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Introduction 
 

 

 

1.1 The Environment-food nexus 

The United Nations (UN) designed the Millennium Development Goals (MDGs) 

to end poverty and hunger by 2015. The Sustainable Development* Goals (SDGs) are 

a continuation of the MDGs and further included the planetary must-haves, e.g. task-

ing our planet to achieve climate stability by 2030 (Griggs et al., 2013). In the 2030 

SDG agenda, set by the UN General Assembly in 2015, Goal 2 aimed at achieving 

sustainable food security† (Assembly, 2015). This goal aims to end hunger and to 

achieve long-term food security, including better nutrition, through sustainable sys-

tems of production, distribution and consumption by 2030 (Griggs et al., 2013; 

UNDP, 2018). The SDGs have been defined as: “development that meets the needs 

of the present while safeguarding Earth’s life-support system, on which the welfare 

of the current and future generations depends” (Griggs et al., 2013; Kates, 2018; 

Keeble, 1988). However, humanity is driving global environmental change and has 

pushed the earth into a new geological epoch – the Anthropocene. This geologic 

epoch started around the end of the 18th century (Crutzen, 2006; Griggs et al., 2013; 

Steffen et al., 2011).  

The Anthropocene is dominated by mankind and is characterised by exponential 

growth in a number of global environmental indicators compared to the pre-indus-

trial level (Steffen et al., 2011). The Intergovernmental Panel on Climate Change 

(IPCC) considers the term “pre-industrial” as a reference and it precedes the period 

from 1850 to 1900, which marks the onset of large-scale industrial activities around 

                                                           
* Sustainable development is defined as development that meets the needs of the present without compromising the 

ability of future generations to meet their own needs (Kates et al., 2005). 
† Food security exists when all people, at all times, have physical, social and economic access to sufficient, safe and 

nutritious food to meet their dietary needs and food preferences for an active and healthy life (Devaux et al., 

2014). 
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the world (IPCC, 2018a). Today, the atmospheric concentration of the major green-

house gas (GHG), carbon dioxide (CO2), has passed 400 parts per million (ppm) by 

volume, as compared to the pre-industrial level of 280 ppm (Tans and Keeling, 2014). 

Steffen et al. (2011) explained that the planetary upper threshold for atmospheric CO2 

concentration is 350 ppm and that above this, the earth’s system may shift from a 

safe operating space to a zone of uncertainty. The pronounced increase in the con-

centrations of CO2 and other GHGs has induced a 1.5 W∙m-2 additional radiative 

forcing to the climate system relative to the pre-industrial level, while a 1.0 W∙m-2 

additional forcing relative to the pre-industrial is considered as a planetary thresh-

old (Adger et al., 2003; Myhre et al., 2013; Steffen et al., 2011). As a result, the global 

temperature is currently nearly 1.0 ᴼC warmer (with a probable range of 0.8 ᴼC to 1.2 

ᴼC) than the pre-industrial level, and will likely pass the 1.5 ᴼC threshold in 2050 

(IPCC, 2018b). Developing countries, in which agriculture is the backbone of the 

economy, are among the more vulnerable members of the global community (Adger 

et al., 2003; Godfray et al., 2010b). Among the developing countries, countries in the 

sub-Saharan Africa (SSA) region, including Ethiopia, are the ones most seriously af-

fected by climate change (Met-Office, 2015; Rosenzweig and Parry, 1994). 

The challenge facing the international community is to achieve SGD Goal 2 under 

current climate variability and change conditions. In this introduction, I first review 

the relationships between weather and food production on different spatial (from 

global to local) and temporal (from daily, seasonal to decadal) scales. I specifically 

stress how meteorological crop drivers occurring on different scales (from mesoscale 

to synoptic scale) influence the potato crop, which can play a key role in the food 

security endeavours of developing nations, including Ethiopia, in the near future. 

The study further scales down and focuses on the Gamo Highlands in southern Ethi-

opia. 

1.1.1 The global scale 

The global environmental change and food provision are interwoven topics that 

are arousing serious concerns, such as how to provide sufficient food for the de-

mands of society, particularly to more vulnerable groups. However, sufficient food 

provision will create additional pressure on the environment (Tilman et al., 2001). In 

a feedback loop, this environmental pressure can further increase uncertainties in 

food production systems (Godfray et al., 2010a; Ingram and Brklacich, 2006). There-

fore, the impacts of climate change, the adaptation and mitigation measures and 

their effects on the food systems are issues that have attracted global attention 

(Godfray et al., 2010a; Gregory et al., 2005). 

Global food production has significantly increased throughout the past half cen-

tury (Ray et al., 2013). Nevertheless, more than one in seven people today do not 
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have access to sufficient energy and dietary protein and even more suffer from var-

ious types of micronutrient deficiencies (DeFauw et al., 2012; Godfray et al., 2010a), 

although food supply is abundant in most Western countries. The world population 

is expected to plateau at nearly 9 billion in 2050, compared to 7.3 billion in 2015 

(Godfray et al., 2010a; Godfray et al., 2010b; May, 2018). Studies have shown that to 

feed the increased population the world will need greater than 85% more food by 

2050, relative to the 2013 food supply (Long et al., 2015). Devaux et al. (2014) argued 

that 40% to 60% of global food insecurity could be eliminated if small-holder farmers 

were supported. In this regard, potato could play a key role in household food secu-

rity, e.g. in SSA, where farmland holdings are small but labour is relatively available. 

The average farm sizes of land constrained (e.g. Nigeria) and land abundant (e.g. 

Ghana) African nations are 1.2 and 3.0 hectares per farmer, respectively (Jayne et al., 

2014). If maize, rice, wheat and soybean crops are considered, to meet the rising de-

mand, the world needs a 2.4% yield increase per year in the four crops averaged, 

whereas the current rates of yield improvement are below 1.5% (Long et al., 2015; 

Ray et al., 2013). Note that such data are not available for the potato crop. 

Recently, the World Meteorological Organization (WMO) estimated that anthro-

pogenic warming has raised the mean global surface temperature by approximately 

1.1 ᴼC (1.1±0.1 ᴼC) relative to the pre-industrial level (WMO, 2018) and the rate of 

increase is ~0.2 ᴼC per decade (Hansen et al., 2006). From 1970 to 2017, the global 

surface temperature rose by 0.9 ᴼC, which shows that warming has accelerated in 

recent decades (Brönnimann, 2018). For instance, 2017 ranks as the warmest non-El 

Niño year on record (Blunden et al., 2018; Sánchez-Lugo et al., 2018). Most remarka-

ble is that 2015 to 2017 were the four warmest consecutive years on record (Sánchez-

Lugo et al., 2018; WMO, 2018). Such an increase in the global temperature signifi-

cantly influences food production (Godfray et al., 2010b). In order to limit the accel-

erated warming of the climate system, the Paris climate agreement aims to keep an-

thropogenic warming below 2 ᴼC and even further, to limit the rise in global surface 

temperature to 1.5 above the pre-industrial level (Rogelj et al., 2016). 

Increased anthropogenic radiative forcing has also had an enormous impact on 

global water bodies (Karl and Trenberth, 2003). The global upper 75 m of the ocean 

warmed at a rate of 0.11 ᴼC per decade between 1971 and 2010 (Rhein et al., 2013). 

Near the Equator, the rising sea surface temperature (SST) and ocean heat content 

weaken the tropical easterly winds, shifting the location of atmospheric convection 

and changing patterns of global climatic teleconnection (Collins et al., 2010; WMO, 

2016). A typical outcome of such a change is the amplification of the El Niño/South-

ern Oscillation (ENSO): El Niño (warm) and La Niña (cold) episodes (Adger et al., 

2003). For example, 2015 showed one of the strongest El Niños since 1950, mani-

fested by either major floods or worst ever droughts in many parts of the world 

(Blunden and Arndt, 2016). In Ethiopia, it triggered one of the worst droughts for 
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many years and affected more than 8 million people (Blunden and Arndt, 2016; 

Lewis, 2017; Tsidu, 2016). 

Enhanced warming and changing climate affect aspects of food security such as 

availability, access, utilisation and food systems (Kanamaru, 2009). A recent estimate 

of food insecurity categorised the developing world (mainly SSA) as among the re-

gions most vulnerable to food insecurity, relative to other parts of the world (Met-

Office, 2015). Furthermore, predictions also show increases in food insecurity in the 

future in the region (FAO, 2016; Met-Office, 2015; Wheeler and von Braun, 2013). 

The FAO reported that 36% of the global workforce and two-thirds of the population 

of SSA make their living from agriculture (FAO, 2008a). The figure even rises to 85% 

if the Ethiopian situation is considered alone (Kassie, 2014). To quantify the impact, 

a recently defined global hunger index showed that, in 2015, the SSA region and 

Ethiopia are indexed 32 (rated ‘serious’ in severity) and 40 (rated ‘alarming’), respec-

tively, whilst the global average was 22 (rated ‘serious’) (Von Grebmer et al., 2015; 

Wheeler and von Braun, 2013). Furthermore, equatorial or low-latitude (roughly 

30ᴼS – 30ᴼN) regions are compared with temperate regions (high latitudes), the for-

mer are at larger risk of suffering food insecurity than the latter (Hijmans, 2003; 

Hoegh-Guldberg et al., 2018).  

Regarding the crop studied for this thesis, Hijmans (2003) projected that the 

global potential yield of potato will fall by 18 to 32% without adaptation‡ to climate 

change in the 2050s and by 9 to 18% with adaptation between 2040 and 2069. Simi-

larly, from 2050 to 2069, FAO estimated that potato yields will fall by from 10 to 19% 

due to climate change (FAO, 2016). Regionally, warmer temperatures could have a 

severe negative impact on potato farming at low latitudes as compared with high-

latitude regions (Haverkort and Struik, 2015; Hijmans, 2003).  

As mentioned above, the Anthropocene is characterised by an unprecedented 

population increase and by the fact that humanity influences the environment with 

a number of global food security concerns. A useful way to quantify our needs is by 

defining crop yield. Crop yield can be defined at various levels: potential yield, ex-

perimental yield, attainable yield, aspired yield and actual yield (Haverkort, 1986, 

2018; Haverkort and Struik, 2015). Potential yield is the theoretical yield that can be 

modelled without any limiting factor being present (Haverkort and Struik, 2015). Actual 

yield is a yield that a farmer harvested, which can be reduced by pests, weeds and sub-

optimal farm inputs (Haverkort, 2018). The yield gap is defined as the difference between 

potential and actual yield in a certain agro-ecological environment (Godfray et al., 

2010a; Haverkort and Struik, 2015).  

The global, African and Ethiopian actual potato yields are estimated to be 20 t∙ha-

1, 15 t∙ha-1 and 12.3 t∙ha-1, respectively (George et al., 2018; Haverkort, 2018; Tafesse 

                                                           
‡ Adaptation is defined as an adjustment in natural or human systems in response to actual or expected climatic 

stimuli or their effects, which moderates harm or exploits beneficial opportunities (Parry et al., 2007). 
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et al., 2018). In a review, Tadele (2017) concluded that some regions of the world have 

nearly reached their maximum attainable crop yield, whereas other regions such as 

Africa showed considerable yield gaps. For instance, in Ethiopia, potato yields of 

more than 65 t∙ha-1 in research stations and 50 t∙ha-1 in farms have been achieved 

(Tafesse et al., 2018). This shows that there is a huge potential to improve productiv-

ity, e.g. by improving cultivars and crop management practices (Tadele, 2017). Fur-

thermore, environmental variables such as differences in CO2 concentrations, alter-

ing planting dates/seasons/years/variations in latitude and altitude influence the po-

tential yield (Haverkort and Struik, 2015). Godfray et al. (2010a) and Jovanovic et al. 

(2018) suggested closing the yield gap as one of the most important potential strate-

gies to feed the world while maintaining the emphasis on sustainability. Table 1.1 

presents potential and actual yields and yield gap from around the world. 

Table 1.1 | The potential and actual yields and yield gaps of countries in Asia, South America, Europe 

and Africa (including Ethiopia in all potato-growing seasons). Note that the largest (blue) and lowest 

(red) values are highlighted and for the yield gap column, the red text shows the largest and the blue 

shows the smallest yield gaps. Data obtained from Haverkort (2018), Jovanovic et al. (2018) and 

Svubure et al. (2015). Note that according to the National Meteorological Agency, the Ethiopian climate 

is classified in belg (FMAM), kirmet (JJAS) and bega (ONDJ).  

Country 

Country/ 

city 

Production  

(season, irrigated) 

Potential 

yield 

(t∙ha-1) 

Actual 

yield 

(t∙ha-1)  

Actual : 

potential 

(ratio) 

Yield 

gap 

(%) 

China 

Hei-

longjiang Summer 64 32 0.50 50 

 Ningxia Summer 66 25 0.38 62 

India Gurjarat Winter 63 41 0.65 35 

 Punjab Winter 29 22 0.76 24 

Bangladesh Bangladesh Irrigated winter 61 35 0.57 43 

Indonesia Bandung Rain-fed 32 17 0.53 47 

 Bandung Irrigated 33 16 0.48 52 

Vietnam Vietnam Winter, river delta 28 11 0.39 61 

  Highland 52 20 0.38 62 

Myanmar Myanmar Rainy season, highland 35 13 0.37 63 

 Myanmar Irrigated, winter highland 45 15 0.33 67 

Argentina Argentina Spring-summer 95 55 0.58 42 

Netherlands Netherlands Summer, consumption 96 63 0.66 34 

 Netherlands Summer, starch 96 47 0.49 51 

Algeria Algeria Autumn 35 25 0.71 29 

 Algeria Spring  43 30 0.70 30 

Tunisia Jendouba Winter 41.1 21 0.51 49 

Zimbabwe Zimbabwe  2011-‘14 88 - 96 8 - 34 0.08 - 0.35 65 - 92 

Ethiopia Debre Zeit Belg  75 13 0.17 83 

  Meher 60 10 0.17 83 

    Bega  55 15 0.27 63 
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 Typical numbers shown in Table 1.1 indicate that potential yields range between 

28 t∙ha-1 in Vietnam to 96 t∙ha-1 in the Netherlands and Zimbabwe. The actual yield 

ranges from 8 t∙ha-1 in Zimbabwe to 63 t∙ha-1 in the Netherlands. The East African 

region has a high potential yield (> 60 t∙ha-1), but the yield gap is more than 65%. 

Ethiopia produces potato throughout the year: in belg and meher with rainfall and in 

bega if irrigated (Tufa, 2013) with potential yields of 75 t∙ha-1, 60 t∙ha-1 and 55 t∙ha-1, 

respectively. The yield gaps are pronounced and estimated to be 83% in belg and in 

meher and 63% in bega. 

The strategy of “closing the yield gap” could raise sustainability issues related to 

impacts on the environment and potential feedbacks in future food production 

(Godfray et al., 2010a; Ingram and Brklacich, 2006). However, with a number of en-

vironmental intervention approaches and activities (e.g. soil and water conserva-

tion), which can potentially improve microclimates, the yield gaps can be closed 

(Godfray et al., 2010a). 

Potato is ranked fourth in production on the global scale (Haverkort, 2018; 

Haverkort and Struik, 2015). In 2014, global production, area planted and produc-

tivity are estimated to be 383 million tonnes, 19 million hectares of land and 20.2 

tonnes per hectare, respectively (George et al., 2018). Since 1990, in Eastern Africa, 

data have shown that yield did not show much improvement but the area under 

cultivation has significantly increased (Haverkort and Struik, 2015). 

The potato crop is mainly adapted to the temperate climate (Haverkort and 

Struik, 2015). The crop is also grown in tropical mountainous regions all over the 

world (Haverkort, 2018; Haverkort and Struik, 2015). Recently, potatoes are becom-

ing popular and are considered as a key crop to improve food security, especially in 

the developing countries (FAO, 2008b; Lutaladio and Castaldi, 2009; Struik et al., 

2014; Tadesse et al., 2018). Potato is considered as a ‘hunger breaker’ because of its 

short crop cycle (Struik et al., 2014; Tadesse et al., 2018) and it can give yield in situ-

ations in which other crops might fail (Lutaladio and Castaldi, 2009). The crop has a 

number of advantages over cereals: harvest index of greater than 75% (as compared 

with 40% to 60% for cereals) (DeFauw et al., 2012; Haverkort, 2018; Haverkort and 

Struik, 2015); relatively low water requirements (George et al., 2018; Haverkort and 

Struik, 2015; Pandey et al., 2012); mostly consumed by local to national markets 

(Lutaladio and Castaldi, 2009; Tadesse et al., 2018); improving small-holder farmers’ 

economy (DeFauw et al., 2012) and high nutritional values but a healthy diet with 

low fat content (Lutaladio and Castaldi, 2009; Oerke and Dehne, 2004; Tufa, 2013). 

Much of our understanding of environment and potato crop relations comes from 

temperate climate regions (Haverkort et al., 2015; Khan et al., 2013; Kooman, 1995; 

Struik, 2007). However, potato production in the developed world has shown a 

slight falling trend, while in the developing countries production has increased al-
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most four fold (Devaux et al., 2014; Haverkort and Struik, 2015). Hence, studies fo-

cusing on weather-crop interactions can help to improve crop productivity in real-

ising food security improvements in the third world (Devaux et al., 2014).  

1.1.2 From the Eastern Africa to Ethiopia 

The population of Africa is projected to be 2.5 billion by 2050 (~28% of the global 

population) (Tadele, 2017). Because of anthropogenic warming, the African conti-

nent is also exposed to and affected by extreme weather and climate change. From 

the climate change related impact perspective, a region can be more vulnerable§ (i.e. 

increased exposure and sensitivity and with less adaptive capacity) than others and 

thus at increased risk of suffering the impacts of climate change (Adger et al., 2003; 

Parry et al., 2007; WMO, 2018). To quantify the vulnerability, the effect of a 1 ᴼC in-

crease in temperature on real per capita output showed that the African continent is 

rated the most negatively affected (rated < -0.95 on a scale between -2.25 to 4.5) re-

gion in the world (WMO, 2018). 

The Representative Concentration Pathways, presented in the IPCC Fifth Assess-

ment Report and a number of Global Climate Models (GCMs) showed that the tem-

perature in the African continent is projected to rise faster than the global average 

during the century (James and Washington, 2013; Niang et al., 2014). During March 

to May in 2017, Tsidu (2018) indicated that East Africa (also referred to as the Greater 

Horn of Africa, GHA, which is located between 20ᴼ-50ᴼE and 15ᴼS-20ᴼN and in-

cludes Ethiopia, see Figure 1.1a) showed nearly 3 O C increase in temperature as com-

pared to 1981-2010 ERA-Interim temperature climatology. Despite the fact that the 

observed precipitation in the region showed a falling trend since 1980 (Rowell et al., 

2015), while a number of GCM projections indicated a rising trend (up to nearly 20%) 

for March to May precipitation (James and Washington, 2013; Kerandi et al., 2018; 

Van Oldenborgh et al., 2013). The lack of reliable long-term weather measurements 

makes it more difficult to quantify the temperature and precipitation mismatches.  

A number of global circulation features and teleconnections influence Eastern 

Africa, in particular Ethiopia. In addition, heterogeneous landscape with complex 

terrain and proximity of the region to large water bodies (such as the Indian Ocean, 

Red Sea and a number of lakes) play significant roles in modulating the spatial and 

temporal variability of weather and climate of the GHA (Cattani et al., 2016; Haile et 

al., 2009; Pierre et al., 2018). The elevation of Ethiopia ranges from 125 m below sea 

level at the Danakil depression to 4620 m a.s.l. at the summit of Mount Ras Dashen. 

To mention just a few of the atmospheric and oceanic systems involved: the seasonal 

oscillation (between 15ᴼS and 15ᴼN) of the Intertropical Convergence Zone (ITCZ) 

(see Figure 1.1a) (Diro et al., 2008; Nicholson, 2011); the tropical easterly jet (Diro et 

                                                           
§ The IPCC defines vulnerability as the degree to which a system is susceptible to and unable to cope with, adverse 

effects of climate change, including climate variability and extremes (Parry et al., 2007). 
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al., 2011a; Segele et al., 2015); East African low level and the subtropical westerly jets; 

Azores and Arabian high; humidity anomalies over the Red Sea and Gulf of Guinea; 

low level wind anomalies from Indian and Atlantic oceans; and ENSO (Diro et al., 

2011a; Gissila et al., 2004; WMO, 2018). Deviations from the mean state of these cli-

matic features influence the weather and climate dynamics of the country. Ulti-

mately, such anomalies affect crop growth and yield in the region. In this thesis, I 

attempt to relate and quantify how key synoptic features like ICTZ influence a rele-

vant agricultural region in Ethiopia, the Gamo Highlands, which is characterised by 

its complex topography and landscape heterogeneity.  

In SSA, crop production and productivity are categorised as among the world’s 

most vulnerable sectors because (1) the agriculture is rainfed and sensitive to 

weather/climate variations (Awulachew et al., 2010); (2) climate variability has inten-

sified in recent decades (Lobell and Field, 2007; Lobell and Gourdji, 2012; Niang et 

al., 2014); and (3) as a result, recurrent floods and droughts occurred (Lesk et al., 

2016). For example, the Ethiopian Gross Domestic Product (GDP) growth trend is 

highly correlated with precipitation, which shows that livelihoods are highly sensi-

tive to weather/climate anomalies (Diro et al., 2011a; Kassie, 2014). In the country, 

agriculture is the source of 85% of family income, accounts for 50% of GDP and con-

tributes >80% to the foreign exchange earnings (Kassie, 2014). However, in an agri-

cultural perspective, potato is a relatively recent crop in Ethiopia, but is already be-

coming an important staple food that improves both food security and the financial 

situation of the small-land holder rural farmer (FAO, 2019). The potato can thus be 

a means out of poverty that will contribute attaining the MDGs in Eastern Africa 

(Bradshaw and Bonierbale, 2010; Schulte-Geldermann, 2013). Because of its short 

growing cycle and low water requirements (compared to cereals) (Lutaladio and 

Castaldi, 2009), the crop can still be grown despite the generally falling trend in pre-

cipitation in the GHA (Rowell et al., 2015). In this circumstance, potato cultivation 

can be regarded as an adaptation to climate change. Potato is also nutritionally rich 

and simple to cultivate in most of the year by small landholding farmers (Bradshaw 

and Bonierbale, 2010; Haverkort et al., 2012). Furthermore, in the GHA, potato is 

widely cultivated and its production has been almost exponentially increasing since 

1990 (Haverkort and Struik, 2015; Scott et al., 2000; Struik et al., 2014). 
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1.1.3 The Gamo Highlands, southern Ethiopia 

Atmospheric and oceanic phenomena occurring at different spatiotemporal 

scales in the tropical and extratropical regions influence the weather/climate dynam-

ics in southern Ethiopia, as shown in Figure 1.1a (Diro et al., 2011a). A few of the 

relevant synoptic (thousands of kilometers spatial scale) and mesoscale (up to 3 kil-

ometers) phenomena were explained by Stull (2000). These are investigated in this 

study and are key features that control the temperature and precipitation regimes, 

which are the meteorological crop growth drivers, as explained in Figure 1.1. 

Recent studies have shown that the rainbelt lies ~6ᴼ to the south of the ITCZ dur-

ing the rainy season in April (note that the ITCZ oscillates between the red line in 

January and blue line in July (Figure 1.1a)) (Nicholson, 2009; Nicholson, 2018). In 

short, the minimum surface pressure over the Gamo Highlands (southern Ethiopia) 

is observed around mid-March (March was also the warmest month during belg-

2017); however, the maximum precipitation occurred during May in 2017 (in the 

same month, the ITCZ over-head the northern part of Ethiopia) (ACMAD, 2017; 

NOAA, 2017). 

  



1. Introduction  

18 

 

 

Figure 1.1 | The main topics raised in this thesis (moving clockwise from top left): 

(a) Map of Africa showing the land-use land-cover map of Ethiopia. The lower red and the upper blue 

lines show the approximate latitudinal location of the ITCZ in January and July, respectively. The 

Weather Research Forecasting model’s coarse (54 × 54 km2 resolution in an area of 2916 × 2916 km2) 

model domain (green pins and with lines). Inset is a map showing the WRF model’s fine domain (2 × 

2 km2 resolution in an area of 84 × 48 km2) centered the Gamo Highlands (Chapter 3). Superimposed 

on this fine domain, the Gamo Ethiopian Meteorological Stations (GEMS) network’s south - north 

(SN) and east - west (EW) transects (Chapter 4). 

(b) (i) GEMS-Gazesso station with the main sensors (16 May 2017); (ii) shows Gircha farm with field 

assistants gathering canopy cover data using a grid technique (04 May 2017); and (iii) potato harvest in 

Gircha (02 August 2017) (Chapters 4 and 5). 

 (c) The most dominant mesoscale flows during daytime (LB - lake-breeze and AF - anabatic flows in 

combination with valley flow circulations) and night (MB – mountain breeze flows and KF - katabatic 

circulations) are shown. The relative elevations of the GEMS network are also indicated (Chapter 4). 

 (d) The major meteorological crop drivers (temperature, the SW↓ and PPT) (Hoogenboom, 2000) re-

lated to crop yield vary as function of elevation in the Gamo Highlands (Chapters 3, 4 and 5).  

Numerous studies have associated the bimodal precipitation regime around 

equatorial Africa (from central Tanzania to southern Ethiopia) with the seasonal and 

meridional excursion of the ITCZ (Gleixner et al., 2017; Korecha and Sorteberg, 2013; 

Segele and Lamb, 2005). The other atmospheric-oceanic large-scale feature affecting 

southern Ethiopia is ENSO. Literature showed that the equatorial Pacific SST varia-

bility is strongly correlated (50%) with precipitation anomalies in Ethiopia (Gleixner 

et al., 2017). Interestingly, the impact of ENSO differs among regions and seasons in 

the country (Gleixner et al., 2017; WMO, 2018). For northern Ethiopia, El Niño/La 
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Niña conditions are correlated with less/more kirmet precipitation, respectively 

(Korecha and Sorteberg, 2013; WMO, 2016), whereas the opposite trend is observed 

in southern Ethiopia during ENSO events (Nicholson, 1996; Tsidu, 2016; WMO, 

2016). These large features of atmospheric motions are important as they influence 

weather and climate in several spatiotemporal scales and consequently affect crop 

growth. 

Moving to finer spatiotemporal scales, Figure 1.1 shows the complexity of topog-

raphy in the Gamo Highlands in southern Ethiopia. The landscape is composed of 

lakes, forests and agricultural land. The elevation ranges between 1000 m a.s.l. in the 

valleys and 3600 m a.s.l. in the highlands (Daye and Healey, 2015). The complex 

topography and heterogeneous landscape not only influence large-scale circulations 

but also the local meteorological (e.g. mesoscale dynamics) conditions of the region 

(Jury, 2019). 

The mesoscale meteorology displays seasonality and plays a key role in the crop 

dynamics of the Gamo Highlands. In the season of study, belg, the mesoscale flows 

vary in time and space in the area. A general diurnal pattern of anabatic flows during 

the day and katabatic flows at night is depicted (Figure 1.1c). The diurnal variations 

in mesoscale dynamics also showed prominent differences between the beginning 

(February) and the end (May) of the belg season. In February, variations in the day- 

and night-time flows are much more pronounced and the lake and mountain flows 

are more prominent than the large-scale features. Before the onset of the belg precip-

itation, strong easterly to south-easterly lake breezes can be observed during the 

day, with weak and localised flows at night. On the other hand, during the peak 

rainy month, the synoptic features prevailed and differences between day and night 

flows were less pronounced. In this period, the southerly flows to the highlands pre-

vailed. The presence of lakes and the complex topography influenced how major 

roles played out during the dry month of the belg, whereas synoptic features such as 

ITCZ played key roles during the wettest month of belg season (Gebremariam, 2007). 

Jury (2019) indicated that during the kirmet season in 2015, in the morning (0300 

to 0900 Local Standard Time, LST), the Ethiopian highlands are dominated by diver-

gent katabatic flows from the mountains to the lowlands. Upslope flows are initiated 

from 0900 LST and become stronger from 1500 to 2100 LST. During the evening (be-

fore midnight), surplus precipitation spreads at 7 m∙s-1 westwards from the highest 

mountains almost at 38ᴼE and 14ᴼN to 36.5ᴼE. Jury (2019) remarked that solar heat-

ing initiated surface heat fluxes that generated moisture convergence in the late af-

ternoon and precipitates in the evening. Rientjes et al. (2013), in the Lake Tana basin, 

showed a late afternoon (mostly), midnight and early morning precipitation diurnal 

maxima depending on the location around the basin. In the mountainous area in 

eastern Africa, Geerts and Dejene (2005), using TRMM satellite data showed an af-

ternoon to evening (peak occurs during 1500 to 1800 LST) precipitation maximum 

in the kirmet season. Elevation and aspect angle (by influencing the large-scale flows) 
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and Lake Tana played key roles in modulating the diurnal precipitation cycle (Haile 

et al., 2009; Rientjes et al., 2013). 

1.1.4 Scaling down: From global to the smallholder farmer’s land 

a) Meteorology 

Forty-two percent (471 thousand km2) of Ethiopian land is categorised as moun-

tainous area, in which 55% of the population dwells (Huddleston et al., 2003). In the 

country, the average farm size is estimated to be 0.96 hectare per farmer (Headey et 

al., 2014). In such complex topography with diverse climatology (Diro et al., 2009) 

and a system of fragmented landholdings, a downscaling approach (from global to 

local/field-scale) can be appropriate to implement weather/climate related decisions 

(Takle et al., 2014). For such relevant farm-scale agricultural decisions, outputs from 

fine resolution weather-crop models/observations are crucial.  

Agro-meteorological models involve plant physiological (e.g. carbon allocation 

in plant parts) or physical (e.g. crop growth) processes, on the basis of which the 

models calculate relationships between the plant functions as influenced by envi-

ronmental variables such as weather and edaphic variables and crop management 

interventions (Hoogenboom, 2000; MacKerron, 2007). Crop growth models use 

weather elements as model input (Klemm and McPherson, 2017). Their applications 

are twofold: (1) to enhance our knowledge of crops and relevant crop processes; (2) 

to predict the impacts of manipulations in cropping systems (Khan et al., 2014; 

Motha, 2007; Van Ittersum and Donatelli, 2003). Several methodological options 

with different spatial and temporal resolutions can be employed here to understand 

historical and to predict future weather/climate, which can be used as inputs for 

agro-meteorological models. These are weather station networks (or interpolated 

and generated data) (e.g. (Boogaard et al., 2002; Carbone, 1993; Ceglar et al., 2016; 

Van Keulen and Stol, 1995)); weather reanalysis products (e.g. (De Wit et al., 2010; 

Elliott et al., 2015)); remotely sensed datasets (e.g. (Jin et al., 2018; Ma et al., 2013)) and 

statistically or dynamically (with numerical weather prediction models) downscaled 

products (e.g. (Marletto et al., 2007; Raposo et al., 1993)). It is important to stress that 

these data streams are quite different in source and have different values for crop 

modelling. In this thesis, I used dynamically downscaled weather model data at both 

fine (representing mesoscale processes) and coarse (GCM scale) resolutions and a 

dense network of stations as input for a crop growth model. Outputs such as sea-

sonal to inter-annual climate (temperature and precipitation) forecast products with 

lead-times of a month to a year or more are of enormous benefit for agricultural 

productivity (Ash et al., 2007; Garbrecht and Schneider, 2007; Motha, 2007; Takle et 

al., 2014). Examples of such outputs are future climate change scenarios, predicted 

by GCMs (e.g. (Hijmans, 2003; Tubiello et al., 2002)); and climate variability and 

ocean/atmosphere teleconnections such as ENSO predictions (e.g. (Ash et al., 2007; 
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Cane et al., 1994; Jury, 2012; Maracchi et al., 2005; Motha, 2007)) can be regarded as 

weather input for crop models for predicting the future crop growth and yield. 

In order to understand how weather and climate variations influence potato 

growth, it is essential to design a research methodology that integrates scales, re-

solves processes and captures the main spatiotemporal details in weather dynamics 

(Hunink et al., 2014; Motha, 2007; Otieno et al., 2018). The global climate forecasts 

with coarser horizontal resolutions (approximately 50 km) need to be downscaled 

(smaller spatiotemporal scales) for both regional and farm-specific interpretations 

are presented (see coarse and fine model domains in Figure 1.1a). To scale down 

global weather/climate products, dynamical and statistical-empirical downscaling 

and a combination of the two methodologies are in use today (Garbrecht and 

Schneider, 2007). 

 

b) The potato crop dynamics 

On farm level, crop models can be used as decision-support systems (DSS) to 

assist the farmer’s decision-making (Haverkort, 2018; Hoogenboom, 2000). There are 

three types of DSS management decisions: (1) strategic (decisions prior to farming 

potato crop based on climate suitability, resources availability and efficiency, e.g. 

agro-ecological zoning (Haverkort et al., 2013; Van Evert et al., 2013)); (2) tactical (de-

cisions prior to planting but following strategic decisions, e.g. fertilizer rating 

(Gayler et al., 2002)); and (3) operational/forecasting (decisions taken in the course of 

a cropping season, e.g. yield predictions (Haverkort et al., 2015; Khan et al., 2014)). 

Agro-meteorological models mainly use meteorological crop drivers to assist 

farming decisions (Frisvold and Murugesan, 2013; Klemm and McPherson, 2017). 

The major meteorological crop drivers are temperature (T), precipitation (PPT) and 

incoming shortwave radiation (SW↓) (see Figure 1.1d). Temperature data are rele-

vant for decisions on planting, disease outbreaks, pest management and harvesting 

in agricultural activities. Precipitation data are needed for planting, fertilizer appli-

cations, irrigation, spraying, cultivation, disease outbreak and harvesting (Frisvold 

and Murugesan, 2013; Klemm and McPherson, 2017; Pasteris et al., 2004). Similarly, 

the SW↓ data is required for planting, potential evaporation estimates and harvest-

ing (Pasteris et al., 2004). 

Today, a number of potato crop models are applied in the DSS in the farming 

system. The Daisy model (Abrahamsen and Hansen, 2000; Heidmann et al., 2008); 

the water-driven FAO crop model – AquaCrop (Raes et al., 2009; Steduto et al., 2009); 

the decision-support system for agrotechnology transfer – DSSAT model (Jones et 

al., 2003); the Agricultural Production Systems Simulator – APSIM-Potato model 

(Brown et al., 2011; Keating et al., 2003; McCown et al., 1996); and yet other models 

are listed by Raymundo et al. (2014). The pioneering work of C.T. de Wit of Wa-

geningen University and Research has played a leading role in crop model develop-

ment and application all over the world (Van Ittersum et al., 2003). The Wageningen 
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production situations are based on potential and water-limited (SUCROS in Van 

Laar et al. (1992)); potential, water-limited and N-limited (NPOTATO in Seligman 

(1987), LINTUL-POTATO in Kooman and Haverkort (1995a) and GECROS in Yin 

and van Laar (2005)); potential, water-limited and NPK-limited (WOFOST in 

Boogaard et al. (1998) and De Wit et al. (2019)) and other models mentioned in Van 

Ittersum et al. (2003). In the wake of the Wageningen models, this study employed 

the GECROS (Genotype-by-Environment interaction on CROp growth Simulator) 

model. This model is discussed in some detail in Chapters 2 and 3. For details re-

garding the model framework, the reader is referred to Yin and van Laar (2005) and 

regarding model applications in potato modelling to Khan (2012). 

1.2 Research strategy 

The aim of this thesis is to appraise how weather and crop growth vary in a com-

plex terrain and heterogeneous landscape. The study is based on a combination of 

high-resolution weather and crop models, in which datasets from our dense network 

of weather stations are used, as well as data from field crop trials at several different 

elevations and during two belg cropping seasons. In order to meet the aim of the 

thesis, I drew up three research questions: 

1) How do complex topography and heterogeneous landscapes affect weather and crop dy-

namics on different spatiotemporal scales? 

2) What can we learn from a dense network of meteorological-soil observations network with 

respect to the crop growth variables (e.g. length of growing season and attainable yield)? 

3) How do variations in the observed environmental variables correlate with crop growth 

and yield on sub-seasonal, seasonal and interseasonal scales in the Gamo Highlands? Can 

we identify periods in which the meteorological crop drivers have a different influence on 

potato growth characteristics? 

To support the model evaluation and interpretation, I combined fine resolution 

model outputs with observations from our dense automatic weather stations net-

work. These datasets have also been correlated with several field crop experiments 

in the highlands. In other words, this thesis can be regarded as a pilot project to 

assess the need of this combined approach (modelling/observations) in remote re-

gion characterised by a highly complex topography and heterogeneous landscapes 

with the long-term goal to develop and apply a weather-food forecasting system.  

To this end, I performed a coarse (54 × 54 km2) and fine (2 × 2 km2) spatial reso-

lution weather model experiment (Figure 1.1a). To ensure that the synoptic situa-

tions are well reproduced (Jiménez et al., 2016), I utilised the ERA-Interim reanalysis 

data (Dee et al., 2011). My model integration covered a 10-year period following the 

modelling strategy described by Jiménez et al., (2010; 2011b). This approach is fun-

damental, since the detailed topographic maps can explicitly resolve the orographic 
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features as described in Figure 1.1c. Such a detailed weather model simulation ena-

bled us to obtain a first quantification of the impact of the weather variation on the 

potato growth and yield. The mountain area (>300 m a.s.l.) in Ethiopia, for instance, 

is much better represented by a 2 km resolution model than a typical GCM model 

output with a horizontal grid resolution of 50 km. Mass et al. (2002) showed that fine 

resolution models with a horizontal grid less than 10 to 15 km generally improve the 

realism of the models’ outputs but do not necessarily significantly enhance their ac-

curacy. By applying this methodology, I aimed to represent dynamical features re-

lated to the complex topography and the small (0.96 hectare average landholdings) 

farms of rural Ethiopia (Headey et al., 2014). The weather model output was vali-

dated by means of observations from the lowlands (Arba Minch) and highlands 

(Chencha) as depicted in Figure 1.1a. 

