A disposition of interpolation techniques

Martin Knotters ${ }^{1}$, Gerard Heuvelink ${ }^{1}$
${ }^{1}$ Soil Science Centre
Wageningen University and Research Centre - Alterra

- To help PBL in choosing from a large variety of interpolation techniques

Ca. 120 methods, 130 references. 5 reviews, 20 comparisons.

Criteria:

$>$ applicability in space, time and space-time;

- duantification of accuracy of internolated values;
- applicability at numerical and/or categorical variables;
> incorporation of ancillary information;
- incornoration of nrocess knowledge:
> applicability for up- and downscaling;
> complexity of application, and required computation time;
2 constraints on the size and conditions of the dataset:
1 availability of implementations by means of software tools.

Criteria:

- applicability in space, time and space-time;
$>$ quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
> incornoration of ancillary information:
1 incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
$1>$ constraints on the size and conditions of the dataset:
- availability of implementations by means of software tools.

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge:
> applicability for up- and downscaling;
\triangleright complexity of application, and required computation time;
constraints on the size and conditions of the dataset;
D availability of implementations by means of software tools.

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancilary information;
- incorporation of process knowledge;
- applicability for un- and dounscaling.

1 complexity of application, and required computation time;
> constraints on the size and conditions of the dataset;
availability of implementations by means of softinare tools

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
> complexity of application, and required romputation time;
- constraints on the size and conditions of the dataset:
- availability of implementations by means of software tools.

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
> constraints on the size and conditions of the dataset;
- availability of implementations by means of software tools.

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
- constraints on the size and conditions of the dataset;
- availability of implementations by means of software toc ls

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
- constraints on the size and conditions of the dataset:
- availability of implementations by means of software tools.

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
- constraints on the size and conditions of the dataset;

Criteria:

- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
- constraints on the size and conditions of the dataset;
- availability of implementations by means of software tools.

Main disposition

- Interpolation in space
- Methods that quantify accuracy
- Methods without use of ancillary information
- Methods using ancillary information
- Methods incorporating process knowledge
- Methods that do not quantify accuracy
> ...
- Interpolation in time
- ...
- Interpolation in space and time

- Linear interpolation, Triangular Irregular Network
 - Inverse distance weighing

in which s_{0} is the location to be interpolated to, $\mathrm{s}_{i}, i=1 \ldots n$ is the n locations where z has been observed, d is the distance and p is the power.
$>$ Nearest neighbour algorithm (Thiessen polygons). The power p in Eq. (1) goes to infinity.

- Linear interpolation, Triangular Irregular Network
- Inverse distance weighing

in which s_{0} is the location to be interpolated to, $\mathrm{s}_{i}, i=1 \ldots n$ is the n locations where z has been observed, d is the distance and p is the power Nearest neighbour algorithm (Thiessen polygons). The power p in Eq. (1) goes to infinity.
- Linear interpolation, Triangular Irregular Network
- Inverse distance weighing

$$
\begin{equation*}
z\left(\mathbf{s}_{0}\right)=\frac{\sum_{i=1}^{n} \frac{z\left(\mathbf{s}_{i}\right)}{d_{i}^{p}}}{\sum_{i=1}^{n} \frac{1}{d_{i}^{p}}}, \tag{1}
\end{equation*}
$$

in which s_{0} is the location to be interpolated to, $\mathrm{s}_{i}, i=1 \ldots n$ is the n locations where z has been observed, d is the distance and p is the power.
Nearest neighbour algorithm (Thiessen polygons). The power p in Eq. (1) goes to infinity.

- Linear interpolation, Triangular Irregular Network
- Inverse distance weighing

$$
\begin{equation*}
z\left(\mathbf{s}_{0}\right)=\frac{\sum_{i=1}^{n} \frac{z\left(\mathbf{s}_{i}\right)}{d_{i}^{p}}}{\sum_{i=1}^{n} \frac{1}{d_{i}^{p}}}, \tag{1}
\end{equation*}
$$

in which \mathbf{s}_{0} is the location to be interpolated to, $\mathrm{s}_{i}, i=1 \ldots n$ is the n locations where z has been observed, d is the distance and p is the power.

- Nearest neighbour algorithm (Thiessen polygons). The power p in Eq. (1) goes to infinity.

Example of IDW of Swiss rainfall data

Figure 1. Ilustration of the concept of anisotropy-corrected effective distance.
anisotropic IDW

Figure 4. Predicted rainfall contours based on 100 given training points, superimposed on Switzerland's boarder, shown (size of dots is proportional to the magnitude of the recorded rainfall).

