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Aim

I To help PBL in choosing from a large variety of interpolation
techniques

Ca. 120 methods, 130 references. 5 reviews, 20 comparisons.
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Criteria:

I applicability in space, time and space-time;
I quantification of accuracy of interpolated values;
I applicability at numerical and/or categorical variables;
I incorporation of ancillary information;
I incorporation of process knowledge;
I applicability for up- and downscaling;
I complexity of application, and required computation time;
I constraints on the size and conditions of the dataset;
I availability of implementations by means of software tools.
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Main disposition

I Interpolation in space
I Methods that quantify accuracy

I Methods without use of ancillary information
I Methods using ancillary information
I Methods incorporating process knowledge

I Methods that do not quantify accuracy
I · · ·

I Interpolation in time
I · · ·

I · · ·
I Interpolation in space and time

I · · ·
I · · ·
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Interpolation in space, no quantified accuracy, no ancillary information

I Linear interpolation, Triangular Irregular Network
I Inverse distance weighing

z(s0) =

∑n
i=1

z(si)
dp

i∑n
i=1

1
dp

i

, (1)

in which s0 is the location to be interpolated to, si , i = 1 . . . n
is the n locations where z has been observed, d is the
distance and p is the power.

I Nearest neighbour algorithm (Thiessen polygons). The power
p in Eq. (1) goes to infinity.
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Example of IDW of Swiss rainfall data
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effective distance (hij-eff) which is calculated below (Keckler, personal communication, 1997). The 

equation is broken down for clarity. 
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where θ is the anisotropy angle (the direction of “preferred” anisotropic axis, counter-clock-wise 

from positive x-axis) and ρ is the anisotropy ratio (in isotropic case, ρ=1). 

Conceptually, the effective distance can be thought of as shortening the distance between a 

data point and the interpolated node by the factor equal to the anisotropy ratio. The data point’s 

relative influence on the interpolated node increases as the direction of line between the two points 

approaches the anisotropy angle. This concept is illustrated in Figure 1. 
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Figure 1. Illustration of the concept of anisotropy-corrected effective distance. 

2.1. Cross-validation 

IDW interpolator is driven by the set of parameters whose values are usually chosen at the 

operator’s discretion. Parameters include: 
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Figure 3 shows the observed (true) rainfall measurements plotted against predicted ones 

for the same locations. 
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Figure 3. Observed vs. predicted rainfall for 367 “unknown” rain-gauges. 

 
The linear correlation coefficient of 0.83 confirms relatively good overall agreement (with no 

regard to spatial component in the data) between predicted and measured values.  

The overall predicted contour map is shown in Figure 4. The black circles show the 

relative magnitude of predicted rainfall (circle diameter) and location of all the 100 training sites 

from which the predictions were constructed. Contours exhibit a strong anisotropy in an 

approximate NE-SW direction consistent with the anisotropy ratio of 4.5 and anisotropy angle of 

40° counter-clock-wise from the east (N60°E) used in the IDW interpolator. 
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Figure 4. Predicted rainfall contours based on 100 given training points, superimposed on 
Switzerland’s boarder, shown (size of dots is proportional to the magnitude of the recorded 
rainfall). 

anisotropic IDW RMSE = 6.3 mm

Interpolation in space, no quantified accuracy, no ancillary information



Bodemdaling Waddenzee

   

Observations Triangular Irregular Network Thiessen polygons

   

Inverse distance weighing Ordinary kriging Kriging standard deviation

Interpolation in space, (no) quantified accuracy, no ancillary information



Kriging methods (no secondary variables)

RF-models:

Z (s) = m + R(s),
where s = x, y.
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Z (s) = m(s) + R(s),
where m(s) is a function
of the spatial co-ordinates
x, y.
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Kriging methods (no secondary variables)

I numerical variables: simple kriging, ordinary kriging, etc.
I categorical variables: indicator kriging
I non-Gaussian distributed data: indicator kriging, lognormal

kriging, disjunctive kriging, multi-Gaussian kriging,
trans-Gaussian kriging

I exact interpolator
I short introduction: E{Z}-kriging (Dennis Walvoort, available

at www.ai-geostats.org)

Interpolation in space, quantified accuracy, no ancillary information
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Example Ordinary Kriging vs. Indicator Kriging
Swiss rainfall data
Anisotropic variograms
Ordinary kriging Indicator kriging
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3. ORDINARY KRIGING
Ordinary kriging has been described as the ‘anchor algorithm of geostatistics’ (Deutsch

and Journel, 1992, p. 64) because of its remarkable robustness under a range of conditions. On
account of this robustness we decided to apply OK in the first instance to map precipitation in
Switzerland at the 367 locations for which values were held back.