As mentioned above, the WRF model (Skamarock et al., 2005) output is (one-way) 

coupled to the advanced and versatile eco-physiological crop model GECROS 

(Haverkort and Struik, 2015; Khan et al., 2014; Yin and van Laar, 2005). The six 

weather model outputs were: maximum and minimum temperatures (Tmax, Tmin), 

PPT, SW↓, vapour pressure deficit (VPD) and wind speed (Yin and van Laar, 2005). 

The meteorological data were utilised as inputs to the crop model GECROS, in which 

the same spatial resolution model run was performed. The soil type and soil mois-

ture data were supplied to the crop model from the fine resolution ISRIC soil data-

base (Leenaars et al., 2014). 

Modelled precipitation driven by the ERA-Interim reanalysis is reasonable in 

simulating the observed trends in weather elements. However, the model overesti-

mated precipitation in the highlands and underestimated in the lowland regions of 

Ethiopia (Van Vooren et al., 2018). One of the reasons for the mismatches between 

modelled and observed precipitation was the poor quality of the observational da-

tasets (Araya, 2011; Diro et al., 2009). The density of weather stations’ network is also 

poor in the SSA (Menne et al., 2012). Consequently, and as part of our research strat-

egy, the Gamo Ethiopian Meteorological Stations (GEMS) network was systemati-

cally installed along two transects in the Gamo Highlands (see inset in Figure 1.1a). 

The GEMS network was designed to quantify meteorological variability (lowland, 

midland and highland). These data are also utilised to simulate potato growth and 

yield at farm level in the Gamo Highlands. GEMS is a dense network (currently eight 

operational automatic weather stations) within a radius of nearly 50 km. The stations 

measure meteorological (temperature, SW↓, PPT, relative humidity (RH), wind, 

etc.), soil moisture and temperature (at 5, 10, 20 and 40 cm soil depths) and leaf-

wetness (two sensors per station) with sub-hourly temporal resolutions (Figure 

1.1b).  

Close to the GEMS network, potato crop field experiments were performed dur-

ing the two belg seasons in 2017 and 2018. Note that potato in Ethiopia is cultivated 
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during belg, kirmet and bega (if irrigated) seasons. However, the belg is the most suit-

able season for both meteorological (moisture availability) and agronomic (with less 

disease pressure) reasons (CSA, 2002; Haverkort et al., 2012; Tufa, 2013). The field 

trials were carried out at five farms in belg-2017 and six farms in belg-2018. Two 

widely available local and six improved cultivars were planted in both seasons. The 

GECROS model was employed to simulate the observed canopy growth, yield and 

yield traits. The GEMS observations were used as the model input and model sensi-

tivity experiments. I also analysed weather and crop datasets to explain the observed 

crop growth and yield in terms of meteorology and elevation as shown in Figure 

1.1c,d. 

1.3 Thesis outline 

To answer the research questions set out in Section 1.2, I have structured the re-

mainder of this thesis into the following chapters: a general method (Chapter 2), 

three research chapters (Chapters 3-5), followed by a general discussion and state-

ment of perspectives (Chapter 6) and conclusions (Chapter 7). Chapter 2 explains 

and describes the methods used, both the modelling tools and the design of the new 

GEMS observational network. The main climatological and weather factors are also 

discussed in the region under study during the period 2001-2010. 

Chapter 3 presents a 10-year study on meteorology and the impacts on potato 

growth and yield. The study investigated the role of complex terrain and landscapes 

modulating weather and crop dynamics in the Gamo Highlands (see research ques-

tion 1) and covered spatial and temporal (belg seasons and interannual) variations in 

weather and crop growth; and sensitivity of crop growth to the meteorological per-

turbations. Chapter 4 introduces and discusses the first observations from the dense 

network of weather observations with sub-hourly resolution data recording: the 

GEMS network. In this chapter, I introduced the GEMS (six automatic weather sta-

tions) network in two transects in the Gamo Highlands. Nearby, the network of sta-

tions was used to monitor the belg-2017 potato field trials. The objective of this chap-

ter is to describe how landscape heterogeneity in a mountainous region influences 

both local and large-scale weather systems and crop growth (see research question 

2). Chapter 5 deals with how weather changes (sub-seasonal, seasonal and inter-

seasonal) affect crop growth, yield and yield traits under different environmental 

conditions in the Gamo Highlands (see research question 2). This research project 

was based on the GEMS network and crop experiments in belg-2017 and belg-2018.  

Chapter 6 provides a general discussion; putting the results into perspective; syn-

thesising the main findings of the thesis within the existing literature; presents out-

looks and research gaps identified for future work. Chapter 7 concludes by the key 

findings of Chapters 3 to 6 in line with the research questions described in this chap-

ter. Finally, summary of the thesis presented. 
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Research strategy to study weather,         

climate and crop dynamics in the Gamo 

Highlands  
 

This chapter presents the research strategy we applied in this thesis. The chapter 

also shows some preliminary findings of the PhD study. The strategy follows a com-

bined approach of the implementation of models and observations. The area of 

study is a complex topographic region southwest Ethiopia, the Gamo Highlands. 

Models in the field of weather and crop science are implemented to generate high 

spatiotemporal resolution data. We also used datasets from our newly installed 

weather stations’ network in combination with data from our potato crop field ex-

periments in the highlands. Here, we show some preliminary model outputs related 

to the temporal and spatial variations in belg seasonal climate and crop yield during 

2001 to 2010. Findings related to the future climate change are also analysed and 

some adaptation mechanisms are discussed. The findings in the chapter relate to the 

follow-up chapters presented in the thesis. 

2.1 Motivation and strategy 

Globally, mountains account for 25% of the Earth’s land surface and hills and 

plateaus contribute 19% (Meyers and Steenburgh, 2013). In the Greater Horn of Af-

rica (GHA), the Ethiopian Highlands are known by their complex topography and 

heterogeneous landscape (Viviroli et al., 2003). Specifically, this region is character-

ised by a range of elevation between 125 m below sea level and 4620 m above sea 

level (a.s.l.). The lowest elevation is at the Danakil depression in the north-east. And 

the highest elevated area is at the summit of Mount Ras Dashen in the northern Ethi-

opia (Kassie, 2014). The GHA also includes the 5500 km long Great East African rift 

system. The rift system ranges from the Red Sea towards Lake Victoria in the GHA 

(Cattani et al., 2016). The dominant land cover types of the region include lakes, de-

serts, savannah, woodlands and closed forests (Cunningham et al., 2008). The Ethio-

pian Highlands are also close to large global waterbodies such as the Indian Ocean 
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and the Red Sea. In Ethiopia, the Gamo Highlands are characterised by rugged ter-

rain (from 1000 m a.s.l. to 3600 m a.s.l.) and heterogeneous landscape including Lake 

Abaya and Lake Chamo. They are situated in southern Ethiopia and west of the 

Great Rift valley plain (Assefa and Bork, 2014). These versatile land cover features 

add complexity to the weather/climate dynamics of the region (Abdelwares et al., 

2018; Dinku et al., 2011; Lehner and Rotach, 2018; Meyers and Steenburgh, 2013).  

In complex terrain regions with varied landscape characteristics, weather and cli-

mate significantly vary in space and in time (Dinku et al., 2011; Pohl et al., 2011). 

Spatially, mountains influence synoptic** circulations and produce planetary waves, 

generate mesoscale** features and produce microscale** surface and boundary layer 

turbulent motions. Temporally, mountains modulate the weather systems ranging 

from seconds to a few days (Serafin et al., 2018). These detailed spatiotemporal vari-

ations in land cover and meteorological phenomenon in mountainous region cannot 

be well represented by Global Circulation Models (GCMs) (Kendon et al., 2012). Typ-

ically, GCMs have horizontal resolution of tens of kilometers in which topographic 

variation is poorly represented and sub-grid processes that control clouds and pre-

cipitation are only parametrised†† (Abdelwares et al., 2018; Salathé et al., 2008). On 

the other hand, fine resolution Mesoscale Atmosphere Model can better represent 

orography, more explicit which resolve weather dynamical features in mountainous 

regions. This results in accurate outputs of meteorological variables as compared to 

the in situ data (Abdelwares et al., 2018; Torma et al., 2015).  

Weather model products simulated by GCMs can be applied to global scale stud-

ies but have limited importance for impact assessments such as food security issues 

particularly in the complex topography region of the GHA (Abdelwares et al., 2018), 

a region in which smallholder farmers reside (Headey et al., 2014; Holden and 

Yohannes, 2002). Pohl et al. (2011) discussed that downscaling coarse GCMs to re-

gional and local scales is crucial mainly in the GHA as a result of the complex topog-

raphy and land heterogeneity of the region. Model outputs from the fine resolution 

RCMs can be used for understanding the weather/climate dynamics in regions with 

complex terrain. Furthermore, the outputs also can be coupled with crop models 

used for regional investigation of crop growth and yield.  

In this thesis, we used the state-of-the-art numerical weather prediction model 

called Weather Research and Forecasting (WRF) model (Skamarock et al., 2005). The 

model’s outputs are compared with observations at different elevations. The WRF 

model output is also deployed to an advanced process-based crop model, GECROS 

(Yin and van Laar, 2005). Both weather and crop observations are limited in Ethio-

pia, specifically in remote mountainous regions. To this end, we deployed the Gamo 

                                                           
** Weather system occurring from ~1000 km to 4000 km scale is synoptic, ~3 km to 300 km scale is mesoscale, and 

3 mm to 300 m is microscale (Stull, 2000). 
†† Parameterization is a simplified physical or statistical representation of atmospheric processes occurring at sub-

grid scale and/or too complex and hence computationally costly. 
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Ethiopian Meteorological Stations (GEMS) network (8 automatic weather stations). 

The stations’ network has been operational since April 2016. In combination, field 

experiments are conducted nearby the GEMS network.  

2.2 The new research approach: weather-crop dynamics in a complex ter-

rain  

To address the research questions posed in Chapter 1, we designed a methodol-

ogy that combines the use of models and observations. Figure 2.1 shows the research 

strategies we designed and their connections.  

 

Figure 2.1 | Research design, connections among the different methods and tools used in this study. 

Acronyms: WRF – Weather Research and Forecasting, SW↓ – incoming shortwave radiation (MJ·m-2·d-

1), Tmax and Tmin – maximum and minimum temperatures (°C), PPT – precipitation (mm·d-1), VPD – 

vapour pressure deficit (kPa), WS – wind speed (m·s-1), ISRIC – International Soil Reference and In-

formation Center, NMA – National Meteorology Agency, Ethiopia, GECROS – Genotype-by-Environ-

ment interaction on CROp growth Simulator, AWS – Automatic Weather Station, GEMS – Gamo Ethi-

opian Meteorological Stations, belg – (February to May), seasonal climate classification in Ethiopia, 

according to NMA. Note that the red boxes indicate methods developed in this thesis.  
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We followed a model-observation combined approach. The modelling and ob-

servational datasets deployed in this thesis and presented in Figure 2.1 are discussed 

below. 

2.2.1 The modelling research strategy 

a) The weather model  

We used an advanced Mesoscale Atmosphere Model namely the Weather Re-

search and Forecasting (WRF) model version 3.4.1 for weather simulations 

(Skamarock et al., 2005). The model’s initial and boundary conditions are prescribed 

by the ERA-Interim reanalysis with a horizontal resolution of 0.75° × 0.75° as shown 

in Figure 2.1 (Dee et al., 2011). WRF is configured in four model domains in order to 

resolve the more important weather scales: synoptic, mesoscale and local scales. The 

mother domain is centred at Arba Minch and has a 54 km × 54 km horizontal reso-

lution and covered the East African countries, the north-west Indian Ocean and the 

Arabian Peninsula (see Figure 3.2 in Chapter 3). The inner nested domains are inter-

acting in two ways with a 3-to-1 spatial refinement to successively attain a 2 km × 2 

km horizontal resolution. The model’s physical representations are summarised in 

Table S2 (Follow the link: https://www.sciencedirect.com/science/arti-

cle/pii/S0168192318302302#sec0095). To carry out the 10-year continuous model run, 

we followed the modelling design by Jiménez et al. (2011a; 2013; 2016; 2011b). This 

10-year datasets are composed of 48 h spanned short model runs. Each model run is 

initialised at 0 UTC and model results are recorded every hour for 48 h. The first 24 

h of the data are the model spin-up and those data are discarded. The period 24 h to 

48 h are retained for analysis for that day. This process is repeated for each day in 

the period from 2001 to 2010. 

The high horizontal spatial (2 km × 2 km) and temporal (hourly outputs inte-

grated for the period of 10-year) resolution datasets enabled us, for the first time in 

Ethiopia, to study the complex interplay between weather and crop dynamics in the 

steep topographic region of the Gamo Highlands (Chapter 3). The WRF output was 

compared with the in situ data at different elevations. We identified the major at-

mospheric crop drivers (minimum and maximum temperatures – Tmin and Tmax, pre-

cipitation – PPT and the incoming shortwave radiation – SW↓. We selected the belg 

(February to May) crop season and statistically identified the normal and anomalous 

years during the 10-year. The belg season is relevant in terms of meteorology (i.e. the 

weather is favourable for crop growth) and agronomy (i.e. it has less disease pres-

sure compared to the meher [June to September] agronomic season) (CSA, 2014; Tufa, 

2013). Weather outputs from the WRF model are supplied to the genotype-by-envi-

ronment interaction crop model – GECROS (Yin and van Laar, 2005). 
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b) The crop model 

GECROS by Yin and van Laar (2005) is the state-of-the-art crop model catego-

rised within the Wageningen ‘School of de Wit, Bouman et al. (1996)’ models (Adam, 

2010; Ingwersen et al., 2018). We used version 1.0 of the crop model with the model’s 

surface energy budget improvements as implemented in Combe et al. (2015). Six me-

teorological variables (Tmin and Tmax (°C), PPT (mm·d-1), SW↓ (MJ·m-2·d-1), vapour 

pressure deficit – VPD (kPa) and wind speed (m·s-1)) are used as model’s weather 

input. As Figure 2.1 showed, the crop model considers the weather variables on a 

daily basis and the variables are calculated either from the WRF model (hourly tem-

poral resolution data) (implemented in Chapter 3) or our stations observational da-

tasets (15-min recorded datasets presented in Chapter 4). The crop model also needs 

soil data and crop management options as presented in Figure 2.1. The GECROS 

model is compared with observations from our field experiments. The crop model 

output is used for yield zoning as a function of elevation.  

A number of model sensitivity experiments are conducted (Figure 2.1). The 

model sensitivity experiments results are presented in Chapters 3 and 4. Variations 

in modelled data are used as model sensitivity experiment. These were weather data 

(e.g. PPT), edaphic variables (e.g. percent clay), crop parameters (e.g. seed weight), 

crop management options (e.g. shifting potato-planting dates) and climate change 

assumptions (e.g. atmospheric CO2 concentration) following the Intergovernmental 

Panel on Climate Change – IPCC future scenarios (Stocker et al., 2013; Van 

Oldenborgh et al., 2013). We also analysed the sensitivity of the GECROS model for 

variations in the observed weather and shifts in the belg precipitation in the Gamo 

Highlands (Chapter 4). The first experiment design was altering one variable (e.g. 

PPT, feeding a constant daily value, i.e. an average precipitation during the growing 

season) at a time and maintaining the other five variables as observed. The model 

experiment with the shifted PPT simulates an early belg onset (it exchanges the max-

imum PPT observed in May with the PPT in March), a normal belg PPT onset (it 

exchanges the maximum PPT observed in May with the PPT in April) and a late belg 

PPT onset (it exchanges the maximum PPT observed in May with the PPT in June). 

2.2.2 High spatial resolution environmental and crop datasets 

a) ISRIC soil database 

The soil module in the GECROS model requires soil data as model input (Chapter 

3 and as shown in Figure 2.1). These input data include percent clay, total organic 

matter, minimum soil water content, soil water content at field capacity and maxi-

mum water holding capacity of the soil. These data are obtained from the Africa soil 

information project International Soil Reference and Information Center (ISRIC) da-

tabase (Leenaars et al., 2014). Weighted (0-5 cm, 5-10 cm, 15-30 cm and 30-60 cm 
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depths) averages of the top 60 cm soil depths data are considered. These data are 

with 1 km × 1 km resolution. We interpolated and re-gridded the data to fit the WRF 

model’s 2 km × 2 km resolution domain. To this end, the weather model output and 

the ISRIC soil data are run using the GECROS model grid-by-grid-wise (Figure 2.1). 

 

b) Station observations  

Figure 2.1 showed the observational datasets utilised in this thesis. Two meteor-

ological datasets are used: (1) from the National Meteorology Agency (NMA) – Ethi-

opia, which are manually operated stations; (2) the GEMS network. To validate the 

performance of the WRF model, we used data from the NMA. The stations are 

equipped with gauged instruments and located in Arba Minch at 1200 m a.s.l. and 

in Chencha at 2700 m a.s.l. These locations are representative of the lowland and 

highland areas. In Chapter 3, we discussed the evaluation of modelled and observed 

weather. In short, WRF underestimated/overestimated precipitation at low-

lands/highlands, respectively. The modelled temperature was, in general, cooler 

than the observed. Few of the potential reasons for the model-observation mis-

matches are the low quality of weather information and limited availability of sta-

tions in a region where weather significantly varies over short distances (Dinku et 

al., 2014; Van Vooren et al., 2018). To fill the gap and to better understand the weather 

dynamics in the complex topographic region of the Gamo Highlands, we installed a 

network of automatic weather stations – the GEMS, operational from April 2016 to 

date.  

 

c) The GEMS network  

The GEMS is a network of eight automatic weather stations (AWSs) installed at 

different elevations in the Gamo Highlands. We installed the stations according to 

the elevation-based yield zoning following GECROS modelled yield patterns pre-

sented in Chapter 3 (see Figure 2.1). These yield zones are: yield Zone-I (from 1100 

m a.s.l. to 1500 m a.s.l.), yield Zone-II (1600 m a.s.l. to 2650 m a.s.l.) and yield Zone-

III (from 2950 m a.s.l. to 3600 m a.s.l.) (see Table 2.1 and Figure 3.7). The stations are 

aligned along two transects to represent the south and east facing slopes of the high-

lands. By doing so and in combination with stations installed around the shores of 

Lake Abaya and Lake Chamo, we are able to study mountain-lake driven circula-

tions and their roles in crop growth. The AWS models are Davis Vantage Pro2 + 

(DVP2) and Campbell Scientific (CS) with CR200X series data-logger. Both of the 

stations’ models have been widely used globally and tested for robustness (Bell et 

al., 2015; Lagouvardos et al., 2017; Steeneveld et al., 2014). The stations record 

weather (temperature, PPT, SW↓, wind, relative humidity, sea-level-pressure, etc.); 

soil moisture and temperature at 5 cm, 10 cm, 20 cm and 40 cm depths; leaf-wetness 
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in east and west directions of each station. The sensors sample data at intervals be-

tween 2.5 and 90 seconds, after which the 15-minute averages of the samples are 

recorded. The data generated by the GEMS are used to study both mesoscale to syn-

optic scale weather and crop dynamics (with crop modelling and analysing weather-

crop relations) in the Gamo Highlands (see Chapters 4 and 5).  

Table 2.1 | Descriptions of weather stations (farms), geographical locations and field experiments 

(crop yield zone as classified in Chapter 3, the number of cultivars planted during belg-2017 and belg-

2018). Acronyms: Lon – Longitude (°), Lat – Latitude (°), Elv – Elevation (m), Var. – Variables, DVP2 – 

Davis Vantage Pro2 +, NMA – National Meteorology Agency, Ethiopia, CS – Campbell Scientific, 

W·S·L – Weather (e.g. PPT and SW↓)-Soil (moisture and temperature)-Leaf-wetness, W – Weather, S – 

Soil, L – Lake, EW – East-West, SN – South-North and NS – Not Suitable location for potato farming 

because of the warmer climate. 

Station 

(farm) 

Location Automatic Weather Station (AWS) Potato field experiment 

Lon 

(°) 

Lat 

(°) 

Elv 

(m) Model Var. Since 

Tran-

sect 

Yield 

zone 

Culti-

vars 

'17 

Culti-

vars 

'18 

Sille 37.483 5.869 1120 DVP2 W·S·L Apr-18 

L. 

Chamo I NS NS 

Arba 

Minch 37.568 6.067 1200 DVP2 W·S·L Apr-16 Ref. I NS NS 

Alge 37.795 6.286 1220 DVP2 W·S·L Apr-18 

L. 

Abaya I NS NS 

Derashe 37.368 5.637 2120     II 8 8 

Tegecha 37.573 6.161 2143 DVP2 W·S·L Apr-16 EW II 8  

Geresse 37.310 5.929 2298 NMA W  EW II 8 8 

Zigiti 37.459 6.073 2420 DVP2 W·S·L Apr-16 EW II   

Zozo 37.605 6.265 2695     II  2 

Chencha 37.572 6.254 2738 CS W Jun-13 SN II  2 

Gazesso 37.337 6.130 2840 DVP2 W·S·L Apr-16 EW II 8 8 

Gircha 37.563 6.302 3015 DVP2 W·S·L Apr-16 SN III 8 2 

 

d) Crop field experiments during belg seasons: 2017 and 2018 

To validate the performance and sensitivity of the GECROS crop model and 

study weather-crop relations, we designed a set of field experiments at different el-

evations in the Gamo Highlands (Table 2.1). The GECROS modelled length of the 

growing season (LGS) and maximum plant height (MPH) outputs are compared 

with our observations from field experiments. The research methodology is dis-

cussed in detail in Chapter 4 to answer the research question (2) posed in Chapter 1. 

The farm experiments nearby the GEMS network allowed us to better investigate 

the GEMS data both for crop modelling (Chapter 4) as well as to associate weather 

data to crop growth (Chapter 5). We collected potato seed tubers from three research 

centres in Ethiopia for improved cultivars and local cultivars are purchased from 

local markets. For belg-2018, we collected seed tubers from Gircha and Gazesso farm 
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and stored the seed tubers in the diffused light storage (DLS) facility located at 

Gircha. The DLS allows free ventilation, to slow down sprout ageing and to supress 

sprout elongation (Hirpa et al., 2010). The improved cultivars with their year of re-

lease are the following: Horro (2015), Belete (2009), Gudene (2006), Hunde (2006), 

Ararasa (2006) and Jalene (2002). The local cultivars are Suthalo (unknown) and Kalsa 

(unknown) (Table 2.1) (Baye and Gebremedhin, 2012; Gebreselassie et al., 2016; 

MOANR, 2016).  

We applied the randomised complete block design with experiments in tripli-

cates (Gomez et al., 1984). Each plot had 3 m × 3 m dimension with four rows. The 

planting pattern was 0.75 m (between rows) × 0.30 m (between plants within a row). 

Spacing between replications and plots were 1.5 m and 1.0 m, respectively. The farm 

management was the same for all farms and seasons. The inorganic fertilizers were: 

urea (144 kg·ha-1), NPS (236 kg·ha-1) and murate of potash (125 kg·ha-1) were added 

at planting, but the urea was split into two dressings, in which the first half was 

added at planting and the remaining half was applied at the start of the flowering 

stage. 

Crop data were taken from the central two rows to avoid boarder effects (Yactayo 

et al., 2013). Plant height (cm) and canopy cover (%) data were taken on a daily basis 

during belg-2017 and three times per week during belg-2018 for selected farms and 

cultivars (improved and local). Yield traits (e.g. tuber number and weight per plant) 

and yield per plot at the end of the growing season were also collected. Yield and 

crop growth (e.g. maximum plant height) data were used for the GECROS model 

validation as discussed in Chapter 4. In Chapter 5, the crop growth data collected at 

high temporal resolution were correlated to temperature sum (the sum of the daily 

average temperature minus the base temperature–Tb [0 °C ≤ Tb ≤ 5°C] (Haverkort, 

2018; Khan, 2012)). In addition, environmental (weather and edaphic) data were 

used for correlational analysis between environment and crop variables. 

2.3 Belg climatology: a 10-year perspective  

To complete the scales and processes investigated in this thesis, here we provide 

a 10-year perspective on the climate and crop yield variations during 2001 to 2010. 

The objective here is to get insights on the interannual variability represented by the 

observations and modelled by WRF. 
 

a) Temporal variability  

The major meteorological crop drivers modelled for the years from 2001 to 2010 

enabled us to identify the years close to the average belg climate during the 10-year 

period and the ones that were characterised by anomalous belg seasons, mainly re-

lated to heat (Tmax and Tmin) or drought (precipitation). We focused on meteorological 

variables that play a key role on the crop growth dynamics such as Tmax, Tmin, PPT 
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and SW↓. We selected the fine resolution domain of our weather model (see Figure 

2.1) as it was better in representing the temporal (using statistical model validation 

measures) and spatial variations than the coarse resolution output. Figure 2.2 shows 

the interannual anomalies (deviations from the 10-year mean for both modelled and 

observed data) of the main meteorological crop drivers.  

 

Figure 2.2 | Interannual belg season weather anomalies (deviation from the 10-year belg mean) of the 

WRF model fine resolution (2 × 2 km2) output (left-panel) and observed (right-panel) data for the major 

meteorological crop growth drivers during 2001-2010: SW↓ (MJ·m-2·d-1) (a and b), Tmax/Tmin (°C) (c – 

f) and PPT (mm·belg-1) (g and h). The filled and box bar plots indicate Arba Minch and Chencha sta-

tions, respectively.  
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Variability in the modelled SW↓ during the 10-year belg seasons was underesti-

mated (±0.42 MJ·m-2·d-1, explained in terms of standard deviation) for Arba Minch as 

compared to the observed variation (±1.59 MJ·m-2·d-1) as shown in Figure 2.2a and b. 

Although WRF satisfactorily predicts the pattern of the annual cycle, the model 

largely overestimated SW↓ in Arba Minch (Mean Bias Error–MBE of +4.5 MJ·m-2·d-1, 

where the average modelled and observed SW↓ were 25.2 MJ·m-2·d-1 and 20.1 MJ·m-

2·d-1, respectively). For the Chencha station, the variation in the modelled SW↓ was 

nearly three times larger than that of Arba Minch (we do not have observation to 

compare). The annual (2001 to 2010) mean modelled SW↓ for Arba Minch and Chen-

cha were nearly 26 MJ·m-2·d-1 and 17 MJ·m-2·d-1, respectively. This can be a reason 

why the model underestimated PPT in Arba Minch while it overestimated PPT in 

Chencha. The simulated cloud fraction near Arba Minch and Chencha were ~1.2% 

and ~4.5%, respectively (analysis not shown here). Tariku and Gan (2018) also dis-

cussed that increased SW↓ is associated with decreased cloud cover, which results 

in less PPT and vice versa. The mismatch between the model and observations can 

be related to (1) the model underestimated the expected cloud cover around Arba 

Minch that the modelled SW↓ increased significantly and (2) we calculated the SW↓ 

from the sunshine hours duration observations as suggested by Garg and Garg 

(1983), in which the sunshine hour measurements data can have errors.  

The variations in Tmax and Tmin during the 10-year belg seasons were smaller (from 

0.20 to 0.27 °C) for the WRF model as compared to the observed (nearly 0.64 °C) for 

Arba Minch (Figure 2.2c and f). It is also underlined that the model was cooler dur-

ing the day and somewhat warmer at night than observed (MBE in Tmax was -3.2 °C 

and MBE in Tmin was +0.5 °C). This result also agrees with Tariku and Gan (2018) 

findings, who modelled weather for the Nile River Basin. There are a number of 

possible causes for the mismatches: (1) The model bias in representing elevation (e.g. 

the elevation Arba Minch in the model is represented 62 m above the true elevation); 

(2) an increased SW↓ shows a lower amount of clouds, which ultimately decrease 

the longwave radiations and finally causes a cooler condition.  

The modelled PPT variation was lower (68.4 mm·belg-1) for Arba Minch as com-

pared to the observed (149.6 mm·belg-1) during the 10-year (Figure 2.2g and h). How-

ever, for Chencha, variation in the modelled precipitation was much higher (304.6 

mm·belg-1) than observed (186.2 mm·belg-1). The WRF model had a warm bias for 

lowlands and a moist bias for elevated areas (MBE of -1.3 mm·d-1 and +3.7 mm·d-1 

for Arba Minch and Chencha, respectively) (see Chapter 3).  

In temperate climates, temperature can be a limiting factor for crop growth. How-

ever, in the tropical environment, like the Gamo Highlands, soil moisture driven by 

PPT is the limiting factor for crop production (Tadele, 2017). Here, we further focus 

on the modelled annual and seasonal PPT variation. This also helps us to define po-

tato-planting dates using GECROS. Table 2.2 shows descriptive statistics on WRF 

modelled PPT using the fine resolution domain during 2001 to 2010.  
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Table 2.2 | Statistics of WRF modelled yearly and belg precipitation for the year 2001 – 2010 for Chen-

cha station using the WRF model’s fine resolution. Note that the bold values indicate the highest or 

latest and the underlined values indicate the lowest or earliest precipitation onsets during the 10-year 

period in Chencha.  

 

Annual 

summary  Summary of the belg season 

Year 

mm∙

yr-1 

mm∙

d-1 

mm∙ 

belg-1 

mm∙

d-1 % belg 
std 

dev. 

#days 

≥0.85 

mm 

#days 

≥5 

mm 

#days 

≥10 

mm 

PPT  

onset 

2001 3483 9.5 1368 11.4 39 15 80 59 47 5-Feb 

2002 2554 7.0 1307 10.9 51 16 73 51 39 2-Mar 

2003 2421 6.6 1075 9.0 44 15 65 40 29 11-Apr 

2004 2147 5.9 894 7.4 42 12 71 43 29 12-Mar 

2005 2238 6.1 986 8.2 44 13 72 47 32 27-Feb 

2006 2603 7.1 1162 9.7 45 14 75 49 34 21-Feb 

2007 2578 7.1 825 6.9 32 13 59 35 25 19-Mar 

2008 2316 6.3 740 6.1 32 11 60 34 23 27-Mar 

2009 2533  6.9 941 7.8 37 12 70 46 29 27-Mar 

2010 3421 9.4 1755 14.6 51 16 86 70 61 11-Apr 

 

Table 2.2 shows that the year 2001 was the wettest (9.5 mm·d-1) and 2004 was the 

driest (5.9 mm·d-1). Because of the favourable meteorological and agronomic condi-

tions during the belg season (moisture availability due to both large and local scale 

weather phenomenon; moisture availability to grow potato with less disease pres-

sure), we focussed on the belg season’s seasonal climate. The Chencha station was 

selected as the representative site for the potato-growing region in the Gamo High-

lands. Considering the belg season during the 10-year period, belg-2010 was the wet-

test (with 14.6 mm·d-1), which is also observed in station dataset. Of the annual total 

PPT, more than 50% was received during the belg season and with the highest num-

ber of days with ≥ 0.85 mm (86 days), ≥ 5 mm (70 days) and ≥ 10 mm (61 days) alt-

hough with high variability amongst the days during the season (standard deviation 

of 16 mm). The onset of the belg PPT in 2010 was 11 April. In contrast, the belg-2008 

was the driest (6.1 mm·d-1). The highest/lowest belg season’s PPT during the 10-year 

period can be associated with the lowest/highest SW↓ (~3.5 MJ·m-2·d-1 in 2010 com-

pared to ~2 MJ·m-2·d-1 in 2008) simulated for Chencha (Figure 2.2a). Large-scale 

weather systems such as anomalies over the Pacific Sea Surface Temperature (SST) 

related to the El Niño Southern Oscillation (ENSO) influence weather systems in 

Ethiopia. For instance, the warm phase of ENSO (El Niño) and it’s cold phase (La 

Liña) are associated with wetter and drier than the normal belg precipitation for the 

southern Ethiopia, respectively (Tsidu, 2016; WMO, 2016). It is also noted that the 

belg-2008 was driest while belg-2010 was wettest (Table 2.2). The 2008 and 2010 years 
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were during La Liña and El Niño episodes, respectively (follow 

https://www.esrl.noaa.gov/psd/enso/past_events.html). Climatological speaking, 

belg-2006 received nearly an average PPT and we considered the season as climato-

logically normal during the 10-years period.  

The amount of water available to plants strongly depends on the onset, length, 

temporal distribution and cessation of precipitation (Ngetich et al., 2014). We calcu-

lated the onset day of belg PPT during the 10-year period (Table 2.2). These days 

were considered as potato planting dates in the GECROS model. The average belg 

precipitation onset date was 14th of March during the 10-year period, with nearly 2-

months range of variation (between 5 February and 11 April). Overall, the WRF 

model overestimated the SW↓ observed; had a cool bias in terms of temperature; and 

underestimated PPT in the lowlands (e.g. Arba Minch); and had a wet bias compared 

with the gauged datasets for the elevated areas in the Gamo Highlands (e.g. Chen-

cha) as discussed in Chapter 3.  

  

b) Spatial variability  

To complete the interannual variability analysis, we investigated the spatial var-

iations of meteorological crop drivers (Tmax, Tmin, SW↓ and PPT) for the climatological 

and anomalous belg seasons as presented in Figure 2.3 and Figure 2.4. Again, we 

focus on the fine model domain. Figure 2.3 shows the spatial (2 km × 2 km) resolution 

model output for the daily maximum and minimum temperatures.  

A spatial range of Tmax from 10 °C to 30 °C is modelled averaged over the 10-year 

period belg seasons during daytime (Figure 2.3a). In the figure, the valley around 

Lake Abaya and Chamo is the warmest (~30 °C) and the Gamo mountain range 

around the summit of mount Guge is the coolest locations with mean temperatures 

near ~10 °C in Tmax. During the night, however, the mean atmospheric temperature 

(Tmin) drops between 8 °C (on the mountains) to 20 °C (in the valley around the lakes) 

as compared to the daytime (Figure 2.3b). Interestingly, the WRF model satisfacto-

rily simulated the ~5 °C warmer and ~5 °C cooler air temperature near the lake sur-

roundings than the lake surface temperature during daytime and night-time, respec-

tively (Figure 2.3c-f). This difference (i.e. ~5 °C) in lake-land temperature generates 

lake-breeze circulations during daytime and mountain-breeze flows during night-

time as discussed in detail in Chapter 4. The belg-2008 is identified as having the 

coolest by ~0.3 °C in Tmax and ~0.6 °C in Tmin from the 10-year (Figure 2.3c and d). In 

this season, an enhanced warming is simulated for lakes and mountains. We also 

discussed that belg-2008 was the driest of the entire 10-year period (Figure 2.2g and 

Table 2.2). In contrast, the belg seasons of the year 2005 and 2010 are identified as 

having the highest Tmax and Tmin, respectively (Figure 2.3e and f).  
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Figure 2.3 | 10-year belg season Tmax (left panel) and Tmin (right panel) as simulated by the fine-resolu-

tion WRF model during 2001 – 2010. The upper row shows the mean; the middle row shows the coolest; 

and the lower row shows the warmest in Tmax and Tmin during the 10-year period.  

Figure 2.4 shows the spatial variations of SW↓ (left panel) and precipitation (right 

panel) for belg season during the 10-year. The upper panel show (means of 10-year 

period), middle panel (the lowest in SW↓ during belg-2010 and the driest condition 
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during belg-2008) and bottom panel (the highest in SW↓ during belg-2008 and the 

wettest seasonal weather during belg-2010).  

 

Figure 2.4 | WRF modelled (2 km × 2 km horizontal resolution) plots of belg season SW↓ (MJ∙m-2·d-1) 

(left panel) and precipitation (mm·belg-1) (right panel). Plots (a) and (b) show means of SW↓ and means 

of the total belg precipitation during 2001 – 2010. Plots (c) and (d) show anomalies (from the 10-year) 

for lowest in SW↓ and driest in precipitation during the year 2008. Plots (e) and (f) show anomalies for 

highest in SW↓ and wettest in precipitation during 2010. 
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The modelled average SW↓ ranges from 17 MJ·m-2·d-1 at the summit of Mount 

Guge to 30 MJ·m-2·d-1 in the valley around the lakes (Figure 2.4a). During the dry belg 

season (2008), an increase in SW↓ was modelled (up to 3.5 MJ·m-2·d-1). The highest 

increase (0.9 MJ·m-2·d-1 to 3.5 MJ·m-2·d-1) in the SW↓ was simulated for the mountain-

ous areas compared to other locations in the Gamo Highlands (Figure 2.4e). During 

belg-2010, however, the SW↓ was below (from mean to ~3.5 MJ·m-2·d-1) the mean. The 

decrease in SW↓ for the Guge mountain range was significant (2.5 to 3.5 MJ·m-2·d-1).  

Figure 2.4b showed that the average PPT increased from ~200 mm·belg-1 in the 

lowland around the lakes to ~1000 mm·belg-1 at the summit of Mount Guge as calcu-

lated from the 10-year period modelled PPT. The GEMS data during belg-2017 

showed significant PPT spatial variation: 293 mm·belg-1 in Arba Minch (1200 m a.s.l.), 

459 mm·belg-1 in Tegecha (2143 m a.s.l.) and 540 mm·belg-1 in Chencha (2738 m a.s.l.). 

As compared to this data, the WRF modelled PPT was too low for Arba Minch and 

too high for Chencha.  

