

Environmental timeseries lifecycle

in the Internet of Things era
Lowering e-science barriers

Argyrios Samourkasidis

Thesis committee

Promotor:

Prof. Dr ir. B. Tekinerdogan

Professor of Information Technology

Wageningen University & Research

Co-promotor:

Dr I. N. Athanasiadis

Assistant Professor, Information Technology Group

Wageningen University & Research

Other members:

Prof. Dr ir. D. de Ridder, Wageningen University & Research

Prof. Dr J.L. Top, VU Amsterdam

Prof. Dr A.E. Rizzoli, University of Applied Sciences and Arts of Southern Switzerland (SUPSI)

Dr A. Bröring, Siemens, Munchen, Germany

Environmental timeseries lifecycle

in the Internet of Things era
Lowering e-science barriers

Argyrios Samourkasidis

Thesis

submitted in fulfilment of the requirements for the degree of doctor

at Wageningen University

by the authority of the Rector Magnificus

Prof. Dr A.P.J. Mol,

in the presence of the

Thesis Committee appointed by the Academic Board

to be defended in public

on Monday 14th of October 2019

at 11 a.m. in the Aula.

Argyrios Samourkasidis
Environmental timeseries lifecycle in the Internet of Things era

Lowering e-science barriers

126 pages.

PhD thesis, Wageningen University, Wageningen, NL (2019)

With references, and summary in English

ISBN 978-94-6395-070-1

DOI 10.18174/497755

List of Abbreviations

Acronym Definition

AGPL Affero General Public License

API Application Programming Interface

APSIM Agricultural Production Systems sIMulator

ARM Advanced RISC Machine

ART Average Response Time

AgMIP Agricultural Model Intercomparison and

Improvement Project

BD Big Data

BoM Bureau of Meteorology

CBM Community Based Monitoring

CO Carbon Monoxide

CO-OPS Center for Operational Oceanographic Products

and Services

CPU Central Processing Unit

CSV Comma Separated Values

CUAHSI Consortium of Universities for the Advancement

of Hydrologic Science

CoAP Constrained Application Protocol

DAC Divide And Conquer (algorithm)

DDR Double Data Rate

DSSAT Decision Support System for Agrotechnology

Transfer

EDAM Environmental Data Acquisition Module

EEA European Environmental Agency

EIoT Environmental Internet of Things

EPA Environmental Protection Agency

FAIR Findable Accessible Interoperable Reusable

GB Giga Byte

GHz Giga Hertz

GMT Greenwich Mean Time

GNU GNU’s not Unix

GPIO General Purpose Input Output

GPS Global Positioning System

GPU Graphics Processing Unit

vi List of Abbreviations

Acronym Definition

GUI Graphical User Interface

HAT Hardware Attached on Top

HIS Hydrologic Information System

HOA Hydrological Observatory of Athens

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

IoT Internet of Things

JSON JavaScript Object Notation

KNMI Koninklijk Nederlands Meteorologisch Instituut

LEC LEaky Client

LED Light Emitting Diode

MB Mega Byte

MHz Mega Hertz

NOAA National Oceanic and Atmospheric

Administration

OAI Open Archive Initiative

ODM Observations Data Model

OGC Open Geospatial Consortium

O&M Observations and Measurements

ORM Object Relational Mapping

OSS Open Source Solutions

OWL Web Ontology Language

PAC Pagination Aware Client

PMH Protocol Metadata Harvesting

QA Quality Assurance

QC Quality control

RAM Random Access Memory

REST REpresentational State Transfer

RH Relative Humidity

RPS Requests Per Second

RQ Research Question

RTC Real Time Clock

SD Secure Digital

SI International System (of Units)

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

SPARQL SPARQL Protocol And RDF (Resource

Description Framework) Query Language

SPI Serial Peripheral Interface

SQL Structured Query Language

vii

Acronym Definition

SSH Secure Shell

SWE Sensor Web Enablement

SWEET Semantic Web for Earth and Environment

Technology

TPH Tropical and Public Health Institute

TSV Tab Separated Values

UAV Unmanned Aerial Vehicle

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

VGI Volunteered Geographic Information

WFS Web Feature Service

WMO World Meteorological Organization

WOFOST WOrld FOod STudies

WS Web Services

WSN Wireless Sensor Network

XML eXtensible Markup Language

Contents

Page

List of Abbreviations v

Contents ix

Chapter 1 Introduction 1

1.1 Problem statement . 2

1.2 Research objective . 3

1.3 Background and related work . 4

1.4 Methodology and thesis outline . 8

Chapter 2 A Miniature Data Repository on a Raspberry Pi 11

2.1 Introduction . 13

2.2 Related Work . 14

2.3 The Airchive System . 14

2.4 Implementation . 18

2.5 Demonstration . 20

2.6 Discussion . 24

2.7 Conclusions . 25

Chapter 3 A Sensor Observation Service extension for Internet of Things 27

3.1 Introduction . 29

3.2 Related work . 30

3.3 Methods . 33

3.4 Demonstration and implementation . 36

3.5 Discussion and Conclusions . 39

Chapter 4 A template framework for environmental timeseries data acquisi-

tion 41

4.1 Introduction . 43

4.2 Background and related work . 45

4.3 The EDAM framework . 47

4.4 Demonstration . 54

4.5 Discussion and conclusions . 59

Chapter 5 A semantic approach for timeseries data fusion 67

x CONTENTS

5.1 Introduction . 69

5.2 Background and related work . 70

5.3 Methods . 72

5.4 Demonstration . 76

5.5 Discussion and conclusions . 80

Chapter 6 Synthesis 83

6.1 Main findings . 84

6.2 The impact of IoT on environmental timeseries lifecycle 86

6.3 Directions for future research . 88

References 91

Summary 107

Acknowledgements 109

List of publications 111

About the author 113

Chapter 1

Introduction

This chapter is based on:

Samourkasidis, A., Athanasiadis, I. N. Environmental timeseries lifecycle in the IoT

era. In: M. Arabi, O. David, J. Carlson, D. P. Ames (Eds.), Proceedings of the 9th

Intl. Congress on Environmental Modelling and Software [Manuscript accepted for

publication]

2 Introduction

1.1 Problem statement

One key objective of the environmental data science is to narrow the data-to-knowledge

latency (Elag et al., 2017). According to Foster et al. (2012), scientific data doubles every

twelve months, which is often faster than it can be converted into useful knowledge. Knowledge

is produced when raw data are processed through scientific tools, as environmental models.

Domain scientists curate relevant datasets, feed them as input to scientific tools, and interpret

tool outputs into actionable knowledge (Gibert et al., 2018; Athanasiadis & Mitkas, 2007).

Nowadays, e-scientists and environmental practitioners are confronted with the ever-growing

amount of environmental datasets, and new data produced by the Internet of Things (IoT). Not

only raw data have to undergo certain modifications in order to be processed by environmental

models (Rizzoli et al., 2007), but also new computing requirements are introduced, in order

this vast amount of data to be processed (Good et al., 2017).

The Internet of Things (IoT), that is the “ensemble of applications and services” of intercon-

nected smart objects equipped with sensors (Miorandi et al., 2012), could support e-scientists

in two ways. Firstly, some IoT components (i.e. IoT gateways (Kruger & Hancke, 2014))

could facilitate environmental data storage and dissemination, enabling e-scientists to deploy

low-cost, yet reliable, environmental monitoring campaigns. Secondly, the IoT ecosystem

can provide e-scientists with spatially and temporally diverse environmental datasets. This

is why, the rise of IoT boosted the citizen-science movement (Silvertown, 2009). In the

literature, citizen-science is expressed through the concepts of Community-Based Monitoring

(CBM) and Volunteered Geographic Information (VGI) (Conrad & Hilchey, 2011; Connors

et al., 2012). These concepts are often realized as IoT-enabled environmental campaigns: IoT

devices are deployed and collect environmental timeseries (Santos et al., 2018; Sanchez et al.,

2014).

Despite the aforementioned opportunities, the IoT ecosystem brings new challenges to the

environmental data lifecycle. Traditional environmental data lifecycle mainly concerns data

storage, dissemination, acquisition and integration (Athanasiadis & Mitkas, 2004; Mason

et al., 2014). The restrained capabilities of the IoT ecosystem (Atzori et al., 2010) questions

traditional methodologies about data storage and dissemination. Heterogeneity, syntactic

or semantic, pertinent to the IoT ecosystem challenges environmental data acquisition and

integration (Horsburgh et al., 2009). An assessment of the impact of the IoT stressors on the

environmental data lifecycle is needed, in order to reap the benefits from the great variety of

spatially and temporally diverse environmental datasets that IoT offers.

The IoT prototyping devices can play a more central role in the environmental data lifecycle.

These devices, such as Raspberry Pi1, are being increasingly utilized in environmental moni-

toring campaigns (Cagnetti et al., 2013; Leccese et al., 2014; Samourkasidis & Athanasiadis,

2014; Nikhade, 2015). Despite their low acquisition cost and their multi-purpose nature, their

use is limited to auxiliary operations. In most cases, data storage and processing takes place

in other nodes (Moure et al., 2015). The weak enabling environment (i.e. opportunistic Inter-

net/power connection) under which they operate, questions their capabilities for persistent

data storage.

1https://www.raspberrypi.org/about/

1.2 Research objective 3

Besides data storage, the weak IoT enabling environment challenges the operation of environ-

mental data management frameworks. These frameworks, such as the Sensor Observation

Service of the Open Geospatial Consortium (OGC), provide standardized ways for timeseries

data discovery and access, accounting for syntactic interoperability (Bröring et al., 2012).

Environmental data management frameworks facilitate e-scientists to extract and exchange

data and interact with scientific workflows by providing inputs to environmental models

(Regueiro et al., 2015). However, there are certain contraints, mostly in terms of performance

and efficiency, in order for these frameworks to operate on IoT devices (Jirka et al., 2012;

Pradilla et al., 2015; Jazayeri et al., 2015).

The IoT ever increasing syntactic and semantic heterogeneity obstructs e-scientists towards

data acquisition and integration. To date, environmental data acquisition and integration

are the most time consuming processes of the lifecycle (Horsburgh et al., 2016). In principle,

e-scientists have to a) obtain datasets available through various dissemination protocols,

and formatted under custom data syntaxes, b) transform them into a common data format

and c) feed them as input into scientific tools (i.e. environmental models), in order to

transform raw data into actionable knowledge. IoT will only exacerbate this process, as

new data formats/syntaxes emerge constantly (Atzori et al., 2010). Syntactic and semantic

heterogeneity, that is the difference among the syntaxes, definitions and representations of

the involved datasets, render the aforementioned workflow into a highly custom and manual

process, as acquisition, transformation and integration into common data formats requires

almost always manual involvement from experts (Horsburgh et al., 2009; Mason et al., 2014;

Samourkasidis et al., 2018). In the context of environmental data literature, there are various

analytical methods to cope with syntactic and semantic heterogeneity. These include, but not

limited to, acquisition facilitated by environmental data management frameworks (Bröring

et al., 2011a; Horsburgh et al., 2009); scripting (Woodard, 2016; Porter et al., 2014); and

integration supported by Semantic Web technologies and ontology engineering (Ziébelin et al.,

2017).

1.2 Research objective

The objective of this thesis is to assess the impact of IoT on environmental timeseries data

lifecycle from the perspective of e-scientists. We identify two IoT stressors, the IoT ecosystem

restrained resources and the syntactic and semantic heterogeneity, and investigate their impact

on the environmental timeseries lifecycle processes. We further refined the main objective

into three sub-objectives. The first two concern the evaluation of environmental timeseries

data storage and dissemination under the light of the IoT ecosystem restrained resources.

The last sub-objective concerns the impact of IoT heterogeneity, syntactic and semantic,

on environmental timeseries acquisition and integration, respectively. The sub-objectives,

formulated as Research Questions (RQs) are the followings:

a. RQ1: Can environmental timeseries lifecycle be facilitated by IoT prototyping devices?

b. RQ2: Are environmental data dissemination protocols IoT-ready?

c. RQ3: How can e-scientists acquire, integrate and transform environmental timeseries

datasets in the heterogeneous IoT ecosystem?

4 Introduction

1.3 Background and related work

In this section, we set the context by defining key concepts of this thesis, as IoT gateways,

environmental timeseries and e-scientists. First, we present our perspective on Internet of

Things, its associated building blocks and identify the main challenges. Then, we present our

view on environmental timeseries lifecycle, describe the role of e-scientists within this lifecycle,

and identify the main barriers. Figure 1.1 depicts how the involved components of this thesis

interact with each other: IoT devices are deployed in order to collect environmental datasets

(Santos et al., 2018; Sanchez et al., 2014). An IoT gateway stores the collected data and

facilitates their dissemination, so they can be reused and further processed. As a result,

more spatially and temporally diverse environmental datasets are available and e-scientists

can use them along with traditional data sources, in order to complement their research.

These datasets may be a) disseminated through various protocols, b) stored under different

syntaxes and c) annotated with custom semantics. Thus, e-scientists firstly acquire these

datasets and then transform and integrate them into one format in order to use them as

input in their scientific tools (e.g. environmental models). The lifecycle continues, as the the

output of these models can be stored and disseminated for further processing.

1.3.1 Internet of Things and challenges

Internet of Things comprises of interconnected devices, which sense their surrounding envi-

ronment and report observations on the web (Gubbi et al., 2013; Atzori et al., 2010). The

Internet of Things is structured in three main Layers: Perception, Network, Application

(Mahmoud et al., 2015). The Perception (or Device) layer comprises of the IoT devices,

which are digitized devices equipped with sensors. The Network (or Transmission) layer

handles the data transmission from the previous layer to IoT gateways. An IoT prototyping

device or IoT gateway serves as an intermediate among the IoT devices and the Internet

(Kruger & Hancke, 2014). The Application is the highest layer in the IoT architecture and

serves as the interface between the Internet and the IoT devices which are part of a specific

domain (e.g. smart city, smart agriculture, etc.). According to Khan et al. (2012) there are

two additional layers: a) the Middleware, which follows Network and precedes Application

layer, and b) the Business layer which stands at the top of the IoT architecture. Over time,

Middleware and Business layers were incorporated into the Application layer. In this thesis,

we take a high-level view on the IoT architecture and focus on IoT challenges which are

derived by the architecture and the attributes of its components.

The IoT challenges are relevant in the environmental timeseries lifecycle. Some of the IoT

challenges are: a) the restrained resources ecosystem, b) heterogeneity, c) privacy and security,

d) lack of standardization (Atzori et al., 2010; Chiang & Zhang, 2016). In this thesis we

focus on a) and b). The restrained resources ecosystem refer to the limited capabilities of IoT

devices in terms of processing power and network bandwidth (Atzori et al., 2010; Chiang &

Zhang, 2016). These limited capabilities, can have an impact when it comes to persistent data

storage, as well as efficient and interoperable data dissemination. Regarding this challenge,

we focus on IoT prototyping devices which are connected to power supply and have access to

1.3 Background and related work 5

Protocol 2

1 Storage

Input

E-scientist

2 Dissemination

3 Acquisition4 Integration

Scientific

tool

Out of scope

D1

D2

D3

Protocol 1

D3D1 D2

Figure 1.1: The interaction of this thesis components within an environmental lifecycle scenario.

The outer left box, which is out of the scope of this thesis, depicts the various data sources. These

can be IoT-produced datasets and/or the output of scientific tools such as environmental models.

The different databases in Box 1 represent the different syntaxes and semantics under which the

datasets are stored. Similarly, in Box 2 datasets can be disseminated via various dissemination

protocols. Box 3 represents the process where e-scientists acquire datasets of interest. The

cogwheels in Box 4 depict the integration methods which transform the acquired datasets into a

certain syntax (Input dataset), so this can be used as input to a scientific tool. The output of the

scientific tool can be stored, continuing the environmental data lifecycle.

6 Introduction

the Internet. Heterogeneity, syntactic and semantic, is another key IoT challenge (Miorandi

et al., 2012). The diverse custom formats used by IoT devices to report their readings hinder

e-scientists to gain knowledge out of the large data volumes (Alansari et al., 2018; Chiang &

Zhang, 2016). Human expert intervention is almost always required to extract insights from

raw data when syntactic and semantic heterogeneous datasets are involved (Athanasiadis,

2015). In this thesis, we investigate the impact of both IoT-related challenges (restrained

resources and heterogeneity) on the environmental timeseries lifecycle.

1.3.2 Environmental timeseries lifecycle and e-science

Environmental timeseries lifecycle is a set of processes which accompany data since their

creation. Mason et al. (2014) describe the processes of storage, publication, acquisition,

integration and others (e.g. visualization, quality assurance/quality control, etc.) as data

management. That is “the task of shepherding data through the various components of

the data lifecycle” (Mason et al., 2014). The environmental timeseries lifecycle processes

can be viewed from the perspective of different user roles: From a data producer viewpoint,

first comes the creation and the collection of the timeseries, then follows data storage and

finally is the dissemination. For example, Horsburgh et al. (2011) present an environmental

observatory information system, whose main components are among others the persistent

data storage and interoperable publication of environmental timeseries. In the literature,

the terms data publication (Horsburgh et al., 2009), dissemination (Beaujardière, 2016)

and sharing (Langegger et al., 2008) are synonyms and used interchangeably. From a data

consumer viewpoint, the main processes are the data acquisition and integration. In this

context, we refer to acquisition as the process of making use of a dissemination channel

in order to acquire data. In a sense, the dissemination and acquisition processes have an

inverse relationship. By the term integration we refer to the process of combining (acquired)

timeseries into a specific format in order to be further processed (Beran & Piasecki, 2009).

In this thesis, we use the term environmental timeseries lifecycle to refer to the following

steps: storage, dissemination, acquisition and integration.

Standardization of the environmental data lifecycle has been always in the spotlight, in order

to enable scientific data reusability and reproducibility. Standardization has been investigated

from a) abstract, b) process or c) holistic viewpoints.

Wilkinson et al. (2016) present the FAIR (Findable, Accessible, Interoperable, Reusable)

Guiding Principles, which concern a set of abstract best-practices to support e-scientists and

data producers towards discovering and reusing scientific data. Process-based standardization

utilize one standard for each process. For example, the Observations Data Model (ODM) of

the CUAHSI Community (Horsburgh et al., 2016) is concerned with storage, and the OGC

Sensor Observation Service (Bröring et al., 2012) with the dissemination and acquisition

process. Note that the data integration process is not directly supported by any standard.

A variety of approaches can be used, including ontology engineering (Ziébelin et al., 2017),

Linked Data (Harth et al., 2013), and mediator-wrapper architectures (Regueiro et al.,

2015), among others. Finally, the holistic standardization is related to environmental

cyberinfrastructures, i.e. systems which fulfil most or all processes of the environmental

1.3 Background and related work 7

timeseries lifecycle (Horsburgh et al., 2009; Ames et al., 2012).

E-science is a broad term which usually concerns a data-intensive approach for hypothesis

investigation. According to the definition given on the 2018 IEEE International Conference on

eScience website: “eScience promotes innovation in collaborative, computationally- or data-

intensive research across all disciplines, throughout the research lifecycle” (IEEE International

Conference on eScience, 2018). There are several more definitions for e-science, and most of

them feature the following attributes: a) cross-discipline collaboration among individuals,

b) data-intensive approach to investigate research hypothesis, and c) a requirement for very

large scale computing resources (Hey & Trefethen, 2005; Jankowski, 2007). In this thesis, the

last attribute was less relevant.

1.3.3 IoT impact on environmental timeseries lifecycle

The IoT-related challenges have an impact on environmental timeseries lifecycle. Good

et al. (2017) mention that e-scientists have to overcome two types of barriers: computing

requirements and technological skills. The former is concerned with the need for more

computing power in order to process the vast amount of IoT-produced data. The latter refers

to the technical expertise required from the e-scientists in order to transform raw data into

actionable knowledge. Computing aspects may affect the storage and dissemination steps

of the environmental data lifecycle, and the technological skills affect the acquisition and

integration ones. In this thesis, we focus on the a) computing requirements, by investigating

how can IoT gateways support storage and dissemination, and b) technological skills, by

investigating how declarative approaches can facilitate e-scientists towards acquiring and

integrating environmental timeseries data.

In the environmental domain literature there are efforts to lower both barriers. Firstly,

there is an ongoing trend to utilize more and more the computing power of the low-cost

IoT gateways to support environmental data related purposes. Raspberry Pi is an IoT

prototyping device, which is considered an “IoT enabler technology” (Johnston & Cox, 2017),

and is used in diverse range of applications (e.g. smart city (Re et al., 2014; Jung et al., 2013;

Leccese et al., 2014), smart home (Chowdhury et al., 2013; Bahrudin et al., 2013; Vujović

& Maksimović, 2015), etc.). In the environmental monitoring context, Raspberry Pi may

facilitate one, but not all of the followings simultaneously: data processing, (temporary)

storage and dissemination of the observed data to another node (or the cloud) for further

processing and persistent storage (Johnston & Cox, 2017; de Assis et al., 2016). For example,

Moure et al. (2015) developed a low-cost, real-time volcanic activity monitor based on a

Raspberry Pi, which enables users to retrieve data through a commercial texting application.

The common attribute in all of the above examples is that Raspberry Pi has not been used

for permanent data storage. In this thesis, we worked with the Raspberry Pi due to its wide

adoption, open source nature, generic purpose, and low-acquisition cost.

The limited computing capabilities of IoT components affect also the environmental timeseries

dissemination. The OGC Sensor Observation Service is a popular environmental timeseries

dissemination protocol. In 2006 the Open Geospatial Consortium introduced SOS within

the context of Sensor Web Enablement (Botts et al., 2008). SOS has been adopted by

8 Introduction

several environmental agencies, including EPA (Environmental Protection Agency, 2016)

and NOAA/CO-OPS (Center for Operational Oceanographic Products and Services (CO-

OPS), 2019), as it supports interoperable environmental timeseries dissemination. The

European Environment Agency (EEA) in the context of the INSPIRE directive designed and

implemented a framework according to which all member states report their environmental

datasets through OGC SOS instances (Kjeld et al., 2011; Jirka et al., 2012; Jirka & Bröring,

2012). We selected to investigate OGC SOS, instead of the other OGC initiative which

is intended for IoT, such as the OGC SensorThings API. This decision is based on the

widespread adoption of OGC SOS in comparison with the limited one of the SensorThings

API. While the latter was designed for IoT applications, it is still under development, and it

will take a while until it is fully adopted by environmental agencies. Within the IoT context,

there are a lot of efforts in order to utilize OGC SOS for data dissemination through IoT

devices by proposing different low-level implementations (Jazayeri et al., 2015). For example,

Jazayeri et al. (2012) introduced TinySOS, a lightweight OGC SOS implementation to be

hosted on IoT devices. TinySOS makes use of an optimized web service and XML processing

engine in order to compensate for the constrained capabilities of IoT devices. Similarly,

Pradilla et al. (2015) propose SOSLite, another lightweight OGC SOS implementation by

utilizing a NoSQL database. Finally, Pradilla et al. (2016) prototype on IoT Networking

Layer by proposing SOS CoAP (Constrained Application Protocol), an OGC SOS version to

operate on IoT. In this thesis, we focus on OGC SOS as an indicative example of standardized

dissemination protocols.

The required technological skills is a barrier which hinders e-scientists to acquire and integrate

heterogeneous environmental datasets in order to analyze them. Nowadays, an environmental

e-scientist besides their domain expertise should have certain computer science skills in

order to process, analyze and transform raw data into actionable knowledge (Gibert et al.,

2018). In the environmental science literature, there is a number of efforts which utilize

computer science skills in order to acquire and transform syntactically and semantically

diverse environmental timeseries (Woodard, 2016; Porter et al., 2014; Stadtmüller et al., 2013;

Harth et al., 2013). Swain et al. (2016) attempted to lower this barrier by a framework which

allows environmental scientists to develop web applications writing a very small amount of

code. In this thesis, we focus on declarative approaches to cope with syntactic and semantic

heterogeneity. We argue that declarative approaches are fit-for-purpose for e-scientists without

a very strong computer science background.

The aforementioned challenges that come with IoT, add up to the longstanding challenge of

curating legacy environmental datasets. Besides the technical challenges that the new IoT

devices introduce, there is also a semantic barrier that e-scientists have to overcome. This is

because environmental sciences are fragmented and different semantics are used by different

sub-disciplines, creating heterogeneity.

1.4 Methodology and thesis outline

This section presents the methodology we followed in order to assess the impact of IoT on

environmental timeseries lifecycle from the perspective of e-scientists. Figure 1.2 depicts

1.4 Methodology and thesis outline 9

3. Share

2. Store

4. Acquire

5. Integrate

Restr
ained

 re
so

urc
es

Hete
ro

geneity

1. Introduction

6. Synthesis

Figure 1.2: The overview of this thesis along with an illustration of the IoT stressors impact

against the environmental timeseries lifecycle. IoT restrained resources has an impact on data

storage and dissemination, and IoT heterogeneity affects data acquisition and integration. Numbers

correspond to book chapters.

the two IoT stressors against the processes of the environmental timeseries lifecycle. It also

presents the structure of this thesis, which is comprised of six chapters. The core of this

thesis is documented in Chapters two to five.

Chapter 2 inquires into RQ1 by investigating the possibility of IoT prototyping devices

to facilitate environmental timeseries lifecycle. We assessed the performance of an IoT

prototyping device (i.e. Raspberry Pi), in terms of resilient data storage and processing

power. To this end, we assembled a set of low-cost sensors, attached them on the Raspberry

Pi and designed software to take observations under regular time intervals and disseminate

them through standardized services, specifically OGC SOS. Then, we evaluated: a) resilient

data storage by simulating power and network outages to assess persistence, b) processing

power by conducting a stress test, which simulated concurrent users requesting for the stored

observations. These tests provided us with insights regarding the capabilities of Raspberry

Pi to operate in the weak IoT enabling ecosystem, and perform as an environmental data

storage device.

Chapter 3 inquires into RQ2 by investigating the ready-state of established timeseries

dissemination protocols to operate efficiently in the IoT enabling ecosystem. We evaluated

10 Introduction

the operation of OGC SOS in a IoT setting, where Internet and/or power connection may

be disrupted. As OGC SOS was not efficient and thus compatible to operate in the IoT

ecosystem we designed and implemented a non-invasive extension, using on pagination.

By-design our SOS pagination extension a) transforms OGC SOS to be disruption tolerant, b)

supports for resource economizing, and c) maintains backwards compatibility. We validated

the aforementioned by-design benefits by conducting experiments against different types of

timeseries.

Chapters 4 and 5 inquire into RQ3 by investigating declarative approaches to support

e-scientists to acquire, transform and integrate syntactically (Chapter 4) and semantically

(Chapter 5) heterogeneous timeseries datasets. Specifically, in Chapter 4 we designed a

declarative method which allows e-scientists to describe a distinct dataset’s syntax in an

abstract manner through a template. We designed and implemented a template framework

to cope with syntactic heterogeneity. We identified syntactic interoperability challenges, such

as acquiring and integrating datasets with different formatting and diverse temporal and

spatial references. We demonstrated the generality of our approach with several case studies

spanning across different environmental domains (i.e. meteorology, agriculture, urban air

quality and hydrology).

Chapter 5 investigates the semantic dimension of RQ3. We extended the declarative

approach presented in Chapter 4 to perform semantic operations. E-scientists are enabled

to annotate the semantics of the involved-in-a-dataset entities (e.g. observables, units of

measurement, etc.) in a metadata file. We employed a reasoner which parses and stores the

contents of the metadata files in a local ontology. This is used as a reference to determine

compatibility among semantically heterogeneous datasets. We focused on one semantic

heterogeneity challenge, that is the different units of measurement according to which

observables are reported. We extended the implementation of the template framework which

is reported in Chapter 4, in order to support the automatic transformation of the semantically

heterogeneous, yet compatible datasets. We demonstrated our approach in a case study

where we transform meteorological syntactically and semantically heterogeneous input files of

four agricultural models, performing (when applicable) the on-the-fly units of measurement

transformation.

Finally, Chapter 6 concludes this thesis, summarizes and discusses the findings from the

previous chapters and proposes directions for future work.

Chapter 2

A Miniature Data Repository on a

Raspberry Pi

This chapter is based on:

Samourkasidis, A., Athanasiadis, I.N. A Miniature Data Repository on a Raspberry

Pi. Electronics 2017, 6, 1

12 A Miniature Data Repository on a Raspberry Pi

Abstract

This work demonstrates a low-cost, miniature data repository proof-of-concept. Such a system

needs to be resilient to power and network failures, and expose adequate processing power for

persistent, long-term storage. Additional services are required for interoperable data sharing

and visualization. We designed and implemented a software tool called Airchive to run on

a Raspberry Pi, in order to assemble a data repository for archiving and openly sharing

timeseries data. Airchive employs a relational database for storing data and implements two

standards for sharing data (namely the Sensor Observation Service by the Open Geospatial

Consortium and the Protocol for Metadata Harvesting by the Open Archives Initiative).

The system is demonstrated in a realistic indoor air pollution data acquisition scenario in a

four-month experiment evaluating its autonomy and robustness under power and network

disruptions. A stress test was also conducted to evaluate its performance against concurrent

client requests.

2.1 Introduction 13

2.1 Introduction

Raspberry Pi has emerged as a key component in research, education and amateur cyber-

physical systems. Raspberry Pi is a low-cost, mini-computer featuring processing, networking

and video decoding capabilities (Upton & Halfacree, 2014). It has no permanent storage;

the user may instead attach an SD card. It also exposes General Purpose Input–Output

pins (GPIO) to connect with low-level peripheral devices through Hardware Attached on Top

(HAT). Popular HATs include LEDs, motor controllers, sensors, and GPS devices (Nuttall,

2016).

Raspberry Pi has been developed primarily with the intention to encourage computer

education in schools and the developing world, with the open philosophy in mind, as

both the hardware design and operating system are open-licensed. Raspberry Pi has been

demonstrated in a variety of applications beyond an educational context, including home-

automation systems (Vujović & Maksimović, 2015), fire alarm systems (Bahrudin et al.,

2013), home-security (Sapes & Solsona, 2016; Chowdhury et al., 2013), health supply chains

monitoring (Schön et al., 2014), smart city applications (Jung et al., 2013; Leccese et al., 2014;

Cagnetti et al., 2013) and environmental monitoring systems (Nikhade, 2015). Tanenbaum

et al. (2013) viewed Raspberry Pi and similar technologies as enablers for democratizing

technology and enabling creativity.

Despite the diversity of Raspberry Pi applications, little research has been done to investigate

Raspberry Pi as a performing data repository. The low acquisition cost, the open hardware

and software philosophy, and its capacity for interfacing with a variety of peripherals, renders

Raspberry Pi a very good candidate for boosting open data, crowd-sourcing and citizen

science movements. For instance, Raspberry Pi was employed to create a citizen observatory

for water and flood management (Lanfranchi et al., 2014). Muller et al. (2015) discuss its

potential use for crowdsourcing applications in climate and atmospheric sciences.

In this work, we present a proof-of-concept that Raspberry Pi can be used as a miniature,

low-cost data repository that offers persistent data storage, and interoperable data sharing

services over the Internet. We demonstrate Airchive, a system that stores and serves timeseries

data recorded by a HAT equipped with air quality sensors, and investigate the system’s

robustness against power and network shortages. We also conducted a stress test in order to

identify system limitations. The rest of the paper is structured as follows: in Section 2.2, we

study the feasibility of the approach, by reviewing related work. Section 2.3 presents the

overall system architecture, along with user types, system requirements, and key functionality.

