 10 m) radius plot, while trees of 5-20 cm DBH were included within the centre 
5m-radius subplot only (Figure 3.2b). Above-ground biomass (AGB) was derived from the 
DBH, species names and the wood density values for African tropical moist forests (Chave 
et al., 2009). Basal area (BA) and tree density were derived from the data. For an overview 
of all forest structural parameters derived from the TLS and conventional forest measures, 
including a detailed workflow on how the forest structural parameters were derived see 
Appendix A. 
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3.2.3 TLS measurements  

A RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser Measurement Systems GmbH, 
Austria) mounted on a tripod was used. The VZ-400 operates at a wavelength of 1550 nm 
and uses on-board waveform processing to record up to four returns per outgoing pulse with 
a range up to 350 m. For each plot, five scan positions were used: one in the centre and four 
in the cardinal directions (Figure 3.2b). Cylindrical, retroreflective targets (20 in total) were 
placed in the plot to allow co-registration of the individual point clouds (Wilkes et al., 2017). 
Pre-processing of the point cloud data was performed using RiSCAN PRO software (RIEGL 
Horn, Austria). Multiple scans per plot were co-registered based on their corresponding tie 
points using the 20 reflector targets from the field. Alignment errors were corrected using the 
multi-station adjustment (MSA) module, which improves the registration of the scan 
positions (Wilkes et al., 2017). Figure 5.2c shows an example of the 2D equiangular 
projection of the co-registered TLS point cloud. 
 

3.2.4 TLS derived parameters  

Vertical profiles of Plant Area Volume Density (PAVD) were derived for 0.5 m vertical bins 
from ground level to top of the canopy using individual TLS scans based on the method 
developed by Calders et al. (2014) (Figure 3.2a). The integral of PAVD over the whole 
canopy is the Plant Area Index (PAI) (Calders et al., 2015a). The retrieval method allows the 
estimation of PAI using multiple TLS returns and a height correction that accounts for sloped 
terrain. In short, the vertically resolved, directional gap fraction was estimated by relating the 
number of returned pulses to the total number of emitted pulses (Jupp et al., 2009). Next, 

PAVD was derived from the gap fraction at the hinge angle (57.5° zenith) to minimise the 

influence of leaf angle distribution (Jupp et al., 2009). The profiles can be aggregated into 
different height layers. In cases when one PAVD value per plot was needed, gap fractions of 
the single scans were averaged and then PAVD was derived. All plots are surrounded by 
forest of the same level of disturbance, to ensure PAVD (not limited to the 20 m radius) was 
representative for the plot. 
 

To extract the canopy and canopy height parameters, the registered point clouds were loaded 
into CompuTree point cloud analysis open source software (Hackenberg et al., 2015). The 
detailed processing steps can be found in Appendix A. The derived 2D canopy height models 
(DHM) were exported as 0.5 m resolution raster files and further analysed in ArcMap (ESRI 
Redlands USA) (Figure 3.2d). The following parameters were derived from the DHM: (i) 
Canopy height: the top of the canopy at 0.5 m resolution for the 20 (or 10) m radius plot; (ii) 
Canopy gaps: defined here as neighbouring pixels with canopy height of <10 m and with an 
area of ≥1 m2 (Hunter et al., 2015). From the canopy gaps the maximum and mean gap area, 
and the number of gaps per plot were derived; (iii) Canopy openness, defined here as all 
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empty spaces of ≥1 m2 at 5 m height intervals, calculated until the maximum canopy height 
(Figure 3.2b, green layers). With the canopy openness we do not capture the empty space 
underneath the upper canopy (this would be the inverse of the PAVD). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Overview of the TLS derived parameters capturing forest structure. (a) Example of the Plant Area 

Volume Density (PAVD) of one plot with the different scan positions. (b) Canopy related parameters derived from 

the TLS Digital Height Model (DHM): Canopy height as the height of the vegetation (see dotted line); Canopy gap: 

number of canopy gaps with a size of > 1 m2 and < 10m height; Canopy openness: area of open space (seen from 

the top) relative to the highest tree in the plot at 5 m height intervals (indicated by the shades of green). Scan positions 

are indicated by red dots. (c) 2D equiangular projection of the TLS point cloud (projections for each forest type can 

be found in Appendix B). (d) DHM for a 20 m radius plot at 0.5 m resolution. 

 

3.2.5 Statistical analysis  

Linear mixed-effects models were used to compare the forest types for the conventional 
forest structure measurements (i.e. AGB, BA, tree density and the DBH distribution). The 
model selection was based on Akaike’s Information Criterion, adjusted for small sample sizes 
(AICc). Models within 2 AICc-units from the model are equally supported (Burnham and 
Anderson, 2002). Similarly, we used linear mixed-effects models to compare TLS derived 
PAVD at 5m height intervals among forest types. Mixed-effect models were used because 
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multiple values (i.e. PAVD for each 5 m height interval) per plot are included, thus 
accounting for the fact that data points within a plot cannot be regarded as independent data 
points. We compared five models with varying fixed effects structures: (1) height interval, 
forest type and their interaction and including a random slope in height interval; (2) height 
interval, forest type and their interaction; (3) forest type; (4) height interval; and (5) only an 
intercept. In addition, we added a random slope for height interval to account for plot-to-plot 
variation in the relation between height interval and PAVD, which significantly improved 
model fit based on a likelihood-ratio test (see Appendix C). The same model comparison was 
used for the TLS derived canopy openness. Similarly, we compared the forest types for the 
TLS derived canopy height distribution, using mixed-effect models with a random intercept 
per plot, and compared the model with a model with a fixed intercept. Where needed, data 
were transformed (Appendix C) to enhance normality and homoscedasticity. All analyses 
were performed in R, version 3.3.3 (R core team); mixed-effects models were performed 
using the lme4 R package (Bates et al., 2014). 

3.3 Results 

3.3.1 Conventional forest structure parameters  

Mean DBH, AGB and BA differed between forest types, but this was not the case for tree 
density (Appendix C). Predicted mean DBH values ranged from 62 ± 12 cm for intact forest 
(median = 40 ± 54.5 cm) to 34 ± 18 cm for plantation (median = 34.3 ± 15.5 cm). Coffee 
forest and silvopasture were similar with mean DBH values of about 46 ± 12 cm (median = 
37.0 ± 31.8 cm and 33.5 ± 29.3 cm, respectively). Large trees (> 100 cm DBH) were most 
abundant in intact forest, and also present in coffee forest, although to a lesser extent 
(Appendix D). The DBH distributions show that trees with a DBH > 100 cm were almost 
absent in silvopasture and plantation, with plantation having many trees of 25-50 cm DBH 
(Appendix D). Mean BA and AGB were largest in intact forest (respectively 97 ± 28 m2 /ha 
and 753 ± 259 t/ha), followed by plantation (respectively 47 ± 49 m2 /ha and 422 ± 449 t/ha), 
coffee forest (respectively 40 ± 30 m2 /ha and 295 ± 275 t/ha) and silvopasture (respectively 
33 ± 32 m2 /ha and 282 ± 294 t/ha). Although no significant effect of forest type was found, 
mean tree density followed the same order (intact forest > plantation > coffee forest > 
silvopasture) (Appendix D).  
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3.3.2 TLS derived canopy forest structure parameters  

Figure 3.3: (a) Canopy openness per forest type at 5 m height intervals. (b) Cumulative Plant Area Volume Density 

(PAVD) as a function of height across four forest types. Predicted values are indicated (± SE; n = 27 plots). 

 
Canopy openness differed between forest types and was also influenced by height classes. 
Coffee forest had a lower canopy openness between 0 – 10 m compared to silvopasture, but 
had higher canopy openness in the higher height classes (predicted values range from 10% 
to 94% and 15% to 86%, respectively) (Figure 3.3a; Appendix C). Intact forest and plantation 
had similar canopy openness (predicted values range from -9% to 63% and -17% to 57%, 
respectively). 
 
Average canopy height, mean and maximum gap size, and the number of gaps also differed 
among forest types (Figure 3.4; Appendix C). Canopy height was highest in plantation (26.4 
± 9.7 m), followed by intact forest (19.0 ± 4.7 m), while silvopasture and coffee forest had 
the lowest canopy heights (17 ± 5.3 m and 15.5 ± 5.6 m respectively) (Figure 5.4a). Maximum 
gap size was higher in coffee forest and silvopasture (18.3 ± 4.6 m2 and 19.8 ± 4.9 m2, 
respectively) than in intact forest (7.5 ± 4.3 m2) and plantation (2.7 ± 7.5 m2) (Figure 3.4c - 
square root transformed values). Similar differences were found for the mean gap size with 
the lowest values in plantation (0.8 ± 0.5 m2), followed by intact forest (0.9 ± 0.3 m2), 
silvopasture (1.8 ± 0.3 m2) and coffee forest (2.0 ± 0.3 m2) (Figure 3.4b - log transformed 
values). Plantation also had the lowest number of gaps per plot (0.5 ± 0.8), followed by coffee 
forest (1.2 ± 0.5). The number of gaps was the highest in intact forest (1.5 ± 0.5) and 
silvopasture (1.3 ± 0.5) (Figure 3.4d - log transformed values). However, gaps in intact forest 
were mainly small, with an average size of approximately 1.5 m2 (equals 0.2 m2 when log 
transformed). 
 

 

a b 
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Figure 3.4: Structural parameters derived from the Digital Height Model (DHM) at 0.5 m grid resolution for four 

forest types. (a) Canopy height. (b) Mean gap size (log transformed). (c) Maximum gap size (square root 

transformed). (d) Number of gaps (log transformed). Predicted values are indicated (± SE; n = 27 plots). 

 

3.3.3. TLS derived 3D Plant Area Volume Density (PAVD)  
Plant Area Volume Density (PAVD) was generally highest in intact forest, for both 
understory and canopy compared to the other forest types (Figure 3.5). In both coffee forest 
and silvopasture the variation in PAVD was high in the 0-10 m height range (Figure 3.5a,b). 
In contrast to coffee forest and silvopasture, plantation consistently had very low PAVD 
values in the understory (Figure 3.5a,b).  
 
PAVD varied among forest types and height classes (Figure 3.3b; Appendix C). The 
difference in PAVD is most apparent in the understory (< 10 m), with intact forest having 
most vegetation (estimated PAVD = 3.0 ± 0.4) and plantation the lowest amount of vegetation 
(estimated PAVD = 1.7 ± 0.7) (Figure 5.3b). At a height of 35 m, intact forest reached an 
estimated PAVD of 4.0 ± 0.5, while plantation had an estimated PAVD of 2.5 ± 0.9. Coffee 
forest and silvopasture were very similar to each other in the understory (< 10 m) with the 

 

a b 

c d 
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same estimated PAVD of respectively 1.9 ± 0.4 and 1.5 ± 0.4, but differed in the canopy 
(respectively 2.5 ± 0.6 and 2.0 ± 0.6) (Figure 3.3b). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

   

 

 

 

 

 

Figure 3.5: (a) Mean Plant Area Volume Density (PAVD) and standard error (SE – shaded area) for all plots per 

forest type. (b) Boxplots, with the median (horizontal line) lower and upper quartiles (hinges), presenting the 

maximum PAVD at plot level and its variation (different scan positions within the plots), for the canopy (>10 m) 

and understory (<10 m) (vertical panelling) along the different forest types (horizontal panelling).  



Chapter 3 

48 
 

3.4 Discussion 

3.4.1 Management impacts on forest structure and management 

implications 

The conventional measures of AGB, BA and DBH differed among forest types (Berenguer 
et al., 2014; Clark and Clark, 2000), with highest values for intact forest (Appendix D). 
Unexpectedly, both AGB, BA and DBH were very similar for coffee forest and silvopasture. 
This means that in coffee forest not only the understory was cleared, but also many trees were 
removed, indicating a larger management impact than expected and also indicated by other 
authors (Aerts et al., 2011; Hundera et al., 2013; Schmitt et al., 2009). The large variation in 
BA and DBH in plantation is probably due to the different tree ages between the three forest 
plantation plots.  
 
TLS estimated canopy openness was the lowest in plantation because the plantation plots 
consisted of even-aged monocultures, followed by intact forest. The higher canopy openness, 
and large canopy gaps, in coffee forest in comparison to silvopasture (especially ≥ 10 m, i.e. 
height above the coffee), contradicted the idea of coffee being produced underneath a 
relatively intact forest canopy. The high canopy openness in the investigated coffee forests 
suggested that canopy loss is much higher than the 30% canopy loss reported for nearby 
semi-coffee forests (Schmitt et al., 2009). Also canopy gap size (mean and maximum) was 
in line with these results of canopy openness. The large number of small gaps in intact forest 
could indicate canopy heterogeneity (i.e. multiple tree height levels). Such heterogeneity in 
canopy structure increases light levels in the understory, which is beneficial for the 
understory vegetation (Chazdon and Pearcy, 1991; Montgomery and Chazdon, 2001). 
Average canopy height was highest in plantation, but in contrast to our hypothesis, the 
differences between the intact forest, coffee forest and silvopasture were small, probably due 
to the large variation between plots. Overall canopy height in coffee forest and silvopasture 
was the lowest, which could be detrimental for habitat heterogeneity and associated 
biodiversity (Ghazoul and Sheil, 2010; Martins et al., 2017). 
 

The differences in 3D vegetation structure (PAVD) between forest types were significantly 
different for the different vegetation heights. Intact forest had, in general, the highest 
vegetation density over the complete height range. In addition to the conventional parameters 
and canopy gap parameters, the vegetation density in coffee forest at the canopy level (> 10 
m) was lower than expected. Our assumption that coffee forest plots have a relatively intact 
canopy (intended to shade the coffee) was confirmed only for two out of the eight coffee 
forest plots (i.e. plot 10 and 11; Figure 3.5b). As expected coffee forest had high vegetation 
density between 2 and 10 m due to the coffee plants. The PAVD in silvopasture partially 
confirmed our assumption of low vegetation density in the canopy, supported by large canopy 
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gaps and low conventional parameters (DBH, AGB, BA and tree density). However, the 
understory vegetation in silvopasture was dense, most likely due to infrequent fuelwood 
collection and non-intensive grazing in most of the plots. Partial removal of the canopy 
enables light to reach the forest floor and creates a dense layer of heliophile species (M. 
Decuyper, personal observation). Cuni-Sanchez et al. (2016) found similar results for PAVD 
along a successional gradient in colonizing forest and young successional forest in Gabon. In 
all plantation plots there was little understory (indicated by the very low PAVD values), 
probably due to clearance of the vegetation and/or lack of sunlight. Tripathi and Singh (2009) 
identified similar patterns comparing vegetation structure from natural forests to plantations. 
Plantations could therefore be seen as structurally poor and offering only few habitat niches 
for flora and fauna (Tews et al., 2004). 
 
Most parameters, both conventional and TLS derived, followed our prior expectations, but 
the forest structure of coffee forest did not. The high canopy openness together with the low 
BA estimations, and our field experiences (M. Decuyper, personal observation) in coffee 
forest warrant more tangible measures for sustainable forest management of coffee forest 
under the PFM certification, such as thresholds on canopy cover (Aerts et al., 2011; Hundera 
et al., 2013). Currently, large differences exist between PFM rules and regulations and 
objectives of policy makers on the one hand, and the interpretation and implementation of 
sustainable forest management in PFM sites by local communities on the other (Ayana et al., 
2017). More tangible measures could relieve concerns regarding sustainability of the PFM 
scheme and the produced coffee, currently leading to heavy degradation and severely 
jeopardizing the sustainability of the coffee production, the diversity of wild coffee varieties, 
and ecosystem resilience (Aerts et al., 2011; Ayana et al., 2017).  
 

3.4.2 TLS monitoring helps determining management impacts on 3D 

forest structure 

While habitat loss through forest area loss and forest fragmentation is relatively easy to 
monitor and demonstrate, small scale changes in forest structure due to forest management 
(a more internal qualitative habitat loss) is much more difficult to monitor (Mitchell et al., 
2017). The impact of small scale forest management (as is the case in this study area) mainly 
affects the understory while the canopy is left relatively intact, making such forest alterations 
undetectable by current satellites (Mitchell et al., 2017).  
 
TLS measurements captured the variation in vegetation structure in the understory and 
canopy for different forest types. These TLS measurements enabled 3D quantification of 
forest structural measurements such as PAVD, but also the 2D canopy gaps and canopy 
openness at different heights to evaluate the effect of management implications. These 
parameters could potentially be used for habitat heterogeneity proxies and linked to 
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biodiversity analysis (Tews et al., 2004; Zipkin et al., 2009). Several of these parameters 
cannot be measured by conventional forest inventories, such as 3D position of plant volume 
(quantified by PAVD) and open spaces (i.e. inverse of PAVD). The 3D leaf positioning is 
important as it influences light extinction, tree architecture and photosynthetic leaf traits (e.g. 
Montgomery and Chazdon, 2001). Open space in different forest layers, including the forest 
understorey, is of great importance for many flora and fauna (Chazdon and Pearcy, 1991; 
Zahawi et al., 2015). With TLS, open spaces can be measured by assessing canopy openness 
and gaps at different heights. For example, open spaces and light between 0 and 1 m is highly 
important for seedling germination (Chazdon and Pearcy, 1991), at 0 and 5 m for coffee 
plants and their pollinators (i.e. bees) (Aerts et al., 2011), while between 5 and 30 m this can 
be important for bird species and epiphytes (Zahawi et al., 2015). For quantifying 
management effects on forest structure, consistent monitoring of changes in 3D structure is 
needed and here TLS is clearly an add-on or an alternative for monitoring conventional forest 
structure parameters. TLS is also an add-on for small scale canopy gap research, as it fills a 
gap between conventional geometric gap measurements (Van der Meer et al., 1994), grid-
based top of canopy measures (Hubbell and Foster, 1986), hemispherical cameras 
(Jonckheere et al., 2004) and airborne or satellite data (Joshi et al., 2015b). 
 
Besides the capability of TLS of measuring stem based structural parameters (i.e. AGB, BA, 
DBH and tree density) (Gonzalez de Tanago et al., 2018), there is still a need for the 
development of operational TLS data processing tools since there is not yet a fully automated 
way to measure DBH, AGB and BA in tropical forests. For example, deriving structural 
parameters such as biomass for tropical forests is quite challenging due to the dense 
understory (Gonzalez de Tanago et al., 2018). Additionally, from a forest conservation 
perspective, TLS cannot capture information on tree species richness in tropical forests, thus 
there is a need for integrating different data sources in order to fully understand the forest 
structural diversity. Complementing conventional parameters with TLS derived parameters 
shows potential in describing the sometimes subtle differences in forest management. 
 