During belg-2008, PPT was significantly decreased from the normal around the 

lowlands to ~ -750 mm·belg-1 on the Guge mountain range. During belg-2010, never-

theless, PPT was 400 mm·belg-1 higher than the 10-year period climatology. It is un-

derlined that increased SW↓ during belg-2008 was associated with decreased PPT 

and cooler temperature (Figure 2.3c and d). On the other hand, below normal values 

for SW↓ during belg-2010 were associated with above normal PPT in that year. Here, 

total cloud amount above the surface played a key role in modulating both the SW↓ 

and outgoing longwave radiation, in which both determined the atmospheric tem-

perature and PPT regimes of the region. For anomalous belg seasons (in years 2008 

and 2010), the elevated areas showed increased sensitivity for both SW↓ (enhanced 

increase/decrease in SW↓ during dry/wet season as compared to other locations in 

the highlands) and PPT (drier/wetter in dry/wet belg seasons).  

2.4 Spatial variability of crop yield  

In Section 2.3, we showed that weather dynamics in the Gamo Highlands was 

influenced by topography. In this section, we describe how the crop growth and 

yield respond to interannual seasonal weather variations. Figure 2.5 presents maps 

relating yield and precipitation in the selected years: (a) climatologically normal belg 

season (2006), (b) the driest belg season (2008) and (c) the wettest belg season (2010). 

The modelled attainable yield (t·ha-1) was simulated using the GECROS model make 

use of the WRF model’s meteorological output as the crop model’s input (see Figure 

2.1 and Section 2.2.1). Here, we modelled attainable yield. The attainable yield is a 

yield limited by water and nutrients (Tadele, 2017), as we applied rainfed agriculture 

with a recommended fertilizer dose as discussed in Chapter 3. 
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Figure 2.5 | GECROS modelled attainable fresh tuber yield (t∙ha-1) for belg-2006 season (a). (b) shows 

belg-2008 yield anomaly (difference between 2008 and 2006 yields), which was the driest and coolest 

belg season of the year 2008. (c) presents belg-2010 yield anomaly (difference between 2010 and 2006 

yields), which was the wettest and warmest day-time of the year 2010. Note that belg-2006 was clima-

tologically normal (average) in the period 2001 to 2010. The maps show the WRF’s fine domain (2 × 2 

km2 horizontal resolution covering 42 × 42 km2 area). The coloured regions indicate the locations in 

which the LGS was between 70 and 195 days. The contour lines in (a) show the 2006 PPT (mm∙d-1) 

during the growing season. The contour lines show PPT anomaly (mm∙d-1) of 2008 (b) and the 2010 (c) 

growing season from the belg-2006. The contour lines in (a) increase from 4 to 24 (in the center). In (b) 

and (c), the solid and dashed contours lines indicate positive and negative anomalies, respectively. 

The black and pink star symbols show the locations of Chencha and Arba Minch, respectively. Lake 

Abaya and Chamo are also indicated.  

The simulated attainable yield ranged from 10 to 35 t·ha-1 as elevation increased 

to the ones of yield Zone II as presented in Section 2.2.2c (Figure 2.5a). Modelled 

crop yield near the lakes (in valley) was too low (< 12 t·ha-1) with too low length of 

the growing season (LGS < 70 days). This is due to the warm (Tmax > 22 °C and Tmin > 

15 °C), dry (PPT < 4 mm·d-1), with high SW↓ (> 25 MJ·m-2·d-1) weather conditions in 

the lowlands (see Figure 2.3 and Figure 2.4). These weather conditions are not opti-

mal to grow potato (see Chapter 5) (FAO, 2008b; Haverkort and Verhagen, 2008). As 

explained in Chapter 3, the meteorological conditions are unfavourable for potato 

growth since crop matures unrealistically too early with a leaf area index less than 

1.0 m-2·m-2. In turn, as it is mapped in Figure 2.5, near the top of the mountains, the 

growing season lasts longer than 195 days. In this region, the weather is much cooler 

(Tmax < 15 °C and Tmin < 7 °C), wetter (PPT > 15 mm·d-1) and the incoming shortwave 

radiation is lower (SW↓ < 15 MJ·m-2·d-1). In the region, meteorological conditions are 

favourable for potato. However, the calculated LGS was too high (LGS > 150 days) 

hence unrealistic as explained in FAO (2008b). Growing seasons this long can induce 

yield losses due to increased risks for pests and crop diseases (Hijmans, 2003). In this 

thesis, we considered the acceptable range in LGS to be between 70 and 195 days. 

Below and above these values, the conditions are not suitable for potato growth. The 

areas where the conditions are not met, are shown as a white mask in Figure 2.5a 

(FAO, 2008b). Relatively high yields (20 t·ha-1 to 35 t·ha-1) were obtained in regions 



2.5. Potato crop yield – future prospects  

41 

 

2 

where the mean precipitation is from 6 mm·d-1 to 12 mm·d-1. When mean PPT was 

greater than 16 mm·d-1, yield became lower (10 t·ha-1 to 15 t·ha-1) as mapped in the 

southwest area (Figure 2.5a). Increased PPT increased loss of nutrients to deep soil 

layers due to nutrient leaching (see Figure 3.8) (Yin and van Laar, 2005). This results 

in decreased yield. 

In Figure 2.5b, corresponding to the driest belg season, the patches with 6 to 12 

mm·d-1 less PPT (during belg-2008) showed ~10 t.ha-1 more yield as compared to the 

belg-2006. The northwest facing slopes around 37.3°E and 6.2°N showed a lesser 

yield nearly 2.5 to 10 t·ha-1 than belg-2006. However, but as shown in the figure, the 

PPT is nearly comparable with the normal belg season. Thus, the yield decline in 

those spots can be related to an increase in the SW↓ (from 1.5 to 3.5 MJ·m-2·d-1) and 

increase in Tmax (up to 0.2 °C). This has been discussed in the model sensitivity ex-

periments in Chapter 3 (Figure 3.3 and Table 3.3). The experiments explained that 

yield declined by 36% for SW↓ and 24% for Tmax increases as compared to the control 

run for the climatologically normal belg season during 2006. For the wettest belg-2010 

(Figure 2.5c) a decreased yield was modelled (nearly up to 10 t·ha-1 less as compared 

to belg-2006). In most locations, the PPT during the growing season exceeded that of 

belg-2006 up to 8 mm·d-1. Still, there were a few locations (southwest corner) with 

lower PPT as compared to other regions. Besides, the increased PPT, belg-2010 was 

also the warmest of the entire 10-year period (up to ~0.6 °C for Tmin). The warmer 

weather declined crop yield. With increased PPT, yield declined as the crop lost soil 

nutrients because of the increased leaching to the deep soil layer (see Figure 3.8) (Yin 

and van Laar, 2005). 

Figure 2.5 showed that the simulated yields for the anomalous belg seasons of the 

years 2008 and 2010 were predominantly lower than those of the normal belg season 

during 2006. The decrease in yield in those years ranged from 5 to 10 t·ha-1. This 

finding is remarkable because the weather anomalies during the two crop-growing 

years were in opposite directions. That is, drier and cooler in 2008 vs wetter and 

warmer in 2010 as compared to the average seasonal climate. Apparently, belg-2006 

was climatologically normal and the simulated crop yield was optimal. This implies 

any weather anomaly results in a lower yield. The model experiments suggest that 

with the ongoing global climate change, potato crop productivity may decline in the 

Gamo Highlands. In agreement with our findings, Hijmans (2003) projected a de-

crease in global potato yield with a warming future climate as discussed below.  

2.5 Potato crop yield – future prospects  

Figure 2.6 shows the sensitivity of crop yield (black lines) and LGS (blue lines), 

simulated by the GECROS model. Figure 2.6a presents variation in atmospheric CO2 

concentrations [CO2] as a function of yield. This model experiment can be considered 

as an indicator of how the future crop productivity can be influenced because of 
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mainly the increase of this greenhouse gas (Cramer et al., 2001). The model experi-

ment design follows the IPCC climate projection assumption (e.g. in Representative 

Concentration Pathways - RCP6 future scenario, [CO2] is projected to increase up to 

~700 ppm at the end of the century (Meinshausen et al., 2011)). Figure 2.6b shows 

potato planting dates influence on modelled yield. This model experiment can be 

taken as crop management option (e.g. a strategy for climate change adaptation 

mechanism in the changing climate) as explained in Figure 2.1 (Haverkort and 

Verhagen, 2008). 

 

Figure 2.6 | GECROS model sensitivity analysis for attainable potato fresh tuber yield (t∙ha-1) (left-

axis – solid-line) and LGS (d) (right-axis – dotted line). Variations in the CO2 concentration (ppm) (a) 

and planting dates (day) for Chencha station during the belg-2006 (climatologically average belg) sea-

son (b). The shaded/line error bars show the standard deviations of yield/LGS. The asterisks denote 

yield for the control run. The vertical dotted lines and the yellow highlighted region separate the sea-

sons three seasons (bega, belg and meher). The belg season is further classified into early-belg and late-

belg. Note that the scales between panels on the left and those on the right are different. 

Figure 2.6a describes that yield significantly increased from 20 t·ha-1 to 28 t·ha-1 

(~40% increase) as the [CO2] increased from 360 ppm to 700 ppm (~95% increase). It 

is also noted that increased [CO2] slightly increased the LGS (up to 8 days). 

Haverkort and Struik (2015) discussed that potato yield increases by 36% when 

[CO2] increases from 280 ppm to 550 ppm. Van de Geijn and Dijkstra (1995) ex-

plained that crops exposed to an elevated [CO2] generally respond with positive but 

variable increases in yield. Nevertheless, the rate of increase in yield was small after 

700 ppm, probably due to limiting factors such as soil nutrient and moisture as dis-

cussed in Haverkort and Struik (2015) and Oren et al. (2001). Hijmans (2003) pre-

dicted temperature increase (weighted for potato-weighted-area only) from 1.0 °C 

to 1.4 °C for the period between 2040 to 2069. With this warming, potato yield is 

projected to decline by 18% to 32% (with no climate change adaptation option) and 

9% to 18% (with climate change adaptation activities). The major potato crop disease 

known as late blight, caused by Phytophthora infestans, is expected to increase due to 

increased warming caused by global warming (Luck et al., 2011).  
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Figure 2.6b quantified the effect of variations in planting dates from the late bega 

and early meher. For the figure, detailed crop and weather variables variations dur-

ing the growing season are tabulated as presented in Table 2.3 below.  

Table 2.3 | Further explanation of the modelled attainable yield plotted in Figure 2.6b. Additional 

model outputs (weather and crop growth variables) are considered for the explanation. Average crop 

yield, yield increase and weather during the part of the growing season are shown in the table. The 

statistical analysis is related to the planting date experiment. The experiment covered from bega, belg 

(early-belg and late-belg) and meher seasons. 

Crop/weather 

variables 

 

Unit  
Average/change in the average crop/weather variable 

bega early-belg late-belg meher 

Average yield t·ha-1 20 22 35 44 

Increase in average yield t·ha-1 6 0 11 -2 

LGS d 109 128 162 155 

Tmax °C 17.1 16.5 15.3 15.6 

Tmin °C 8.9 9.1 8.5 8.5 

SW↓ MJ·m-2·d-1 22.5 18.6 16.4 18.2 

PPT mm·d-1 7.0 9.8 7.2 7.1 

 

Table 2.3 shows that the simulated attainable crop yield was increased from 20 

t·ha-1 during bega to 44 t·ha-1 during meher season (see also Figure 2.6b). A significant 

increase (11 t·ha-1) in yield was simulated during late-belg. The changes in yield are 

related to two factors: (1) crop variable – LGS and (2) weather variables – tempera-

ture, SW↓ and PPT. The LGS influence yield positively, i.e. the longer the growing 

season (e.g. LGS was 109 d and 155 d during bega and meher seasons, respectively), 

the more the crop invests in the tuber. This will be also discussed in Chapter 3. Model 

sensitivity experiment conducted with variation in PPT did not show change in the 

LGS (see Chapter 3, Figure 3.3b). Therefore, the change in the LGS is governed by 

meteorology: Tmax, Tmin and SW↓. For instance, during bega, the average yield was 

the lowest (20 t·ha-1). This was related to weather conditions with the highest tem-

perature (∆Tmax > 1.5 °C, relative to other seasons) and the highest incoming 

shortwave radiation (SW↓ > 4.5 MJ·m-2·d-1 on average as compared to the other sea-

sons). In contrast, yield was the highest during late-belg and meher. The causes are 

PPT was minimal (~7 mm·d-1), low SW↓ and cooler weather (Table 2.3). As a result, 

the LGS was larger than 155 d. Haverkort and Struik (2015) also discussed that 

longer growing seasons increase potato yield. Our result is consistent with Hirpa et 

al. (2010) findings which showed the potential yield for meher was higher than for 

the belg farming in Ethiopia. However, field experience and literature indicate that 

there is more crop disease pressure during meher than belg cropping (Hirpa et al., 

2010). This crop disease outbreak might be related to the favourable weather condi-

tions (cooler and cloudy weather) during kirmet season (Pérombelon, 2002). Note 

that diseases are not accounted for in the current GECROS model. 
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Haverkort and Verhagen (2008) discussed that with increasing global tempera-

ture and atmospheric [CO2], in the temperate climate, for example, potato yield may 

be increased due to increased LGS and [CO2] – provided that irrigable water is avail-

able as the current amount. Mountains will become warmer than the present (Elsen 

and Tingley, 2015), in which shifts in potato growing zone can be expected. The yield 

zone I (which is not suitable for potato agronomy) will expand into yield zone II (the 

major potato yield zone). Moreover, yield zone II may shift to upslope into yield 

zone III. Besides, yield zone III is steeper and less suitable for agriculture. Climate 

change negatively affects potato yield at least in two aspects: (1) increased warming 

results in decreased yield (Figure 3.3c and d), (2) decrease in acreage. Therefore, cli-

mate change can have negative impact on potato agronomy in the Gamo Highlands. 

The IPCC climate projection to the East African region showed up to 10% to 18% 

increases for the March to May precipitation (Rowell et al., 2015; Stocker et al., 2013). 

Such an increase in PPT decreases potato yield in the Gamo Highlands (Figure 3.3b). 

On the other hand, observed data since 1980 showed a declining trend (up to 20%) 

for PPT for the region. This implies that data showed no agreement between mod-

elled and observed PPT.  

Figure 2.6a showed a simple model experiment that increasing atmospheric 

[CO2] increased crop yield. With the increases in CO2 emissions in the changing cli-

mate, this can improve the future food security. In line with our findings, both model 

experiments and field experiments (e.g. Free-air concentration enrichment – FACE) 

showed increases in [CO2] increase crop yield (Bazzaz, 1990; Long et al., 2006). How-

ever, increases in the atmospheric temperature and reduced soil moisture due to cli-

mate change will have negative impact on crop yield (Lobell and Field, 2007; Long 

et al., 2006). With increased CO2 concentration, the plant needs more resources (e.g. 

nutrient and water) to compensate the increased photosynthesis (Bazzaz, 1990). 

Crop management options such as shifting planting dates and scheduling available 

water (see Chapter 4) can be considered as climate change adaptation options to im-

prove food security in Ethiopia (Hijmans, 2003). The model experiments conducted 

in Figure 2.6 and Figure 3.3 are based on varying an atmospheric variable (e.g. Tmax, 

SW↓ and PPT) without coupling the meteorological variables to the crop dynamics. 

However, future climate projections using the EC-Earth model (Hazeleger et al., 

(2010; 2012)), for example, can give more robust quantification of the future crop 

yield in the changing climate in regions characterised by complex topography. A 

similar research strategy as we followed in Chapter 3 can be applied using the EC-

Earth climate model.  
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Potato (Solanum tuberosum L.) is an important crop in the Gamo Highlands in 

Ethiopia. The region is characterised by a complex topography with large inter-

annual weather variations, where potatoes grow in a range of altitudes between 

1600 and 3200 m above sea level (a.s.l.). Traditional large-scale crop modelling 

studies only crudely represent the effect of complex topography, misrepresenting 

spatial variability in meteorology and potato growth in the region. Here, we in-

vestigate how weather influenced by topography affects crop growth. We used 

the Weather Research and Forecasting (WRF) model to simulate weather in re-

lation to topography in coarse (54 × 54 km2) and fine (2 × 2 km2) resolution 

domains. The first has a resolution similar to those used by large-scale crop mod-

elling studies that only crudely resolve the horizontal and vertical spatial effects 

of topography. The second realistically represents the most important topograph-

ical variations. The weather variables modelled in both the coarse and fine reso-

lution domains are given as input to the GECROS model (Genotype-by-Envi-

ronment interaction on CROp growth Simulator) to simulate the potato growth. 

We modelled potato growth from 2001 to 2010 and studied its inter-annual var-

iability. This enabled us to determine for the first time in Ethiopia how variations 

in weather are linked to crop dynamics as a function of elevation at a fine reso-

lution. We found that due to its finer representation of topography, weather and 

crop growth spatio-temporal variations were better represented in the fine than 

in the coarse resolution domain. The magnitude of crop growth variables such as 

Leaf Area Index (LAI) and Length of the Growing Season (LGS) obtained with 

weather from the coarse resolution domain were unrealistically low, hence un-

acceptable. Nevertheless, the resulting potato yields in the coarse resolution do-

main were comparable with the yields from the fine resolution domain. We ex-

plain this paradoxical finding in terms of a compensating effect, as the opposite 

effects of temperature and precipitation on yield compensated for each other 

along the major potato growing transect in the Gamo Highlands. These offset-

ting effects were also dependent on the correct estimations of the LGS, LAI. We 

conclude that a well-resolved representation of complex topography is crucial to 

realistically model meteorology and crop physiology in tropical mountainous ar-

eas. 
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3.1 Introduction 

Potato is one of the most rapidly expanding crops in Eastern Africa (Haverkort 

and Struik, 2015) and is a strategic crop for improving food security in Ethiopia 

(Abebe et al., 2013; FAO, 2008b; Hirpa et al., 2012). Ethiopia has the greatest potential 

for potato production in Africa (FAO, 2008b). In Ethiopia, potato is grown during 

the belg* (February – May) and kirmet (June – September) seasons, as well as off-sea-

son under irrigation. The belg crop is the most important one (from the total area 

cropped with potato, 77% is during the belg season) (Tufa, 2013), but the potato yield 

is significantly dependent on annual weather variations and local weather and soil 

conditions. Although meteorological conditions are also favourable for potato pro-

duction during the kirmet (meher harvest) season, diseases - mainly late blight - are 

more prevalent than during the belg season (Haverkort et al., 2012; Tufa, 2013). 

Ethiopia has a complex topography. In southwest Ethiopia, the Gamo Highlands 

rise up from the lowlands at the bottom of the Great Rift Valley at 1100 m a.s.l. 

around Lake Chamo to above 3500 m a.s.l. at the summit of Mount Guge, a distance 

of less than 50 km. Potato is cultivated there between 1500 and 3200 m a.s.l., where 

the climate is mild and not too wet. As a result of the complex terrain, large contrasts 

in weather and climate can be observed (Jury, 2014b). These generate variations in 

potato growth from the relatively unsuitable lowlands to the highly productive 

highlands, due to different combinations of adiabatic cooling, orographic lifting and 

mountain/valley wind conditions. Because crop dynamics and ultimately yield are 

highly influenced by weather and climate (Samberg et al., 2010), we hypothesise that 

the modelling of potato crop dynamics is very sensitive to crucial meteorological 

crop drivers such as short-wave radiation (SW↓), precipitation and temperature and 

their variations along steep elevation gradients.  

Current operational crop models such as the EU MARS (Monitoring Agriculture 

with Remote Sensing) system are driven by coarse resolution data from global 

weather models and/or interpolated station data (e.g. 0.5° × 0.5°) (Boogaard et al., 

2002; De Wit et al., 2010; Hijmans, 2003). In such models, for example, the Gamo 

Highlands are represented by a smoothed topography, which suggests drier and 

warmer weather characterised by less variability than in models with fine resolution 

domains (Section 3.3.1). However, recent studies have shown that numerical 

weather models require sufficiently high resolution to resolve atmospheric phenom-

ena such as spatial variability in temperature and precipitation driven by complex 

topography (Hunink et al., 2014; Yarleque et al., 2016; Zhao et al., 2015). Our study 

furthers these recent efforts, as we investigate the impact of weather model resolu-

tion on crop dynamics too in a region characterised by complex orography. While 

                                                           
* See seasonal classification in Ethiopia in Table S1 (follow https://doi.org/10.1016/j.agrformet.2018.07.009) 
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we focus on the Gamo Highlands, our objectives and methods are applicable to other 

mountainous areas in tropical regions.  

This study models the impact of key meteorological crop growth drivers on po-

tato growth at high resolution over the Gamo Highlands. To this end, we combine 

meteorological and crop dynamics models, which exist in a one-way coupled causal 

relationship. First, we use the Weather Research and Forecasting (WRF) model 

(Skamarock et al., 2005) to simulate weather during a 10-year period in different res-

olution domains: a coarse one (54 km × 54 km) covering the Greater Horn of Africa 

including part of the western Indian Ocean (2808 km × 2808 km) and a fine one (2 

km × 2 km), covering the Gamo Highlands, an area of 84 km × 84 km (Figure 3.2). 

Second, we systematically analyse the impact of these meteorological inputs on the 

crop dynamics simulated by the Genotype-by-Environment interaction on CROp 

growth Simulator (or GECROS model, (Yin and van Laar, 2005), hereafter YL05). 

Using this method, we attempt to answer the following questions: 

1) How do weather and climate vary as a function of local topography and how does it affect 

potato crop growth variables and yield? 

2) Does elevation enhance or lower the magnitude of key crop variables such as the length 

of the growing season (LGS), carbon allocation to different parts of the plant, leaf area 

index and yield and their interactions?  

Our strategy is first to analyse the inter-annual SW↓, precipitation and tempera-

ture patterns during 2001 – 2010. We identify climatologically normal, dry and wet 

belg seasons using anomaly calculations and the Standardised Precipitation Index 

(SPI) (Raja et al., 2014). This enables us to analyse the sensitivity of key crop metrics 

(LGS, LAI, the carbon stored in the various crop organs and the crop yield) to 

weather variations, soil characteristics and crop management options. Finally, we 

evaluate the performance of our weather model with currently available meteoro-

logical observations at low-elevation and high-elevation stations and compare our 

results with the available literature for the crop model (IPC, 2009; Mazengia et al., 

2015; Tufa, 2013). To the best of our knowledge, this is the first study of the influence 

of weather on a crop in a tropical highland region with such a long integration time 

and fine spatial resolution. 

3.2 Methods 

3.2.1 Weather model 

The numerical atmospheric model experiment employed the WRF model, ver-

sion 3.4.1 (Skamarock et al., 2005). The model is configured in domains with different 

horizontal grid resolutions: one coarse resolution domain and three consecutively 

nested domains with increasingly finer resolutions. In this study, we only use the 
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outer domain with the coarse resolution and the inner domain with the finer resolu-

tion. A summary of the numerical settings and physical parameterisation schemes 

applied is provided in Table S2†. The model initialization was as follows: independ-

ent 48-hour (data recorded every hour) WRF runs were performed for the period 

2001 - 2010. The model’s initial and lateral boundary conditions were prescribed 

from the ECMWF ERA-interim reanalysis data (Dee et al., 2011). The first 24 hours 

were discarded as a model spin-up for the physical processes that were parameter-

ised. The meteorological output for the second day (interval 24-48 hours) was con-

sidered for that day. This modelling strategy was suggested by Jiménez et al., (2010; 

2011b) as a way to obtain an appropriate balance between an accurate representation 

of the complex orography and land-use characteristics (local/regional conditions) 

without departing from the synoptic dynamical features (Jiménez et al., 2016). By 

combining high resolution (2 km × 2 km) with long model runs (10-year), we attempt 

to represent the spatial variability and obtain robust statistics. 

3.2.2 The crop model 

The GECROS crop systems dynamic model requires six weather variables, 

namely incoming shortwave radiation (SW↓), precipitation, maximum temperature 

(Tmax), minimum temperature (Tmin), vapour pressure deficit (VPD) and wind speed, 

all on a daily basis. The model runs with a time step of one day with a diurnal vari-

ation estimates in the environmental inputs (YL05). These variables are indicated in 

Table S3† and are calculated by the WRF model. The GECROS model was designed 

to study the responses of biomass and dry matter production in arable crops to both 

environmental and genotypic characteristics (Khan, 2012; Yin and van Laar, 2005). 

The model has been tested and widely used to simulate crop growth (Combe et al., 

2015; Gu et al., 2014; Yin and Struik, 2010) and potato in particular (Khan et al., 2014). 

Since the representation of evaporation is crucial here, we follow the improvements 

suggested by Combe et al. (2015) to obtain more reliable surface energy budget esti-

mates. Parameter/variable values considered from the literature other than those 

mentioned in YL05 (Table S3†). Detailed GECROS model settings for the control run 

are presented in Table S4 to Table S13†, where the control run represents the 

GECROS model run with the best available model setting. 

3.2.3 Weather observations 

Since 1974, weather conditions have been recorded in Arba Minch in the low-

lands (1200 m a.s.l.) (Ayana, 2011). The Arba Minch weather station was re-located 

and re-established in 1987 by the Ethiopian National Meteorological Agency (NMA). 

It is a WMO 1st class synoptic weather station located at 6.05° N and 37.55° E. 

                                                           
† Follow the link: https://doi.org/10.1016/j.agrformet.2018.07.009 
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Weather variables such as temperatures, relative humidity, precipitation, winds, 

hours of sunshine, atmospheric pressure, clouds, visibility, evapotranspiration, etc. 

are recorded/observed on a three-hourly/daily basis (during daytime hours) manu-

ally (NMA, 2018).  

We also used weather observations collected in Chencha, in the Gamo Highlands 

(2632 m a.s.l.). This station is a WMO 4th class station category, from which we used 

the precipitation data only (NMA, 2018). We collected additional data from our re-

cently (2013) established automatic weather station in Chencha. A more detailed de-

scription of the observation data used in this article is provided in Table S12†.  

3.2.4 Soil data 

The GECROS crop model is coupled with a process based soil model (YL05). In 

agreement with the high topographic resolution prescribed to obtain reliable spati-

otemporal meteorological variables, we used high-resolution soil information. Soil 

parameters such percentage of clay in the soil, soil water content at maximum hold-

ing capacity, soil water content at field capacity, minimum soil water content and 

total organic carbon in the soil (TOC) are required as model input. These parameters 

were calculated from the International Soil Reference and Information Centre 

(ISRIC), world soil information, Africa Soil Information Service (AfSIS) project data-

base (Leenaars et al., 2014). 1 km × 1 km resolution data in the top 60 cm were aggre-

gated and interpolated to fit the fine resolution domain. 

3.2.5 Validation of the meteorological model 

WRF meteorological results were validated against observations collected at the 

two stations described in Section 3.2.3. Our validation of weather will focus on the 

variables SW↓, precipitation, Tmax and Tmin. We selected these weather variables be-

cause they are the key atmospheric variables that have the strongest influence on 

crop growth. The SW↓ affects the light-use efficiency of crops. Precipitation is highly 

correlated with SW↓ by clouds. The amount, frequency and location of precipitation 

are key factors; since crop stress and yield depend on soil moisture. Temperature 

strongly influences physiological and biophysical characteristics such as net photo-

synthesis, canopy development, dry matter accumulation and partitioning and ab-

solute tuber growth rate of potatoes (Ewing, 1981; Hammes and De Jager, 1990; 

Khan, 2012; Van Dam et al., 1996). 

Since our aim was to determine how domain resolution affects the representation 

of elevation and the resulting weather simulations, we compare the observed 

weather variables with the modelled weather variables from both the coarse and fine 

resolution domains. We compare the 10-year mean modelled weather variables of 

the 840 grid cells in the fine resolution domain together with the four overlapping 

grid cells in the coarse resolution domain. We also show the elevational gradients of 
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SW↓, precipitation, Tmax and Tmin. Finally, we express the performance of the WRF 

model using statistical metrics such as the Root-Mean-Square Error (RMSE), the 

Mean Bias Error (MBE) and the coefficient of determination (r2) (Willmott, 1982). 

3.2.6 Strategy for the crop model sensitivity study 

To compensate for the lack of potato yield data during the 10-years period, we 

investigated how simulated crop growth in GECROS model responds to weather 

(SW↓, Tmax, Tmin, VPD, precipitation and [CO2]), edaphic variables (soil type, soil 

moisture content and TOC), crop parameters and crop management options.  

The model sensitivity experimental strategy was as follows. We varied the mete-

orological and other variables over a range representing the uncertainties of the 

weather model inspired by the model uncertainties discussed in the previous sec-

tion. The selected range covers the change in meteorological variables under future 

climate scenarios and is aimed at understanding how the crop dynamics processes 

respond to the change in climate. The IPCC climate projections for eastern Africa 

show increased precipitation (up to ~ 18%) in the warming climate (Stocker et al., 

2013; Van Oldenborgh et al., 2013). Our edaphic model sensitivity experiments are 

indicative of how the attainable crop yield, LGS and LAI respond to variations in 

soil fertility, soil type and moisture content. Attainable yield is defined here are 80% 

of the potential yield, which in turn is defined as ‘the theoretical yield that can be calcu-

lated or modelled for a certain cultivar grown in a certain environment without any limiting 

or reducing factor being present’ (Haverkort and Struik, 2015). Similarly, the crop pa-

rameter model experiments tell us how the crop yield variables differ with potato 

variety. 

We based the sensitivity experiment on the weather during the 2006 belg season, 

which is representative of a climatologically normal year and the Chencha location, 

in the potato-growing zone. The SW↓ was varied within the range of 19.5 ± 4.2 MJ·m-

2·d-1, with a ± 1% simulation resolution interval from the mean. We varied the tem-

perature around the average of 17 °C within a range of 15 °C to 19 °C, with 0.5 °C 

model run range, as suggested in Van Oldenborgh et al. (2013). This analysis was 

conducted with the assumption that the relative humidity remains constant (Stocker 

et al., 2013), as the absolute humidity rises with rising temperature (Rieck et al., 2012). 

We varied precipitation in the range of 10.6 ± 2.2 mm·d-1 with ± 5% model run reso-

lution. We took a similar approach for the other atmospheric variables. For the soil, 

crop variables/parameters and crop management options, we employed a realistic 

range around the selected inputs. For each value in the ranges thus created, the 

GECROS model was run separately in order to study the sensitivity of crop growth 

to the individual input variable. 
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3.3 Model evaluation and parameter sensitivity analysis 

This section presents the results of the weather model evaluation as described in 

Section 3.2.5 and the crop model sensitivity analysis as described in Section 3.2.6. 

3.3.1 Weather model evaluation 

Figure 3.1 shows the results of the weather model validation. The SW↓ decreased 

with elevation that was related to an increase in cloudiness at higher altitudes. At 

the same elevation, SW↓ displayed different patterns in the coarse and fine resolu-

tion domains: for the coarse resolution domain, it was underestimated and for the 

fine resolution domain, it was overestimated. The order of magnitude of these devi-

ations with respect to the observations was similar: ~ 60 W·m-2 less in the coarse res-

olution domain and 50 W·m-2 more in the fine resolution domain at the lowland sta-

tion. At the highland station, the bias became slightly less, but it was still significant. 

We attribute these differences to the representation of convection in WRF in the 

coarse and fine resolution domains. Note that for the coarse resolution domain, con-

vection was approximated or parameterised whereas at the domain with finer reso-

lution it was explicitly calculated (Table S2†). It is important to stress that the differ-

ent results due to the differences in the calculations of convection affect not only the 

SW↓ but also the precipitation, Tmax and Tmin results. These findings emphasise the 

critical role played by clouds and aerosols in the calculation of the SW↓, a key vari-

able in the crop dynamics model. 
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Figure 3.1 | The relationships between incoming global radiation (W·m-2) (cyan dots), precipitation 

(mm·d-1) (blue dots) and Tmax and Tmin (°C) (red dots) and with elevation (m). The small dots represent 

840 individual grid cells in the fine resolution domain. The filled circles represent the four individual 

grid cells in the coarse resolution domain that overlap with the fine resolution domain. The WRF anal-

ysis covers the averages of the daily means during 10-years. The observational data covers climatolog-

ical period. The stars designate observed climatology for Arba Minch and Chencha (corrected for ele-

vation of the stations). The error bars indicate variability in the fine resolution domain. The crosshairs 

show the mean values of the given weather variables/elevation. 

Precipitation increased exponentially with altitude (Figure 3.1). There was a sat-

isfactory agreement with the modelled precipitation in the coarse resolution domain 

at both lowland (almost no bias) and highland (bias ~+1.0 mm·d-1) locations. How-

ever, we found both a dry (~1.5 mm·d-1) and a large wet (~3.5 mm·d-1) bias in both 

Arba Minch and Chencha in the fine resolution domain. This large rainfall bias oc-

curred in spite of a better description of the elevation and presumably better model 

physics in the finer resolution domain. The reason for this large bias is uncertain and 

our evaluation will need to be continued in the near future, particularly by using 
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better measurements of rainfall make use of a dense network of stations across ele-

vation gradients (Section 3.5). 

We found that Tmax and Tmin declined linearly with elevation (Figure 3.1). At Arba 

Minch Tmax was negatively biased by ~ -7 and -3 °C in the coarse and fine resolution 

domains, respectively. At Chencha Tmax was positively biased in the coarse resolu-

tion domain and negatively biased in the fine resolutions (by ~ +8 °C and ~ -1 °C 

respectively). Tmin was well represented at Arba Minch in both resolution domains. 

It was in good agreement in the fine resolution domain and largely positively biased 

(~ +7 °C) in the coarse resolution domain at Chencha. We conducted a statistical 

analysis to test the performance of the weather model at both locations. 

Table 3.1 shows how the WRF model performed compared to the observed 

weather for Arba Minch and Chencha using daily averages. We validated the WRF 

model at the grid points at which the Arba Minch and Chencha stations are located. 

Our approach was to use the data with a daily temporal scale since here we were 

interested in studying the impact of fine spatiotemporal scales on meteorology and 

crop dynamics during the 10-year period. For Chencha, only precipitation observa-

tions were available for between 2001 and 2010. The model elevation of the Arba 

Minch and Chencha sites were modelled to be 62 and 100 m respectively above their 

actual elevation in the fine resolution domain. In the coarse resolution domain, Arba 

Minch and Chencha were modelled at 360 and 1050 m respectively above and below 

their actual elevations. We corrected the modelled temperature for elevation bias 

using the international standard atmosphere (-0.65 °C/100 m) (Kunz et al., 2007). 

Table 3.1 | Statistical WRF model validation using daily weather station observations for Arba Minch 

and Chencha for the coarse and fine resolution domains. The analysis was carried out on daily data. 

Station  

Weather 

variable 

Obs. 

mean 

WRF mean MBE RMSE r2 

coarse fine  coarse fine  coarse fine  coarse fine  

Arba 

Minch  

Tmax (°C) 30.5 17.8 27.3 -12.7 -3.2 12.9 3.9 0.26 0.26 

Tmin (°C) 17.4 9.5 17.9 -7.7 0.5 8.0 1.9 0.12 0.19 

PPT  

(mm·d-1) 
2.5 2.5 1.2 -0.1 -1.3 7.2 7.7 0.05 0.01 

Chencha  

Tmax (°C)  17.9 16.8       

Tmin (°C)  11.0 9.1       

PPT 

(mm·d-1)  
3.5 4.5 7.2 1.0 3.7 8.8 13.0 0.05 0.05 
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The first finding was that there was no general improvement in the domain with 

finer elevation and resolution for the variables under study. Our results showed that 

the model was negatively biased in terms of Tmax (12.7 and 3.2 °C) for both coarse 

and fine resolution domains. Possible explanations for the underestimates are: (i) the 

initial and boundary conditions provided by the ECMWF ERA-interim reanalysis 

data may give a cold temperature bias for the tropical and mountainous region (Jury, 

2014a) and (ii) WRF has a cold temperature bias (Steeneveld et al., 2008). Similarly, 

Tmin was underestimated (7.7 °C) in the coarse resolution domain, despite the fact 

that Tmin was well represented in the fine resolution domain with values for MBE 

and RMSE of 0.5 and 1.9 °C, respectively. Comparing the two model resolutions, the 

fine resolution domain was closer to the measurements. This was primarily attribut-

able to the direct relationship between temperature and elevation and a better rep-

resentation of topography in the fine compared to the coarse resolution domain (Sec-

tion 3.4.1).  

Precipitation was underestimated in the lowlands (i.e. in Arba Minch) by 0.1 and 

1.3 mm·d-1 in the coarse and fine resolution domains, respectively. However, in the 

highlands (i.e. in Chencha), our comparison deteriorated, with a tendency towards 

more rain in the model (+1.0 and +3.7 mm·d-1 for the fine and coarse resolution do-

mains, respectively) compared to the observations. We hypothesise that the better 

representation of topography in the fine resolution domain could trigger more con-

vection than in the coarse resolution domain. There may also be uncertainty in the 

precipitation measurements because the rain gauges are manually operated and the 

treatment of the missing data by the National Meteorological Agency – Ethiopia 

(NMA) could also lead to bias.  