Section 2.4 presents the software platform developed and hardware utilized. Section 2.5

details our experiments with the system and presents the lessons learned, documenting

difficulties and incidents arisen during the experiment period. Finally, Section 2.6 provides a

discussion and lays the groundwork for future work. Section 2.7 provides a conclusion of the

research.

14 A Miniature Data Repository on a Raspberry Pi

2.2 Related Work

In principle, a data repository needs to offer persistent data storage, along with added-value

services, as those for data processing, dissemination and visualization. Such services are

similar to those offered by a Wireless Sensor Network (WSN) (Chang & Huang, 2016),

an area where Raspberry Pi has been thoroughly investigated as a gateway node (or base

station). A gateway node is the intermediate among sensor nodes and external networks. Its

functionalities are regarded with (a) coordination (e.g. configuration of sensor nodes); (b)

data storage; (c) data processing and (d) data dissemination to external clients (Dargie &

Poellabauer, 2010). Most prominent advances in the usage of Raspberry Pi in WSNs have

been done in the domains of (a), (c), and advanced data visualization.

Raspberry Pi has been used as a coordinator in a ZigBee mesh network interfacing with the

World Wide Web. In (Ferdoush & Li, 2014), a Raspberry Pi performs as a gateway node and

processes observations derived from the sensor nodes, stores them on a local database and

provides visualization services to external users.

Data processing on the Raspberry Pi to offline calibrate sensor readings and provide data

visualization is presented in (Lewis et al., 2016). Specifically, a Round Robin Database

(Oetiker, 2014) was used for fast storage of sensor data with a constant disk footprint.

This was done by keeping only the recent measurements in high resolution and statistical

summaries for older recordings.

Advanced data visualization and image capturing is demonstrated in a volcanic monitoring

system based on a Raspberry Pi (Moure et al., 2015). The Raspberry Pi creates and

communicates graphs through commercial messenger applications—for example WhatsApp—

while data are transferred daily to an external system for archival.

From the works above, it becomes clear that a Raspberry Pi may serve as a node that

offers data storage, processing and visualization services, while still remaining a coordinating

device interfacing sensors with the Internet. In most cases, data are forwarded to a remote,

resourceful node in order to be archived in the long term. In this work, we aim to demonstrate

that a Raspberry Pi can become an active archiver of its own sensor recordings, and investigate

whether it is powerful enough to provide data storage and dissemination services on site.

2.3 The Airchive System

2.3.1 Objectives

Airchive (Samourkasidis & Athanasiadis, 2016) is a software product intended for being

deployed on a Raspberry Pi to turn it into a self-contained data repository. Airchive provides

data capture and dissemination services for timeseries measurements. There are two objectives

in developing this system.

The first is to investigate long-term storage potential on a Raspberry Pi. The challenge

here is inherited by the Raspberry Pi hardware limitations. Airchive provides with a

2.3 The Airchive System 15

persistent storage mechanism that is able to safe-keep its data in a trustworthy manner.

We experimented this feature further, considering storage on both SD cards and USB disks

attached with the Raspberry Pi.

The second is to demonstrate Raspberry Pi capacity to interoperate at the machine level

through standard protocols for data sharing. Airchive adopts two mainstream standards to

exhibit interoperability at the machine level. The first is the Sensor Observation Service (SOS),

the Open Geospatial Consortium (OGC) standard tailored for sharing sensor observations

(Bröring et al., 2012). SOS defines a Web service interface which allows querying observations

and metadata of heterogeneous sensor systems. The second is the Protocol for Metadata

Harvesting (OAI/PMH), an Open Archives Initiative low-barrier mechanism for repository

interoperability (Lagoze & Van de Sompel, 2001). OAI/PMH is a generic protocol for sharing

metadata among archives and has been widely adopted by digital libraries. Both SOS and

OAI/PMH offer services that are invoked over the HTTP protocol.

2.3.2 Requirements

Airchive operates as a self-contained, autonomous repository for timeseries data archival and

dissemination. It is a technical system that involves both software and hardware components,

and needs to comply with certain non-functional requirements. From a software perspective,

Airchive needs to be built with open-source tools and frameworks and be extensible, in

order to respect the philosophy of the Raspberry Pi movement and maximize the potential

for future uptake. Hardware support Airchive should be low-cost and resilient to power

and network shortages. This will allow its use in remote locations, or in the developing

world. The overall Airchive system should require low-technical skills to install, operate and

maintain.

We identified three use cases for the Airchive system:

(a) Web users access the system through the Internet via a public webpage. They explore

current or historical Airchive data, and they are interested in graphical representations

of the content. Typically, a Web user is able to query for the data stored in Airchive,

and the system will respond with a graph of the data requested. They may also

download data in common formats, such as JSON (JavaScript Object Notation), CSV

(Comma-separated values), GeoJSON (Butler et al., 2016) and GeoRSS (GeoRSS:).

(b) Software agents interact with Airchive for retrieving data or harvesting metadata.

They may use different protocols and vocabularies to submit their requests. One may

follow the SOS protocol for retrieving raw timeseries data, while another could use the

OAI/PMH to get meta-information of the digital resources stored. Software agents

interact with the system with RESTful Web services (Representational state transfer

services) (Richardson & Ruby, 2008) over the HTTP protocol.

(c) The system owner has full access both locally and from the Internet via Secure Shell

(SSH). Her responsibilities are to administer the system by updating system software or

restarting the device.

16 A Miniature Data Repository on a Raspberry Pi

Interoperability is an essential requirement of such a system. Airchive offers query services for

software agents via SOS and OAI/PMH standards. SOS queries return responses in Extensible

Markup Language (XML) using OGC vocabularies (as Observation & Measurements (O&M)

(Cox, 2011), or Sensor Model Language (SensorML) (Botts & Robin, 2014)). OAI/PMH

responses may be encoded in more than one metadata profile, including Dublin Core, a generic

purpose metadata schema for annotating digital artifacts (DCMI Usage Board, 2012). By

incorporating a variety of service offerings, we demonstrate the capabilities of a Raspberry Pi

to operate with several clients, using different protocols and vocabularies, and support for

syntactic interoperability.

Software development is based on our previous work reported in (Samourkasidis &

Athanasiadis, 2014). We further improved the software system to host generic timeseries

data. The current version has been thoroughly tested and is available as an open source

software package (Samourkasidis & Athanasiadis, 2016). In this version, all of the metadata

that are disseminated through OAI/PMH are calculated on-the-fly (instead of being stored

permanently). This is a design choice to demonstrate the powerful processing power of

Raspberry Pi.

Airchive can operate autonomously and with minimal user interventions. In the experiments

discussed below, Airchive has been operating unattended for four months in order to evaluate

its capabilities for long-term operation, as reliability, self-recovery and resilience to power

and network failures.

2.3.3 Abstract Architectural Design

Airchive software platform was designed for the Raspberry Pi to turn it into a self-contained

station for timeseries data archival and dissemination. It serves both real-time access and

long-term storage and retrieval of sensor data, while also offering services for metadata

harvesting. Airchive follows the Sensing as a Service paradigm (Perera et al., 2014) and is

composed of five components that are implemented as loosely-coupled services, rendering the

software highly extensible. The abstract architectural design is depicted in Figure 2.1.

2.3 The Airchive System 17

Figure 2.1: Airchive abstract architecture. System services are shown as layered components

on the left, with relevant technologies. On the right, corresponding Raspberry Pi features are

illustrated.

The data capture component (optional) comes first that actually collects sensed measurements

from one or more sensor devices connected to the Raspberry Pi. This component is custom

to hardware and/or sensors used. Our implementation interfaces with the sensors of the

AirPi HAT. Nevertheless, the general behavior remains the same: at certain time intervals, it

acquires the results from the sensors.

A data validation component (optional) may sit between data capture and data storage

components. Its role is to apply quality assurance/quality control process and identify

hardware or sensor errors. Additionally, it could associate the measurement with a quality

flag by applying rules or more empirical procedures (i.e. statistical, data driven) (Athanasiadis

& Mitkas, 2007; Athanasiadis et al., 2009, 2010; Athanasiadis & Mitkas, 2004). Such a

component is essential for ensuring data reliability and user confidence.

The data storage component permanently stores sensor data in a relational database along

with a time stamp. In order to be database-independent, an Object Relational Mapping

(ORM) framework was utilized. The data storage component is also responsible for retrieving

the data from permanent storage.

The data processing component is an intermediate layer between data storage and Web

services. It transforms arguments (submitted by users/harvesters with their queries) into

appropriate database queries, using the ORM framework. It also works in the other way

around, as it formats database outputs according to user requests, using different formats

18 A Miniature Data Repository on a Raspberry Pi

(i.e. XML, JSON, CSV) or dictionaries (i.e. O&M, SensorML, Dublin Core). Finally, it offers

descriptive statistics calculations on-the-fly (e.g. maximum, minimum, rolling mean, average

and percentiles).

Last, but not least, the Web services components offer outlets for interaction with users and

agents over the Internet. There are four Web service components in the current system, but

more could be added in the future: Web users browse the repository and submit queries

using a Graphical User Interface (GUI). Software agents interact with the SOS server, the

OAI/PMH endpoint, or the Airchive’s own Application Programming Interface (API).

2.4 Implementation

2.4.1 Hardware

Airchive was deployed on a Raspberry Pi Model B. This model is equipped with a 700 MHz

ARM processor, weights 45 g and has 512 MB of RAM. It is connected to the Internet

through an Ethernet controller and features two USB ports. Instead of a hard disk, it uses

an SD card. It is also equipped with 26 GPIO pins (General Purpose Input–Output) for

interfacing with various peripherals (HATs). The chosen Operation System was Raspbian; a

Linux based distribution for Raspberry Pi.

In order to generate data (i.e. actual observations) to be stored on the Airchive, we have

chosen to use AirPi, a Raspberry Pi sensory HAT. AirPi is an interface board that connects

over GPIO pins and is equipped with low cost air quality and weather sensors. It also follows

the open hardware philosophy, and can be further extended with other sensors, including

a GPS module (Dayan & Hartley, 2013). It costs roughly 90 USD including the sensors

shown in Table 2.1. AirPi includes a software module that is able to log sensed data on the

cloud.

Table 2.1: AirPi sensors with their respected observed properties.

Sensor Name Observed Property Type Interface

DHT22 Relative humidity, Temperature Digital SPI

BMP085 Atmospheric pressure, Temperature Digital SPI

MICS-2710 Nitrogen dioxide Analog I2C

MICS-5525 Carbon monoxide Analog I2C

The overall system hardware is comprised of a Raspberry Pi Model B equipped with the

AirPi HAT, an SD card and a USB memory drive, and it was connected to Internet with an

ethernet cable, shown in Figure 2.2.

2.4 Implementation 19

Figure 2.2: Raspberry Pi Model B with AirPi attached on top.

2.4.2 Software Development

Airchive software has been developed in Python, and is available as open-source software on

GitHub (Samourkasidis & Athanasiadis, 2016) under the GNU Affero General Public License

Version 3 (Free Software Foundation, 2016).

The data capture component interfaces with the AirPi libraries (Hartley, 2013) that transform

electrical signals into human-understandable values. Data storage employs SQLite (Python

Software Foundation, 2016), an open-source, lightweight relational database for Python

and SQLAlchemy library (Bayer, 2016) for object-relational mapping. An outline of the

data validation component is provided, but not fully implemented, as it is out of the core

scope.

The data processing component was developed in three modules. The Query module handles

client-requested queries and raises appropriate exceptions. Requests must include the sensor,

the property and the corresponding timeframe for which the observations will be retrieved. A

typical workflow is as depicted in Figure 2.3. The Filter module comprises of a set of statistical

filters implemented as Python classes using pandas library (McKinney, 2011). Filters may

be instantiated and applied on-the-fly on a query result. The Format module is responsible

for serializing the query results. Jinja2 template engine (Ronacher, 2008) was used and the

formats implemented correspond to the Web services offered. They include XML, GeoRSS,

GeoJSON, JSON and CSV formats.

20 A Miniature Data Repository on a Raspberry Pi

Figure 2.3: A typical data processing workflow.

The Web service components were developed using the Flask web framework (Ronacher,

2010), in order to provide clients with static and dynamic content. Flask web framework

deploys a web server which responds to HTTP GET requests with formatted data. Data requests

can be submitted through the three API endpoints that we developed: the Airchive own

API, SOS and OAI/PMH. A fourth outlet is the Airchive GUI, which is meant for the Web

users to render graphs upon request. It uses the Airchive API for getting data, which are

subsequently visualized on the client’s web browser using Javascript. Graph rendering is

facilitated by Flot (Laursen & Schnur, 2007) and jQuery (jQuery). Visualizing data occurs

on the client browser, which also economizes resources of the Raspberry Pi.

Airchive software is generic in nature, in the sense that is does not require the data capture

and validation components, and one could deploy it only with historical data. The system

is configured via a file that aligns the timeseries with their semantics, including measured

properties and units. The configuration allows for alternative definitions of the same observed

properties, which enables the system to serve the same observations with a variety of vocabu-

laries. Currently, we use the definitions of the Semantic Web for Earth and Environmental

Terminology (SWEET) (Raskin & Pan, 2005).

2.5 Demonstration

2.5.1 Experimental Design

We deployed the Airchive system in a realistic scenario for indoor air quality monitoring.

Airchive software was installed on a Raspberry Pi equipped with AirPi HAT, and installed

indoors, connected to a power supply and the Internet via Ethernet port. We performed two

experiments in order to evaluate the system autonomy and robustness, and its performance

under load pressure.

2.5 Demonstration 21

2.5.2 Experiment 1: Autonomy and Robustness

In the first experiment, which lasted for more than 120 days, Airchive was exposed to irregular

power and network disruptions. We did not interfere in system restoration during the “down”

incidents and let the system self-recover.

In this experiment, a moderate sampling frequency to data capture component was set, in

order to investigate the system’s long-term storage capabilities. A measurement was retrieved

from each sensor every 5 min. During this experiment, 183,850 measurements were gradually

collected and served. In Table 2.2, there is a summary of the 24 network outage events

observed during this period. Outage events were logged with UptimeRobot (UptimeRobot),

a service that monitors web applications and notifies interested parties when an application

is not accessible via the Internet. UptimeRobot was used only to log network failures, and

did not interfere with our system.

Table 2.2: Statistics of the 24 the outage events, collected using UptimeRobot.com services.

Metric Duration

Total downtime 10 days

Median downtime 7 min

Average downtime 543.6 min

St. dev. downtime 2572.4 min

During the first experiment, different users were submitting data queries to the system,

in an ad-hoc manner, using the various interfaces: graph visualizations were requested by

Web users, raw observations by SOS clients and derived metadata by OAI/PMH harvesters.

We did not observe any malfunction for any of the client operations. Current and historical

data were monitored, stored and disseminated appropriately, while the automated recovery

worked as expected. OAI featured records were calculated on-the-fly, upon harvester requests

in a timely fashion. We did not observe any notable delays in the capacity of the system to

serve its clients.

2.5.3 Experiment 2: Stress Testing

During the second experiment, we conducted a stress test, in order to provide more insights

regarding the system limitations. We investigated the number of concurrent user requests,

after which the Airchive system delayed to respond. The sampling frequency was increased

to 5 s. The experiment lasted for three days, and it collected and served more than 259,000

measurements. We utilized Locust (Heyman et al., 2011), an open source load testing tool

written in Python. In Locust, a variable number of clients are deployed to submit concurrent

requests to a service. Each Locust client submits a new request only when it receives a

response to its previous request.

Locust takes as input the following parameters: (a) the number of concurrent clients; (b) the

total number of requests; and (c) a url pointing to the requested resource. We set up three

22 A Miniature Data Repository on a Raspberry Pi

tests. In all cases, clients submitted a hundred requests altogether. The three tests involved

the following requests over the Internet, via HTTP GET.

In the first test, clients request only the Airchive frontpage, which is a static HTML

document. No transactions to the database were involved and the response size is constant

(8740 bytes). Test 1 verifies that Airchive operates properly and examines if pressure on the

Web services/dissemination components has an impact on the data capture component.

In the second test, clients request a set of 20 observations using Airchive’s API, and the

response is formatted as a JSON document. This request requires an SQL query to be

submitted to the database, and the response size is 538 bytes. Test 2 corresponds to the use

case of a Web user that asks for a graph, as Airchive transmits the JSON document and the

graph is rendered on the client-side.

In the third test, clients ask for the same set of observations as in Test 2, but this time over

the SOS protocol, which returns an XML document. This request requires exactly the same

SQL query to be submitted to the database but needs additional formatting for rendering

the result in XML. The response size is 16,504 bytes. Test 3 corresponds to the use case of

an SOS client asking data from Airchive.

We simulated four scenarios, in each of which we deployed a different number of concurrent

clients. We tried one, five, 10 and 25 concurrent clients. This is a realistic assumption as

the current system is not intended for large-scale deployment. We repeated the process five

times for each test and scenario combination and reported two metrics in Table 2.3: (a) the

average response time (ART) in milliseconds; and (b) the number of requests served per

second (RPS).

Table 2.3: Experimental results for the three tests and for different numbers of concurrent

clients. Average response time (ART) across a hundred requests for each document are reported

in milliseconds. System throughput is expressed in requests per second (RPS).

Concurrent Clients
Test 1: Static HTML Test 2: API/JSON Test 3: SOS/XML

ART (std) RPS (std) ART (std) RPS (std) ART (std) RPS (std)

1 66.4 (0.5) 16.2 (0.7) 1830 (27) 0.55 (0.01) 2171 (64) 0.46 (0.01)

5 344 (11) 15.4 (0.6) 9467 (178) 0.52 (0.01) 11,125 (90) 0.44 (0.00)

10 662 (7) 15.4 (0.3) 18,874 (397) 0.51 (0.01) 21,651 (281) 0.44 (0.01)

25 1576 (25) 16.6 (0.7) 45,607 (410) 0.49 (0.01) 49,427 (935) 0.45 (0.01)

Average response time (ART) is a proxy of the average delay to an external user request.

For example, a user would have to wait 49.5 s (on average) plus the response time of their

submitted request, under the scenario of the 25 concurrent clients for Test 3. As indicated by

the results in Table 2.3, average response time is linearly correlated with the product of (a)

number of concurrent users; and (b) average response time achieved when one client submits

requests. We verify that requests per second (RPS) depend on the type of the requested

document, and is rather stable regardless of the number of concurrent clients.

The introduced overhead to the system response times depends on the request and format

type. Requests involving dynamic content are roughly 30 times slower than requests of static

2.5 Demonstration 23

content. In the case of dynamic content requests, JSON-formatted responses are served 16%

faster than the equivalent in XML.

Interpreting the results, we derive the number of concurrent (human) Web users that the

system may serve. Assuming that a human user should not wait more than 6 s, we conclude

that Airchive can serve simultaneously up to two Web users of the SOS/XML Web service

(Test 3), or three Web users of the API/JSON Web service (Test 2). In the case of static

content (Test 1), Airchive is able to serve up to 82 clients simultaneously. The numbers above

do not represent Airchive’s maximum capabilities, rather its capacity for serving content to

Web users.

In contrast, software agents interacting with such a system are usually not bound to any

time limitation. We conducted further experiments to determine the threshold after which

the system started failing to respond to requests. We increased the total number of requests

to 500. We started increasing the number of concurrent users by multiples of 5, until requests

started to fail. Airchive can serve simultaneously, without failure up to 254 (Test 1), 141

(Test 2) and 138 clients (Test 3). In excess of the client numbers above, the system continued

to respond with more than one failure. The results are summarized in Table 2.4. These tests

demonstrate Airchive’s capacity to work reliably with a significant number of clients.

We underline that despite the heavy workload we introduced during the stress tests, AirPi con-

tinued to operate normally. In all cases, we verified with the database content that observations

were recorded every 5 s without any loss in all the experiments above (i.e. the data dissemi-

nation does not interfere with data capture).

Table 2.4: Estimates on the number of clients that Airchive can serve simultaneously.

User Types Test 1: Static HTML Test 2: API/JSON Test 3: SOS/XML

Human Web users
82 3 2

(response in less than 6 s)

Software agents
254 141 138

(response guaranteed)

2.5.4 Incidents and Lessons Learned

During experiment 1, network failures occurred quite often. Those failures, impeded only Web

connectivity and apart from the web server, the rest of the Airchive components continued

to operate properly. We verified that no data loss occurred by cross-checking the time down

intervals logged with UptimeRobot with the actual observations stored in the database.

We observed that the system was able to handle power failures, and it self-restored without

human intervention. For all 24 outage events during experiment 1, Airchive recovered properly

by making the Web service available as soon as the Internet connection returned. In this

respect, the system demonstrated its persistence and credibility as a repository.

Calculating derived data (metadata) on-the-fly provided us with evidence regarding the

system’s extensibility and enhanced capabilities. Derived metadata, which were disseminated

24 A Miniature Data Repository on a Raspberry Pi

through OAI/PMH, were calculated upon client request. We observed that data were

transmitted as fast as if they had been stored in the system. In addition, utilizing a

Javascript framework for rendering graphs upon user request added no extra performance

overhead to the Raspberry Pi. We did extensively evaluate these features with stress tests in

experiment 2, and our experience was that the system performed as expected.

During experiment setup, we stumbled upon a recurring security incident. Given that

Raspberry Pi was constantly connected to the Internet, it attracted malicious users after

its first boot. We experienced a brute force attack to the SSH protocol that was trying to

get unauthorized access to the device. We toughened up Airchive with a dedicated security

software solution (fail2ban (Sumsal et al., 2005)), which prevented any further security

incidents of that kind.

Another lesson learned had to do with a potential issue that may arise when power and

networks fail at the same time. Raspberry Pi lacks a Real-Time built-in Clock (RTC), and it

synchronizes its system clock through the Internet. In the case that an Internet connection

is not available upon system boot, the Raspberry Pi system time is misconfigured. In the

general use case of Airchive, this will not be a problem, but, in our experiments, this will

result in errors in the data capture component, which will assign incorrect timestamps to data

sensed from the HAT. This problem can be overcome so that the data capture component

retrospectively reviews these timestamps when the Internet becomes available. An RTC

HAT can be purchased and applied to Raspberry Pi. However, this option increases the total

cost.

Last but not least, during the setup phase, we experimented with booting Raspbian and

running Airchive from the USB disk instead of the SD card. First of all, this is a task that

requires advanced technical skills and is still an experimental option not endorsed by the

Raspberry Pi makers, and performance is not guaranteed. USB disks provide a cheaper

storage option but are prone to failure. We experimented with this option for one month,

during which the filesystem was corrupted twice, requiring the operating system and Airchive

to be re-installed. Observed data were not permanently lost, but their retrieval required

technical skills. In contrast, no such incidents occurred when the system operated on an SD

card for a much longer period.

2.6 Discussion

Data persistence is a prerequisite for a data repository. In most efforts made with a

Raspberry Pi and reported in the literature in the WSN context, data were periodically backed

up in an external device and were not permanently stored on the embedded device. In the

work presented here, Airchive relied solely on Raspberry Pi for permanent data storage. Our

four-month experiments demonstrated that a Raspberry Pi equipped with an SD card can

handle moderate and extensive read/write cycles without any issue; the resilience of SD cards

is constantly evolving (Pinto, 2019).

The processing capabilities of Raspberry Pi have been investigated in the light of several

applications. In Airchive, we studied its capacity to calculate and disseminate added-value

2.7 Conclusions 25

data and indexes on-the-fly, i.e. upon user request. This way, less data are permanently

stored and less write cycles are performed, which puts less pressure on SD card life.

Self-restoration from failures is another attribute of WSNs (Dargie & Poellabauer, 2010),

which is also applicable in our work. Self-restoration contributes towards diminishing the

technical skills that Airchive system owner should possess. During the experiments, the system

self-restored from all power and network shortages that have been triggered, demonstrating

that after its installation, the system can operate autonomously and without assistance.

We also consider that the Airchive system presented here also indirectly contributes to the

open data movement, especially for the developing world. Besides the low acquisition cost

and the low-technical skills required for its deployment, the system by-design responds to

the “weak enabling environment” of the developing countries, i.e. intermittent, opportunistic

Internet connection. In the frame of this work, we did not demonstrate the system in

such conditions. However, we demonstrated that is able to attend to network and power

failures.

Security and privacy are also two important attributes of a data repository system, and

lay the foundation for future work. The brute force attack incident that occurred during

the experiments is an illustration of the potential dangers. In addition, given that a data

repository system may host personal and/or confidential data, more research should be

focused on addressing privacy issues. There is a lack of any authentication mechanism, even

in well-established, data dissemination protocols, such as OGC/SOS and OAI/PMH. An

authentication mechanism can ensure privacy, and such issues should be addressed in the

light of interoperable data dissemination on the application layer.

2.7 Conclusions

To summarize, we provided a proof-of-concept that current low-cost hardware is reliable

enough to boost the open data movement. We demonstrated that a Raspberry Pi accompanied

with an appropriate software can support persistent data storage, and provide added-value

services on site. We designed and implemented an open-source, highly-extensible data

repository software, called Airchive, to support data visualization, and interoperable data

dissemination. We adopted two well-established data dissemination protocols: OGC Sensor

Observation Service and Open Archive Initiative/Protocol Metadata Harvesting. Finally, we

demonstrated its long-term data storage capabilities and resilience under harsh conditions of

power and/or network failures, which take place irregularly. The load testing experiments

provided us with insights about the Raspberry Pi performance under simultaneous requests

from concurrent external clients.

Chapter 3

A Sensor Observation Service

extension for Internet of Things

This chapter is based on:

Samourkasidis A., Athanasiadis I.N. A Sensor Observation Service Extension for In-

ternet of Things. In: Podnar Žarko I., Broering A., Soursos S., Serrano M. (Eds.)

Interoperability and Open-Source Solutions for the Internet of Things. InterOSS-IoT 2016.

Lecture Notes in Computer Science, vol 10218. Springer, Cham

28 A Sensor Observation Service extension for Internet of Things

Abstract

This work contributes towards extending OGC Sensor Observation Service to become ready for

Internet of Things, i.e. can be employed by devices with limited capabilities or opportunistic

internet connection. We present an extension based on progressive data transmission, which

by-design facilitates selective data harvesting and disruption-tolerant communication. The

extension economizes resources, while respects the SOS specification requirement that the

client should have no a-priori knowledge of the server capabilities. Empirical experiments

in two case studies demonstrate that the extension adds little overhead and may lead to

significant performance improvements in certain cases, as for irregular timeseries. Also, the

proposed extension is not invasive and backwards compatible with legacy clients.

3.1 Introduction 29

3.1 Introduction

Internet of the Things (IoT) is a dynamic, open, participatory ecosystem of decentralized

and collaborative devices. Recent technological advances resulted in a plethora of low-cost

devices with extended capabilities compared to traditional sensors. New generation of devices

are miniaturized and empowered with storage, processing and networking capacity. They are

essentially transformed into smart nodes, that operate autonomously, may offer added value

services (Perera et al., 2014), and collaborate with each other in the cloud (Botta et al., 2016).

Smart nodes could offer capture, storage and dissemination services of sensory information

in a single device (Samourkasidis & Athanasiadis, 2017). IoT devices are also instrumental

to the proliferation of new data sources (Hashem et al., 2015), sharing of information (Havlik

et al., 2009), and contribute to the big data movement. Internet of Things advances the

vision of Sensor Web, an infrastructure which enables interoperable usage of sensor resources

(Bröring et al., 2011b). In the IoT era, Sensor Web is challenged to offer services that are

interoperable, but at the same time perform efficiently with less resources, saving processing

power and network bandwidth.

Interoperable data interchange for sensor data has been driven by the Open Geospatial

Consortium (OGC). OGC introduced service interfaces and information models within Sensor

Web Enablement (SWE), which is founded on machine-to-machine communication (Botts

et al., 2008),(Bröring et al., 2011a). Service interfaces, as the Sensor Observation Service,

Web Feature Service, Web Coverage Service, SensorThings provide interoperable means for

geospatial information discovery and retrieval. Sensor Observation Service (SOS) (Na &

Priest, 2007), (Bröring et al., 2012) is an OGC service interface, which promotes interoperable

sensor-borne data exchange, operates as a web service, and supports for syntactic and

semantic interoperability.

In the IoT era, architectural paradigms and technologies need to respect the limited capabilities

of devices. The SWE 2.0 has been established with technologies as the Simple Object Access

Protocol (SOAP) and XML-based information models, which are considered to add substantial

overhead - a critical issue for IoT devices. On the other hand, Representational State Transfer

(REST) and JSON-based information models seem to provide services which excel over SOAP

and XML, in terms of power consumption and performance (Mulligan & Grac̆anin, 2009).

Beyond these technical limitations, there are certain design choices that preclude SOS as an

appropriate IoT outlet.

In this paper, we investigate current SOS design and propose an extension. In Section 3.2, we

present related work, how SOS operates and challenges identified in the literature. In Section

3.3, we identify SOS design shortcomings from an IoT perspective, and introduce a pagination

technique in order to promote selective data harvesting, enable seamless data integration

and facilitate machine-to-machine interoperability. Section 3.4 presents an implementation

and details the two case studies, which were designed to test the efficiency of the extension,

along with experimental results. Section 3.5 provides with a discussion about our findings

and contributions, concludes the research and lays the groundwork for future work.

30 A Sensor Observation Service extension for Internet of Things

3.2 Related work

3.2.1 Service orientation and interoperability in sensor networks

Service-Oriented Architecture (SOA) is an architectural paradigm founded on self-describing,

self-contained services. Key concept in SOA is that services may be developed, maintained

and served by different entities, and can subsequently be combined and produce composite

applications. SOA has been instrumental for highly interoperable systems, as services are

platform and language independent (Papazoglou & Georgakopoulos, 2003).

In the frame of interoperable data interchange, OGC introduced Sensor Web Enablement

(SWE), which follows the SOA architectural paradigm. Standards developed within SWE

provide means for the discovery and retrieval of sensor observations. SWE contributes

towards the vision of Sensor Web, where web-accessible sensor networks and archived sensor

observations can be discovered and accessed using standard protocols and application program

interfaces (APIs) (Botts et al., 2008). They are realized through web services, i.e. services

“identified by a URI, whose service description and transport utilize open Internet standards”

(Papazoglou & Georgakopoulos, 2003). Communication between service interfaces and other

services or clients is achieved through Simple Object Access Protocol (SOAP), which builds on

existing communication layers (i.e. HTTP) (Curbera et al., 2002). SWE is a very important

infrastructure (Bröring et al., 2011b) as it offers interoperable protocols for advertising,

disseminating and requesting data among heterogeneous sensor systems and devices.

3.2.2 The Sensor Observation Service

Sensor Observation Service (SOS) is an OGC service interface specification for accessing

sensor observations, which acts as “the intermediary between a client and an observation

repository” (Botts et al., 2008). SOS interface enables clients to request, filter and retrieve

observations, and metadata about repositories and sensors.

SOS comes with a core set of services, and extensions that enrich it with extra functionality,

or profiles for domain-specific behavior. The current 2.0 specification (Bröring et al., 2012)

defines three core operations:

a. service discovery (GetCapabilities),

b. sensors metadata retrieval (DescribeSensor), and

c. observations retrieval (GetObservation).

There are several extensions and profiles available, but their description falls outside the

scope of this paper. As an indicative example for the reader, the transactional extension

provides with services to register new sensors and add new observations.