TLS derived structural parameters can benefit from further integration with other datasets to 
better characterize forest structural differences across spatial scales (van Leeuwen and 
Nieuwenhuis, 2010). Not only data from conventional forest inventory methods, but also 
space borne and airborne LiDAR (Brede et al., 2017), multispectral TLS, as well as satellite 
remote sensing derived structural parameters are important to consider. Several studies have 
investigated the potential integration and upscaling opportunities of LiDAR and satellite 
remote sensing data, for example for stand height estimation (Mora et al., 2013). Further 
research is needed to link other TLS derived parameters with conventional forest inventory 
data, satellite or airborne data (Pettorelli et al., 2014) for better monitoring of management 
impacts on forest structure and biodiversity. 
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Abstract 

 
Obtaining information on vertical forest structure requires detailed data acquisition 
and analysis which is often performed at a plot level. With the growing availability of 
multi-modal satellite remote sensing (SRS) datasets, their usability towards forest 
structure estimation is increasing. We assessed the relationship of PlanetScope-, 
Sentinel-2-, and Landsat-7-derived vegetation indices (VIs), as well as ALOS-2 
PALSAR-2- and Sentinel-1-derived backscatter intensities with a terrestrial laser 
scanner (TLS) and conventionally measured forest structure parameters acquired from 
25 field plots in a tropical montane cloud forest in Kafa, Ethiopia. Results showed that 
canopy gap-related forest structure parameters had their highest correlation (|r|0.4 − 
0.48) with optical sensor-derived VIs, while vegetation volume-related parameters 
were mainly correlated with red-edge- and short-wave infrared band-derived VIs (i.e., 
inverted red-edge chlorophyll index (IRECI), normalized difference moisture index), 
and synthetic aperture radar (SAR) backscatters (|r|= −0.57 − 0.49). Using stepwise 
multi-linear regression with the Akaike information criterion as evaluation parameter, 
we found that the fusion of different SRS-derived variables can improve the 
estimation of field-measured structural parameters. The combination of Sentinel-2 
VIs and SAR backscatters was dominant in most of the predictive models, while 
IRECI was found to be the most common predictor for field-measured variables. The 
statistically significant regression models were able to estimate cumulative plant area 
volume density with an R2 of 0.58 and with the lowest relative root mean square error 
(RRMSE) value (0.23). Mean gap and number of gaps were also significantly 
estimated, but with higher RRMSE (R2 = 0.52, RRMSE = 1.4, R2 = 0.68, and RRMSE 
= 0.58, respectively). The models showed poor performance in predicting tree density 
and number of tree species (R2 = 0.28, RRMSE = 0.41, and R2 = 0.21, RRMSE = 0.39, 
respectively). This exploratory study demonstrated that SRS variables are sensitive to 
retrieve structural differences of tropical forests and have the potential to be used to 
upscale biodiversity relevant field-based forest structure estimates. 
 

Keywords 

Forest structure; terrestrial LiDAR; synthetic aperture radar; satellite remote 
sensing; data fusion; Ethiopia 
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4.1 Introduction 

The horizontal and vertical structure of vegetation is important as it provides niches 
for forest dependent plant and animal species (Lindenmayer et al. 2000). The 
structural complication of habitats has direct effect on the availability of resources and 
microclimate conditions which can affect for example the abundance and diversity of 
species. Even though tropical forests host the most endemic and valuable biodiversity, 
they are threatened with increasing deforestation and forest degradation that alters the 
complexity of the habitat (Giam 2017). Understanding the structural configuration 
and diversity of tropical forest habitats will help explain the state of forest degradation 
and the resulting biodiversity dynamics. Thus, forest habitat heterogeneity has 
become one of the most commonly used indicators in forest biodiversity conservation 
and management studies (Simonson et al. 2014b, Tuanmu and Jetz 2015b). Ecosystem 
structure (encompassing the vertical structural complexity and the horizontal 
fragmentation status of habitats) is listed by the Group on Earth Observations 
Biodiversity Observation Network (GEOBON) as one of the essential biodiversity 
variables (EBVs) to monitor and to understand global biodiversity change (Skidmore 
and Pettorelli 2015); contributing towards the realization of the United Nations (UN) 
Convention on Biological Diversity (CBD) Aichi targets (Pereira et al. 2013). 
However, the accurate characterization and monitoring of forest structure is 
challenging. This is often due to the complex three-dimensional configuration of 
tropical forests (Leblanc and Fournier 2017).  
 
Ground-based traditional measurements are among the most accurate methods for 
forest structure estimations and are a typical source for conservation studies (Day et 
al. 2014, Gao et al. 2014). However, their time consuming, spatial limitedness, and 
laborious nature opened up a growing exploration towards using remotely sensed 
datasets to overcome such limitations (Zellweger et al. 2014, Mitchell et al. 2017). In 
this context, Light detection and ranging (LiDAR) is a rather recent remote sensing 
technique that is increasingly being used in forestry. It has active sensors that transmit 
laser pulses to targets and uses the time-of-flight principle to measure the distance to 
an object. The three-dimensional position of an object can be defined using the known 
position of the sensor and the range measurement between the sensor and the targeted 
object (Kaasalainen et al. 2015). Information on the three-dimensionality of forests 
helps with the understanding of essential habitat parameters such as gap formation 
and dynamics, light penetration, and understory vegetation (Alexander et al. 2013). 
TLS measurements are used for rapid and detailed quantification of forest structure 
variables such as tree height (Van Leeuwen and Nieuwenhuis 2010, Srinivasan et al. 
2015), vertical plant profiles (Calders et al. 2015c), canopy gap fraction (Hancock et 
al. 2014), and DBH measurements (Calders et al. 2015b, Hackenberg et al. 2015b). 
These measurements are made at a plot scale and can be used to characterize forest 
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structural complexity across different forest types (Decuyper et al. 2018). Even though 
TLS data provide good estimates of forest structure, the small coverage, operational 
costs, and complex analytical process limit its usability (Van Leeuwen and 
Nieuwenhuis 2010). 
 
 Concomitantly, satellite remote sensing (SRS) is being explored as an alternative 
resource to facilitate synoptic and scalable forest structure estimation (Pettorelli et al. 
2014, Meng et al. 2016). The use of SRS for structural assessment of forest 
environments is based on the distinct characteristics expected from forest canopies 
when in contact with solar radiation and/or with signals from active satellites. Even 
though three-dimensional forest structure elements such as tree height, and number of 
layers are not yet directly extractable from the commonly used optical satellite images, 
the spectral signals recorded from leaf reflectance across different spectral regions 
could be used to assess biophysical parameters of forests (Baloloy et al. 2018). 
Especially, the leaf reflectance in the red-edge, near-infrared (NIR), and middle 
infrared regions are affected by chlorophyll content, leaf structure, and water content 
respectively. Therefore, short wave infrared (SWIR), NIR, red edge bands are often 
used to calculate vegetation indices that could represent the amount and/or condition 
of vegetation within a pixel (Dash et al. 2015). Several studies have demonstrated the 
usability and relation of spectral vegetation indices (VIs) with field measured vertical 
forest structure attributes such as tree species diversity (Meng et al. 2016), biomass 
(Baloloy et al. 2018, Matasci et al. 2018), and tree height (Hansen et al. 2016). Here, 
the spatial, spectral, radiometric, and temporal resolution of images affects the 
usability of SRS for extracting structural information of forests. Medium spatial 
resolution imagery such as Landsat images are the most commonly used data for 
studying time series dynamics of biophysical forest attributes (Freitas et al. 2005, 
Frazier et al. 2014, Hansen et al. 2016). The inclusion of red-edge spectrum specific 
bands, and the availability of higher spatial resolution images in Sentinel-2 have 
improved the use of SRS data to assess forest structure related parameters (Majasalmi 
and Rautiainen 2016, Castillo et al. 2017).  
 
Continuous acquisition of cloud and haze free optical images, especially over the 
tropics is difficult. Synthetic Aperture Radar (SAR) acquires continuous imagery that 
is largely independent of cloud cover and solar illumination condition. SAR sensors 
transmit polarized microwaves (on horizontal (H) or vertical (V) plane) that interact 
with surface objects, and record the backscattered signal (in a either horizontal (H) or 
vertical (V) plane). In the case of forests, complex structural components (trunks, 
branches, and leaves) lead to typical volume scattering which can be identified well 
in the HV (horizontal transmit and vertical received) polarization (Ningthoujam et al. 
2016). The wavelength, incidence angles, and polarizations of SAR signals; as well 
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as the canopy complexity of forests determines backscatter intensities. Long 
wavelengths (i.e. L- and P- band) have a greater ability to penetrate the canopy and 
acquire backscatter signals from stems and large branches (Rodríguez-Veiga et al. 
2017). For example, with ALOS-2 PALSAR-2 L-band, high HV backscatters are 
expected from dense vegetation of tropical forests, which correlates with biomass 
(Nguyen et al. 2016). The short wavelengths (i.e. X-, C-, S-band) are mainly scattered 
back from the upper tree crown and less from beneath; thus mainly indicating on 
canopy structural variables (Rüetschi et al. 2019). In addition to structural 
components, other environmental factors such as topography, and moisture causes 
variations in backscatter signals (Lucas et al. 2007, Joshi et al. 2015c).  
 
The ecological application of SRS is supported by the growing availability of very 
high spatial resolution satellite data (e.g. RapidEye, IKONOS, and PlanetScope), and 
with the freely available high to medium spatial resolution data from Sentinel and 
Landsat satellites. The unique characteristics of each SRS data type can provide 
valuable input in acquiring timely and continuous information on forest structure and 
to the understanding of its implication on habitat requirements of forest-dependent 
species (Mulatu et al. 2017). Coupled with powerful analytical approaches, SRS 
datasets could provide wall-to-wall and repeatable information on forest structure 
which would otherwise be very expensive to collect with field-based analysis.  
 
The overall objective of this study was to explore, at plot level, the applicability of 
optical SRS (i.e. PlanetScope, Sentinel-2, Landsat-7); and SAR images (ALOS-2 
PALSAR-2 and Sentinel-1), for estimating field measured (i.e. using TLS and 
conventional forestry measurements) forest structure parameters in the tropical cloud 
forests of Kafa, Ethiopia. In doing so, we aim (i) to identify the relationship between 
SRS derived variables and field measured forest structure parameters; and (ii) to 
develop models estimating field-measured forest structure parameters through the 
fusion of SRS derived predictors. We hypothesize that SRS derived indices and 
backscatters will show a significant correlation with some TLS measurements; and 
that SRS variable based models will be able, to some extent estimate the forest 
structure of montane cloud forest. 
 

4.2 Material and methods 

4.2.1 Study site 

The study area is located in Kafa biosphere reserve (KBR), Ethiopia (36°3′22.51″ E, 
7°22′13.67″ N) (Fig. 4.1). It covers a total area of 744,919 ha, of which 47% is 
comprised of different forest types (i.e. intact to highly degraded) and diverse habitats 
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(i.e. Sub-Afroalpine to wetland). The Afromontane mountain cloud forests of KBR 
are the origin of wild varieties of Coffea arabica L., and home to many endemic and 
threatened species (NABU 2017). However, the ongoing deforestation, forest 
fragmentation, and forest degradation due to anthropogenic pressure raise threats on 
the biological diversity of KBR (Tadesse et al. 2014a). Thus, placing it as part of the 
Eastern Afromontane Biodiversity Hotspot and under the national forest priority area 
protection schemes (NABU 2017).  

 

Figure 4.1:Location of the study area Kafa biosphere reserve in Ethiopia, indicating the field plots (n=25) 
used for this study. Note: some plots are invisible due to the spatial proximity from mapping scale used 

4.2.2 Field data collection 

 

The field data on forest structure were collected in November 2015 in Kafa biosphere 
reserve, Ethiopia, consisting of 25 plots across four forest management types (Intact: 
7 plots, coffee forest: 8 plots, silvopasture: 7 plots, and plantation: 3 plots). The details 
on the collection and analysis of the TLS and conventional forest measurements can 
be found in Decuyper et al. (2018). In short, a stratified sampling design was made 
based on various GIS data layers (i.e. fragmentation map, land use/cover map, and 
biodiversity assessment plots) of the study area to select field plots for measurements. 
The chosen plot locations were representative of their surrounding forest type. TLS 
measurements were made with a RIEGL VZ-400 terrestrial laser scanner (RIEGL 
Laser Measurement Systems GmbH,  Horn, Austria). From the 25 plots, 21 plots had 
a radius of 20 m, while 4 plots had a 10 m radius due to difficult terrain. Five scanning 
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positions (i.e. one in the center and four in the cardinal directions) were used per each 
plot to acquire three-dimensional measurements.  
 
The point cloud data was preprocessed and co-registered using RiSCAN PRO 
software (RIEGL Horn, Austria). The vertical profiles of Plant Area Volume Density 
(PAVD) were derived based on a method developed by Calders et al. (2014), while 
the canopy gap and canopy height parameters, were derived by analyzing the point 
clouds in CompuTree point cloud analysis open source software (Hackenberg et al. 
2015a). The PAVD from 0 m to 10 m were considered as understory vegetation, while 
PAVD from 0 m to top of canopy level were considered as cumulative PAVD (Calders 
et al. 2014). Additional canopy parameters (i.e. canopy heights, canopy gaps, and 
canopy openness) were derived from digital height models produced at a 0.5m 
resolution. The canopy gaps derived from TLS were defined by canopy height of <10 
m and with an area of ≥1 m2 (Decuyper et al. 2018).  
 
Conventional forestry measurements were also taken on all 25 plots. Measurements 
included diameter at breast height (DBH), total basal area (BA), tree density and tree 
species identification. Above-ground biomass (AGB) was derived by using the wood 
density values for African tropical moist forests (Chave et al. 2009). The field 
measured structural variables (Table 4.1) showed distinct characteristics across 
different forest management types. 

Table 4.1. Descriptive statistics of field-measured forest structural parameters from field plots (n = 25). 
PAVD = plant area volume density, AGB = above ground biomass, BA = basal area. 

 
 
 
4.2.3 Satellite Remote Sensing Data 

An overview of the datasets used in this study is presented in table 4.2. We acquired 
the least clouded scenes from PlanetScope, Sentinel-2, Landsat-7, Sentinel-1, and 
ALOS-2 PALSAR-2 satellites that are closest to the field campaign date (i.e. 
November 2015). Since the change in forest vertical structure is often a slow process, 
we do not assume the time-lag between field data collection and SRS data acquisition 
will affect the relations between field parameters and SRS derived variables. The very 
high spatial resolution PlanetScope images were accessed through the PlanetScope 
ambassadorship quota (https://www.planet.com/markets/education-and-research/). 
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The four-band analytic PlanetScope (Red, Green, Blue, and near infra-red) images 
were downloaded as orthorectified Top of Atmosphere (TOA) Radiance products 
(Level 3B). The images were converted to TOA reflectance using the PlanetScope 
guide (PlanetLabs). The Sentinel-2 Multispectral Imager Instrument (MSI) Level 1-C 
images were acquired from the Sentinel Scientific Data Hub (ESA). The products 
were atmospherically corrected using Sen2Cor (Mueller-Wilm et al. 2017). The 
geometrically and atmospherically corrected Landsat-7/ETM+ images were obtained 
from The United State of America’s Geological Survey (USGS) Landsat surface 
Reflectance (SR) archive (http://landsat.usgs.gov/CDR_LSR.php). The CFmask 
cloud-shadow mask product (Zhu and Woodcock 2012) was used to generate cloud 
and cloud shadow free images.  
 
The SAR images from Sentinel-1 and ALOS-2 PALSAR-2 were obtained for three 
time steps, covering the wet and dry season. The Sentinel-1 VV-polarised C-band 
SAR images were acquired in Interferometric Wide Swath mode (IWS, 250 km swath 
width) and downloaded from the Sentinel science hub (https://scihub.copernicus.eu/). 
The ALOS-2 PALSAR-2 HV-polarised L-band SAR images were acquired in  Fine 
Beam Dual mode (FBD, 70km swath width) and obtained from the ALOS-2 data 
archive (https://auig2.jaxa.jp/ips/home). The pre-processing and speckle removal of 
the SAR images was conducted following the procedure by Reiche et al. (2018a). 
Both Sentinel-1 and ALOS-2 PALSAR-2 backscatter images were geocoded to 30 m 
resolution and were co-registered to Landsat images (Reiche et al. 2018a). 
 

Table 4.2:Data sources and acquisition dates for estimating forest structure using satellite remote sensing 

Data type Acquisition Date Parameters derived Spatial 

resolution 

PlanetScope images 2016-11  Vegetation indices 3m 
Sentinel-2 2016-11-15 Vegetation indices 10m 
Landsat-7/ETM+ 2015-01-01 Vegetation indices 30m 
Sentinel 1 (C-band) 2015-09-22, 2015-11-09, 

2015-12-03 
VV backscatter 30m 

ALOS-2 PALSAR-2 (L-
band) 

2015-01-25, 2015-09-06. 
2016-01-24 

HH, HV backscatter, 
Forest backscatter 

30m 

 

4.2.3.1 Satellite Remote Sensing-Derived Vegetation Indices and Backscatter 

Intensities 

 
The Red (R), Green (G), and Near Infrared (NIR) bands of optical SRS images, with 
their original spatial resolution (table 4.2), were used to calculate forest biophysical 
sensitive VIs (Wallner et al. 2015, Meng et al. 2016, Baloloy et al. 2018, LaRue et al. 
2018, Navarro et al. 2019) for each field plot and their surrounding forests in the KBR 
(Table 4.3). The indices produced were Green Normalized Difference Vegetation 
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Index (GNDVI), Enhanced Vegetation Index (EVI), and Green chlorophyll index (CI 
green). In addition, the shortwave infrared (SWIR) bands of Sentinel-2 and Landsat-
7 were used to produce the Normalized difference moisture index (NDMI), while the 
Sentinel-2 specific red-edge bands were used to produce Inverted Red-Edge 
Chlorophyll Index (IRECI).  