Directional variograms were estimated from the sample data and the directions of
maximum and minimum variation (geometric anisotropy) were estimated as 45° and 135°
approximately. Sample variograms were estimated for these directions and these were fitted with a
Gaussian plus spherical model using the weighted least squares functionality of the GSTAT
software (Pebesma and Wesseling, 1998). The coefficients were subsequently modified by eye
(Figure 3 and 4).
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Figure 3. Sample variogram for 45° (+ symbols) with fitted model (solid curve).
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Figure 4. Sample variogram for 135° (+ symbols) with fitted model (solid curve).
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4. INDICATOR KRIGING
Despite our relative confidence in the OK algorithm we decided to apply IK for the reasons

given in section 2.

First, we declustered the data to obtain a slightly modified histogram as described in
section 2.5 (Figure 2). This distribution was divided subsequently with nine cut-offs, (that is, we
chose cut-offs based on the nine deciles of the distribution) and these cut-offs were applied to the
sample data to estimate indicator variograms using the GSLIB software (Deutsch and Journel,
1992). In retrospect, we feel that we were expecting too much of the data by dividing the
distribution into so many classes because there were only 100 observed values in the sample.
Nevertheless, the variograms obtained appeared to be fairly well behaved, exhibiting the kind of
variation for each cut-off that we might expect.

As for OK we wished to model the obvious anisotropy in the variable of interest. We
adhered to the orientations of maximum and minimum variation found for OK to keep the analysis
simple. The directional variograms for each of the nine deciles of the histogram are shown in
Figures 7 and 8. These variograms were fitted with a variety of models (shown in the figures), the
coefficients of which are given in Table 1. The means of the two sills for each cut-off were
obtained and the anisotropy was modelled as geometric.

Figure 7. Sample indicator variograms for 45° (+ symbols) with fitted models (solid curves).
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Figure 8. Sample indicator variograms for 135° (+ symbols) with fitted models (solid curves).

45° 135°
a1 Model c1 a1 Model c1

0.070 Sph 26750.8 0.100 Sph 69551.3
0.154 Sph 40729.9 0.210 Sph 64587
0.187 Sph 44882.1 0.260 Sph 64502.1
0.192 Sph 29430.5 0.285 Sph 46560.9
0.167 Sph 22196.2 0.341 Sph 62393.2
0.160 Sph 37392.1 0.314 Sph 62756.2
0.155 Sph 102875 0.239 Sph 53176
0.120 Sph 68383.5 0.140 Sph 32996
0.075 Sph 48854 0.100 Sph 26250.6

Table 1. Indicator variogram model coefficients for 45° and 135°.

The IK algorithm provided in GSLIB was used with some minor modification to estimate the
values at the 367 unobserved locations from the 100 sample data. We chose a search radius of 45
km and minimum and maximum numbers of data to use in kriging of 1 and 16 for each decile. In
the absence of prior knowledge we chose the linear method of estimating the tails of the
distribution, although these choices may have been sub-optimal (see for example, Goovaerts,
1997). The isolines for the IK estimates are shown in Figure 9.

Interpolation in space, quantified accuracy, no ancillary information



Example Ordinary Kriging vs. Indicator Kriging

Maps of Swiss rainfall
Ordinary kriging Indicator kriging

155

The above variogram models were used in OK (using the GSTAT software) to map precipitation at
the unobserved 367 locations and the remainder of the study area. We chose a search radius of 45
km, and minimum and maximum numbers of data to use in kriging of 1 and 16. The isolines for
the kriged estimates are shown in Figure 5. Figure 6 maps the errors from the OK estimates. There
is no clear pattern of under or over estimation suggesting that even if a trend model had been used
it would probably not have increased significantly the accuracy of OK.