A number of authors have shown that the precipitation modelled using the 

ECMWF ERA-interim reanalysis data has a large wet bias over the Ethiopian High-

lands and dry bias over the lowlands (Diro et al., 2011b; Dutra et al., 2013; Jury, 2014a; 

Tsidu, 2012), which agrees with our finding. For example, Diro et al. (2011b) has in-

dicated that the ECMWF ERA-interim (1989 – 2001) reanalysis data underestimated 

the south and south-eastern lowland regions precipitation by nearly 30 mm·month-

1 during the belg season, as compared to the gauged stations. This result is consistent 

with our findings at the Arba Minch station. Also, note the opposite behaviour be-

tween SW↓ and precipitation, as the first exponentially increases while the latter de-

creases with elevation (Figure 3.1). 
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It is also interesting to discuss our validation using different averaging periods, 

in particular monthly and yearly ones for precipitation. The monthly averages indi-

cate a significant fit and comparable performance between the coarse and fine reso-

lution domains (r2 is respectively 0.68 and 0.66 for the coarse and fine resolution 

domains in Arba Minch; 0.61 and 0.60 for the coarse and fine resolution domains in 

Chencha). Although the annual precipitation modelled, in Arba Minch, by the finer 

resolution domain has a better fit (r2 = 0.94) than with the coarse resolution domain 

(r2 = 0.89), the opposite is true for the daily precipitation, as the one modelled in the 

coarse resolution domain results in an r2 = 0.05, compare to r2 = 0.01 in the fine reso-

lution domain. We can attribute these opposite outcomes to (a) the smoothing of the 

complex terrain (which modifies the modelled precipitation rates); (b) the actual dis-

placement of the site elevation in the model (inherent to the assumed model resolu-

tion) and (c) the WRF model physics representation (Kerandi et al., 2018; Riddle and 

Cook, 2008). For instance, the Arba Minch station is represented by WRF to be at 

1574 m a.s.l. in the coarse resolution domain and 1274 m a.s.l. in the fine resolution 

domain, but is located at 1212 m a.s.l.  

3.3.2 Sensitivity of crop variables to the weather variability 

In the absence of time series of crop yield observations during 2001 to 2010 to 

validate our results, we first show the strong relation between meteorology and po-

tato yield observed in 2000 and the role played by elevation. In Figure 3.2, we com-

bined the observed potato yield (t·ha-1) and the area of production for Ethiopia dur-

ing the year 2000, as illustrated by the International Potato Centre (IPC, 2009) and 

related to the precipitation modelled with WRF. The inset shows the precipitation 

results obtained by WRF using the finer resolution domain. Each dot in the plot in 

the larger plot represents potato yield (t·ha-1). The background shaded region (with 

topographical contours) shows 10-year-average modelled precipitation (mm·d-1). 

The figure indicates that the most productive potato growing regions in Ethiopia are 

the mid-elevations (from 2000 to 2400 m a.s.l., which have moderate annual precip-

itation: ~ 6 – 9 mm·d-1 and produce annual yields > 10 t·ha-1), the Rift-Valley system 

and the northern and eastern escarpments along the valley. The region represented 

by the broken line indicates the fine resolution domain, which is also indicated by 

the overlaid map at the right lower side of the figure. Note that the region (the Gamo 

Highlands) has one of the lowest potato yields in the country (< 7 t·ha-1) (Dersseh et 

al., 2016; Mazengia et al., 2015). However, due to its suitable weather and agro-ecol-

ogy, it has large production potential in the future.  
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Figure 3.2 | 10-year mean of WRF modelled precipitation (mm·d-1) – shaded region, topography – con-

tour lines (m) and the observed potato yield – scattered dots in (t·ha-1). The larger plot shows Ethiopia 

(part of the coarse resolution domain) with spatial resolution of 54 km × 54 km. The dashed square in 

the figure represents the fine resolution domain, which is magnified and indicated in the right corner. 

The resolution of the finer resolution domain is 2 km × 2 km and covers 84 km × 84 km area, located in 

the Gamo Highlands. Each dot represents potato yield per 1000 hectares in the coarser resolution do-

main. The colour bar scales are applicable to both domains. The potato yield and production observa-

tion data are taken from the (IPC, 2009). 

 

Based on the strategy designed for the crop model sensitivity experiment in Sec-

tion 3.2.6, the variations introduced in weather and summary of the main results are 

presented in detail in Table 3.2. 
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Table 3.2 | Design of the model sensitivity analysis for crop outputs on atmospheric, edaphic and crop 

variables and crop management options. The table shows the range of the model sensitivity experi-

ment, the difference between the highest and lowest LGS (day) amongst experiments, the difference 

between the average LGS of experiments of a variable/parameter and the LGS of the control run and 

related literature/assumptions. 

Experiment 

category  

Variable/ 

parameter 

 

Unit 

 

Range  

ΔLGS‡ 

(d) 

ΔLGS§ 

(d) 

References/ As-

sumptions 

Atmospheric 

variables  

SW↓ MJ·m-2·d-1 15 - 23.5  28 4 
(Haverkort, 1990; 

Haverkort and 

Harris, 1986, 1987) 

Tmax  °C 15 – 21  63 2 
(Van Oldenborgh 

et al., 2013) 

Tmin °C 7 – 13 66 -2 
(Van Oldenborgh 

et al., 2013) 

VPD kPa 
0.05 – 

0.38  
10 1 

(Kiniry et al., 

1998) 

PPT mm·d-1 8 – 12.25 0 0 
(Stocker et al., 

2013) 

[CO2] ppm  350-750 8 3 
(Meinshausen et 

al., 2011) 

Edaphic varia-

bles  

TOC kg C.m-2 0 – 20 1 0 Model experiment  

Soil microbial & 

humified organic 

matter  

kg C·m-2 0 – 10  3 1 Model experiment 

Percent clay % 0 – 50  0 0 Model experiment  

Soil water con-

tent at maximum 

holding capacity 

m3·m-3  0 – 1  22 -8 Model experiment 

Soil water con-

tent at field ca-

pacity 

m3·m-3  0 – 1 4 0 Model experiment  

Minimum soil 

water content  
m3·m-3  0 – 1 22 -9 Model experiment 

Crop parame-

ters 

Efficiency of ger-

mination  
g·g-1 0.1 -0.95 12 4 (YL05) 

Seed weight  g·seed-1 20 - 30 4 1 (YL05) 

Maximum crop 

nitrogen uptake 
g N·m-2·d-1 

0.34 – 

0.46 
0 0 (YL05) 

Maximum plant 

height 
m 0.6 – 1.5 5 1 (YL05) 

Stem dry weight 

per plant height 
g·m-2·m-1 145 - 195 2 0 (YL05) 

Crop manage-

ment options 

Fertilizer dose 

applied 

g·m-2·sea-

son-1 
0 – 40  12 0 Model experiment  

Planting date 

variations 
d 

Jan 1 – 

Aug 1 
57 18 (Wang et al., 2015) 

                                                           
‡ The difference between the shortest and longest LGS (day) amongst the sensitivity experiments for the variable.  
§ The deviation of the averages LGS in the sensitivity experiments from the 2006 belg run LGS (i.e. 120 d).  
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Figure 3.3 shows how the attainable yield (black – left axis) and LGS (blue – right 

axis) responded to variations in atmospheric variables and crop management op-

tions. The relationship between the meteorology and the crop variables was as fol-

lows: variations in the SW↓ controlled by clouds affected the major meteorological 

crop drivers and these in turn all affected crop growth (a); precipitation, which af-

fected soil moisture and impacted the crop water requirement (b); and Tmax and Tmin 

were associated with extreme meteorological conditions such as heat waves or cold 

night events and influence crop growth (c and d). 

 

Figure 3.3 | GECROS model sensitivity analysis for attainable potato fresh tuber yield (t·ha-1) (left-axis 

– solid-line) and LGS (d) (right-axis – dot line). Variations in the means in atmospheric variables: SW↓ 

(MJ·m-2·d-1) (a), precipitation (mm·d-1) (b), Tmax and Tmin (°C) (c and d) with the corresponding LGS (d) 

(left-axis) for Chencha during the 2006 belg season. In all the figures, the LGS variation is included. 

The shaded/line error bars show the standard deviations of yield/LGS. The stars denote yield for the 

control run. The scales between panels on the left and those on the right are different. 

Figure 3.3a shows an almost linear decline in yield (23.5 to 20.0 t·ha-1) as SW↓ 

increases from 15.0 to 23.5 MJ·m-2·d-1. This finding is counterintuitive, but our expla-

nation is as follows: by increasing the SW↓, Tmax and Tmin, LGS and LAI are also var-

ying and diminishing, as shown in Figure 3.3. These lead to the crop having a shorter 

growing season during which to accumulate additional carbon with the decreased 

light interception (which limits the amount of photosynthesis performed by the 

plant) due to the reduced LAI. The LGS and LAI can be considered as an integral 
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metric that embeds the meteorological dependencies and have a direct impact on the 

crop yield.  

Our sensitivity analysis also indicated that the attainable yield declined non-lin-

early by ~17% when precipitation increased from 8.0 – 12.5 mm·d-1, whereas the LGS 

remained constant (Figure 3.3b). This counterintuitive result may be explained as 

follows: the soil model in GECROS is mainly driven by the amount of precipitation 

and fertilization. Increasing precipitation in the sensitivity study enhances the soil 

moisture content, which facilitates drainage and leaching of nutrients such as ni-

trate-nitrogen to the ground water reservoir (YL05). The reduction in nitrate-nitro-

gen reduces its availability to the plants, as discussed in Waddell et al. (2000). Note 

that climate models project increased precipitation (up to ~ 18%) for Eastern Africa 

by the end of this century (Stocker et al., 2013), which is likely to reduce future potato 

productivity.  

Figure 3.3c and d show that increases in Tmax and Tmin reduced yield by 7 and 13%, 

respectively, which agrees with the findings of Resop et al. (2014). Haverkort and 

Struik (2015) suggested that the potential global yield of potato would fall by 18 – 

32% as a consequence of a global temperature rise of +2.5 °C in 2069. The tempera-

ture increase in the future climate significantly shortens the LGS, as discussed in Van 

de Geijn and Dijkstra (1995), emphasising the need for climate change adaptations 

for such global change (Haverkort and Struik, 2015). Although yield increases at 

lower temperatures, crop development is slower. This can increase the risk of dam-

aging night frosts in the highlands, as discussed in (Haverkort and Verhagen, 2008). 

Forecasting this phenomenon requires the use of detailed elevation maps and high 

model resolution, as is presented here. Additional model sensitivity experiment re-

sults and discussion are included in Fig. S1 to Fig. S3†. 

Most model sensitivity experiments showed variations in the LGS (within runs 

of a variable and/or as relative to the control run) (Figure 3.3). This was because the 

variable under study influenced the crop growth rate; in consequence the LGS and 

the weather to which the crop was exposed during its growth. However, overall the 

imposed variation dominated over the secondary variations in weather conditions 

during the growing season. In general, an increase in LGS tended to enhance yield. 

However, the larger LGS probably increased exposure to biological risks such as 

pests and diseases, even though these were not accounted for in the model 

(Haverkort and Struik, 2015; Haverkort et al., 2012; Tufa, 2013) and meteorological 

stresses (e.g. droughts, heat waves, frosts) (Haverkort and Struik, 2015; Haverkort 

and Verhagen, 2008). 

To conclude the model evaluation and parameter sensitivity section, a further 

quantification was performed to determine the most sensitive variable/parameters 

to crop yield. To do so, we calculated the relative sensitivities of the variable/param-

eter by normalizing the experiments, using equation (3.1). 
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𝑆𝑅 = 𝜕(𝑌𝑒𝑥𝑝𝑡 𝑌𝑐𝑜𝑛𝑡⁄ ) 𝜕(𝑃𝑒𝑥𝑝𝑡 𝑃𝑐𝑜𝑛𝑡⁄ )⁄   (3.1) 

Where Yexpt represents the yield in the sensitivity experiment, Ycont yield in the control run, 

Pexpt the parameter value in the sensitivity experiment and Pcont the parameter value in the 

control run, respectively. 

Table 3.3 shows the normalised values (%), which are categorised as increasing 

or decreasing the yields realised by variables/parameters in the four (atmospheric, 

edaphic, crop parameter and management) categories. The highest increases and de-

creases in yield in response to atmospheric variables corresponded to [CO2] and pre-

cipitation, respectively. In the crop parameters category, seed weight and plant 

height were the most important yield parameters, respectively. Crop management 

options such as fertiliser dose and differences in planting dates correlated positively 

with attainable yield. Of the four categories, the edaphic variables such as Biomass 

Humified Soil (BHC) and TOC were the most important yield-increasing and -de-

creasing variables, respectively. 

Table 3.3 | The relative sensitivities of atmospheric, edaphic, crop variables and crop management 

options. The GECROS model values are numerically normalised and calculated using the equation 

(3.1). The variables/parameters are ordered from high sensitivity to low. 

Categories  Yield improving  SR (%) Yield-reducing  SR (%) 

Atmospheric vari-

ables 

[CO2] 31.9 Precipitation  -37.9 

VPD   2.1 Tmin  -37.7 

  SW↓  -35.9 

  Tmax  -24.1 

Edaphic variables  

BHC 70.3 TOC -74.4 

  Percent clay -47.1 

Soil water content at 

field capacity 
14.2 

Soil water content at 

minimum holding ca-

pacity 

-12.4 

  

Soil water content at 

maximum holding ca-

pacity 

 -1.2 

Crop parameters  

Seed weight 60.5 Plant height  -3.6 

Efficiency of germi-

nation  
37.0 

Stem dry weight per 

unit of plant height 
 -0.3 

Crop management 

options  

Fertilizer dose  51.7   

Planting date   9.2   
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3.4 Results 

3.4.1 Representation of topographical variability: the need for high-resolution 

modelling 

The topography of the region under study was highly variable: in a radius of ~ 

50 kilometers, there were differences of up to 2500 m in elevation. Meteorological 

conditions changed with elevation at the Gamo Highlands, influenced by a combi-

nation of synoptic and local circulations that led to high variability in the patterns of 

temperature, clouds and precipitation (Figure 3.1).  

Our first analysis focused on how topography influenced the meteorological crop 

drivers. In particular, SW↓, precipitation, Tmax and Tmin influenced the various crop 

variables related to potato growth and yield. To this end, we show first in Figure 3.4 

the relative topographic variations: the ‘green’, ‘blue’ and ‘yellow’ shaded regions 

indicate variations in elevation of the entire coarse and fine resolution domains that 

are prescribed in the WRF numerical experiments and the grid points that the coarse 

and fine resolution domains share. 

 

Figure 3.4 | The distribution of topography in the coarse and fine resolution domains. The grey shaded 

area marks the elevation zone where potato can be grown in the current climate (Tufa, 2013). In the 

coarse resolution domain, 8% of the grid points are within the potato growing area, in the fine resolu-

tion domain 51%, showing that the coarse resolution domain has more grid points with low elevation 

and the finer resolution domain has more locations with intermediate elevations. The green, blue 

shaded areas show the frequency distributions of the elevations in the coarse and fine resolution do-

main. The coarse resolution domain covers a larger area than the fine resolution domain. The yellow 

shaded region indicates the elevation range of the four grid points in the coarse resolution domain 

that includes the same area of the fine resolution domain.  
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The topography imposed at the coarser resolution domain showed an elevation 

that ranges from 0 to 3000 m a.s.l. (marked by the blue area in Figure 3.4). It is rele-

vant to our study that the East-African Highlands including the Gamo Highlands 

(west of Abaya and Chamo Lakes, roughly 100 km long and 30 km wide) (Freeman, 

2002) are highly smoothed and hence the mountain peaks in the coarse resolution 

domain were shown hundreds of meters lower than in reality. Two representative 

examples in our study used in the model validation are the weather stations in Arba 

Minch, which were located 400 m higher than in reality, i.e. 1200 m a.s.l. and that of 

Chencha 1100 m lower than in reality, i.e. 2632 m a.s.l. The figure also indicates that 

only 8% of the grid cells were in the potato-growing range as defined by (Tufa, 2013). 

In the fine resolution domain, the elevation range from Lake Chamo, the lowest 

point in the domain (~ 1000 m a.s.l.) to the top of Guge Mountain, the highest point 

in the domain (~ 3500 m a.s.l.) was well represented (see green area in Figure 3.4). 

Note that there are only four grid points in the coarse resolution domain that are 

within the bounds of the fine resolution domain (see yellow area in Figure 3.4). This 

analysis shows that the topography resolution modelled by the coarse resolution 

domain smoothed the topography and therefore could affect the potato-growing re-

gion of the Gamo Highlands. 

We therefore expect that smoothing of the elevation will affect the WRF simula-

tion of meteorological variables. More specifically, when we analysed the results for 

the coarse resolution domain, which could be considered as a representative domain 

resolution as used in current weather-crop models and compared them with those 

by the high-resolution domain, we found a better agreement for Tmax and Tmin com-

pared to the observations. This was quantified in terms of MBE, RMSE and r2 be-

tween modelled and observed weather variables, as shown in Figure 3.1 and Table 

3.1. Furthermore, on a seasonal scale, which is important for crop growth, we found 

a strong correlation (r2 > 0.89) between modelled and gauged stations and better sta-

tistics for the fine resolution than the coarse resolution domain. 

3.4.2 Relating the resolution of elevation to crop yield 

In order to determine the sensitivity of the influence of the prescribed topogra-

phy on meteorological crop drivers and thus on simulated crop growth, we focused 

on the following matrices: the LGS and LAI. These crop variables connect the mete-

orological variables to the potato crop dynamics, mainly the allocated carbon in tu-

bers, or the attainable yield.  

Figure 3.5 shows GECROS simulated allocated carbon in tubers and LAI as a 

function of the LGS during 2006 at Chencha, where the weather station is situated. 

In order to present the results in a systematic manner, we first studied the meteoro-

logical and crop variables in belg 2006 and then analysed the variability of these var-

iables in the belg seasons through the 10-year period of the study. We identified the 
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belg season of 2006 as a normal climatological year based on the average precipita-

tion of 9.7 mm·d-1 as opposed to the driest year of 2008 (6.1 mm·d-1) and the wettest 

year, 2010 (14.6 mm·d-1). The year’s belg season was also climatologically normal in 

terms of mean temperature (27.7 °C) as compared to the coolest, 2008 (27.0 °C) and 

the warmest, 2010 (28.3 °C). 

 

Figure 3.5 | GECROS modelled allocated carbon in tubers (t·ha-1) (left-axis, black lines) and LAI (-) 

(right-axis, blue lines) as a function of the LGS during the 2006 belg harvest season. The solid lines 

show model output using the coarse resolution domain’s weather input and dotted lines represent 

output using the fine resolution domain’s weather input. The red and green lines show the harvest 

days of the coarse and fine resolution domains, respectively. The analysis covers the entire length of 

the growing season (d) at the grid point that represent Chencha station in both model domains.  

The calculated LGS was 59 days in the coarse resolution domain, shorter than the 

more realistic LGS of 90 to 150 days (FAO, 2008). The maximum LAI was also un-

derestimated at the given value of 1.35, much lower than the optimal maximum LAI 

of a potato crop: 3.0 – 5.4 (Harper, 1963). In contrast, using the data calculated with 
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the finer resolution domain, the LGS and the LAI were 120 days and 3.02, respec-

tively (Figure 3.5). As mentioned above, in the coarse resolution model the elevation 

of Chencha was ~1100 m below the actual elevation. As a result, the averaged belg 

season was 8.5 °C warmer and 4.3 mm·d-1 drier than in the fine resolution domain. 

This caused the crop to mature too early, with a low maximum value for the LAI. 

Despite significant differences in modelled weather and crop growth calculated in 

the coarse and fine resolution domains, Figure 3.5 shows that the yields were very 

similar in both domains during the 2006 belg season. This finding is discussed in 

detail and in context, below and in Section 3.5.  

Figure 3.6 shows how GECROS modelled attainable potato yield (a) and LGS (b) 

for the Chencha station for the 10-year period during the belg growing seasons using 

the modelled coarse and fine resolution domains weather inputs. To complete the 

figure, we add an observed reference potato yield for 2001 – 2010 in the southern 

Ethiopia to be < 8 t·ha-1 as indicated in Figure 3.2 and by (Hirpa et al., 2010; Mazengia 

et al., 2015). Other experts have estimated the potential fresh tuber yield in Chencha 

district in the belg season to be about 30 t·ha-1, although the actual yield is much lower 

(i.e. ~8 t·ha-1) (Haverkort et al., 2012). 

 

Figure 3.6 | Inter-annual variability in attainable fresh-matter yield (t·ha-1) (a) and LGS (b) modelled 

by GECROS using the meteorological input from the coarse and fine resolution domain at the grid 

point that represents Chencha station for belg season in 2001 - 2010. The stars denote the control run 

(i.e. yield or LGS during the 2006 belg season). The error bars indicate the mean ± standard deviations 

of the 10-year yields.  
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The pattern in inter-annual variability in potato yield was very similar in both 

domains (Figure 3.5a). The average attainable yields calculated were in the range of 

21.7 ± 3.2 and 22.1 ± 5.7 t·ha-1 using the weather modelled in the coarse and fine res-

olution domains, respectively. The yields were comparable with the modelled yield 

during the 2006 belg season (Figure 3.5). Moreover, the yield modelled for the fine 

resolution domain was almost constant over the range of elevations in the Gamo 

Highlands (Figure 3.7). However, and as in 2006, the simulated LGS for both do-

mains was very different. We calculated 60 ± 3 and 141 ± 20 LGS (d) for the coarse 

and fine resolution domains, respectively (Figure 3.5b)**. It is therefore of interest to 

further study how the LGS and the potato yield change as a function of elevation. 

 

Figure 3.7 | Relationship between attainable yield (left-axis) and elevation, showing that the yield is 

fairly constant in the altitude range where potato mostly grows in the Gamo Highlands. The scattered 

dots indicate fine resolution domain grid cells that spatially overlap with the coarse resolution domain 

(black star) averaged during the 10 years of belg harvests. The error bars (mean ± standard deviations) 

are calculated for grid points with LGS < 70 (red dots – region-I), between 70 to 195 (green dots – region-

II) and > 195 (pink dots – region-III) days, respectively. The blue dots with the corresponding y-axis 

(right side) indicate the LGS.  

                                                           
** Additional differences in the outputs of the coarse and fine resolutions are presented in Table S13 (follow 

https://doi.org/10.1016/j.agrformet.2018.07.009). 
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Figure 3.7 shows the potato yield and length of growing season for (i) four grid 

cells in the coarse resolution domain (black stars) that share their spatial location 

with the fine resolution domain; (ii) 840 grid cells in the fine resolution domain (all 

dots). As the most representative variable, we show the attainable yield (red, green 

and purple dots and left y-axis) and the LGS (fine blue dots and right y-axis). The 

coarse resolution domain led to a yield of 23.4 ± 2.9 t·ha-1. For the fine resolution 

domain, we found that potato grew in the optimal elevation range (1600 m – 2700 m 

a.s.l.) with an attainable yield range of 20.7 ± 4.1 t·ha-1. This optimal region was fur-

ther corroborated by the calculated values of LGS between 70 to 195 days that once 

again were in the range of the expected values for the potato growing cycle. 

GECROS also calculates yield for LGS outside this range, but its estimates are not 

realistic in terms of potato growth characteristics (FAO, 2008b; Harper, 1963). For 

LGS < 70 days, the calculated yield was 12.7 ± 4.4 t·ha-1, which corresponded to 1150 

to 1550 m a.s.l. On the other hand, for LGS > 195 days, the attainable yield was much 

larger (37.6 ± 8.4 t·ha-1), with a narrow elevation range: 2850 to 3200 m a.s.l. Conse-

quently, these calculated values falling outside the optimum LGS range thus repre-

sented conditions that were not realistic for potato growth variables. 

In spite of the range of elevations in the region and its consequences for weather 

and crop variables LGS and LAI, the modelled potato yield was rather insensitive 

across a wide range of elevations (1600 m – 2700 m a.s.l.) and with high topography 

model resolution. This raises the question whether high-resolution modelling is ac-

tually required to model potato yield and related variables reliably. This is discussed 

in the following section. 

3.4.3 Compensating effect: the role of length of growing season and LAI 

The sensitivity analysis performed in Section 3.3 shows that temperature and pre-

cipitation had opposing behaviour to the elevational changes. Our results indicated 

that at higher elevations the lower temperature led to higher yields, while the in-

creased precipitation decreased yield. Excess precipitation above the maximum 

moisture holding capacity of the soil was directly proportional to the soil nutrient 

leached (YL05). The opposing impacts of temperature and precipitation on yield 

thus compensated each other. In order to further quantify and explain this behav-

iour, we studied whether the opposing and non-linear effects of the meteorological 

variables offset each other in the crop growth simulation (Figure 3.3 and Figure 3.7) 

by performing the following experiment:  

1) We took the weather data calculated in the fine resolution domain for the Chencha site 

in 2006, taking the climatologically normal belg season as reference case (control). 
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2) We substituted a weather variable (i.e. Tmin, Tmax, Precp (precipitation), SW↓ or VPD) 

or pair of weather variables (i.e. Tmin and Tmax, Tmin and SW↓, Tmin and VPD, Tmin and 

Precp, Tmax and SW↓, Tmax and VPD, SW↓ and VPD, Precp and Tmax, Precp and VPD 

or Precp and SW↓) in the fine resolution domain for its counterpart in the coarse reso-

lution domain and modelled a new potato yield, combining the substituted weather var-

iable(s) with the ones in the fine resolution domain. See more descriptions in TableS14†.  

Table 3.4 summarises the yield difference between the control run and the sensi-

tivity experiment. The first row/column (values in brackets) shows the difference 

between the average weather variable in the coarse resolution domain and that of 

the fine resolution domain during the growing season. The remainder of the cells 

indicate the change in yield (i.e. yield driven by the new weather combination minus 

the control run value in the fine resolution domain). 

Table 3.4 | Weather variable (diagonal cells) or a combination of two variables (row × column) of the 

coarse resolution domain that replaced the corresponding variable(s) in the fine resolution domain 

(control). The values in the brackets show the difference in the average weather conditions between 

the variable in the coarse resolution domain and the control conditions during 2006 belg growing sea-

son. The numbers in the cells indicate the difference in yield calculated between a sensitivity experi-

ment the control run in t·ha-1. The compensating effect experiment matrix shows 15 model experiments 

for the Chencha station during belg 2006. 

Variables from coarse 

resolution domain that 

replaced those in the fine 

resolution domain 

Tmin  

(+9.0 °C) 

Tmax  

(+8.5 °C) 

Precip  

(-4.3 mm·d-1) 

SW↓  

(+0.9 MJ·m-2·d-1) 

VPD  

(+0.5 kPa) 

Tmin  

(+9.0 °C) -7.3 -7.9 -5.0 -7.3 -6.0 

Tmax  

(+8.5 °C)   -4.8 6.2 -3.8 -2.2 

Precip  

(-4.3 mm·d-1)     12.1 12.0 11.9 

SW↓  

(+0.9 MJ·m-2·d-1)       0.9 0.9 

VPD  

(+0.5 kPa)         0.7 

 

Our analysis demonstrated that the yield decreased by 7.3 t·ha-1 when Tmin in the 

fine resolution domain was replaced by the 9.0 °C warmer Tmin in the coarse resolu-

tion domain. Similarly, the yield decreased by 4.8 t·ha-1 when Tmax was warmer by 

8.5 °C than the fine resolution domain combined with the fine resolution domain’s 

other weather variables. When Tmin was simultaneously varied with precipitation or 

any other variable, the decrease in yield was also significant (5.0 to 7.9 t·ha-1). In con-

trast, the yield increased by 12.1 t·ha-1 when precipitation that was lower by 4.3 

mm·d-1 than the fine resolution domain was substituted. We hypothesise that this 

yield increase was due to the relationship between precipitation and nutrient leach-

ing included in the GECROS model. 
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In the case where precipitation was combined with SW↓ or VPD, yield increased 

by ~ 12.0 t·ha-1. The sensitivity experiments indicated that precipitation (+12.1 t·ha-1) 

was the variable that had the largest influence on potato yield, followed by Tmin (-7.3 

t·ha-1) and Tmax (-4.8 t·ha-1).  

Regarding how the key meteorological actors offset each other in calculations of 

yield, we found that the increase in yield due to decreased precipitation was mainly 

offset by the simultaneous decline in yield because of increased Tmax and Tmin in the 

coarse resolution domain. Since this compensation occurred in both domains (with 

coarse and fine resolution), the potato yield modelled turned out to be comparable. 

However, in analysing the results for other key variables, we found that LGS and 

LAI in the fine resolution domain were 120 days and 3.02, respectively, whereas the 

values at the coarse resolution domain were LGS and LAI 59 days and 1.35, respec-

tively. At the highest locations, the lower SW↓ and the temperatures (because of the 

increased cloudiness) induced a longer LGS, which explains why the yield was sig-

nificantly greater at these locations. The sensitivity experiment on SW↓ showed that 

the potato yield and LGS decreased as the SW↓ increased (Figure 3.3). As a remark, 

increases in SW↓, Tmax and Tmin decreased the LGS and LAI, which also offset yield. 

Our findings showed that, although we obtained similar results for the potato yield 

independent of the resolution of topography, there were important differences in 

the meteorological variables and in the key crop variables related to the calculation 

of the potato yield. These are discussed in the following section. 

3.5 Discussion 

Based on our findings, Figure 3.8 integrates and summarises the influence of the 

meteorological variables (as function of elevation) on simulated crop yield and re-

lated variables. In general, variations in the meteorological variables with elevation 

led to an increase in potato yield from 12.7 t·ha-1 in the lowlands to 37.6 t·ha-1 in the 

highlands as averaged over 10 belg seasons. However, the impact of elevation on the 

meteorological variables acted differently on the crop integrators (namely LGS and 

LAI) and on their direct impact on crop yield. As a result, and in the specific region 

under study, whose elevation ranged from 1600 to 2700 m a.s.l. the crop yield was 

almost constant with height, with a calculated attainable yield of 20.7 ± 4.1 t·ha-1 

(Figure 3.7).  

The sensitivity analysis discussed in the previous section showed that there was 

a strong compensation effect in what determined calculated yield. Yield increases 

due to one meteorological variable were offset by decreases by another variable. The 

weather variables (SW↓, Tmax and Tmin) and yield were all interrelated by the crop 

integrators as shown in Figure 3.8, based on the results obtained in the fine resolu-

tion domain (Figure 3.3 and Figure 3.7).  
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A representative example is that an increase of temperature by 8.8 °C (as com-

pared to the fine resolution domain) in the coarse resolution domain during the 

growing season led to a reduction in yield of up to 35% (of 22.3 t·ha-1 in the fine 

resolution domain) at the Chencha station during the 2006 belg. This reduction was 

associated with a 51% decrease in the LGS and a 58% decrease in the LAI. The op-

posite behaviour was found for precipitation, which was 4.3 mm·d-1 less than in the 

fine resolution domain and led to an increase in the attainable yield of 54% (relative 

to the fine resolution domain). This increase may be associated with more nutrients 

becoming available to the plant, since there was less leaching due to the reduction 

in precipitation (YL05). Compared to the other meteorological variables, the crop 

integrators were independent of changes in precipitation. This contrasting meteoro-

logical effect resulted in almost constant crop yield along the Gamo Highlands tran-

sect (region-II) in Figure 3.7. Our results indicated that in the region, the yield en-

hancement was the result of a longer growing season and larger LAI driven by the 

lower temperature and possibly by more nutrient leaching due to higher the level of 

precipitation at greater elevation. In the lowlands (region-I) and in the most elevated 

zone (region-III), yield increases were mainly explained in terms of lower tempera-

tures along the mountain transect. 

 

Figure 3.8 | The role of elevation and meteorological crop drivers in the attainable crop yield in region-

II of Figure 3.7. The key integrating matrices such as LGS and LAI relate the SW↓, Tmax and Tmin. Pre-

cipitation may influence the soil model by nutrient leaching. The crop integrators and nutrient leach-

ing connect meteorological crop drivers and crop yield. The positive sign indicates a positive correla-

tion whereas the negative sign shows a negative correlation.  
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Our results indicated that the prescribed topography had a major impact on the 

meteorological crop drivers. Although the results obtained with the finer resolution 

domain showed an improvement of the model results for key crop driver variables 

like Tmax and Tmin, there was no direct improvement for the individual meteorological 

variables. This was particularly relevant to the daily precipitation, for which the re-

sults from the coarse resolution domain matched the available observations better 

than those of the fine resolution domain, although the topography was very smooth 

in the coarse resolution domain. Our findings corroborate other studies that show 

that the WRF model is not very successful in correctly predicting the frequency and 

location of precipitation (Lunde et al., 2013) around Arba Minch. Improving the ac-

curacy of forecasting daily precipitation, more specifically, the onset and duration 

of rainfall during the growing season, is therefore a priority. This will require a com-

plete analysis of the sensitivity of the model results to the representation of physical 

processes in this tropical, mountainous region. To be capable of determining the best 

combination of physical parameterization, the model validation will require more 

measurements of the spatiotemporal variability of the meteorological and crop in 

situ data and may benefit from adding remote-sensing observations. The wide range 

of elevations and the strong diurnal cycles in weather require meteorological obser-

vations to be taken hourly and at shorter spatial interval (~ 3 – 5 km).  

It is also important to analyse the connections between the meteorological crop 

drivers and the LGS and LAI. As Figure 3.8 shows, the decrease with elevation of 

the variables SW↓, Tmax and Tmin led to a longer LGS period, as pointed out by (Peiris 

et al., 1996; Van de Geijn and Dijkstra, 1995) and higher LAI, whereas precipitation 

has no effect on these two crop variables (Figure 3.3). An accurate calculation of LGS 

related to the onset of precipitation is crucial to obtaining realistic values for potato 

yield and related variables (FAO, 2008b; Harper, 1963).  

The counteracting effects of temperature and precipitation in yield calculation 

demonstrate the need to prescribe soil moisture and elevation in fine resolution do-

mains. Our findings show that doing so enables us to provide the best estimates of 

meteorological and crop variables. For the two crop integrators shown in Figure 3.8, 

the LGS and LAI values calculated in the fine resolution domain are 120 days and 

3.02 m2/m2. These are more realistic values than those calculated using the coarser 

resolution domain: 59 days for LGS and 1.35 m2/m2 for LAI. This improved con-

sistency in the calculation using the finer resolution domain is also found for carbon 

allocation at harvest (attainable yield average over 10 belg periods): tuber yield (22.3 

t·ha-1 in the fine resolution domain versus 22.3 t·ha-1), stem mass (20.0 versus 4.5 t·ha-

1), leaf mass (4.4 versus 2.0 t·ha-1) and root mass (2.7 versus 4.1 t·ha-1). 
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Considering the sensitivity of meteorological and crop dynamics to elevation and 

the domain resolution, it is also necessary to perform projections of crop growth and 

yield for different scenarios of future climate. Haverkort and Struik (2015) suggested 

that potato production will be shifted to northern latitudes all over the world. On 

the one hand, in tropical highlands like the one under study here, global warming 

will reduce yield and could force potato production areas to move to more elevated 

locations where less arable land is available. On the other hand, a rise in precipita-

tion in the future may reduce yields and shift the potato-growing zone to lower ele-

vations, but this will require a detailed analysis of the relationship between nutrient 

leaching and precipitation. This makes crop growth difficult to predict in a changing 

climate. Furthermore, scenarios that include greater amounts of precipitation, Tmax 

and Tmin, in the future could increase cloudiness, atmospheric and soil moisture, 

which could result in a greater loss of potato production due to increases in insects 

and other pests (Tufa, 2013).  

3.6 Conclusions 

We investigated the effect of representation of elevation on the meteorological 

variables that drive the dynamics of potato growth. The region area studied is the 

Gamo Highlands in Ethiopia, which is situated in a tropical region characterised by 

a complex topography and consequently high spatial variability in meteorology. To 

this end, we applied a modelling framework that integrates meteorology and crop 

dynamics. We used high-resolution weather data to feed an advanced crop model 

and modelled potato growth over 10 years (2001-2010) and employed observations 

from two weather stations in the Gamo Highlands (located at 1212 and 2632 m a.s.l.) 

to validate the weather variables modelled. 

Our numerical experiment used two domains with different horizontal resolu-

tion, both centred around Arba Minch using the Weather Research and Forecasting 

model (Skamarock et al., 2005). The first has a coarse resolution domain, i.e. 54 km × 

54 km; the second has a much finer spatial resolution, i.e. 2 km × 2 km. In the fine 

resolution domain, an altitudinal difference of nearly 2500 m is much better is much 

better resolved. In order to be consistent with the fine spatial resolution meteorolog-

ical model domain, we also used high-resolution (1 km × 1 km) soil properties from 

the ISRIC database (Leenaars et al., 2014). A key aspect of our methodology is thus 

consistency in using high-resolution and hourly weather data as the main inputs to 

the state-of-the-art, eco-physiological crop model GECROS (Genotype-by-Environ-

ment interaction on CROp growth Simulator) over the complex terrain (Yin and van 

Laar, 2005). We performed a systematic sensitivity analysis on how weather varia-

bles influence crop dynamics. The 10-year study can be regarded as covering a sub-

climatological period that enabled us to obtain robust and representative statistics. 
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Our first question was: how do weather and climate vary as a function of local topog-

raphy and how does it affect potato crop growth variables and yield? The major atmos-

pheric crop drivers, the incoming short-wave radiation, precipitation, maximum 

and minimum temperatures displayed a wide range of spatial variability. The SW↓ 

exhibited a non-linear reduction with height due to enhanced cloudiness. Precipita-

tion increased exponentially across elevation, whereas temperature dropped line-

arly with ~ 6 °C per kilometer. Combined together, these atmospheric crop drivers 

influenced potato crop growth and led to an increase in LGS, LAI and the attainable 

potato yield as elevation increased. In analysing the 10-year modelled belg season 

weather data, we found large inter-annual variations in both observations and the 

modelled data. When we compared the results obtained by the coarse and the fine 

resolution domains, we also found large differences associated with cloud formation 

and its intensity. For SW↓ and precipitation in particular, the fine resolution domain 

was on average 22.7 W·m-2 larger and 2.7 mm·d-1 wetter than the coarse resolution 

domain over the 10-year period.  