Table 4.3: Equations used for the calculation of vegetation indices from satellite remote sensing dataset 

Vegetation index Description Satellite Source 

GNDVI (nir - green)/(nir + green) PlanetScope, Sentinel-2, 
Landsat-7 

(Gitelson et al. 
1996) 

EVI G!((nir−red)/(nir+C1!red−C2!blu

e+Levi)) 

PlanetScope, Sentinel-2, 
Landsat-7 

(Heute et al. 
1997) 

CI green (NIR/green) − 1 PlanetScope, Sentinel-2, 
Landsat-7 

(Gitelson et al. 
2003) 

NDMI (NIR -SWIR) / (NIR +SWIR) Sentinel-2, Landsat-7 (Gao 1996) 

IRECI (NIR-Red)/(RE2/RE1) Sentinel-2 (Frampton et al. 
2013) 

HV backscatter HV backscatter of ALOS-2 

PALSAR-2 sensor presented in 
sigma-nought values 

ALOS-2 PALSAR-2  
(Joshi et al. 
2015c, Viet 
Nguyen et al. 
2016) 

Forest 
Backscatter index 

 "°#$ + "°##% ! %
&°%''

&°%'(
 ALOS-2 PALSAR-2 (Lucas et al. 

2007) 
VV polarization VV backscatter of sentinel1 sensor 

presented in sigma-nought values 
Sentinel-1 (Reiche et al. 

2018b) 

 
The C-band VV-polarization from Sentinel-1, as well as the L-band HH and HV 
polarizations from ALOS-2 PALSAR-2, were used to acquire backscatter intensities 
(Joshi et al. 2015c, Viet Nguyen et al. 2016) and to calculate forest-specific 
backscatter (FB) values (Viet Nguyen et al. 2016). Vegetation indices were calculated 
for a 3m*3m raster of pixels of Planetscope, for 10m*10m raster pixels of Sentinel-2 
10m bands, as well as for 20m*20m raster pixels of Sentinel-2 red-edge bands. 
Similarly, 30m*30m raster pixels were used to calculate vegetation indices for 
Landsat-7 images, and for calculating backscatter values of Sentinel-1 and ALOS 
PALSAR-2 images. For the high spatial resolution derived SRS variables the area-
weighted mean values of the variables were calculated by overlaying the circular 
ground plots of 20 m radius (area = 0.1ha). Whereas for the medium spatial resolution 
images, we extracted the area-weighted mean values with an overlay of 50 m radius 
plots. We chose to use the 50 m radius of plots for the medium resolution images as 
our field plots are representative of the surrounding forest area, and especially for the 
SAR images, looking into multiple pixels will help eliminate errors and noises while 
using small raster pixels (Saatchi et al. 2011, Joshi et al. 2015c). In addition, to account 
for the limited sensitivity of SAR backscatters to forest structure during wet seasons 
due to vegetation and soil moisture (Nguyen et al. 2016, Urbazaev et al. 2016), we 
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calculated the temporal standard deviation (TSD) of backscattered values between the 
three SAR images (Table 4.2). 

4.2.4 Statistical methods 

The study initially assessed the relationship between field-measured forest structure 
parameters and SRS derived variables based on the Pearson correlation coefficient 
using ‘Hmisc’ package (Harrell 2006) with the R Studio software (Team 2013). We 
used p < 0.05 as the threshold to identify significant correlations. Then, the field 
measured forest parameters were modelled as a function of their correlated SRS 
variables (Figure 4.2). Multiple linear regression models with both forward and 
backward stepwise selection procedure were developed to combine and assess the 
contribution of SRS variables in predicting field measured structural parameters. The 
SRS variables used in the multiple linear regression models were derived using the 
original pixel size of the high to medium spatial resolution images (Table 4.2), so as 
to capture the possible detailed information on the corresponding field measured 
structural variables from the high-resolution SRS images. Multicollinearity between 
predictors was checked to avoid overfitting. Predictors with correlations of  >0.6 were 
excluded and a variance inflation factor of < 2 was set as a threshold. The multiple 
linear regression model is described as:  

FMP= β0+ β1x1+ β2x2+...+ βpxp+ ε (1) 

where FMP is the response field measured parameter, x1, x2, . . .,xp, are SRS 
variables, β represent model coefficients, and ε is the additive normal distributed error 
term with zero mean. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Data and methodological steps followed in estimating field measured forest structure parameters 
using satellite remote sensing data. PAVD= Plant area volume density, AGB= Above ground biomass, BA= 
Basal Area 
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The stepwise model selection procedure identified the best-fitted model based on 
Akaike’s Information Criterion (AIC). The accuracy of the fitted models was 
evaluated by exploring the coefficient of determination (R2), and the root mean square 
error (RMSE) between observed and predicted forest structural parameters. Relative 
root mean square error (RRMSE) is used to make the RMSE’s of the estimation 
models comparable. We tested the distribution of our dataset and used a logarithmic 
transformation on field-measured parameters that did not have a normal distribution 
(i.e. mean gap, PAVD at 10 m, maximum gap, AGB, and total basal area). The 
predicted results were then back-transformed and compared with the observed 
structural parameters. 

4.3 Results 

4.3.1 Correlation analysis 

The relationship between field-measured structural parameters and satellite remote 
sensing derived variables based on the visualization of scatter plots showed most 
relationships are linear, especially with the optical VIs. Figure 4.3 represents a scatter 
plot of the relationship between the field measured structural parameters and the most 
correlated SRS variables from optical and SAR domain. The Pearson correlation 
coefficient showed the strength and significance of these relationships. We found 
statistically significant correlations between the field measured structural parameters 
and the SRS derived variables (Table 4.4).  
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Figure 4.3: Correlation between field-measured forest structure parameters and most correlated satellite 
remote sensing variables from optical and Synthetic Aperture Radar domain. PAVD= Plant area volume 
density, AGB= Above ground biomass, PS-GNDVI= PlanetScope derived Green Normalized Difference 
Vegetation Index, S2-IRECI= Sentinel-2 derived Inverted Red-Edge Chlorophyll Index, FB= Forest 
backscatter 

In summary, the gap related parameters (i.e. mean gap, maximum gap, and canopy 
openness) especially showed highly significant correlations (|r| = 0.4 – 0.48, p<0.01) 
with PlanetScope derived GNDVI, and CIGreen, as well as with Sentinel 2 derived 
EVI and IRECI VIs (|r| = 0.5-0.75, p<0.05), as well as with Sentinel-1 VV TSD ((|r| 
= 0.4-0.43, p<0.01 ). The PAVD parameters, on the other hand, showed significant 
correlations (|r| = -0.57-0.49, p<0.01) with the Sentinel-2 (IRECI), Landsat-7 
(CIGreen, NDMI), as well as with Sentinel-1, and ALOS-2 PALSAR-2 (HV TSD) 
SAR backscatter variables. In addition, the conventionally measured structural 
parameters (except number of tree species) were found highly correlated (|r| = -0.45–
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0.43, p<0.01) with Sentinel-2 derived NDMI and IRECI indices as well as with 
Landsat-7 derived GNDVI and CIGreen indices (|r| = 0.41–0.44, p<0.01). No 
significant correlations were found between the number of species and SRS variables.  

Table 4.4: Summary of the Pearson linear correlation r values between satellite remote sensing variables 
and field-measured structural parameters. . ** = p < 0.01, * = p < 0.05, grey = p > 0.05. 

RS group 
SRS 
variables 

Mean 
gap 

Max 
gap 

Canopy 
openne
ss 

Nr of 
gaps 

PAV
D 
10m 

PAV
D 

Average 
height 

AGB 
Tree 
densit
y 

Total 
BA 

 
PlanetScope 

GNDVI 
Mean 

0.45* 0.44* 0.41*        

EVI Mean 0.56** 
0.53*
* 

        

CIGreen 
Mean 

0.4* 0.45* 0.48*        

 
 
Sentinel-2 
 

GNDVI 
Mean 

0.7** 
0.55*
* 

0.5*    −0.4*    

EVI Mean 0.75** 
0.67*
* 

0.63** 
−0.49
* 

  −0.48*    

CIGreen 
Mean 

          

NDMI Mean        0.42*  0.43* 

IRECI Mean 0.5* 
0.54*
* 

0.53** −0.4*  
−0.57
** 

−0.42* 
−0.45
* 

 −0.48* 

 
Landsat-7 
 

GNDVI 
Mean 

        0.44*  

EVI Mean         0.4*  
CIGreen 
Mean 

     0.44*  0.41*  0.42* 

NDMI Mean      0.46*     
 
Sentinel-1 

VV Mean    0.44* 0.49*      
VV TSD  0.4* 0.43*        

 
 
ALOS-2 
PALSAR-2 

HV Mean           
HV TSD     0.49* 0.41*     
HH Mean         0.49*  
HH TSD           
FB Mean           
FB TSD           

 

4.3.2 Prediction of Field-Measured Forest Structure Parameters 

Stepwise multi-linear regression was used for identifying best-fitted models to predict 
field-observed forest structure parameters. The model with the lowest AIC was chosen 
as the best one and was used to make predictions. All field-measured structural 
parameters were estimated by the fusion of several SRS-derived variables, showing 
the complementarity of SRS products (Table 4.5). Field-measured variables that were 
log-transformed (i.e., mean gap, PAVD at 10 m, maximum gap, AGB, and total basal 
area) were able to be estimated using SAR data. Sentinel-2-based variables were 
dominant in most of the predictive models. IRECI was the common predictor for most 
field-measured variables, and especially in estimating mean gap, AGB, and 
cumulative PAVD. Backscatter values from ALOS-2 PALSAR-2 and Sentinel-1 were 
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also valid predictors in most models, especially for predicting PAVD at 10 m and the 
number of gaps. Indices from PlanetScope and Landsat-7 were found to be the least 
relevant on the predictive models. The combination of red-edge band-derived IRECI 
of Sentinel-2, and ALOS-2 PALSAR-2 backscatters were found very important for 
AGB, total BA, and canopy openness estimation. 

Table 4.5: Stepwise multilinear regression with Akaike information criterion (AIC) for estimating field-
measured forest structure parameters using satellite remote sensing variables. Significance code: 
0.0001***, 0.001 **, 0.01*, 0.05#. 

 
Field Measured 

  
Model Variables R2 

RMSE 

/RRMSE 

Predicted vs. 

Observed 

Correlation 

T
L

S
 

Mean Gap 
S2_IRECI_Mean**, 
PS_GNDVI_Mean# 
S1_VV_TSD  

0.52 
148.6 
(1.4) 

0.77 

Maximum gap 
S2_EVI_Mean*, S1_VV_Mean 
S2_IRECI_Mean# 

0.51 
181.74 
(0.66) 

0.81 

Canopy openness 

S2_EVI_Mean*, 
S2_IRECI_Mean* 
S1_VV_TSD*, 
ALOS_FB_Mean# 

0.66 
13.23 
(0.54) 

0.81 

Number of gaps 
S1_VV_Mean***, 
S1_VV_TSD** 
S2_EVI_Mean** 

0.68 
3.96 
(0.58) 

0.72 

PAVD at 10 m 
S1_VV_Mean** 
ALOS_HV_TSD** 

0.47 
0.62 
(0.41) 

0.71 

Cumulative 
PAVD  

S2_IRECI_Mean**, 
ALOS_HV_TSD* 
LS_NDMI_Mean# 

0.58 
0.73 
(0.23) 

0.76 

Average Height 
S2_IRECI_Mean, 
S2_EVI_Mean 
ALOS_FB_Mean# 

0.37 
6.28 
(0.35) 

0.61 

C
on

ve
nt

io
na

l 

AGB 

S2_IRECI_Mean***, 
S2_NDMI_Mean* 
ALOS_FB_TSD* , 
S1_VV_Mean 

0.62 
292.4 
(0.61) 

0.78 

Tree density 
LS_GNDVI_Mean*, 
ALOS_HV_TSD 

0.28 
296.95 
(0.41) 

0.53 

Total basal area 
S2_IRECI_Mean***, 
S2_NDMI_Mean* 
ALOS_FB_Mean# 

0.61 
32.12 
(0.55) 

0.81 

Number of species S2_EVI_Mean, S1_VV_TSD# 0.21 
3.14 
(0.39) 

0.46 

S1: Sentinel-1, S2: Sentinel-2, PS: PlanetScope, LS: Landsat-7, ALOS: ALOS-2 PALSAR-2, FB: Forest 
backscatter, TSD: Temporal standard deviation. 

 
All regression models (except for average height) were statistically significant (p < 
0.01), with cumulative PAVD having the highest R2 (0.58) and lowest RRMSE value 
(0.23) (Table 4.5). For TLS-measured structural parameters, number of gaps and mean 
gap were well predicted (R2 = 0.68, RRMSE = 0.58, and R2 = 0.66, RRMSE = 0.54, 
respectively), while PAVD at 10 m and average height had poor predictions (R2 = 
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0.47, RRMSE = 0.41, and R2 = 0.37, RRMSE = 0.35, respectively). As for the 
conventional measurements, S2-IRECI and S2-NDMI explained much of the 
variation in AGB and total basal area (R2 = 0.62, RRMSE = 0.61, and R2 = 0.61, 
RRMSE = 0.55, respectively), while tree density and number of species had the lowest 
R2 values (R2 = 0.28, RRMSE = 0.41, and R2 = 0.21, RRMSE = 0.39, respectively). 
The relationship between field-measured (observed) (e.g., cumulative PAVD, canopy 
openness, mean gap, and AGB) and satellite remote sensing-predicted forest structure 
variables are visualized in Figure 4.4.  
 

 

 

Figure 4.4: Relationship between field-measured (observed) and satellite remote sensing-predicted forest 
structure variables. 

4.4 Discussion 

The study shows that optical SRS-derived VIs, despite being underestimated for 
saturating in forest environments, can inform on forest structural differences. Indices 
calculated with higher weighing coefficients of the SWIR, NIR, and red-edge bands 
were sensitive to most field-measured forest structure parameters (Table 4.4). The 
sensitivity of SWIR to plant leaf water content, which is correlated with canopy 
biomass, enabled NDMI to respond to vegetation volume-related parameters, thus 
supporting the estimation of the TLS-measured cumulative PAVD, and the 
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conventionally measured AGB and basal area (Table 4.5), as did the sensitivity of 
NIR to multiple scattering of canopy leaves, canopy gaps, and shadowing; thus, 
sensitivity to forest canopy structure was associated with EVI’s response towards the 
estimation of TLS-measured, canopy gap-related parameters (Table 4.5). Similarly, 
the sensitivity of NIR to multiple scattering of canopy leaves, and canopy gaps and 
shadowing, thus sensitivity to forest canopy structure associates with EVI’s response 
towards the estimation of TLS measured canopy gap related parameters (Table 4.5). 
The canopy chlorophyll content and leaf area index (LAI) sensitive red-edge bands of 
Sentinel-2 (Frampton et al. 2013), were associated with both vegetation volume (Dube 
et al. 2018) and canopy gaps (Malahlela et al. 2014), which made S2-IRECI the most 
important index in estimating both TLS and conventionally measured structural 
parameters (Table 4.6). Our findings are in line with, the study of Huete et al. (1997), 
Healey et al. (2006), Brede et al. (2015), and Martin et al. (2008) that also found the 
SWIR, NIR, and red-edge bands important in esploring forests biophysical 
parameters. The PlanetScope derived vegetation indices, despite being correlated with 
many canopy gap related parameters, did not have a significant contribution to the 
prediction of field measured structural estimates. This stands in contrast to other 
studies that found highly significant relationships between vegetation indices derived 
from very high-resolution images and forest structure parameters. Meng et al. (2016) 
and Wallner et al. (2015) for example successfully estimated basal area, DBH and 
other diversity indices using spectral and textural information from SPOT-5 and 
RapidEye images, respectively. Similar to the findings of this study, Baloloy et al. 
(2018) found Sentinel-2 and RapidEye based predictors to perform better towards 
estimating AGB compared to PlanetScope derived predictors. A study by Houborg et 
al. (2018) suggests that the potential applicability of PlanetScope derived variables 
for monitoring might be limited due to its low radiometric quality and cross-sensor 
inconsistencies. The topographical and structural complexity of tropical forests can 
also affect estimation qualities. Castillo-Santiago et al. (2010) stated that the nature of 
tropical forests and the quantity of shadows present on satellite images affects the 
prediction of forest structure variables using vegetation indices. Such topographic 
factors could also affect our study plots as they are located in cloud forest 
characterized by rough terrain and a mixture of different forest types (i.e. intact forest 
to silvopasture). Due to the terrain conditions, our plot sizes are small, which could 
complicate the exact link between SRS and field measured parameters. In addition, 
the conservative threshold we used to identify canopy gaps (canopy height of <10m 
and with an area of ≥1m2) from the TLS measurements, and the reflectance of the 
dense understory in such forests despite having gaps, could have also affected the 
sensitivity of vegetation indices to the mean and maximum canopy gap parameters. 
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As for the SAR data, the standard deviation of multi-temporal ALOS-2 PALSAR-2 
backscatters (HV-TSD), and forest backscatter (FB-TSD) were significant predictors 
of field measured structural parameters, rather than single-date observations. Since 
SAR backscatters, obtained in wet season are highly sensitive to the canopy moisture, 
using observations from dry seasons or multi-temporal observations is advised 
(Nguyen et al. 2016). Similar to our findings, Nguyen et al. (2016) also found ALOS-
FB to be a significant predictor for AGB compared to HV polarization and other 
indices. Castillo et al. (2017) identified the sensitivity of Sentinel-1 C-band VV and 
VH polarization to AGB, but the sensitivity of the later was higher in comparison. 
However, due to the unavailability of the Sentinel-1 VH polarization in 2015, we 
could not use it in our study. However, we could still learn from our results that an 
analysis of multi-seasonal, dense time series and multiple polarization of SAR data 
could provide improved estimations. In addition, as elaborated by a study of Joshi et 
al. (2015c), the accuracy of AGB estimation improved when the pixel sizes were 
increased from 50 m to 250 m. This is also the reason we chose 50 m radius plots for 
the SAR backscatters rather than the 20m plots we used for optical images. In doing 
so, errors originating from speckle, thermal noise, geolocation, canopy layover and 
variations due to moisture or topography while using small SAR pixels could be 
addressed (Saatchi et al. 2011). Even though SAR backscatters are heavily used in 
AGB estimations, our results also show they can contribute largely towards estimation 
of understory vegetation estimation (i.e. PAVD at 10 m). The strong penetration of 
SAR pulses even in densely vegetated tropical forest environments makes them 
uniquely valuable in estimating the lower canopy vegetation density, which otherwise 
had not been picked up by indices derived from the optical sensors (Table 4.5).  
 