SOS is a pull-based service interface and is intended for machine-to-machine communication.

The protocol prescribes a communication between a client and a server, both can be considered

to be software agents. The client submits a request and the server answers with a response,

typically in the form of XML document. Responses are encoded in appropriate SWE related

3.2 Related work 31

Figure 3.1: A typical observation retrieval workflow using SOS

XML schemas as Observation & Measurements (Cox, 2011), or SensorML (Botts & Robin,

2014). A typical observation retrieval workflow using SOS is depicted in Figure 3.1. First,

the client inquires the server for its capabilities. Then, it may ask for descriptions on

certain sensors, and finally requests for observations from one or more sensors. A typical

GetObservation request includes temporal and/or spatial boundaries.

When SOS server encounters an error while performing a GetObservation operation,

it returns an exception. For example, if client asks for wrong values of arguments an

InvalidParameterValue exception is rendered. In the current SOS 2.0 interface standard

(Bröring et al., 2012) there is also a type of exception for the cases that the response exceeds

a size limit. We will investigate this further below.

3.2.3 Challenges in sharing sensor observations in IoT

Internet of Things consists of smart nodes equipped with sensors and network connectivity,

able to interact with their environment and share information. Smart nodes are entitled with

specific characteristics:

a. restrained capabilities (in terms of energy and processing power),

b. opportunistic Internet connection, and

c. heterogeneity in resulting data formats and communication protocols (Atzori et al.,

2010).

Key challenges towards the IoT realization include energy efficiency, integration of service

32 A Sensor Observation Service extension for Internet of Things

technologies and security/privacy (Li et al., 2015). Also, thematic and spatial concerns

of deployed IoT systems pose great challenges in spatiotemporal aggregation of disperse

observation datasets.

As regards with heterogeneous sensor integration, previous studies have been conducted

towards various directions. A virtual integration framework for heterogeneous meteorological

and oceanographic data sources is demonstrated in (Regueiro et al., 2015). A SOS profile to

facilitate multi-agency sensor data integration was reported in (Jirka et al., 2012; Alamdar

et al., 2016; Fredericks et al., 2009) argue in that quality metadata should also be trans-

mitted through SWE services, in order the realization of automatic data integration to be

achieved.

Integration of spatially diverse sensor timeseries utilizing OGC standards concerned Horita

et al. (2015). They developed a spatial decision support system for flood risk management,

associating Volunteered Geographic Information (VGI) and measured data derived from

Wireless Sensor Networks (WSNs). Data acquisition, integration and dissemination is

orchestrated by a SOS instance.

Only recently, OGC introduced SensorThings API to facilitate “the interconnection of IoT

devices, data, and applications over the Web” (Liang et al., 2016). In contrast with other

OGC standards, SensorThings API adopts the REST paradigm and utilizes JSON-based

information models. SensorThings API defines HTTP requests to facilitate observations’

retrieval, as well tasking of sensors and actuators.

Using parameters to regulate response size to requests within OGC-related standards, was a

topic of interest for (Volker Andres, 2014), (Vretanos, 2014) and (Liang et al., 2016). Lengthy

responses to GetObservation requests have been identified as a potential danger to both

SOS server and clients (Volker Andres, 2014). In the same work, it has been indicated that

beyond the ResponseExceedSizeLimit exception, other certain limitations as regards with

the number of returned observation should be concerned and imposed. The WFS interface

standard (Vretanos, 2014) and the SensorThings API offer a paging implementation, that

allows the client to limit the number of features included in a response by using two optional

arguments (count, startindex for WFS, and top, skip for SensorThings API).

Last but not least, several researchers investigated the suitability of limited bandwidth, energy,

and processing power devices to host a SOS server. These have mainly concentrated on (a)

adoption of lightweight architectural paradigms (e.g. REST instead of SOAP (Rouached

et al., 2012), (Janowicz et al., 2013), (Yazar & Dunkels, 2009)), and (b) evaluation of SOS

lightweight implementations (Pradilla et al., 2015), (Jazayeri et al., 2015). We have also

deployed SOS over a Raspberry Pi to exploit the potential of low-cost embedded devices

(Samourkasidis & Athanasiadis, 2017).

In this work we concentrate on the SOS service interface design and evaluate the efficiency of

communication between client and server.

3.3 Methods 33

3.3 Methods

3.3.1 SOS service interface design issues

According to SOS specification, clients are not allowed to know sensor observations’ frequency.

The server advertises the boundaries of the information it holds, but not the resolution.

Any client is not possible to infer the sensor temporal or spatial resolution, based on their

communication with the server. This requirement is that the client has access with no

a-priori knowledge (Na & Priest, 2007). While this enforces reusability and generality of

the service interface, it may may lead to excessive data requests, which may result to server

overload, or even Denial of Service attacks.

Excessive data transmission has been identified as an issue for GetObservation requests. In

the first specification of SOS, there was not imposed any limitation, regarding the maximum

number of observations which could be transmitted. For the server, the only viable response

to of a GetObservation request was to return a set of observations. The server had no way

to refuse to respond, in cases where the client was asking for an excessive amount of data, it

was busy, or any other reason.

To illustrate the above shortfall we will consider a service offered by National Oceanic

and Atmospheric Administration (NOAA) (Center for Operational Oceanographic Products

and Services (CO-OPS), 2019). NOAA’s Center for Operational Oceanographic Products

and Services (CO-OPS) offers openly a variety of sensor observations using SOS. In this

implementation, if a client requests observations for a time range which exceeds 31 days, the

server responds with an exception, rejecting the parameter value:

<Exception exceptionCode="InvalidParameterValue"

locator="eventTime">

<ExceptionText>

Max 31 days of data can be requested.

62.0 days were requested.

</ExceptionText>

</Exception>

Note that the exception rejects the parameter value, disclosing in a non machine interoperable

message of the size limits for this request.

In the future work section of SOS 1.0 specification (Na & Priest, 2007) it was acknowledged

that: “The density of requests and offerings must be addressed,. . . so that large data volumes

are not transmitted unnecessarily due to a lack of information about service offerings.”.

Indeed, that was addressed in SOS 2.0 by introducing an exception to manage excessive data

requests, while taking into consideration the no a-priori knowledge requirement (Botts et al.,

2008). The ResponseExceedSizeLimit exception functionality resembles the response of

NOAA server above, but with pertinent semantics to the exception thrown: The server is able

to inform the client that the “requested result set exceeds the response size limit of the service

and thus cannot be delivered” (Bröring et al., 2012). Both server and client applications are

protected from extremely big response sizes, and the no a-priori knowledge requirement is

34 A Sensor Observation Service extension for Internet of Things

respected.

The ResponseExceedSizeLimit exception of SOS 2.0 is a significant improvement compared

to SOS 1.0, as it allows the server to respond to a request with an exception than with actual

data. Note that, the response size limit should not be considered a fixed parameter. It could

change when there is high traffic, or service maintenance. In those conditions, the server

should be allowed to not to respond to requests that would under normal conditions.

However, the main limiting factor to this design is that clients have no insights regarding the

carrying capacity of the server, or (equivalently) the density of an offering. Due to the no

a-priori knowledge requirement, clients cannot infer how to narrow down their requests so

that server responds.

We identify two cases here. First case is when the server publishes regular sensor observations.

Under this category fall most long-term, permanent sensor infrastructures. In this case,

clients could implement heuristic techniques to discover the response size limit (assuming

that it is constant).

In the second case, observation streams are irregular. This may happen if the sensor

sampling frequency varies, or sensors move. For example, consider sensors operating in energy

restrained environments and adopt opportunistic sensing techniques, or event-based sensing

(de Assis et al., 2016). Volunteered Geographic Information Systems which enable individuals

(Goodchild, 2007),(Drosatos et al., 2014) or cars (Bröering et al., 2015) as data providers,

fall in the same case. In these situations, it is impossible for the client to make any kind of

estimate on the response size, and devise a strategy to reduce accordingly the spatiotemporal

boundaries of their query.

Responding with an exception to voluminous requests could be tolerated in fixed sensor

networks (case one above). However, it hinders SOS applicability in resource-constrained

environments. As clients are neither aware of the response size limits, nor how to restrict their

queries, the SOS communication protocol underperforms: It wastes both processing power

and network bandwidth as it is engaged in more request/response cycles. This, ultimately

results in bigger response times. Such drawbacks are incompatible with the Internet of Things

needs. This problem could be addressed by introducing a progressive data transmission

technique described below.

3.3.2 The resumption token technique and Open Archives Initiative

The notion of selective data retrieval was introduced in Lagoze & Van de Sompel (2001).

Utilizing a resumption token, large and resource-demanding data transactions are fragmented

into several requests/responses. The client submits a request and the server responds with a

part of the result and a resumption token. Then the client (harvester) can use this resumption

token in follow up requests to get the following part of its initial request. Gradually, by

consecutive requests the client retrieves the all the partial answers to its initial request. This

mechanism enables the server to handle with requests that have large responses, with respect

to available bandwidth and/or processing power.

3.3 Methods 35

3.3.3 A pagination extension for SOS

SOS service interface can address IoT needs by introducing progressive data transmission.

We extend the current SOS service interface with a resumption token parameter in the

GetObservation requests. By fragmenting requests into many sequential ones, we transform

SOS into a disruption-tolerant service interface, as clients are enabled to ask for specific

observation subsets. Observations are divided and loosely packed into pages of certain size.

The number of observations contained in a page (i.e. chunk of subsequent observations) is

determined by the SOS server.

The observation retrieval workflow according to the proposed design is depicted in Figure

3.2. The client asks for a set of observations with a GetObservation request. The server

processes the request, and always responds with an O&M document. If the response exceeds

the carrying capacity of the server, results will be organized in subsets (called pages), and

the server response will include an additional element, called next which will point to the

URL of the next page of results. The next page URL is the same as the original request, but

contains an extra parameter called page, which has the role of the resumption token. The

page parameter is optional: when a client request does not contain a page argument, the

server responds with the first page of the request. The last page of the parts contains no

next page element to notify the client of the end of the transmission.

In the simplest case, server carrying capacity could be an arbitrary, fixed threshold, similar to

the request size limit of the SOS 2.0 exception. Of course, the server carrying capacity may

dynamically vary according to result set properties, or server resources, enabling network

load balancing, efficient use of energy, etc. It could even change during the transmission, as

the total number of pages is not disclosed to the client. The page resumption token could be

constructed incrementally as page number in case the server has a fixed carrying capacity,

and data do not change. In case of varying page size, the page parameter can take unique

pseudo-random integer values. In case where data changed during the communication, or

any other reason, the next page token could be revoked by the service provider.

3.3.4 Expected (by design) benefits

The paginated protocol proposed here is beneficial for both server and client efficiency

and performance. The communication protocol does not waste resources to respond with

exceptions, as all requests result to responses that carry observations. This saves processing

power and communication bandwidth in both client and the server.

Another attribute of the design we propose is its non-invasive nature. Given the page

parameter is optional, current SOS clients can seamlessly submit GetObservation requests

and retrieve observations, as long as the SOS server carrying capacity is not exceeded.

This means that existing SOS 1.0 or 2.0 server infrastructures could switch to a paginated

implementation, and as long as they do not change their size limit threshold, existing clients

would continue to operate without disruption. In the rest cases, a page-parser method

should be implemented and incorporated in legacy clients. This method would parse a

GetObservation response document to determine the URL of the next GetObservation

36 A Sensor Observation Service extension for Internet of Things

Figure 3.2: A typical paginated observation retrieval workflow

request. On server side, the pagination extension could be easily applied on top of existing

implementations.

3.4 Demonstration and implementation

3.4.1 Setup

The SOS pagination extension introduced above comes with design advantages discussed

in the previous section. There are also performance improvements that we experimentally

evaluated by setting up two case studies. Without loss of generality, we assume not movable

sensors that hold timeseries information. In case study one, the server holds a regular

timeseries dataset, while in the second case study an irregular one. For both cases, we

compared the SOS pagination extension (SOS-p) service interface against SOS 2.0.

The SOS-p server is queried by a corresponding client (PAC), that is able to handle page

resumption tokens. For SOS 2.0 server, we considered two clients: one that is not aware of

SOS 2.0 carrying capacity and finds it by employing a divide-and-conquer algorithm (DAC);

and one that has this a-priori knowledge (LEC).

The three clients are in detail as follows:

Divide and Conquer client (DAC): DAC submits GetObservation requests according

to SOS 2.0 specification. When the server responds with a ResponseExceedSizeLimit

exception, DAC halves the time window and submits a new query. When DAC finds a time

window for which the server responds with no exception, it continues asking for observations

3.4 Demonstration and implementation 37

with of this duration size in the temporal filter, until it has received all the data corresponding

to the original request.

Leaky client (LEC): LEC knows the server carrying capacity and arranges the temporal

filter of its request, so that there are no exceptions. While this is against the no a-priori

knowledge requirement, it corresponds to the most favorable situation for the existing SOS

2.0 protocol. LEC submits GetObservation requests to SOS 2.0 only for case study 1.

Pagination-aware client (PAC): PAC client submits GetObservation requests according

to SOS-p, i.e. it is capable of processing the page resumption token. In its first GetObserva-

tion request asks for the first page, and then processes the response for the next page it

will ask for. If the GetObservation response document does not contain a next page tag, it

means that all requested observations were transmitted.

3.4.2 Implementation and synthetic datasets

This study makes use of the AiRCHIVE SOS server implemented in Python (Samourkasidis

& Athanasiadis, 2017). Clients were also implemented in Python. Queries to SOS server were

submitted as HTTP GET requests via Python Requests module (Reitz, 2017). Response

times for each case study were facilitated using the Python Time module (Python Software

Foundation, 2017b). All experiments were carried out on a Intel Core i5 4 Mac with a 2,4

GHz and 16.0 GB of memory (1600 MHz DDR3), running OS X El Capitan (Version 10.11.1).

SOS server and SOS client instances operated on the same physical machine.

In both case studies, a dataset of 15’000 observations was artificially generated. In case study

one, we assumed that measurements are sensed in constant intervals of 10 seconds. In case

study two, observations were timed with a inconstant frequency. Observation time interval

varies from 10 to 3000 seconds, distributed uniformly. Timestamps were generated with

the Python Random Number generator module, using Mersenne Twister (Python Software

Foundation, 2017a). Both timeseries were stored in two SQLite databases and made available

to the servers.

3.4.3 Experimental setup and metrics

As limited bandwidth and processing power are key elements of IoT systems, we set up

accordingly our experiments. The carrying capacity of the servers was defined to be 15

observations. This arbitrary threshold was chosen so that there will be significant traffic of

SOS requests. SOS 2.0 server would render a ResponseExceedSizeLimit exception if the

result set would include more than 15 observations. SOS-p server organizes its responses in

pages of 15 observations per page.

Clients were configured to request for observations for time intervals that result to 1 000,

2 000, 4 000, 8 000 or 15 000 observations (response length). Experiments have been repeated

10 times for all clients and both case studies.

For all experiments, we recorded two metrics:

38 A Sensor Observation Service extension for Internet of Things

a. the response time is the total time passed until the client has received the total

amount of data requested. Measured in seconds.

b. transfer volume is the total size of all response documents received by the client until

the whole response has been received. It is measured in MB.

Response times are averaged across the 10 repetitions, while transfer volume is the same for

each repetition.

For the cases of SOS 2.0 implementation, in the average response time and transfer volume,

time spent and resulted size of exceptions are also included.

3.4.4 Experimental results

Tables 3.1 and 3.2 summarize the results for both case studies and all clients. The response

time is reported as average and standard deviation of ten repetitions.

For case study 1, best results are achieved, as expected, by the client that is aware of the

server carrying capacity (LEC), but violates the no a-priori knowledge requirement. The

divide-and-conquer client (DAC) in SOS 2.0 adds an overhead to the transmission, as it

needs to search for a working time interval. Its performance is affected mostly of how close

the time interval found is to the servers carrying capacity. The response time was significantly

increased in our experiments in Table 3.1. In the contrary, the performance of SOS-p and the

paginated client PAC is very close to the server carrying capacity, without any breach of the

no a-priori knowledge requirement. Experimental results in Table 3.1 illustrate overheads

less than 5% in response time for up to few hundreds of pages, while for bigger numbers

of requests overheads in time may end up to 30% in response time. This is attributed to

the efficiency of the pagination implementation and is a well-known limitation among the

database community. In the future, we will investigate other database options that can

improve this further.

Table 3.1: Experimental results for the regular timeseries for all three clients. Average

response times and standard deviation across ten requests are reported. Total volume of the data

transmitted, number of requests, and number of exceptions for DAC.

Query PAC LEC DAC

Length resp.time(std) vol reqs resp.time(std) vol resp.time(std) vol exceptions

[s] [MB] [s] [MB] [s] [MB]

1000 1.34 (±0.049) 0.59 67 1.29 (±0.013) 0.58 2.36 (±0.02) 0.63 7

2000 2.68 (±0.012) 1.2 134 2.57 (±0.011) 1.2 4.64 (±0.05) 1.3 8

4000 5.53 (±0.083) 2.4 267 5.22 (±0.017) 2.3 9.27 (±0.03) 2.5 9

8000 11.93 (±0.031) 4.7 534 10.31 (±0.034) 4.7 18.31 (±0.06) 5.0 10

15000 24.77 (±0.739) 8.9 1000 19.05 (±0.043) 8.7 21.33 (±0.06) 8.8 10

For case study 2, irregular timeseries are served therefor there is no notion of leaking the

prior knowledge of the server carrying capacity. Here the paginated SOS-p excels over SOS

2.0, as presented in Table 3.2. SOS-p and PAC are faster than SOS 2.0 by more than 60%

on average on every GetObservation request. Also, note that number of requests has been

roughly doubled, which results to a noticeable difference in the amount data transmitted.

3.5 Discussion and Conclusions 39

Table 3.2: Experimental results for the irregular timeseries. For PAC and DAC clients reports

average response times and standard deviation across ten requests. Total volume of the data

transmitted, number of requests and number of exceptions for DAC.

Query PAC DAC

Length resp.time(std) vol reqs resp.time(std) vol exceptions

[s] [MB] [s] [MB]

1000 1.35 (±0.02) 0.59 67 2.40 (±0.03) 0.63 7

2000 2.75 (±0.05) 1.2 134 4.71 (±0.05) 1.3 8

4000 5.66 (±0.07) 2.4 267 9.28 (±0.06) 2.5 9

8000 11.97 (±0.08) 4.7 534 18.34 (±0.03) 5.0 10

15000 24.62 (±0.11) 8.9 1000 36.81 (±0.88) 9.5 11

This is to be expected, as the divide and conquer strategy may end up finding a query

window that is far from what can be actually served. There could be other search algorithms

employed for improving DAC performance. However, it is made clear from this experiment,

that the paginated protocol guarantees by design that the optimal number of measurements

is included in each response. SOS-p entrusts the burden of coordinating the observation

boundaries to the server, which knows its limits, than having the client wasting resources

with requests of suboptimal lengths. The improved performance ensures that there is no

waste of resources on both the client and the server side.

3.5 Discussion and Conclusions

This work contributes towards improving OGC SOS protocol to become IoT ready. Drafting on

top of IoT requirements as efficient resource utilization and opportunistic Internet connection,

and taking into consideration response size to GetObservation requests requirements set

in Volker Andres (2014), we designed a SOS extension, which implements a pagination

mechanism.

There is a fundamental difference between our design and the paging mechanism introduced

in OGC WFS (Vretanos, 2014). WFS paging design contradicts with the rationale of SOS

ResponseExceedSizeLimit exception, that is to enable the SOS server to manage efficiently

its resources. Conversely, it allows clients to select the number of returned observations,

which is a feature that can only facilitate specific applications (e.g. Graphical User Interfaces

which can visualize a certain number of observations). In the contrary, the solution proposed

in this work follows the Open Archives Initiative design pattern, and the decision on the page

size remains with the server, not the client. As we demonstrated above, this is a necessary

condition for the server in the IoT era, as it allows for parsimonious use of resources, and

protection from queries resulting with very big results.

Pagination introduces the notion of progressive transmission, which fits for purpose

with timeseries data sequential nature, but is also suitable for any kind of spatiotemporal

requests. It adds disruption-tolerance as an additional SOS feature, since a client can

40 A Sensor Observation Service extension for Internet of Things

request for and retrieve a specific page. This is very useful when big datasets are to be

transmitted or when the Internet connection is poor. Our design enables a SOS server to

exploit its resources to the maximum, as computational power and network bandwidth are

spent for yielding results, not for handling exceptions. Thus, the paginated extension enables

by-design SOS for devices with restrained capabilities, where resources are economized in

sharing interoperable knowledge.

Whilst our suggested design entails new improvements to the existing SOS 2.0, its importance

is highlighted by its non-invasive nature. Backwards compatible design is achieved through

the optional page parameter, since all requested data could be included in one page. This way,

current SOS 2.0 clients could operate without further modifications with SOS-p extended

servers, if the server always responds with the whole data requested.

Evaluating the SOS-p extension against specific metrics, we validated improvements by

experiments. Those improvements are mainly concerned with efficiency. Lower GetObserva-

tion requests completion times contribute towards IoT devices energy conservation, since

computational resources are occupied for less time, and thus more clients can be served

simultaneously. In addition to that, when carrying capacity is not known to the client,

the SOS 2.0 protocol is under-operating, as possibly transmits less observations in each

request. This results to more request-response transactions, with overheads in data volume

and duration time.

The pagination extension introduced here offers a remedy to SOS 2.0 shortfalls in handling

exceptions, by providing a machine interoperable solution. It also fills-in the SOS missing

piece, that is to “allow a client to determine the density of an offering” (Na & Priest, 2007).

Instead of that, it delegates to the server to drive protocol.

Advancements discussed so far lay the groundwork for future work. Firstly, our intention to use

pagination was exploratory, thus there is room for further improvements in the implementation

to further improve performance. One direction for improvement is the adoption of a caching

mechanism. Pagination is a good candidate for caching techniques, since requests are

incremental and queries are submitted sequentially. With the design introduced here, the

client reveals its intentions to the server, by asking the whole spatiotemporal boundaries of

interest. If the response is too big, the server will return the first page that includes a part of

the results. As the client intentions have been disclosed to the server, this allows for caching

mechanisms to be set up on the server side.

To summarize, we argued that current SOS design was not intended for the Internet of

the Things era. We designed a pagination extension offering progressive data transmission,

economizing resources and tackling with limited or interrupted Internet connectivity with

a disruption-tolerant protocol, while respecting SOS specification. There is a small effort

into extending current SOS servers and clients to implement the pagination extension, while

there are significant performance improvements, as indicated by the experimental results.

The pagination extension sets the grounds for enabling SOS as an Internet of the Things

dissemination outlet for sensor observations.

Chapter 4

A template framework for

environmental timeseries data

acquisition

This chapter is based on:

Samourkasidis, A., Papoutsoglou, E., Athanasiadis, I. N. A template framework for

environmental timeseries data acquisition. Environmental Modelling & Software, 117,

237–249.

42 A template framework for environmental timeseries data acquisition

Abstract

This work demonstrates a template framework for acquiring and integrating heterogeneous

environmental timeseries. Internet of Things contributes towards the high-availability of

environmental timeseries datasets. These are available through different protocols and stored

under diverse, custom formats, rendering data acquisition and integration a laborious process

of the environmental data lifecycle. We designed and implemented a template framework,

called EDAM to facilitate diverse data acquisition and integration. EDAM is founded on

re-usable templates, and requires no strong computer science background. EDAM supports

for data dissemination in custom formats, as instructed by output templates. A template

is an abstract representation of a data file’s structure written using programming language

agnostic semantics. We demonstrate EDAM generality, by scrapping online meteorological

data, extracting observations from a relational database, and aggregating historical timeseries

stored on local files.

4.1 Introduction 43

4.1 Introduction

Environmental data management, that is acquisition, processing, storage, and dissemination

(Athanasiadis & Mitkas, 2004; Mason et al., 2014) is becoming more challenging in the era of

Big Data (BD) and the Internet of Things (IoT). In the contemporary data-rich society, a

great variety of sensors and IoT devices enable the collection of large observation volumes,

which can be further processed for enabling new knowledge insights. At the same time, this

era is characterized as knowledge-poor, since universal data management and heterogeneous

data integration remain still open challenges (Negru et al., 2016).

Environmental data acquisition seems to be the most laborious step within the environmental

data lifecycle (Terrizzano et al., 2015; Harth et al., 2013; Horsburgh et al., 2009). This is

attributed to the heterogeneity pertinent to environmental data sources. Environmental

datasets are collected and stored under different data models in various forms; mainly in

files and relational databases (Horsburgh et al., 2011). Datasets which do not share common

data formats and/or communication protocols are difficult to be re-used without human

expert involvement. Syntactic heterogeneity is a factor which hinders the adoption of a

universal strategy to acquire data originating from disparate information sources. It also

obstructs the environmental data science core objective: to narrow the data-to-knowledge

latency (Elag et al., 2017) by supporting environmental data discovery and access; and by

enabling re-usability (Horsburgh et al., 2009; Ames et al., 2012; Athanasiadis, 2015; Holzworth

et al., 2015; Granell et al., 2010). FAIR (Findable, Accessible, Interoperable, Reusable)

guiding principles for scientific data management and stewardship highlight the importance

of scientific data reusability and reproducibility (Wilkinson et al., 2016). Long-term archival

and preservation of digital assets also implies the regular transformation of data between

storage formats and media.

There are two approaches to tackle syntactic heterogeneity. The first is to use/adopt

frameworks which were designed to facilitate environmental data discovery and accessibility,

such as the OGC Sensor Web Enablement (SWE) (Botts et al., 2008) and CUAHSI Hydrologic

Information System (HIS) (Horsburgh et al., 2009). Such systems hide the underlying

complexity of environmental data sources and expose them in a standardized manner,

through established data models (e.g. O&M (Cox, 2011), SensorML (Botts & Robin, 2014),

WaterML 2.0 (Taylor, 2014) etc.). The various datasets need to be stored in a common schema

in order to be exposed through a data sharing framework. This entails certain modifications,

which introduce overhead, and commonly require a strong computer science background to

implement (Andrae et al., 2009). The second approach is to develop programming language

scripts, each one tailored to the custom data format (Eberle et al., 2013; Woodard, 2016).

These custom-to-data scripts usually transform a dataset into a common data schema (Porter

et al., 2014), which allows for further processing, analysis or dissemination tasks (Boote et al.,

2015). These approaches have been used also for exchanging data between environmental

models (i.e (Porter et al., 2014; Horita et al., 2015; Peckham & Goodall, 2013; Jones et al.,

2015)).

Both approaches rely upon computer programming skills that are not always available. This

contradicts the lowering e-science barriers movement (Swain et al., 2016), that envisions

44 A template framework for environmental timeseries data acquisition

accessing data in an uncomplicated fashion, so that e-scientists can entirely focus on the

domain of their expertise, and not on side tasks, such as curating datasets. By the term

e-science we refer to a “global collaboration in key areas of science” (Hey & Trefethen, 2003)

which “promotes innovation in collaborative, computationally- or data-intensive research

across all disciplines, throughout the research lifecycle” (IEEE International Conference on

eScience, 2018). Based on our experience, transforming environmental datasets from different

sources, in order to fit as input to environmental models requires manual work which is

hardly re-usable. For example, different programming languages (e.g. Python (Van Rossum

& Drake, 2003), R (Ihaka & Gentleman, 1996), etc.) and data models (e.g. O&M, WaterML

2.0, etc.) are adopted for the scripting and environmental data management frameworks

approaches, respectively.

In this paper, we outline the design and demonstrate an open source implementation of

the Environmental Data Acquisition Module (EDAM), that addresses issues of syntactic

data heterogeneity using templates. An EDAM template is an abstract representation of a

data file contents using programming language-agnostic semantics. EDAM supports data

acquisition, integration and transformation from a variety of file types and syntaxes through

templates. Specifically, EDAM is applicable for environmental timeseries datasets stored in

various data formats (delimiter-separated files, flat files, etc), at various sources (files, folders,

databases, websites), and implementing different data models (tables, key-value pairs).

EDAM employs a declarative approach to enable scientists to annotate their data by means

of templates. It automatically parses the data, matches them with templates, stores them

and optionally exports them to a format described by an output template. This allows

for end-users to query, retrieve, and transform environmental timeseries datasets into their

own formats. Also, EDAM supports interoperable data dissemination through standardized

protocols (e.g. OGC SOS (Bröring et al., 2012)). We also demonstrate its front-end graphical

user interface (GUI) for creating maps.

We demonstrate EDAM in seven cases studies from various environmental domains, including

air quality, meteorology, agriculture and hydrology. To the best of our knowledge, this is the

first time that structural templates are extensively used for environmental data management

tasks (i.e. acquisition, integration and dissemination). We started exploring this approach in

Papoutsoglou et al. (2015), where we investigated a case study for collecting data from a

smoky Swiss railway station. Here we extend our work with six more real-world cases:

a. scraping meteorological data from the public webpages of the Bureau of Meteorology

(BoM) in Australia and the UK Met Office,

b. parsing hydrological timeseries data from the Hydrological Observatory of Athens

(HOA),

c. extracting observations from an air quality archive from BoM, originally stored in a

relational database,

d. aggregating historical timeseries data from all Dutch weather stations, provided by

Koninklijk Nederlands Meteorologisch Instituut (KNMI),

e. transforming weather input data of APSIM crop model (Holzworth et al., 2014) into

the AgMIP format (Porter et al., 2014).

4.2 Background and related work 45

The rest of the paper is structured as follows: In Section 4.2 we review contemporary

approaches for environmental data acquisition and integration, and introduce readers to

environmental data management with web template frameworks. Section 4.3 presents the

EDAM architecture; specifically: key requirements, user types, and use scenarios. Section

4.4 demonstrates EDAM, the conducted experiments, the used datasets and the addressed

challenges. Finally, in Section 4.5 we discuss our research findings and lessons learned,

conclude the research summarizing key findings and future work.

4.2 Background and related work

In the environmental data literature, different terms are used for describing the process

of obtaining a dataset and transforming it into another format. Specifically the terms:

harmonization (Porter et al., 2014), mediation and conversion (Horsburgh et al., 2011),

management and publication (Jones et al., 2015), integration (Beran et al., 2009), acquisition

and collation (Mason et al., 2014) and wrangling (Terrizzano et al., 2015; Kandel et al., 2011)

are synonyms for data acquisition and integration.

In this work, we focus on acquisition and integration of environmental timeseries data. In

general, the acquisition process works as follows: A station, stationary or not, houses one

or more sensors. A sensor measures one or more observable(s) producing observations. An

observation has a value expressed in some units, and refers to a certain timestamp, and

possibly a location. In this context, environmental observations without a temporal dimension

(e.g. soil data) are not considered timeseries and thus can not be processed by EDAM. Also

note that EDAM can process location data when they are associated with a timeseries

(i.e. observations of latitude, longitude, angle, etc, at a certain timestamp). Location data are

stored as regular timeseries and can be combined with other observations. This is elaborated

further in subsection 4.4.1).

In the rest of this section we review approaches that cope with syntactic heterogeneity.

First, we present environmental data management frameworks which by design account for

syntactic interoperability. Environmental data management frameworks are typically used

for preparing inputs required for executing scientific workflows, decision support tools or

environmental models. However, not all environmental datasets are offered through such

frameworks. Second, in Subsection 4.2.2 we present the scripting approach which facilitates

environmental data transformation to fit into a consistent data format. Last, Subsection 4.2.3

introduces web template frameworks and presents our previous experiences with them.