In spite of the differences due to different elevation and domain resolutions, the 

simulated attainable potato yield during the 10-year was comparable for the coarse 

and fine resolution domains (21.7 ± 3.2 and 22.1 ± 5.7 t·ha-1 respectively) at the loca-

tion of the Chencha station. However, the results were different when we analysed 

other representative crop variables. Our findings revealed that the fine resolution 

domain had more realistic values of LGS (90 – 150 days) as suggested by FAO (FAO, 

2008b) and LAI (3.0 – 5.4) as indicated in (Harper, 1963) as compared to the much 

lower values obtained using the coarse resolution domain. 

Our second question was: does elevation enhance or lower the magnitude of key crop 

variables such as the length of the growing season (LGS), canopy development, carbon allo-

cation to different parts of the plant, leaf area index and yield and their interactions? The 

accurate representation of elevation in the finer resolution domain enabled us to 

identify the following relationship between elevation and attainable yield: a linear 

increase (region-I) between 1100 to 1500 m a.s.l., a steady-state (region-II) between 

1600 to 2650 m a.s.l. and again a linear increase (region-III) between 2950 to 3200 m 

a.s.l. in yield. From the perspective of potato growth, region-I is not suitable for po-

tato, as it is too warm and dry; region-II is the major potato production belt in the 

Gamo Highlands and region-III is used for potato cropping although it requires a 

much longer LGS than region-II. 

We have discussed two of the above findings in depth: (a) the similarity in potato 

yield calculated using both the coarse and fine resolution domains (question 1) and 

(b) the existence of a region (region-II) with almost constant yield in spite of the wide 

elevation range (question 2) 
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In both cases, our analysis revealed that there was a compensating effect in the me-

teorological variables in the yield calculations that depended on the sensitivity of 

yield to meteorological variables. More specifically, the reduction in SW↓ and tem-

perature with elevation had a positive effect on yield (Resop et al., 2014), unlike an 

increase in precipitation, which may have had an indirect negative effect on yield 

because increased precipitation led to an increased nutrient leaching (Yin and van 

Laar, 2005). Superimposed on these offsetting effects, but playing a key role, the de-

pendence of LGS and LAI on meteorological variables that vary strongly with ele-

vation needs to be taken into account. In view of the interrelationships between the 

meteorological and potato crop growth variables in regions of complex terrain, we 

recommend the use of meteorological model data with high spatial (~2 km) and tem-

poral (sub-daily) resolutions, which represent differences in elevation well, in order 

to adequately simulate not only crop yield but also intermediate crop dynamical 

processes.  
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The Gamo Highlands in Ethiopia are characterised by complex topog-

raphy and lakes. These modulate the mesoscale and synoptic scale 

weather systems. In this study, we analysed the temporal and spatial 

variations in weather as function of topography and season and their 

impact on potato crop growth. To determine how crop growth varies 

with elevation, we installed a network of six automatic weather stations 

along two transects. It covers a 30-km radius and 1800-m elevation dif-

ference. We conducted a potato field experiment near the weather sta-

tions. We used the weather observations as input for a crop model, 

GECROS. Data analysis showed large differences between weather in 

February and May. February is more dominated by mesoscale circula-

tions. The averaged February diurnal patter shows a strong east to 

southeast lake breezes and, at night, weak localised flows driven by 

mountain density flows. In contrast, in May, the synoptic flow domi-

nates, interacting with the mesoscale flows. The GECROS model satis-

factorily predicted the elevational gradient in crop yield. Model sensi-

tivity experiments showed that belg-averaged precipitation distribution 

gave the highest yield, followed by exchanging May weather observa-

tions with April. 
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4.1 Introduction 

Potato (Solanum tuberosum L.) is becoming an important crop in Ethiopia (Minda 

et al., 2018b; Tadesse et al., 2018). The optimal climatological conditions for potato 

crop growth are 15 to 25 °C mean daily temperature (FAO, 2008b; Khan, 2012; Streck 

et al., 2007; Tsegaw, 2005). Higher temperatures inhibit tuberisation, promote foliage 

growth, and reduce allocation of carbon and nitrogen to the tubers (Tsegaw, 2005). 

Potato requires more than 600 mm of annual total precipitation (MOANR, 2016; 

Tsegaw, 2005). The crop consumes 500 to 700 mm of water, while inadequate avail-

ability of soil water during the growing season results in reduced yield (FAO, 2008b). 

These climatic conditions generally occur in the Gamo Highlands at elevations >1600 

m above sea level (a.s.l.) (Gebreselassie et al., 2016). The crop mainly grows during 

the belg (February to May) cropping season, because this is the season when precip-

itation provides the moisture for the seed tubers to sprout (Minda et al., 2018b; Tufa, 

2013). The season shows lower risk of crop diseases such as late blight than in other 

seasons (Tufa, 2013). Note that the Ethiopian climate, according to the National Me-

teorology Agency (NMA), is classified in three regimes namely belg (Feb to May), 

kirmet (Jun to Sep) and bega (Oct to Jan) (Degefu, 1987; Minda et al., 2018b). The ma-

jority of this staple food in Ethiopia is produced by rain-fed agriculture. Only 4–5% 

of the agricultural land is irrigated in the country (Awulachew et al., 2010). Conse-

quently, potato growth strongly depends on weather and its interaction with eleva-

tion. 

Here, we study the interplay among weather, potato crop growth and elevation 

in the Gamo Highlands in southern Ethiopia in the belg growing season. This region 

is characterised by a diverse landscape and complex topography with altitudes rang-

ing from 1100 to 3600 m a.s.l. It is part of the Great East African Rift Valley system, 

which is over 5500 km long, extending from the Red Sea junction, through Ethiopia, 

Kenya and Mozambique to Lake Victoria (Cattani et al., 2016). The Gamo Highlands 

contain two large lakes, namely Lake Abaya (covering 1162 km2) and Lake Chamo 

with 317 km2, farmlands, settlements, wooded land, grasslands and forests (Daye 

and Healey, 2015). The steep elevation variation with the water bodies play a role in 

modulating weather on diurnal to seasonal time scales, as well as the climate of the 

region. Obviously, these factors influence crop growth across the elevations (Minda 

et al., 2018b). 

Weather in East African regions, just north of the Equator, shows a bimodal pre-

cipitation regime following the north–south displacement of the Intertropical Con-

vergence Zone (ITCZ) (Diro et al., 2008). The ITCZ oscillates between 10° south (S) 

and 20° north (N) in the African continent and strongly influences the annual pre-

cipitation cycle of the region (Diro et al., 2008; Nicholson, 2009; Nicholson, 2011). 

However, weather in the Gamo Highlands is not only controlled by the position of 

the ITCZ, but also by atmospheric flows driven by complex topography and land 
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heterogeneity (Pierre et al., 2018). These atmospheric phenomena interact differently 

during the early and later stages of the belg season, inducing a pronounced precipi-

tation seasonality with elevation. 

Generally, in tropical mountainous regions like the Gamo Highlands, orographic 

and thermally driven circulations play important roles in determining the local 

weather/climate dynamics of the region (Camberlin, 2009; Fraedrich, 1972; Haile et 

al., 2009; Pierre et al., 2018). These dynamics depend on the orographic spatial orien-

tation defined by the terrain altitude, slope and aspect angle. The terrain orientation 

affects wind patterns, potentially affecting convergence, convection and precipita-

tion (Haile et al., 2009). The contrast between the large water bodies and land may 

also play an important role (Haile et al., 2009). Lake breezes can be superimposed on 

orographic flows and on the development of boundary layers (Camberlin, 2009; 

Haile et al., 2013; Haile et al., 2009). Haile et al. (2009) and Rientjes et al. (2013) showed 

that Lake Tana in Ethiopia modulates the mesoscale circulations trend of its sur-

roundings. For example, the diurnal precipitation of a location in the Lake Tana ba-

sin is correlated with the distance to the lake (Haile et al., 2009). This finding, in line 

of our main goal, shows the role of the lake in influencing the local weather and 

climate. In addition, Pierre et al. (2018) and Rientjes et al. (2013) showed that Lake 

Tana also influences the diurnal distribution of the local weather around the basin. 

During daytime, lake breezes diverge from the lakes to the warmer surroundings 

and, during nighttime, land breeze flows converge to the warmer lake. 

At the beginning of the belg season, in February, the ITCZ is positioned around 

15° S and marches to the north. During this period, north-easterly, dry winds from 

the Arabian Peninsula reach the Gamo Highlands in southern Ethiopia (Barry and 

Chorley, 2009; Nicholson, 2018). In the subsequent wetter months of April and May, 

the ITCZ moves overhead toward northern Ethiopia. Consequently, south to south-

easterly synoptic winds with high moisture content from the Indian Ocean reach the 

southern part of Ethiopia (Nicholson, 2018).  

Simultaneous to this synoptic variability, during daytime, heating of the slopes 

induces valley winds, which draw air upward to converge at the mountain top 

(Houze, 2012). The lake breezes can reinforce these flows. During the nighttime, 

however, cooling over the higher terrain induces downslope flows. These nocturnal 

mountain winds normally have a smaller vertical dimension than the daytime valley 

winds and are more influenced by local topography. The heating/cooling over the 

high elevation may trigger dynamic flows such as gravity waves and drag (Houze, 

2012). These topography-triggered circulations may facilitate/suppress convective 

precipitation while converging/diverging with large-scale flows, and thus, influence 

precipitation formation. 

Due to the relevance of large and small spatiotemporal scales, predictions of key 

weather variables become challenging. For example, global climate models predict 
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an increasing trend in precipitation (up to 18% in East Africa at the end of the cen-

tury) (Kerandi et al., 2018; Stocker et al., 2013; Van Oldenborgh et al., 2013). However, 

observations (gauged observations with merged satellite data) show a decreasing 

trend (Rowell et al., 2015). These opposing trends of precipitation in models and ob-

servations were coined the “East African Climate Paradox” (Rowell et al., 2015). 

The current crop models used for monitoring crop growth and yield predictions 

use a coarse-resolution model input for weather variables: models (Schlenker and 

Roberts, 2009), re-analysis (Rosenzweig et al., 2014), or interpolated station observa-

tions (Liu et al., 2007; Portmann et al., 2010). The typical model resolution is tens of 

kilometers (Liu et al., 2007; Portmann et al., 2010; Rosenzweig et al., 2014). If the mod-

els employ observations, they are normally few or unevenly distributed (Portmann 

et al., 2010). In complex topographic regions such as the Gamo Highlands, coarse-

resolution weather products smooth out topography, which lead to an increase the 

uncertainty of the weather variables. In this circumstance, the average topography 

is often below the potato-growing zone, which results in crop yield underestimation 

(Minda et al., 2018b). This is because the weather could be warmer, less cloudy and 

drier than the anticipated. Our aim in designing and implementing the Gamo Ethi-

opian Meteorological Stations (GEMS) network is to provide reliable meteorological 

information to be used in monitoring meteorological conditions in complex topo-

graphic regions. These observations can be further employed for the evaluation of 

fine-resolution weather and crop models.  

Minda et al. (2018b) applied crop a high-resolution (2 km × 2 km) weather model 

to represent the spatial meteorological variables during the years 2001 to 2010 in the 

Gamo Highlands. The analysis showed that precipitation increases and temperature 

decreases upward into the mountains as expected, creating an elevation zone be-

tween 1700 and 3000 m where potato grows optimally. The analysis also showed 

that the model was dry-biased in the valley and wet-biased in elevated areas. This 

underlines that high-resolution modelling is necessary, but not sufficient in topo-

graphically complex regions. Ground-truthing, quantified by continuous and high-

quality measurements, remains essential for understanding and verification (Dee et 

al., 2016; Lorenz, 1963). 

In sub-Saharan countries, weather station networks are typically sparse, une-

venly distributed (they are mostly installed along main roads, in cities and towns 

away from agricultural land) and often with data gaps (Araya, 2011; Dinku et al., 

2014; Diro et al., 2009). In Ethiopia, a country covering an area of 1.104 million km2, 

there are only 22 synoptic stations (NMA, 2018). Moreover, there are few networks 

focusing at sub-daily temporal resolution (Haile et al., 2009; Pierre et al., 2018). Haile 

et al. (2009) used a network of ten rain gauge stations collecting data on an hourly 

basis in the Lake Tana basin. Still, a reliable, sub-hourly meteorological information 

across elevation gradients is crucial to explain crop growth (Minda et al., 2018b). 
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Given the geographical location of the Gamo Highlands and the complex topogra-

phy, the major meteorological crop drivers exhibit large spatial and temporal varia-

bilities, in which the impact on crop growth is significant. 

Therefore, to complement our model strategy and filling the gap of current ob-

servations, we deployed a relatively dense weather stations network, for Eastern Af-

rican standards, to measure the spatial and temporal variations of weather and crop 

growth: the GEMS network. The network was established as a continuous opera-

tional weather monitoring station in the Gamo Highlands. It was designed along 

two mountain transects, to better monitor the local circulations and installed at rep-

resentative altitudes to study the role of meteorology on potato crop growth in the 

region. The GEMS network measures weather plus soil moisture/temperature and 

leaf wetness at 15-min intervals of data recorded continuously since April 2016. To 

our knowledge, this is the first high-spatial-resolution network of weather stations 

with sub-hourly measurements of all major weather variables including soil/leaf 

wetness observations in Ethiopia. Recently, we extended the meteorological meas-

urements in the GEMS network with crop measurements at potato experimental 

farm trials, e.g. plant height, canopy cover, yield and the length of the growing sea-

son (LGS) (Minda et al., 2018b). The GEMS network allows us, for the first time in 

Ethiopia, to study the synergy between synoptic and mesoscale weather dynamics 

and crop growth in the Gamo Highlands. 

The objective of this study was, therefore, to study the temporal and spatial var-

iations in weather as a function of topography and their impact on potato crop 

growth during the belg season of 2017. The specific research questions were as fol-

lows: 

1) How does the topography and presence of lakes induce mesoscale circulations in the 

Gamo Highlands during the belg season? 

2) How do the mesoscale circulations interact with the synoptic circulation driven by the 

ITCZ? 

3) How do the weather variations resulting from this interaction affect crop growth? 

As such, we used the datasets from our new GEMS network in the Gamo High-

lands. Our analysis was based on almost entirely on observations. Only to determine 

the impact of meteorology, we employed a potato growth model (Minda et al., 2018b; 

Yin and van Laar, 2005) using the newly GEMS observed weather information as 

input. In doing so, we improved our understanding about crop dynamics as affected 

by elevation and meteorology. 

The paper is structured as follows: Section 4.2 presents the GEMS network, field 

experiments in potato crop and the plan to use the network for weather and crop 

dynamics study. Section 4.3 shows results from the GEMS datasets in explaining the 

mesoscale and synoptic dynamics with crop growth modelling. The discussion and 

conclusions are provided in Sections 4.4 and 4.5. 
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4.2 Methods 

4.2.1 Description of the GEMS network datasets 

In April 2016, we installed a network of six automatic weather stations along two 

transects in the Gamo Highlands, Ethiopia. These highlands include complex terrain 

with elevation ranging from 1100 to 3600 m a.s.l., covered by a mixture of forests, 

bare and agricultural lands and two large lakes (~10 km × 100 km). The Arba Minch 

station, close to the Lake Abaya and Arba Minch University main campus, was used 

as a reference station with which we compared the results of all the highland sta-

tions. Except for Arba Minch and Zigiti, all the stations are located on the terrain of 

experimental potato farms. All the station sites are not irrigated and covered by short 

grasses. Details about the locations of the stations in the GEMS network are shown 

in Table 4.1 and Figure 4.1. 

Table 4.1 | Gamo Ethiopian Meteorological Stations (GEMS) and potato crop field experiment site 

descriptions. Key: Lon—longitude; Lat—latitude; Elv—elevation; LULC—land use land cover; N, E, S, 

W—north, east, south, west. 

Station 

Tran

sect 

 

Location 

Location  

Description 

Soil a (LULC b) 

Description 

Potato 

Planting 

Dates 

Lon 

(°E) 

Lat 

(°N) 

Elv 

(m) 

Arba 

Minch 
Ref. 37.568 6.067 1200 A plain farm Vertisols (crop)  

Tegecha SN 37.573 6.161 2091 

Near forest (S), 

valley (W) & 

mountain (N) 

Nitisols (crop, 

forest) 

5 April 

2017 

Chencha SN 37.571 6.254 2753 Rural town 
Andosols (crop, 

rural settlement) 

25 

March 

2017 

Gircha SN 37.564 6.302 3015 
Open grazing 

land 

Andosols (crop, 

grazing land) 

7 March 

2017 

Zigiti EW 37.459 6.073 2414 
Near mountain 

(N) 

Nitisols (crop, 

rural settlement) 
 

Gazesso EW 37.337 6.130 2847 
Rural town, near 

mountain 

Andosols (crop, 

rural settlement) 

2 March 

2017 
aData were obtained from the International Soil Reference and Information Centre (ISRIC) soil grids 

(https://www.soilgrids.org/#!/?layer=TAXNWRB_250m&vector=1); b The Ethiopian Sentinel-2 land-use land-cover 

(LULC) 2016 data were obtained from the Regional Centre for Mapping of Resources for Development (RCMRD) 

GeoPortal (http://geoportal.rcmrd.org/layers/servir%3Aethiopia_sentinel2_lulc2016). 
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Figure 4.1 shows the location of the stations and potato crop field trial farms re-

lated to the topography in the digital elevation model (DEM) (accessed from Refer-

ence Ramapriyan and Murphy (2017)). The DEM has a horizontal resolution of 30 

m. It is relevant to mention that, in designing the GEMS network, we defined a 

south–north (SN) transect, composed of the stations Arba Minch, Tegecha, Chencha 

and Gircha; an east–west (EW) transect, composed of the stations Arba Minch, Zigiti 

and Gazesso. The SN transect starts in the non-potato growing zone near Arba 

Minch and Lake Abaya; moves into the higher-elevation potato growing areas 

around Tegecha, Chencha and Gircha. This transect is a south-facing slope. Potato 

is the major crop along this transect during the belg season, while farmers also grow 

enset (Ensete ventricosum, known as Ethiopian banana), wheat, barley, vegetables 

and apple (Mazengia et al., 2015). Gircha is nearly at the top of the mountains and 

represents locations which are somewhat higher than the main potato-growing ele-

vation range. The EW transect also starts in Arba Minch. The east-facing slope to 

Zigiti is very steep. Zigiti is in a diverse, small-scale agricultural landscape where 

local farmers mainly grow wheat and barley, followed by enset and potato during 

the belg cropping season. Moving from Zigiti, the transect enters into the next valley, 

where the Gazesso station is located on an east-facing slope. Its exposure to the lake 

breezes will probably be different. In the EW transect, potato is grown starting from 

the Zigiti station. The GEMS network set-up in two transects allows us to study how 

the locations are influenced by the mesoscale (e.g. lake breezes and mountain flows) 

and large-scale weather systems such as the ITCZ and their roles in potato crop dy-

namics in the highlands. 
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Figure 4.1 |Six GEMS stations network (black dots) and potato experimental farms (red dots). The 

large digital elevation model covers an area of 80 × 80 km2 and the insets cover 5 × 5 km2 area. The 

dashed black lines show the south–north (SN) and east–west (EW) transects of the network. The 

dashed white line represents the approximate southeast (SE) boundary of the Gamo Highlands.  

The GEMS network measures (1) meteorological variables, (2) soil moisture ten-

sion and soil temperature at four depths (5, 10, 20 and 40 cm) and (3) leaf wetness 

(an artificial-leaf electrical-resistance type that indicates whether the surface of a fo-

liage in the area is wet or dry by indicating how wet the surface of the sensor is) 

facing east and west directions (Table 4.2) (Instruments, 2006b). These environmen-

tal variables were measured at the data update interval shown in Table 4.2 for each 

sensor in which 15-min statistics were recorded. Five of the six GEMS are Davis Van-

tage Pro2 + (DVP2) automatic weather stations and the other (in Chencha) is a Camp-

bell instrument model (Campbell Scientific (CS) CR200X series data-logger, CS Af-

rica, South Africa). Both weather stations are widely used globally (Bell et al., 2015; 

Lagouvardos et al., 2017; Steeneveld et al., 2014). These stations showed the best 

agreement compared with a professional meteorological monitoring system for air 

temperature, relative humidity, dew point and precipitation measurements in a sys-

tematic comparison (Bell et al., 2015). Station maintenance, cleaning of sensors, tem-

perature/relative humidity sensor radiation shields and precipitation buckets were 

done on a weekly basis for the Arba Minch station and a two-weekly basis for the 

other ones, which are off-road and remote stations. Although we installed GEMS 

network starting April 2016, in this study, we selected the belg of 2017, because of its 

relevance to potato growth (Minda et al., 2018b). 
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4.2.2 ITCZ progression 

To determine the synoptic circulations, we used the GEMS network sea-level 

pressure (SLP) data and related it to the ITCZ data obtained from the NOAA Climate 

Prediction Center (NOAA-CPC) and the African Center for Meteorological Applica-

tion for Development (ACMAD) (ACMAD, 2017; NOAA, 2017). The NOAA-CPC 

calculates the ITCZ latitudinal variation from the daily analysis of two key weather 

properties: (i) the location where the surface dew point temperature is closest to the 

15-degree isodrosotherm; (ii) the region where the lower-level (925 hPa) wind 

streamlines delineate the axes of zonal convergence. These 10-daily averaged data 

are available for 15° west (W) to 35° east (E) from April to October. We considered 

the ITCZ latitudinal variation at 35° E. Note that the Gamo Highlands are located at 

~37° E. 

4.2.3 Analysis of the GEMS datasets 

Southern Ethiopia shows a bimodal precipitation regime, in which the main pre-

cipitation is during the belg season with rainfall maxima in April (Diro et al., 2008). 

The year 2017 is characterised by a weak La Niña condition in the central and eastern 

Pacific Ocean (Blunden et al., 2018). As a result, southern Ethiopia showed a 1–2 °C 

warmer and drier (30%–50% less precipitation) season as compared to the 1981–2010 

ERA-Interim data (Tsidu, 2018) during three months (March to May) of the belg 2017. 

The GEMS network is planned as a long-term (more than five years) meteorolog-

ical monitoring stations’ network. These data will be combined with crop growth 

monitoring field experiments to understand how certain varieties adjust to this me-

teorology depending on elevation. We selected the belg season during 2017 because 

of its meteorological (moisture availability) and agronomical suitability to grow po-

tato (Tufa, 2013). From the belg season, we further selected the months of February 

and May because of their contrasting circulation regimes. February (dry) is predom-

inantly driven by mesoscale regimes whereas large-scale circulation features mainly 

influence May (wet). For February, we focused on the temporal and spatial variabil-

ities of mesoscale dynamics (e.g. wind and the conserved variables such as potential 

temperature (θ; K) and specific humidity (q; g∙kg−1)). For May, we analysed precipi-

tation, which is predominantly driven by large-scale circulation features such as the 

ITCZ and further pronounced by elevation. We analysed the May precipitation data 

along the SN transect (for Arba Minch, Tegecha and Chencha), because the data 

were more complete than the EW transect.  

Our criteria for distinguishing between day and night were as follows: we con-

sidered incoming shortwave radiation (SW↓) >20 W·m−2 as day conditions and SW↓ 

= 0 W·m−2 as night conditions. To calculate θ and q, we needed pressure at stations’ 

locations. Note that the DVP2 stations calculate the necessary correction factor to 
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consistently translate atmospheric pressure to SLP to standardise pressure measure-

ments at different altitudes (Instruments, 2006a). The stations’ atmospheric pressure 

is calculated (with the sea-level temperature being estimated from the projected tem-

perature of the GEMS network measurements) for a column of air between sea level 

and a station’s elevation using the hypsometric equation (Stull, 2000). We also cal-

culated tendencies (time-derivatives of θ and q; ∂θ/∂t and ∂q/∂t) to investigate lake-

breeze and mountain-breeze flow development during the prominent mesoscale-

driven month. DVP2 stations measure soil moisture tension of the soil on a scale of 

0 kPa (wettest soil) to 200 kPa (driest soil). The Watermark soil moisture sensor 

measures an electrical resistance that is related to soil water tension (Table 4.2) 

(Davis-Instruments, 2018).  

4.2.4 Potato crop field experiment trials 

Potato field experiments at the plot scale were conducted in the vicinities of the 

weather stations (Tegecha, Chencha, Gircha and Gazesso) during the belg farming 

season in 2017, as shown in Figure 4.1. We planted improved (Gudenie and Belete) 

(MOANR, 2016; Woldegiorgis, 2013) and local (Suthalo) varieties. In this study, we 

considered cultivar Belete as the data on this cultivar were complete for different 

elevations. We applied the randomised complete block (RCB) design (Gomez et al., 

1984) with three replications. This design is recommended for experimental areas 

with a predictable fertility gradient and is one of the most widely applied field ex-

perimental designs in agricultural research (Gomez et al., 1984). The planting pattern 

was 0.75 m × 0.30 m, the plot size was 3 m × 3 m, the plant density was 4.4 plants·m−2, 

the fertilizer doses were 236 kg·ha−1 of nitrogen/phosphorus/sulfur (NPS: 19N, 

38P2O5, 0K2O and 7S), 125 kg·ha−1 of muriate of potash (MOP: KCl (95–99.5%)) and 

144 kg·ha−1 of urea (CO(NH2)2). Fertilizers were added upon planting, but urea was 

split into two additions (half upon planting, half during flowering stages). Data on 

the crop growth variables (e.g. the plant height) were measured on a daily basis (at 

Gircha and Gazesso farms) and yield parameters were collected. Data were taken 

from the middle two rows to minimise border effect. From the two rows, five plants 

were randomly selected and continuously monitored for plant height; the averages 

of the three plots were reported. In addition, the farm management practices such 

as tillage were documented. The Arba Minch station (1200 m) does not have a suit-

able climate for growing potato crop, because the temperature is too high there 

(Khan, 2012). 

4.2.5 Simulating crop growth variation along mountain slope using the 

GECROS model 

The GEMS network data were analyzed and used as input on a daily basis to the 

“Genotype-by-Environment interaction on CROp growth Simulator” (GECROS) 
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crop model (Yin and van Laar, 2005). The model is the state-of-the-art crop model, 

which is widely applied for modelling of crop dynamics of the world’s major crops. 

More specifically, it was used for potato crop growth modelling (Khan et al., 2014) 

and also applied in the Gamo Highlands (Minda et al., 2018b). GECROS is “an eco-

physiological model that predicts crop growth and development as affected by ge-

netic characteristics, climatic and edaphic environmental variables” (Khan et al., 

2014). The model can be used for examining responses of biomass and protein pro-

duction in arable crops to both genotypic and environmental characteristics (Yin and 

van Laar, 2005).  

The crop model uses environmental variables and biophysical inputs such as 

seed weight. The weather variable inputs are SW↓ (MJ·m−2∙d−1), Tmin (°C), Tmax (°C), 

vapor pressure deficit (VPD; kPa), u (m·s−1) and PPT (mm∙d−1) input at a given lati-

tude on day (d) basis. Model inputs such as crop management options, crop/geno-

type-specific parameters, soil type/moisture and model constants were taken from 

Minda et al. (2018b). 

The crop growth model was coupled with a process-based soil model. The soil 

data (percent clay in the soil, the total organic carbon in the soil, soil water content 

at maximum holding capacity, soil water content at field capacity and minimum soil 

water content) were taken from the ISRIC database (Leenaars et al., 2014) following 

statistical analysis explained in Minda et al. (2018b). For further model details, the 

reader is referred to Yin and van Laar (2005). Here, we used the tailored model pa-

rameters as listed in Minda et al. (2018b)†. Our main objectives of applying the 

GECROS model: using the GEMS network data, were to study the sensitivity of crop 

growth variables and yield to (1) elevation and (2) modifications in the stations’ 

weather observations.  

4.2.6 Model’s sensitivity to changes in the observed GEMS network datasets 

GECROS enabled us to perform sensitivity analyses of potato growth to weather 

variations. Therefore, we conducted the model sensitivity experiments by exchang-

ing the weather in the peak rain belg month (May) with March (early belg rain onset 

assumption), with April (climatologically normal belg assumption) and with June 

(late belg assumption), while maintaining the data of the other periods as observed. 

To determine the role of the meteorological variability, we also conducted experi-

ments with average weather input data, i.e. where GECROS was run each day with 

the same diurnal cycle based on the average SW↓, Tmin, Tmax, PPT and VPD over the 

belg season. Table 4.3 presents the detailed design of the sensitivity experiments. 

The control run consisted of the one presented and it was compared with crop 

observations. In this run, all the observed meteorological variables were the input 

for the model. Sensitivity experiments 1–5 (SW↓avg, Tmin, avg, Tmax, avg, PPTavg and 

VPDavg) were with the same meteorological inputs, except that one variable was av-

eraged over the belg season. Experiments 6–8 (Early belg, Normal belg and Late belg) 
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were again with the original meteorological data, but now the May data were ex-

changed either with March, April, or June data to simulate an early (max PPT in 

March), normal (max PPT in April) and late (max PPT in June) belg precipitation 

onsets, respectively. Other model input parameters and variables are identical to the 

experiment set-up in Minda et al. (2018b). All the experiments were done for each 

station mentioned. 

Table 4.3 | GECROS model sensitivity experiment design. PPT—precipitation; VPD—vapor pressure 

deficit. 

 

4.3 Results 

4.3.1 Monthly variability: The role of large-scale weather dynamics in the 

Gamo Highlands  

Figure 4.2 shows the SLP observations at Arba Minch (1200 m a.s.l.). Here, we 

considered low SLP as a proxy for the proximity of the ITCZ. The Ethiopian precip-

itation climatology is mainly determined by the seasonal variation in the latitudinal 

position of the ITCZ relative to area of interest (Korecha and Barnston, 2007). The 

ITCZ is one of the main large scale processes that influences the belg precipitation in 

Ethiopia (Berhane and Zaitchik, 2014). Figure 4.2 also shows the SLP (hPa) and the 

temporal latitudinal movement of the ITCZ climatological (2003–2013) and during 

belg 2017 data. In the figure, the 15-min resolution SLP observations were averaged 

and reported as daily values. For additional explanation of Figure 4.2, the reader is 

referred to the map of Ethiopia in Minda et al. (2018b) and seasonal latitudinal vari-

ation of the ITCZ over the African continent shown in Nicholson (2018). 

 

 

 

 

No. Experiment 

Experiment 

Name Description of Input of Meteorological Variables 

0 Control Control 6 variables as observed 

1 SW↓ SW↓, avg 5 variables as observed + belg-averaged SW↓ 

2 Tmin Tmin, avg 5 variables as observed + belg-averaged Tmin 

3 Tmax Tmax, avg 5 variables as observed + belg-averaged Tmax  

4 PPT PPTavg 5 variables as observed + belg-averaged precipitation 

5 VPD VPDavg 5 variables as observed + belg-averaged VPD 

6 early-belg Early belg 
exchanging May and March observation + other periods as 

observed 

7 normal-belg Normal belg 
exchanging May and April observation + other periods as 

observed 

8 belg-in-kirmet Late belg 
exchanging May and June observation + other periods as 

observed 
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Figure 4.2 | The daily mean observed SLP at Arba Minch station during the belg season of 2017. The 

SLP (black line with scale on the left y-axis); latitudinal variation of the ITCZ climatology (15-year 

data following Section 4.2.2) and in 2017 (blue lines with blue right-side y-axis). There are no ITCZ 

location data before March. The cyan-colored horizontal bar shows the latitude range of the Gamo 

Highlands. 

Figure 4.3 shows the daily variations in mean temperature and the monthly var-

iations in precipitation during belg 2017 for the Arba Minch and Gircha stations, as 

the weather variables are the major atmospheric crop growth derivers. The 15-min 

interval observations were calculated and averaged to daily mean temperature and 

monthly total precipitation. The 30-year climatological (1987–2016) average temper-

ature and precipitation daily observations during belg season for the Arba Minch 

station are also depicted for comparison. 
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Figure 4.3 | Observed temperature (left axis) and total monthly precipitation (right axis) during belg 

2017 and following the 1987–2016 climatology. The green-colored bars show the climatological belg 

data from Arba Minch station (data obtained from the NMA, Ethiopia), the red- and black-colored bars 

show the 2017 belg season as observed by the GEMS network. The GEMS data were averaged/summed 

to daily/monthly values. 

Based on Figure 4.2 and Figure 4.3, in February, the ITCZ is located far south of 

the Gamo Highlands (i.e. ~10–15° S) and the Gamo Highlands were at higher pres-

sure relative to the ITCZ. The SLP decreases slowly by ~3 hPa at the end of the month 

as the ITCZ approaches the Gamo Highlands (Figure 4.2). In this month, the high-

lands are less influenced by the ITCZ. As a result, the northeasterly winds transport 

dry air from the Arabian Peninsula. In March, the ITCZ passes the Gamo Highlands 

(5.75–6.75° N) and the observed SLP was at its minimum (1002 hPa). Still, there is 

hardly precipitation in this period (Figure 4.3). In turn, from March until the end of 

May, the ITCZ moved toward northern Ethiopia. In this period, the highlands expe-

rienced a higher-pressure system again (SLP increased by ~10 hPa from the mini-

mum in March). Most precipitation fell in the Gamo Highlands after the passage of 

the backward tilted slope of the ITCZ front, i.e. when the front was located between 

10 and 14° N. The position of the ITCZ northward of the Gamo Highlands favours 

southeasterly winds and moisture transport from the Indian Ocean (Berhane and 

Zaitchik, 2014; Diro et al., 2011a). The Gamo Highlands received >80% of the belg 

precipitation in April and May (Figure 4.3).  

The 2017 belg season occurred during La Niña year (Blunden et al., 2018), which 

is characterised by lower than normal and delayed precipitation in the Gamo High-

lands (102 mm less and one-month delayed). Less and delayed belg precipitation 

(peak precipitation shift from April to May) as occurred in 2017 are typical La Niña 
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impacts to our region (Diro et al., 2011a). In 2017, Arba Minch and Gircha received 

293 and 443 mm of precipitation, respectively, during the belg season, which was 

~43% of the annual total. Belg 2017 was also characterised by warmer weather (+1.0 

°C) as compared to the belg climatology in Arba Minch. The average daily belg tem-

perature was 25.8 °C for Arba Minch and 12.4 °C for Gircha, with a daily tempera-

ture variability of ±4.0 °C and ±2.3 °C at Arba Minch and Gircha, respectively, and 

in terms of standard deviation. Tsidu (2018) also showed that southern Ethiopia dur-

ing belg 2017 was warmer than the 1981–2010 mean climatology by 1–2 °C (based on 

the ERA-Interim reanalysis data). 

February, the first month of belg 2017, was somewhat cooler (0.6 °C and 0.1 °C for 

Arba Minch and Gircha, respectively) than the other belg 2017 months. In this month, 

the ITCZ was located in the southern hemisphere and the GEMS network measured 

a relatively higher pressure (Figure 4.2). March was the warmest (+1.5 °C and +0.7 

°C compared to the mean 2017 belg for Arba Minch and Gircha) and the ITCZ was 

directly overhead the Gamo Highlands (Figure 4.2). In spite of having the ITCZ over-

head, cooler and wetter weather did not yet occur in the highlands in 2017. The 

warmer period continued until half of April and the Gamo Highlands did not re-

ceive the expected precipitation. Ultimately, May was the coolest (−1.9 and −0.8 °C 

less than belg 2017 for Arba Minch and Gircha) and wettest month of the belg season. 

It is interesting to relate these findings to the diurnal variations in the various 

months in our study. To this end, we calculated the diurnal evolution of wind direc-

tion at the Arba Minch and Chencha stations (Figure 4.4), where Arba Minch is rep-

resentative of the lowlands and Chencha of the highlands. This diurnal evolution 

was calculated as an average during the entire month. The standard deviation is also 

presented to show the variability in the observations. For February, we found that 

during daytime (0600–1800 local standard time (LST)), easterly flows occur in Arba 

Minch and southerly flows in Chencha. Note that time is reported in LST (coordi-

nated universal time (UTC) +3). The wind direction in the months of March and 

April is similar to that in February. In contrast, for May, the wind direction was 

mainly southerly to southeasterly, indicating a pronounced role of large-scale circu-

lations in relation to the ITCZ (see Figure 4.2). Figure 4.4 shows a daily pattern dom-

inated by the mesoscale wind circulations, caused by the topography and the pres-

ence of the two lakes. In May, the synoptic scale was predominant than the 

mesoscale flows. Then, in particular, for Chencha, the southeasterly component of 

the large-scale wind is well aligned with the lake breezes and the anabatic winds 

during the day, causing strong upslope flow. These features are discussed in the 

following section.  
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Figure 4.4 | Diurnal evolution of monthly average wind direction (ϕ (°)) observed at reference (Arba 

Minch) and Chencha stations on the SN transect during belg 2017 (Figure 4.1). The shaded regions 

show mean ± standard deviations. Note that the standard deviations are calculated on hourly-averaged 

data for each month. 

4.3.2 Mesoscale dynamics: The role of lake-breezes and mountain flows in the 

Gamo Highlands 

4.3.2.1 Day–night contrast in February and May winds 

Figure 4.5 provides more detail on the diurnal variability of 2-m wind direction 

(ϕ (°)) and speed (u (m·s−1)). We focus on the contrasting day and night values in ϕ 

and u as explained in Section 4.2.3. 