Overall, the canopy gap related forest structure parameters (e.g., mean gap, maximum 
gap, canopy openness) were better correlated to SRS variables than the vegetation 
volume-related parameters (e.g., AGB, PAVD at 10m). Other studies support this 
finding (Woodhouse 2005, Gibbs et al. 2007, Rodríguez-Veiga et al. 2017) as SRS 
signals are weakened by canopy closure in tropical forests, thus providing limited 
information on volume-related parameters such as AGB and PAVD. In addition, 
studies have also shown that the relationship between forest structure and SRS 
derivatives might not always be linear (Næsset et al. 2011, Chen et al. 2012, 
Rodríguez-Veiga et al. 2017). These algorithms have different assumptions on the 
distribution of the data, which have an effect on the models chosen for modelling the 
relationships, thus an implication on the upscaling or extrapolation of structural 
estimations (Lu et al. 2016, Rodríguez-Veiga et al. 2017). The use of parametric 
methods, such as the linear regression model used in this study, are arguably suitable 
for a small dataset, whereas non-parametric methods, such as random forest, would 
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be an appropriate choice for larger datasets where non-linear relationships could be 
reliably picked up (Lu et al. 2016). 
 
Several studies have investigated the estimation of forest structure using SRS data in 
other forest ecosystems, with different analytical and statistical approaches. Studies 
in temperate (Joshi et al. 2015c, Wallner et al. 2015, Noorian et al. 2016) and boreal 
forests (Suzuki et al. 2013, Matasci et al. 2018), compared to tropical forests (Goh et 
al. 2014, Viet Nguyen et al. 2016) shows higher correlations and model estimation 
power. This can arguably be due to the relatively higher saturation of SRS derivable 
(i.e. vegetation indices and SAR backscatters) in forests with high vegetation density 
and complex structure, such as in case of tropical forests, compared to, for instance, 
temperate and boreal forests. The use of texture measures (Barbier et al. 2012), object-
based image analysis (Silveira et al. 2019), and radiative transfer models (Ligot et al. 
2014) showed improved estimations and provide detailed insight into the structural 
assessment of tropical forests. A common recommendation from most studies is that 
SRS based forest structure assessments will benefit from data acquired in dry seasons. 
As for optical data, cloud cover, especially in tropical forests, are an important 
concerns. As for SAR data, humid and wet canopies reduces the signals sensitivity to 
biomass and structure of forests. A comparative study by Nguyen et al. (2016) showed 
increased sensitivity of backscattering during the dry season (R2= 0.05-0.47) 
compared to the wet season (R2= 0.02-0.27). The most common limitation that our 
study shares with other similar studies that applies SRS for forest structure estimation 
is, the issue with an insufficient number of field observations, which is due to the large 
effort required to acquire field data on structural parameters. The low number of field 
data in turn limits the identification of subtle relationships, validation of models, and 
upscaling of point estimations to landscape level. 
 
The availability of different SRS datasets creates an opportunity to assess the 
possibilities of data fusion to achieve an improved estimation of field-measured forest 
structure parameters. Our findings point out that a combination of different SRS 
predictors provided better estimates than using single predictors in our study area 
(Table 4.6). Instead of taking the single best correlated SRS variable to estimate field 
observations, we tested all combinations using stepwise multilinear regression with 
AIC as an evaluation parameter. As a result, we learned that except the cases where 
we had insignificant models and/or predictors (i.e. average height, tree density, and 
number of species) the combination between Sentinel-2 and SAR variables provided 
significant estimates of field measurements. Sentinel-2 and Sentinel-1 derived 
predictors mainly estimated canopy gap related parameters; the fusion of Sentinel-2, 
ALOS-2 PALSAR-2, and Sentinel-1 variables best estimated cumulative PAVD; 
while the combination of Sentinel-1 and ALOS-2 PALSAR-2 backscatters best 
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predicted PAVD at 10 m. Similarly, the fusion of Sentinel-2 and ALOS-2 PALSAR-
2 provided the best estimation for AGB. Goh et al. (2014) also found the integration 
of NIR band from Spot-5 and the HV backscatter from ALOS-2 PALSAR-2 to be the 
best predictive model of AGB in humid tropical forests. Nguyen et al. (2016) also 
performed a similar study in dense tropical forest, where the best predictive models 
of AGB were attained through fusing maximum NDVI from Landsat-8, SAR textures 
from HV polarization and FB from ALOS-2. The complementary nature of optical 
and SAR data in terms of data availability, sensitivity to vegetation features, and the 
difference in saturation levels would make the use of multimodal data for forest 
structure estimation appealing. However, Mura et al. (2015) advise that fusion of SRS 
dataset should be efficient and reliable as unique technical and methodological 
challenges could be introduced with each modality.  

Table 4: Field-measured forest structure parameters estimation through single and fusion of satellite remote 
sensing for this study. Synthesized based on the correlation results of Table 4 and modeling results of Table 
5. Green = best estimators, orange = good estimator  

Field 

Measurements 

Structural 

Parameters 
Univariate Predictors Multivariate Predictors 

TLS 

Canopy gap 
parameters 

PlanetScope Sentinel-2 + Sentinel-1 

PAVD 
 

ALOS-2 PALSAR-2, 
Sentinel-1 

Sentinel-2 + ALOS-2 PALSAR-
2 + Sentinel-1 

Average height Sentinel-2 - 

 
Conventional 

AGB/basal area Sentinel-2 
Sentinel-2 + ALOS-2 PALSAR-
2 

Tree density 
Landsat-7, ALOS-2 
PALSAR-2 

- 

Number of tree 
species 

- - 

 
Estimation of field-measured structural parameters through the fusion of SRS data 
precedes the upscaling of plot measurements to the landscape. As for our study, the 
upscaling of field measurements to landscape observations using the link between 
field-measured and SRS was challenging, because of the small number of field 
observations we had on forest structure parameters, and the small plot size used. The 
small number of samples would make the modeling and prediction accuracy 
unreliable. Such spatial upscaling demands large number of field observations and 
suitable modelling approaches to effectively train, validate, and map structural 
parameters. 

4.5 Conclusions 

This study identified the relationship between satellite remote sensing derived 
variables and field measured forest structure parameters. TLS derived three-
dimensional structural parameters showed significant correlation with satellite remote 
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sensing (SRS) derived vegetation indices and backscatter intensities. Another 
important contribution of this study is the identification of useful combinations of 
optical and SAR remote sensing variables for structure parameter estimation via data 
fusion. In summary, we found the strongest relationship between TLS measured 
canopy gap related parameters and optical data-based vegetation indices, while some 
significant correlations were also observed between vegetation volume related field 
measured variables and SAR backscatter.  
 
As can be concluded from our study, the growing availability and potential integration 
of SRS datasets could bring new opportunities to derive biodiversity relevant forest 
structure estimates. In our case, we were able to derive suitable estimates of forest 
vertical structure (i.e. canopy gap and canopy volume-related parameters) which are 
also identified by the GEOBON as SRS-Essential Biodiversity Variables (EBVs) 
which can support monitoring of biodiversity change (Pettorelli et al. 2016b). In doing 
so, the information gathered from multi-modal satellite data and the modeling 
approach used to combine them shows the possibilities of upscaling field measured 
structural data to landscape level. However, further assessment of the use and efficient 
combination of SRS dataset through employing physical studies (e.g. through 
radiative transfer models), and in different forest ecosystems might provide more 
insight into the relationship between forest structure and SRS. 
 
The need to go from expensive, but highly accurate plot measurements, to reliable 
landscape level estimations that can be used to inform conservation and management 
efforts, drive the use of multi-sensor and multi-scale approaches. With the need for 
continuous, repetitive and affordable data on forest structure, great expectations are 
laid on National Aeronautics and Space Administration’s Global Ecosystem 
Dynamics Investigation (GEDI) mission which provides the first high resolution 
LiDAR observation of the 3D structure of the Earth making precise measurements of 
forest canopy height, canopy vertical structure, and surface elevation (Stysley et al. 
2015); and European Space Agency’s BIOMASS mission which is a SAR based 
system that aims to take measurements of forest biomass to assess terrestrial carbon 
stocks and fluxes for a better understanding of the carbon cycle (Le Toan et al. 2011). 
The data from such missions are expected to address the data gap on tropical forests 
and support climate change mitigation programs such as the monitoring reporting and 
verification (MRV) for Reducing Emissions from Deforestation and forest 
Degradation (REDD+), as well as for the development and use of EBVs.  
 
Even though sensible explanations could be given using the implication of forest 
structure parameters on biodiversity, a next step should be linking the structural 
estimates with actual biodiversity dataset from the field to determine the effect of the 
vertical structure of forests on biological diversity. 
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Abstract 

 
The growing evidence on global biodiversity decline has called for the establishment of rapid 
and reliable biodiversity monitoring approaches that can assist conservation efforts. The 
assessment of biodiversity dynamics in tropical forests, a hotspot of biodiversity loss, 
requires advanced monitoring techniques considering the complexity of tropical forest 
habitats and their biodiversity. We performed an exploratory study to establish the hypothesis 
that the integration of leaf-litter-arthropod DNA metabarcoding and remote sensing derived 
information on forest structure can provide an elaborated insight to the biodiversity dynamics 
in the changing montane tropical forest of Kafa, Ethiopia. The leaf-litter-arthropod data was 
collected across forest types with different disturbance levels. We used DNA metabarcoding 
analysis and bioinformatics techniques to identify operational taxonomic units that were later 
used to develop diversity measures. Comparing the alpha and beta diversity across forest 
types, high species richness estimates were found in the disturbed forests, while the intact 
forests were found to host a different community composition to the degraded forest types. 
We then assessed the influence of habitat conditions on leaf-litter-arthropod community 
composition using multivariate models of remote sensing and conventional forest 
measurement derived vertical forest structure parameters. The model with the combination 
of information on vegetation density, canopy gaps, total basal area, tree diversity and level 
of disturbance could explain about 43% of the variation in leaf-litter-arthropod composition. 
We also identified that the increasing number of gaps, high basal area, and the abundance of 
understory vegetation showed a significant relationship with the composition of leaf-litter-
arthropods in intact forest, while canopy openness and tree species diversity were related to 
the community composition of disturbed forests. Even though our study had limited number 
of plots due to logistic reasons, we found promising results which indicate that both forest 
structure and biodiversity dataset acquired using evolving technologies in ecology could 
provide novel insights to habitat-biodiversity relationships, and with possible implications on 
resulting ecosystem functions and services. Such integration of technologies that could lead 
to an understanding of complex forest ecosystem processes is key for tracking progress 
towards global biodiversity goals and for operationalization of the essential biodiversity 
variables. 

 
Keywords 
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5.1 Introduction 

Global biodiversity loss is increasingly being reported in the Anthropocene (Butchart et al. 
2010, Maxwell et al. 2016, Ceballos et al. 2017, Sánchez-Bayo and Wyckhuys 2019). The 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 
report confirmed the acceleration in species loss and presented a concerning figure: an 
estimated 1 Million species at risk of extinction (Díaz et al. 2019). Such losses mainly 
originate from land-cover changes, pollution, climate change, over-harvesting, as well as 
through the introduction of invasive species (McGill et al. 2015, Díaz et al. 2019). Tropical 
forest ecosystems are one of the most affected of these alarming global biodiversity losses. 
Habitat loss due to anthropogenic pressure is one of the major drivers of biodiversity decline 
in tropical forests where forest habitats are either modified by complete removal of vegetation 
(i.e. referred to as deforestation) or through selective removal of vegetation parts and 
understories (i.e. referred to as forest degradation). A recent review (Mulatu et al. 2017) 
showed that anthropogenic pressure accounted for 82% of forest disturbance related to 
biodiversity dynamics in changing tropical forests. As the niche theory states (Chase and 
Leibold 2003), each species requires specific environmental conditions to survive, but with 
the modification of habitats such niches are altered which lead to species migration, over-
exploitation (Wright 2005) and the introduction and dominance of invasive species (Didham 
et al. 2005) which could lead to an overall homogeneous species composition and low 
recovery rate of indigenous species communities (McKinney and Lockwood 1999).  
 
Tropical forests are known to be more structurally complex compared to any other forest 
types, and thus it is assumed that high habitat complexity also exists in such forests. The 
vertical arrangement of vegetation in a tropical forest can affect the understory and forest 
floor species diversity through their influence on the availability of resources such as light, 
nutrients, and water (Ningthoujam et al. 2016). Vertical stratification allows different species 
to use the forest floor, the understory, and canopies as their habitat (Grelle 2003). On the 
contrary, the simplification of vertical forest structure reduces the deliverance of ecosystem 
services and forest biodiversity (Ishii et al. 2004). The modification of forest structure (both 
on the vertical and horizontal dimension) has an effect on the abundance of resources for 
feed, shelter, movement, as well as pollination and nesting grounds. Studies have shown that 
the same species richness and composition of primary forests may not be reached with the 
recovery of forests after disturbances (Acevedo-Charry and Aide , Chazdon 2008, Rozendaal 
et al. 2019). Protecting biodiversity from habitat loss would then require to understand how 
biodiversity is distributed and identify which habitat conditions affect species richness and 
composition (Gavish et al. 2019).  
 
Understanding the distribution and status of forest biodiversity require measurements that are 
comprehensive, repeatable, and scalable (Walpole et al. 2009, Pereira et al. 2013). These 
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requirements are however difficult to achieve with the use of traditional biodiversity 
measurement techniques which are known to be time-consuming and expensive; especially 
in ecosystems like tropical forests where high biodiversity is present. Therefore, proxies, the 
use of a subset of taxa as indicators, and advancement in the biodiversity data collection, 
analysis and identification are required (Yu et al. 2012). Among the vast arrays of 
biodiversity, arthropods are considered as the sentinels of the ecosystem’s well-being as they 
appear to respond quickly to microclimate modifications induced by for example forest 
structure changes (Nakamura et al. 2007, Maleque et al. 2009, Uehara-Prado et al. 2009). 
Their roles as pollinators, predators, decomposers, and their essential contribution in the 
detrital food web make them critical ecological bio-indicators; thus potentially reflecting on 
the overall forest biodiversity dynamics (Yang et al. 2014). Effective measurement and 
monitoring of Arthropods is said to be feasible through techniques like DNA barcoding 
which uses short gene sequences to identify species (Ji et al. 2013, Yang et al. 2014, 
Morinière et al. 2016, Barsoum et al. 2019). DNA barcoding provides a reliable alternative 
to assess biodiversity in space and time through its quick and cheap sequencing approaches. 
Metabarcoding (MBC), a high-throughput DNA barcoding approach is most suitable to 
identify species with the sequencing of mass-samples (Cristescu 2014, Yang et al. 2014). It 
follows a procedure of extraction of DNA, mass-PCR-amplification of the interest taxonomic 
group, and sequencing to identify individual DNA molecules, which is followed by 
bioinformatic analysis that produce high-quality reads that could be further used for 
ecological analysis (Yu et al. 2012). In comparison to conventional approaches, MBC allows 
a rather complete discovery of taxonomic diversity, as well as reliable quantification of 
patterns and assemblage composition along habitat gradients (Beng et al. 2016). Recent 
studies have shown that accurate and reliable alpha and beta diversity information of 
arthropods can be derived from DNA metabarcoding analysis (Ji et al. 2013, Morinière et al. 
2016, Barsoum et al. 2019). 
 
Forest structure parameters are also used to represent the habitat complexity of tropical 
forests that has an impact on biodiversity abundance and distribution (Gardner et al. 1995, 
Grelle 2003, Müller et al. 2018, Carrasco et al. 2019). Conventional forest measurement 
techniques are often used to collect data on structural parameters such as tree-size, tree height, 
basal area, and canopy gap distribution, which only captures a brief dimension of the complex 
three-dimensional structure of tropical forest ecosystems (Ishii et al. 2004). With the 
evolvement of remote sensing, several tools and techniques that enable a rapid, continuous 
and scalable assessment of forest ecosystems are being introduced. Several studies have 
investigated the use of satellite remote sensing (SRS) data with a range of spatial, spectral, 
and temporal resolutions to acquire information on the structural complexity of forest habitats. 
Vegetation indices and texture measures that are derived from short wave infrared (SWIR), 
near-infrared (NIR), and red-edge bands, which are sensitive to canopy chlorophyll content, 
leaf structure, and water content,  have been found to relate to field-measured vertical forest 
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structure attributes such as tree species diversity (Meng et al. 2016), biomass (Baloloy et al. 
2018, Matasci et al. 2018), tree height (Hansen et al. 2016), and habitat heterogeneity 
(Tuanmu and Jetz 2015a). The long wave bands (i.e., L- and P-band) of Synthetic aperture 
radar (SAR), an active SRS field, are also useful as they can penetrate the forest canopy and 
acquire the backscatter from forest structural elements (trunks, branches, and leaves), 
providing information on vegetation volume and density (Ningthoujam et al. 2016). 
Terrestrial Light Detection and Ranging (LiDAR), also known as Terrestrial Laser Scanning 
(TLS), is a ground-based active remote sensing technique, which uses laser beam pulses to 
calculate the distance and position of the objects in a three-dimensional space based on the 
reception of returned signals to the instrument, is by far the most favourable approach to 
acquire detailed and high-accuracy data on the three-dimensional representation of forest 
structure. A number of structural parameters such as plant area volume density PAVD, 
canopy gaps, canopy height, number of layers, and basal area can be derived from TLS 
observations by applying allometric equations and algorithms (Calders et al. 2014, Decuyper 
et al. 2018). 
 
Considering the impact of habitat disturbance in forest biodiversity, and the subtlety of both 
processes, integrating technological advancements on both fields would provide new insights 
into biodiversity dynamics. Linking biodiversity and forest structure measures from novel 
data sources of DNA metabarcoding and remote sensing would enable a rapid assessment on 
biodiversity dynamics that could inform timely conservation measures. 
 
Here, we perform an exploratory study with the aim of forming a hypothesis that the 
integration of leaf-litter-arthropod DNA metabarcoding and remote sensing derived 
information on forest structure can provide an elaborated insight to biodiversity dynamics in 
changing montane tropical forest of Kafa, Ethiopia. In doing so we aim to answer the 
following research questions: i) how does leaf-litter-arthropod diversity vary across plots of 
different forest types? and ii) which forest structure parameters are important to explain leaf 
litter insect community composition? To our knowledge, this is the first study that combined 
two of the most recent and technologically advanced monitoring techniques, terrestrial laser 
scanning (TLS) and DNA metabarcoding, to assess the relationship between forest structure 
and biodiversity. 