4.2.1 Environmental data management frameworks

Providing standardised discovery and access services for environmental data is a key require-

ment for an environmental data management framework (Horsburgh et al., 2011). Examples

of such frameworks are the OGC Sensor Web Enablement (SWE), which supports timeseries

dissemination through the Sensor Observation Service (SOS) (Bröring et al., 2012), and

the CUAHSI Hydrologic Information System (HIS) (Horsburgh et al., 2009). Both, provide

46 A template framework for environmental timeseries data acquisition

interoperable data access on two layers: a) communication, b) data representation. Com-

munication is achieved by defining standardized ways to request environmental data (e.g.

GetValues for CUAHSI-HIS (Ames et al., 2012), GetObservation for OGC SOS (Bröring

et al., 2012)). Data representation deals with data dissemination through standardized

information models, which hide the underlying data complexity. For example WaterML 2.0

(Taylor, 2014) is promoted by both frameworks in order to represent hydrological timeseries

data.

Environmental data management frameworks can provide interoperable access to raw data

by transforming them to a common data model. This common data model can be part of

the framework, or its implementation. In the case of OGC SOS there are different software

implementations which use different data models (McFerren et al., 2009). On the other

hand, CUAHSI-HIS is founded around the Observations Data Model (Horsburgh et al., 2008).

Software tools were implemented to import data into an ODM database. Horsburgh &

Tarboton (2007) document a data loader component which imports tabular timeseries into

an ODM instance. Mason et al. (2014) present an environmental management framework

which utilizes reusable data parsing templates to annotate tabular timeseries and import

them into an ODM instance.

4.2.2 Data integration through scripting

Several efforts are reported in the literature where scripts have been used for environmental

timeseries acquisition and integration. By the term script, we refer to a small computer

program which is intended to automate a task, regardless of whether the programming

language in which it was developed is considered a scripting language (e.g. Python) or not

(e.g. Java). For example, the Ag-Analytics platform (Woodard, 2016) demonstrates a data

warehouse to retrieve data from heterogeneous data sources. It extracts data through custom

scripts written in Python, one for every data source. In another example, Harth et al.

(2013) employ a Linked Data scripting language, called Data-fu (Stadtmüller et al., 2013),

to integrate diverse data sources. Each Data-fu program comes with data source specific

rules and queries. In a third line of work, Porter et al. (2014) present a data harmonization

workflow to promote model inter-comparison and ensemble modelling. Data source specific

translators were developed and used to integrate heterogeneous datasets into the AgMIP

common data schema, in order to facilitate data exchange between crop models.

4.2.3 Environmental data management with web template systems

Web template systems are designed to create dynamic content and are extensively used in web

applications. They are used for automatically generating custom content, such as customer

invoices, search results, data reports, etc. Web template systems (e.g. Jinja2 (Ronacher,

2008), Mako (Bayer, 2007), Cheetah3 (Broytman & Croy, 2001)) are intuitive to use, and do

not require advanced programming skills. Each one comes with a template language, which

is used to markup templates. A template is a document which represents a data structure

using variables (Geebelen et al., 2008). Dynamic views are rendered by feeding a template

4.3 The EDAM framework 47

with data, and template variables are substituted with values.

Web template systems can support data output by design, but not data input directly. For

example in Samourkasidis & Athanasiadis (2017), we employed Jinja2 to create on-the-fly

dynamic views for environmental data dissemination. In a previous work (Papoutsoglou

et al., 2015), we also started experimenting with using template files as a markup for data

input, where we presented a platform which used templates to read from local files in a

variety of formats.

4.2.4 Summary

Acquiring and integrating environmental timeseries in a consistent data format is a manual

process which requires significant efforts. This is because the vast majority of environmental

datasets available in the Environmental Internet of Things (EIoT) are heterogeneous by

nature (Hart & Martinez, 2015). Universal data acquisition and integration can be achieved

through the scripting approach. Nevertheless, there is a trade-off between generality and

complexity. This approach opposes the lowering e-science barriers, since it presumes a

computer science background (Swain et al., 2016). A web template framework language

is much more simple compared to a traditional programming language. In this work, we

investigate the use of templates in order to acquire and integrate environmental timeseries

datasets, and seek for a compromise in the trade-off between complexity and generality.

4.3 The EDAM framework

4.3.1 Objectives

There were three objectives in designing and developing EDAM. The first was to lower

e-science barriers by embracing a programming language-agnostic solution. Obtaining

timeseries data by writing small computer programs (scripts) has already been investigated

(see Subsection 4.2.2). Thus, we focused on solutions that involve as little as possible

programming skills for its end-users, and examine the use of templates written with a simple,

programming language-agnostic markup.

The second objective was to apply EDAM to a wide variety of case studies, in order to tackle

the intrinsic heterogeneity of environmental data sources. This heterogeneity is related to

a) data source type (which could be text files, webpages, databases, web services), b) data

formats (i.e. comma-separated values (CSV), tab-separated values (TSV), etc.), and c) data

models after which available environmental data are structured.

The third objective was to create custom views of timeseries data and disseminate them

through standard interoperable protocols, as OGC SWE standards. This enables users to

transform data from one format to another, promoting interoperability for environmental

modelling and overcoming problems related to the diversity of data models. It also copes with

syntactic interoperability by exposing EDAM -processed datasets via established information

models such as O&M and SensorML.

48 A template framework for environmental timeseries data acquisition

4.3.2 Abstract architectural design

There are three key-components involved in EDAM : a) input files, b) template files, and c)

template engine. Figure 4.1 depicts the interaction between EDAM components for data

input and output. In all cases, the data are extracted from their original source and stored

in the EDAM database in a unified data model. Then, they can be fetched and presented in

a user-defined way using a range of custom templates.

Any kind of text-based source can serve as an input. Inputs are stored in one or more files,

locally or remotely. They may be stored in a local nested folder structure, on a website or

relational databases from which data could be extracted with SQL queries.

An EDAM template is an abstract representation of data file contents. Each template file is

bound to a specific data syntax, which is comprised of:

a. a timestamp, which may come in different formats (as we discuss below),

b. a set of observables in a given order, along with optional metadata annotating their

semantics.

Omitting observables, changing their order of appearance and/or changing timestamp repre-

sentation results in a different data syntax, i.e. requires a different template. We envision that

one template will be needed per sensor vendor, or legacy data formats used for input/output

by environmental models. Templates can be used for specifying both input or output data

file structures, and are written using the EDAM template language.

The EDAM template engine and language are the core of the framework, offering various

processing capabilities. The template language itself is founded on programming language-

agnostic semantics. Besides simple data parsing, the EDAM template engine supports

mathematical and statistical operations. Both the template engine and language are imple-

mented after Jinja2 (Ronacher, 2008). This enables us to use the Jinja2 mature framework

for data dissemination purposes.

Regarding data dissemination EDAM may offer acquired data as services on the web.

Currently, EDAM supports data dissemination through OGC Sensor Observation Service,

and its own EDAM API. The EDAM API enables the creation of custom data views, since

EDAM templates can be called dynamically.

EDAM template language artefacts (keywords or user-defined variables) are located inside

placeholders ({{}}). The EDAM template language has four restricted keywords: station,

observable, sensor, timestamp, which result from the EDAM underlying data model.

Figure 4.2 depicts the EDAM unified data model along with the template language restricted

keywords. The data model was designed after our assumption of an environmental data

source, and it is tailored to the needs of the template language. This is also the reason why

we did not reuse any third-party data model. A third-party data model involves a number

of external dependencies via foreign keys that would affect the template language syntax,

rendering it complex and difficult to use.

User-defined variables are used to annotate the observables found in a dataset. Their

semantics are further specified in a metadata file. A template may contain control statements

4.3 The EDAM framework 49

Figure 4.1: EDAM abstract architectural design. Black and blue arrows depict output and input

workflows, respectively. EDAM supports data transformation through its API, and standardized

data dissemination through OGC SOS. For the depicted example, input and output files are

identical, since the same template file was used for the respecting processes

50 A template framework for environmental timeseries data acquisition

Figure 4.2: EDAM unified data model. A station houses a number of sensors which measure

observables and produce observations. An observation has a value for a given timestamp. Data

curators define observable ids which represent observables

(e.g. if-then-else, for-loops) to provide formatting and control functionality, and set the logic

which will be used for data retrieval.

Next to the template file, there is the metadata file. It is drafted by users in order to further

annotate data parsed from input files. Metadata include information commonly not stored

directly in the original input files, as for example units of measurement for observables, or

station locations. Such additional metadata, which may include terms from ontologies, are

necessary for enriching the semantics of the original data. How this works is further detailed

in the following section.

4.3.3 Workflow

The EDAM workflow operates in two phases: data input and data output. Data input

concerns data acquisition, preprocessing, and storage processes. Data output involves the

discovery, transformation and dissemination of information. Figure 4.3 depicts the workflow

for data input and output, accordingly. We identify two user roles in the EDAM system:

Data curators are interested in sharing data with EDAM added-value services, and import

datasets into the system. They draft input templates making new data sources available.

Data consumers are e-scientists (i.e. modellers, researchers, decision makers) who are

interested in third party data stored in EDAM. They use EDAM to a) view available datasets,

b) render graphs, c) apply filters on data and d) download them in various formats (i.e. csv,

4.3 The EDAM framework 51

Figure 4.3: EDAM workflow. Upper part depicts data input, and lower part data output. The

database component belongs to both. The output template file differs from the input one, as the

order of variables is reverted. This is reflected on the output data structure

txt, etc.). They may create custom data views by editing template files (e.g. change the order

of columns, omit columns, etc.). Software agents can also be considered as data consumers.

They interact with the system using OGC SOS, or the EDAM API.

A workflow to input data into EDAM is as follows: A data curator drafts the input template,

documents all relevant metadata in a metadata file, and finally provides a data source. An

input template has the original data source structure. Data curators may provide EDAM

with metadata using the metadata files, to augment the original information with additional

details about the station, the involved observables, and their corresponding sensors and

units of measurement. While this step is optional, it is critical towards data reusability and

interoperability.

Figure 4.4 shows a sample input file from the UK Met Office (Fig 4.4a), and the corresponding

template file (Fig 4.4b). EDAM keyword {{station}} has been used for annotating all

data relevant to the station name and location. The keyword {{timestamp}} is used to

parse the component of the date to which the observations correspond to. In this case,

we used {{timestamp.year}} and {{timestamp.month}} to parse the year and the month

respectively. Generic Jinja2 keywords, such as {%for %} are used to parse all data reported

in the file. User-defined keywords are used as variable names to annotate observable values, as

52 A template framework for environmental timeseries data acquisition

Durham

Location: 426700E 541500N, Lat 54.768 Lon -1.585, 102 metres amsl

Missing data (more than 2 days missing in month) is marked by ---.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

1880 1 4.2 -1.4 22 13.5 ---

1880 2 8.7 0.6 12 44.3 ---

1880 3 9.2 1.0 12 32.5 ---

(a) Original input file

{{station.name}}

Location:{{station.location}}, Lat {{station.latitude}} Lon {{station.longitude}}, {{station.tags.altitude}}

Missing data (more than 2 days missing in month) is marked by ---.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

{%for timestamp, tmax,tmin,af,rain,sun in station.data%}

{{timestamp.year}} {{timestamp.month}} {{tmax.value}} {{tmin.value}} {{af.value}} {{rain.value}} {{sun.value}}

{%endfor%}

(b) Input template

Figure 4.4: Acquiring meteorological data from a dataset inspired by UK Met Office. (a) depicts

the input file and (b) its corresponding template file

{{tmax.value}}, {{tmax.value}}, {{tmin.value}}, {{af.value}}, {{rain.value}}, and

{{sun.value}}. Figure 4.5 depicts the corresponding metadata file, which defines additional

station and observable metadata. Data curators can specify the timezone (station attribute),

which will be used to complement all the station related timestamps. The value of the

timezone attribute can be either the format as code keyword, or a timezone from the tz

database (Wikipedia contributors, 2018). In case the format as code keyword is used, EDAM

automatically identifies the corresponding timezone from the station’s location and assigns it

to the related timeseries. Greenwich Mean Time (GMT) is the default timezone, which is

used when no location is provided, or the timezone attribute in the metadata file is omitted.

Data curators also use the metadata file to relate a user-defined keyword (e.g. tmax) with

a) its corresponding observable name (e.g. Temperature Maximum) and b) the unit it was

reported (e.g. Celsius). There is also a section to store metadata about the utilized sensors,

which in this example are unknown.

4.3.4 Implementation and modes of operation

In Table 4.1 we depict EDAM implemented functions distinguished by when they are utilized.

Input functions are applied by EDAM during the process of data input. Processing functions

concern statistical and conditional filters which are written on output templates and are

applied during data output. Last but not least, dissemination functions are added-value

services offered for EDAM -imported datasets.

EDAM software has been developed in Python, and is available as open-source software on

GitHub (Samourkasids et al., 2018) under the GNU Affero General Public License Version

3. It is also distributed as an autonomous Python package through the Python Package

Index (pip) (Python Software Foundation, 2018), and can be installed on a computer with

Python installed by typing pip install edam. The pandas Python library (McKinney, 2011)

supports the EDAM input and processing functions. The EDAM dissemination functions are

implemented with the Flask web framework (Ronacher, 2010), and acquired timeseries are

4.3 The EDAM framework 53

Station:

license: Attribution

region: United Kingdom

url: http://www.metoffice.gov.uk/

timezone: Europe/London

tags:

key1:value1

Observables:

- observable_id: tmin

name: Temperature Minimum

- observable_id: tmax

name: Temperature Maximum

- observable_id: rain

name: Rain

- observable_id: af

name: Days of air frost

- observable_id: sun

name: Sunshine duration

Units of measurement:

- name: Celsius

symbol: C

relevant_observables: tmin, tmax

- name: Days

symbol: D

relevant_observables: af, sun

- name: Millimeters

symbol: mm

relevant_observables: rain

Sensors:

- name: Generic sensor

manufacturer: Unknown

relevant_observables: tmin,tmax,af,sun,rain

tags:

generic: True

analog: False

Figure 4.5: The metadata file for the input dataset reported in Figure 4.4b. There are four

sections (Station, Observables, Units of measurement, Sensors), under which data curators

define metadata. This is where an observable id is defined and related with its corresponding

observable name. Users also reference these observable ids to relate an observable with the

relative unit of measurement and sensor. The sensors utilized in this study are unknown and

thus are defined as Generic. The same result would be produced in case the Sensors section was

omitted.

offered as OGC SOS services through the Python implementation reported in (Samourkasidis

& Athanasiadis, 2017). The hardware requirements of EDAM are minimal. We installed

EDAM and tested its functionalities on a Raspberry Pi 2 Model B mini-computer (Raspberry

Pi, 2018) without any issues.

EDAM operates as a local standalone system. This means, that EDAM -parsed datasets are

stored and can be accessed locally on user’s computer. Installation automatically creates a

folder in the home directory, in which the user should store templates and metadata files.

After installing EDAM two commands are available via the command line: edam and viewer.

These commands reflect the two distinct modes of operation: the command-line mode and

the graphical user interface mode.

In the command line mode, data curators utilize the edam command to define the input

arguments (i.e. input, template and metadata file), in order to parse and store a dataset.

Optionally, they can define the output parameters (i.e. template and metadata file), in order

to transform a dataset on-the-fly.

In the Graphical User Interface (GUI) mode, we assume that some datasets have already

been imported in EDAM ’s database and the user wants to disseminate them via the EDAM

web services. The viewer command starts the EDAM web services, which currently are

the API, OGC SOS and the web front-end. Human users can access these services on their

browser, and machines via the appropriate protocol. Note that the web front-end includes

information about the EDAM API, how to access the stored datasets, and the OGC SOS

instance.

54 A template framework for environmental timeseries data acquisition

Table 4.1: EDAM functions distinguished by when they are applied. Input functions are applied

by EDAM during data input. Processing functions are placed on output templates. Dissemination

services are automatically offered for EDAM acquired datasets

Function Description

I
n
p
u
t

URI generation (I1) Generate URIs based on a pattern. Each URI represents a data

source, either online (i.e. URL) or a file (i.e. URI)

Online parsing (I2) Acquire online data sources via a URL

File parsing (I3) Acquire text data sources via a URI

Database parsing (I4) Acquire data sources from a relational database via a connection

string and an SQL query

Folder exploration (I5) Navigate through folders and utilize I3 feature

Metadata curation (I6) Update station or observable with metadata found on timeseries

resource (file or online source)

Conditional filtering (I7) Input a data point based on a condition. It can be used for

QA/QC purposes

Timestamp assembly (I8) Construct a timestamp out of many components (i.e. day,

month, year, hour). It supports for complex timestamp com-

ponents (i.e. julian dates and years)

Relationship establishment (I9) Resolves a relation between a data point and its related meta-

data. This function resembles the functionality of Foreign Keys

in relational databases

Timeseries merging (I10) Associate timeseries of a station, which are originally offered as

multiple ones

P
r
o
c
e
s
s
in

g

Resampling (P1) Upsample or downsample timeseries data. Resampling is

performed upon a user-selected aggregation or interpolation

method*

Summarization (P2) Generate a summary of statistical values for timeseries data.

The summary concerns: count, mean, std, min, 25%, 50%,

75%, max

Conditional export (P3) Similar to I7, it facilitates QA/QC

D
is
s
e
m

in
a
t
io
n Map projection (D1) Stations are projected on a map based on location metadata.

Should they not be provided, EDAM attempts to estimate them

via station name.

OGC SOS (D2) Acquired datasets are offered as services through OGC SOS

Data transformation (D3) A dataset can be exported with a different template. This fea-

ture is available in cases where the output template is compati-

ble with the dataset**

* This uses the resample function of the pandas library.
** In order for a template to be compatible, it should contain the same observable id with the requested

dataset. Generic templates are by-design compatible

4.4 Demonstration

We demonstrate EDAM extended outreach by acquiring environmental timeseries data from

diverse data sources. In Table 4.2 we name the seven sources we identified. Each of them

poses a different challenge: a) timeseries with complex timestamp structures in custom

formats and datasets which have essential metadata in their preamble (APSIM, AgMIP), b)

online datasets having a simple timeseries structure (UK Met Office), or a more complex

one (BoM (Met)), c) datasets stored in one file (KNMI) or dispersed in multiple files within

folders (Swiss TPH), and d) abstract data models applied on text files (HOA) and relational

databases (BoM (Air)).

In Subsection 4.4.1 we describe the case studies against which we evaluated EDAM. We

also highlight challenges associated with each dataset. These challenges were addressed by

employing EDAM input functions during the development of the input templates. Table

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html

4.4 Demonstration 55

4.3 presents the exact functions used to cope with challenges for each case study. Besides

timeseries data, storing corresponding metadata is an essential requirement for EDAM. The

metadata curation (I6) function was applied on every dataset.

For all the following case studies we developed EDAM templates as needed and parsed

successfully the datasets using a single EDAM command. The developed templates are

available as Supplementary Material A, and also on the EDAM GitHub repository, along

with detailed instructions to repeat the experiments with the exception of Swiss TPH and

BoM data, as original data involved are not publicly available.

4.4.1 Test cases

AgMIP and APSIM weather data files

The Agricultural Model Intercomparison and Improvement Project (AgMIP) (Porter et al.,

2014) have brought agricultural model data sharing into the spotlight. Within AgMIP,

various agricultural model data inputs and outputs (such as the APSIM (Keating et al.,

2003)) were transformed into the common AgMIP data scheme. Here we worked only with

the weather data files.

Note that, AgMIP and APSIM data files use different timestamp formats. APSIM uses

days of year and years, while AgMIP timestamp is represented through year, month, date

components. We addressed the challenge of composing these into one universal timestamp

with the timestamp assembly (I8) function.

Another challenge was related to metadata encoded in the preamble of APSIM data files.

The APSIM weather file includes station metadata above the timeseries data, such as station

name, location and others.

We addressed this challenge of extracting metadata from the preamble with the metadata

curation (I6) function.

UK Meteorological Office

In the context of Open Data, the UK Meteorological Office reports historical obser-

vations of 27 weather stations. For every station, monthly observations are stored

in one text document. New observations are appended every month and each

weather station can be found on a certain web location. They follow the pattern:

http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/station

namedata.txt, where {station name} is replaced with an actual station name.

Data points reported have special markers for the quality of the reported values. Markers

are weakly defined in each document preamble. For example, estimated data is marked

with a * after the value and missing values are represented through the --- notation. Such

markers make it difficult to parse and reuse the data directly. Capturing such observation-

specific quality attributes is a further challenge that EDAM in its current version does not

56 A template framework for environmental timeseries data acquisition

support. We used the conditional filtering (I7) function in order to filter out the

missing values.

Australian Bureau of Meteorology (Meteorological datasets)

The Bureau of Meteorology (BoM) in Australia offers historical meteorological timeseries

for a number of weather stations across Australia. They concern daily observations which

are published every month as HTML and CSV documents with the same structure. Users

can access the timeseries by crafting URLs which comprise information about the requested

station id, and month/year. For example, the URL for the meteorological data about Adelaide

station (5002 station id) for October 2017 is:

http://www.bom.gov.au/climate/dwo/201710/text/IDCJDW5002.201710.csv

The challenge in acquiring BoM timeseries is in regard to their structure. It is a common

practice in delimiter-separated files that every row corresponds to one observation for a

given timestamp. However, each BoM row reports two observations for the same daily

timestamp. These two observations report the same measured quantity at different times on

the same day. Thus the sampling hour, needs to complement the daily timestamp for the

bi-daily observations, is included in the dataset’s header. We addressed this challenge with

the timestamp assembly (I8) function. We also utilized custom Jinja2 macros in order to

support this type of tabular timeseries.

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

The Royal Netherlands Meteorological Institute (KNMI) provides weather services for the

Netherlands. They offer historical observations as text documents. For our study, we parsed

historical observations from 37 Dutch weather stations from 1901 to 2016. Each weather

station reports daily observations for 39 observables. The dataset comes as a whole in a

single text file of 158 MB, which includes metadata in the preamble.

The challenge here was to separate the metadata from the timeseries using templates.

We addressed this challenge by utilizing metadata curation (I6) and relationship

establishment (I9) functions.

Swiss Tropical and Public Health Institute

The Swiss Tropical and Public Health Institute (TPH) monitors air quality in train stations

among others. Both stationary and moving stations are used, consisting of multiple sensing

units. Each sensing instrument exports its measurements in a file in a sensor-dependant

format. All station-related files are stored in a folder structure. Additionally, there are

multiple data formats associated with a station as different sensor types are involved in the

various studies. For example, the GPS sensor exports its readings in a file with seven columns

(date, time, latitude, longitude, speed, bearing, altitude).

http://www.bom.gov.au/climate/dwo/201710/text/IDCJDW5002.201710.csv

4.4 Demonstration 57

The challenge with the Swiss datasets is related to the aforementioned folder-tree structure.

Not all file types are present in all folders, so EDAM is challenged to match the various

files found against several templates in order to extract observations. We addressed this

challenge by navigating folders with the folder exploration (I5) function, and matching

files with the corresponding templates with the file parsing (I3) function. We associated

the different datasets to the corresponding station with the timeseries merging (I19)

function. The other challenge was to combine location data with the other observations

into one output file. Specifically, each sensor took observations at different time intervals.

EDAM automatically solves the issue by combining together observations sharing the same

timestamp.

In a data fusion scenario, output templates could be used for homogenising the reporting

timestamps of the various sensors involved in a study.

Hydrological Observatory of Athens

The Hydrological Observatory of Athens (HOA) offers a service endpoint for hydrological

timeseries. Several observed properties are reported for 23 stations. Each of them is offered

separately on the web, and every observed property dataset has a unique URL. Timeseries

are reported under the same abstract format, consisting of a preamble with relevant metadata

(i.e. about the station, observed property, unit of measurement, etc), and the actual timeseries

in the form of key-value pairs.

The challenge in acquiring HOA timeseries concerns the abstract data format. In non-abstract

data formats a given file column corresponds to a certain observable, which is mentioned in

the header. In contrast, the HOA abstract data format mentions the observed property at

the preamble of each document. We addressed this challenge by drafting an abstract input

template. The specific observable id was defined dynamically based on the metadata found

in the document preamble.

Again, here each station reports several files, one for each observable, but all have exactly

the same format. Instead of drafting as many templates as the available observed properties

we use a generic template that includes the observable id.

In a data fusion scenario, output templates can be used for linking together the various

observables of the same station.

Australian Bureau of Meteorology (Air quality dataset)

BoM developed a historical database that contains hourly air quality timeseries in several

locations in Australia. We were given access to this PostgreSQL database that contains data

of common pollutants as SO2, O3, CO, NO2 and PM10, in 99 stations and corresponds to a

period of 20 years (1988-2008). In total, there are about 15 million records. Observations are

stored in key-value pairs, with detailed metadata about the stations, and observed quantities.

Metadata are stored in a different relational database system (i.e. Oracle). In total, there are

four tables in this implementation. The challenge in acquiring these timeseries lies in the

58 A template framework for environmental timeseries data acquisition

relational databases and the chosen structure. Data and metadata are stored in different

tables across different database systems. In the observations table, each observation is

associated with the corresponding station. In the station metadata (i.e. name, location,

altitude) table, each station is referenced with the aforementioned identifier. We addressed

the challenge of realizing the external relationships so data are appropriately linked when

harvested, with the relationship establishment (I9) function.

4.4.2 Demonstrating EDAM output

With regard to dissemination services, an example output of EDAM is shown in Figure 4.6.

We demonstrate EDAM acquisition and integration for all Australian weather stations for

July 2017. Specifically, EDAM utilizes URI generation (I1) to discover 478 BoM stations.

Employing online parsing (I2), and using one template for all stations, EDAM acquired

and stored approximately 210,000 data points. Above operations were realized through a

single EDAM command, that looks like:

edam --input "http://www.bom.gov.au/climate/dwo/201707/text/IDCJDW{2-8}0{01

-82}.201707.csv" --template bom.tmpl --metadata bom.yaml

EDAM processing capabilities are mainly regarded with statistical filters and conditional

exports. Figure 4.7 exhibits them when applied on a UK Met dataset. Specifically, we

aggregate daily into monthly observations with the resampling (P1) function. Consequently,

we illustrate conditional export (P3) function exporting only those datapoints which

satisfy a given condition. Processing functions are placed directly on the output template

files.

The data transformation (D3) function facilitates the dataset transformations from one

format to another. We demonstrate this feature with the AgMIP dataset and the WebX-

TREME service (Klein et al., 2017). The latter is a web service which, given an input in

a certain format, calculates extreme weather indicators. Transforming an EDAM curated

dataset requires the draft of a template file for the target format. Figure 4.8 demonstrates

the creation of a custom data view, by simply drafting a new template file.

4.4.3 Lessons learned

While we aimed with this work to lower the barrier for e-scientists, we realized early that

non-standard data formats usually lead to complex templates. This is due to the inherent

complexities of environmental data domain, and the poor design choices that often come

with legacy formats. The most complex data format we faced was BoM Met. In all other

cases, each column represented a single observable. However, in the case of BoM Met the

same observable was reported in two columns. Each column reported measurements taking

place at different times in a day. The exact time each measurement was taken was noted in

the header. Using EDAM functions and Jinja2 utility helpers, we successfully acquired and

integrated BoM datasets.

Another factor which leads to complex templates is when metadata are mixed with timeseries

4.5 Discussion and conclusions 59

data. This is the case with the KNMI dataset, where metadata about all stations and all

their observables precede the observations.

Parsing HTML tables using templates was rather cumbersome. Initially we tried to parse

BoM Met weather stations in their HTML form. However, HTML comprises numerous tags

which provide an aesthetic view to the page (e.g. colors, aligns, fonts). These tags hinder the

draft of a reusable template file, and render its composition a rather complex process. Thus,

in its current release, EDAM cannot directly parse timeseries stored along with HTML tags,

rather these should be stripped out as a pre-processing step.

There are also challenges in the way timestamps are represented in different datasets. EDAM

provides users with an intuitive mechanism to annotate different timestamp components.

Among the EDAM case studies we successfully parsed all different timestamp representations.

In most of the datasets we experimented with, timestamp components were spread in more

than one column and they were not in an ISO 8601 format. For instance, in APSIM weather

files the timestamp is as ordinal date, comprised of two columns: The first one for the year

and the second for the day of the year (Julian date). EDAM internally composes a universal

timestamp object, so data consumers during data output can transform a timestamp in as

many components as they want.

Timezone information is essential especially for spatially diverse datasets. Among all case

studies, the timezone of the reported observations was explicitly reported only in one

(HOA). All other datasets contained timezone information neither on the dataset nor on the

corresponding metadata files. Interestingly, the BoM online portal which serves observations

for the whole Australian continent, does not state the timezone in which observations are

reported. EDAM is able to assign timezone information to datasets, either using station-level

metadata or deriving it from the station geolocation. In cases where no timezone information

is declared the GMT timezone is used.

While this is not a performance study, we measured some performance indicators. The KNMI

dataset was the most voluminous dataset we parsed (158 MB). EDAM parsed and stored

over 24 million datapoints in less than 8 minutes on a PC with 16 GB RAM. Nevertheless,

volume is not the only constraint. In our attempt to discover BoM Met weather stations,

EDAM generated and requested 574 unique URIs. From the 574 generated stations, 478

existed. Submitting the HTTP GET requests, reading the responses, and downloading the

datasets took about 5 minutes. Station data were about 2 MB in total. Iterating through

the 478 station timeseries and storing them took almost 11 minutes. In another example,

the AgMIP dataset which consisted of one 1 MB file and more than 90,000 datapoints, was

parsed and stored in about 2 seconds.

4.5 Discussion and conclusions

Today, environmental datasets are either available through interoperable environmental data

management frameworks or can be found in raw, non-standardized formats. Both approaches

require significant effort and usually a computer science background in order for data to be

acquired, integrated and re-used. In this work we present EDAM, a template framework,

60 A template framework for environmental timeseries data acquisition

as a universal strategy of acquiring and integrating diverse environmental timeseries data.

EDAM copes with diversity in terms of data storage type (i.e. files, webpages, databases)

and data format (i.e. relational, key-value pairs).

The EDAM data acquisition and integration capabilities have been investigated in the light

of several test cases. Using EDAM we acquired and integrated datasets with different

characteristics, demonstrating its generality. The evaluation of the software against timeseries

with simple and more complex structure provides insights about the system’s extended

outreach. EDAM supports not only timeseries stored in files (as the template parsing files

introduced in (Mason et al., 2014)), but also from webpages and relational databases.

Data transformation into consistent data formats and dissemination through standardized

protocols is essential for syntactic interoperability in the IoT era. EDAM Users can transform

legacy environmental datasets between data formats by using EDAM templates. In this

way, EDAM contributes towards a) environmental model re-usability by transforming data

inputs/outputs in scientific workflows (Granell et al., 2010), and b) environmental data

FAIRness as it facilitates timeseries re-usability, and interoperability and enhances repro-

ducibility (Wilkinson et al., 2016). It also promotes further environmental data discovery

and access through standardized dissemination protocols, i.e. the OGC Sensor Observation

Service.

We consider that EDAM also contributes towards lowering the e-science barriers (Swain

et al., 2016). In contrast with most methodologies for acquiring EIoT datasets reported in

the literature, EDAM does not presuppose a strong computer science background. We argue

that templates offer a compromise between generality and complexity. The system is founded

around a template language which uses programming language-agnostic semantics. Users

are not required to have more programming skills than they already have in order to draft

an EDAM template. As we demonstrated in Section 4.4 the templates drafted with EDAM

language are reusable, and can be used for both data input and output.