 

Figure 4.5 | The dominant local wind sources in the GEMS stations network in Feb 2017 during day-

time (full-colored bar plots) and nighttime (light-colored bar plots). The left and right plots show wind 

direction (a) and wind speed (b), respectively, as explained in Section 4.2.3. 

In February, during daytime, all the stations had nearly a southeasterly wind, 

except Gazesso, which is across the first mountain range in a second valley along the 
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EW transect (Figure 4.1 and Figure 4.5a). The u ranged from 1 to 2 m·s−1. It is inter-

esting to note that, during daytime, the prevailing wind directions at all the stations 

were from between the southern part of Lake Abaya and the northern part of Lake 

Chamo and directed upward into the broad direction of the slope. The easterly wind 

direction in Gazesso matches with the direction of the main valley (Figure 4.1) 

headed from the lakes (more easterly as compared to other stations getting south-

easterly flows). These directions also align with the general direction of the synoptic 

winds in February. 

In contrast, the nighttime winds were characterised by south to southwesterly 

(SSW) flows along the EW transect (Zigiti and Gazesso) and by east to northeasterly 

(ENE) flows along the lower part of the SN transect (Tegecha and Chencha). These 

wind directions were not in the general (larger-scale) downslope direction. How-

ever, by looking at a detailed high-resolution topography map (see insets in Figure 

4.1), we show that the nighttime wind followed small-scale topographic features. 

For example, in Chencha, the larger scale slope is toward the southeast, but very 

locally, the slope is toward a discharge valley in the west to southwest (WSW), caus-

ing ENE katabatic flows. The winds are downslope mountain flows in both tran-

sects. This is because the nighttime mountain winds form a much shallower 

mesoscale circulation than the daytime lake breeze and valley winds. These are typ-

ical characteristics of katabatic winds influenced by topography (Whiteman, 2000; 

Zardi and Whiteman, 2013). 

The wind direction at Gircha was quite invariable between day and night, and 

also the strongest. This is because the station is located near the mountain crest and 

is, at night, less exposed to mountain winds from higher altitudes. As a result, the 

wind direction is aligned with the southeasterly background wind during day and 

night. 

The shift in wind direction between day and night at all other stations and the 

alignment of the wind direction with the slopes and the direction of the lakes are 

clear indicators of the presence of a combined lake and valley breeze flows (Crosman 

and Horel, 2010). These patterns break in May. The wind direction at all stations 

becomes more southerly during the day and at night than in February (analysis not 

shown here) with minimal diurnal variations in u and ϕ. The major difference is the 

direction of the synoptic-scale winds as a function of the position of the ITCZ. In 

February, it was directed from the southeast and, in May, from the south. The 

stronger influence of synoptic-scale winds in May disturbed the mesoscale dynam-

ics, which were so prominent in February.  

4.3.2.2 Diurnal variability of θ and q in February along the slope 

Figure 4.6 provides a characterization of the spatial variation of the diurnal cycle 

of meteorological variables θ (K) and q (g∙kg−1) in February.  
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Figure 4.6 | Diurnal evolution of potential temperature (θ) (a) and specific humidity (q) (b) in February 

2017. The shaded regions show mean ± standard deviation (computed on hourly averages). Chencha is 

not included here for lacking SLP data (Table 4.2). Note that the standard deviation follows similar 

calculations to that of Figure 4.4.  

Figure 4.6a shows a distinct difference between the highland stations (Tegecha, 

Gircha, Zigiti and Gazesso) on the one hand and Arba Minch on the other hand. The 

highland stations had a very similar θ during night and at day, whereas the lowland 

station clearly had a 3–7 K lower θ. The difference between Arba Minch and the 

highland cluster is explained as follows: Arba Minch is the station nearest to Lake 

Abaya (Figure 4.1) and located in a relatively flat area. At night, the lowlands be-

come cooler due to the combination of katabatic winds and the local longwave radi-

ative cooling that creates stagnant stable boundary layer. 

Figure 4.6b shows a similar distinction of the stations based on specific humidity 

(q): the highland stations and the lowland station displayed q with a more pro-

nounced diurnal cycle than at the highland stations. However, the q was more vari-

able among the highland stations than θ was (Figure 4.6a). 

During the day, the lake breeze advected relatively cool and moist air toward the 

highlands. The nearly identical potential temperature and specific humidity at all 

highland stations was an indication that they were exposed to air from the same 

origin. The transition from mountain/land breeze to a valley/lake breeze was associ-

ated with the development of an internal boundary layer, because of more turbulent 

mixing over land than over the lake. This internal boundary layer was advected in-

land during the day. The most forward position was marked by the valley/lake wind 

front and was often detectable by strong changes in wind direction and speed, as 

well as temperature and humidity. In order to quantify the changes caused by the 

progression of this valley/lake breeze front, we show monthly, i.e. February 2017, 

averages of ϕ and u together with the tendencies (time-derivatives) of potential tem-

perature (∂θ/∂t) and specific humidity (∂q/∂t) (Figure 4.7). 

 

 



4. Observational characterization of the synoptic and mesoscale circulations  

94 

 

 

 

 

 

 

 

At the Arba Minch station, the calm mountain/land breeze at night shifted to a 

stronger lake breeze between 0700 h and 0900 LST, as the convective boundary layer 

(CBL) developed and the lake breeze gained strength (Figure 4.7a,b). At the highland 

stations, Tegecha and Gircha, the wind speed changed almost at the same time or 

earlier than in Arba Minch. Since the lake breeze front needs time to travel up the 

mountains, the wind direction and speed change cannot be caused by the lake breeze 

front alone and the wind shift indicates the transition from mountain winds into 

valley winds. 

Based on Figure 4.7c,d, we identified four stages in the temperature and humid-

ity tendencies: (1) a stable stratification stage before sunrise, (2) an increasing stage 

between sunrise and 0800 LST, when the solar radiation causes heating and evapo-

ration of dew, (3) a decreasing stage until 0900 LST, when the stronger valley wind, 

the arrival of the lake breeze front and associated atmospheric mixing cause the tem-

perature and humidity to drop (remember that the θ at Arba Minch was lower than 

in the highlands (Figure 4.6)), and finally, (4) a nearly stable stratified stage in a well-

mixed boundary layer after 0900 LST and a well-established lake breeze circulation 

(Figure 4.7c,d). The θ in the highlands was very comparable and q decreased pre-

dictably with elevation (Figure 4.6). The tendency in q followed a similar pattern as 

that of θ (Figure 4.7d), except that the maximum values occurred within an hour’s 

time after sunrise instead of 2 h with pronounced temporal variations. 
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Figure 4.7 | (a) ϕ (°), (b) u (m·s−1), (c) ∂ɵ/∂t (K/15-min), and (d) ∂q/∂t (g∙kg−1/15-min) during the shift 

from stratified boundary layer to convective boundary layer in February 2017. The vertical lines show 

the approximate time of sunrise time in February 2017. 

Figure 4.7 shows the development of lake breezes during daytime. Changes in 

wind flows, θ, and q tendencies occurred after sunrise (0700 LST), marking the start 

of the lake breeze circulation. Similarly, relatively weaker the changes in these vari-

ables in the afternoon occurred approximately at 1630 LST, which shows the start of 

the mountain/valley flows (analysis not shown here) (Gebremariam, 2007). In the 

next section, we focus on how precipitation develops under influence of the meso- 

and synoptic-scale weather. 

4.3.2.3 Large-scale dynamics in modulating belg precipitation 

Figure 4.8 presents the diurnal variations of precipitation (mm/3h), ϕ (°), and 

SW↓ (W·m−2) in May for Arba Minch, Tegecha, and Chencha in the SN transect. The 

month of May was the wettest month of belg 2017.  

During the complete belg 2017, the precipitation increased with elevation. More 

specifically, Arba Minch received 293 mm·belg−1, Tegecha 459 mm·belg−1, and Chen-

cha 540 mm·belg−1 (not shown here). This trend is similar to the one we found in the 
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WRF-modelled precipitation in Minda et al. (2018b). The May precipitation ac-

counted for 40%–60% of the total belg precipitation in Arba Minch, Tegecha, and 

Chencha. The SN transect in Figure 4.8 also shows large spatial variability in precip-

itation. However, in the month of May alone, Tegecha received more precipitation 

(265 mm·month−1) than the other stations along the SN transect. Most precipitation 

fell in the evening and during the night (Figure 4.8). Houze (2012) discussed that, on 

mountains, most nighttime precipitation happens near the base of the mountain, 

where the katabatic wind converges with low-level moist unstable air. 

The wind regimes in May (Figure 4.8) were entirely different from those in Feb-

ruary (Figure 4.5). Focusing on the SN transect (Figure 4.8), in May, moist, south-

easterly to southerly synoptic air masses from the Indian Ocean dominate the day 

and night weather dynamics (Jury, 2014b; Minda et al., 2018b; Viste, 2012). Further-

more, our GEMS network showed that there was nearly no significant diurnal vari-

ability in wind source and the southeasterly prevailing wind (~150–180°) (Figure 

4.8), which was driven by the synoptic scale dynamics. Therefore, we explain the 

enhancement of late evening to nocturnal precipitation by two factors. Firstly, dur-

ing the daytime, the combined effect of anabatic, valley-mountain winds, and the 

synoptic forcing transport moist air to higher levels, and secondly, this triggers and 

enhances cloud formation and intensity (shown by the decrease in SW↓ in Figure 4.8 

between 1500 and 1800 LST compared to between 0600 and 0900 LST) and the sub-

sequent precipitation during the night. 

 

Figure 4.8 | (a) 3-h total precipitation (mm·3h-1), (b) 3-h mean ϕ (°) (bar plots) and SW↓ (W·m−2) (line 

plots). Data from Arba Minch, Tegecha, and Chencha GEMS network in the SN transect in May. 
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4.3.3 Crop modelling using GEMS network meteorological data 

4.3.3.1 Simulated and modelled crop growth gradient along the SN transect 

Figure 4.9 shows a selection of the modelled potato growth variables with ob-

served yield at experimental potato farms (Figure 4.1) located at Tegecha (2140 m), 

Chencha (2738 m), and Gircha (3010 m). The attainable yield and the growth varia-

bles were the LGS (i.e. days to crop maturity) and maximum plant height (MPH, i.e. 

plant height at maturity). 

The figure shows that the observed LGS increased from 95 d in Tegecha to 120 d 

in Gircha. The model underestimated the observed LGS by 19% in Tegecha, repre-

sented Chencha fairly well, and overestimated it by 7% in Gircha (Figure 4.9a). The 

MPH increased from 72 cm to 81 cm as we went up from Tegecha to Gircha, in which 

the model mainly overestimated the observed MPH. The observed yield increased 

from 27 t·ha−1 in Tegecha to 52 t·ha−1 in Chencha and almost stabilised as elevation 

increased further. For Chencha and Gircha, the model largely underestimated the 

yield observations. In practice, Tegecha is a few meters above the lowest level where 

potato is grown; at the lower elevations, the climate is too warm and dry to support 

potato crop growth. Similarly, Gircha (3015 m) was around the maximum elevation 

where potato was grown; at higher elevations the climate was too cool and wet 

(Figure 4.3), with subsequent risk of diseases at extended LGS. Between these ex-

tremes, however, the conditions for growing potato were optimal (Minda et al., 

2018b). Figure 4.9c shows the attainable yield, which was the maximum yield at-

tained considering soil type, climate, and cultivar, but without considering yield loss 

due to sub-optimal crop management and diseases, as the observed yield was. In the 

present case, however, the situation was quite the opposite. At higher altitudes, the 

attainable yield was some 35 t·ha−1, while the observed yield was 50–55 t·ha−1. One 

of the reasons for the mismatch between modelled and observed yield is that yield 

observations in small plots (9.0 m2 of which half was considered for yield estimation) 

are easily overestimated as compared with large plots. Sukhatme (1947) showed that 

yield observations based on such small harvested areas could provide overestima-

tions (as compared with estimates based on 50 m2 plots) by more than 25%. 
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Figure 4.9 | GECROS-modelled (open dots) and observed (closed dots) values for crop growth varia-

bles and yield for Tegecha (2140 m), Chencha (2738 m), and Gircha (3010 m) stations in the Gamo 

Highlands: (a) LGS (d), (b) MPH (cm), and (c) observed (attainable) crop yield (t·ha−1). Note that MPH 

data for Chencha are missing.  

4.3.3.2 Model sensitivity experiments 

Figure 4.10 presents the results of the sensitivity experiment as designed in Table 

4.3. It shows the modelled LGS (d; a and b), MPH (cm; c and d), and yield (t·ha−1; e 

and f) along the SN transect as compared to the control experiment. The left column 

shows the results of experiments 0–5, the right column experiments 0 and 6–8. 

The variation in LGS between the experiments was larger for the elevated sta-

tions (Chencha and Gircha) compared to the lower one (Figure 4.10a). The variables 

causing the largest change in the crop growth dynamics were PPT followed by Tmin, 

SW↓, and Tmax (Figure 4.10b,c). This agrees with the result found in Minda et al. 

(2018b). Of all the experiments, the one with the average distribution of precipitation 

(“PPTavg”) during the belg season resulted in the highest yield, followed by the “Nor-

mal belg” experiment, with the peak precipitation shifting from May to April. In 

these experiments, the moisture supply was improved during the crop’s critical de-

velopment stages (i.e. vegetative growth, tuber initiation, and tuber bulking stages 

of the crop growth) and this explains the increased yield. This indicates that the sup-

ply of moisture due to precipitation plays a key role at the developmental stages. 

Focusing on the “PPTavg” experiment, the LGS was slightly shorter (0–9 d) than 

in the control experiment. The MPH was much larger (~ +20 cm) for the lower station 

(Tegecha) but lower for both the highland stations (Chencha and Gircha), showing 

that an average distribution of precipitation in time results in a larger and more uni-

form crop growth across the highlands. The modelled yield increased by 60% in 

Tegecha and by 13% in Chencha and Gircha. 

We found that the “Early belg” (experiment 6) shortened the LGS by about 10 d. 

The reason is that the crop starts to grow earlier as sufficient moisture was available 

for the crop planted only around 7 March in 2017 (Figure 4.10b), as the farmers were 

waiting for precipitation. The crop grows faster and taller than the control experi-

ment (Figure 4.10d) as the weather was warmer and moister. The MPH was also 
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larger, but it did not result in a larger yield in Tegecha and Gircha. Similarly, the 

“SW↓, avg” and “Tmax avg” experiments increased MPH with a slight decrease in yield. 

Contrastingly, in the “Normal belg” experiment, the LGS and MPH were close to the 

control run, but the yield was larger, particularly at Tegecha and Gircha. 

 

Figure 4.10 | Model sensitivity experiments based on Table 4.3 for Tegecha (2140 m), Chencha (2738), 

and Gircha (3010) stations. The LGS (d) (a,b), MPH (cm) (c,d), and attainable yield (t·ha−1) (e,f). The left 

panel shows average distribution (means of the belg data for each day) of experiments the major at-

mospheric crop drivers: SW↓, Tmin, Tmax, PPT, and VPD. The right panel shows shifting the peak pre-

cipitation in May to March (“Early belg”), April (“Normal belg”), and June (“Late belg”) model experi-

ments assumptions. Note that the control experiment is added in each panel for ease of comparison. 
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Our suite of sensitivities indicates that the temporal distribution of precipitation 

is important for crop development and yield. Too much precipitation too early in 

the season was not effective, because the seed tubers could not take much moisture 

from the soil. Precipitation in April was the most effective; the precipitation was 

there when the crop needed it most, while the soil would not become dry in the later 

months. However, an average distribution of precipitation is most favorable for the 

crops in the tropical highland climate, because sufficient but not too much moisture 

will be available at all times. This was related to a balanced soil moisture content 

(because of regular precipitation supply) throughout the crop growth period as dis-

cussed below. It is interesting to see that the crop’s MPH and yield were more sen-

sitive to the temporal distribution of precipitation at the lower parts of the slope 

(Tegecha) than higher up in the mountains (Chencha and Gircha). This was because 

the high-elevated stations received some amount of precipitation in each month, 

whereas the lower stations had a more seasonal distribution of precipitation (Figure 

4.3).  

To further show the relevance of the soil moisture dynamics, Figure 4.11 presents 

the observed soil moisture tension (kPa), precipitation (mm·d−1), and average pre-

cipitation (mm·d−1) in Tegecha. The top-10-cm soil moisture tension declined from 

10 kPa at the beginning of April to 200 kPa (dry soil) in mid-April. The soil saturated 

again after it gained more than 60 mm of precipitation. The soil moisture tension at 

20 cm and below remained dry until sufficient moisture penetrated into the clay soil. 

 

Figure 4.11 | Observed soil moisture tension (kPa) at 5, 10, 20, and 40 cm soil depth (left y-axis) and 

daily precipitation (mm·d−1; bar plot for observed and dot plot for average precipitation distribution) 

at the Tegecha (2140 m) station from March to May in 2017. The soil moisture tension is represented 

by daily averages (line plots). Note that 0 kPa means the soil is fully saturated and 200 kPa means fully 

dry soil. 
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4.4 Discussion 

The GEMS network enabled us to characterise the mesoscale patterns and their 

impact on crop growth variables. In February, preceding the potato planting, 

mesoscale circulations govern the diurnal weather variability within the GEMS’ net-

work domain, as the ITCZ, the main large-scale weather phenomenon, is still located 

in the southern hemisphere (Nicholson, 2018). WRF model output analysis (Minda 

et al., 2018b) showed that the low-pressure system (a minimum value in SLP) was 

located below the Equator in January and the system marches toward northern Ethi-

opia in June. In February, the synoptic flow to the Gamo Highlands is northeasterly. 

This is a dry and warm airflow from the Arabian Peninsula (Jury, 2014b; Minda et 

al., 2018b). The daytime mesoscale flows, in turn, were predominantly easterly to 

southeasterly lake and valley breezes toward and up the east facing slopes. These 

flows start at 0700 LST, attain climax at noontime, and start to decay after 1500 LST 

(Figure 4.4). During nighttime, however, weaker and more localised katabatic winds 

(mountain breezes) are observed (Figure 4.5) (Gebremariam, 2007). These flows start 

around 1630 LST. The lake/mountain breeze circulations change directions at 0800 

and 1800 LST (Gebremariam, 2007).  

February and May show greater differences in how the synoptic and mesoscale 

flows interact. In May, during day time, the moist southeasterly to southerly synop-

tic flows (Nicholson, 2018) coincide with the lake/valley winds. Together, they form 

upslope winds (Figure 4.8) (Jury, 2014b; Minda et al., 2018b). Our explanation is that 

the high correlation between mesoscale and synoptic scales inhibits the convergence, 

and, as a result, it weakens the orographic lifting that results in less precipitation 

during daytime (Figure 4.8). This pattern is reversed during nighttime. The south-

erly synoptic flow dominates the weak mountain flows during nighttime. Hence, 

the nocturnal precipitation is enhanced by the moisture transport dominated by syn-

optic winds to the higher levels, local circulations, and a subsequent cooling (shown 

by a decreased SW↓ after 1500 LST in Figure 4.8). The combined effects occurring in 

the evening transition trigger cloud formation and the subsequent precipitation dur-

ing the night.  

We hypothesise that the precipitation regime on the other side of the mountain 

rim may be different, because that is where the valley and synoptic winds converge 

(Minda et al., 2018b). This could lead to quite different growing conditions for potato. 

It might be convenient to strengthen the GEMS network by establishing three or 

more stations across the mountain ridges to obtain a better understanding of the 

spatial distribution of weather and crop dynamics in the Gamo Highlands. 

Our findings corroborate previous results that much of the weather in East Africa 

is caused by the convergence between local circulation features, such as land/lake 

breezes and mountain/valley winds with the synoptic scale flows (Mukabana and 

Pielke, 1992; Pierre et al., 2018). Rainfall gauges and satellite precipitation products 
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near Lake Tana (NE Ethiopia) showed a precipitation maximum in the evening to 

early morning (Haile et al., 2013; Verhoef and Egea, 2014), which agrees with our 

findings presented in Figure 4.8. These authors also underlined that precipitation 

maxima are observed later in the afternoon for stations more distant from the lake, 

where distance to the lake is an important factor in explaining the spatial variations 

of the nocturnal precipitation.  

Figure 4.9 shows that the LGS, MPH, and yield increase along the SN transect. 

This finding agrees the results found in Minda et al. (2018b). GECROS results 

showed a good agreement for the crop growth variables, LGS and MPH. These mod-

elled variables are in the physiologically acceptable range for potato crop (FAO, 

2008b; Harper, 1963). The model also captured the trend in yield along the SN tran-

sect (r2 = 0.98). However, we found a large discrepancy between the modelled and 

the observed yield (mean bias error of −13.9 t∙ha−1). Using the GEMS sub-daily ob-

servations and interpolated soil data, we attempted to minimise the uncertainties in 

the modelled yield related to these meteorological and soil data. In consequence, we 

attribute the bias to (1) the crop model parameters, which are not adjusted to the to 

the local potato varieties in the Gamo Highlands, and (2) probable overestimation of 

the observed data because of small-size field trial farm. For the first case, we suggest, 

for future studies, recalibration of the crop parameters to the Ethiopian potato vari-

eties and the existing farm management practices. This recalibration requires a com-

plete observational set, which is currently not available. Although the absolute dif-

ferences are large, the present model set-up is reasonable to study the sensitivity of 

crop growth to elevation and modifications in the GEMS network datasets. For the 

second case, Sukhatme (1947) suggested that a minimum of 50 m2 of plot area is 

needed to be free from yield overestimation bias.  

The weather/crop numerical experiments showed that soil moisture availability 

to the crop is the most important factor for crop growth. Availability of precipitation, 

as in the “PPTavg” model experiment, improved the yield by 60% in Tegecha and 13% 

in Chencha and Gircha (Figure 4.10). The timing of the precipitation relative to the 

growth stage is also important. For example, the potato planting date was on 7 

March 2017 in Gircha and the seed emerged at the end of the month. In the control 

experiment, precipitation did not occur until May 2017, which is late when com-

pared to the climatology. In the “Normal belg” sensitivity experiment, the peak pre-

cipitation in May shifted to April, and hence, increased moisture was available to 

the crop in the critical crop development stages from emergency to tuber bulking 

(FAO, 2008b), which enhances the crop yield. 

The larger yield in the “PPTavg” experiment is explained by a non-linear response 

of crop growth to soil moisture content. In the specific representation by GECROS, 

photosynthesis rates depend on soil moisture. In the experiments in which the initial 

soil moisture content starts with mid-range values, it tends to drop to the wilting 

point. As a result, the photosynthesis rates may suddenly drop dramatically. This 
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pattern is opposite when the initial conditions are near soil moisture field capacity 

(Combe et al., 2015). With averagely distributed precipitation during the entire sea-

son, the soil moisture content is always larger than the photosynthesis cut-off point. 

In this situation, the average photosynthesis rate is in between the extreme condi-

tions of dry and wet soils (Combe et al., 2015; Verhoef and Egea, 2014).  

Our observations show that soil moisture, therefore, changes from moist to dry 

in a matter of a week and backward in a matter of days (Figure 4.11). In the model 

experiment with an average distribution of precipitation throughout the belg season, 

the soil water content would be constant and above the wilting point, preventing 

unproductive periods with soil moisture below the wilting point. This model exper-

iment indicates that a regularly scheduled supply of water (irrigation and or precip-

itation) can significantly improve crop growth and yield. Simple rainfall harvesting 

technologies can be recommended as options to supply moisture for the crop water 

requirement. Note that farmers in the highlands traditionally grow crops without 

irrigation (Minda et al., 2018b).  

In situations with heavy precipitation in a short period, part of the infiltrated wa-

ter will percolate to deeper soil layers and may become unavailable for plants. Run-

off could also occur, but this is not taken into account in the GECROS model (Yin 

and van Laar, 2005). Increased precipitation beyond the moisture holding capacity 

of the soil facilitates nutrient loss into the deep soil layer and causes a decline in crop 

yield (Minda et al., 2018b). These processes require further observational evidence. 

4.5 Conclusions 

The aim of this paper was to study the temporal and spatial variations in weather 

as a function of elevation and their impact on potato crop growth during the belg 

2017 crop season. We used newly obtained weather and crop observations from our 

GEMS network. Here, we answered the following research questions: 

1) How does the topography and presence of lakes induce mesoscale circulations in the 

Gamo Highlands during the belg season? The observations show a southeasterly 

lake/valley wind pattern as predominant during the day, and opposing land/mountain 

winds during the night. These observed patterns are based on the lower potential tem-

perature and a higher specific humidity originated at the lowland stations. However, the 

signal and pattern of these upslope winds on temperature and humidity in the highland 

stations were weaker. Precipitation is highly correlated to the increase in elevation. 

2) How do the mesoscale circulations interact with the synoptic circulation driven by the 

ITCZ? The ITCZ, a synoptic tropical weather system, which moves northward during 

the belg season, is correlated with the GEMS network SLP data and causes a shift in 

wind direction and moisture content during its passage. An interesting finding was that 

the ITCZ and maximum precipitation locations did not coincide. The ITCZ passes the 
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Gamo Highlands overhead in March, but the maximum precipitation is recorded during 

May. 

In February, dry air masses originating at the Arabian Peninsula character-

ised the synoptic scale at the Gamo Highlands. Superimposed to this flows, we 

observed stronger E to SE lake breezes during daytime, and more localised and 

weaker mountain winds during nighttime. In May, and due to the northern 

movement of the ITCZ, the air masses originated at the SE to S reaching the 

Gamo Highlands are characterised by a high moisture content. Our observa-

tions show that precipitation is less often during daytime since the mesoscale 

winds aligned with the moist and warm SE synoptic winds. During the night, 

however, the interaction between the synoptic and local flows might facilitate 

convergence, which enhances cloud formation, and the precipitation condi-

tions. 

3) How do the weather variations resulting from this interaction affect crop growth? The 

design of the GEMS network in mountain transects, with stations every few hundred 

meters above 2000 m and sub-hourly observations, was capable of identifying spatial and 

temporal variations in wind and precipitation in the potato-cropping zone. 

The observed and modelled potato growth variables such as the length of the 

growing season (LGS), the maximum plant height, and the yield are clear functions 

of elevation (Figure 4.10). Using the crop model experiments, we found that precip-

itation, increasing with elevation, is by far the most important meteorological varia-

ble determining crop growth and yield in the Gamo Highlands. This is probably 

because other meteorological variables are less limiting. 

Relevant crop variables, such as the LGS, improve with the new input of the 

GEMS meteorological observations. The comparison of the attainable yield be-

tween the model results and the observations shows that the crop model requires 

a new calibration to be adjusted to the Ethiopian varieties. New observations of 

the attainable yield need to be done in the future to consider the field size. This 

future work will also address the omission of crop yield loss due to diseases 

higher up the mountains. There, the vegetation is more frequently wet and the 

growing season lasts longer due to lower temperatures. 
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Potato is an increasingly important crop in Ethiopia. The Gamo 

Highlands are one of the large potential potato producing regions in 

Ethiopia. The growing conditions are different from those in the 

temperate regions, where most of the agronomical expertise on po-

tato has been developed. The influence of environmental conditions 

on the crop in the Gamo Highlands is poorly understood. We con-

ducted field trials with eight potato cultivars in six locations and 

during two seasons. Canopy cover (CC) and plant height (PH) were 

measured with high temporal resolution and tuber yields were as-

sessed as well. The experiments were conducted near our newly in-

stalled weather stations at different elevations. CC and PH were 

strongly correlated with temperature sum (Tsum). Tuber yields dif-

fered among elevations and cultivars. Nevertheless, these differ-

ences were poorly explained by environmental variables. We also 

found no single cultivar performing best at all elevations. The num-

ber of branches was a predictor of yield, suggesting that radiation 

interception was limiting tuber growth. Tuber yield was optimal 

when the number of days to crop maturity was around 100-110 

days. We conclude that Tsum is a predictor of crop growth, but en-

vironmental variables poorly explain yield variations, which calls 

for further investigation. 
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5.1 Introduction 

Potato (Solanum tuberosum L.) is an important and emerging crop in Ethiopia 

(Baye and Gebremedhin, 2012; Dersseh, 2017). Drought, crop failure and food inse-

curity have been severe, as well as other related problems in the Horn of Africa in 

the recent past (Haile, 2005; Philip et al., 2018). For instance, the years 1972-1973, 

1982-1983, 1986-1987, 1987-1988, 1997-1998, and 2015-2016 are identified as strong El 

Niño episodes (Philip et al., 2018; Qian et al., 2011; Tsidu, 2016). In Ethiopia, El Niño 

events are often excessively warm and dry and they often cause crop failure and 

famine in most part of the country (Tsidu, 2016; Viste et al., 2013; Wolde-Georgis, 

1997). Potato is called the hunger breaker as it has a short crop cycle as compared to 

cereals (Menza et al., 2014; Thiele et al., 2010). It therefore plays an important role in 

sustaining food security in difficult periods (Abebe et al., 2016; Abebe et al., 2013). 

However, because the crop is mainly grown by small farm holders with limited ac-

cess to farming knowledge and technologies, the actual yield is much lower than the 

achievable and potential yields (Haverkort, 2018; Haverkort et al., 2012; Hirpa et al., 

2010; Tadesse et al., 2017). 

Over the last decade, potato production in the western world declined signifi-

cantly, mainly because of a decline in acreage. Developing countries currently pro-

duce more than developed countries and their production has more than doubled 

in 10 years, mainly due to increases in the area harvested and in some regions be-

cause of improvements achieved in seed technology, fertilizer use and fungicide ap-

plication (Haverkort and Struik, 2015). In Eastern Africa; however, production quan-

tity has grown exponentially since 1990 (Haverkort, 2018) primarily because of a 

significant increase in the acreage. The yield per hectare has hardly grown, because 

access to inorganic fertilizers (Mazengia et al., 2015) and pesticides (Dersseh et al., 

2016) is limited and the farming has been conducted in nutrient depleted soils with 

insufficient moisture, particularly at the onset of the growing season (Dersseh, 2017; 

Tadele, 2017). As a result, the yield gap in the region is around 65%, which is much 

larger than the 35% in the western world (Haverkort, 2018; Svubure et al., 2015). Note 

that the yield gap is the difference between the potential yield and the actual yield 

(Haverkort and Struik, 2015; Svubure et al., 2015). Potential yield is the maximum 

yield attained when the crop is grown in non-limiting (i.e. with abundant water and 

nutrients) conditions, in which the abiotic and biotic stresses are controlled. The ac-

tual yield is the yield the farmer harvests.  

Much of the knowledge of the relation between potato growth and environmen-

tal conditions is based on western studies in temperate climates, for example 

(Bodlaender, 1963; Haverkort, 2007; Hijmans, 2003; Struik, 2007; Van Dam et al., 

1996), where temperature is usually a limiting factor (Carter et al., 1990; FAO, 2008b) 

during the early part of the growing season, soil moisture only becomes limiting 

during advanced stages of growth, and crop management is characterised by high 
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levels of input. The Ethiopian climate and environmental conditions are rather dif-

ferent, temperature is moderate (10 ˚C < Tmean < 20 ˚C), soil moisture may be limiting, 

particularly during the early part of the growing season (Badr et al., 2012; Minda et 

al., 2018a; Tadele, 2017), and agronomic inputs are generally low (Baye and 

Gebremedhin, 2012; Tadele, 2017). Weather conditions are in fact variable too in 

space (Minda et al., 2018b). In Ethiopia, potato can only be grown in the mid- and 

highlands, because the lowlands are too warm (Tmax > 25 °C, (Minda et al., 2018b)). 

Weather conditions in the mountains change along the slope (Minda et al., 2018a; 

Minda et al., 2018b), causing potato growth and yield to also change with elevation. 

There are a number of articles related to potato agronomy in Ethiopia, e.g. 

(Abdurahman et al., 2017; Berihun and Wodegiorgis, 2013; Dersseh, 2017; Kirub and 

Asfaw, 2013). However, much less is known about the relationship between envi-

ronmental conditions and potato growth in tropical regions like Ethiopia than in the 

temperate climates. To this end, we collected crop growth and tuber yield data in 

the 2017 and 2018 growing seasons along two transects in the highlands, where we 

also have weather stations installed (Minda et al., 2018a). This study is an extension 

of our previous work described in (Minda et al., 2018a; Minda et al., 2018b). In the 

current paper, environmental conditions and potato growth and tuber yield rela-

tions are investigated at high temporal resolution and we identify where the grow-

ing conditions are optimal in the Gamo Highlands. Ultimately, this knowledge can 

help us to estimate the potential yield and select and develop varieties, which are 

better capable of dealing with the environmental conditions (Haverkort and Struik, 

2015; Svubure et al., 2015).  

The Gamo Highlands, a topographically pronounced region in southern Ethio-

pia, is a region with a high potato production potential (Dersseh et al., 2016; Minda 

et al., 2018a; Tadesse et al., 2018). The crop is best grown in a long growing season 

and with high incoming radiation, between ~12 and 24 MJ∙m-2∙d-1, average daily tem-

perature between 5 and 21 ᴼC, precipitation between 600 and 1200 mm per annum 

depending on the climate of a location (Bradshaw and Bonierbale, 2010; Pandey et 

al., 2012); and in a soil with good water-holding capacity and sufficient nutrient 

availability (Haverkort, 2018; Tufa, 2013; Vos and Haverkort, 2007). Such environ-

mental conditions are available in the Gamo Highlands at elevations higher than 

1600 m above sea level (a.s.l.) (Minda et al., 2018a; Minda et al., 2018b). 

The National Meteorological Agency (NMA) classified the Ethiopian climatic 

seasons into three: belg (February to May), kirmet (June to September), and bega (Oc-

tober to January) (Degefu, 1987; Diro et al., 2008). Kirmet is the wettest season in most 

of the country, except the southern and southeastern parts of the country (Gissila et 

al., 2004). Southern Ethiopia receives its maximum precipitation during belg. The 

other regions of the country may also receive small amounts of rain in belg (Diro et 

al., 2008). Bega is a dry season, but potato can grow if irrigated (Haverkort et al., 2012). 

Note that only 5% of the total arable land is irrigated in the country (Awulachew et 
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al., 2010). In the Gamo Highlands, potato grows mainly during the belg season 

mainly under rainfed agriculture (Minda et al., 2018a; Minda et al., 2018b). Farmers 

prefer the belg season for potato cropping because of the season’s meteorological and 

agronomic suitability for potato cropping, i.e. the moisture availability is optimal 

and disease risks are relatively low (Abdurahman et al., 2017; Minda et al., 2018a; 

Tufa, 2013). Late blight caused by Phytophthora infestans is the most important potato 

disease in Ethiopia, followed by bacterial wilt caused by Ralstonia solanacearum 

(Abdurahman et al., 2017; Woldegiorgis, 2013). 

The potato crop growth is traditionally explained in terms of responses to envi-

ronmental variables (Haverkort, 2018; Struik, 2007). The major growth-influencing 

factors are temperature, photoperiod, soil moisture (in terms of precipitation and/or 

irrigation), the incoming shortwave radiation (SW↓), and nitrogen supply 

(Haverkort, 2018; Khan, 2012). These factors can explain the crop’s canopy dynamics 

in terms of lateral or horizontal growth [e.g. estimated from canopy cover or Leaf 

Area Index (LAI) measurements and vertical growth (e.g. plant height)]. A summary 

of how meteorology influences potato growth closely related to this investigation is 

given below. 

In a potato crop, many complex physiological processes are strongly affected by 

temperature (Struik, 2007). Temperature can affect canopy development, tuber bulk-

ing and growth cycle duration (Haverkort and Struik, 2015). Temperature is very 

different in the tropics than in temperate climates, regarding both mean and varia-

bility. A daily mean temperature of between 15-18 ᴼC is generally considered as an 

optimal temperature for potato growth in the tropical highlands (Haverkort, 1990). 

The growth rate declines nearly linearly to zero when either the average temperature 

decreases to 5 ᴼC or increases to 28 ᴼC from this optimum. An average daily temper-

ature (Tmean) of less than 5 ᴼC gives low photosynthesis rate with risk of frost and 

diseases while a Tmean > 28 ᴼC causes high respiration rates with a rapid foliage de-

velopment, retarded tuberization, little partitioning of dry matter to the tubers, poor 

starch synthesis, resulting in a large number of small tubers per plant, and low dry 

matter concentration (Haverkort, 1990, 2018; Van Dam et al., 1996; Vos and 

Haverkort, 2007).  

The potato crop is relatively sensitive to drought stress, which occurs regularly 

in the Horn of Africa (Degefu, 1987). It is only cultivated where precipitation is suf-

ficient or where irrigation can be applied (Haverkort, 1990). Water-stressed potato 

plants result in yield reduction because of reduced leaf area and/or reduced photo-

synthesis per unit of leaf area and often produce fewer and smaller tubers (Vos and 

Haverkort, 2007). Of all growth stages of the crop growth period, the tuber bulking 

period is the most drought-sensitive stage (Van Loon, 1981).  

Millard and Marshall (1986) explained that potato tuber yield is a product of four 

processes, namely (1) radiation interception, (2) conversion of intercepted radiation 

to dry matter, (3) partitioning of dry matter between tubers and other parts of the 
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plant, and (4) regulation of tuber dry matter contents. Sibma (1970) showed that the 

potato yield and the total SW↓ during the entire growing season were positively 

correlated. Dry matter production of a crop is linearly related with the intercepted 

radiation. The produced dry matter is distributed over different parts of the potato 

plant (Haverkort, 2007). Allen and Scott (1980) showed that the potato tuber dry 

weight positively and linearly correlated with the total intercepted radiation during 

the growing season. The Harvest Index (HI), which is a function of the amount of 

cumulative radiation intercepted by the crop during the growing season, is depend-

ent on location and season and specific for a given cultivar (Haverkort, 2018). 