5.2 Materials and methods 

5.2.1 Study site 

The research was conducted in the Kafa Biosphere Reserve (KBR), located in the south-
western highlands of Ethiopia (Figure 5.1). The KBR is characterized by Afromontane cloud 
forests with an altitudinal range from 500 to 3500 m asl. It has high conservation values as it 
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is home to the East Afromontane biodiversity hotspot, hosting half of the remaining montane 
forests in Ethiopia, and is a centre of origin and genetic diversity for wild Coffea arabica. 
Covering an area of 744,919 ha, of which 47% is covered with forests, the KBR hosts 
approximately 300 species of mammals including 14 carnivores and 8 primates, 300 bird 
species, 244 plant species and more than 110 tree species (NABU 2014) .  
 

 

Figure 5.1: Location of the study area Kafa biosphere reserve in Ethiopia, indicating the field plots used for this 
study. Note: Some plots are not visible due to the spatial proximity from the mapping scale used 

The field plots were selected with a stratified random sampling design representing forest 
types differing in level of disturbance. The plots were identified using an overlay of different 
GIS data layers representing the fragmentation (Mulatu 2013), land-use and land-cover and 
topography of the biosphere reserve (Dresen 2011a). Our sampling plots were distributed 
across forest types described as intact: untouched natural forest with no signs of human 
disturbance; Participatory forest management (PFM): where wild coffee is harvested from 
the forest understory; old degraded: forests that has been disturbed before 2012 and are now 
left to recover; recently degraded: forests have been disturbed between 2012-2015 and 
mainly used for grazing and logging; and highly degraded: forests that have been disturbed 
since 2005 for grazing and logging purposes. 
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Intact Forest Participatory forest 
management  

Old degraded forest 

   
Highly degraded forest Recently degraded forest 

  

Figure 5.2: Pictorial description of the forest types (as a function of disturbance) used for the study. 

The data on leaf-litter-arthropods were collected in 35 plots (i.e. intact: 8, PFM: 8, old 
degraded: 7, highly degraded: 6, recently degraded: 6; Figure 5.2). We acquired TLS and 
conventional forest structure measurements on 24 of these plots (i.e. intact: 7, PFM: 8, old 
degraded: 4, highly degraded: 5). The field data on forest structure was acquired in November 
2015, while the leaf litter data were collected on March 2016. Both data collection periods 
were during the dry season. 

 

5.2.2 Leaf-litter arthropod collection and processing 

5.2.2.1 Field procedure 

Leaf litter samples were collected in 35 plots with samples taken at the centre of each plot 

and 3 other subplots (about 50 m apart) located in the direction of 00, 1200, and 2400 from the 

centre plot (i.e. 4 samples per plot, a total of 140 samples). The leaf litter was collected from 

an average area of a 3*3 m quadrant per plot and was sifted through a 10 mm litter-sifter for 

approximately 1 minute to remove whole leaves. Then the concentrated leaf litter was placed 

into a cloth bag and was labelled with the sub-plot ID. To avoid cross-contamination, the 

sifters were thoroughly cleaned between sampling plots. The samples were left to dry for 72 

hours inside a Winkler litter extractor. As the concentrated leaf litter dries through the days, 

the arthropods move from the top part of the extractor that is covered with a mesh bag, to the 

bottom part that has a cup filled with 70% ethanol. The arthropods are then transferred from 

gegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegegege
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the extractor cup to centrifuge-tubes that were filled with 99.9% ethanol and are kept in a 

freezer at -4 oC until transported to the Laboratory of Genetic Resources and Evolution, 

Kunming Institute of Zoology, where the samples were kept in a -20 oC freezer until the 

metabarcoding procedure. 

5.2.2.2 Metabarcoding of leaf-litter-arthropod  

For each sample, we first removed storage ethanol and air-dried all individuals on single-use 

filter papers. We equalized input DNA across species by using one leg of every individual 

larger than an ant (~5 mm long) and the whole body if smaller. This was to reduce the effect 

of large-biomass individuals outcompeting small-biomass individuals during PCR, which 

improves taxon detection (Elbrecht et al. 2017). DNA extraction followed the protocols of 

Qiagen DNeasy Blood&Tissue Kit (Hilden, Germany), followed by DNA quantification via 

Nanodrop 2000 (Thermo Fisher Scientific, Wilmington, DE). One sample was failed in DNA 

extraction. 

We chose a 313-bp fragment of COI as our barcode sequence with forward primer mlCOIintF 

and reverse primer jgHCO2198 (Leray et al. 2013). We followed the DAMe protocol 

(Zepeda-Mendoza et al. 2016) by subjecting each sample to three, independently tagged 

PCRs and to bioinformatically filtering out sequences that failed to appear in more than one 

PCR above a minimum number of reads; such sequences are more likely to be PCR or 

sequencing errors. We tailed the forward and reverse primers were tailed with ‘Twin tags’ 

(the same sample-identifying, 8-9 bp oligonucleotide sequence) for sample identification 

after PCR (Zepeda-Mendoza et al. 2016). This strategy allows the elimination of ‘tag-

jumping’ events during library preparation that results in sample-misassignment (Schnell et 

al. 2015). 

A quantitative PCR (qPCR) was performed to estimate the minimum cycle number. All PCRs 

were performed on a Mastercycler Pro (Eppendorf, Germany) in 25-µl reaction volumes, 

each containing 2.5 µl 10x buffer (Mg2+ plus), 0.2 mM dNTPs, 0.5 µM of each primer, 1.25 

µl DMSO, 0.5 µl BSA (bovine serum albumin) (TaKaRa Biotechnology Co. Ltd, Dalian, 

China), 0.75 U exTaq DNA polymerase (TaKaRa Biotechnology), and approximately 60 ng 

genomic DNA. Each round of PCR started with an initial denaturation at 95 ) for 5 mins, 

followed by 25 cycles of 95 ) for 10 s, 52 ) for 30 s, 72 ) for 60s, and finishing at 4 ).  

All amplicon products were run on 2% agarose gels and pooled in equivalent ratios based on 

band intensity to form roughly equimolar sequencing libraries, then purified with the 

Agencourt AMPure XP kit (Beckman Coulter, Inc., USA), and then sequencing libraries were 

created with the NEXTflex Rapid DNA-Seq Kit for Illumina (Bioo Scientific Corp., Austin, 
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USA), following manufacturer instructions. The libraries were sequenced with Illumina’s 

Reagent Kit v3 300 PE on an Illumina MiSeq at the Southwest Biodiversity Institute, 

Regional Instrument Center in Kunming. 

We processed the raw reads by removing remnant Illumina adapter sequences with 

AdapterRemoval 2.2.0 software (Schubert et al. 2016) and then followed Schirmer et al. 

(2015) recommended pipeline by trimming low-quality ends using sickle 1.33 (Joshi and Fass 

2011), correcting sequence errors using BayesHammer in SPAdes 3.10.1 (Nikolenko et al. 

2013), and merging pair-end reads using PandaSeq 2.11 (Masella et al. 2012), all with default 

parameters. the merged reads were demultiplexed to sample and error-filtered by with a new 

version of  DAMe (Zepeda-Mendoza et al., 2016) (repository 

https://github.com/shyamsg/DAMe) using the positive-control sample as a guide, we kept 

only sequences that were present in ≥2 PCR replicates with a minimum of  >3  reads per PCR 

Those filtered-in reads were clustered by sumaclust 1.0.31 (Mercier et al. 2013) at 96% and 

got 1,872 OTUs, and we assigned taxonomies of the OTUs using a Naïve Bayesian Classifier 

model (Wang et al. 2007) trained on the Midori 1.1 UNIQUE COI dataset (Machida et al. 

2017). OTUs assigned to non-Arthropoda taxa were removed, and we also used the ‘lulu’ R  

package 0.1.0 (Frøslev et al. 2017) to combine OTUs that were likely from the same species 

but which had failed to cluster, and we got 1,350 OTUs after finishing this step. ‘lulu’ infers 

(and combines) such ‘parent-child’ sets by first calculating pairwise similarities of all OTU 

representative sequences to identify sets of high-similarity OTUs and then combining OTUs 

within such sets that show nested distributions across samples. 

5.2.3 Community diversity and composition analysis 

Total species richness, Shannon diversity, and Simpson diversity for each forest type were 
estimated using the final OTU dataset in ‘iNEXT’ 2.0.12 (Hsieh et al. 2016). The community 
composition differences across forest types were visualized and compared using non-metric 
multidimensional scaling (NMDS) ordination of Jaccard dissimilarity matrices with 
metaMDS function in ‘vegan’ package 2.5-5 (Oksanen et al. 2007). Beta diversity was 
partitioned into turnover and nestedness components using  ‘betapart’ 1.4-1 (Baselga and 
Orme 2012). An intersection diagram was also made using ‘UpSetR’ 1.3.3 (Conway et al. 
2017) to show the presence of unique and shared species across forest types (Conway et al. 
2017). All community analyses was performed using R 3.5.0.  
 

5.2.4 Forest structure measurements 

The TLS scans were taken in 20 plots with a radius of 20 m, and 4 plots with a radius of 10 
m, due to difficult terrain. The three-dimensional setup of each plot was acquired with five 
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scanning positions (i.e., one in the centre and four in the cardinal directions). The TLS point 
clouds were acquired using a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser 
Measurement Systems GmbH, Austria), and were pre-processed and co-registered using 
RiSCAN PRO software (RIEGL Horn, Austria). Forest vertical structure parameters were 
extracted from both the individual TLS scans and the co-registered point clouds (Table 5.1). 
Vertical profiles of Plant Area Volume Density (PAVD) were derived using the method 
developed by Calders et al. (Calders et al. 2014), while canopy related parameters (i.e., 
canopy heights, canopy gaps, and canopy openness) were extracted using the CompuTree 
point cloud analysis open source software (Hackenberg et al. 2015a). The details on the 
collection and analysis of the TLS and conventional forest measurements can be found in 
Decuyper et al. (2018). In addition, conventional forest measurements were made using a 
nested design. Total basal area (TBA) was calculated by measuring all trees of ≥20 cm 
diameter at breast height (DBH) in the 20 m (or 10 m) radius plot, while trees of 5–20 cm 
DBH were included within the centre 5 m-radius subplot only, and tree species were 
identified and tree density was also calculated accordingly. Above-ground biomass (AGB) 
was further calculated by using the wood density values for African tropical moist forests 
(Chave et al. 2009).  
 
5.2.5 Satellite remote sensing data 

Vegetation indices (VIs) derived from optical satellite images (Planetscope, Landsat-7, and 
Sentinel-2), and backscatter values from radar satellite images (ALOS-2 PALSAR-2, and 
Sentinel-1) were calculated for each plot. The VIs produced were green normalized 
difference vegetation index (GNDVI), enhanced vegetation index (EVI), and green forests 
chlorophyll index (CI green). In addition, the shortwave infrared (SWIR) bands of Sentinel-
2 and Landsat-7 were used to produce the normalized difference moisture index (NDMI), 
while the Sentinel-2 specific red-edge bands were used to produce inverted red-edge 
chlorophyll Index (IRECI). The C-band VV-polarization from Sentinel-1, as well as the L-
band HH and HV polarizations from ALOS-2 PALSAR-2, were used to acquire backscatter 
intensities (Joshi et al. 2015c, Viet Nguyen et al. 2016). The HH and HV polarizations from 
ALOS-2 PALSAR-2 were also used to calculate forest-specific backscatter (FB) values 
(Lucas et al. 2007). In addition, to account for the limited sensitivity of SAR backscatters to 
forest structure during wet seasons due to vegetation and soil moisture (Nguyen et al. 2016, 
Urbazaev et al. 2016), we calculated the temporal standard deviation (TSD) of backscattered 
values between the three SAR images. Details on the collection and processing of the SRS 
datasets can be found in Mulatu et al (2019).  
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Table 5.1: Description of forest structure parameters used. 

Measurement 

type 

Variable Descriptions 

Forest type A Factor description of forest 

disturbance level 

Plot selection criteria/field visit 

C
on

ve
nt

io
na

l 

 

Total basal area (TBA) Average amount of an area occupied by tree 

stems 

Above ground biomass 

(AGB) 

derived from the DBH, species names and the 

wood density values for African tropical moist 

forests  

Tree density Measure of the stocking of a stand of trees based 

on the number of trees per unit area 

Tree species diversity Shannon index values characterizing tree species 

diversity in a plot 

T
L

S
 

Cumulative Plant area volume 

density (PAVD) 

Plant surface area to volume ratio 

Plant area volume density 

(PAVD at 10m) 

Aggregated PAVD at 10 m (understory 

vegetation) 

Canopy height Top of the forest canopy height at 0.5 m 

resolution  

Mean canopy gap size Mean of neighbouring pixels with canopy height 

of <10 m and with an area of ≥1 m2 

Maximum canopy gap size Maximum value of neighbouring pixels with 

canopy height of <10 m and with an area of ≥1 

m2 

Canopy openness All empty spaces of ≥1 m2 at 5 m height intervals, 

calculated until the maximum canopy height 

S
at

el
li

te
 r

em
ot

e 
se

ns
in

g 

Green normalized difference 

vegetation index (GNDVI) 

Index of vegetation photosynthetic activity 

Enhanced vegetation index 

(EVI), 

Index designed to enhance vegetation signal with 

improved sensitivity in high biomass regions 

Chlorophyll index (CI green) Index of canopy chlorophyll content 

Normalized difference moisture 

index (NDMI) 

Index of vegetation moisture content 

Inverted red-edge Chlorophyll 

Index (IRECI) 

Index on canopy chlorophyll content and red-

edge position 

 HH, HV backscatter, 

Forest backscatter 

Vegetation backscatter on HH and HV 

polarizations 

VV backscatter Vegetation backscatter on VV polarization 
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5.2.6 Linking forest structure and Community composition 

Redundancy Analysis (RDA), a constrained ordination technique, was used to develop 
multivariate models for performing an exploratory analysis that identifies the linear 
combination of limited number of structural parameters which can explain the variation in 
leaf-litter-arthropod community composition. Canoco 5.10 (Ter Braak and Smilauer 2012) 
was used to perform the RDA constrained multivariate analysis. We used the data from 24 
plots that have both structural and biodiversity observations. The semi-automated forward 
selection approach with Canoco allows a stepwise selection of important structural variables 
that can significantly explain the residual variation in community composition (Palmer 2004, 
Ter Braak and Šmilauer 2015).  
 
We tested the distribution of our dataset and used a logarithmic transformation on field-
measured parameters that did not have a normal distribution (i.e., mean gap, PAVD at 10 m, 
maximum gap, AGB, and total basal area). A square root transformation of OTU counts was 
made to eliminate the influence of outliers. Such transformation allows an even spread of 
plots and species (Palmer 2004). Ten multivariate models, with a separate and combination 
of forest structure variables measurement approaches (field measured, satellite remote 
sensing, TLS, etc.) were prepared to estimate community composition. The statistical 
significance (P-value) of the models was evaluated using the Monte Carlo permutation tests, 
while the models were compared using their adjusted-R2 values.  

5.3 Results 

5.3.1 Comparing species richness between forest types 

The ‘iNext’ results (Figure 5.3) show that the estimated alpha diversity measures (i.e. species 
richness, Shannon and Simpson indices) are the highest in PFM and old degraded forest, 
followed by highly degraded forest and intact forest, and are the lowest in recently degraded 
forest. Considering the 95% confidence-interval overlap as a conservative test for 
significance at the p=0.05 level (MacGregor-Fors and Payton 2013), it can be observed that 
the recently degraded forest species richness and diversity are significantly lower than the 
other forest types.   
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Figure 5.3: Estimates of leaf-litter-arthropod  species richness, Shannon diversity, and Simpson diversity by forest 
type, using sample-based rarefaction and extrapolation. Solid lines represent ‘iNEXT’ interpolations, and dashed 
lines represent ‘iNEXT’ extrapolations, with 95% confidence intervals. Statistically significant pairwise differences 
are detected visually by non-overlapping confidence intervals. 

5.3.2 Community composition between forest types 

The dissimilarity in leaf litter species composition across forest types is presented in the 
NMDS plot (Figure 5.4). The overall beta diversity plot shows that the species composition 
in intact forest is different from the other forest types, having a spread to the left end of the 
NMDS second axis. The turnover versus nestedness analysis results show that the species 
compositions in the four non-intact-forest plots are made up of species that are distinct from 
the intact forest type, and not just subsets of the intact forest type. 

 
 
 
 
 
 
 
 
 



Integrating novel sensing and DNA metabarcoding to link forest structure and diversity 

 
 

87 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The NMDS plots were found to be in agreement with the results of the intersection diagram 
(Figure 5.5). Intact and PFM forests are found to host the largest number of ‘unique’ species, 
184 and 182 OTUs respectively, while the lowest number of unique species (76 OTUs) 
recorded belongs to recently degraded forests. The largest number of uniquely shared species 
were found between intact forest and old degraded forest (49 OTUs), while the lowest 
number of uniquely shared species were between intact and recently degraded forest (5 
OTUs). Both highly and recently degraded forests have their highest share with PFM, having 
33 and 29 shared species respectively. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Non-metric multidimensional scaling (NMDS) ordination of leaf-litter-arthropod beta diversity by forest 
type. 
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5.3.3 Relationship between forest structure and community composition 

5.3.3.1 Multivariate model results 

The multivariate analysis of forest structure and leaf litter composition showed that there are 
several forest structure parameters that have an effect on the composition of leaf-litter-
arthropods. The forward selection models were able to eliminate multicollinearity of 
predictors and allows the selection of important structural variables that could explain 
patterns in community composition (Supplementary materials, Table S5.1). The explanatory 
power of the models increased with the integration of multi-sourced forest structure data 
rather than using single forest structure measurement approaches (Figure 5.6). The lowest 
explanatory power was found using conventional field observations (adjusted R2= 4.84%, 
P=0.0044), which had TBA as the only significant explanatory variable. The explanatory 
power improved (adjusted R2 of 14.17%, and p=0.0004) when the conventional 
measurements were joined with TLS measurement and forest type information, which when 
used independently had a lower explanatory power (adjusted R2=7.15%, P=0.0817, and 
adjusted R2=7.25%, P=0.0001 respectively). The remote sensing derived forest structure 
variables also showed a promising potential, both with the SRS only model (adjusted  R2 
=9.8%, P=0.0199) and with the model that joined SRS and TLS parameters giving improved 
estimations (adjusted R2= 13.05%, P=0.0352). Most of the TLS-derived parameters were 
excluded from the model due to multicollinearity. The highest explanation potential of the 

Figure 5.5: Intersection map of leaf-litter-arthropod species that are unique to and shared among forest types. 
The horizontal bars represent the total number of species per forest type while the vertical bars represent the 
number of unique species in each forest. 
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model (adjusted R2= 18.02%, P=0.0001) was reached when the forest structure parameters 
from all measurement types and were combined with the information on forest habitat type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3.3.2 Selected forest structure variables and their effect on community composition 

The forest structure variables that contributed to the best model which explained 43% of the 
variation in leaf litter species composition were estimated through TLS, conventional, and 
SRS methods. The biplot diagram (Figure 5.7) represents the estimated dissimilarity of plots 
in terms of their species composition, and the structural variables that are related to these 
variations. The distance between plots approximates their dissimilarity, thus presenting the 
distinguishability of leaf litter species in intact forests in comparison to the other forest types. 
The arrows, representing the explanatory structural variables, increases in the direction of the 
highest relationship with the plots as a function of their community composition dissimilarity. 
Thus, TBA, number of gaps, PAVD at 10M, and ALOS HV show the highest relation to the 
leaf litter community composition in intact forests. These structural parameters were found 
to be negatively correlated to tree Shannon index and canopy openness which are mainly 
related to the leaf litter species composition of PFM and the degraded forest types. The bi-
plots of selected models can be found on Supplementary materials, Figure S5.1. 
 