The EDAM design embraces the open source principles, and allows for future extensions.

On the processing layer, the system offers some pre-implemented processing functions which

can be called by end-users. These support the on-the-fly calculation of values which were

not originally stored in the database, and facilitate sensor data fusion, and/or aggregation.

External users more advanced with computer science background can extend the system by

defining such processing functions.

4.5.1 Future work

Future work may focus on issues related to semantic interoperability. EDAM supports

metadata annotation of observables using ontologies. While these annotations are stored in

the system, they are not fully utilized. In its current version, EDAM lacks a semantic layer

to act upon datasets and templates. In principle, a dataset that was acquired through an

input template can be transformed with another template only if both templates utilize the

very same observable ids. The observable ids are drafted by data curators, and represent

certain observables. Future work may investigate the use of a reasoner to resolve relations

4.5 Discussion and conclusions 61

among the different observable ids. In this way, a certain data file format can be represented

through a single template, and by assigning synonym terms in an ontology we could enable

automatic transformation into other formats.

Another direction for future work is to support environmental timeseries datasets in other

formats. In this work we evaluated EDAM against text-based documents and relational

databases. However, environmental datasets are also available in data cubes and non-relational

databases. EDAM could be extended to support such other sources.

4.5.2 Conclusions

In this work we provided a proof-of-concept and a tested implementation of a template system

that can be used for environmental timeseries acquisition and integration. We demonstrated

that the use of templates for data acquisition in the Environmental Internet of Things

provides a compromise between generality and complexity. We designed and implemented

an open-source, extensible template framework, called EDAM, to support environmental

timeseries data acquisition, integration and dissemination services, without the prerequisite

of a strong computer science background. We enable users to extract datasets and create

custom views out of them by defining the desired output format as a template. In this

way, users can re-use environmental timeseries data into scientific workflows. EDAM also

supports opening legacy datasets as services on the web through OGC SOS. Currently, EDAM

supports data acquisition and integration of timeseries stored in relational databases, files in

folder structures, and webpages. The test cases we used to evaluate EDAM provided us with

insights about its general-purpose nature. The novelty of this approach is that we are not

trying to propose another standard, but rather that we have developed a specific language

for describing data file structures in a generic way, using templates. Also, such templates are

programming language-agnostic so that users of different computer literacy profiles could

develop them.

62 A template framework for environmental timeseries data acquisition

T
a
b
le

4
.2
:
T
h
e
sev

en
d
a
ta

so
u
rces

w
e
selected

to
eva

lu
a
te

E
D
A
M
.
T
h
ey

a
re

d
istin

g
u
ish

ed
b
a
sed

o
n
a
)
h
ow

th
ey

a
re

ava
ila

b
le

(S
o
u
rce),

b
)
h
ow

a
re

th
ey

m
o
d
elled

(D
a
ta

m
od
el),

c)
th
e
p
rea

m
b
le

ty
p
e
(P

rea
m
ble

),
a
n
d
d
)
w
h
eth

er
rela

ted
m
eta

d
a
ta

a
re

in
clu

d
ed

in
th
e
d
a
ta
set

o
r
n
o
t
(M

eta
d
a
ta
).

E
x
te
rn

a
l
m
etad

ata
are

d
eclared

b
y
d
a
ta

cu
ra
to
rs

in
m
etad

ata
fi
les.

D
a
ta
se
ts

S
o
u
rce

D
a
ta

m
o
d
e
l

P
re
a
m
b
le

M
e
ta
d
a
ta

fi
le

fold
er

h
ttp

d
atab

ase
tab

u
lar

ab
stract

oth
er

tab
u
lar

key
-valu

e
in
clu

d
ed

ex
tern

al

A
gM

IP
X

X
X

A
P
S
IM

X
X

X
X

X

B
oM

(M
et)

X
X
*

X
X

X

U
K

M
et

X
X

X
X

X

K
N
M
I

X
X

X
X

X

S
w
iss

T
P
H

X
X

X
X

X

H
O
A

X
X

X
X

X

B
oM

(A
ir)

X
X

X

*
B
oM

(M
et)

d
ata

m
o
d
el

h
as

a
ta
bu
la
r
-like

form
at.

T
h
is

is
w
h
y
som

e
ob

servab
les

are
rep

eated
in

m
ore

th
an

on
e
co
lu
m
n
s

4.5 Discussion and conclusions 63

Table 4.3: Input functions utilization for each EDAM test case

Datasets
Input functions

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

AgMIP X X

APSIM X X X

UK Met X X X X X

BoM (Met) X X X X
∗

X

KNMI X X X

Swiss TPH X
†

X X X

HOA X X X X

BoM (Air) X X

∗According to BoM (Met) data model the timestamp of certain

data points is projected on their corresponding header column

†The observables of a Swiss TPH station are formatted differ-

ently. Thus, parsing is accomplished through more than one

template files

64 A template framework for environmental timeseries data acquisition

(a) Sample map projection with EDAM

(b) Sample OGC SOS output with EDAM

Figure 4.6: Issuing a single EDAM command we parsed 478 online weather stations provided

by BoM in Australia. Following parsing, these data are (a) projected on a map, (b) offered as

services via OGC SOS

4.5 Discussion and conclusions 65

{{station.name}}

Location:{{station.location}}, Lat {{station.latitude}} Lon {{station.longitude}}, {{station.tags.altitude}}

Missing data (more than 2 days missing in month) is marked by ---.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

{%for timestamp, tmax,tmin,af,rain,sun in resample(station.data, ’Y’, ’mean’) %}

{% if tmax.value!="---" and tmin.value!="---" and af.value!="---" and rain.value !="---" and sun.value !="---" %}

{{timestamp.year}} {{timestamp.month}} {{tmax.value}} {{tmin.value}} {{af.value}} {{rain.value}} {{sun.value}}

{%endif%}

{%endfor%}

(a) Example output template, highlighting aggregation and conditional output functions

Durham

Location: 426700E 541500N, Lat 54.768 Lon -1.585, 102 metres amsl

Missing data (more than 2 days missing in month) is marked by ---.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

1890 12 12.408 4.633 5.917 54.883 105.667

1891 12 11.767 4.017 6.667 51.975 104.35

1892 12 11.125 3.342 8.583 59.508 107.1

(b) Resulting output file

Figure 4.7: Demonstrating EDAM processing functions. (a) depicts the output template. P1

function (blue color-box) down-samples monthly observations to yearly (’Y’ argument), using

mean aggregation method. P3 function (magenta color-box) filters missing values (i.e. ’—’) from

output. The resulting custom data view is depicted in (b)

@DATE YYYY MM DD SRAD TMAX TMIN RAIN WIND DEWP VPRS RHUM

1980001 1980 1 1 15.0 26.0 12.2 0.0 1.4 4.8 8.6 25

1980002 1980 1 2 6.9 21.2 9.5 0.0 1.6 8.1 10.8 42

1980003 1980 1 3 10.7 22.2 14.7 8.0 1.5 11.9 14.0 52

(a) Original input file

@DATE YYYY MM DD SRAD TMAX TMIN RAIN WIND DEWP VPRS RHUM

{%for timestamp, srad, tmax, tmin, rain, wind, dewp, vprs, rhum in station.data%}

1980001 {{timestamp.year}} {{timestamp.month}} {{timestamp.day}} {{srad.value}} {{tmax.value}}

{{tmin.value}} {{rain.value}} {{wind.value}} {{dewp.value}} {{vprs.value}} {{rhum.value}}

{%endfor%}

(b) Input template

DATE,AIRTMAX,AIRTMIN,RAIN

{%for timestamp, tmax, tmin, rain in station.data%}

{{timestamp.year}}-{{timestamp.month}}-{{timestamp.day}},{{tmax.value}},{{tmin.value}},{{rain.value}}

{%endfor%}

(c) Output template

DATE,AIRTMAX,AIRTMIN,RAIN

1980-1-1,26.0,12.2,0.0

1980-1-2,21.2,9.5,0.0

1980-1-3,22.2,14.7,8.0

1980-1-4,24.0,10.0,0.0

(d) Resulting output file

Figure 4.8: Data format transformation through a template. (b) was the template we used to

read data from input file (a). Output template (c), creates a custom data view by changing the

order and omitting some observables. The resulting output is depicted in (d)

Chapter 5

A semantic approach for timeseries

data fusion

This chapter is based on:

Samourkasidis, A., Athanasiadis, I. A semantic approach for timeseries data fusion

[Manuscript submitted for publication]

68 A semantic approach for timeseries data fusion

Abstract

Environmental timeseries acquisition, integration and transformation into a consistent data

format is becoming more and more challenging for the Internet of Things produced, but

also for legacy model data files. To date, data transformation from diverse sources into

one data format requires significant efforts to tackle semantic heterogeneity. In this work

we present a declarative approach for environmental timeseries data transformation using

semantics. We use a template to annotate environmental data files with terms from a

vocabulary. We demonstrate how a reasoner may be employed to resolve synonyms across

different vocabularies. This enables to annotate each data file once; and transform its contents

using templates with other vocabularies without needing to re-annotate it. We developed a

case study where we transform meteorological input files of four agricultural models. With

our approach, a certain data file format can be represented through a single template, and

by assigning synonym terms we enable automatic transformation into other formats. This

facilitates environmental timeseries transformation overcoming semantic heterogeneity, while

lowering the e-science barriers.

5.1 Introduction 69

5.1 Introduction

Scientists and environmental practitioners nowadays are confronted with the vast array of

legacy environmental datasets, that become available online, and also with new data produced

via the Internet of Things (IoT) devices. Raw data must undergo certain modifications in

order for new knowledge to be produced by environmental models (Rizzoli et al., 2007).

However, transforming a dataset to be compatible with a certain data specification is a

laborious process (Horsburgh et al., 2009) and usually requires a human expert intervention

(Athanasiadis, 2015). This process hinders environmental data reusability (Ames et al., 2012),

facilitates the formation of data silos (Terrizzano et al., 2015) and ultimately widens the

data-to-knowledge gap (Elag et al., 2017).

Semantic heterogeneity among the legacy datasets hinders automatic data transformation.

The interdisciplinary nature of environmental sciences impedes reusability which is essential

in the era of (big) data (Rizzoli et al., 2007; Wilkinson et al., 2016). Environmental timeseries

are typically curated by several organizations and are annotated with implicit semantics

(Beran & Piasecki, 2009). The real meaning of the data is obscured in a combination of

short data labels or titles combined with institutional knowledge (de Vos et al., 2017). Such

implicit semantics concern the physical quantity that was measured (i.e. temperature); the

units which were used (i.e. Celcius degrees), and the physical phenomenon (entity or process)

that it was measured on (i.e. atmosphere surface air). Often there is implicit knowledge

about temporal and spatial references and the observation and measurement protocol. As

an example, atmosphere surface air temperature is typically measured with thermometers

placed in shelters positioned two meters above ground, according to the World Meteorological

Organization (WMO) specifications. Typically unit selection differs among countries, regions

and even among different scientific disciplines and domains (Gkoutos et al., 2012). The

different ways the observables are quantified with respect to units of measurement adds to the

semantic heterogeneity. This can lead to errors in data reuse and interpretation (Horsburgh

et al., 2009) and renders data transformation to other formats a rather manual process, which

eventually hinders data reuse beyond disciplinary silos.

Utilizing ontologies to support semantic interoperability is not a new concept in the environ-

mental data domain (Gruber & Olsen, 1994). An ontology represents the knowledge of a

certain domain in a formalized manner through “a set of statements (axioms) that define

concepts and relationships between concepts” (Villa et al., 2009). In the environmental

domain, an ontology has been used to identify the physical processes, quantities, and their

attributes (e.g. units of measurement) in a standardized manner (Yu & Liu, 2015). There

have been several ontologies related to environmental sciences developed in the past decades,

which received rather limited adoption (Athanasiadis, 2015). There is also a movement to

facilitate data interoperability and reusability (Wilkinson et al., 2016) through the creation of

new ontologies and dictionaries, which will be suitable for the Web (Rijgersberg et al., 2011;

Compton et al., 2012). However, no clear winner exists among all these ontologies. Thus,

several times there needs to be an intermediate step of vocabulary alignment or ontology

mediation.

Ontology mediation refers to the process of describing different datasets through one ontology

70 A semantic approach for timeseries data fusion

in order a common context to be created and values to be reused (Regueiro et al., 2017). It

is used to integrate diverse datasets which each of them is described by a different ontology,

in order to become interoperable and reusable (Wilkinson et al., 2016; Shu et al., 2015).

The semantic reasoner is a software agent, which infers the implicit relations of an ontology

(Mishra & Kumar, 2011), but can also support mediation among a number of them (Bröring

et al., 2011c).

In such a diverse ecosystem, lowering the e-science barriers is getting more important than

ever (Swain et al., 2016). The declarative semantic approaches which were investigated in

the context of integrated environmental modelling (Villa et al., 2009, 2017) offer a significant

potential solution to lower this particular barrier.

In this work, we present a declarative approach to cope with semantic heterogeneity in order

to automate environmental timeseries processing and transformation. For each data file, we

use a template to describe its syntax and a metadata file to annotate the corresponding

observables through a vocabulary. Then, a semantic reasoner parses the metadata files and

resolves relationships across the different data files. Data stored in a specific format can be

automatically transformed to another syntax, with the reasoner inferring compatibility among

the corresponding observables. Also, we incorporated a unit of measurement transformation

module. We demonstrate this with the weather input files of four crop modelling solutions,

namely APSIM (Holzworth et al., 2014), AgMIP (Rosenzweig et al., 2013), DSSAT (Jones

et al., 2003), and WOFOST (Diepen et al., 1989) and the meteorological timeseries data

provided by the Koninklijk Nederlands Meteorologisch Instituut (KNMI).

The rest of the paper is structured as follows: Section 5.2 reviews contemporary approaches

towards environmental data transformation and gives the background of template frameworks.

Section 5.3 presents the objectives along with abstract architectural design of our approach

and overviews its implementation. Section 5.4 demonstrates the application of the semantic

approach and the used datasets. Finally, Section 5.5 discusses our initial key findings,

identifies future work and concludes the research.

5.2 Background and related work

The ultimate objective of ontology-driven approaches is the integration of semantically

heterogeneous datasets (Villa et al., 2009), i.e. the creation of a consolidated view of datasets

that are originally curated by differently, and annotated with different ontologies. This may

enable having a single endpoint to submit queries to these heterogeneous datasets (Beran

& Piasecki, 2009), providing seamless, frictionless access. In the environmental domain

this process is described with many concepts: the terms mediation (Regueiro et al., 2017),

translation (Shu et al., 2015) and integration (Leinfelder et al., 2010; Beran & Piasecki,

2009) are synonyms and have been used interchangeably. In the environmental data science

literature we discern three approaches towards semantic interoperability, which:

a. built-upon and leverage on approaches which are used to support syntactic interoper-

ability, e.g. environmental data management frameworks such as the ones offered by

5.2 Background and related work 71

Open Geospatial Consortium (OGC) (Bröring et al., 2011a) and CUAHSI (Ames et al.,

2012), and spreadsheets,

b. fully utilize the “Semantic Web stack” technologies (e.g. RDF datastores, SPARQL,

etc.) (Ziébelin et al., 2017), and

c. utilize scripting1 to create custom-to-dataset solutions

Usually, the last two approaches cope with both syntactic and semantic heterogeneity at

once.

Transformation of syntactically heterogeneous environmental timeseries into a consistent

format is the concept around environmental data management frameworks. These frameworks,

such the OGC SOS (Bröring et al., 2012) and the CUAHSI HIS (Ames et al., 2012), cope

with syntactic heterogeneity by hiding the implicit syntaxes of diverse datasets and offering

them through consistent data models (e.g. O&M (Cox, 2011), WaterML (Taylor, 2014),

etc.). Efforts have also been made towards supporting semantic interoperability of such

well-established frameworks. Henson et al. (2009) designed a semantic extension for the

OGC SOS in order to submit high-level queries to raw data. Regueiro et al. (2017) use

control vocabularies/ontologies to align different semantics found in distinct data sources.

They demonstrate their efforts to construct a semantic mediation version tailored for the

OGC SOS needs. Beran and Piasecki developed a knowledge base on top of syntactically

interoperable, CUAHSI WaterML formatted datasets. Beran & Piasecki (2009) related terms

from local vocabularies which were used to annotate environmental datasets, with terms

from a universal ontology. This way, they addressed semantic heterogeneity and provided

an endpoint to submit queries to heterogeneous datasets curated by various environmental

agencies.

The standardised structure offered by spreadsheets made their utilization popular in the

environmental data science domain (de Vos, 2017). This structure accounts for syntactic

interoperability, and thus efforts have been made in order to complement those with semantic

capabilities. Shu et al. (2015) present their ontology-mediation approach to deal with

the translation of environmental data encoded in spreadsheets into XML. de Vos et al.

(2017) present their ontology mediation approach which concerns the annotation of natural

spreadsheets using external vocabularies, in order to identify the domain model implicitly

defined in these natural spreadsheets.

Utilizing the Semantic Web stack technologies allows for addressing both syntactic and

semantic heterogeneity. The approaches which fall into this category, usually transcribe

datasets into semantic-enabled datastores/databases in order to support semantic data linking,

processing and querying. Then, they provide a single SPARQL endpoint to perform semantic

queries to all underlying datasets (Yu & Liu, 2015). Bizer & Cyganiak (2006) present a tool,

called D2R server, which publishes data stored in relational databases to a Semantic Web

compatible format. Langegger et al. (2008) describe a mediator-based system for virtual

data integration of scientific data. Ziébelin et al. (2017) demonstrate a framework which uses

the D2R server (Bizer & Cyganiak, 2006) to semantically link and integrate heterogeneous

hydrological data sources. Interestingly, they support for enhanced interoperability as they

1We define scripting as the process of creating custom (usually one-off) computer programs to deal with a

specific task

72 A semantic approach for timeseries data fusion

disseminate the underlying, integrated datasets through OGC services.

Environmental timeseries integration and transformation via scripting have been previously

investigated within the agricultural domain. Porter et al. (2014) developed small software

programs, called translators to transform the weather data files of four agricultural models

into the AgMIP-consistent data format. Similarly, Woodard (2016) in Ag-Analytics developed

Python scripts to acquire diverse datasets, store them into a consistent data schema and

then offered the transformed data as a service. In both works, the proposed solutions address

the syntactic and semantic heterogeneity by aligning all datasets to a consistent data syntax

with a predefined data model.

The work presented here is built-upon a mechanism which accounts for syntactic interoperabil-

ity, and thus falls into the scope of the first approach. Associating a dataset with an abstract

representation of its syntax contributes towards syntactic interoperability. Papoutsoglou

et al. (2015) introduced the notion of using a template to describe a dataset syntax, parse

the corresponding datapoints and offer them as services on the web. In Samourkasidis et al.

(2018) we designed and demonstrated a template framework for data acquisition to cope

with syntactic heterogeneity. Using this framework, e-scientists without a strong computer

science background can acquire and reuse environmental timeseries from various outlets

(e.g. webpages, local files, databases, etc.) and create custom views of data using templates.

In this work we extend this template framework with a declarative approach to cope with

semantic heterogeneity.

5.3 Methods

5.3.1 Objectives

There are three objectives in designing and developing a system to support automatic transfor-

mation of heterogeneous datasets. The first is to lower the environmental data science barriers,

as the target users are e-scientists. As mentioned in Section 5.2, curating environmental

datasets is a manual and custom process. In order to cope with semantic heterogeneity

and interpret data, users should possess the implicit domain knowledge incorporated in

environmental datasets. In this work, we embraced a declarative approach to cope with

semantics, which does not require from users more technical skills than those they already

have.

The second objective is to support the discovery of compatible datasets. We consider one

dataset to be compatible with one other, only if the observables reported in the first are

equivalent with those reported in the other. A semantic reasoner determines compatibility,

based on semantic annotations provided by users. This enables users to find compatible

datasets of interest, originally stored in other formats.

The third objective is automatic timeseries transformation between compatible formats.

The automatic timeseries transformation to different formats consists of two steps: a)

syntax transformation, and b) content transformation. The former concerns the layout

5.3 Methods 73

Figure 5.1: The different shapes represent heterogeneous data syntaxes. For each different

syntax, the template copes with syntactic, and the metadata file with semantic heterogeneity. The

reasoner infers the compatibility of the data syntaxes based on the ontology definitions declared

in the metadata files. The red line arrow depicts an inferred by the reasoner relationship between

the templates of two different data syntaxes. Dataset 2 can be automatically transformed to the

syntax of the Dataset 1. It is a subset as it comprises of the same plus some extra observables

transformation, such as the column order. We focused on the latter, that is the unit of

measurement transformation of the observables reported in a source dataset to match the

ones of a target dataset. Our approach, will allow to cut across environmental data silos and

facilitate timeseries reusability, as it enables users to a) discover datasets in other formats, b)

transform them and c) reuse them in their scientific workflows.

5.3.2 Abstract architectural design

There are three key-components involved: a) template files, b) metadata files and c) reasoner.

Figure 5.1 depicts the interaction among the components. According to our approach,

each distinct data syntax is represented through a template and a metadata file. The

reasoner parses the metadata files, stores the ontology definitions for the reported observables

in a local ontology and infers compatibility among their corresponding templates. The

inferred relationships cope with the semantic heterogeneity, as they support for timeseries

transformation among compatible syntaxes.

A template file is an abstract representation of a data file contents using programming

language agnostic semantics. Users draft one template for each data file syntax. They

annotate important parts of the dataset using variables. Then, they define the observable

metadata, represented through these variables, in a metadata file.

74 A semantic approach for timeseries data fusion

A metadata file is bound to a single template and consists of semantic annotations for the

reported observables. Users describe each observable through a name (e.g. Temperature), an

ontology class (e.g. ontology:ObservableClass), and if applicable with qualifiers (e.g. max,

min, daily). They also provide information about the corresponding units of measurement.

For each unit of measurement, the name and symbol are mandatory fields, while a definition

through an ontology class is optional. For both observables and units of measurement, users

can define equivalent classes from other ontologies.

The reasoner parses the metadata files in order to infer transformation compatibility among the

templates. Firstly, it creates an instance for each ontology class found in each metadata file.

If applicable, it generates on-the-fly concrete subclasses to combine the abstract observable

along with its related qualifier(s).

For example, the maxDailyTemperature is a Temperature subclass which combines a statistical

(i.e. max) and a temporal (i.e. daily) qualifier. Secondly, it defines a new class for each

template which is described by a general rule, called axiom. This axiom asserts in ontology

language that the given template comprises of certain observables.

Following compatibility determination comes the unit of measurement transformation. The

parser calculates the conversion factor between each set of the compatible observables. This

calculation is based on the units of measurement which are defined in the source and target

metadata files, accordingly. Finally, the conversion factors are applied on-the-fly (if applicable)

on each column, and then transformed, according to the target template, in order the dataset

instance to be presented to the user.

5.3.3 Use of ontologies

We used a local ontology, which can map concepts and classes defined in different ontologies.

This ontology comprises of three high level classes, Observables, Qualifiers, and Templates.

In the Observables class, we create subclasses for the observables of each dataset, as defined

by users in the metadata files. In this version, we annotated observables and units of

measurement with classes from a custom, local ontology2.

The template variables which are used to describe the dataset are stored as instances of the

corresponding Observables’ subclass. We keep different namespaces for the instances of each

template. This will enhance findability since each template will have its own prefix. So even

for two templates using the same naming for their instances, there will be a distinction among

them, based on the used prefixes (e.g. AgMIP:rain and WOFOST:rain). The namespaces can

be optionally be defined in the metadata file. In case they are missing they can be generated

based on the template file name.

The Qualifiers class is further refined into Statistical and Temporal mutually disjoint sub-

classes. Based on users’ input in metadata files, we define local statistical (e.g. max, min,

mean, etc.) and temporal (e.g. daily, hourly, etc.) qualifiers and create their subclasses

accordingly.

2https://github.com/BigDataWUR/EDAM/blob/master/edam/resources/edam.owl

5.3 Methods 75

The Templates superclass holds the templates’ definitions. We create a subclass for each

distinct template along with its axiom definition. The axioms have direct reference to the

Observables subclasses. The semantic reasoner uses these subclasses, when it comes to

inferring compatibility among datasets.

Inferring compatibility among templates is facilitated by this local ontology and its properties.

A hasObservable object property was defined to establish relationships among the Templates

classes and their corresponding Observables. The axiom of a template with N associated

observables defined with the ontologyA, is expressed in OWL language as follows:

Templates and (hasObservable some ontologyA:observable1) and

(hasObservable some ontologyA:observable2) ... and (hasObservable some

ontologyA:observableN)

Based on the template axioms the reasoner infers four states of compatibility among two data

syntaxes. If A is the source and B the target template representing different data syntaxes

the possible states are:

a. A is equal to B, means that both templates comprise of the same number of equivalent

observables.

b. A is a subset of B, means template A contains all equivalent observables reported in

template B, plus one or more additional observables.

c. A is a superset of B, is the reversed (b).

d. A is non-compatible to B, means that templates A and B may have or not observables

in common.

A dataset represented with template A can automatically be transformed with template B in

the first two cases.

5.3.4 Implementation

This approach utilizes the EDAM template framework Python module reported in (Samourka-

sidis et al., 2018). It extends the template framework for data acquisition which already copes

with syntactic heterogeneity, with a new module to support semantic operations. The system

comprises of a parser and a semantic reasoner: EDAM supports the syntax transformation,

Owlready2 Python library (Lamy, 2017) the ontology engineering and semantic reasoning,

and Pint Python library the units’ of measurement trasformation.

We reused open source projects to provide further functionality. Specifically, we developed

a parser to extract user definitions about observables and units of measurement from the

metadata files, and utilized Owlready2 to store them in a local ontology. Additionally,

Owlready2 supports the semantic reasoning to infer compatibility among the semantically

heterogeneous datasets. We utilized Pint to support the units’ of measurement transformation.

Pint calculates the multiplicand factor of two units (i.e. source and target), based on their

symbols. By design, Pint supports all SI symbols and their derivatives.

76 A semantic approach for timeseries data fusion

5.3.5 Limitations

The system presented here is intended for environmental timeseries. The system can handle

the same file types as EDAM (Samourkasidis et al., 2018), i.e. text-based timeseries stored

locally or remotely in one or more files, websites and/or relational databases.

Towards inferring compatibility among datasets, the system takes into consideration only the

observables’ section in metadata files. The temporal (e.g. hourly, daily, etc) and/or statistical

(e.g. min, max, mean, etc.) dimensions of the reported observables should be defined as

qualifiers. By definition, observables that are reported in different temporal resolutions or

regard different statistical value are not compatible. For example, the following sets of source

-> target observables are (mutually) incompatible (a, b, c) and compatible (d):

a. dailyTemperature -> dailyMaxTemperature,

b. dailyTemperature -> hourlyTemperature,

c. Temperature -> dailyTemperature,

d. dailyTemperature -> Temperature,

Users can refer to terms from external ontologies, but these are not directly imported. EDAM

creates a local ontology with these terms which serves as a dictionary among the used terms.

In this version, external ontologies are not imported to be further used.

The automatic transformation refers to the syntax and units’ of measurement transformation.

Any type of resampling in order source and target dataset temporal resolution to match is not

included in the transformation process. Although EDAM offers this service, this is considered

as a preprocessing step. Additionally, any possible spatial metadata are not considered when

inferring compatibility.

5.4 Demonstration

5.4.1 Case studies

We demonstrate our semantic approach towards environmental timeseries transformation with

the weather data files of four environmental models. Table 5.1 presents the selected datasets,

the reported observables along with their implicit semantics and units of measurement.

Besides the different semantics and units of measurement, each dataset has a different

timeseries syntax.

For each dataset we developed a template to cope with the diverse syntaxes and a metadata

file to annotate the reported observables. Figure 5.2 depicts an excerpt of an input dataset

for APSIM, the corresponding template (Figure 5.2b), and the metadata file (Figure 5.2c).

The variable names (inside the {{}} placeholders) which are used to draft the template, are

used in the metadata file to relate observables with their actual meanings. The observables

are semantically annotated using a local ontology.

5.4 Demonstration 77

Table 5.1: The implicit semantics used by each data syntax to refer to the corresponding

observables

Observables
Datasets

APSIM AgMIP DSSAT WOFOST KNMI

Solar Radiation radn (MJ/m2) SRAD (MJ/m2) SRAD (MJ/m2) irradiation (MJ/m2) Q (J/cm2)

Avg Temperature - - T2M (oC) - TG (doC)

Max Temperature maxt (oC) TMAX (oC) TMAX (oC) maxt (oC) TX (doC)

Min Temperature mint (oC) TMIN (oC) TMIN (oC) mint (oC) TN (doC)

Precipitation rain (mm) RAIN (mm) RAIN (mm) precip (mm) RH (dmm)

Wind speed wind (m/s) WIND (km/h) WIND (m/s) mwind (m/s) FG (dm/s)

Relative Humidity RH (%) RHUM (%) RH2M (%) - UG (%)

Dew Point Temperature - DEWP (oC) TDEW (oC) - -

Vapor Pressure - vprs (kPa) - emvp (hPa) PG (dhPa)

!!!! 1/01/1961 to 31/12/2005

day year radn maxt mint rain wind RH

273 2002 17.5 27.2 14.6 0 3.5 54

274 2002 13.6 23.1 14.7 0 5.3 40

275 2002 15.8 27.1 11.1 0 5.5 29

278 2002 15.2 23.1 15.2 0 3.4 47

(a) APSIM data file

!!!! 1/01/1961 to 31/12/2005

day year radn maxt mint rain wind RH

{%for timestamp, radn,maxt,mint,rain,wind,RH in chunk%}

{{timestamp.dayofyear}} {{timestamp.year}} {{radn.value}} {{maxt.value}}

{{mint.value}} {{rain.value}} {{wind.value}} {{RH.value}}

{%endfor%}

(b) APSIM-specific template

Observables:

- observable_id: mint

name: Temperature

ontology: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#Temperature

qualifiers: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#min

- observable_id: maxt

name: Max Temperature

ontology: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#Temperature

qualifiers: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#max

- observable_id: rain

name: Rain

ontology: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#Rain

- observable_id: radn

name: Solar radiation

ontology: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#SolarRadiation

- observable_id: wind

name: Wind

ontology: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#WindSpeed

- observable_id: RH

name: Relative humidity

ontology: https://github.com/BigDataWUR/EDAM/blob/features/semantics/semedam.owl#RelativeHumidity

Units of Measurement:

- name: Millijoule per square meters

symbol: mJ/m^2

relevant_observables: radn

- name: Percent

symbol: \%

relevant_observables: RH

- name: Celcius

symbol: degC

relevant_observables: mint, maxt

- name: Millimeters

symbol: mm

relevant_observables: rain

- name: Meters per second

symbol: m/s

relevant_observables: wind

(c) APSIM-specific metadata file

Figure 5.2: (a) An excerpt from a weather input file inspired by APSIM, (b) the corresponding

template which represents the APSIM syntax and (c) the metadata file which annotates the

variables used in (b) with concepts from a local ontology

78 A semantic approach for timeseries data fusion

Figure 5.3: A screenshot of the developed ontology in the Protege software. The Observables

class consists of the observable types found in the different syntaxes. Combinations of these

subclasses, describe each Template subclass. The reasoner inferred compatibility as depicted in

the class-subclass structure. Specifically, the relationship order is reversed: For example, AgMIP

dataset can be automatically transformed according to APSIM, as the first is a subset of the

latter

5.4.2 Compatible datasets

The reasoner operated on the five metadata files and updated the local ontology which can

be further edited through dedicated ontology editors. It stored a class for each template,

and automatically defined the template axiom based on the ontology classes of the related

observables.