The canopy dynamics in the potato crop is explained based on three distinct 

growth phases (Figure 5.1). These growth stages include the canopy buildup phase 

(P1), the maximum canopy cover phase (P2), and the canopy decline phase (P3) 

(Khan, 2012). P1 covers the time between emergence (when 50% of the plants have 

emerged) to the maximum canopy cover and is characterised by the appearance of 

stems, lateral branches and leaves, and growth of those organs. P2 is the period from 

the maximum canopy cover to the onset of canopy senescence; whereas the period 

from the onset of senescence to the end of the crop cycle is called P3 (Khan, 2012).  

Crop growth at the early stages of development (emergence and initial foliar ex-

pansion) can be related and explained by the temperature sum (Tsum) rather than 

the number of calendar days as the crop’s physiological processes depend on tem-

perature (Haverkort, 2018; Kooman and Haverkort, 1995b). Tsum is the cumulative 

sum of daily average temperature above a base temperature (Tb) during the crop 

growth period. Studies considered Tbase for potato crop between 0 and 5.5 ᴼC 

(Haverkort, 2018; Hijmans, 2003; Khan, 2012; Spitters et al., 1989). Tsum is expressed 

in units of day-degrees (d ᴼC or dd) (Haverkort, 2018). Haverkort (2018) discussed 

that the canopy growth during P1 can be described by a linear relation with Tsum. 

At the end of P1, canopy cover is at its maximum and does not change anymore with 

Tsum in P2, while it decreases in P3.  

To our knowledge, there are only a few studies, focusing on the relationship be-

tween potato, weather and seasonal climate in Ethiopia. Haverkort et al. (2012) used 

station observations to calculate the attainable and achievable potato yield for belg, 

meher, and bega agronomic seasons. Minda et al., (2018a; 2018b) conducted studies 

about weather variability along the slopes of the Gamo Highlands in relation to po-

tato growth. In Minda et al. (2018b), potato crop growth and attainable yield are sim-

ulated using modelled weather data. The authors showed that precipitation posi-

tively influenced yield, and the minimum and maximum temperatures both nega-

tively influenced it. Using weather observations and a potato crop model, Minda et 

al. (2018a) showed that the soil moisture is the most important variable that influ-

enced crop yield.  



5. Responses of canopy growth and yield of potato cultivars to weather dynamics 

110 

 

 

Figure 5.1 | A hypothetical model-based representation of the canopy dynamics expressed in percent 

canopy cover as a function of days after planting (not scaled) based on the beta function for determi-

nate growth for the canopy buildup phase (P1) (Khan, 2012; Yin et al., 2003), maximum cover phase 

(P2), and canopy decline phase (P3) (Khan, 2012) as shown. Note that the break-down into these three 

phases indicated is only applicable to the ‘average’ curve shown with the solid line. We assumed can-

opy growth for warm, mild, and cold temperatures scenarios to mimic meteorological conditions in 

lowlands, midlands, and highlands of potato growing regions in the Gamo Highlands, respectively. 

The Gamo Ethiopian Meteorological Stations (GEMS) network (currently, eight 

automatic weather stations) is operational since April 2016. Details of the GEMS net-

work is found in Minda et al. (2018a). Close to the network, we planted and moni-

tored eight potato cultivars in the belg-2017 (5 locations) and belg-2018 (6 locations) 

seasons to explain crop growth and yield variations among cultivars, across eleva-

tions, and seasons as influenced by environmental conditions. Therefore, the aim of 

this study was to study how the potato crop growth and yield vary with variations 

in the environmental variables during the crop growth phases (mainly in P1) in the 

Gamo Highlands, southern Ethiopia. To attain our aim, we formulated the following 

research questions. 

1) How does canopy growth vary with environmental variables in P1 across elevations, 

among potato cultivars, and between seasons? Does this growth follow similar patterns 

as in temperate climates? 

2) How does yield depend on physiological crop characteristics, such as number of tubers, 

number of branches, days to maturity, cultivar, and on meteorologically dependent var-

iables, such as intercepted radiation and temperature? 
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To answer these research questions, we collected high temporal resolution data 

(one-day or two-day intervals) on canopy cover and plant height for improved and 

local cultivars. We also collected data on the plant, yield and yield traits (e.g. branch 

numbers, tuber numbers and tuber weights per plant) at 5 to 6 farms (at different 

elevations) and for 6 improved (Gudene, Belete, Horro, Hunde, Ararasa and Jalene) and 

2 local (Suthalo and Kalsa) cultivars in 2 belg seasons (Baye and Gebremedhin, 2012; 

Gebreselassie et al., 2016; MOANR, 2016). From the improved cultivars, Gudene, Be-

lete, and Jalene, and the two local cultivars are commonly cultivated in the Gamo 

Highlands (Tadesse et al., 2016). Note that the potato crop has been cultivated in 

Ethiopia for more than 150 years. In the country, improved varieties started to be 

released since 1987 (Kolech et al., 2015). In the Gamo Highlands, the crop has been 

cultivated for decades (Tadesse, 2013). Although this represents a significant effort, 

the number of possible predictor variables is large and we are facing a mathemati-

cally underdetermined system. We therefore confront the data with existing theory, 

which is to a large extent developed for the potato crop in a temperate climate, to 

test if and where these theories deviate for the mountainous tropical climate in Ethi-

opia. 

5.2 Materials and methods 

5.2.1 GEMS weather datasets during belg-2017 and belg-2018 

The weather data in this study were taken from the Gamo Ethiopian Meteorolog-

ical Stations (GEMS) network. The GEMS network records weather (max/min/mean 

temperature – Tmax, Tmin, Tmean, precipitation – PPT, the incoming shortwave radiation 

– SW↓, wind, and relative humidity), edaphic (soil moisture tension – ψ and temper-

ature – Tsoil) and plant related (leaf wetness) variables with every 15-min (in belg-

2017) or 30-min (in belg-2018) temporal resolution. The network is operational since 

April 2016. Eight automatic weather stations (AWS) have been installed in a complex 

topographic region in the Gamo Highlands, Southern Ethiopia. The Gamo High-

lands form a heterogeneous landscape composed of complex topography extending 

from the narrowest portion of the Great East African Rift Valley at 1000 m a.s.l. to 

the summit of Mount Guge at 3600 m a.s.l., including Lake Abaya and Lake Chamo, 

forest, and agricultural lands. Descriptions of the study area and the GEMS network 

data are provided in detail in Minda et al. (2018a). Table 5.1 presents the locations of 

the experimental farm sites with mean seasonal environmental (weather and 

edaphic) variables and descriptions of the potato cultivars and date of planting in 

the belg seasons. Belg-2017 was during a La Niña phase characterised by warmer and 

drier season than the climatology in the Gamo Highlands (Blunden et al., 2018; 

Minda et al., 2018a; Tsidu, 2018); whereas, belg-2018 was relatively cool and wet 

(Table 5.1). 
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5.2.2 The potato farm experiments during belg-2017 and belg-2018 

The potato field experiments in this study (belg-2018) are follow-up field experi-

ments (belg-2017) from Minda et al. (2018a). We planted the following six improved 

varieties (with their year of release): Gudene (2006), Belete (2009), Horro (2015), Hunde 

(2006), Ararasa (2006), Jalene (2002), and two local varieties: Suthalo (unknown) and 

Kalsa (unknown) (Baye and Gebremedhin, 2012; Gebreselassie et al., 2016; MOANR, 

2016). During belg-2017, the seed tubers were collected from three research centers, 

and the seed tubers of the local cultivars were purchased from local markets. From 

the belg-2017 harvest, we selected seed tubers from Gircha and Gazesso farms and 

stored them in the diffused-light storage (DLS) facility at the Gircha site (mean tem-

perature during storage was only 11.7 ᴼC). The DLS facility allowed free ventilation 

and light diffusion; it suppressed elongation of sprouts and slowed down sprout 

ageing (Hirpa et al., 2010). We kept the well-sprouted seed tubers stored in the cool 

environment for all the farms to be planted in the following belg season. Our planting 

material was of superior quality compared to the commonly planted seed material 

and our crops were healthier than farmers’ plots in the region.  

The experiments in belg-2017 and belg-2018 were done with different planting 

dates depending on moisture availability in the farm site (Table 5.1). A randomised 

complete block design – RCBD was applied with three replications (Gomez et al., 

1984). The plot size was 3 m × 3 m and planting pattern (between rows × between 

plants) was 0.75 m × 0.30 m resulting in a plant density of 4.4 plants per square meter 

of land. Spacing between plots and replications was 1 m and 1.5 m, respectively. 

Urea (144 kg∙ha-1), NPS (236 kg∙ha-1), and muriate of potash (125 kg∙ha-1) fertilizer 

doses were added at planting, but the urea was split into two dressings, in which 

the first half was applied at planting and the remaining half was added at the start 

of the flowering stage. Agronomic practices such as weeding, hoeing, and earthing-

up were done as recommended. Data were taken from the middle two rows. This 

allowed us to avoid border effects (Yactayo et al., 2013).  

5.2.3 Canopy growth and crop yield observations 

Plant height (cm) and canopy cover (%) data were collected to estimate the can-

opy growth. The distance between the soil surface (basal end of stem) to the upper 

most tip (shoot apex) of the main stem was considered as plant height (Deblonde 

and Ledent, 2001). Decreases in plant height because of increases in ridge height 

during hoeing and earthing-up were estimated and data were corrected. The 

amount of intercepted radiation can be determined using canopy cover measure-

ments (Boyd et al., 2002; Taye et al., 2012). The percentage of the canopy covered with 

green foliage was measured with a grid with dimensions that are a multiple of the 

planting pattern (0.75 m, between rows × 0.30 m, between plants) divided by 100 
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rectangles (Haverkort, 2018; Ospina et al., 2014). All rectangles at least half filled with 

green leaf were counted and the percentage canopy cover was determined (Boyd et 

al., 2002; Firman and Allen, 1989; Ospina et al., 2014). The center of the grid was 

placed on top (at center) of a selected plant, so that the shorter side (0.30 m) side of 

the grid was aligned with the ridge. In belg-2017, plant height measurements were 

taken six times per week for farms – Gircha and Gazesso, and for cultivars - Gudene 

and Suthalo. In belg-2018, those measurements were taken three times per week for 

farms – Gircha and Chencha; and for cultivars - Gudene and Belete. Canopy cover 

data were taken three times per week in belg-2017 for Gircha, and for cultivars - 

Gudene and Suthalo. Five randomly selected plants per plot were measured for can-

opy cover and plant height observations and the means of 15 plants are reported. 

Boyd et al. (2002) provided a detailed analysis of the relation between canopy 

cover and LAI. They provided data that suggest that the slope of this relationship 

could be influenced by the way the crop was managed. These authors also showed 

that when the duration of ground cover was used (a parameter they coined ground 

cover duration), the variation in tuber yield accounted for was equally large, or even 

higher, than when they used leaf area duration. 

The following yield and yield traits observations were systematically collected at 

the harvest date: total number of lateral and apical branches per plant at crop ma-

turity (Buck-Sorlin et al., 2009); number of marketable tubers per plant (80-300 g in 

weight and 30-60 mm in diameter); number of non-marketable tubers per plant (<80 

g in weight and <30 mm in dimeter); weight of (non)-marketable tubers per plant 

(kg) (Abbas et al., 2012). These data were taken from five randomly selected plants 

from the central two rows and the averages of the three plots are reported. The total 

yield per plot, i.e. the sum of the weight of marketable and non-marketable tubers, 

was calculated and the average of the three plots was reported. Note that in belg-

2017, the Tegecha farm is strongly affected by diseases, mainly late blight. In the 

following year; however, all farms were affected by different intensities of diseases. 

We did not quantify or rate disease observations. 

5.2.4 Statistical and mathematical data analysis approaches 

5.2.4.1 Crop growth and environmental variables relations 

For studying the correlations between the environmental and crop variables, we 

calculated and report the average weather and crop observations to daily, or 5-daily, 

or sub-seasonal (e.g. during P1), or seasonal temporal scales. We selected the Gircha 

site for the following reasons. First, our weather station has been operational since 

April 2016 in this site. It is located in the newly established highland crops horticul-

tural research Centre run by Arba Minch University. Second, the Gircha region is 

one of the best-known potato producing areas in the Gamo Highlands. Third, Gircha 

is the coolest amongst our farms and equipped with a DLS facility. For some data 
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collection or analysis, we selected Gudene from the improved and Suthalo from the 

local cultivars as these are the most widely improved and local cultivars cultivated 

in the Gamo Highlands, respectively. 

For studying the temporal variation of canopy growth as a function of environ-

mental variables, we considered P1 as the period between that time that the crop 

attains 10% and 90% of the maximum plant height. However, continuous measure-

ments of plant height data are not available for some cultivars and farms. Hence, for 

studying the correlation between weather and tuber number per plant, P1 was best 

estimated from other crop datasets. In these instances, we defined P1 as the period 

from crop emergence (50% of the plants emerged) to a week after the date of flow-

ering (50% of the plants flowered). We also considered average weather in P2 and 

P3 to study relationships between weather and tuber weight per plant. The starting 

date for P2 was one day after the end of P1. The end time of P3 was considered as 2 

weeks after the day of crop maturity. Maturity was defined as the onset of canopy 

senescence (when the vines started to become yellowish) (MacKerron and Davies, 

1986). We applied linear and quadratic statistical correlations to identify the relation 

between crop growth (plant height and canopy cover) and environmental variables.  

5.2.4.2 The daily crop growth and temperature sum 

Temperature sum (Tsum) explains plant development for most crops (Van de 

Geijn and Dijkstra, 1995). Crop growth, mainly during the early stages during emer-

gence and initial foliage expansion, is easiest related to the Tsum, i.e. the cumulative 

daily average temperature expressed in day˗degrees (d O C). Tsum is calculated using 

Equation ( 5.1 ).  

 

Tsum =  ∑ [
( 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛 )

2
] − 𝑇𝑏

𝑖 = n

𝑖 = 1

 
 ( 5.1 ) 

 

 

Note that the GEMS data showed that the lowest daily average temperatures was 

7 ᴼC and the highest was 30 ᴼC for all potato growing farms in both belg-2017 and 

belg-2018. As a consequence, the mean daily temperature, estimated from the mini-

mum and maximum temperatures on that day, in the potato growing locations in 

the Gamo Highlands was always above Tb (Haverkort, 2018; Khan, 2012; Spitters et 

al., 1989). 

5.2.4.3 Estimating harvest index using the cumulative incoming shortwave radiation 

The plot of cumulative crop growth and measured canopy cover against cumu-

lative incoming solar radiation (SW↓, cum) may be used to estimate how efficiently the 

intercepted solar radiation is converted into crop dry matter (Boyd et al., 2002; 
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Haverkort, 2018; Khan, 2012). The dry matter is produced by the potato crop with a 

Radiation Use Efficiency (RUE) of ~ 2.0 g∙MJ-1. The RUE is the amount of dry matter 

(in g) produced per mega joule of global radiation intercepted. The intercepted ra-

diation is allocated to different parts of the plant (leaves, stems, tubers, and roots), 

depending on the crop growth stage. The efficiency of a cultivar in allocating dry 

matter to the tubers can be estimated from the harvest index (HI), the ratio of tuber 

weight over total plant weight. We estimated total plant weight as a function of the 

intercepted radiation and the radiation use efficiency as shown in Equation ( 5.2 ) 

(Haverkort, 2018).  

 

𝐻𝐼 =  
𝑌 × 𝐷𝑀𝐶

𝑆𝑊↓,cum × 𝑅𝑈𝐸
 × 100 

 ( 5.2 ) 

 

 

here, Y is tuber fresh yield at harvest in g∙m-2; DMC is dry matter concentration 

(DMC = 20%); SW↓,cum is the cumulative amount of SW↓ intercepted by the canopy 

in MJ∙m-2 and RUE can be from 1.07 to 2.24 g per MJ for potato crop (Burstall and 

Harris, 1983; Fahem and Haverkort, 1988; Sinclair and Muchow, 1999), but here, we 

assumed RUE to be 2.0 g∙MJ-1. The total dry matter accumulation is directly propor-

tional to the total amount of intercepted radiation in many crops including potato 

(Allen and Scott, 1980; Oliveira, 2015). For the entire crop growth period, SW↓,cum 

can be calculated as (Haverkort, 2018; Ingram and McCloud, 1984; Spitters, 1987):  

 

𝑆𝑊↓,𝑐𝑢𝑚 =  ∫(𝑓𝑡 × 𝑆𝑊 ↓𝑡)𝑑𝑡  ( 5.3 ) 

 

 

where, ft is fraction of canopy cover observed on daily base and SW↓t is the aver-

age incoming shortwave radiation in MJ∙m-2 on that day. 

5.3 Results 

5.3.1 The role of environmental variables on canopy growth in the canopy 

buildup stage 

In this section, we study how the potato crop grows during the canopy buildup 

phase (P1, see Figure 5.1) in terms of plant height and canopy cover as a function of 

environmental conditions. Previous studies have shown that Tsum is a good predic-

tor of canopy growth during P1 of the crop development stage in temperate climates 

(Haverkort, 2018; Kooman and Haverkort, 1995a; Mazurczyk et al., 2003).  
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5.3.1.1 Canopy cover and temperature sum 

Figure 5.1 presents a schematic overview of canopy growth in terms of calendar 

days for temperature regimes. Figure 5.2 presents the observed quadratic correlation 

between Tsum (d ᴼC) and canopy cover (%) for the Gudene (a) and Suthalo (b) culti-

vars in Gircha in belg-2017. The linear regression between canopy cover and Tsum 

in P1, has an r2 of 0.98 for Gudene and an r2 of 0.96 for Suthalo. Haverkort (2018) also 

explained that canopy cover showed a linear relation with Tsum in P1. However, as 

Figure 5.2 shows, the relation is better described with a quadratic than linear rela-

tion, in which the r2 is improved to greater than 0.99 for both cultivars. We also cal-

culated the rate of increase in the canopy cover as function of other environmental 

variables, but the correlations were poor (not shown here).  

 

Figure 5.2 | Measured canopy cover (%) as function of Tsum (d ᴼC) for improved cultivar Gudene 

(GUD) (a) and the local cultivar Suthalo (b) during belg-2017 in Gircha. The canopy cover – Tsum curve 

shows a quadratic relation. The lines in each plot show the quadratic function curve (canopy cover = 

slope1 × Tsum2 + slope2 × Tsum + intercept) and the quadratic correlation coefficient (r2) are shown.  
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5.3.1.2 Plant height and temperature sum 

In Section 5.3.1.1, we showed canopy cover described in a quadratic function of 

Tsum. Besides the canopy cover, Tsum also explains the plant height. Here, we will 

study the relationship between plant height and Tsum. Figure 5.3 shows how plant 

height relates to the cumulative temperatures during P1.  

 

Figure 5.3 | Measured plant height (cm) as function of Tsum (d ᴼC) for Gudene (GUD) (a,b,d,e) and 

Belete (BEL) (g,h) and Suthalo (SUT) (c) during belg-2017 and belg-2018 represented by suffix 17, and 

18, respectively. The experimental farms are Gircha (Gir), Gazesso (Gaz) and Chencha (Che). (f) and 

(i) show combinations (a series of data combinations for a cultivar for all sites and seasons for linear 

regression calculation only) of Gudene (black axes) and Belete (red axes) cultivars, respectively. The 

lines in each plot show the linear function line (plant height = slope × Tsum + intercept); r2 shows the 

linear correlation coefficient; and the yellow shades (a,c) show a period with dips in the rate of increase 

in plant height – Tsum curves, which will be discussed in the following section.  
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The plant height is strongly correlated with Tsum (Figure 5.3). The linear corre-

lation showed an r2 > 0.98 for the improved and local cultivars. The correlation was 

large for the medium-high (Chencha, 2765 m) and high parts of the mountains (Gaz-

esso and Gircha > 2850 m) parts of the mountains, both in dry (belg-2017) and wet 

(belg-2018) seasons. The combined r2 of Gudene in three farms and two belg seasons 

gave an r2 value of 0.95 (f). Similarly, Belete in Gircha and Chencha showed an r2 of 

0.97 (i).  

The slopes of the lines are in the order of 0.1 cm∙(d °C)-1 with variations of tens of 

percents between varieties and years. The Belete cultivar grew faster than the Gudene 

cultivar in Gircha in belg-2018. For the other cultivars and locations, the data were 

too sparse to explain. The high correlation coefficients between Tsum and plant 

height indicate that the variability in growth rates within a growing season was 

small. Nevertheless, there are variations, which we will study in more detail in Sec-

tion 5.3.1.3. 

Our results indicate that Tsum did not exclusively explain growth in plant height 

in P1. The Tsum – plant height curve deviated from linearity for some periods in P1 

for some cultivars and environments. The periods characterised by a slowdown in 

the growth rate are shaded in Figure 5.3a,c. These deviations need additional envi-

ronmental variables to be explained. This will be presented in detail in the following 

section.  

 

5.3.1.3 A further look at the plant height – temperature sum curve 

Figure 5.4b shows a day-by-day data analysis to the dip in the rate of canopy 

increase marked by the yellow shaded region Figure 5.3a in for the improved and 

Figure 5.3c for the local cultivars. 
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Figure 5.4 | The correlation between Tsum (d ᴼC) and plant height (cm) for Gudene (a) and Suthalo (b) 

cultivars at the Gircha farm in belg-2017 at the times that the dips in the rate of increase in plant height 

occurred (We zoom in into the highlighted spots using daily data) in Figure 5.3a and c. The daily total 

precipitation (mm∙d-1) (blue y-axis), daily total SW↓ (MJ∙m-2∙d-1) (red y-axis), and soil moisture tension 

(ψ) (kPa) (green and inverted y-axis) are shown on the right-side y-axes. The +/bar/line plots’ colors 

correspond to the colors of the y-axes. (R1) shows moisture limited and (R2) radiation limited regimes 

during this part of P1. The thin grey line shows the linear correlation line. The cyan colored lines in 

the shaded regions show the linear trend for the moisture and radiation limited periods during P1. 

The ψ is an average of four records, which are measured at four soil depths (5, 10, 20, and 40 cm) and 

the averages of the four sensors are reported. Note that soil moisture sensors measure from 200 kPa 

(dry soil) to 0 kPa (fully saturated soil). 

In Figure 5.3a and c, we showed that the r2 was 0.99 for Gudene and 0.98 for Suth-

alo cultivars. However, for those highlighted data points in the figures, the r2 was 

slightly decreased for Gudene, 0.96 and Suthalo, 0.93 as shown in Figure 5.4a,b. In the 

figures, we marked periods with contrasting environmental features: R1 and R2 

with grey and yellow shades, respectively. 
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We call R1 – moisture and R2 – radiation limited regimes that influenced the 

canopy growth during P1. R1 was a dry period without precipitation. In this period, 

the soil moisture tension increased from 30 to 35 kPa. We also noted that the SW↓ 

was high. In this circumstance, the two potato cultivars responded differently. The 

growth rate of the improved cultivar – Gudene – dropped to 20% of the overall 

growth rate (0.03 cm∙(d °C)-1 compared to 0.14 cm∙(d °C)-1), while the local cultivar – 

Suthalo – kept growing at 64% of the overall growth rate (0.06 cm∙(d °C)-1 compared 

to 0.09 cm∙(d °C)-1). Apparently, the improved cultivar was more sensitive to soil 

moisture than the local cultivar as explained in R1.  

In R2, the soil was sufficiently moist (soil water tension decreased to 5 kPa) after 

having 70 mm of total precipitation. In this period; however, SW↓ declined from 20 

to nearly 10 MJ∙m-2∙d-1, which indicated an increase in cloud cover. Interestingly, we 

found a faster growth in the plant height per degree-day for Gudene (0.13 cm∙(d °C)-

1, i.e. close to overall) than for the Suthalo cultivar (0.01 cm∙(d °C)-1, 15% of the over-

all). In other words, in R2, the Gudene cultivar was more efficient in converting the 

limited radiation to biomass (here, in terms of vertical growth) than the local Suthalo 

cultivar. Note that the local seeds are not renewed for decades, which could influ-

ence crop growth rates. Thus, we showed that canopy growth was strongly corre-

lated with Tsum, but other secondary factors such as moisture availability, radiation 

intensity and intrinsic factors related to seed quality may influence the canopy 

growth too. 

5.3.2 Response of yield to variations in elevation, cultivar and environmental 

variables 

The previous section studied how the plant height and canopy cover developed 

during the canopy buildup phase (P1), mainly as a function of Tsum. In this section, 

we will study how yield and yield traits depended on variations in weather and 

edaphic variables in P1, P2, and P3 as influenced by topography and cultivar. 

5.3.2.1 Yield variations with topography and among cultivars 

Figure 5.5 shows how tuber yield varied across cultivars and elevations in the 

Gamo Highlands. The tuber yield (t∙ha-1) varied significantly among cultivars, with 

elevation and between belg seasons. In belg-2018, yields were nearly 50% lower than 

those in the previous year. Belg-2018 was 0.5 to 2.0 ᴼC cooler, SW↓ was 1.7 to 4.6 

MJ∙m-2∙d-1 lower, and precipitation was up to ~100 mm more than in belg-2017 de-

pending on the location (Table 5.1). In addition, the soil was >50% moister and > 1.0 

ᴼC cooler than in belg-2017 (data not shown). Besides the inter-seasonal differences 

in the environmental variables, agronomical conditions were different in those 

years. For instance, Tegecha (2383 m a.s.l.) was the only farm affected by late blight 

in belg-2017, whereas all farms were affected by the disease in belg-2018, although 
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the level of the outbreaks differed (based on our observations, but not quantified). It 

is remarked that the yield variations among cultivars were larger for higher yield 

farms and that yield variations with elevation were larger for productive cultivars. 

The figure also shows that there was a large variation in yield among cultivars 

and among farms at different altitudes. Particularly the elevational variation was 

difficult to explain and it did not show a clear pattern. This might be associated with 

differences in soil quality, while variation in crop management and disease intensity 

may conceal the effects of meteorology on crop growth. Yet, in the following sec-

tions, we will attempt to explain the variations in terms of environmental variables.  

 

Figure 5.5 | Yield (t∙ha-1) variations as a function of elevation (m) associated with the five farms in belg-

2017 (a) and six farms at different elevations in belg-2018 (b) as shown in Table 5.1. The x-axis shows 

the eight potato cultivars planted, in order of increasing mean yield (belg-2017). The white spaces in 

(b) represent missing data. Note that the y-axes are not scaled and each elevation point (not continuous 

in space) show an experimental site mentioned in Table 5.1. Furthermore, the yields during the two 

belg seasons are so different that the scales of the color-bars are different. The x-axis names with a ‘d’ 

superscript are local cultivars. The ‘x’ superscript in the y-axis show farms affected by diseases.  
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Figure 5.5 shows a substantial variation in the observed yield at 5 farms during 

belg-2017) (a) and at six farms in belg-2018 (b). In belg-2017, cultivar mean yield varied 

from 25 t∙ha-1 for Ararasa to 60 t∙ha-1 for Belete. However, in belg-2018, the yield and 

the variation were smaller ranging with yields from 7 t∙ha-1 for Ararasa and 48 t∙ha-1 

for Belete. It is interesting to note that the relative trend in yields among cultivars in 

belg-2017 was similar as in belg-2018. In both years, Belete performed best in terms of 

yield in the Gamo Highlands. However, comparing yields of the cultivars at a farm 

level showed that Belete was not everywhere the best performing cultivar. For exam-

ple, in the belg-2017, Jalene, Horro, and Suthalo showed the highest yield in Gircha 

(2985 m), Gazesso (2880 m), and Geresse (2298 m), respectively. Thus, this shows 

that selecting the best performing cultivar, in terms of yield, needs to be location 

specific. In belg-2018, a wetter season, we observed (not quantified) that crop dis-

eases such as late blight affected all farms but to a variable extent. 

Figure 5.6 presents the development of the canopy cover growth of the Gudene 

and Suthalo cultivars and the (cumulative) incoming radiation in MJ∙m-2 during belg-

2017. The SW↓ was large during the first part of the growing season (P1), character-

ised by absence of thick cloud covers and precipitation. The plant uses the radiation 

particularly for the canopy buildup and for initializing the tubers. After canopy clo-

sure typically at the end of May, the SW↓ decreased by 50%, although the intercepted 

radiation was larger because the canopy cover was now at its maximum. In this 

phase (P2 and P3), the plant used the majority of the intercepted light for growing 

the tubers. In the following sections, we will study how the tuber yield depends on 

environmental conditions in P2 and P3 and on the choice of cultivar. We hypothesise 

that radiation intensity and precipitation in P1 are important predictors of tuber 

number, realised at the end of P1. Subsequently, harvested tuber fresh weight per 

plant depends on the environmental conditions in P2 and P3. 
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Figure 5.6 | The observed canopy cover (%) (a) and the daily SW↓ (MJ∙m-2∙d-1) (b) during the crop 

growth period in Gircha farm in belg-2017. In (b), the cumulative SW↓ (MJ∙m-2) is shown on the right-

side y-axis. The cultivars are Gudene (improved) and Suthalo (local). The crop growth phases P1-P3 are 

slightly different for the two cultivars. 

5.3.2.2 Tuber number as a function of radiation and precipitation in P1 

Figure 5.7 shows the impact of SW↓ and precipitation in P1 on the number of 

tubers developed at the end of P1 for two cultivars in belg-2017 and belg-2018. For 

the local (Suthalo) cultivar, the tuber number was quite constant at around 20 tubers 

per plant. From our data, we were unable to find a clear relationship with radiation 

intensity and precipitation. With around 9 tubers per plant for the Belete cultivar, the 

number of tubers was lower than for Suthalo. The Belete tubers were 1.5 (2018) – 1.8 

(2017) times heavier than the ones of other cultivars. For the Belete cultivar; however, 

the tuber number decreased from 10.0 to 7.3 per plant with increasing SW↓. The 

larger yield of the Suthalo cultivar, as compared to Ararasa, Hunde and Kalsa, was 

attributed to the larger number of tubers per plant. 

The lack of a strong and physiologically expected relationship of the tuber num-

ber and radiation intensity may perhaps be explained by the high levels of radiation 

in the area. 10 MJ∙m-2∙d-1 is the equivalent of 230 W∙m-2 or 530 µmol PAR m-2∙s-1 for 

12 hours. With a light saturation point near 400 to 500 µmol PAR m-2∙s-1 (Gordon et 

al., 1997; Pleijel et al., 2002), the actual light intensity was larger than that most of the 

day, except during sunrise and sunset. 
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Tuber number per plant itself was generally poorly correlated (r2 = 0.11) with 

yield, except for the Suthalo cultivar (all farms in belg-2017 and belg-2018, r2 > 0.84) 

(not shown here). 

 

Figure 5.7 | Tuber number per plant (color bar with values shown by the scattered points) at harvest 

as a function of SW↓ (MJ∙m-2∙d-1) and precipitation (mm∙d-1) for the local (a) and improved (b) cultivars 

during belg-2017 (circles) and belg-2018 (stars). The SW↓ and PPT are mean values in P1.  

5.3.2.3 Number of branches and yield 

Figure 5.8 shows that the number of branches had quite a strong relationship 

with total yield, across all cultivars, at least in belg-2017. In belg-2017, the number of 

branches had a wider range than in belg-2018, as did the yield. In all experiments, 

the number of plants per m2 was the same (Section 5.2.2). The relationship may be 

explained by better light interception by the plant with more branches, suggesting 

that the number of plants per m2 could be increased. In belg-2018, there were a num-

ber of plots with less than 6 branches per plant, which impaired the otherwise posi-

tive relationship. Note that, in Section 5.3.2.1, we showed that the seasonal climates 

are significantly different in both years, which can influence the branch numbers 

(Table 5.1). However, number of branches might also be a reflection of physiological 

age of the seed tubers. The seed tubers in belg-2017 were from different origins 

whereas the seed tubers in belg-2018 were from the same origin. 
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Figure 5.8 | Variations in the observed yield (t∙ha-1) for eight cultivars as function of total number of 

branches at maturity (#). The colors represent cultivars in four locations in belg-2017 (a) and six loca-

tions in belg-2018 (b). The linear coefficient of correlation (r2) and the linear regression equation are 

shown in (a); and no clear correlation is observed in (b). Note that scales along x and y-axes are differ-

ent for both panels.  

5.3.2.4 Days to maturity and yield 

Figure 5.9 shows the yield as a function of days taken to crop maturity (Section 

5.2.4.1). The figure shows a large variation in the number of days to maturity and 

tuber yield. In belg-2017 (Figure 5.9a), the results indicate an optimum yield (at 

around 100 days), which agrees with (Spitters, 1987). This trend was consistent for 

all cultivars. The highest yields were attained in the lower elevation areas (Geresse 

and Derashe), where the number of days to maturity was between 95 to 105 days 

(potato can be harvested in 90 days, and it can take up to 150 days in cooler climates 

such as northern Europe (FAO, 2008b)). The Tegecha site was also in this range, but 

yields were affected by diseases in 2017. At lower elevations, the temperature was 

too high and the foliage grew fast, while it did not result in bulking (Tsegaw, 2005). 

At higher elevations, the growth was slower, the onset of tuber formation occurred 

later, which eventually increases yield (Allen and Scott, 1980). In addition to the me-

teorology, soil moisture and nutrient availability can play key roles in determining 

the time to maturity and yield across farms, but we do not have these data available. 

In belg-2018 (Figure 5.9b), the yield and days to maturity data were less variable and 

would fit into the lower left part of Figure 5.9a. As such, the growing conditions in 

belg-2018 were much different from the ones in belg-2017, but the results did not con-

tradict the results of belg-2017. 
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Figure 5.9 | Variations in the observed yield (t∙ha-1) for eight cultivars as function of days to crop ma-

turity (d). The colors represent cultivars in four locations (Gaz7 – Gazesso, Ger7 – Geresse, Der7 – 

Derashe, and Gir7 – Gircha) in belg-2017 (a) and six locations in belg-2018 (b). Note that x and y-axes 

ranges are different for both panels; and the colors (e.g. red dots and line – Belete and yellow dots and 

line – Suthalo cultivars) represent a cultivar in different farms.  

5.3.2.5 Tuber fresh weight as a function of environmental variables in P2 and P3 

Figure 5.10 presents the tuber fresh weight per plant as function of SW↓, Tmean 

and soil moisture tension (ψ) in belg-2017 and belg-2018. The environmental variables 

did not show a clear correlation with tuber fresh weight in belg-2018. However, in 

belg-2017, tuber fresh weight at harvest showed an increasing trend with SW↓ and 

ψ, and a decreasing trend with Tmean. The following explanation is about belg-2017. 

The tuber fresh weight increased from 200 – 900 g/plant at 10.5 MJ∙m-2∙d-1 in 

Tegecha (belg-2017) to 800 – 2100 g/plant at 13 MJ∙m-2∙d-1 in Gircha in belg-2017. It is 

interesting to note that the variations (in terms of the standard deviations) in the 

tuber fresh weight per plant among cultivars increased significantly (from 500 to 

1000 g/plant) as the SW↓ increased (a). However, the 2 – 4 fold increase in tuber fresh 

weight seems large relative to the 30% increase in radiation. Therefore, we are care-

ful explaining the correlation as a causal relationship. The relation found may also 

be explained by warmer weather and decreased soil moisture in Tegecha (Minda et 

al., 2018a). It should also be noted that Tegecha farm was affected by diseases (Figure 

5.5).  
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Tuber fresh weight decreased from nearly 1400 g/plant with Tmean of ~ 11.5 ᴼC in 

Gircha to 500 g/plant with Tmean of 17 ᴼC in Tegecha in belg-2017. This is remarkable, 

because the optimal temperature for potato growth is often considered to be near 15 

to 18 ᴼC (Haverkort, 1990). However, yield depends on rate and duration of growth, 

where temperature near the optimum mainly affects the rate of growth. Gazesso is 

only slightly warmer and wetter than Gircha in belg-2017 (Table 5.1). These are indi-

cations that SW↓ and Tmean are probably not dominant drivers of tuber fresh weight 

in the Gamo Highlands and the relationships are induced by other variables. 

Tegecha also shapes the soil moisture – tuber fresh weight space. At the highest 

soil moisture tension (the driest soil), it has the lowest tuber fresh weight. Gircha, 

with the highest SW↓, coolest temperature and moderate soil moisture (as compared 

to Tegecha and Gazesso) had the highest tuber fresh weight per plant. However, 

considering that soil moisture and temperature are positively correlated and both 

are negatively correlated with temperature, it is difficult to attribute the variations 

in tuber fresh weight to the environmental variables. Interestingly, the difference in 

tuber weight among cultivars was consistent (Belete and Ararasa were the highest 

and lowest, respectively in both years) among belg seasons. 
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Figure 5.10 | Tuber fresh weight gram per plant (g/plant) at harvest as a function of mean SW↓ (MJ∙m-

2∙d-1) (upper row – a, b), Tmean (ᴼC) (middle row – c, d), and soil moisture tension (ψ) (kPa) (bottom row 

– e, f). The left panels show belg-2017 and the right panels indicate belg-2018. The cultivars were 

Ararasa – ARA, Hunde – HUN, Suthalo – SUT, Kalsa – KAL, Horro – HOR, Belete – BEL, Gudene – 

GUD, and Jalene – JAL as marked in colors. The weather station/farm names are indicated below the 

corresponding datasets shown in the scattered dots. The SW↓, Tmean and ψ are average values in the 

period from P2 to P3. Note that from farms in belg-2017 and belg-2018, those farms with available SW↓, 

Tmean, and ψ data records are included here. Note that the mean value of ψ at four soil depths (5, 10, 20, 

and 40 cm) are reported; and ψ = 200kPa is a fully dry soil and ψ = 0kPa means a fully saturated soil.  
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5.3.2.6 Partitioning of dry matter over parts of the plant 

The harvest index (Section 5.2.4.3) indicates the percentage of the produced dry 

matter allocated to the tubers. In western countries, the HI is relatively constant at 

around 75% and depends on cultivar traits and growing conditions. 