Figure 5. Isolines of OK estimates, with a 10 mm interval. The squares and circles show the
locations of the ten maximum and ten minimum estimates respectively.

Figure 6. Map of OK errors. The + and – symbols show the locations of over and under estimation
respectively.
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Figure 9. Isolines of IK estimates, with a 10 mm interval. The squares and circles show the
locations of the ten maximum and ten minimum estimates respectively.

5. ASSESSING THE ESTIMATES
Five summary statistics are given in Table 2 for both the observed values, the OK

estimates and the IK estimates. Clearly, IK has underestimated the maximum values and
overestimated the minimum values as one would expect of a weighted averaging technique (see
also the standard deviation). That IK has larger errors than OK is to some extent disappointing
given the extra effort required for IK, but is likely to be due to having to extrapolate to estimate the
tails of the histogram and to the small number of data available. Also, the use of linear
extrapolation for estimating the tails may have been a sub-optimal approach. The maximum OK
estimate is closer to the observed maximum but the fact that OK has produced negative estimates is
an obvious problem.

Minimum Maximum Mean Median Std. dev.
Observed values 0 517 185.359 162.000 111.015

OK estimates –27.92 510.67 181.87 154.387 107.15
IK estimates 29.549 489.625 186.911 162.485 100.707

Table 2. Summary statistics for 367 data. All values are given in tenths of millimetres.

The histogram of the IK errors was approximately normally distributed and the mean, 0.155 mm,
was closer to zero than that for OK (–0.349 mm) (Figure 10 and Table 3). The proportion of large
errors was greater for IK (hence the larger standard deviation of the error distribution for IK (6
mm) compared to OK (5.96 mm)).

RMSE = 5.97 mm RMSE = 6 mm

Interpolation in space, quantified accuracy, no ancillary information



Kriging methods (secondary variables)
I Stratified kriging
I Cokriging methods

Zi(s) = mi(s) + Ri(s), with i = 1 · · ·n variables

I Combinations of regression and kriging:
I Kriging combined with linear regression/kriging with uncertain

data

RF-model: Z (s) = m + R(s)
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 Accuracy of the data on z is known, and accounted for in the
kriging system.

Interpolation in space, quantified accuracy, ancillary information



Kriging methods (secondary variables), continued

I Combinations of regression and kriging (continued):
I Universal kriging, kriging with an external drift, kriging with a

trend model, kriging with a guess field, regression kriging,
residual kriging

RF-model: Z (s) = m(s) + R(s)
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 m(s) is a function of secondary variables. Data on the
secondary variable(s) need to be available at the prediction
points!

Interpolation in space, quantified accuracy, ancillary information



Other methods

I Bayesian Maximum Entropy (BME)
I Markov Random Fields (MRF)

BME and MRF can be applied to both numerical and categorical
variables.
Brus, D.J. and G.B.M. Heuvelink, 2007. Towards a Soil Information System with
quantified uncertainty. Three approaches for stochastic simulation of soil maps.
Wageningen, WOt-rapport 58.

Interpolation in space, quantified accuracy, ancillary information



Splines: quantified accuracy or not?

   

89

Figure 9. Isolines of the untransformed interpolated values (mm), overlaid with the 10 smallest
and 10 largest estimated rainfall data values.

8. INTERPOLATION ACCURACY
The accuracy of the interpolated values has already been partly assessed by plotting

contours of the standard error estimates in Figure 8 and comparing them graphically with the data
residuals. The largest residuals are clearly associated with the largest estimated standard errors.
Normalised standard error estimates, obtained by dividing each data residual by the corresponding
estimated standard error, showed reasonable agreement with a standard normal distribution. In
view of the topographic analyses in the companion paper (Hutchinson 1998), the largest residuals
are also associated with topographic aspect effects both north west and south east of The Alps.

The accuracy measures in Table 3 were calculated directly from the differences between
the interpolated values and the actual values. The estimated statistics listed in Table 4 were
calculated in the same way from the corresponding estimated standard errors. They show
reasonable agreement with the actual statistics. In particular they verify, in average terms, the
relative standard error formula given by equation (4).