Figure 5.3 is a screenshot of the Protege ontology editor (Gennari et al., 2003) which depicts

the asserted and inferred relationships among the datasets. The compatible datasets are

depicted in reverse order. In the class-subclass view depicts the relationships among the

datasets. In principle, the subclass dataset is a subset of the corresponding class and thus

automatic transformation is supported. Based on the template axioms, the reasoner inferred

the following relationships:

a. DSSAT subset of APSIM,

b. AgMIP subset of APSIM,

c. KNMI subset of APSIM,

d. KNMI subset of WOFOST,

e. AgMIP subset of WOFOST

Data compatibility was inferred based on the combined observables’ classes. These, were

5.4 Demonstration 79

generated on-the-fly as a subclass of the respected abstract observable. For example, for

the AgMIP maxt, the abstract observable is Temperature and the statistical qualifier is

max. This combination results in the on-the-fly generation of maxTemperature, which is a

Temperature subclass.

5.4.3 Automatic transformation

The system automatically transformed the compatible datasets upon user request. Trans-

formation comprises of two parts: the syntax and semantic (or content) transformation.

The former was performed by EDAM. The challenge here is regarded with latter: the input

and output templates use different semantics (i.e. observable ID). For example, AgMIP

and APSIM datasets describe the max Temperature using the TMAX and maxt identifiers,

respectively. The system established a relationship among the underlying observables of the

input and output templates based on their compatibility. For example, it inferred that maxt

and TMAX are synonyms and can be used interchangeably.

Unit transformation is performed on-the-fly upon dataset request. System calculated the

required conversion factors between source and a target template units and applied them on

the corresponding timeseries. Figure 5.4 depicts a KNMI dataset (Figure 5.4a) transformed

according to the APSIM format (Figure 5.4b). For this example, the conversion factors for

following units’ of measurement transformation were calculated and applied on the source

dataset:

a. J/cm2 -> MJ/m2

b. doC -> oC

c. dmm -> mm

d. dm/s -> m/s

The system implementation is able to handle incompatible transformation requests, and

annotations with unresolvable units of measurement. When a non-compatible transformation

is attempted system issued an error. This error informed the user about the (in)compatibility

of the involved datasets. The system can also handle units of measurement that either are

not expressed correctly or are not SI units. In both cases, system set the conversion factor to

1 (i.e. no transformation) and raised warning messages to the user. For example, in this case

a frequently found non-SI unit is the percent unit (%).

5.4.4 Lessons learned

In order to fully annotate a dataset (i.e. the observables and units of measurement) users

usually require more than one ontology. In general, the ontologies have a specific scope and

are intended for specific domains. For example, the OM ontology contains concepts about

units of measurement.

The statistical and temporal qualifiers change fundamentally the meaning of the observables

but yet they are missing from most ontologies. These qualifiers make observables more specific,

rendering the reasoning process more robust. Surprisingly though, their definitions were

80 A semantic approach for timeseries data fusion

missing from the three ontologies we used (i.e. OM and Sweet2). The on-the-fly generation

of concrete subclasses based on the user-defined qualifiers had a major impact on inferring

compatibility.

Inconsistency when annotating observables with qualifiers leads to incompatibility. That

is, qualifiers should be used either in all or in none of the datasets involved. From the

datasets we used for the case studies in 5.4.1 only the KNMI included statistical and temporal

(daily) qualifiers. As a result, the KNMI: dailyMeanTemperature was incompatible with the

ASPIM: Temperature, even though both refer to the very same observables. Thus, for this

example we ignored the temporal and spatial metadata/attributes for the KNMI observed

data. Determining the temporal qualifiers of an observable based on reported data in the file

records is a step that we will consider for future work.

5.5 Discussion and conclusions

Environmental modelling solutions require their own input types and formats. As these

datasets are curated by different entities, there are important differences in terms of syntax

and semantics. Even related modelling solutions, such as APSIM and DSSAT, annotate the

same observables through different local vocabularies and sometimes report their observables

in different units of measurement (Jones et al., 2017). This semantic heterogeneity hinders

environmental timeseries reusability, as transforming a dataset to another format is a laborious

process (Beran & Piasecki, 2009; Horsburgh et al., 2009) which requires human expert

intervention (Athanasiadis, 2015). In this work we present a declarative approach to support

environmental timeseries transformation. We employed a reasoner to infer transformation

compatibility among semantic heterogeneous datasets, and developed a system to support

units of measurement transformation. This facilitates the automatic transformation of

compatible datasets from one format to another.

The automatic transformation of semantic heterogeneous datasets is essential towards envi-

ronmental modelling in the IoT era. It cuts across environmental data silos, as it enables

timeseries interoperability and reusability (Wilkinson et al., 2016). Users can annotate

datasets through a vocabulary, employ the reasoner and transform them into other com-

patible formats. Additionally, the automatic unit transformation supports e-scientists, as

this manual process is often erroneous (Horsburgh et al., 2009). We also consider that

this approach contributes towards lowering the e-science barriers (Swain et al., 2016). The

proposed declarative approach copes with semantic heterogeneity, and enables e-scientists

to transform compatible datasets to a given format, without developing scripts or being

ontology engineers themselves.

This work has an exploratory character and sets the groundwork for future work. In this

proof of concept our approach supports semantic mediation, by enabling users to annotate

the observables of the various datasets with terms for a local ontology. A possible direction

for future work may be the design of intermediate, semantic model-templates. These model-

templates would derive missing observables combining present ones. This is an essential

step in cases where two syntaxes are not compatible because of a missing observable. An

5.5 Discussion and conclusions 81

example from the case studies presented here is the incompatibility of the WOFOST and

DSSAT datasets, because of the Vapor Pressure observable reported only in the former. A

intermediate model-template to derive it, combining the Temperature and Dew point (present

in the DSSAT) would allow automatic transformation between them.

5.5.1 Conclusions

In this work we presented our approach to cope with semantic heterogeneity towards trans-

forming environmental timeseries. We extended a data acquisition template framework which

accounts for syntactic interoperability with a reasoner and a unit transformation module.

This declarative approach enables users to annotate a data syntax once using terms from

a vocabulary and then transform it to other compatible syntaxes. The employed reasoner

infers the compatibility among different syntaxes, by creating a semantic description of each

one. Then, the unit transformation module determines the relationship among the units

and performs on-the-fly transformation where applicable. We demonstrated our declarative

approach with the weather input files from four agricultural models and the meterological

timeseries data from the Dutch Meteorological Office. In all cases where the reasoner inferred

compatibility between two distinct datasets, we were able to transform the syntax and the

content of one to another.

82 A semantic approach for timeseries data fusion

(a) KNMI formatted dataset

(b) KNMI dataset formatted according to APSIM

Figure 5.4: The reasoner inferred compatibility between KNMI and APSIM and dataset depicted

in (a) was automatically transformed according to APSIM format (b). The units of measurement

transformation was performed on-the-fly

Chapter 6

Synthesis

84 Synthesis

6.1 Main findings

This thesis investigated the impact of IoT on environmental timeseries data lifecycle from the

perspective of e-scientists. In order to address this objective, we refined it into sub-objectives,

formulated as research questions. The purpose of this chapter is to revisit them, reflect on the

research findings and propose the future work. The sub-objectives, formulated as Research

Questions (RQs) are the followings:

a. RQ1: Can environmental timeseries lifecycle be facilitated by IoT prototyping devices?

b. RQ2: Are environmental data dissemination protocols IoT-ready?

c. RQ3: How can e-scientists acquire, integrate and transform timeseries datasets in the

heterogeneous IoT ecosystem?

RQ1: Can environmental timeseries lifecycle be facilitated by IoT prototyping

devices?

In order to investigate RQ1 we focused on the Raspberry Pi as an IoT prototyping device.

The factors which led our decision are regarded with a) Raspberry Pi wide adoption as an

IoT enabler device (Johnston & Cox, 2017) and b) the regular hardware updates and Open

hardware principles upon which Raspberry Pi is built. In Chapter 2, we performed our

assessments on Raspberry Pi 1 Model B. Since then, five new major Raspberry Pi models

emerged, each of which offering improvements in hardware specifications, in terms of CPU,

GPU and RAM available. Interestingly, the latest models (i.e. Raspberry Pi 3 Model B and

B+) feature an embedded, low-power Bluetooth module which is intended for IoT prototyping

(Wikipedia contributors, 2019). Finally, Raspberry Pi is increasingly being used in scientific

and citizen science endeavors (Johnston & Cox, 2017).

The Raspberry Pi can support persistent data storage, operating as an IoT gateway. In

Chapter 2 we investigated the Raspberry Pi, focusing on the data storage capabilities

and resilience under a suboptimal enabling environment, by simulating power and network

outages taking place irregularly. Our 4-month experiment demonstrates that it can facilitate

environmental timeseries lifecycle, as it offers persistent data storage under an adverse,

IoT-like, enabling environment. This experiment also highlights the Raspberry Pi resilience,

as it managed to self-recover after the power and/or network outages.

Despite its low acquisition cost, Raspberry Pi is a multi-purpose device with enough processing

power to facilitate environmental timeseries lifecycle processes. In Chapter 2, we evaluated

its processing capabilities: We demonstrated that when Raspberry Pi is accompanied with

appropriate software it can simultaneously support more processes, next to persistent data

storage. Specifically it was able to: a) interface with external sensors to collect measurements,

b) further process them to create visualizations, and c) disseminate them with established

protocols, such as the OGC SOS. The stress test we conducted revealed that Raspberry Pi

was capable to acquire, process and store observations derived from at least four attached

sensors, at regular time intervals as low as five seconds, while simultaneously disseminating

observations to external users.

6.1 Main findings 85

RQ2: Are environmental data dissemination protocols IoT-ready?

In order to investigate RQ2, we focused on OGC SOS as an environmental data dissemination

protocol. The factors which led our decision are regarded with a) SOS wide adoption in the

environmental domain (e.g. hydrology, meteorology, etc.), and b) the existing methodologies

(e.g. Mediator/Wrapper architecture (Regueiro et al., 2017)) which support the integration

of SOS-disseminated data into scientific workflows.

OGC SOS was not originally intended for the Internet of the Things era. In Chapter 3 we

evaluated OGC SOS, and argued that is not suited to operate in an IoT environment, that

may involve limited resources and intermittent internet access. We demonstrated that current

design of OGC SOS 2.0 is inefficient, as it spares valuable processing power and bandwidth

in order to handle invalid user requests. We also proved that OGC SOS lacks the ability

to handle disruptions, such as intermittent internet connectivity, as it does not support for

progressive data transmission.

We proposed a non-invasive extension to OGC SOS, to make it an IoT-ready dissemination

outlet. We designed a pagination extension to support for progressive data transmission. We

demonstrated that the pagination extension economizes resources and tackles with limited

or interrupted Internet connectivity; rendering OGC SOS to be disruption-tolerant. We

conducted a series of tests to verify experimentally the performance improvements offered by

our extension. We consider the pagination extension to be backwards-compatible, since it

requires minor changes in order to extend legacy SOS servers and clients to implement it.

Our pagination extension supports the progressive data transmission, which in turn enables

the OGC SOS protocol to become IoT ready.

RQ3: How can e-scientists acquire, integrate and transform timeseries datasets

in the heterogeneous IoT ecosystem?

In order to investigate RQ3 we focused on declarative approaches. In Chapters 4 and 5

we reviewed how e-scientists can acquire, integrate and transform heterogeneous timeseries

using a) environmental data management frameworks, b) scripting, and c) semantic web

technologies (e.g. linked data, ontology engineering, etc.). There are several challenges

associated with each methodology. For example, for a) and c) there is a steep learning curve

in order to be applied, whereas the scripting methodology provides great flexibility at the

price of simplicity. The limitations of the existing methodologies motivated us to investigate

the use of a declarative approach to support e-scientists towards acquiring, transforming and

integrating heterogeneous datasets.

Declarative approaches can support e-scientists with data curation processes. In Chapter 4

we presented a declarative approach according to which e-scientists can acquire and transform

environmental datasets by describing their syntax. The novelty of this approach is that we

are not trying to propose another standard, but rather we have developed a domain specific

language for describing data file structures in a generic way, using templates. Our approach

enables users not only to acquire datasets, but also create custom views, by defining the

desired output format again as a template using the same language. This way, e-scientists

86 Synthesis

can re-use environmental timeseries further by feeding them as input in their scientific

workflows. Our approach, also supports to automatically expose datasets as services on

the web, i.e. through OGC SOS and APIs. We argue that this abstract description of a

dataset’s syntax with templates is generic and offers a compromise between the generality

and complexity tradeoff for syntactic interoperability. We demonstrate the generality of our

approach by acquiring timeseries stored in relational databases, files in folder structures, and

webpages, in seven case studies from meteorology, agronomy and hydrology.

Semantics are essential towards the integration of datasets acquired from different sources.

In Chapter 5 we present an extension to the declarative approach presented in Chapter 4

to cope with semantic heterogeneity towards transforming environmental timeseries. This

extension enables e-scientists to annotate the semantics of a data syntax once using terms

from a vocabulary. The employed reasoner creates an abstract semantic description of each

distinct data syntax, and infers using Description Logic the compatibility among them. We

also designed and implemented a unit transformation module, which supports the on-the-fly

transformations of compatible measurements when those are reported with different units. We

demonstrated the declarative approach transforming the syntax and the content of datasets

that are inferred by the reasoner to be compatible.

6.2 The impact of IoT on environmental timeseries life-

cycle

The insights and methodologies presented in this thesis concern the environmental e-scientists

and practitioners in two ways. First, our contributions in the area of IoT computing

requirements and their impact on storage (Chapter 2) and dissemination (Chapter 3) can

support e-scientists in order to perform rapid prototyping, hypotheses investigation or to

deploy low-cost environmental monitoring campaigns using IoT prototyping devices, such

as the Raspberry Pi. We have demonstrated that data storage and dissemination can be

performed on-site using IoT prototyping devices and an IoT-ready, backwards-compatible

OGC SOS extension, which in turn contributes towards the open-data movement. Second, this

thesis findings support e-scientists to use legacy and IoT-produced environmental datasets into

scientific workflows and facilitate for data acquisition and integration, by treating syntactic

(Chapter 4) and semantic (Chapter 5) heterogeneity of environmental timeseries data.

In Chapter 2, we presented the limitations and capabilities of a low-cost IoT prototyping

device. The computing requirements (Good et al., 2017) can be lowered, since an IoT

prototyping device can have a central role in the environmental timeseries lifecycle. An IoT

prototyping device not only can provide persistent data storage and processing capabilities

on-site, but it can also support the dissemination of the collected data via a standardized

protocol, such as the OGC SOS. In Chapter 3 we argued that the current OGC SOS design

is not suitable to operate in an IoT ecosystem. We introduced a backwards-compatible OGC

SOS extension that is fit for IoT purposes, and can facilitate the direct integration of the

environmental timeseries with existing scientific workflows, as for example in (Regueiro et al.,

2015, 2016, 2017).

6.2 The impact of IoT on environmental timeseries lifecycle 87

The active participation of low-cost devices in the environmental data lifecycle processes

comes along with the future technological trends. Gartner, Inc. (2018) identifies the IoT-

driven edge computing as one of the top technology trends for the future. With the term

“edge computing” they refer to “the computing topology in which information processing,

and content collection and delivery” (i.e. data dissemination) take place on the IoT devices,

close to where the data is being generated. Given the limitations that we investigated only

one device, we conclude that IoT gateway devices are able to facilitate several processes

in the environmental timeseries lifecycle. This is further supported by the fact that in the

meantime, IoT devices have become even more powerful (Gartner, Inc., 2018). It also reveals

the potential of the edge computing paradigm for environmental applications. This thesis

made contributions towards the realization of future edge computing, environmental science

applications by

a. providing with insights about the limits of contemporary IoT gateways and their

performance as active participants in the environmental data lifecycle (Chapter 2), and

b. developing an IoT-ready, backwards compatible extension for the OGC SOS to support

interoperable data dissemination on-site (Chapter 3).

There is latency in the adoption of new dissemination protocols. For example, OGC SOS

1.0 was introduced in 2007 (Na & Priest, 2007), the updated SOS 2.0 in 2012 (Bröring

et al., 2012) and EEA has adopted its second version around 2012 (Jirka et al., 2012). In

order to address the IoT challenges, such as the restrained resources of the IoT ecosystem,

OGC introduced the SensorThings API in 2016 (Liang et al., 2016). While its performance

outpaces SOS and uses all the IoT best practices (e.g. JSON, REST, pagination) it is still

under experimentation and not yet adopted by environmental agencies. Interestingly, latency

is also observed when organizations need to maintain data infrastructures, as in the case of

upgrading a data dissemination protocol to a newer version. For example, NOAA (Center

for Operational Oceanographic Products and Services (CO-OPS), 2019) was still operating a

custom SOS 1.0 version, when this thesis was written, despite OGC has upgraded SOS to

version 2.0 in 2012.

We also note that IoT-produced datasets become “instant-legacy”. This is mostly attributed

to the plethora of sensing instruments and the lack of data standardization formats. IoT-

generated data require manual labour and domain expertise in order to be discovered,

interpreted and integrated into applications such as scientific workflows. Surprisingly enough,

these are key qualities of legacy data sources. Thus, there is also the danger for IoT-generated,

non-standardized data streams to become vanished in the IoT data deluge.

The complexity of the environmental domain hinders smooth data acquisition and integration,

even for simple datasets. In Chapters 4 and 5 we focused on meteorological timeseries

data, which are less complicated than other data types (e.g. remote sensing, soil data,

agromanagement, etc.). However, the plethora of available standards does not contribute

directly towards interoperability and create challenges towards their curation. Nowadays,

environmental datasets are stored in files, databases, webpages, and are formatted using

diverse syntaxes, and can be acquired through standardized protocols (e.g. OGC SOS, Sensor

Things API, FIWARE etc.) or via custom APIs. During the EDAM software development

(Chapter 4), we discovered a number of issues that led to design changes. These issues

88 Synthesis

validate the complexity of the environmental domain as most of them were regarded with

custom data syntaxes and non-standardized temporal and spatial references.

Declarative approaches provide flexibility and can facilitate environmental e-scientists who

are not computer science experts. This can be achieved, as declarative approaches hide

the underlined complexity, while offer abstract tools to e-scientists for interacting with

data. In Chapter 4 we demonstrated how an abstract representation of a dataset syntax

along with a template framework can hide the complexity of acquiring and transforming

syntactically heterogeneous datasets which are disseminated by different standards or custom

APIs. Additionally, as we demonstrated in Chapter 5, a declarative approach can also

provide a simple wrapper, hiding complex topics, such as ontology engineering. We argue

that declarative approaches contribute towards lowering the technological skills requirement,

as they assist e-scientists to cope with heterogeneity and other challenges towards timeseries

acquisition, transformation and integration.

We were not the first who utilized a declarative approach, but we followed a different path

compared to others. The declarative semantic approaches which were investigated in the

context of integrated environmental modelling (Villa et al., 2009, 2017) was the inspiration

for our approach in Chapter 5. Our approach is differentiated though, as it does not rely

upon universal semantics, but enables resources to be annotated with semantics from local

vocabularies/ontologies, in a bottom-up approach. This way, data can be represented and

interpreted subjectively, according to the vocabulary/ontology used for annotation. Our

approach supports the utilization of more that one global ontologies, enabling e-scientists to

combine concepts from different domains. In our approach, a local ontology which captures

the mappings among concepts of different ontologies, is generated on-the-fly. This is an

essential feature, as ontologies have usually a narrow scope and combining them provides

more flexibility in annotation.

The fragmentation of the different environmental domains is reflected on the available data

formats and semantics. Not only diverse syntaxes (Chapter 4), but also domain specific

semantics (Chapter 5) are utilized by the different environmental domains and modelling

solutions. These create silo effects among the different environmental domains which have

an impact on e-scientists. They introduce additional requirements for them, as besides

the manual labor and domain expertise which is required in order to interpret and reuse

environmental dataset, they should possess other skills, such as computer science and ontology

engineering expertise.

6.3 Directions for future research

This thesis sets the groundwork for future work. We identified four possible directions, which

are regarded with:

a. investigating other open IoT challenges, such as privacy and security, in the environ-

mental timeseries lifecycle context,

b. performing and standardizing QA/QC on citizen science produced datasets,

c. extending the use of declarative approaches for more complex operations, and

6.3 Directions for future research 89

d. validating the applicability of the approaches and insights presented in this thesis on

other data types such as remote sensing, UAV images and others.

Privacy and security aspects should be investigated in the context of environmental timeseries

lifecycle. These two IoT challenges are becoming important in the future we envision in this

thesis, where IoT gateways play a central role in the environmental data lifecycle processes.

The environmental data lifecycle in the edge computing era will involve IoT gateways that

facilitate storage and dissemination on behalf of more than one IoT devices, which may

belong to different owners. Privacy aspects may be investigated from two perspectives: a)

legal (i.e. who owns the data stored), b) technical (i.e. how to implement privacy-preserving

mechanisms on an application level). Currently, privacy is getting more attention in the

FAIR context (Wilkinson et al., 2016), and there are some applications related to the health

domain (Sun et al., 2018), and privacy-preserving citizen campaigns (Drosatos et al., 2014).

Future research may also be directed in security aspects, as the IoT devices and gateways

have restrained resources and thus are more susceptible to cyber attacks. For example, the

current OGC SOS 2.0 is vulnerable to a Denial of Service attack. An attacker can initiate a

number of data request occupying the available bandwidth and processing power resources,

which are already scarce.

Another research direction may focus on quality assurance and quality control (QA/QC),

which is often overlooked in citizen science campaigns. While IoT devices generate a lot

of data, these are not often used in scientific workflows as their quality is unknown. We

demonstrated that IoT gateways have enough processing power, and thus performing QA/QC

processes on-site could be further investigated. Indeed, the efforts towards validating the

quality of low-cost sensors’ readings are increasing (Gries et al., 2013; Strigaro et al., 2019).

However, research efforts should be focused on examining standardized ways to perform

and document QA/QC processes. This way, the datasets’ quality could be verified in an

interoperable manner, and e-scientists can become confident in using citizen science produced

data into their scientific workflows.

Declarative approaches could be further investigated towards more complex transformations.

One possible direction could be the use of simple, intermediate models executed on the edge.

An intermediate model could be defined using a template in order to combine observables

(e.g. Temperature and Dew point) to derive new ones (e.g. Vapor Pressure). This extended

declarative approach could also be investigated in the context of edge computing, by executing

the models on IoT devices. This, could contribute towards economizing bandwidth as only the

required, derived measurements can be disseminated. However, there is a tradeoff between

the required processing power to calculate the derived observables and the economized

bandwidth.

Last but not least, the environmental data lifecycle could be investigated for other data types.

The data-intensive IoT produces a number of a data-types beyond timeseries. The approaches

and insights presented in this thesis could be validated in other data types, such as those

produced by remote sensing, UAVs and cameras. The investigation of those, may provide

further insights on how to combine different dataset types in order those to be introduced in

composite scientific workflows.

References

Alamdar, F., Kalantari, M., & Rajabifard, A. (2016). Towards multi-agency sensor information

integration for disaster management. Computers, Environment and Urban Systems , 56 , 68

– 85. doi:10.1016/j.compenvurbsys.2015.11.005.

Alansari, Z., Anuar, N. B., Kamsin, A., Soomro, S., Belgaum, M. R., Miraz, M. H., & Alshaer,

J. (2018). Challenges of Internet of Things and Big Data integration. In M. H. Miraz,

P. Excell, A. Ware, S. Soomro, & M. Ali (Eds.), Emerging Technologies in Computing (pp.

47–55). Springer International Publishing.

Ames, D. P., Horsburgh, J. S., Cao, Y., Kadlec, J., Whiteaker, T., & Valentine, D.

(2012). HydroDesktop: Web services-based software for hydrologic data discovery, down-

load, visualization, and analysis. Environmental Modelling & Software, 37 , 146 – 156.

doi:10.1016/j.envsoft.2012.03.013.

Andrae, S., Gruber, G., Hecke, A., & Wieser, A. (2009). Sensor Web Enablement–Standards

and Open Source implementations for observation data. In J. Schweizer, & A. van Herwijnen

(Eds.), Proceedings 1st International Snow Science Workshop (ISSW). Davos, Switzerland:

Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research WSL.

de Assis, L. F. F., Behnck, L. P., Doering, D., de Freitas, E. P., Pereira, C. E., Horita, F. E.,

Ueyama, J., & de Albuquerque, J. P. (2016). Dynamic sensor management: Extending

Sensor Web for near real-time mobile sensor integration in dynamic scenarios. In Proceedings

Intl. IEEE Advanced Information Networking and Applications (AINA) (pp. 303–310).

doi:10.1109/AINA.2016.100.

Athanasiadis, I., Rizzoli, A., & Beard, D. (2010). Data mining methods for quality assurance

in an environmental monitoring network. In Proceedings 20th Intl Conf on Artificial Neural

Networks (ICANN 2010) (pp. 451–456). Springer Verlag: Thessaloniki, Greece, 2010

volume 6354 of Lecture Notes in Computer Science.

Athanasiadis, I. N. (2015). Challenges in modelling of environmental semantics. In En-

vironmental Software Systems. Infrastructures, Services and Applications (pp. 19–25).

Springer.

Athanasiadis, I. N., Milis, M., Mitkas, P. A., & Michaelides, S. C. (2009). A multi-agent

system for meteorological radar data management and decision support. Environmental

Modelling & Software, 24 , 1264 – 1273. URL: http://www.sciencedirect.com/science/

article/pii/S1364815209001066. doi:10.1016/j.envsoft.2009.04.010.

Athanasiadis, I. N., & Mitkas, P. A. (2004). An agent-based intelligent environmental

monitoring system. Management of Environmental Quality , 15 , 238–249.

http://dx.doi.org/10.1016/j.compenvurbsys.2015.11.005
http://dx.doi.org/10.1016/j.envsoft.2012.03.013
http://dx.doi.org/10.1109/AINA.2016.100
http://www.sciencedirect.com/science/article/pii/S1364815209001066
http://www.sciencedirect.com/science/article/pii/S1364815209001066
http://dx.doi.org/10.1016/j.envsoft.2009.04.010

92 REFERENCES

Athanasiadis, I. N., & Mitkas, P. A. (2007). Knowledge discovery for operational decision

support in air quality management. Journal of Environmental Informatics , 9 , 100–107.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer

Networks , 54 , 2787–2805. doi:10.1016/j.comnet.2010.05.010.

Bahrudin, B., Saifudaullah, M., Abu Kassim, R., & Buniyamin, N. (2013). Development of

fire alarm system using Raspberry Pi and Arduino Uno. In Proceedings Intl. Conference

on Electrical, Electronics and System Engineering (ICEESE) (pp. 43–48). IEEE.

Bayer, M. (2007). Mako templates for python. http://www.makotemplates.org. Accessed

1-August-2017.

Bayer, M. (2016). Sqlalchemy: The python sql toolkit and object relational mapper. http:

//www.sqlalchemy.org. URL: http://www.sqlalchemy.org accessed 12-December-2016.

Beaujardière, J. D. L. (2016). NOAA environmental data management. Journal of Map &

Geography Libraries , 12 , 5–27. doi:10.1080/15420353.2015.1087446.

Beran, B., Cox, S. J. D., Valentine, D., Zaslavsky, I., & McGee, J. (2009). Web services

solutions for hydrologic data access and cross-domain interoperability. International Journal

on Advances in Intelligent Systems , 2 , 317–324.

Beran, B., & Piasecki, M. (2009). Engineering new paths to water data. Computers &

Geosciences, 35 , 753 – 760. URL: http://www.sciencedirect.com/science/article/

pii/S0098300408000988. doi:10.1016/j.cageo.2008.02.017. Geoscience Knowledge Repre-

sentation in Cyberinfrastructure.

Bizer, C., & Cyganiak, R. (2006). ”D2R” server-publishing relational databases on the

semantic web. In Poster at the 5th international semantic web conference. volume 175.

Boote, K. J., Porter, C. H., Hargreaves, J., Hoogenboom, G., Thorburn, P., & Mutter, C.

(2015). AgMIP training in multiple crop models and tools. In Handbook of climate change

and agroecosystems: The Agricultural Model Intercomparison and Improvement Project

Integrated Crop and Economic Assessments, Part 2 (pp. 393–410). World Scientific.

Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud Computing

and Internet of Things: a survey. Future Generation Computer Systems, 56 , 684–700.

doi:10.1016/j.future.2015.09.021.

Botts, M., Percivall, G., Reed, C., & Davidson, J. (2008). OGC Sensor Web Enablement:

Overview and high level architecture. In S. Nittel, A. Labrinidis, & A. Stefanidis (Eds.),

GeoSensor Networks (pp. 175–190). Springer Berlin Heidelberg volume 4540 of Lecture

Notes in Computer Science (LNCS). doi:10.1007/978-3-540-79996-2 10.

Botts, M., & Robin, A. (2014). OGC SensorML: Model and XML. Encoding Standard 12-000

Open Geospatial Consortium.

Bröering, A., Remke, A., Stasch, C., Autermann, C., Rieke, M., & Möllers, J. (2015).

enviroCar: A citizen science platform for analyzing and mapping crowd-sourced car sensor

data. Transactions in GIS , 19 , 362–376. doi:10.1111/tgis.12155.

Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., &

Lemmens, R. (2011a). New Generation Sensor Web Enablement. Sensors , 11 , 2652–2699.

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://www.makotemplates.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://www.sqlalchemy.org
http://dx.doi.org/10.1080/15420353.2015.1087446
http://www.sciencedirect.com/science/article/pii/S0098300408000988
http://www.sciencedirect.com/science/article/pii/S0098300408000988
http://dx.doi.org/10.1016/j.cageo.2008.02.017
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1007/978-3-540-79996-2_10
http://dx.doi.org/10.1111/tgis.12155

REFERENCES 93

doi:10.3390/s110302652.

Bröring, A., Janowicz, K., Stasch, C., Schade, S., Everding, T., & Llaves, A. (2011b).

Demonstration: A RESTful SOS Proxy for linked sensor data. In Proc. 4th Intl. Workshop

on Semantic Sensor Networks (SSN11) (pp. 123–126).

Bröring, A., Maué, P., Janowicz, K., Nüst, D., & Malewski, C. (2011c). Semantically-

enabled sensor plug & play for the Sensor Web. Sensors, 11 , 7568–7605. URL: http:

//www.mdpi.com/1424-8220/11/8/7568. doi:10.3390/s110807568.

Bröring, A., Stasch, C., & Echterhoff, J. (2012). OGC Sensor Observation Service 2.0 .

Implementation Standard 12-006 Open Geospatial Consortium.

Broytman, O., & Croy, T. (2001). Cheetah3, the python-powered template engine. http:

//cheetahtemplate.org. Accessed 1-August-2017.

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., & Schaub, T. (2016). The GeoJSON

Format . RFC 7946 RFC Editor.