Bodemdaling Waddenzee

Observations

Inverse distance weighing

Triangular Irregular Network

Ordinary kriging

Thiessen polygons

Kriging standard deviation

Kriging methods (no secondary variables)

RF-models:
$Z(\mathbf{s})=m+R(\mathbf{s})$, where $\mathbf{s}=x, y$.
$Z(\mathbf{s})=m(\mathbf{s})+R(\mathbf{s})$,
where $m(\mathbf{s})$ is a function of the spatial co-ordinates x, y.

Kriging methods (no secondary variables)

> > numerical variables: simple kriging, ordinary kriging, etc. categorical variables: indicator kriging non-Gaussian distributed data: indicator kriging, lognormal kriging, disjunctive kriging, multi-Gaussian kriging, trans-Gaussian kriging
> - exact interpolator
> > short introduction: $E\{Z\}$-kriging (Dennis Walvoort, available at www.ai-geostats.org)

Kriging methods (no secondary variables)

- numerical variables: simple kriging, ordinary kriging, etc.
categorical variables: indicator kriging
non-Gaussian distributed data: indicator kriging, lognormal
kriging, disjunctive kriging, multi-Gaussian kriging,
trans-Gaussian kriging
- exact interpolator
> short introduction: $E\{Z\}$-kriging (Dennis Walvoort, available
at www.ai-geostats.org)

Kriging methods (no secondary variables)

- numerical variables: simple kriging, ordinary kriging, etc.
- categorical variables: indicator kriging
non-Gaussian distributed data: indicator kriging, lognormal kriging, disjunctive kriging, multi-Gaussian kriging, trans-Gaussian kriging
> exact interpolator
> short introduction: $E\{Z\}$-kriging (Dennis Walvoort, available
at www.ai-geostats.org)

Kriging methods (no secondary variables)

- numerical variables: simple kriging, ordinary kriging, etc.
- categorical variables: indicator kriging
- non-Gaussian distributed data: indicator kriging, lognormal kriging, disjunctive kriging, multi-Gaussian kriging, trans-Gaussian kriging
- exact interpolator
> short introduction: $E\{Z\}$-kriging (Dennis Walvoort, available at www.ai-geostats.org)

Kriging methods (no secondary variables)

- numerical variables: simple kriging, ordinary kriging, etc.
- categorical variables: indicator kriging
- non-Gaussian distributed data: indicator kriging, lognormal kriging, disjunctive kriging, multi-Gaussian kriging, trans-Gaussian kriging
- exact interpolator
short introduction: $E\{Z\}$-kriging (Dennis Walvoort, available
at www.ai-geostats.org)

Kriging methods (no secondary variables)

- numerical variables: simple kriging, ordinary kriging, etc.
- categorical variables: indicator kriging
- non-Gaussian distributed data: indicator kriging, lognormal kriging, disjunctive kriging, multi-Gaussian kriging, trans-Gaussian kriging
- exact interpolator
- short introduction: $E\{Z\}$-kriging (Dennis Walvoort, available at www.ai-geostats.org)

Example Ordinary Kriging vs. Indicator Kriging

Swiss rainfall data
Anisotropic variograms

Ordinary kriging

Indicator kriging

Figure 3. Sample variagram for $45^{\circ}(+$ symbols) with fitted model (solid carve).

Example Ordinary Kriging vs. Indicator Kriging

Maps of Swiss rainfall

Ordinary kriging

Figure 5. Isolines of $O K$ estimates, with a 10 mm interval. The squares and circles show the locations of the ten maximum and ten minimum estimates respectively.
RMSE $=5.97 \mathrm{~mm}$

Indicator kriging

Figure 9. Isolines of IK estimates, with a 10 mm interval. The squares and circles show the locations of the ten maximum and ten minimum estimates respectively.

RMSE $=6 \mathrm{~mm}$

Kriging methods (secondary variables)

- Stratified kriging
- Cokriging methods

$$
Z_{i}(\mathbf{s})=m_{i}(\mathbf{s})+R_{i}(\mathbf{s}), \text { with } i=1 \cdots n \text { variables }
$$

- Combinations of regression and kriging:
- Kriging combined with linear regression/kriging with uncertain data

RF-model: $Z(\mathbf{s})=m+R(\mathbf{s})$

Accuracy of the data on z is known, and accounted for in the kriging system.

Kriging methods (secondary variables), continued

- Combinations of regression and kriging (continued):
- Universal kriging, kriging with an external drift, kriging with a trend model, kriging with a guess field, regression kriging, residual kriging

RF-model: $\quad Z(\mathbf{s})=m(\mathbf{s})+R(\mathbf{s})$

$m(\mathbf{s})$ is a function of secondary variables. Data on the secondary variable(s) need to be available at the prediction points!