Data RMS Error Mean Abs. Err Mean Rel. Err

Square root (mm1/2) 0.58 0.57 0.18

Untransformed (mm) 4.8 4.6 0.37

Table 4. Estimates of comparative statistics for the 367 withheld data values.
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7. MAPS FOR THE UNTRANSFORMED RAINFALL VALUES
A proportional symbol map of the untransformed data residuals is shown in Figure 8,

overlaid with an isoline plot of the grid of standard errors of the untransformed interpolated rainfall
values. This grid is calculated from the grids shown in Figures 6,7 using equation (3) described
above. The grid values, and corresponding isolines, are limited to those grid points for which the
estimated standard error in Figure 6 does not exceed 0.9 mm1/2. Interpolated values larger than the
measured values are indicated by a cross and interpolated values less than the values are indicated
by a circle. The size of the residuals are in good agreement with the plotted standard error isolines,
which reflect both data network density and the magnitude of the interpolated rainfall.

Figure 9 shows an isoline plot of the grid of untransformed interpolated values, overlaid
with the symbols denoting the 10 smallest and 10 largest rainfall data values. This grid was
calculated by squaring the interpolated square root values shown in Figure 7, and limiting grid
values to the same grid positions as for Figure 8.

Figure 8. Proportional symbol map of untransformed data residuals, overlaid with isolines of
estimated standard errors (mm). RMSE = 5.6 mm

Smoothing spline: niet exact door de waarnemingen (meetfout)

Interpolation in space, quantified accuracy, no ancillary information



Kriging in time

RF-model: Z (t) = m + R(t)
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RF-model: Z (t) = m(t) + R(t)
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Interpolation in time, quantified accuracy, no ancillary information



Data-filling, ARIMA-modelling
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AR(1) model:
zt − µ = φ1(zt−1 − µ) + εt

µ = 0, φ1 = 0.8, σ2
ε = 1

ARMA(1,1) model:

Zt − µ = φ1(Zt−1 − µ) + εt − θ1εt−1

SARIMA(p,d,q)×(P,D,Q) model:

(∇d∇D
s Zt − µ) =

φ(B)Φ(Bs)
θ(B)Θ(Bs)

εt

Interpolation in time, quantified accuracy, no ancillary information



Data-filling, TFN-modelling

Zt = Z ∗1,t + Z ∗2,t + · · ·+ Z ∗n,t + Nt

Interpolation in time, quantified accuracy, ancillary information



Physically based time series models
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Ht − µ = a1(Ht−4t − µ) + b0Pt + εt ,

with
a1 = e−4t/(ϕγ),

b0 = γ(1− a1),
µ = γqb + Hs,

ε = γ

{
[Ep(t)− Ea(t)]−

4V
4t

} {
1− e−4t/(ϕγ)

}
Interpolation in time, quantified accuracy, process knowledge



State-space approach

State equation:

Z (t) = g {Z (t − 1)}+ ε(t) ,

measurement equation:

Y (t) = h {Z (t)}+ η(t),

where Y (t) is the measurement, and η(t) is the measurement
error.
Kalman-filtering: update of prediction of Z (t) by using all past and
present observations Y (t) with known accuracy.
Kalman-smoothing: predicting the present state from past, present
and future observations.

Interpolation in time, quantified accuracy, process knowledge



State-space approach

measurement, and the width of the prediction intervals hardly

decreases (see Figure 6b). In the limit the measurement error

would be infinitely larger than the (accumulated) system noise,

and in that situation the measurement correction would have no

effect at all. We should end with a graph that is identical to that

of the predictions and prediction intervals given in Figure 3.

Figures 7 and 8 present the results of applying the Kalman

smoother. The predictions are even closer to the measure-

ments, and the prediction intervals smaller, than the corre-

sponding ones obtained with the Kalman filter. This is

because for each point in time there are measurements ahead

having influence in addition to those of the past, and so there

is more information. Notice also that the width of the intervals

after correction to a measurement does not steadily increase

until the next measurement, but rather that the width is small

near measurement points and larger further away from them.

This is because when approaching a new measurement point,

the prediction can already benefit from it because future mea-

surements improve the prediction.