Cagnetti, M., Leccese, F., & Trinca, D. (2013). A new remote and automated control system

for the vineyard hail protection based on ZigBee sensors, Raspberry-Pi Electronic Card

and WiMAX. Journal of Agricultural Science and Technology B , 3 , 853.

Center for Operational Oceanographic Products and Services (CO-OPS) (2019). CO-OPS’

Implementation of IOOS Sensor Observation Service (SOS). https://opendap.co-ops.

nos.noaa.gov/ioos-dif-sos/. Accessed 11-March-2019.

Chang, F.-C., & Huang, H.-C. (2016). A survey on intelligent sensor network and its

application. Journal of Network Intelligence, 1 , 1–15.

Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE

Internet of Things Journal , 3 , 854–864. doi:10.1109/JIOT.2016.2584538.

Chowdhury, M. N., Nooman, M. S., & Sarker, S. (2013). Access control of door and

home security by Raspberry Pi through Internet. International Journal of Scientific &

Engineering Research, 4 , 550–558.

Compton, M., Barnaghi, P., Bermudez, L., Garćıa-Castro, R., Corcho, O., Cox, S., Graybeal,

J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W. D., Phuoc,

D. L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A.,

& Taylor, K. (2012). The SSN ontology of the W3C semantic sensor network incubator

group. Journal of Web Semantics , 17 , 25 – 32. URL: http://www.sciencedirect.com/

science/article/pii/S1570826812000571. doi:10.1016/j.websem.2012.05.003.

Connors, J. P., Lei, S., & Kelly, M. (2012). Citizen Science in the Age of Neogeography:

Utilizing Volunteered Geographic Information for Environmental Monitoring. Annals of the

Association of American Geographers , 102 , 1267–1289. doi:10.1080/00045608.2011.627058.

Conrad, C. C., & Hilchey, K. G. (2011). A review of citizen science and community-based

environmental monitoring: issues and opportunities. Environmental Monitoring and

Assessment , 176 , 273–291. doi:10.1007/s10661-010-1582-5.

Cox, S. (2011). Observations and Measurements - XML Implementation. Implementation

Standard 10-025r1 Open Geospatial Consortium.

http://dx.doi.org/10.3390/s110302652
http://www.mdpi.com/1424-8220/11/8/7568
http://www.mdpi.com/1424-8220/11/8/7568
http://dx.doi.org/10.3390/s110807568
http://cheetahtemplate.org
http://cheetahtemplate.org
https://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/
https://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1080/00045608.2011.627058
http://dx.doi.org/10.1007/s10661-010-1582-5

94 REFERENCES

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).

Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE

Internet Computing , 6 , 86. doi:10.1109/4236.991449.

Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: theory and

practice. Hoboken, NJ, USA: John Wiley & Sons.

Dayan, A., & Hartley, T. (2013). AirPi. http://airpi.es. Accessed 12-December-2016.

DCMI Usage Board (2012). Dublin Core Metadata Initiative (DCMI) Metadata Terms.

http://dublincore.org/documents/dcmi-terms/. Accessed 26-July-2018.

Diepen, C., Wolf, J., Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of crop

production. Soil Use and Management , 5 , 16–24. doi:10.1111/j.1475-2743.1989.tb00755.x.

Drosatos, G., Efraimidis, P., Athanasiadis, I., Stevens, M., & D’Hondt, E. (2014). Privacy-

Preserving Computation of Participatory Noise Maps in the Cloud. Journal of Systems

and Software, 92 , 170–183. doi:10.1016/j.jss.2014.01.035.

Eberle, J., Clausnitzer, S., Hüttich, C., & Schmullius, C. (2013). Multi-source data processing

middleware for land monitoring within a web-based spatial data infrastructure for siberia.

ISPRS International Journal of Geo-Information, 2 , 553–576. doi:10.3390/ijgi2030553.

Elag, M. M., Kumar, P., Marini, L., Myers, J. D., Hedstrom, M., & Plale, B. A. (2017).

Identification and characterization of information-networks in long-tail data collections.

Environmental Modelling & Software, 94 , 100 – 111. doi:10.1016/j.envsoft.2017.03.032.

Environmental Protection Agency (2016). EPA’s Watersheds-based Monitoring and In-

teroperable Data Platforms Project Lessons Learned. https://www.epa.gov/sites/

production/files/2017-01/documents/iwn_lessonslearned_final_201612.pdf. Ac-

cessed 11-March-2019.

Ferdoush, S., & Li, X. (2014). Wireless sensor network system design using Raspberry Pi

and Arduino for environmental monitoring applications. Procedia Computer Science, 34 ,

103–110.

Foster, I., Katz, D. S., Malik, T., & Fox, P. (2012). Wagging the long tail of earth science: Why

we need an earth science data web, and how to build it. https://pdfs.semanticscholar.

org/210d/d61e8f50704401a50376e27338355c9dd61a.pdf. Accessed 18-September-2019.

Fredericks, J. J., Botts, M., Cook, T., & Bosch, J. (2009). Integrating standards in data

QA/QC into OpenGeospatial Consortium sensor observation services. In OCEANS 2009-

EUROPE (pp. 1–6). doi:10.1109/OCEANSE.2009.5278211.

Free Software Foundation (2016). GNU Affero General Public License. https://www.gnu.

org/licenses/agpl.html. Accessed 12-April-2019.

Gartner, Inc. (2018). Gartner identifies the top 10 strategic technology trends

for 2019. https://www.gartner.com/en/newsroom/press-releases/2018-10-15-

gartner-identifies-the-top-10-strategic-technology-trends-for-2019. Ac-

cessed 13-March-2019.

Geebelen, K., Michiels, S., Joosen, W., Geebelen, K., Michiels, S., & Joosen, W. (2008).

Dynamic reconfiguration using template based web service composition. In Proc. 3rd

http://dx.doi.org/10.1109/4236.991449
http://airpi.es
http://dublincore.org/documents/dcmi-terms/
http://dx.doi.org/10.1111/j.1475-2743.1989.tb00755.x
http://dx.doi.org/10.1016/j.jss.2014.01.035
http://dx.doi.org/10.3390/ijgi2030553
http://dx.doi.org/10.1016/j.envsoft.2017.03.032
https://www.epa.gov/sites/production/files/2017-01/documents/iwn_lessonslearned_final_201612.pdf
https://www.epa.gov/sites/production/files/2017-01/documents/iwn_lessonslearned_final_201612.pdf
https://pdfs.semanticscholar.org/210d/d61e8f50704401a50376e27338355c9dd61a.pdf
https://pdfs.semanticscholar.org/210d/d61e8f50704401a50376e27338355c9dd61a.pdf
http://dx.doi.org/10.1109/OCEANSE.2009.5278211
https://www.gnu.org/licenses/agpl.html
https://www.gnu.org/licenses/agpl.html
https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019
https://www.gartner.com/en/newsroom/press-releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-2019

REFERENCES 95

workshop on Middleware for Service Oriented Computing MW4SOC ’08 (pp. 49–54). ACM

New York, NY, USA: ACM. doi:10.1145/1462802.1462811.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriks-

son, H., Noy, N. F., & Tu, S. W. (2003). The evolution of Protege: an environment

for knowledge-based systems development. International Journal of Human-Computer

Studies, 58 , 89 – 123. URL: http://www.sciencedirect.com/science/article/pii/

S1071581902001271. doi:10.1016/S1071-5819(02)00127-1.

GeoRSS: (2014). GeoRSS: Geographically Encoded Objects for RSS feeds. http://www.

georss.org. Accessed 12-December-2016.

Gibert, K., Horsburgh, J. S., Athanasiadis, I. N., & Holmes, G. (2018). En-

vironmental Data Science. Environmental Modelling & Software, 106 , 4 –

12. URL: http://www.sciencedirect.com/science/article/pii/S1364815218301269.

doi:10.1016/j.envsoft.2018.04.005. Special Issue on Environmental Data Science. Applica-

tions to Air quality and Water cycle.

Gkoutos, G. V., Schofield, P. N., & Hoehndorf, R. (2012). The units ontology: a tool for

integrating units of measurement in science. Database, 2012 . doi:10.1093/database/bas033.

Good, N., Ellis, K. A., & Mancarella, P. (2017). Review and classification of barriers

and enablers of demand response in the smart grid. Renewable and Sustainable Energy

Reviews, 72 , 57 – 72. URL: http://www.sciencedirect.com/science/article/pii/

S1364032117300436. doi:10.1016/j.rser.2017.01.043.

Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal ,

69 , 211–221. doi:10.1007/s10708-007-9111-y.

Granell, C., Dı́az, L., & Gould, M. (2010). Service-oriented applications for environmental

models: Reusable geospatial services. Environmental Modelling & Software, 25 , 182–198.

Gries, C., Henshaw, D. L., Boose, E. R., Dereszynski, E. W., Shanley, J. B., Taylor, J. R.,

Porter, J. H., Campbell, J. L., Rustad, L. E., Martin, M. E., & Sheldon, W. M. (2013).

Quantity is Nothing without Quality: Automated QA/QC for Streaming Environmental

Sensor Data. BioScience, 63 , 574–585. doi:10.1525/bio.2013.63.7.10.

Gruber, T. R., & Olsen, G. R. (1994). An Ontology for Engineering Mathematics. In

J. Doyle, P. Torasso, & E. Sandewall (Eds.), Principles of Knowledge Representation and

Reasoning (pp. 258–269). Bonn, Germany: Morgan Kaufmann. doi:10.1016/B978-1-4832-

1452-8.50120-2.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Computer Systems ,

29 , 1645–1660.

Hart, J. K., & Martinez, K. (2015). Towards an Environmental Internet of Things. Earth

and Space Science, 2 , 194–200. doi:10.1002/2014EA000044.

Harth, A., Knoblock, C., Stadtmüller, S., Studer, R., & Szekely, P. (2013). On-the-fly

integration of static and dynamic sources. In O. Hartig, J. Sequeda, A. Hogan, &

T. Matsutsuk (Eds.), Proceedings 4th International Workshop on Consuming Linked Data

(COLD2013). CEUR-WS.org volume 1034.

http://dx.doi.org/10.1145/1462802.1462811
http://www.sciencedirect.com/science/article/pii/S1071581902001271
http://www.sciencedirect.com/science/article/pii/S1071581902001271
http://dx.doi.org/10.1016/S1071-5819(02)00127-1
http://www.georss.org
http://www.georss.org
http://www.sciencedirect.com/science/article/pii/S1364815218301269
http://dx.doi.org/10.1016/j.envsoft.2018.04.005
http://dx.doi.org/10.1093/database/bas033
http://www.sciencedirect.com/science/article/pii/S1364032117300436
http://www.sciencedirect.com/science/article/pii/S1364032117300436
http://dx.doi.org/10.1016/j.rser.2017.01.043
http://dx.doi.org/10.1007/s10708-007-9111-y
http://dx.doi.org/10.1525/bio.2013.63.7.10
http://dx.doi.org/10.1016/B978-1-4832-1452-8.50120-2
http://dx.doi.org/10.1016/B978-1-4832-1452-8.50120-2
http://dx.doi.org/10.1002/2014EA000044

96 REFERENCES

Hartley, T. (2013). AirPi software. https://github.com/tomhartley/AirPi. Accessed

12-December-2016.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015).

The rise of “big data” on cloud computing: Review and open research issues. Information

Systems , 47 , 98–115. doi:10.1016/j.is.2014.07.006.

Havlik, D., Bleier, T., & Schimak, G. (2009). Sharing Sensor Data with SensorSA and

Cascading Sensor Observation Service. Sensors, 9 , 5493–5502. URL: https://dx.doi.

org/10.3390/s90705493. doi:10.3390/s90705493.

Henson, C. A., Pschorr, J. K., Sheth, A. P., & Thirunarayan, K. (2009). Semsos: Semantic

sensor observation service. In Collaborative Technologies and Systems, 2009. CTS’09.

International Symposium on (pp. 44–53). IEEE.

Hey, T., & Trefethen, A. (2003). e-Science and its implications. Philosophical Transactions

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences , 361 ,

1809–1825.

Hey, T., & Trefethen, A. E. (2005). Cyberinfrastructure for e-Science. Sci-

ence, 308 , 817–821. URL: http://science.sciencemag.org/content/308/5723/817.

doi:10.1126/science.1110410.

Heyman, J., Hamrén, J., Byström, C., & Heyman, H. (2011). Locust: An open source load

testing tool. http://locust.io. Accessed 12-December-2016.

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean,

G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore, A. D., Brown, H.,

Whish, J. P., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman,

Z., Thorburn, P. J., Gaydon, D. S., Dalgliesh, N. P., Rodriguez, D., Cox, H., Chapman,

S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F. Y., Wang, E.,

Hammer, G. L., Robertson, M. J., Dimes, J. P., Whitbread, A. M., Hunt, J., van Rees, H.,

McClelland, T., Carberry, P. S., Hargreaves, J. N., MacLeod, N., McDonald, C., Harsdorf,

J., Wedgwood, S., & Keating, B. A. (2014). APSIM – evolution towards a new generation

of agricultural systems simulation. Environmental Modelling & Software, 62 , 327 – 350.

doi:10.1016/j.envsoft.2014.07.009.

Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom,

G., White, J. W., & Thorburn, P. (2015). Agricultural production systems modelling and

software: Current status and future prospects. Environmental Modelling and Software, 72 ,

276–286. doi:10.1016/j.envsoft.2014.12.013.

Horita, F. E., de Albuquerque, J. P., Degrossi, L. C., Mendiondo, E. M., & Ueyama, J. (2015).

Development of a spatial decision support system for flood risk management in Brazil that

combines volunteered geographic information with wireless sensor networks. Computers &

Geosciences , 80 , 84–94. doi:10.1016/j.cageo.2015.04.001.

Horsburgh, J. S., Aufdenkampe, A. K., Mayorga, E., Lehnert, K. A., Hsu, L., Song, L.,

Jones, A. S., Damiano, S. G., Tarboton, D. G., Valentine, D., Zaslavsky, I., & White-

nack, T. (2016). Observations Data Model 2: A community information model for

spatially discrete Earth observations. Environmental Modelling & Software, 79 , 55 –

https://github.com/tomhartley/AirPi
http://dx.doi.org/10.1016/j.is.2014.07.006
https://dx.doi.org/10.3390/s90705493
https://dx.doi.org/10.3390/s90705493
http://dx.doi.org/10.3390/s90705493
http://science.sciencemag.org/content/308/5723/817
http://dx.doi.org/10.1126/science.1110410
http://locust.io
http://dx.doi.org/10.1016/j.envsoft.2014.07.009
http://dx.doi.org/10.1016/j.envsoft.2014.12.013
http://dx.doi.org/10.1016/j.cageo.2015.04.001

REFERENCES 97

74. URL: http://www.sciencedirect.com/science/article/pii/S1364815216300093.

doi:10.1016/j.envsoft.2016.01.010.

Horsburgh, J. S., & Tarboton, D. G. (2007). CUAHSI ODM Streaming Data Loader

Design Specifications . Design Specification Document 1.1 Consortium of Universities for

the Advancement of Hydrologic Science (CUAHSI). URL: https://www.cuahsi.org/

uploads/pages/img/ODM_SDL_Design_Specifications_(2).pdf.

Horsburgh, J. S., Tarboton, D. G., Maidment, D. R., & Zaslavsky, I. (2008). A rela-

tional model for environmental and water resources data. Water Resources Research, 44 .

doi:10.1029/2007WR006392.

Horsburgh, J. S., Tarboton, D. G., Maidment, D. R., & Zaslavsky, I. (2011). Components of

an environmental observatory information system. Computers & Geosciences , 37 , 207 –

218. doi:10.1016/j.cageo.2010.07.003.

Horsburgh, J. S., Tarboton, D. G., Piasecki, M., Maidment, D. R., Zaslavsky, I., Valentine, D.,

& Whitenack, T. (2009). An integrated system for publishing environmental observations

data. Environmental Modelling & Software, 24 , 879–888. doi:10.1016/j.envsoft.2009.01.002.

IEEE International Conference on eScience (2018). What is eScience? https://escience-

conference.org. Accessed 26-July-2018.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of

Computational and Graphical Statistics , 5 , 299–314. doi:10.1080/10618600.1996.10474713.

Jankowski, N. W. (2007). Exploring e-Science: An Introduction. Journal of Computer-

Mediated Communication, 12 , 549–562. doi:10.1111/j.1083-6101.2007.00337.x.

Janowicz, K., Bröring, A., Stasch, C., Schade, S., Everding, T., & Llaves, A. (2013). A

RESTful Proxy and Data Model for Linked Sensor Data. International Journal of Digital

Earth, 6 , 233–254. doi:10.1080/17538947.2011.614698.

Jazayeri, M. A., Huang, C.-Y., & Liang, S. H. L. (2012). TinySOS: Design and Implementation

of Interoperable and Tiny Web Service for the Internet of Things. In Proceedings 1st ACM

SIGSPATIAL Workshop on Sensor Web Enablement SWE ’12 (pp. 39–46). New York,

NY, USA: ACM. doi:10.1145/2451716.2451722.

Jazayeri, M. A., Liang, S. H., & Huang, C.-Y. (2015). Implementation and Evaluation of

Four Interoperable Open Standards for the Internet of Things. Sensors , 15 , 24343–24373.

doi:10.3390/s150924343.

Jirka, S., & Bröring, A. (2012). Practical experiences with Sensor Web technology. In Proc

Sensing a Changing World .

Jirka, S., Bröring, A., Kjeld, P., Maidens, J., & Wytzisk, A. (2012). A lightweight approach

for the Sensor Observation Service to share environmental data across Europe. Transactions

in GIS , 16 , 293–312. doi:10.1111/j.1467-9671.2012.01324.x.

Johnston, S. J., & Cox, S. J. (2017). The Raspberry Pi: A technology disrupter, and

the enabler of dreams. Electronics , 6 . URL: http://www.mdpi.com/2079-9292/6/3/51.

doi:10.3390/electronics6030051.

Jones, A. S., Horsburgh, J. S., Reeder, S. L., Ramı́rez, M., & Caraballo, J. (2015). A data

http://www.sciencedirect.com/science/article/pii/S1364815216300093
http://dx.doi.org/10.1016/j.envsoft.2016.01.010
https://www.cuahsi.org/uploads/pages/img/ODM_SDL_Design_Specifications_(2).pdf
https://www.cuahsi.org/uploads/pages/img/ODM_SDL_Design_Specifications_(2).pdf
http://dx.doi.org/10.1029/2007WR006392
http://dx.doi.org/10.1016/j.cageo.2010.07.003
http://dx.doi.org/10.1016/j.envsoft.2009.01.002
https://escience-conference.org
https://escience-conference.org
http://dx.doi.org/10.1080/10618600.1996.10474713
http://dx.doi.org/10.1111/j.1083-6101.2007.00337.x
http://dx.doi.org/10.1080/17538947.2011.614698
http://dx.doi.org/10.1145/2451716.2451722
http://dx.doi.org/10.3390/s150924343
http://dx.doi.org/10.1111/j.1467-9671.2012.01324.x
http://www.mdpi.com/2079-9292/6/3/51
http://dx.doi.org/10.3390/electronics6030051

98 REFERENCES

management and publication workflow for a large-scale, heterogeneous sensor network.

Environmental monitoring and assessment , 187 , 1–19. doi:10.1007/s10661-015-4594-3.

Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L., Wilkens, P.,

Singh, U., Gijsman, A., & Ritchie, J. (2003). The DSSAT cropping system model. European

Journal of Agronomy , 18 , 235 – 265. URL: http://www.sciencedirect.com/science/

article/pii/S1161030102001077. doi:10.1016/S1161-0301(02)00107-7. Modelling Crop-

ping Systems: Science, Software and Applications.

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J.,

Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H.,

Rosenzweig, C., & Wheeler, T. R. (2017). Brief history of agricultural systems modeling.

Agricultural Systems, 155 , 240 – 254. URL: http://www.sciencedirect.com/science/

article/pii/S0308521X16301585. doi:https://doi.org/10.1016/j.agsy.2016.05.014.

jQuery (2016). jquery. https://jquery.com. Accessed 12-December-2016.

Jung, M., Weidinger, J., Kastner, W., & Olivieri, A. (2013). Building automation and smart

cities: An integration approach based on a service-oriented architecture. In Proc 27th

Intl Conf Advanced Information Networking and Applications Workshops (WAINA) (pp.

1361–1367). IEEE.

Kandel, S., Paepcke, A., Hellerstein, J., & Heer, J. (2011). Wrangler: Interactive visual spec-

ification of data transformation scripts. In Proceedings of SIGCHI Conference on Human

Factors in Computing Systems (pp. 3363–3372). ACM. doi:10.1145/1978942.1979444.

Keating, B., Carberry, P., Hammer, G., Probert, M., Robertson, M., Holzworth, D., Huth,

N., Hargreaves, J., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes,

J., Silburn, M., Wang, E., Brown, S., Bristow, K., Asseng, S., Chapman, S., McCown, R.,

Freebairn, D., & Smith, C. (2003). An overview of APSIM, a model designed for farming

systems simulation. European Journal of Agronomy , 18 , 267 – 288. doi:10.1016/S1161-

0301(02)00108-9. Modelling Cropping Systems: Science, Software and Applications.

Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future Internet: The Internet of Things

architecture, possible applications and key challenges. In Proceedings 10th Intl. Conference

on Frontiers of Information Technology (pp. 257–260). doi:10.1109/FIT.2012.53.

Kjeld, P., Bliki, J., Jirka, S., & Wytzisk, A. (2011). Sensor web technology for sharing

environmental data across Europe. In Proceedings of the INSPIRE Conference.

Klein, T., Samourkasidis, A., Athanasiadis, I. N., Bellocchi, G., & Calanca, P. (2017). webx-

treme: R-based web tool for calculating agroclimatic indices of extreme events. Computers

and Electronics in Agriculture, 136 , 111 – 116. doi:10.1016/j.compag.2017.03.002.

Kruger, C. P., & Hancke, G. P. (2014). Benchmarking Internet of Things devices. In 12th

Intl. Conf. on Industrial Informatics (INDIN) (pp. 611–616). IEEE.

Lagoze, C., & Van de Sompel, H. (2001). The open archives initiative: Building a low-barrier

interoperability framework. In Proc 1st ACM/IEEE-CS Joint Conference on Digital

libraries JCDL ’01 (pp. 54–62). New York, NY, USA: ACM. doi:10.1145/379437.379449.

Lamy, J.-B. (2017). Owlready: Ontology-oriented programming in Python with automatic

classification and high level constructs for biomedical ontologies. Artificial Intelligence in

http://dx.doi.org/10.1007/s10661-015-4594-3
http://www.sciencedirect.com/science/article/pii/S1161030102001077
http://www.sciencedirect.com/science/article/pii/S1161030102001077
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://www.sciencedirect.com/science/article/pii/S0308521X16301585
http://www.sciencedirect.com/science/article/pii/S0308521X16301585
http://dx.doi.org/https://doi.org/10.1016/j.agsy.2016.05.014
https://jquery.com
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1016/S1161-0301(02)00108-9
http://dx.doi.org/10.1016/S1161-0301(02)00108-9
http://dx.doi.org/10.1109/FIT.2012.53
http://dx.doi.org/10.1016/j.compag.2017.03.002
http://dx.doi.org/10.1145/379437.379449

REFERENCES 99

Medicine, 80 , 11 – 28. URL: http://www.sciencedirect.com/science/article/pii/

S0933365717300271. doi:10.1016/j.artmed.2017.07.002.

Lanfranchi, V., Ireson, N., When, U., Wrigley, S., & Fabio, C. (2014). Citizens’ observatories

for situation awareness in flooding. In Proc 11th Intl Conf Information Systems for Crisis

Response and Management (ISCRAM) (pp. 145–154).

Langegger, A., Wöß, W., & Blöchl, M. (2008). A semantic web middleware for virtual data

integration on the web. In S. Bechhofer, M. Hauswirth, J. Hoffmann, & M. Koubarakis

(Eds.), The Semantic Web: Research and Applications (pp. 493–507). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Laursen, O., & Schnur, D. (2007). Flot: Attractive JavaScript plotting for jQuery. http:

//www.flotcharts.org. Accessed 12-December-2016.

Leccese, F., Cagnetti, M., & Trinca, D. (2014). A smart city application: A fully controlled

street lighting isle based on Raspberry-Pi card, a ZigBee Sensor Network and WiMAX.

Sensors , 14 , 24408–24424.

Leinfelder, B., Tao, J., Costa, D., Jones, M. B., Servilla, M., O’Brien, M., & Burt, C. (2010).

A metadata-driven approach to loading and querying heterogeneous scientific data. Eco-

logical Informatics , 5 , 3 – 8. URL: http://www.sciencedirect.com/science/article/

pii/S1574954109000685. doi:10.1016/j.ecoinf.2009.08.006. Special Issue: Advances in

environmental information management.

Lewis, A., Campbell, M., & Stavroulakis, P. (2016). Performance evaluation of a cheap,

open source, digital environmental monitor based on the Raspberry Pi. Measurement , 87 ,

228–235.

Li, S., Da Xu, L., & Zhao, S. (2015). The Internet of Things: a survey. Information Systems

Frontiers , 17 , 243–259. doi:10.1007/s10796-014-9492-7.

Liang, S., Huang, C., Khalafbeigi, T., Liang, S., Huang, C., & Khalafbeigi, T. (2016). OGC

SensorThings API Part 1: Sensing . Implementation Standard 15-078r6 Open Geospatial

Consortium.

Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2015). Internet of things (IoT)

security: Current status, challenges and prospective measures. In 10th Intl. Conf. on

Internet Technology and Secured Transactions (ICITST) (pp. 336–341). IEEE.

Mason, S. J., Cleveland, S. B., Llovet, P., Izurieta, C., & Poole, G. C. (2014). A centralized tool

for managing, archiving, and serving point-in-time data in ecological research laboratories.

Environmental Modelling & Software, 51 , 59–69.

McFerren, G., Hohls, D., Fleming, G., & Sutton, T. (2009). Evaluating Sensor Observation

Service implementations. In Proceedings Intl. Geoscience and Remote Sensing Symposium

(IGARSS) (pp. 363–366). IEEE volume 5. doi:10.1109/IGARSS.2009.5417655.

McKinney, W. (2011). pandas: a foundational Python library for data analysis and statistics.

In Workshop Python for High Performance and Scientific Computing (SC11). New York,

NY, USA: ACM.

Miorandi, D., Sicari, S., Pellegrini, F. D., & Chlamtac, I. (2012). Inter-

http://www.sciencedirect.com/science/article/pii/S0933365717300271
http://www.sciencedirect.com/science/article/pii/S0933365717300271
http://dx.doi.org/10.1016/j.artmed.2017.07.002
http://www.flotcharts.org
http://www.flotcharts.org
http://www.sciencedirect.com/science/article/pii/S1574954109000685
http://www.sciencedirect.com/science/article/pii/S1574954109000685
http://dx.doi.org/10.1016/j.ecoinf.2009.08.006
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1109/IGARSS.2009.5417655

100 REFERENCES

net of things: Vision, applications and research challenges. Ad Hoc Net-

works , 10 , 1497 – 1516. URL: http://www.sciencedirect.com/science/article/pii/

S1570870512000674. doi:10.1016/j.adhoc.2012.02.016.

Mishra, R. B., & Kumar, S. (2011). Semantic web reasoners and languages. Artificial

Intelligence Review , 35 , 339–368. doi:10.1007/s10462-010-9197-3.

Moure, D., Torres, P., Casas, B., Toma, D., Blanco, M. J., Del Ŕıo, J., & Manuel, A. (2015).

Use of low-cost acquisition systems with an embedded linux device for volcanic monitoring.

Sensors , 15 , 20436–20462.

Muller, C., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G., Overeem, A., &

Leigh, R. (2015). Crowdsourcing for climate and atmospheric sciences: Current status and

future potential. International Journal of Climatology , 35 , 3185–3203.

Mulligan, G., & Grac̆anin, D. (2009). A comparison of SOAP and REST implementations of a

service based interaction independence middleware framework. In Proc. Winter Simulation

Conference (WSC) (pp. 1423–1432). doi:10.1109/WSC.2009.5429290.

Na, A., & Priest, M. (2007). OGC Sensor Observation Service 1.0 . Implementation Standard

06-009r6 Open Geospatial Consortium.

Negru, C., Pop, F., Mocanu, M., & Cristea, V. (2016). A unified approach to data mod-

eling and management in big data era. In Z. Mahmood (Ed.), Data Science and Big

Data Computing chapter Data Science and Big Data Computing. (pp. 95–116). Springer

International Publishing. doi:10.1007/978-3-319-31861-5 5.

Nikhade, S. G. (2015). Wireless sensor network system using Raspberry Pi and ZigBee

for environmental monitoring applications. In Proc Intl Conf Smart Technologies and

Management for Computing, Communication, Controls, Energy and Materials (ICSTM)

(pp. 376–381). IEEE.

Nuttall, B. (2016). Top 10 Raspberry Pi add-on boards. https://opensource.com/life/

16/7/top-10-Raspberry-Pi-boards. Accessed 12-December-2016.

Oetiker, T. (2014). RRDtool. http://oss.oetiker.ch/rrdtool/. Accessed 12-December-

2016.

Papazoglou, M., & Georgakopoulos, D. (2003). Service-oriented computing. Communications

of the ACM , 46 , 25. doi:10.1145/944217.944233.

Papoutsoglou, E., Samourkasidis, A., Tsai, M.-Y., Davey, M., Ineichen, A., Eeftens, M., &

Athanasiadis, I. N. (2015). Towards an air pollution health study data management system-

a case study from a smoky swiss railway. In V. K. Johannsen, S. Jensen, V. Wohlgemuth,

C. Preist, & E. Eriksson (Eds.), Adjunct Proc. 29th EnviroInfo and 3rd ICT4S Conference

(pp. 65–74). University of Copenhagen. ISBN 978-87-7903-712-0.

Peckham, S. D., & Goodall, J. L. (2013). Driving plug-and-play models with data from web

services: A demonstration of interoperability between CSDMS and cuahsi-his. Computers

& Geosciences , 53 , 154 – 161. doi:10.1016/j.cageo.2012.04.019. Modeling for Environmental

Change.

Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Sensing as a service

http://www.sciencedirect.com/science/article/pii/S1570870512000674
http://www.sciencedirect.com/science/article/pii/S1570870512000674
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1007/s10462-010-9197-3
http://dx.doi.org/10.1109/WSC.2009.5429290
http://dx.doi.org/10.1007/978-3-319-31861-5_5
https://opensource.com/life/16/7/top-10-Raspberry-Pi-boards
https://opensource.com/life/16/7/top-10-Raspberry-Pi-boards
http://oss.oetiker.ch/rrdtool/
http://dx.doi.org/10.1145/944217.944233
http://dx.doi.org/10.1016/j.cageo.2012.04.019

REFERENCES 101

model for smart cities supported by Internet of Things. Transactions on Emerging

Telecommunications Technologies , 25 , 81–93. doi:10.1002/ett.2704.

Pinto, Y. (2019). Why microSD Express Memory Cards Rule: The Many Advantages of the

PCIe and NVMe Standards . https://www.sdcard.org/press/thoughtleadership/

190315_Why_microSD_Express_Memory_Cards_Rule_The_Many_Advantages_of_the_

PCIe_and_NVMe_Standards.html. Accessed 12-April-2019.

Porter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N.,

Janssen, S., Ripoche, D., Cufi, J., Raes, D. et al. (2014). Harmonization and translation of

crop modeling data to ensure interoperability. Environmental Modelling & Software, 62 ,

495–508. doi:10.1016/j.envsoft.2014.09.004.