Other methods

- Bayesian Maximum Entropy (BME)
- Markov Random Fields (MRF)

BME and MRF can be applied to both numerical and categorical variables.

Brus, D.J. and G.B.M. Heuvelink, 2007. Towards a Soil Information System with quantified uncertainty. Three approaches for stochastic simulation of soil maps. Wageningen, WOt-rapport 58.

Splines: quantified accuracy or not?

Figure 9. Isolines of the unnransformed interpolated valures (mmb), overlaid with the 10 smallest and IO largeat estimated rainfall data values.

Figure s. Praportional symbal map of untrousformed data nesidhals, overladd with isolines of

RMSE $=5.6 \mathrm{~mm}$

Smoothing spline: niet exact door de waarnemingen (meetfout)

Kriging in time

RF-model: $Z(t)=m+R(t)$

Data-filling, ARIMA-modelling

ARMA(1,1) model:

$$
Z_{t}-\mu=\phi_{1}\left(Z_{t-1}-\mu\right)+\epsilon_{t}-\theta_{1} \epsilon_{t-1}
$$

SARIMA $(\mathrm{p}, \mathrm{d}, \mathrm{q}) \times(\mathrm{P}, \mathrm{D}, \mathrm{Q})$ model:

$$
\left(\nabla^{d} \nabla_{s}^{D} Z_{t}-\mu\right)=\frac{\phi(B) \Phi\left(B^{s}\right)}{\theta(B) \Theta\left(B^{s}\right)} \epsilon_{t}
$$

Data-filling, TFN-modelling

Physically based time series models

$$
H_{t}-\mu=a_{1}\left(H_{t-\Delta t}-\mu\right)+b_{0} P_{t}+\epsilon_{t},
$$

with

$$
\begin{aligned}
a_{1} & =\mathrm{e}^{-\Delta t /(\varphi \gamma)} \\
b_{0} & =\gamma\left(1-a_{1}\right) \\
\mu & =\gamma q_{\mathrm{b}}+H_{\mathrm{s}} \\
\epsilon & =\gamma\left\{\left[E_{\mathrm{p}}(t)-E_{\mathrm{a}}(t)\right]-\frac{\Delta V}{\Delta t}\right\}\left\{1-\mathrm{e}^{-\Delta t /(\varphi \gamma)}\right\}
\end{aligned}
$$

State-space approach

State equation:

$$
Z(t)=g\{Z(t-1)\}+\epsilon(t),
$$

measurement equation:

$$
Y(t)=h\{Z(t)\}+\eta(t),
$$

where $Y(t)$ is the measurement, and $\eta(t)$ is the measurement error.
Kalman-filtering: update of prediction of $Z(t)$ by using all past and present observations $Y(t)$ with known accuracy. Kalman-smoothing: predicting the present state from past, present and future observations.

State-space approach

Variance of measurement error $=1 \mathrm{~cm}^{2}$

Space-time kriging

RF-model:

$$
Z(\mathbf{s}, t)=m(\mathbf{s}, t)+R(\mathbf{s}, t)
$$

Normalized Difference Vegetation Index

(a)
(b)

(c)
(d)

Figure 8. Space-time kriged predictions for three arbitrary days: (a) DOY 165, (b) DOY 200 and (c) DOY 235; (d) kriging standard deviations for DOY 235

Regionalized time series models

$$
H_{t}-\mu=a_{1}\left(H_{t-\Delta t}-\mu\right)+b_{0} P_{t}+\epsilon_{t}
$$

Figure 5.2. Sputial structure of $a_{1}(\mathbf{u})$, a Sumple varioyrnm (dats) and fited unyiasym maklel (ine), b Map of $\tilde{a}_{1}(\mathbf{u})$.

Figure 5.3: $S_{\text {putial struct ure of }} \bar{b}_{0}(\mathbf{u})$, a Sample urrioppum (dots) and fitted variogram modd (inare), b Map of $\bar{b}_{0}(\mathbf{u})$.
b_{0}

Figure 5.9: a Map of the risk that at April Ist in a fudure yar the water table deptho will be shallower than 50 cm ; b harp of the expected unter table depth at April Ist in a fudure year. Values in om.

Other methods

- State-space approach
- Optimal interpolation, variational methods
- applicability in space, time and space-time;
- quantification of accuracy of interpolated values;
- applicability at numerical and/or categorical variables;
- incorporation of ancillary information;
- incorporation of process knowledge;
- applicability for up- and downscaling;
- complexity of application, and required computation time;
- constraints on the size and conditions of the dataset;
- availability of implementations by means of software tools.