Figure 5.6: Multivariate models for estimating leaf-litter-arthropod  community composition using a combination of 
different forest structure parameters. Colour codes represent the approaches used to acquire forest structure 
information (blue: conventional, rose: forest type, brown: terrestrial laser scanner, green: satellite remote sensing ). 
P-values: P ≤ 0.05 *,  P ≤ 0.01 **, P ≤ 0.001*** 
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Figure 5.7: Biplot diagram of the redundancy analysis results. Forest structure arrows: each arrow shows the 
marginal effect of the particular structure variable upon the plot scores in the ordination diagram. Plot symbols: the 
distance between the symbols approximates the dissimilarity of their operational taxonomic unit composition as 
measured by the Euclidean distance. 

5.4 Discussion 

5.4.1 Community analysis 

We found the metabarcoding analysed leaf-litter-arthropods diversity to vary across different 
forest habitat types, as a function of forest disturbance levels. In terms of species richness, 
PFM and old degraded forests were found to host the highest estimated leaf-litter-arthropods 
richness in comparison to the other forest types. This finding could relate to the intermediate 
disturbance hypothesis (Grime 1973, Connell 1978) which states that local species diversity 
is maximized with a disturbance that is ‘neither too rare nor too frequent’. Such intermediate 
disturbances would create an opportunity for other species to compete in an environment 
which has been monopolized by species that were dominant in a low level of disturbance, 
thus resulting in high diversity as species at both early and late successional stages coexist. 
The PFM and old degraded forests are indeed characterized by such intermediate 
disturbances, as in case of PFM forests, their understory is cut, thinned, and annually cleared 



Integrating novel sensing and DNA metabarcoding to link forest structure and diversity 

 
 

91 
 

to harvest wild coffee (NABU 2017), while the old degraded forests are recovering for 
several years from a similar or more drastic form of disturbances. Other studies in the KBR 
have also found forests with intermediate disturbances to host higher species richness of 
flower-visiting insect (Flügel 2017) and avifauna (Tesfahunegny et al. 2016), whereas in 
terms of vascular plants, PFM sites were found to have low species diversity compared to 
intact forests (Leßmeister et al. 2017). The beetle assessment (Schöller and Wiersborski 2017) 
in the KBR, also with the use of leaf litter samples, similarly found species richness and 
abundance to be low in intact forests.  
 
The beta diversity analysis, which represents the dissimilarity in species composition across 
different forest types, on the other hand, shows that intact forests despite having an estimate 
of lower species richness hosts unique species in comparison to the others forest types (fig. 
4). This finding is in line with studies (Lindenmayer and Franklin 2002, Irwin et al. 2014, 
Brockerhoff et al. 2017) that also found intact forests to host the rarest and often specialist 
species. The turnover led beta diversity (Figure 5.4) indicates that the unique species in intact 
forests are lost and replaced by new species in the disturbed forests. However, the high 
number of species that are only shared between intact and old degraded forest (Figure 5.5) 
could indicate on the potential of a successful recovery of old degraded forests in terms of 
regaining the original species diversity and composition. Studies have shown that the natural 
recovery rate of degraded tropical forests is quicker (Lamb et al. 2005, Letcher and Chazdon 
2009) in comparison to recoveries from disturbances that are related to forest conversions 
(Chazdon 2003, Álvarez-Yépiz et al. 2018). On the other hand, the small number of shared 
species between intact and recently degraded forests could reflect on the resilience of leaf-
litter-arthropod  communities to disturbances. The study of Moretti et al. (Moretti et al. 2006) 
showed that the level of resilience and recovery of arthropod species depends on the type and 
frequency of disturbance, and the responses could vary across different functional groups of 
arthropods. Our findings are also in support of the cautious interpretation of species richness 
information when used as a measure of biodiversity status (Lindenmayer et al. 2015, 
Magurran 2016). As it is shown here, disturbed habitats could host as equal or higher species 
richness in comparison to intact forests, but with a possible loss of unique species with 
specialist roles. 
 

5.4.2 Linking forest structure and diversity 

Our explorative study was able to identify sets of forest habitat parameters that could explain 
variations in leaf-litter-arthropod composition. The results from the models showed that the 
structural information derived from the different data sources were important as an 
independent model and also were complementary when used in combination. For example, 
TBA, which is considered as a surrogate of biomass and net production, was an important 
predictor in both the conventional and combined models (Figure 5.6). This finding is 
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consistent to previous studies (Solar et al. 2016) that has found systematic variation in 
arthropod composition across gradients of AGB (i.e. from primary forest to agriculture), and 
with studies that explored the relation of productivity and biodiversity (Isbell et al. 2015, 
Nieto et al. 2015). The TLS-derived structural parameters were found to be significantly 
important when used in the combined models than as an independent model. We were able 
to identify that an increasing number of gaps, and the abundance of understory vegetation 
were key structural conditions that associate to the leaf-litter-arthropod composition of intact 
forests, while canopy openness related to the degraded forests. We found a few number of 
studies that looked in to species diversity and LiDAR derived forest structure. Müller et al. 
(Müller et al. 2014, Müller et al. 2018) found relations between airborne LIDAR-derived tree 
height and vertical distribution of vegetation and canopy arthropod diversity where an 
increase in the number of individuals with increasing vertical distribution of vegetation was 
found, also indicating that structural complication and high biomass plots would provide 
suitable conditions for feed, shelter, and reduced competition. Structural estimates derived 
from airborne LIDAR were also used to assess mammals response to foliage density and 
forest gaps in temperate forests (Froidevaux et al. 2016), and to identify the relationship 
between bird species diversity and the vertical and horizontal forest habitat heterogeneity 
(Carrasco et al. 2019). The SRS derived structural parameters, even though overshadowed 
by the TLS and conventional measured variables on the combined models, they were found 
promising in explaining compositional variations as an independent model. These results 
could be due to the sensitivity of the parameters to different biophysical states of the forest 
types. This finding is in line with studies that also found the influence of forest biomass and 
moisture conditions on species composition and richness (both flora and fauna) with radar 
SRS (Bergen et al. 2007, Wolter and Townsend 2011, Attarchi and Gloaguen 2018), while 
the influence of forest health and stress conditions on species diversity were identified with 
the optical indices (Nieto et al. 2015, Wallis et al. 2016, George-Chacon et al. 2019). Finally, 
the categorical forest habitat type information, even though considered as an arbitrary 
predictor, was useful in providing additional information on the status of plots. Our findings 
indicate that the integration of different data sources are key in identifying patterns and 
explaining biodiversity using forest structure parameters. Several guidelines have advised on 
the integration of data sources for the same reason.  
 
In this study, we have been able to explore an important impact that habitat-related forest 
structure parameters have on leaf litter species composition. The unexplained variations in 
community composition could still be addressed by investigating other physical variables 
such as habitat heterogeneity (horizontal distribution of forests) which allows the co-
existence of different species through habitat separation (Didham et al. 2005) and through 
providing multiple habitats for some species with specific requirements such as nesting and 
foraging (Ishii et al. 2004), as well as through exploring other environmental factors such as 
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rainfall, elevation, moisture, soil condition that has been proven to have an impact on tropical 
forest species diversity.  
 

5.4.3 Technological advances for tropical forest biodiversity assessment 

We have been able to trace the subtle biodiversity dynamics within tropical forests that are 
different based on their disturbance levels, with the use of advanced technologies. Even 
though other studies were also able to trace differences in species diversity using 
metabarcoding analysis, these studies were mainly performed across different land use types, 
such as a comparison of species diversity between forests and agriculture lands (Yang et al. 
2014, Beng et al. 2016, Barsoum et al. 2019). The same applies regarding the use of remote 
sensing for obtaining details on structural variation across forest types, where if it was not 
for the detailed information that we get out of TLS measurements on certain structural 
components such as PAVD and canopy openness at different height levels, they could remain 
elusive. The identification of a relationship between forest habitat condition and biodiversity 
dynamics at a plot level could lay bases for upscaling to landscape level representations and 
production of continuous biodiversity data. 
 
In complex ecosystems such as the tropics, the effect of forest structure and other 
environmental determinants on biodiversity have been proven to vary depending on the 
geographic scale of the observation used (Gavish et al. 2019). Thus, monitoring such 
interactions would require a system that can operate at different spatial, temporal, and 
taxonomic scales. Both DNA metabarcoding and remote sensing have the potential for 
conducting such assessments at multiple scales. Remote sensing approaches can provide an 
opportunity to explore and upscale habitat complexity (vertical stratification) and habitat 
heterogeneity (fragmentation) information at different spatial scales. Similarly, 
environmental DNA (eDNA), a developing field in DNA metabarcoding, is a valuable survey 
method for landscape-level studies as it obtains DNA samples directly from the environment 
and allows the identification of broad taxonomic scales (Adams et al. 2019).  

5.5 Conclusion 

We have been able to form our hypothesis, that with the integration of evolving technologies 
in the field of ecology, it will be possible to detect subtle forest habitat changes and 
biodiversity dynamics in changing tropical forests. Further investigation would be needed to 
build upon this knowledge with large observations in order to test the hypothesis with 
independent datasets. In addition, relating habitat conditions and species diversity from 
functional perspective will provide an important understanding on the roles these arthropods 
have in the ecosystem and how habitat disturbance led compositional change can affect 
important ecosystem functions and services. Such integration of technologies that could lead 
to an understanding of complex forest ecosystem processes is key for tracking progress 
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towards global biodiversity goals and for operationalization of the essential biodiversity 
variables. 
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Supplementary materials 

Table S5.1:Multivariate model outputs for estimating leaf litter community composition 

Variables Explain/ 

contribute (%) 

pseudo-F P  P(adj) 

Model 1: Conventional       R2=8.98%,    Adj. R2=4.84%,      pseudo-F=1.3, P=0.0044 
Log_TBA 9% (33.4%) 2.2 0.0011 0.0035 
Model 2: Forest type     R2=15.32%,                 Adj. R2=7.25%,                 pseudo-F=1.9,              
P=0.0001 
FT2.Intact 10.2 (66.5) 2.5  0.0001  0.0002 
FT2.PFM  5.1 (33.5)  1.3  0.0888  0.0888 
Model 3: TLS                 R2=19.26%,               Adj.  R2=7.15%,      pseudo-F=1.1,                 P=0.0817 
Number of gaps 7.4 (22.1) 1.7 0.0114 0.0266 
Log_PAVD10m 6.5 (19.4) 1.6 0.0185 0.04317 
Canopy openness 5.5 (16.4) 1.4 0.0655 0.09987 
Model 4: SRS                   R2=21.57%,         Adj. R2=9.80%,                   pseudo-F=1.2,       P=0.0199  
S2_IRECI_Mean 6.8 (9.8)  1.6  0.0135  0.0675 
ALOS_HV_TSD 7.2 (10.4)  1.8  0.003  0.0225 
LS_CIGreen_Mean 7.6 (10.9)  1.9  0.001  0.015 
Model 5: Conventional + forest type   R2=20.41%,            Adj.  R2=8.47%,               pseudo-F=1.6,       
P=0.0002 
log_TBA  9.0 (36.2)  2.2  0.0011  0.0022 
Tree_shannon 5.2 (21.0)  1.3  0.0962  0.0962 
FT2.Intac  6.2 (25.0) 1.6  0.0113  0.0226 
Model 6: Field measured     R2=31.48%,              Adj. R2=12.45%,          pseudo-F=1.2,         P=0.0084 
CanopyOpenness 6.3 (11.0) 1.5 0.0298 0.05109 
NumberOfGaps 6.4 (11.2) 1.5 0.0262 0.0596 
log_PAVD10m 6.5 (11.3) 1.6 0.0144 0.0576 
log_TBA 6.7 (11.7) 1.7 0.0094 0.0576 

Tree_shannon 5.5 (9.6) 1.4 0.037  0.0888 

Model 7: Field measured + forest type     R2=36.56%,    Adj.  R2=14.17%,    pseudo-F=1.4,          
P=0.0004 

CanopyOpenness 6.3 (12.3) 1.5  0.0319  0.04557 

NumberOfGaps 6.4 (12.5)  1.5  0.0291  0.05317 

log_TBA 7.6 (14.8)  1.9  0.0042  0.021 

log_PAVD10m 5.6 (10.9)  1.4  0.0351  0.0702 

Tree_shannon 5.5 (10.7)  1.4  0.0378  0.063 

FT2.Intact  5.1 (9.9)  1.4  0.0669  0.09557 

Model 8: RS             R2=31.95%,                Adj. R2=13.05%,     pseudo-F=1.2,         P=0.0352 

S2_IRECI_Mean

  

6.8 (8.8)  1.6  0.0133  0.03768 

log_PAVD10 6.7 (8.7)  1.6  0.0095  0.04038 

LS_CIGreen_Mean 6.9 (8.9)  1.7  0.0046  0.07537 

CanopyOpenness 5.4 (7.0) 1.4  0.0388  0.09423 
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ALOS_HV_TSD 6.2 (8.0)  1.6  0.0081  0.05383 

Model 9: All             R2=37.68%,            Adj. R2=15.68%,       pseudo-F=1.5,            P=0.00018 

CanopyOpenness 6.3 (9.6)  1.5  0.0318  0.05906 

NumberOfGaps 6.4 (9.8)  1.5  0.0243  0.06318 

log_PAVD10m 6.5 (9.9)  1.6  0.0146  0.04745 

log_TBA  6.7 (10.2)  1.7  0.0079  0.0468 

Tree_shannon 5.5 (8.4)  1.4  0.0418  0.07763 

ALOS_HV_TSD 6.2 (9.4)  1.7  0.0066  0.05135 

Model 10: All +forest type    R2=42.97%,            Adj.  R2=18.02%,          pseudo-F=1.6,           P=0.0001 

CanopyOpenness 6.3 (8.5)  1.5  0.0298  0.0447 

NumberOfGaps 6.4 (8.6)  1.5  0.027  0.05588 

log_PAVD10m 6.5 (8.7)  1.6  0.0145  0.0435 

log_TBA  6.7 (9.0)  1.7  0.009  0.0435 

Tree_shannon 5.5 (7.4) 1.4  0.0365  0.06844 

ALOS_HV_TSD 6.2 (8.3)  1.7 0.0072 0.0675 

FT2.Intact 5.3 (7.1) 1.5 0.0261 0.06844 

A 

B 
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Figure S5.1: Biplot diagram of the redundancy analysis model results. Forest structure arrows: each arrow shows the 

marginal effect of the particular structure variable upon the plot scores in the ordination diagram. Plot symbols: the 

distance between the symbols approximates the dissimilarity of their operational taxonomic unit composition as 

measured by the Euclidean distance. A: Conventional, B: forest type, C: Terrestrial Lidar D: Satellite remote sensing 

E: All combined except forest type 
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6.1 Main findings 

To address the objective of this thesis, the chapters explored the application of emerging 
technologies (with an emphasis on remote sensing) for biodiversity assessment of changing 
tropical forests. Biodiversity attributes that were identified, as quantifiable and scalable using 
satellite remote sensing and in-situ measurements (chapter 2), were further explored (chapter 
3, 4, and 5): to demonstrate their applicability for increasing the access to and detail of 
tropical biodiversity assessments. The four research questions in section 1.5 were addressed 
in detail in the previous chapters (2 to 5) of this thesis. Remote sensing was used for the 
profiling of forest structure parameters across different disturbance levels (chapter 3 & 4). 
This information was later integrated with actual biodiversity dataset acquired through DNA 
metabarcoding analysis (chapter 5). In this chapter, a summary of key findings for each of 
the research questions will be provided. 

 

6.1.1 What is the potential of state-of-the-art and novel approaches to 

assess biodiversity in changing tropical forests? 

The main finding of chapter 2 shows that synergies between in-situ and satellite remote 

sensing approaches can provide unique and quantitative details on tropical forest 

disturbance, habitats, and biodiversity. 

 
The results of the systematic review in chapter 2 identified that:  
i) Anthropogenic factors account for 82% of disturbances related to tropical forest 
biodiversity change, with the remaining 18% being accounted for disturbances originating 
from natural events. Agricultural activities (32%) and logging (27%) were the major 
anthropogenic drivers of tropical forest biodiversity dynamics in South America, South East 
Asia, and East Africa countries (Figure 2.4). The recent Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (IPBES) report (Díaz et al. 2019) have 
similarly identified agricultural expansion such as cattle ranching in Latin America and 
plantations in South-East Asia to be the main drivers of habitat loss in intact tropical forests. 
The identification of such country-specific biodiversity change drivers and the use of 
biodiversity indicators can lead to the design of targeted biodiversity change monitoring and 
conservation programs (Wintle et al. 2010).  
  
ii) biodiversity assessment techniques are determined by the spatial scale (i.e., geographical 
coverage of the study area), temporal scale (i.e., availability of longitudinal biodiversity data), 
and thematic scale (i.e., targeted groups for monitoring and disturbance types) of studies 
(Figure 2.2, 2.3, & 2.5). Accounting for these scale factors is important, as biodiversity 
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patterns and processes have varying responses to disturbances across different scales (Henle 
et al. 2014). 
 
iii) remote sensing (RS) and in-situ measurements have complementary application for 
biodiversity assessment, on the bases of the primary biodiversity attributes (Noss 1990) and 
the essential biodiversity variables (Pereira et al. 2013). The RS sources are important to 
provide not only indirect measures (e.g. forest cover-change related habitat disturbances) of 
changes in biodiversity but also in providing direct information (e.g. occurrence and 
abundance of mammals, and large birds) on biodiversity status, across spatial and temporal 
scales. In-situ sensors are essential for remote, non-invasive, and real-time monitoring of 
tropical forest-dependent species, as well as forest disturbances. DNA barcoding, albeit being 
one of the most recently introduced biodiversity assessment tools, is an essential technique 
for the mass sampling and identification of the vast tropical forest species.  
 