Pradilla, J., González, R., Esteve, M., & Palau, C. (2016). Sensor Observa-

tion Service (SOS)/Constrained Application Protocol (CoAP) proxy design. In

Proceedings 18th Mediterranean Electrotechnical Conference (MELECON) (pp. 1–5).

doi:10.1109/MELCON.2016.7495411.

Pradilla, J., Palau, C., & Esteve, M. (2015). SOSLITE: Lightweight Sensor Observation

Service (SOS) for the Internet of Things (IoT). In ITU Kaleidoscope: Trust in the

Information Society (K-2015) (pp. 1–7). IEEE. doi:10.1109/Kaleidoscope.2015.7383625.

Python Software Foundation (2016). The Python standard library: sqlite3 – DB-API 2.0

interface for SQLite databases. https://docs.python.org/2/library/sqlite3.html.

Accessed 26-July-2018.

Python Software Foundation (2017a). The Python standard library: random – Generate

pseudo-random numbers. https://docs.python.org/2/library/random.html. Accessed

26-July-2018.

Python Software Foundation (2017b). The Python standard library: time – Time access and

conversions. https://docs.python.org/2/library/sqlite3.html. Accessed 26-July-

2018.

Python Software Foundation (2018). PyPI - the Python Package Index. https://pypi.

python.org/pypi. Accessed 22-February-2018.

Raskin, R. G., & Pan, M. J. (2005). Knowledge representation in the Semantic Web for Earth

and Environmental Terminology (SWEET). Computers & Geosciences , 31 , 1119–1125.

Raspberry Pi (2018). Raspberry Pi Model B. https://www.raspberrypi.org/products/

raspberry-pi-2-model-b/. Accessed 12-July-2018.

Re, G. L., Peri, D., & Vassallo, S. D. (2014). Urban air quality monitoring using vehicular

sensor networks. In Advances onto the Internet of Things (pp. 311–323). Springer.

Regueiro, M. A., Viqueira, J. R., Stasch, C., & Taboada, J. A. (2017). Semantic mediation

of observation datasets through Sensor Observation Services. Future Generation Computer

Systems, 67 , 47 – 56. URL: http://www.sciencedirect.com/science/article/pii/

S0167739X16302722. doi:10.1016/j.future.2016.08.013.

Regueiro, M. A., Viqueira, J. R., Taboada, J. A., & Cotos, J. M. (2015). Vir-

tual integration of sensor observation data. Computers & Geosciences, 81 , 12–19.

http://dx.doi.org/10.1002/ett.2704
https://www.sdcard.org/press/thoughtleadership/190315_Why_microSD_Express_Memory_Cards_Rule_The_Many_Advantages_of_the_PCIe_and_NVMe_Standards.html
https://www.sdcard.org/press/thoughtleadership/190315_Why_microSD_Express_Memory_Cards_Rule_The_Many_Advantages_of_the_PCIe_and_NVMe_Standards.html
https://www.sdcard.org/press/thoughtleadership/190315_Why_microSD_Express_Memory_Cards_Rule_The_Many_Advantages_of_the_PCIe_and_NVMe_Standards.html
http://dx.doi.org/10.1016/j.envsoft.2014.09.004
http://dx.doi.org/10.1109/MELCON.2016.7495411
http://dx.doi.org/10.1109/Kaleidoscope.2015.7383625
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/sqlite3.html
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.sciencedirect.com/science/article/pii/S0167739X16302722
http://www.sciencedirect.com/science/article/pii/S0167739X16302722
http://dx.doi.org/10.1016/j.future.2016.08.013

102 REFERENCES

doi:10.1016/j.cageo.2015.04.006.

Regueiro, M. A., Viqueira, J. R. R., Stasch, C., & Taboada, J. A. (2016). Sensor Observation

Service semantic mediation: Generic wrappers for in-situ and remote devices. In I. C.-W.

et al. (Ed.), ER (pp. 269–276). Springer International Publishing volume 9974 of LNCS .

doi:10.1007/978-3-319-46397-1 21.

Reitz, K. (2017). Requests: HTTP for humans. http://docs.python-requests.org/en/

master/. Accessed 22-January-2017.

Richardson, L., & Ruby, S. (2008). RESTful web services . Sebastopol, CA, USA: O’Reilly

Media, Inc.

Rijgersberg, H., Wigham, M., & Top, J. (2011). How semantics can improve engineer-

ing processes: A case of units of measure and quantities. Advanced Engineering Infor-

matics, 25 , 276 – 287. URL: http://www.sciencedirect.com/science/article/pii/

S1474034610000753. doi:10.1016/j.aei.2010.07.008. Information mining and retrieval in

design.

Rizzoli, A. E., Athanasiadis, I. N., & Villa, F. (2007). Delivering environmental knowl-

edge: a semantic approach. In Proc. 21st International Conference on Informatics for

Environmental Protection: EnviroInfo (pp. 43–50).

Ronacher, A. (2008). Jinja2. http://jinja.pocoo.org. Accessed 12-December-2016.

Ronacher, A. (2010). Flask. http://flask.pocoo.org. Accessed 12-December-2016.

Rosenzweig, C., Jones, J., Hatfield, J., Ruane, A., Boote, K., Thorburn, P., Antle, J.,

Nelson, G., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baig-

orria, G., & Winter, J. (2013). The Agricultural Model Intercomparison and Improve-

ment Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteo-

rology , 170 , 166 – 182. URL: http://www.sciencedirect.com/science/article/pii/

S0168192312002857. doi:10.1016/j.agrformet.2012.09.011. Agricultural prediction using

climate model ensembles.

Rouached, M., Baccar, S., & Abid, M. (2012). RESTful Sensor Web Enablement Services

for Wireless Sensor Networks. In IEEE Eighth World Congress on Services (pp. 65–72).

IEEE. doi:10.1109/SERVICES.2012.48.

Samourkasidis, A., & Athanasiadis, I. N. (2014). Towards a low-cost, full-service air quality

data archival system. In In Proceedings of the 7th Intl Congress on Environmental Modelling

and Software, International Environmental Modelling and Software Society (iEMSs).

Samourkasidis, A., & Athanasiadis, I. N. (2016). Airchive software. https://github.com/

ecologismico/airchive. Accessed 12-December-2016.

Samourkasidis, A., & Athanasiadis, I. N. (2017). A miniature data repository on a Raspberry

Pi. Electronics , 6 . doi:10.3390/electronics6010001.

Samourkasidis, A., Papoutsoglou, E., & Athanasiadis, I. N. (2018). A template framework

for environmental timeseries data acquisition. Environmental Modelling & Software, 117 ,

237–249. doi:10.1016/j.envsoft.2018.10.009.

Samourkasids, A., Athanasiadis, I. N., & Papoutsoglou, E. (2018). Edam software. https:

http://dx.doi.org/10.1016/j.cageo.2015.04.006
http://dx.doi.org/10.1007/978-3-319-46397-1 21
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
http://www.sciencedirect.com/science/article/pii/S1474034610000753
http://www.sciencedirect.com/science/article/pii/S1474034610000753
http://dx.doi.org/10.1016/j.aei.2010.07.008
http://jinja.pocoo.org
http://flask.pocoo.org
http://www.sciencedirect.com/science/article/pii/S0168192312002857
http://www.sciencedirect.com/science/article/pii/S0168192312002857
http://dx.doi.org/10.1016/j.agrformet.2012.09.011
http://dx.doi.org/10.1109/SERVICES.2012.48
https://github.com/ecologismico/airchive
https://github.com/ecologismico/airchive
http://dx.doi.org/10.3390/electronics6010001
http://dx.doi.org/10.1016/j.envsoft.2018.10.009
https://github.com/BigDataWUR/EDAM
https://github.com/BigDataWUR/EDAM
https://github.com/BigDataWUR/EDAM

REFERENCES 103

//github.com/BigDataWUR/EDAM. Accessed 22-February-2018.

Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., Ramdhany,

R., Gluhak, A., Krco, S., Theodoridis, E., & Pfisterer, D. (2014). SmartSantander:

IoT experimentation over a smart city testbed. Computer Networks, 61 , 217 – 238.

doi:10.1016/j.bjp.2013.12.020. Special issue on Future Internet Testbeds – Part I.

Santos, P. M., Rodrigues, J. G. P., Cruz, S. B., Lourenço, T., d’Orey, P. M., Luis, Y., Rocha,

C., Sousa, S., Crisóstomo, S., Queirós, C., Sargento, S., Aguiar, A., & Barros, J. (2018).

PortoLivingLab: An IoT-Based Sensing Platform for Smart Cities. IEEE Internet of

Things Journal , 5 , 523–532. doi:10.1109/JIOT.2018.2791522.

Sapes, J., & Solsona, F. (2016). FingerScanner: Embedding a fingerprint scanner in a

Raspberry Pi. Sensors , 16 , 220.

Schön, A., Streit-Juotsa, L., & Schumann-Bölsche, D. (2014). Raspberry Pi and Sensor

Networking for African health supply chains. In Proceedings 6th Intl Conf Operations and

Supply Chain Management, Bali .

Shu, Y., Ratcliffe, D., Compton, M., Squire, G., & Taylor, K. (2015). A semantic approach

to data translation: A case study of environmental observations data. Knowledge-Based

Systems , 75 , 104–123. doi:10.1016/j.knosys.2014.11.023.

Silvertown, J. (2009). A new dawn for citizen science. Trends in Ecology & Evolution, 24 ,

467 – 471. doi:10.1016/j.tree.2009.03.017.

Stadtmüller, S., Speiser, S., Harth, A., & Studer, R. (2013). Data-fu: a language and an

interpreter for interaction with read/write linked data. In Proceedings 22nd International

Conference on World Wide Web (pp. 1225–1236). ACM.

Strigaro, D., Cannata, M., & Antonovic, M. (2019). Boosting a weather monitoring system

in low income economies using open and non-conventional systems: Data quality analysis.

Sensors , 19 . doi:10.3390/s19051185.

Sumsal, F., Brester, S. G., Szépe, V., & Halchenko, Y. (2005). Fail2ban. http://www.

fail2ban.org/. Accessed 12-December-2016.

Sun, C., Ippel, L., Wouters, B., van Soest, J., Malic, A., Adekunle, O., Berg, B. v. d., Puts,

M., Mussmann, O., Koster, A. et al. (2018). Analyzing partitioned FAIR health data

responsibly. https://arxiv.org/pdf/1812.00991.pdf. Accessed 26-March-2019.

Swain, N. R., Christensen, S. D., Snow, A. D., Dolder, H., Espinoza-Dávalos, G., Goharian,

E., Jones, N. L., Nelson, E. J., Ames, D. P., & Burian, S. J. (2016). A new open source

platform for lowering the barrier for environmental web app development. Environmental

Modelling & Software, 85 , 11 – 26. doi:10.1016/j.envsoft.2016.08.003.

Tanenbaum, J., Williams, A., Desjardins, A., & Tanenbaum, K. (2013). Democratizing

technology: pleasure, utility and expressiveness in DIY and maker practice. In Proceedings

SIGCHI Conf Human Factors in Computing Systems (p. 2603–2612). ACM.

Taylor, P. (2014). OGC WaterML 2.0: Part 1- Timeseries. Implementation Standard

10-126r4 Open Geospatial Consortium.

Terrizzano, I., Schwarz, P. M., Roth, M., & Colino, J. E. (2015). Data wrangling: The

https://github.com/BigDataWUR/EDAM
https://github.com/BigDataWUR/EDAM
https://github.com/BigDataWUR/EDAM
http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://dx.doi.org/10.1109/JIOT.2018.2791522
http://dx.doi.org/10.1016/j.knosys.2014.11.023
http://dx.doi.org/10.1016/j.tree.2009.03.017
http://dx.doi.org/10.3390/s19051185
http://www.fail2ban.org/
http://www.fail2ban.org/
https://arxiv.org/pdf/1812.00991.pdf
http://dx.doi.org/10.1016/j.envsoft.2016.08.003

104 REFERENCES

challenging journey from the wild to the lake. In Proceeding 7th Biennial Conference

on Innovative Data Systems Research (CIDR). Asilomar, California, USA.: Online

Proceedings.

UptimeRobot (2016). Uptimerobot. https://uptimerobot.com. Accessed 12-December-

2016.

Upton, E., & Halfacree, G. (2014). Raspberry Pi user guide. Hoboken, NJ, USA: John Wiley

& Sons.

Van Rossum, G., & Drake, F. L. (2003). Python language reference manual . Network Theory

United Kingdom.

Villa, F., Athanasiadis, I. N., & Rizzoli, A. E. (2009). Modelling with knowledge: A review

of emerging semantic approaches to environmental modelling. Environmental Modelling &

Software, 24 , 577–587. doi:10.1016/j.envsoft.2008.09.009.

Villa, F., Balbi, S., Athanasiadis, I., & Caracciolo, C. (2017). Semantics for interoperability of

distributed data and models: Foundations for better-connected information. F1000Research,

6 . doi:10.12688/f1000research.11638.1. [version 1; referees: 2 approved with reservations].

Volker Andres, M. U., Simon Jirka (2014). OGC Sensor Observation Service 2.0 Hydrology

Profile. Best Practice Paper 14-004r1 Open Geospatial Consortium.

de Vos, M. (2017). Interpreting natural language spreadsheets. phdthesis Vrije Univer-

siteit. URL: https://research.vu.nl/ws/portalfiles/portal/42791056/complete+

dissertation.pdf.

de Vos, M., Wielemaker, J., Rijgersberg, H., Schreiber, G., Wielinga, B., & Top, J.

(2017). Combining information on structure and content to automatically annotate

natural science spreadsheets. International Journal of Human-Computer Studies , 103 , 63 –

76. URL: http://www.sciencedirect.com/science/article/pii/S1071581917300204.

doi:10.1016/j.ijhcs.2017.02.006.

Vretanos, P. P. A. (2014). OGC Web Feature Service 2.0 . Interface Standard 09-025r2 Open

Geospatial Consortium.

Vujović, V., & Maksimović, M. (2015). Raspberry Pi as a Sensor Web node for home

automation. Computers & Electrical Engineering , 44 , 153–171.

Wikipedia contributors (2018). List of tz database time zones — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=List_of_tz_database_time_

zones&oldid=851163045. Accessed 7-August-2018.

Wikipedia contributors (2019). Raspberry Pi. https://en.wikipedia.org/w/index.php?

title=Raspberry_Pi&oldid=887687839. Accessed 17-March-2019.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A.,

Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E. et al. (2016). The

FAIR guiding principles for scientific data management and stewardship. Scientific data,

3 . doi:10.1038/sdata.2016.18.

Woodard, J. (2016). Big data and Ag-Analytics: An open source, open data platform for

agricultural & environmental finance, insurance, and risk. Agricultural Finance Review ,

https://uptimerobot.com
http://dx.doi.org/10.1016/j.envsoft.2008.09.009
http://dx.doi.org/10.12688/f1000research.11638.1
https://research.vu.nl/ws/portalfiles/portal/42791056/complete+dissertation.pdf
https://research.vu.nl/ws/portalfiles/portal/42791056/complete+dissertation.pdf
http://www.sciencedirect.com/science/article/pii/S1071581917300204
http://dx.doi.org/10.1016/j.ijhcs.2017.02.006
https://en.wikipedia.org/w/index.php?title=List_of_tz_database_time_zones&oldid=851163045
https://en.wikipedia.org/w/index.php?title=List_of_tz_database_time_zones&oldid=851163045
https://en.wikipedia.org/w/index.php?title=Raspberry_Pi&oldid=887687839
https://en.wikipedia.org/w/index.php?title=Raspberry_Pi&oldid=887687839
http://dx.doi.org/10.1038/sdata.2016.18

REFERENCES 105

76 , 15–26. doi:10.1108/afr-03-2016-0018.

Yazar, D., & Dunkels, A. (2009). Efficient application integration in IP-based Sensor Networks.

In Proc. 1st ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Build-

ings BuildSys ’09 (pp. 43–48). New York, NY, USA: ACM. doi:10.1145/1810279.1810289.

Yu, L., & Liu, Y. (2015). Using Linked Data in a heterogeneous Sensor Web: challenges,

experiments and lessons learned. International Journal of Digital Earth, 8 , 17–37.

Ziébelin, D., Hobus, K., Genoud, P., & Bouveret, S. (2017). Heterogeneous data integration

using Web of Data technologies. In D. Brosset, C. Claramunt, X. Li, & T. Wang (Eds.),

Web and Wireless Geographical Information Systems (pp. 35–47). Springer International

Publishing.

http://dx.doi.org/10.1108/afr-03-2016-0018
http://dx.doi.org/10.1145/1810279.1810289

Summary

This thesis investigates the state of the environmental data lifecycle in the Internet of Things

era. We focus on two IoT stressors: a) the constraint resources ecosystem and b) the syntactic

and semantic heterogeneity, and investigate their impact on environmental timeseries storage,

dissemination, acquisition and integration. We argue that heterogeneity along with the low-

capabilities of IoT devices, render past best-practices on environmental timeseries lifecycle

not directly applicable. This thesis addresses the following research questions:

a. Can environmental timeseries lifecycle be facilitated by IoT prototyping devices?

b. Are environmental data dissemination protocols IoT-ready?

c. How can e-scientists acquire, integrate and transform environmental timeseries datasets

in the heterogeneous IoT ecosystem?

In the light of the IoT resource-constrained ecosystem, we investigate whether a) the IoT

prototyping devices can facilitate the environmental timeseries lifecycle, and b) environmental

data dissemination protocols are IoT-ready. Chapter 2 presents our research to support

resilient data storage on IoT prototyping devices. We focus on Raspberry Pi as an IoT

prototyping device and explore its capabilities for resilient data storage, interoperable data

dissemination through established standards and performance under concurrent requests from

external clients. Chapter 3 presents our efforts to transform an established, environmental

data dissemination protocol to be IoT compatible. We focus on OGC Sensor Observation

Service (SOS) and argue that it was not designed to operate efficiently in the IoT enabling

ecosystem. We designed and implemented a backwards-compatible extension which renders

OGC SOS disruption-tolerant and supports for resource economizing.

In the light of data heterogeneity which is amplified in the IoT era, we explore new method-

ologies to support e-scientists towards acquiring, integrating and transforming environmental

timeseries datasets. We argue that current approaches to facilitate aforementioned environ-

mental data lifecycle processes have certain limitations. This is why, on top of the legacy

environmental datasets, come new IoT-produced datasets which are increasingly used in

environmental campaigns. These, are not always properly annotated and/or they report

their data in custom formats, which render contemporary data acquisition and integration

approaches not directly applicable. Chapter 4 reviews these approaches and proposes a

declarative one to support e-scientists towards universal acquisition and integration of syntac-

tically heterogeneous timeseries datasets. Our declarative approach is founded on templates,

which are abstract descriptions of a dataset’s syntax using programming language-agnostic

semantics. We argue that templates offer a compromise between generality and simplicity,

as e-scientists with different computer literacy profiles can develop them. We demonstrate

108 Summary

the syntactic interoperability capabilities of our approach with several case studies spanning

across different environmental domains (i.e. meteorology, agriculture, urban air quality and

hydrology). Chapter 5 extends this declarative approach with a reasoner to support semantic

operations. We focus on one semantic heterogeneity challenge, that is the different units

of measurement according to which observables are reported. Using user-defined semantic

annotations, the reasoner determines the compatibility among datasets that are a) formatted

with different syntaxes, b) annotated with custom semantics and c) reported with different

units of measurement. We demonstrate the semantic interoperability capabilities of our

approach in a case study where we transform meteorological syntactically and semantically

heterogeneous input files of four agricultural models, performing (when applicable) the

on-the-fly units of measurement transformation.

Chapter 6 concludes this thesis and summarizes its main contributions, which are regarded

with:

a. providing with insights about the limits of contemporary IoT gateways and their

performance as active participants in the environmental data lifecycle (Chapter 2),

b. developing an IoT-ready, backwards compatible extension for the OGC SOS to support

interoperable data dissemination on-site (Chapter 3),

c. designing and implementing a declarative approach which facilitates the acquisition,

transformation and integration of syntactically (Chapter 4) and semantically (Chapter

5) heterogeneous environmental datasets.

Acknowledgements

The past five years have been a rollercoaster ride. Everything started in Xanthi and finished

at Wageningen. They say that a PhD is a lone endeavour, but I was lucky enough to have a

selected few who supported me throughout these years.

First and foremost, I would like to express my gratitude to Dr. Ioannis Athanasiadis. Ioannis

and I started collaborating in 2014, when I began my bachelor thesis in Xanthi. Since then,

a lot has changed, but our fruitful collaboration still carries on. Thank you Ioannis for the

opportunities you offered me, our discussions, your comments on our manuscripts, to name

a few occasions. During the past five years and thanks to your mentorship, not only did

I develop new skills but I also became a better researcher. I would also like to thank my

promotor Dr. Bedir Tekinerdogan. Thank you so much Bedir for your guidance, comments

and for always making me feel like home, when I visited Wageningen for research.

Having worked in different projects throughout the years, I was lucky enough to collaborate

with exceptional people. Thank you so much Pierluigi, Tommy and Gianni for our collab-

oration in the context of MODEXTREME. I have the best memories from our inspiring

project meetings. I am also deeply honored to have been considered a co-author in our

paper. Marcelo, Simone and Gaetano it is amazing to have met and worked with you. I

highly enjoyed working with you in the context of MODEXTREME and during my (short)

involvement with the BioMA platform. The International Spring University was my first

adventure in this academic journey. Thank you Ferdinando, Stefano, Brian and Ken for the

unforgettable one-week training on Ecosystem Services Modeling.

In September 2018 I joined the ING IT Class. During this amazing journey, I met friends

and worked with great colleagues. I would like to thank all my friends and colleagues at ING

and BMG. Marc, Luuk, Sil, Lukas, Jurriaan, Hans, Vincent, Nico, Robert, Patrick, Yoeri,

Chris, Theuns, Andrea, Nedim, Daniel, Nikita, Dmitrii, Bo, Miel, Olle and Salad: It was a

pleasure meeting and working with you.

Without the help of friends and colleagues this journey would have been very difficult. Thank

you Stavros for your unconditional help and our geek discussions. I met you in Xanthi by

chance and you are by-far the coolest geek I know! Sotiris and Simos thank you for our small

talks and deep discussions during our coffee breaks (and drinks) in Xanthi. Avi, thank you so

much for our collaboration during my “transition” period in Xanthi. Thank you Evangelia,

for our joint efforts in CEDAR and EDAM. I hope you will be finalizing your own thesis soon.

I keep saying that I don’t have friends, but only acquaintances: Michalis, Kostis, Kosmas,

Apostolos and Kostakis, if I ever get friends, you will be my first options! Thank you so

110 Acknowledgements

much for your support and acquaintanceship all these years.

The biggest merit of this journey is attributed to my family. You never stopped supporting

me in whichever decision I ever made. You are always happier than I am for my successes

and sadder than I am when something goes wrong. A “thank you” is not enough, thus

naturally this thesis is dedicated to you. Ευχαριστώ πολύ για όλα (αδερφέ) ΄Αγγελε, (μαμά)

Βάνα, (γιαγιά) Βάσω, (μπαμπά) Γιώργο, (παππού) Λάκη και (θεία) Ντίνα. Αυτή η διατριβή

είναι αφιερωμένη σε σας.

Paschalina thank you so much for being my partner in this rollercoaster journey. You have

been a part of this since the very beginning giving me the strength to move forward. Without

you, this whole journey would have been less fun and more difficult. I am grateful for your

patience and constant motivation.

List of publications

Peer-reviewed journal publications

Samourkasidis, A., Papoutsoglou, E., & Athanasiadis, I. N. (2018). A template framework

for environmental timeseries data acquisition. Environmental Modelling & Software, 117,

237–249. https://doi.org/10.1016/j.envsoft.2018.10.009

Klein, T., Samourkasidis, A., Athanasiadis, I. N., Bellocchi, G., & Calanca, P. (2017).

WebXTREME: R-based web tool for calculating agroclimatic indices of extreme events.

Computers and Electronics in Agriculture, 136, 111–116. https://doi.org/10.1016/j.

compag.2017.03.002

Samourkasidis, A., & Athanasiadis, I. N. (2017a). A miniature data repository on a

Raspberry Pi. Electronics, 6 (1). https://doi.org/10.3390/electronics6010001

Peer-reviewed book chapter

Samourkasidis, A., & Athanasiadis, I. N. (2017b). A Sensor Observation Service Extension

for Internet of Things. In Podnar Žarko I., Broering A., Soursos S., & Serrano M. (Eds.),

2nd Intl. Workshop on Interoperability and Open-Source Solutions for the Internet of Things

(InterOSS-IoT) (Vol. 10218, pp. 56–71). Springer, Cham; Springer International Publishing.

https://doi.org/10.1007/978-3-319-56877-5_4

Other scientific publications

Samourkasidis, A., & Athanasiadis, I. N. (2018b). Towards a semantic approach for

environmental timeseries data re-usability. In Scientific Symposium FAIR Data Sciences for

Green Life Sciences.

Samourkasidis, A., & Athanasiadis, I. N. (2018). Environmental timeseries lifecycle in the

IoT era. In M. Arabi, O. David, J. Carlson, & D. P. Ames (Eds.), In Proceedings of the 9th

Intl. Congress on Environmental Modelling and Software (iEMSs).

Samourkasidis, A., & Athanasiadis, I. N. (2016). OGC Sensor Observation Service: Past,

present, Internet of the Things. In S. Sauvage, J. Sánchez-Pérez, & A. Rizzoli (Eds.), In

https://doi.org/10.1016/j.envsoft.2018.10.009
https://doi.org/10.1016/j.compag.2017.03.002
https://doi.org/10.1016/j.compag.2017.03.002
https://doi.org/10.3390/electronics6010001
https://doi.org/10.1007/978-3-319-56877-5_4

112 List of publications

Proceedings of the 8th Intl Congress on Environmental Modelling and Software (iEMSs) (Vol.

1, p. 229).

Klein, T., Samourkasidis, A., Athanasiadis, I. N., Bellocchi, G., & Calanca, P. (2016).

webXTREME: A simple web tool for calculating agroclimatic indicators of extreme events.

In S. Sauvage, J. Sánchez-Pérez, & A. Rizzoli (Eds.), In Proceedings of the 8th Intl Congress

on Environmental Modelling and Software (iEMSs) (Vol. 2, p. 471).

Papoutsoglou, E., Samourkasidis, A., Tsai, M.-Y., Davey, M., Ineichen, A., Eeftens, M., &

Athanasiadis, I. N. (2015). Towards an air pollution health study data management system-a

case study from a smoky swiss railway. In V. K. Johannsen, S. Jensen, V. Wohlgemuth, C.

Preist, & E. Eriksson (Eds.), Adjunct proc. 29th EnviroInfo and 3rd ICT4S conference (pp.

65–74). University of Copenhagen.

Samourkasidis, A., & Athanasiadis, I. N. (2014). Towards a low-cost, full-service air quality

data archival system. In In Proceedings of the 7th Intl. Congress on Environmental Modelling

and Software, International Environmental Modelling and Software Society (iEMSs).

Siafarikas, D., Samourkasidis, A., & Arampatzis, A. (2014). A cost-benefit analysis of

indexing Big Data with map-reduce. In In Proceedings of the 7th Electrical and Computer

Engineering Student Conference (ECESCON) (pp. 165–170).

About the author

Argyrios Samourkasidis was born in Komotini, Greece on August 12th, 1991. His research

interests are in the areas of Internet of Things, knowledge representation, data interoperability,

web services, automation and cyber security. Argyrios’ latest publications can be found at

Google Scholar (https://scholar.google.com/citations?user=xVL9r80AAAAJ&hl=en).

Argyris holds an MSc in Electrical and Computer Engineering (5-year engineering curriculum)

from Democritus University of Thrace (top 10% of his class). During his thesis which revolves

around an “autonomous system for fusion, preprocessing and dissemination of air-quality

environmental data on the semantic web”, Argyris discovered his interest in environmental

data and Internet of Things.

In 2014 Argyris started his PhD research at the Democritus University of Thrace. During this

period, Argyris worked as a researcher in ALPINE, a Greek General Secretariat of Research

and Technology (GSRT) project, and MODEXTREME, a European Commission (FP7)

funded project. In the context of ALPINE, he was occupied with the acquisition, processing

and annotation of hydrological data stream from sensor feeds, in order to be suitable for

semantic modelling. In the context of MODEXTREME, Argyris maintained the project’s

website and assisted in the design and dissemination of newsletters and online questionnaires,

as well as getting insights from them. During his occupation for the two projects, Argyris

contributed in writing ten deliverables in total.

In 2016 Argyris joined the Information Technology Group in Wageningen University as an

external PhD student. During his PhD, Argyris has contributed three journal, one book

chapter and four conference, peer-reviewed publications. He attended four international

conferences and one international symposium delivering eight presentations. During the

iEMSs 2016 conference Argyris co-organized the “From Environmental Information Systems

to Big Data” workshop.

In September 2018 Argyris joined ING as an IT Class member. During his assignments there

as a DevOps engineer he gained experience in cyber security, cryptography and site reliability

engineering. He is a senior Python developer with exposure to Pandas, Flask, Ansible, Java

and Spring. Argyris holds a Junior Penetration Tester, COBIT 5 Foundation and Ecosystem

Services Modeling certificates issued by eLearnSecurity, ISACA and BC3, respectively.

Colophon

The research leading to this thesis was partially funded by the European Community’s

Seventh Framework Programme (FP7/2007-2013) within the project MODEXTREME under

grant agreement n° 613817 and Greek General Secretariat for Research and Technology within

the project ALPINE under grant agreement n° 11SYN 6 411.

Cover Design by: Remco Wetzels

Printed by: Proefschriftmaken.nl

Propositions

1. Without standards Internet of Things devices produce legacy datasets which

require customized curation. (this thesis)

2. Internet of Things devices contribute towards democratizing e-science and

lowering its entry barriers. (this thesis)

3. Citizen Science and Open Access are two sides of the same coin.

4. The Dunning-Kruger effect curve depicts a typical PhD study.

5. When business is involved in scientific research, journal impact factors and

community sizes are affected.

6. People looking at their screens during conference presentations or even

conversations is a sign of our times.

Propositions belonging to the thesis, entitled

Environmental timeseries lifecycle in the Internet of Things era

Lowering e-science barriers

Argyrios Samourkasidis

Wageningen, 14 October 2019

	List of Abbreviations
	Contents
	Chapter Introduction
	Problem statement
	Research objective
	Background and related work
	Methodology and thesis outline

	Chapter A Miniature Data Repository on a Raspberry Pi
	Introduction
	Related Work
	The Airchive System
	Implementation
	Demonstration
	Discussion
	Conclusions

	Chapter A Sensor Observation Service extension for Internet of Things
	Introduction
	Related work
	Methods
	Demonstration and implementation
	Discussion and Conclusions

	Chapter A template framework for environmental timeseries data acquisition
	Introduction
	Background and related work
	The EDAM framework
	Demonstration
	Discussion and conclusions

	Chapter A semantic approach for timeseries data fusion
	Introduction
	Background and related work
	Methods
	Demonstration
	Discussion and conclusions

	Chapter Synthesis
	Main findings
	The impact of IoT on environmental timeseries lifecycle
	Directions for future research

	References
	Summary
	Acknowledgements
	List of publications
	About the author