Patterns in which the prediction interval is widest far away

from measurement points bear much resemblance to those in

the kriging variances. They confirm the similarities between

kriging and Kalman smoothing. Unlike in kriging, however,

the prediction limits are neither smooth nor symmetric

between data points; see Figure 8. The reason is that the

predictions depend on the excess precipitation, which fluctu-

ates. An exception is the period around 1 December 1991, in

which precipitation excess was zero (see Figure 3) and where

the curve of the Kalman smoother and the associated predic-

tion interval indeed resemble what we normally observe when

applying kriging.

Autocorrelated noise

The model expressed in Equation (30) can be improved if

we allow the noise term "(t) to be correlated in time, as

follows:
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Figure 5 Predicted groundwater levels over the 6-month period after correction to the measurements by the Kalman filter.
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that the state estimates themselves have also changed. The

main reason for this is that the calibration procedure yielded

different values for the parameters a and b for the two models

(see Table 1).

Further considerations

As above, one has to start the Kalman filter by guessing the

value Z(0). Any reasonable value should serve because the

predictions provided by the filter soon bear no influence

from the initial value, particularly when the associated var-

iance �2(0) is assigned a large value. A more serious difficulty

is to obtain values for parameters for Equation (5). In our

example we assumed that the parameters are known – we

calibrated them using procedures described in the work of

Knotters & van Walsum (1997). Calibration procedures can

be cumbersome and do not always yield satisfactory results. In

addition one must have estimates of the noise in the process,

�2
"ðtÞ, and of the measurement error, �2

�ðtÞ. The first of these

will depend on general understanding and experience of the

way the process deviates from the relation expressed by the

deterministic terms in Equation (5).

The second, the variance of the measurement error, might be

known from past experience with the equipment being used for

measurement. If it is not then one can determine it experimen-

tally in a separate exercise or by building into the time series

repeated measurements of the same state on several occasions.

One would assume that the error did not depend on the

elapsed time, i.e. �2
� was no longer a function of t. Further,

in many instances one can assume that the coefficient c(t) in

Equation (6) is constant in time, as is Ksat in Equation (4) for

Darcy’s law. Or, indeed, we might simply have noisy measure-

ments of the state variable itself, in which case c ¼ 1. In both

of these circumstances, and provided that a(t) and �2" (t)

are constant in time, the Kalman gain, k(t), converges rapidly

to a constant value k, and it is accompanied by a convergence

of state variances, �2�(t) and �2þ(t), to �2� and �2þ

respectively.
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Figure 8 Predicted groundwater levels over the 6-month period after correction to the measurements by the Kalman smoother.
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Kalman filtering Kalman smoothing
Variance of measurement error = 1 cm2
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Space-time kriging

RF-model:
Z (s, t) = m(s, t) + R(s, t)

PA Book  chapter 5 

 24

(a)       (b) 501 

 502 
 503 
(c)       (d) 504 

 505 
 506 
Figure 7. Marginal experimental variogram (dots) and fitted model (solid lines): (a) in time 507 

direction and (b) space direction. Perspective plots of: (c)  3D experimental variogram 508 
and (d) fitted space-time variogram model. 509 

 510 Interpolation in space and time, quantified accuracy, (no) ancillary information



Normalized Difference Vegetation IndexPA Book  chapter 5 

 25

(a)       (b) 511 

 512 
(c)       (d) 513 

 514 
Figure 8. Space-time kriged predictions for three arbitrary days: (a) DOY 165, (b) DOY 200 and 515 

(c) DOY 235; (d) kriging standard deviations for DOY 235. 516 
 517 

Interpolation in space and time, quantified accuracy, (no) ancillary information



Regionalized time series models

Ht − µ = a1(Ht−4t − µ) + b0Pt + εt
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µ maps of water table depths

Interpolation in space and time, quantified accuracy, process knowledge



Other methods

I State-space approach
I Optimal interpolation, variational methods

Interpolation in space and time, quantified accuracy, process knowledge



Criteria:

I applicability in space, time and space-time;
I quantification of accuracy of interpolated values;
I applicability at numerical and/or categorical variables;
I incorporation of ancillary information;
I incorporation of process knowledge;
I applicability for up- and downscaling;
I complexity of application, and required computation time;
I constraints on the size and conditions of the dataset;
I availability of implementations by means of software tools.

Interpolation in space and time, quantified accuracy, process knowledge
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