Even though the integration of RS and in-situ sensors is expected to increase the accuracy 
and details of tropical forest biodiversity assessments, further studies are needed on how to 
tackle difficulties that could arise while combining different datasets (in terms of their spatial, 
temporal, and taxonomic scale) for modelling species-habitat relationships, and their 
response to changes (Honrado et al. 2016).  
 

6.1.2 How can Terrestrial LiDAR be used to derive biodiversity relevant 

forest structure parameters? 

The main finding of chapter 3 shows that TLS measurements are valuable to identify 

tropical forest habitat complexity by capturing the small variation of vegetation 

structure in the understory and canopy of different forest types.  
 
Following the knowledge acquired in chapter 2 regarding the need of novel remote sensing 
techniques for assessing forest disturbance related biodiversity dynamics; the use of 
terrestrial LiDAR was demonstrated in chapter 3 to measure forest habitat complexity 
parameters across four forest types (intact forest, coffee forest, silvopasture, and plantations). 
The TLS measurements together with conventional approaches provided quantitative details 
on vegetation volume, canopy gaps, and open spaces at all heights across the forest habitat 
types. The main conclusions drawn from the results were:  
(i) impacts of disturbance on forest structure can be captured with TLS measurements. For 
instance, in coffee forests, the high canopy openness from TLS measurements as well as the 
low basal area (BA) and diameter at breast height (DBH) values from conventional forest 
measurements appeared contrary to the idea of coffee being produced underneath a relatively 
intact forest canopy. In coffee forest, not only the understory was cleared, but also many trees 
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were removed, indicating a larger management impact than expected (Schmitt et al. 2010, 
Aerts et al. 2011, Hundera et al. 2013). However, as expected, the coffee forest had high 
vegetation density between 2 and 10m due to the coffee plants (Figure 3.5). 
 
(ii) TLS measurements can be used for deriving habitat heterogeneity proxies that are 
relevant to biodiversity monitoring. The TLS measurements enabled the 3D quantification of 
forest structural measurements such as plant area volume density (PAVD), and also deriving 
2D canopy gaps and canopy openness at different heights. Several of these parameters cannot 
be measured by conventional forest inventories. The 3D position of plant volume (quantified 
by PAVD) and open spaces (i.e. the inverse of PAVD) were measured. The 3D leaf 
positioning is important for forest-dependent species as it influences light conditions, tree 
architecture and photosynthetic leaf traits (Montgomery and Chazdon 2001). Open space in 
different forest layers, including the forest understory, is of great importance for many flora 
and fauna diversity (Chazdon and Pearcy 1991, Zahawi et al. 2015). With TLS, open spaces 
can be measured by assessing canopy openness and gaps at different heights. For example, 
open spaces and light between 0 and 1m is highly important for seedling germination 
(Chazdon and Pearcy 1991), at 0 and 5m for coffee plants and their pollinators (i.e. bees) 
(Aerts et al. 2011), while between 5 and 30m this can be important for bird species and 
epiphytes (Zahawi et al. 2015). 
 
Further advancement in automated approaches is required for optimal use of TLS 
observations in tropical forests, such as for deriving biomass estimates from TLS data 
(Gonzalez de Tanago et al. 2018). In-situ measured structural parameters can benefit from 
further integration with spaceborne and airborne LiDAR, satellite remote sensing data for 
upscaling plot-based structural measurements. In addition, linking structural data with 
biodiversity dataset would be necessary for better monitoring the impacts of habitat 
conditions on forest biodiversity. 
 

6.1.3 How does multi-modal Satellite data relate to Terrestrial LiDAR-

derived forest structure? 

The main finding of chapter 4 shows that satellite remote sensing (SRS) variables are 

sensitive to structural conditions of tropical forests and have the potential to be used to 

upscale biodiversity relevant in-situ forest structure estimates.  

 
The empirical study in chapter 4 explored the relationship between in-situ measured forest 
structure parameters and SRS derived biophysical sensitive vegetation indices (VIs) and 
backscatter information. SRS is valuable for producing wall-to-wall and repeatable 
information on forest structure which would otherwise be very expensive to collect with 
field-based analysis. The main findings from this chapter show that:  
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(i) optical sensor-derived VIs are most sensitive to canopy gap-related forest structure 
parameters, while synthetic aperture radar (SAR) backscatters and the red-edge- and short-
wave infrared band-derived VIs: (i.e., inverted red-edge chlorophyll index, normalized 
difference moisture index) are most sensitive towards the in-situ measured vegetation 
volume-related parameters (Figure 4.3). The optical SRS-derived VIs, despite being 
underestimated for saturating in forest environments were sensitive to forest structure 
(Morley et al. 2019). The sensitivity of SWIR to plant leaf water content, which is correlated 
with canopy biomass (Wang et al. 2011), enabled NDMI to respond to vegetation volume-
related parameters (i.e., AGB, PAVD). The sensitivity of NIR to multiple scattering of 
canopy leaves, canopy gaps, and shadowing; thus, sensitivity to forest canopy structure 
(Malahlela et al. 2014) was associated with EVI’s response towards the estimation of TLS-
measured canopy gap-related parameters. The Sentinel-2 red-edge bands derived IRECI 
which is sensitive to canopy chlorophyll content and leaf area index (Frampton et al. 2013), 
was the most important index in estimating both conventionally and TLS-measured structural 
parameters as it was associated with both vegetation volume and canopy gap (Majasalmi and 
Rautiainen 2016, Castillo et al. 2017). On the other hand, the SAR data, due to the strong 
penetration of its pulses, even in densely vegetated tropical forest environments, were found 
uniquely valuable in estimating the lower canopy vegetation density, which was not picked 
up by vegetation indices derived from the optical sensors.  
 
(ii) the availability of different SRS datasets creates an opportunity to assess the possibilities 
of data fusion to achieve an improved estimation of field-measured forest structure 
parameters (table 4.5). Sentinel-2- and Sentinel-1-derived predictors mainly estimated 
canopy gap-related parameters; the fusion of Sentinel-2, ALOS-2 PALSAR-2, and Sentinel-
1 variables best estimated cumulative PAVD, while the combination of Sentinel-1 and 
ALOS-2 PALSAR-2 backscatters best predicted PAVD at 10 m. Similarly, the fusion of 
Sentinel-2 and ALOS-2 PALSAR-2 provided the best estimation for above ground biomass 
(AGB). The complementary nature of optical and SAR data in terms of data availability, 
sensitivity to vegetation features, and the difference in saturation levels would make the use 
of multimodal data for forest structure estimation feasible. 

 
The main limitation of this study was the small number of field samples which would restrict 
the identification of subtle relationships, validation of models, and upscaling of plot 
estimations to landscape level. The use of parametric methods, such as the linear regression 
model used in this study, was then considered suitable, whereas non-parametric methods such 
as; random forest model, would be an appropriate choice for larger datasets where non-linear 
relationships could be reliably picked up (Lu et al. 2016). Further research should follow this 
exploratory study with larger field observations, and through employing physical studies (e.g., 
radiative transfer models) to provide detailed insight into the relationship between in-situ 
measurements and SRS estimates in order to upscale forest structure parameters that are 
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relevant to forest biodiversity assessment (Pfeifer et al. 2016, Ochoa-Franco et al. 2019). The 
upcoming satellite-based LiDAR and SAR missions (GEDI and BIOMASS) will be essential 
to experiment how to derive wall-to-wall forest structure estimates and in general, to address 
the data gap on tropical forests. 
 

6.1.4 How can the combination of novel data sources (i.e. remote sensing 

and DNA metabarcoding) help to better understand and link forest 

structure and biodiversity? 

The main finding of chapter 4 shows that the integration of remote sensing and DNA 

metabarcoding techniques are capable of providing a detailed insight into the 

biodiversity dynamics of changing tropical forest. 

 

Based on the knowledge acquired from chapter 3 and 4 on the applicability of remote sensing 
for the assessment of forest habitat conditions, and from chapter 2 on the applicability of 
DNA metabarcoding for rapid and reliable biodiversity assessment; Chapter 5 explored the 
hypothesis formation: that the integration of remote sensing and DNA metabarcoding will 
give an insight into habitat-biodiversity dynamics. The results of this chapter show that: 
 
(i) high species richness estimates of leaf litter arthropods exist in the disturbed forests (PFM 
and old degraded) of the Kafa biosphere reserve (KBR) in comparison to intact forests 
(Figure 5.3). This result was found in line with the  species diversity assessment in KBR on 
flower-visiting insect (Flügel 2017), avifauna (Tesfahunegny et al. 2016), and beetle 
assessment (Schöller and Wiersborski 2017); whereas in terms of vascular plants, the 
disturbed plots were found to have low species diversity compared to intact forests 
(Leßmeister et al. 2017). The finding also relates with the intermediate disturbance 
hypothesis (Grime 1973, Connell 1978).  
 
(ii) intact forests host unique species of leaf litter arthropods in comparison to the degraded 
forest types (Figure 5.4). This finding is in line with studies (Lindenmayer and Franklin 2002, 
Irwin et al. 2014, Brockerhoff et al. 2017) that found intact forests to host the rarest and often 
specialist species. 
 
(iii) the influence of forest habitat conditions on leaf-litter-arthropod composition can be 
identified by linking forest structure parameters that are derived from remote sensing and 
conventional measurement with DNA metabarcoding diversity dataset. A multivariate model 
that combines structural information on vegetation density, canopy gaps, total basal area, tree 
diversity and level of forest disturbance was found to be the most important to explain the 
variation in leaf-litter-arthropod composition. The increasing number of gaps, high basal area, 
and the abundance of understory vegetation was found related with the composition of leaf-
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litter-arthropods in intact forest, while higher canopy openness and tree species diversity 
were found related with the community composition of disturbed forests. Similar effects of 
forest structure parameters (e.g. AGB, vertical distribution of vegetation, and gaps) on the 
diversity of arthropods (Müller et al. 2014, Solar et al. 2016, Müller et al. 2018), mammals 
(Froidevaux et al. 2016), and birds (Carrasco et al. 2019) have been reported.  
 
Even though the study had a limited number of plots due to logistical reasons, the findings 
were promising in indicating that both forest structure and biodiversity datasets acquired 
using novel technologies could provide detailed insights to habitat-biodiversity relationships 
(Bush et al. 2017, Yamasaki et al. 2017), with possible implications on resulting ecosystem 
functions and services. Further investigation is needed for building upon this knowledge with 
large field observations in order to test the hypothesis. In addition, relating habitat conditions 
and species diversity from functional perspective will provide an understanding on the roles 
of species in the ecosystem and how habitat disturbance can affect important ecosystem 
functions and services. 
 

6.2 Reflection and outlook 

This thesis was conducted with the aim of identifying and demonstrating how emerging 
technologies, mainly from the remote sensing field, could be used for the assessment and 
monitoring of forest biodiversity in changing tropical forests. This thesis was able to address 
the aim of the study by making a systematic review on the topic (chapter 2) and with a 
demonstration of empirical studies (chapter 3, 4 & 5). The findings of each chapter also 
indicate to further opportunities that could be taken as a way forward for more efficient use 
of emerging technologies and their potential integration. Such integration can be used to 
improve the monitoring of tropical forest changes and their associated impact on forest-
dependent species. In this section, a reflection is made on cross-cutting topics that have been 
identified across this thesis. In addition, limitations encountered as well as suggestions for 
future avenues are discussed. 
 

6.2.1 Evolving technologies for tropical forest biodiversity assessments 

The complexity of tropical forests, as well as the different disturbance factors that drive their 
dynamics, requires an equally advanced monitoring approach to identify relationships and 
patterns at different scales. The contents of this thesis are founded on the applicability of 
technological advancements for biodiversity data acquisitions to obtain timely and reliable 
estimates on tropical forests biodiversity status and dynamics. In Chapter 2, the technological 
progress in remote sensing and in-situ measurements and their potential integration was 
presented as essential for this purpose. Chapter 3 demonstrated how TLS measurements can 
be used to profile different forest habitat types. In chapter 4 an empirical study was made to 



Synthesis 

 

105 
 

identify the use of SRS derived vegetation indices and backscatter intensities in order to 
acquire similar information on in-situ measured tropical forest structure parameters. Even 
though promising results were obtained with the SRS parameters, acquiring highly accurate 
measures of tropical forest structural parameters from SRS is still desirable. Currently, the 
freely available SRS datasets such as Landsat and Sentinel can only be used to derive proxies 
on forest vertical structure while the commercially available, very high-spatial resolution 
images, which could be used to derive canopy gap parameters are expensive to be practical. 
Here, very recent developments and near future missions in the field of SRS that has 
promising opportunities for consistent and scalable forest biodiversity assessment and 
monitoring are presented.  
 
The Global Ecosystem Dynamics Investigation (GEDI) mission of NASA and the BIOMASS 
mission of the European Space Agency are among the top RS data sources that are expected 
to bring ground-breaking changes on tropical forest studies. The GEDI mission that has been 
launched on the international space station in December 2018 and which started to collect 
data since March 2019, will be providing the first high-spatial-resolution LiDAR observation 
on the 3D structure to derive forest canopy height, canopy vertical structure, and surface 
elevation (Stysley et al. 2015). The GEDI observation can be used to quantify and upscale 
similar TLS derived biodiversity relevant structural variables, such as canopy vertical 
structure, canopy height, and ground elevation at a comparable vertical resolution (0.5 m) 
(https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/iss-gedi). 
Similarly, the BIOMASS mission, to be launched in the year 2020, will be equipped with the 
first P-band synthetic aperture radar (SAR) measurements from space. The P-band is capable 
of penetrating the dense canopy of tropical forests to strongly interact with the large woody 
vegetation elements, and is more sensitive to biomass than the L- and C-band SAR dataset 
explored in this thesis (Quegan et al. 2019). Beyond its mission of determining the amount 
of biomass and forest height, it will also provide a unique opportunity to map forest habitat 
quality and to assess the relationship between forest biomass and forest biodiversity (Le Toan 
et al. 2011). These upcoming SRS data sources, when coupled with sufficient in-situ 
reference data (for calibration of modes and validation of estimates), will have a substantial 
contribution for the upscaling and wall-to-wall mapping of forest habitat parameters in 
tropical and sub-tropical ecosystems where most of the data gap exist (Proença et al. 2016). 
 
Moreover, as demonstrated in chapter 5 of this study, the integration of forest structure 
measurements and leaf litter arthropod dataset were useful for detecting changes in forest 
habitat and the resulting arthropod community composition. Even though arthropods are 
often selected as good biodiversity indicators, the impact that forest habitat conditions have 
on other taxa could be comprehensively assessed with the use of other advanced in-situ 
approaches. Camera traps and acoustic recorders (Buxton et al. 2018), drones equipped with 
cameras (Kellenberger et al. 2018, Hernandez-Santin et al. 2019), as well as environmental 
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DNA (eDNA) technology (Díaz-Ferguson and Moyer 2014), coupled with automatic species 
identification and image recognition techniques are some of the recent powerful tools that 
could be explored. In addition, citizen-based forest biodiversity assessment, coupled with 
sampling protocols, could densify field-based observation of biodiversity data (van Strien et 
al. 2013, Isaac et al. 2014).  
 
The RS and DNA metabarcoding techniques explored in this study can also be adopted for 
biodiversity assessment of other terrestrial and aquatic ecosystems. RS data can be used for 
estimating forest structure with better accuracies in temperate forests (Müller et al. 2018), 
boreal forests (Matasci et al. 2018), as well as savanna and woodlands (Vaglio Laurin et al. 
2017) which have lower ecological and physical complexity in comparison to tropical forests. 
Both RS (Geller et al. 2017) and eDNA techniques (Díaz-Ferguson and Moyer 2014) are 
growingly being explored in marine and freshwater ecosystems for measurement of 
parameters such as habitat extent and conditions, and for identification of ancient and present 
species respectively. The possible integration of these two approaches could provide new 
insights in research and conservation efforts of these unique ecosystems, which as tropical 
forests, are under heavy pressure in the Anthropocene (Kopf et al. 2015). 
 
Even though the application of these emerging technologies beyond research would demand 
additional resources (financial and technical) from tropical countries, a quick and efficient 
adaptation of remote sensing techniques for the monitoring and reporting of forest cover 
changes (mainly in relation to REDD+ and national forest inventories) has already been 
observed (Romijn et al. 2015). This could be taken as a positive indicator that tropical 
countries could have similar capacities for adopting advanced biodiversity monitoring 
techniques for supporting their national biodiversity assessments and reporting for 
international targets. 
 
6.2.2 Biodiversity relevant data sources and integration approaches 
 
The research in this thesis has focused on the identification of forest biodiversity relevant 
datasets obtained from remote sensing and in-situ sources. Chapter 2 outlined some of the 
available lists of RS and in-situ datasets that are relevant for addressing the Aichi biodiversity 
targets and for operationalizing Essential Biodiversity Variables (EBVs). Accordingly, the 
datasets used throughout the thesis were either acquired from remote sensing sources or 
collected from in-situ measurements. In chapter 3, we combined TLS and conventional 
measurements to characterize the structural differences across forest types. These datasets 
(from chapter 3) were used in chapter 4 to explore their potential link with optical and SAR 
satellite images. Moreover, the structural parameters estimated from both RS and 
conventional methods were linked with leaf-litter-arthropod DNA metabarcoding dataset to 
identify the relationship between forest structure and biodiversity. Working with large 
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number of datasets that are different in their data acquisition system, as well as the content 
and detail of information that they carry, could provide with an opportunity of large sets of 
information. However, it  could also pose a challenge of identifying efficient methods in 
order to extract the best possible information that can help achieve the aim of the study. In 
this thesis, the structural data was harmonized by calculating the mean value of parameters 
per plot size of 20 m radius for the in-situ measured and high resolution (i.e. Planetscope, 
Sentinel-2) images, while mean value per plot size of 50 m radius were used for the medium 
spatial resolution dataset (i.e. Landsat-7, Sentinel-1, ALOS-2 PALSAR-2). The relation and 
integration between the different datasets were investigated using correlation analysis and 
simple linear regression models that fitted the small number of observation used for the 
empirical analysis. With the availability of time-series genomics and remote sensing 
observations, identification of appropriate indicators and employment of novel algorithms 
can be used to detect non-linear relationships (Sugihara et al. 2012). Predictive models that 
are based on time-series data can be used to estimate biodiversity responses to forest change 
(Yamasaki et al. 2017). 
 
The identification and integration of relevant data sources at different spatio-temporal scales 
are also important (Maron et al. 2015) (Figure 6.1). In this study, the freely available SRS 
datasets of Landsat and Sentinel, as well as the commercially available Planetscope (note: 
accessed at no cost through research ambassador quota) and ALOS-2 PALSAR-2 images 
were used. The Landsat archives have been mainly valuable to make a temporal analysis of 
forest cover changes and to assess their possible implication on forest biodiversity (Margono 
et al. 2012, Matthew et al. 2016). The Sentinel-2 high-resolution images have also created 
new opportunities to make use of high-resolution data with red-edge specific bands that are 
sensitive to biophysical conditions of forests (Majasalmi and Rautiainen 2016, Castillo et al. 
2017). Very high spatial resolution datasets (e.g. Planetscope) are also favored for their 
frequent revisit and the spatial details they provide in tropical forests where the number of 
cloudless images available is limited (Dalagnol et al. 2019). The optical SRS images, can 
also be used to acquire structural estimates of tropical forests using radiative transfer 
modelling (Ligot et al. 2014), texture analysis (Wallis et al. 2016), object-based analysis 
(Silveira et al. 2019), and fragmentation analysis (Peter et al. 2015).   
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In-situ measurements with Terrestrial LiDAR, and DNA metabarcoding, are found to provide 
highly accurate estimates for plot-level studies while compared in reference to conventional 
measurements (Yang et al. 2014, Liang et al. 2016, Barsoum et al. 2019). They however 
require consistent sampling designs and a rather advanced data analysis approach. The spatial 
coverage and representation of in-situ measurements are often limited which restricts them 
from being used in advanced statistical approaches, e.g. for making ecological predictions. 
This was a challenge faced in chapter 4 of this thesis while exploring the relationship between 
in-situ measured forest structure parameters and SRS variables for upscaling plot-level 
measurements to landscape structural estimations. The number of field observations (i.e., 24 
plots) were too small to be divided between training and test dataset, for cross-validating the 
model before upscaling the plot based structural observations. Similarly, in chapter 5, the 
prediction and upscaling of leaf-litter arthropod diversity using structural parameters was 
avoided for the same reason. Thus, empirical studies were made in both chapter 4 and 5 where 
correlations and simple linear regression approaches were used to identify and explain the 
relationships without overfitting the models. A possible solution to the limited number of 
field observations would be investing resources on the establishment of a network of 
permanent field plots that could be continuously monitored to acquire data on both forest 
structure and forest biodiversity. The observations could be analysed with machine learning 
algorithms to train series of SRS datasets in order to make reliable upscaling of plot 
observations, as well as, to forecast future trends with possible scenarios. Furthermore, a 
collaboration between researchers, practitioners, and the general public is necessary to 

Figure 6.1: Simultaneous acquisition of forest structure and biodiversity data and their integration for producing 
continuous biodiversity monitoring products. A: in-situ measurements (TLS, conventional, DNA barcoding, 
audio-video recordings, citizen science), B: landscape level data acquisition (Drone, eDNA), C: Satellite remote 
sensing: global observation with optical, LiDAR, SAR, hyperspectral sensors 

A 

B 

C 
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increase access to in-situ measurements through publishing observations as open datasets. 
Promising initiatives such as Tropical Ecology Assessment & Monitoring (TEAM) Network 
Education Portal (Sanderson 2004), TRY plant trait database (Kattge et al. 2011) and the 
Bioacoustica online repository and analysis platform (Baker et al. 2015) can be mentioned. 

 

6.2.3 From data to EBVs 
 
The concept of EBVs is another cross-cutting topic that connects the different chapters in this 
thesis. Chapter 2 investigated the relevance of SRS and in-situ data sources to operationalize 
EBVs. In chapter 3 & 4 forest structure variables derived from in-situ measurements and SRS 
datasets, as well as in Chapter 5, the DNA metabarcoding derived leaf litter arthropod 
diversity estimates were discussed in relation to EBVs. 
 
GEO BON considers in-situ measurements and remote sensing as primary observation 
datasets to derive EBV products (BON 2015). In-situ measurements are essential to provide 
datasets for genetic composition, species populations, species traits, and community 
composition EBV classes. SRS is considered most suited for providing information on 
ecosystem function and ecosystem structure EBVs such as: net primary productivity, 
ecosystem extent and fragmentation, habitat structure and disturbance regime, but also with 
a potential of monitoring broader EBVs (Pettorelli et al. 2016a, Pettorelli et al. 2016b, GOFC-
GOLD 2017). The data sources used in this thesis enabled the derivation of parameters that 
relate to several EBV classes (Table 6.1). The in-situ sources had the highest contribution to 
EBV classes in comparison to SRS. According to the study of Proença et al. (2016), the in-
situ datasets used in this thesis could be classified as an intensive monitoring scheme where 
details on biodiversity responses to changes in the ecosystem are captured often with low 
spatial coverage, while the SRS datasets could be related with an extensive monitoring 
scheme where long-term data series can be used to monitor trends in biodiversity with extensive 
spatial coverage. 
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Table 6.1: Summary forest biodiversity relevant parameters produced and their relation to the GEO-BON essential 
biodiversity classes 

 
The use of remote sensing for EBV developments is one of the main foci in the effort of 
operationalizing global biodiversity change assessment, for filling in data gaps, maintaining 
standardized approaches, and providing global continuous coverages. Furthermore, a full 
operationalization of EBVs could be achieved through identification of existing and 
upcoming dataset (in-situ and SRS), enhancement of global collaboration between experts 

Sources Parameter derived Essential Biodiversity classes 

 

 

 

In-situ 

(conventional) 

Total basal area (TBA) Ecosystem structure 

Ecosystem function 

Species traits 

Species populations 

Tree density Ecosystem structure 

Ecosystem function 

Species populations 

Tree species diversity Ecosystem structure 

Ecosystem function 

Species populations 

Species traits 

Community composition 

 

 

In-situ 

(Terrestrial LiDAR) 

Plant area volume density (PAVD) Ecosystem structure 

Ecosystem function 

Species trait 

Canopy height Ecosystem structure 

Ecosystem function 

Species trait 

Canopy gap  Ecosystem structure 

Ecosystem function 

Species trait 

 

In-situ 

(DNA metabarcoding) 

Arthropod species diversity Genetic composition 

Species populations 

Species traits 

Community composition 

 

Satellite remote sensing  

Vegetation indices Ecosystem function 

Ecosystem structure 

Backscatter intensity Ecosystem function 

Ecosystem structure 
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and data providers, development of robust biodiversity models, as well as mainstreaming of 
EBVs.  

 

6.2.4 Relevance to managers and ecologists  
 
The findings of this thesis provide added knowledge not only to the research community but 
also for managers and ecologists. As demonstrated and discussed throughout the thesis, the 
technological advancements in remote sensing and in-situ measurements have immeasurable 
benefits for quantifying biodiversity elements that have for long stayed elusive through space 
and time. Ecologists and managers can use open source debases and tools to design 
biodiversity monitoring approaches for projects operating at different spatial scales. 
Platforms such as Biodiversity Observation Network in a Box (BON in a Box, 
https://boninabox.geobon.org/) provide access to biodiversity-relevant remote sensing 
datasets, protocols, and tools. Similarly, in situ data sources and analytical tools are provided 
by the Global Biodiversity Information Facility (https://www.gbif.org/).  
 
In chapter 3 of this thesis, with the use of TLS derived canopy gap size information; it was 
possible to observe that the Participatory Forest Management (PFM) forest types, despite 
their expected characteristics of maintaining relatively intact canopy cover and dense 
understory vegetation condition (due to wild coffee), some plots had high canopy gaps and 
less understory density, almost resembling the structural characteristics of highly degraded 
forests (Figure 3.4). A similar observation was also made with the species composition 
analysis of chapter 5, where PFM forests had the least shared leaf-litter-arthropod species 
with intact forests and the highest with the degraded forests (Figure 5.6). Such information 
will be of use to managers in order to assess the impact of PFM activities on forest structure 
and habitat conditions, for ultimately taking measures, such as setting thresholds on expected 
canopy covers of PFM forests (Hundera et al. 2013). Considering the recent alarming reports  
on the decline of wild coffee species diversity due to deforestation and climate change (Davis 
et al. 2019, Moat et al. 2019), adopting the techniques used in this study would be relevant 
to further investigate the status of wild coffee varieties and pollinators (e.g. bees) in the 
UNESCO Kafa Biosphere Reserve (KBR). Here, an efficient channel between researchers, 
ecologists, and managers should be established to communicate research findings that can 
support effective management decisions. For example, in KBR, this communication channel 
is maintained between the combined effort of the researchers, environmental NGOs, rangers, 
and the zonal forestry office. An interactive web-based system with SRS based near real-time 
forest monitoring that is supported with a field-based validation of forest disturbance and 
monitoring of key biodiversity indicators by rangers have been put in place to support the 
biosphere management (Pratihast et al. 2016). Furthermore, ecologists can link the forest 
habitat-leaf litter arthropod diversity relationship to identify the ecosystem functions of rare 
species, how they are challenged, and how their functions could stay sustained.  
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The novel techniques in forest biodiversity monitoring can also be used by ecologists to test 
and support ecological theories. For instance, the sunflecks theory (Chazdon and Pearcy 1991) 
which relates the presence of small gaps on forest canopies with the density and diversity of 
understory vegetation was depicted with the findings in chapter 3. The TLS derived canopy 
gap and understory estimates showed distinct results across intact and degraded forests 
(Figure 6.2). In addition, in Chapter 5, the intermediate-disturbance theory (Connell 1978) 
was discussed based on the TLS and DNA- metabarcoding derived results which showed the 
presence of higher species richness in disturbed forest types compared to intact forests. 
Interdisciplinary collaboration should be encouraged to further advance the exploration and 
understanding of the links between physical observations and ecological concepts (Yamasaki 
et al. 2017). 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Figure 6.2: Relation between the number of gaps in the upper canopy and plant area volume density (PAVD) in the 

lower canopy in intact forest. A: Intact forest (n=9). B: Managed and degraded forest (n=14). 

 

6.2.5 Linking carbon-biodiversity gradients for REDD+ 

 
The impact of tropical forest loss on forest biodiversity is poorly-understood, in comparison 
to carbon sequestration (Krause and Nielsen 2019). This could be due to the case that forest 
biodiversity stayed elusive for as long as quantitative approaches for tracking changes have 
been lacking. However, with the implementation of reduction of emission from deforestation 
and forest degradation (REDD+) and its monitoring, reporting, and verification (MRV) 
system in tropical forest countries, several studies have been proposing to use this platform 
to monitor in parallel the response of biodiversity to forest changes (Gardner et al. 2012, 
Goetz and Mora 2017). The results of this thesis show that the same dataset that can be used 
to monitor carbon relevant forest measurements can as well be used to derive forest habitat 
conditions that are important for tropical forest-dependent species. Thus, linking biodiversity 
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and carbon monitoring through REDD+ mechanism is practically feasible and efficient, even 
if it is not yet presented as mandatory in REDD+ MRV. For example, based on our results of 
chapter 3 and chapter 5, it is possible to identify that levels of disturbance have a relation 
with both carbon stock and biodiversity conditions (Figure 6.3). A decline in above ground 
biomass accumulation was observed while comparing intact forest to degraded forests, and a 
similar decline in a number of unique species of leaf-litter-arthropod was observed using the 
same comparison (chapter 5). Creating such links between carbon, biodiversity, and forests 
is needed considering tropical forest exceptional relevance for both carbon sequestration and 
sheltering of unique species. It is also important to monitor the impacts of REDD+ 
implementation on biodiversity. This is especially true for the KBR and Ethiopia in general, 
which is identified by the IUCN as a biodiversity hotspot. Mechanisms such as REDD+ can 
be taken as an opportunity to strengthen the technical and institutional capacities of tropical 
countries to study and conserve the unique flora and fauna diversity while achieving climate 
change mitigation goals through the conservation of tropical forests. 
 

 

Figure 6.3: Linking forest carbon (A) and biodiversity (B and C) trends across forest disturbance gradients 
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Summary 

 
Increasing anthropogenic pressure leads to habitat loss of tropical forests through 
deforestation and forest degradation. The most endemic and valuable tropical forest-
dependent species are threatened with such disturbances that alter the complexity of their 
habitat. The structural complexity of habitats has a direct effect on the availability of 
resources and microclimate conditions which can affect, for example, the abundance and 
diversity of species. Measuring the structural configuration and diversity of tropical forest 
habitats will help explain the state of forest degradation and the resulting biodiversity 
dynamics. Thus, forest habitat heterogeneity has become one of the most commonly used 
indicators in forest biodiversity conservation and management efforts. Biodiversity dynamics 
due to natural and anthropogenic disturbances are mainly monitored using conventional field 
survey approaches. However, these approaches often fall short at addressing complex 
disturbance factors and responses at different spatiotemporal scales. The integration of novel 
monitoring approaches such as satellite remote sensing, terrestrial LiDAR, and high-
throughput DNA metabarcoding have the potential to improve the detection of subtle tropical 
forest disturbances and responses of species to changing tropical forests, which are largely 
unknown.  
 
This thesis’ aim is to investigate the application of emerging satellite remote sensing and in-
situ measurements to assess the complex forest biodiversity dynamics in changing tropical 
forests. Thus, the main objective of this thesis is to explore the potential of using emerging 
remote sensing technologies to assess differences in forest structure of habitats and to 
integrate such information with actual biodiversity data to further increase the detail and 
accuracy of biodiversity assessments. A particular focus is given to the use of terrestrial 
LiDAR and satellite remote sensing for deriving forest structure parameters that inform on 
the state of different tropical forest habitats. For this purpose, field plots were established in 
the UNESCO Kafa biosphere reserve (KBR), Ethiopia. The use of satellite remote sensing, 
terrestrial LiDAR, and DNA metabarcoding methods were explored to track forest habitat 
differences and the associated biodiversity dynamics. 
 
In Chapter 2 a systematic review was made on assessing the potential of emerging remote 
sensing and in situ monitoring technologies for informing on biodiversity dynamics in 
changing tropical forests. Their relevance in support of the UNCBD Aichi targets was also 
explored using the Essential Biodiversity Variables (EBVs) as a framework. Established field 
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surveys were generally found to be the dominant monitoring systems employed, whereas the 
temporal trend of monitoring approaches demonstrates the increasing application of remote 
sensing and in–situ sensors in detecting biodiversity change related to tropical forest 
disturbances. The complementarity of remote sensing and emerging technologies were 
shown in relation to EBV candidates such as species distribution, net primary productivity, 
and habitat structure. Even though synergy between the recent biodiversity monitoring 
approaches is important and possible, further testing of the suitability of monitoring methods 
across scales, integration of heterogeneous monitoring technologies, and setting up metadata 
standards is still required to design a robust biodiversity monitoring system that can 
contribute to effective conservation measures in tropical forests. 
 
In Chapter 3, the use of Terrestrial LiDAR (TLS) derivatives (such as plant area volume 
density and canopy gaps), in combination with conventional forest inventory measures (such 
as above ground biomass, tree density, and tree species) was investigated to estimate forest 
structural parameters in four different forest types (as a function of forest disturbance) of the 
tropical montane cloud forest in KBR. The different forest types (intact forest, coffee forest, 
silvopasture, and plantation) showed distinguishable structural differences both with the TLS 
and conventional measurements. TLS showed its unique relevance, as it was able to capture 
with the 3D position of the vegetation volume, canopy gaps, and open spaces at all heights 
in the forest. Further integration of data sources is needed to fully understand the implications 
of forest disturbance and/or management practices on forest structure and forest-dependent 
species. 
 
In Chapter 4, the link between multi-modal satellite remote sensing (SRS) datasets and plot 
level TLS measurements was explored to in order to assess the potential use of SRS datasets 
for deriving wall-to-wall and repeatable information on forest structure parameters which 
would otherwise be very expensive to collect through conventional field measurements. The 
relationship of optical remote satellite sensing (PlanetScope-, Sentinel-2-, and Landsat-7-) 
derived vegetation indices (VIs) and SAR (ALOS-2 PALSAR-2- and Sentinel-1-) 
backscatter intensities, with a terrestrial LiDAR and conventionally measured forest structure 
parameters were investigated. The canopy gap-related forest structure parameters had their 
highest correlation with optical sensor-derived VIs, while vegetation volume-related 
parameters were mainly correlated with red-edge- and short-wave infrared band-derived VI. 
The fusion of different SRS-derived variables was also found to improve the estimation of 
field-measured structural parameters. The exploratory study demonstrated that SRS variables 
are sensitive to retrieve structural differences of tropical forests and have the potential to be 
used to upscale biodiversity relevant field-based forest structure estimates. The upcoming 
satellite-based LIDAR and SAR missions (GEDI and BIOMASS) will be essential to enable 
derivation of wall-to-wall forest structure estimates and in general, to address the data gap 
on tropical forests. 
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In Chapter 5, the remote sensing data on forest structure was integrated with DNA 
metabarcoding data on leaf litter insects to assess the relationship and influence of forest 
structure on leaf litter arthropods across different forest types in KBR. High species richness 
estimates of leaf litter arthropods were found in disturbed forests of KBR in comparison to 
intact forests, while intact forests were found to host unique species of leaf litter arthropods 
in comparison to the degraded forest types. The influence of forest habitat conditions on leaf-
litter-arthropod composition was also identified using multivariate models that showed the 
increasing number of gaps, high basal area, and the abundance of understory vegetation were 
related with the composition of leaf-litter-arthropods in intact forest, while higher canopy 
openness and tree species diversity were found to relate with the community composition of 
disturbed forests. Relating habitat conditions and species diversity from functional 
perspective will provide an important understanding on the roles of the leaf litter arthropod 
species in the ecosystem and how habitat disturbance led compositional change can affect 
important ecosystem functions and services. 
 
This thesis provides a scientific contribution to the exploration of integrating technological 
advancements in remote sensing and in-situ measurements to derive information that is 
essential for assessing forest biodiversity change.  
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