In our experiments, we estimate total produced dry matter from the cumulative 

amount of intercepted radiation. Figure 5.6 shows that the canopy cover for the local 

cultivar and the improved one, both grown at Gircha, developed similarly. How-

ever, the yield was significantly different for the two cultivars, resulting in a harvest 

index of 44% for Suthalo and of 80% for Gudene. This shows that Gudene invested 

more of its dry matter in the tubers than the Suthalo cultivar, and that choosing the 

right cultivar has an important effect on the yield. 

5.4 Discussion 

In this paper, we analysed a large number of observations of potato plant growth 

and yield for dependency on environmental conditions and physiological effects, 

aiming to find out if potato behaves similarly in Ethiopia as it does in temperate 

climate regions. Here, we will discuss the obtained results in relation to results from 

experiments in the western world, to highlight aspects that should be investigated 

in more detail in future experiments. 

 

Research question 1: How does canopy growth vary with environmental variables in P1 

across elevations, among potato cultivars, and between seasons? 

Temperature sum turned out to be a strong predictor of canopy cover and plant 

height in the canopy buildup phase (P1, shown in Figure 5.1), with explained vari-

ances (r2) > 0.90 and relatively similar slopes across cultivars and years (from Figure 

5.2 to Figure 5.4). Haverkort (2018) also explained canopy cover as a linear function 

of Tsum during P1. 

However, the growth rates appeared to also depend on cultivar and growing 

conditions, specifically light intensity and soil moisture (Minda et al., 2018a). The 

local Suthalo cultivar appeared less sensitive to drought than the improved cultivar 

Gudene (Figure 5.4). Ethiopian farmers indeed mention that local cultivars are more 

drought resistant (Abebe et al., 2013). Kolech et al. (2015) also mentioned that some 

of the local cultivars in Ethiopia are drought tolerant. In contrast, the canopy growth 

rate of Gudene was less sensitive to limited radiation. This suggests that the water 

and radiation use efficiency (RUE) of the two cultivars may be different. We cannot 

rule out that seed quality differed among experiments. The RUE of potato cultivars 

is between 1.07 and 2.24 g per MJ of intercepted radiation depending on cultivar and 

light intensity (Burstall and Harris, 1983; Fahem and Haverkort, 1988; Sinclair and 

Muchow, 1999). These findings are as expected (Kooman, 1995; Kooman and 
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Haverkort, 1995a) and we do not recommend further research in the field of re-

sponse of canopy cover and plant height to meteorological conditions. However, we 

do recommend further research into the performance of different cultivars under 

meteorologically or nutrient-limiting conditions with experiments under field con-

ditions or in controlled chambers, and with controlled seed quality. It is also worth-

while to investigate the RUE of the local and improved cultivars for better under-

standing of the Tsum and canopy growth relations.  

 

Research question 2: How does yield depend on physiological crop characteristics, such 

as number of tubers, number of branches, days to maturity, cultivar, and on meteorologically 

dependent variables, such as intercepted radiation and temperature? 

Yield and yield traits showed significant variations among farms, cultivars and 

belg seasons. There were consistent differences (factor 2) between the average yields 

at farms located at different elevations. Elevation itself; however, did not seem a 

strong predictor (Figure 5.5). We anticipate that soil fertility, management or climate 

may explain the differences between farms.  

Cultivar was an important predictor of yield variation (factor 3) across all farms 

and years. Even though some farms and cultivars had higher overall yield, there was 

no single farm that performed best with all cultivars and there was no single cultivar, 

which performed best at all farms. Apparently, a cultivar’s performance is specific 

for the conditions at a farm. 

The number of tubers per plant did not vary logically with radiation intensity 

and precipitation (Figure 5.7). However, the range of those variables was small and 

the variables were probably not limiting plant growth. The average number of tu-

bers per plant across all farms and cultivars was 14 in belg-2017 and 10 in belg-2018. 

Most cultivars had tuber numbers close to the average, except Ararasa and Hunde in 

belg-2018 (about half) and Suthalo (about double in both years). Tuber number was 

not a predictor of yield for most cultivars, because the weight of individual tubers 

varied among cultivars. Consequently, the number of tubers per plant does not seem 

to be a variable of interest for further research. Similarly, Onder et al. (2005) showed 

that tuber number per plant was not affected by irrigation, but the mean tuber 

weight and tuber yield increased quite strongly with irrigation level. Haverkort et 

al. (1990) found that tuber number per plant increased from 9 to 21 per plant when 

precipitation increased from 0.5 to 3 mm∙d-1 during the first 40 days after planting. 

The authors also showed that a further increase in precipitation did not lead to an 

additional increase in the number of tubers per plant. As the lower range of precip-

itation in our study was 4.0 mm∙d-1 (Figure 5.7), it appears that our results are in line 

with those of Haverkort et al. (1990).  

The number of branches per plant appeared to be a medium strong predictor of 

tuber yield (r2 = 0.5), while the plant density was identical in all experiments (Figure 

5.8a). In irrigation experiments, Yuan et al. (2003) showed that increases in irrigation 
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are associated with a larger number of branches (r2 > 0.8) and ultimately increased 

tuber yield. Taye et al. (2012) also found that the number of branches positively af-

fected light absorption; and tuber yield for a tuber crop (Plectranthus edulis, a crop 

comparable to potato, Solanum tuberosum L.) in Ethiopia. The result suggests that 

radiation interception was an important constraint and that light interception was 

not maximal yet in the conditions during the experiment. 

In belg-2017, the yield was optimal at around 100 days to maturity of the plant 

(Figure 5.9) (FAO, 2008b). This occurred predominantly at the somewhat lower 

farms (~2,200 m a.s.l.). The highest yields in Derashe can be associated with early 

tuberization, resulting in an extended period of tuber growth and/or increased rate 

of tuber bulking (Borah et al., 1960). At higher elevation (e.g. at Gircha), the growth 

was slower. This can be related to a delay in the onset of tuber formation, which 

extended the crop maturation period, but decreased yield (Allen and Scott, 1980). 

The more humid conditions also make the crop susceptible to diseases (Tufa, 2013). 

At farms at even lower elevations, the temperatures were so high that the crop grew 

very fast, but with decreased tuberization rate (Tsegaw, 2005). These results are very 

similar to the ones we found in Minda et al. (2018b), where we explained the opti-

mum yield at mid-levels in terms of radiation and soil moisture. With increasing 

elevation, the temperature becomes closer to the optimum temperature for potato, 

and the soil becomes moister. The lower temperatures and moister conditions in-

crease the duration of leaf wetness, which is an important predictor for the occur-

rence of diseases like late blight. At mid-levels, the potato crop finds an optimum 

between those effects. It is interesting to note that cultivars have different responses 

to radiation and soil moisture limitations in P1 (Section 5.3.1.3). Although this may 

be an interesting explanation, we need to be careful being too resolute, since the 

physiological age and size of the seed tubers may also cause differences in growth 

and yield. We also observed that the optimal number of days to maturity was dif-

ferent for each cultivar. We do not have detailed, cultivar-specific data about the 

growth of the tubers during P2 and P3, but this would definitely be worth further 

research. 

Additionally, we may have found evidence that an increase in radiation intensity 

from 10 to 13 MJ∙m-2∙d-1 in P2 and P3 increased yield from ~500 to ~1300 g/plant 

(Figure 5.10). However, these data were sparse and the range in radiation intensity 

was small. The suggestion that radiation interception was not saturated is remarka-

ble, because Figure 5.6 shows that the canopy cover was near 100% at the end of P1. 

However, the radiation intensities are strong enough in this tropical environment 

for lower leaf levels to still intercept significant amounts of radiation. This suggests 

that LAI may be a better variable to express radiation interception and photosynthe-

sis rates. Allen and Scott (1980) also showed that tuber dry weight increased nearly 

linearly from ~500 to 1000 g/plant as the total intercepted radiation increased from 
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500 to 1500 MJ∙m-2∙season-1. In their experiment, the total radiation interception de-

pended on the canopy cover or the LAI (Allen and Scott, 1980). Figure 5.10 also 

showed that tuber weight per plant increased with soil moisture tension.  

Curiously, we found that yield decreases with temperature from 11 to 18 °C, 

which is often mentioned as the optimal temperature for potato growth. Haverkort 

(2018) explained that the optimal daily Tmean for tuber production is 18 ᴼC and that 

tuber fresh weight decreases nearly linearly below and above that temperature. Van 

Dam et al. (1996) found that tuber dry weight was the highest at 15 ᴼC for both 

Spunta and Désirée cultivars. Timlin et al. (2006) explained that tuber dry weight 

and temperature showed a quadratic relation, in which the optimal tuber weight is 

attained at different temperatures (17-22 ᴼC), depending on the number of harvest 

days taken. Figure 5.10 shows that in our situation, fresh tuber weight (g/plant) was 

the highest when Tmean < 14 ᴼC and SW↓ > 16 MJ∙m-2∙d-1 as opposed to Van Dam et al. 

(1996) and Timlin et al. (2006). This contrasting result gives us the impression that 

temperature is not the real limiting factor determining the tuber fresh weight in our 

experiments. This underlines the importance of explaining the results carefully and 

designing a new field campaign, which enables us to disentangle soil, potato physi-

ology, and meteorological factors. 

With the available data, we could quantify the harvest index for two cultivars at 

Gircha. They appeared to be very different, 44 and 80%. This again shows that culti-

vars can behave very differently even though exposed to the same environmental 

and management conditions. 

We did not find evidence that potato is behaving differently in Ethiopia than in 

the temperate climates. However, temperature is rather constant in time and rela-

tively close to the optimal temperature. Close to the equator and in the belg season, 

radiation intensities are large and probably only limiting early in the morning and 

late in the afternoon. LAI, however, may affect the radiation absorption. 

We have collected abundant potato growth data, distributed over farms and cul-

tivars. Only plant height and canopy cover were monitored during the growing sea-

son. Yield, tuber number and tuber weight were only measured at the end of the 

growing season. Thus, during P2 and P3, we had more predictor variables than re-

sponse variables. In the future, we advise to use a simpler experimental structure, to 

better control seed quality, but to increase the frequency of the measurements during 

P2 and P3, particularly with respect to the below ground growth variables. Further-

more, we recommend to investigate the sensitivities of each cultivar to radiation, soil 

moisture and temperature and these variables should be monitored in detail during 

the entire growing season and different climatological years. Above/below ground 

yield traits (total dry matter, tuber number and tuber weight) should be measured 

frequently during the growing season. Because these require a large effort, the num-

ber of cultivars used should be reduced in favour of the number of replications. 
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5.5 Conclusions 

Based on the analysis of field trials with eight potato cultivars in six locations and 

during two seasons, our conclusions on the relationships of environmental variables 

and potato dynamics at different phases are the following. 

During the canopy buildup phase (P1), temperature sum is a strong predictor of 

plant height and canopy cover of potato in Ethiopia. There are only small variations 

in growth rate among cultivars, but cultivars appear to have diverging sensitivities 

to soil moisture and radiation limitations.  

Tuber yield is largely determined by growing conditions in the maximum cover 

phase (P2), and the canopy decline phase (P3), because tuber number (initiated in 

P1) is not a predictor of total yield. Yield is quite variable between farms at different 

elevations and between cultivars. The number of branches and radiation intensity 

appear to positively affect the yield, but the underlying processes remain to be quan-

tified and understood. Possibly, light interception and photosynthesis rates are en-

hanced in plants with more branches. Leaf Area Index may be an important con-

straint and it should be measured in future experiments. 

The choice of cultivar has a large effect on yield. Still no single cultivar had the 

largest yield at all farms. This suggests that cultivars have different sensitivities to 

environmental conditions. It may follow that cultivars have a specific optimal eleva-

tion zone to grow in.  
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General discussion 
 

 

 

The overarching aim of this PhD thesis has been to provide quantitative insights 

into the role played by meteorology and elevation on the dynamics of crop growth, 

more specifically the potato. The study area was located in the Gamo Highlands, a 

region in southwest Ethiopia with a complex topography and a high degree of land 

heterogeneity. The weather in this region is mainly driven by large-scale dynamics 

such as the intertropical convergence zone (ITCZ), and is also modulated by local 

meteorological flows such as the lake-mountain breezes. This region is also of inter-

est since potato, a crop which is sensitive to environmental cues, has been widely 

grown and plays a key role in ensuring food security in the region. These consider-

ations have opened an opportunity to investigate the role played by environmental 

conditions, i.e. meteorological and edaphic variables, on the growth and yield of po-

tato.  

The study of weather and crop dynamics in this complex terrain requires an ap-

proach that combines the disciplines of meteorology and crop physiology. From a 

methodological viewpoint, a strategy that combined both observations and models 

is followed in the thesis. The approach and strategy implemented could help us to 

obtain deeper insights into weather-crop relationships. To this end, a high-resolu-

tion state-of-the-art weather model was adopted. Meteorological variables were sim-

ulated using the weather model and supplied to an advanced process-based crop 

model. The modelling design was also complemented by field crop experiments con-

ducted near our network of automatic weather stations, installed at different eleva-

tions. This chapter puts the most relevant findings of the thesis in perspective and 

suggests potential ways to continue our research efforts to improve our understand-

ing of Ethiopian weather-crop dynamics. 
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6.1 The model perspective 

6.1.1 Meteorology at fine grid spacing 

Analysis of the results of the fine resolution (2 km × 2 km) of the Weather Re-

search and Forecasting model (WRF) (Skamarock et al., 2005) revealed significant 

spatial and temporal variations in the major meteorological crop drivers: minimum 

and maximum temperatures (Tmin and Tmax) and precipitation (PPT). The results are 

reported and discussed in Chapter 3. They showed a satisfactory performance of the 

WRF model compared with the observations. A specific finding was that the bi-

modal precipitation trend (i.e. precipitation maxima in April and October) in the re-

gion of interest is well simulated as compared to the data recorded at two elevations. 

This has been shown by Diro et al. (2008) and Korecha (2013). These observations 

were representative of the lowland (e.g. Arba Minch station) and highland (e.g. 

Chencha station) altitudes.  

However, there were some mismatches between the simulated and observed 

data. We suppose that the causes for these mismatches can be related to a number 

of cases, as mentioned by Tariku and Gan (2018). Here, we discuss two such cases: 

(1) uncertainty related to observations and (2) uncertainty related to the weather 

model. For the first case, both the number and quality of weather stations in Africa 

are limited (Dinku et al., 2014). Van Vooren et al. (2018) discussed uncertainties re-

lated to gauged-based weather stations, such as instrument failures, systematic 

measurement biases, losses due to evaporation and wetting, transmission, digitisa-

tion and storage errors. The authors also showed that gauged stations are installed 

in basins in mountainous areas, where they tend to underreport the actual areal 

mean precipitation. With regard to the second case, the following issues can be 

raised: the model’s representation of topography, the parameterization schemes em-

ployed, the land use/land cover (LULC) implemented and the soil moisture and soil 

temperature initialisation values.  

On the spatial scale, the modelled elevations were 62 m and 100 m above the 

actual elevations of Arba Minch and Chencha, respectively. Due to this mismatch in 

elevation, biases were observed in Tmin, with Mean Bias Error – MBE of -0.5 °C and 

Tmax, MBE of -3.5 °C, for the Arba Minch weather station. It has also been reported 

that the WRF model driven by the ERA-Interim reanalysis (Dee et al., 2011) under-

estimated the observed temperature in the Ethiopian Highlands (Abdelwares et al., 

2018; Van Vooren et al., 2018).  

Where the model’s temperature bias due to elevation representation is con-

cerned, it is possible to correct the simulated temperature using environmental 

lapse-rate calculated from the GEMS observed datasets following the recommenda-

tions of Kunz et al. (2007). However, there is no simple method to correct biases re-

lated to important meteorological crop drivers such as PPT and the incoming 
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shortwave radiation (SW↓). In this regard, one option would be to increase the spat 

ial resolution, for example, from 54 km to 2 km horizontal resolution. First, we 

showed that the stations’ elevations are much better represented in the fine resolu-

tion (e.g. the location of the Chencha station is smoothed and is shown as 1100 m 

lower than true elevation in coarse resolution as compared to 100 m above the true 

elevation in fine resolution). Second, the potato-growing zone, i.e. 1500 m to 3200 m 

a.s.l. as presented in Tufa (2013), is well represented in the fine resolution (51% and 

8% of the grids cells in the fine and coarse resolution respectively fall within the 

potato-growing zone). Third, the spatial details of weather in the highlands are bet-

ter represented in the fine resolution than in the coarse resolution. Fourth, the mod-

elled yield with the fine resolution is reasonable in terms of crop growth variables 

such as length of the growing season (LGS) and Leaf Area Index (LAI), while these 

measures lie within an unacceptable range in the coarse resolution (FAO, 2008b; 

Harper, 1963). In agreement with the benefits obtained by the use of the fine resolu-

tion model, Torma et al. (2015) also discussed the added values of nested Regional 

Climate Models (RCMs) in a complex topographic region in the Alpine region. The 

authors, for a fine resolution (0.11° as compared to 0.44° and 1.32°) RCM, showed 

improvement in modelled precipitation (with spatial correlation [r2] of 0.52-0.58 for 

0.11°, 0.30-0.45 for 0.44°, and 0.09-0.25 for 1.32° resolution model). 

For these reasons, moving to a finer spatial scale, for example 1 km × 1 km, could 

better represent the topography and explicitly resolve the sub-grid weather pro-

cesses such as cumulus clouds and its transition to deep convection (Hijmans et al., 

2005; Stensrud, 2007; Zhao et al., 2015). In particular, cloud onset, formation and in-

tensity could be improved from the high-resolution model study (Abdelwares et al., 

2018). Weather prediction based on a finer scale can also improve downscaling of 

the meteorological outputs to the field-plot scale. Doing so offers yield predictions 

(Headey et al., 2014) on rural farmer scale can help smallholders make farm-level 

decisions (Gibbons and Ramsden, 2008). The finer resolution model, in our case, has 

significantly improved simulated temperatures (explained in terms of MBE and 

RMSE) and annual total precipitation. We also want to raise our concern for simu-

lated precipitation on daily basis as compared to the observations. For precipitation, 

the coarse resolution showed improvements, as discussed in Chapter 3.  

Our result showed that WRF is dry-biased (with an MBE of -1.3 mm·d-1 for the 

Arba Minch station) around Lake Abaya and Lake Chamo and wet-biased for ele-

vated areas (with an MBE of +3.7 mm·d-1 for the Chencha station). In agreement with 

our findings, for the low elevation areas around the Lake Victoria basin in eastern 

Africa, Argent et al. (2015) showed that the WRF model underestimated the observed 

precipitation, with a Root Mean Square Error (RMSE) of 139 to 199 mm·year-1. On 

the other hand, Abdelwares et al. (2018) showed a moist bias (RMSE of between 2 to 

3 mm·d-1) over elevated areas in Ethiopia using the WRF model driven by the ERA-
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Interim reanalysis. See Willmott (1982) for model-observations statistical compari-

sons.  

Several authors have mentioned that the WRF model is sensitive to the model’s 

physics parameterization scheme options (Abdelwares et al., 2018; Tariku and Gan, 

2018). They recommended selecting the best-performing schemes from the set of pa-

rameterization options given in the WRF model namelist input file (e.g. six cumulus 

scheme options are provided). Pohl et al. (2011) and Tariku and Gan (2018) recom-

mended a selection of suitable parameterization schemes (e.g. cumulus convection, 

microphysics, and short- and longwave radiation) and model settings to improve 

forecasting performance. It is important to underline that suitable parameterization 

schemes may be different for different regions. Hence, the schemes should be se-

lected at regional level (Abdelwares et al., 2018; Argent et al., 2015; Tariku and Gan, 

2018) as shown in Table 6.1. Following these suggestions, we recommend selection 

of best-fitting parameterization schemes to the Gamo Highlands before longer-pe-

riod modelling is carried out. 

Table 6.1 | Recommended WRF model settings for the Lake Victoria Basin in East Africa; Ethiopian 

Highlands (Eastern Nile River Basin); Ethiopian Highlands (Nile River Basin), and this study.  

WRF Model  

descriptions 

 Source    

Argent et al. (2015) 

Abdelwares et al. 

(2018) 

Tariku and Gan 

(2018) This study 

Region Lake Victoria Basin Eastern Nile Basin 

(Ethiopian Highlands) 

Nile River Basin Gamo Highlands 

Model version 3.3 3.5 3.6.1 3.4.1 

Horizontal res. 10 km 10 km 12 km 2 km 

GCM forcing NCEP FNL ERA-Interim ERA-Interim ERA-Interim 

Sea Surface Temp 

(SST) forcing  

Optimum interpo-

lation SST data 

ERA-Interim ERA-Interim ERA-Interim 

Validation da-

tasets 

Satellite-obs. 

merged (TRMM 

3B42)  

Gridded datasets 

(PPT – GPCC, Temp – 

UDEL) 

Satellite (TRMM), 

Gauged (GPCC), 

Reanalysis (CFSR) 

Station observa-

tions  

Study period 1198-1999 (Oct-Dec) 1998-1999 (Jun-Sep, 

Dec-Mar) 

1999-2001 2001-2010  

Variables ana-

lysed 

PPT/Temp PPT/Temp PPT/Temp PPT/Temp/ SW↓ 

Cumulus convec-

tion 

Betts-Miller-Janjic Betts-Miller-Janjic Kain-Fritsch Explicit 

Planetary Bound-

ary Layer (PBL) 

ACM2 (Pleim) 

scheme 

Mellor-Yamada-Janjic 

(MYJ) 

MYJ Yonsei University 

(YSU) 

Shortwave radia-

tion 

Dudhia CAM Dudhia Dudhia 

Longwave radia-

tion 

Rapid Radiative 

Transfer Model 

(RTTM) 

CAM RRTM RRTM 

Microphysics  Eta WRF Single-Moment 

(WSM) 6-class 

WSM 3-class WSM 6-class 

Land Surface 

Model  

Noah Noah Noah Thermal diffusion  
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Regarding the temporal integration of our results, our weather and crop model-

ling covered a sub-climatology period from 2001 to 2010. Feeding a significantly 

growing population (currently, the Ethiopian population is estimated to be 110 mil-

lion (FAO, 2019) with an annual growth rate of 3% (CSA, 2013)) in a changing climate 

needs understanding of both the future climate and its impact on food security. In 

this regard, future climate projections (e.g. 2001 to 2019 base period and projections 

from 2020 to 2037, 2050, and 2100) with a range of assumptions (e.g. Representative 

Concentration Pathways – RCP2.6 to RCP8.5) could have a number of benefits. First, 

these datasets can be used to investigate how the future climate in the Anthropocene 

epoch will influence mesoscale and synoptic scale flows in the Gamo Highlands, as 

discussed by (Ashok and Yamagata, 2009; Marchant et al., 2007; Shongwe et al., 2011). 

Second, such long-term datasets can be employed in the study of regional climate 

change (e.g. to analyse trends in precipitation and temperature) and climate varia-

bility (e.g. to estimate the probability of extreme weather events such as droughts 

and heat-waves). Third, the data can be used as crop model input to predict crop 

yields (Sheffield et al., 2006); for example, to estimate future crop growth, diseases, 

and yields in the warming climate with elevated CO2 levels, in order to assist deci-

sion-making at local level (Haverkort and Struik, 2015; Hijmans, 2003; Schleussner 

et al., 2018) to anticipate changes in food security. 

Downscaling future climate data from global circulation models such as EC-

Earth Hazeleger et al., (2010; 2012) to study regional impacts and even further down 

to local scales could have enormous benefits. From such studies, climate change ad-

aptation decisions, for example decreasing the yield gap, can be recommended as a 

means of improving food security in sub-Saharan Africa (Hall et al., 2017; Newbery 

et al., 2016). Finally, the EC-Earth model can be used as an input for initial and lateral 

boundary conditions of the WRF model to study future climate scenarios at regional 

to local levels. This could help to explore the response of meteorological and potato 

crop variables influenced by elevation under future climate conditions. 

Fine horizontal resolution LULC maps, soil moisture and temperature model in-

itializations have a significant impact on improving meteorological forecast perfor-

mance (Kurkowski et al., 2003). However, there is still room for improvement re-

garding an update of the land properties. Hong et al. (2009) utilised the Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite datasets to drive the WRF 

vegetation fraction and to compare surface energy fluxes with the default WRF veg-

etation fraction. The authors showed that the model was highly sensitive to changes 

in the vegetation fractions employed. The modified vegetation fraction from the 

MODIS data improved energy flux simulations (e.g. for sensible heat flux, RMSE of 

63 W·m-2 and r2 of 0.81 as compared with 78 W·m-2 and r2 of 0.67 as were calculated 

for Texas in the USA). Wen et al. (2012) used LULC data obtained from the Earth 

Observing System from the MODIS satellite and initialised the WRF model with ob-
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served soil moisture and temperature observations. Their analysis using the imple-

mented model settings showed improved agreement in surface temperature (bias = 

0.9 °C and RMSE = 2.0 °C as compared to bias = 1.6 °C and RMSE = 2.7 °C), Relative 

Humidity – RH (bias = -7.8% and RMSE = 14.1% as compared to bias = -14.9% and 

RMSE = 19.1%), wind direction, and heat fluxes as compared with in situ observa-

tions. Using soil moisture (satellite and ground observations merged) and soil tex-

ture (field surveys) data in the WRF model improved simulated soil moisture values 

(Lin and Cheng, 2016). The use of remotely sensed LULC maps, soil moisture and 

temperature data in WRF models can be a key strategy to improve model perfor-

mance in the Gamo Highlands.  

6.1.2 Crop model 

The process-based crop model, GECROS (Yin and van Laar, 2005), was employed 

and compared with the observations described in Chapter 4. Although the model 

reasonably predicted the yield trend with elevation, it underestimated the yield ob-

servations. The main reason for the model-observation mismatch is that we set up 

GECROS based on data obtained from the literature; for example (Khan, 2012; Yin 

and van Laar, 2005) for genotypic characteristics model inputs as we lacked the de-

tailed field observations needed to calibrate the model. This task needs detailed ex-

periments to quantify model constants and parameters. We suggest a new alterna-

tive approach to potato crop modelling and forward a remark for crop modellers, 

which we explain as follows.  

1) GECROS is more versatile than most crop models; however, it is also complex in that 

the model requires several detailed input parameters (Haverkort and Struik, 2015; 

Ingwersen et al., 2018). Besides, most of the potato crop models are designed to function 

in the temperate region (De Wit et al., 2019; Haverkort and Harris, 1987). We learned 

that calibrating the model to the tropical mountainous environment and Ethiopian po-

tato cultivars is a challenge, as sufficient data are not available to do so. It may therefore 

be reasonable to use simple but robust models such as LINTUL-POTATO (Kooman and 

Haverkort, 1995a; Spitters, 1990) and WOFOST (Boogaard et al., 1998; De Wit et al., 

2019; Van Diepen et al., 1989). The LINTUL-POTATO model, for example, is based on 

model descriptions of accumulated dry matter as a function of intercepted solar radiation 

and light use efficiency, and the model uses fewer model inputs than GECROS 

(Haverkort et al., 2015; Shibu et al., 2010; Van Keulen and Stol, 1995). The LINTUL 

model is also widely used for potato modelling at global scale (Fleisher et al., 2017; 

Haverkort et al., 2004; Hijmans, 2003; Van Keulen and Stol, 1995), in the tropical en-

vironments (Fleisher et al., 2017; Pereira and Nova, 2008; Pereira et al., 2008), and in 

Ethiopia (Haverkort et al., 2012; Quiroz et al., 2014).  
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2) For crop modelers, we make the following point. A yield estimate, which can be compared 

with observed crop yield, can be simulated for the wrong reason. We modelled an attain-

able yield of ~20 t·ha-1 with weather data using coarse resolution data, which was nearly 

equal to the fine resolution model data, both datasets being with in the estimated yield 

range. However, the LAI and LGS were < 1.0 m-2·m-2 and 2 months, respectively, in the 

coarse model domain. These values are not acceptable for a potato crop (FAO, 2008b; 

Harper, 1963; Haverkort, 2018). Hence, we recommend that crop modelers focus on not 

only simulated yield but also check the acceptability of model outputs such as the LAI 

and LGS.  

6.2 The observational perspective 

In order to improve model performance, it is essential to have independent ob-

servation datasets at different elevations and on sub-daily temporal scales, as de-

scribed in Chapter 3. This chapter presents the strategy for setting up an appropriate 

weather network of observations that enables better evaluation of the model results. 

Weather data for the Arba Minch (1200 m a.s.l.) and Chencha (2700 m a.s.l.) stations 

were obtained from the Ethiopian National Meteorological Agency (NMA). How-

ever, station data in sub-Saharan Africa are known to have limitations: (1) poor data 

quality (e.g. large gaps in the data, and errors in the manually recorded data); (2) 

poor station spatial network density (e.g. stations are installed near main roads in 

urban areas and their numbers are limited in rural areas); and (3) accessing data is 

often a challenge (Dinku et al., 2014; Funk et al., 2015a). To overcome weather infor-

mation limitations in the Gamo Highlands, the Gamo Ethiopian Meteorological Sta-

tions (GEMS) network was established, as described in Chapter 4. 

The GEMS is a network of eight automatic weather stations (AWS), that has been 

operational since April 2016. Data generated by the GEMS were used to study both 

the local scale weather (e.g. lake-mountain breeze flows) and global weather phe-

nomena (e.g. tracking the ITCZ – Intertropical Convergence Zone to predict wet pe-

riods) and was deployed as crop model input as discussed in Chapter 4. Chapter 5 

discussed how these data were utilised to study the relationships between environ-

mental factors and crop growth. In 2017, in Ethiopia, there are only 22 first 

class/class-I (synoptic) stations, nearly 150 principal/indicative/class-II stations and 

nearly 155 AWS stations (NMA, 2018). The GEMS is a dense network (a station co-

vers an area of about 18 km × 18 km) compared to the national network of stations 

(where a station covers ~60 km × 60 km). However, our network does not sufficiently 

cover the heterogeneous landscapes of the Gamo Highlands (e.g. Lake Abaya and 

Lake Chamo, and landmass east of the lakes). Our estimation is that three additional 

AWS’s and one radiosounding observation station would strengthen the character-

ization of the meteorological state variables and their relationship to the formation 

of the thermally driven mesoscale flows on the slopes facing south-east (SE). One 
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AWS (additional sensors including lake temperature profiling) and two AWS’s 

should be installed on the other side of the lakes, so that the role of the lakes in mod-

ulating the weather dynamics in the Gamo Highlands can be effectively investi-

gated. Adding an upper-air observation (radiosounding) setup to the existing Arba 

Minch station would aid the study of the upper air profile (temperature, wind RH, 

and pressure) and evaluate the performance of the weather models in three dimen-

sions (Banks et al., 2016).  

The GEMS network is operational on the slopes facing SE on the Gamo High-

lands. On these slopes, south-easterly to southerly winds occur during belg precipi-

tation during May in belg-2017 as discussed in Chapter 4. The meteorology in the 

northwest (NW) facing slopes can be quite different. For instance, if the mountain-

valley winds converge on the SE slopes during precipitation on the NW slopes, di-

vergence can be expected. It would therefore be of interest to study the meteorolog-

ical dynamics using an additional GEMS network (three AWS’s: somewhere on the 

lower part of the slope, on the middle heights and at an elevated location on the NW 

slope) combined with remotely sensed data.  

Furthermore, blending the GEMS data with remotely sensed meteorological (pre-

cipitation, temperature and shortwave radiation) and soil moisture and temperature 

could help to improve the spatial resolution (to the same or higher resolution than 

the weather model). An example could be the cloud physical properties product de-

rived from visible light observations on board MSG (Meteosat Second Generation), 

which are available at a resolution of 3 km (http://msgcpp.knmi.nl). However, be-

cause most precipitation in the region develops during the afternoon and at night, 

the visible light observations are unfortunately of limited use. Previously, merged 

satellite and station observation datasets have been produced in Ethiopia and these 

improved the spatial extent and data quality of the observed data (Dinku et al., 2014; 

Funk et al., 2015b). High-resolution weather data in the complex topographic region 

can be used for weather model validation (spatially) and input for crop models for 

yield mapping. Similarly, the soil moisture (observed and remotely sensed merged 

data) data can be deployed to initialise soil models as inputs to crop models.  

Another important impact of meteorology on crop dynamics and storage is re-

lated to diseases. Crop diseases are observed in field experiments conducted during 

belg-2017 and belg-2018 as discussed in depth in Chapter 5. Potato crop diseases such 

as late blight – caused by Phytophthora infestans, and bacterial wilt – caused by Ral-

stonia solanacearum, are among the major threats to the Ethiopian potato agronomy 

sector (Abdurahman et al., 2017; Damtew et al., 2018). Here, we need to stress the 

major differences in both seasonal weather and crop disease observations among the 

six farms and eight cultivars studied in Chapter 5. In belg-2017, only the Tegecha 

farm, at 2383 m a.s.l., was affected mainly by late blight and we observed that most 

potato plants at more elevated locations in the Gamo Highlands were healthy. In the 

following belg season, however, all our farms were infected (although there were 
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differences in infection levels among farms and cultivars) by late blight, although 

crops on the experimental farms were much better than the farmers’ crops in terms 

of severity and incidence. The major difference between the two belg seasons was the 

weather, in that belg-2017 was warmer and drier while the following year was cooler 

and moister. The high late-blight pressure during the belg-2018 season may be asso-

ciated with the more humid atmosphere in that season (Johnson et al., 1996). The 

GEMS network’s leaf-wetness and meteorological data such as temperature, PPT, 

and RH data can be used to simulate crop disease conditions and to identify differ-

ences in disease pressure between the two belg seasons (Cao et al., 1997; Hartill et al., 

1990). 

There are some important observational strategies that we consider could im-

prove potato field experiments. They are (1) plot size design for robust yield esti-

mates; (2) preparation of planting material for realistic studies of the relationship 

between environment and potato crop; and (3) time-series monitoring of harvest in-

dex to understand the role of elevation on potato growth and yield. These points are 

discussed in the following paragraphs: 

1) The plot size design of our field crop trials was 3.0 m × 3.0 m with four rows, following 

the Randomized Complete Block Design (RCBD) in triplicates (Gomez et al., 1984). 

Data were collected from the central two rows (1.5 m × 3.0 m) and the average of the 

three plots is reported. However, Sukhatme (1947) showed that yield assessments with 

such small plot size lead to overestimation, which could be one of the potential reasons 

for the large divergence between modelled and observed yields described in Chapter 4. 

The author also suggested a larger plot design (~7.0 m × 7.0 m) in order to reduce bias. 

We recommend this design and select few cultivars for our future field trials. 

2) Disease-free planting material of well-defined physiological age is crucial to study the 

role of environment on potato crop growth and yield, especially when different cultivars 

are being compared (FAO, 2008b; Struik and Wiersema, 1999) as described in Chapter 

5. Advanced seed multiplication methods such as tissue culture, minituber production 

using aeroponics or hydroponics, but also true potato seeds, can be useful in this con-

nection (Chindi et al., 2013), because they can provide disease-free material and stand-

ardized physiological status. However, these methods are not only expensive for devel-

oping nations but also cause new limitations in that the crops developed from these kinds 

of propagation materials behave differently from those from normal seed tubers (Muthoni 

et al., 2013). We recommend adopting a simple approach to multiply potato seeds in a 

controlled way before experiments are carried out. The approach is to collect seed from 

several cultivars from different sources (i.e. agricultural research centres in Ethiopia) 

and conduct the multiplications in cool environments such as research fields at high 

altitudes, such as the Gircha Horticultural research centre in the Gamo Highlands. This 

approach was followed during belg-2018 in our experiments, as explained in Chapter 5. 

 



6. General discussion 

144 

 

 

 

 

 

 

3) As Chapter 5 quantifies and discusses, it was difficult to find a clear pattern and rela-

tionship between observed yield and environmental variables and elevation. For future 

studies, based on our findings, we recommend applying the RBCD plot size suggested 

by Sukhatme (1947) and planting material prepared as explained in ( 1) above. Follow-

ing the experimental designs, the field experiments also need to be carried out systemat-

ically to study the relationship between weather and crop growth in regions of complex 

topography. In the first belg year, we ought to test the performance of cultivars in a 

location such as Gircha. In the following belg season, we should analyzed the role of 

meteorology and elevation on a cultivar (e.g. at Gudene) at different elevations. With 

this experimental plan, continuous monitoring (for example, on a weekly basis) of above-

/below-ground biomass is needed. Such a measurement plan would give us a deeper un-

derstanding of the role of weather and elevation on potato cultivars and yields, which we 

found in our modelling experiment, described in Chapter 3. In the third belg season, we 

should repeat the same experiment as in the previous year, but now with several culti-

vars. Our study focused on the belg season’s potato agronomy because there is sufficient 

moisture to farm potato, and crop diseases are less prevalent during that season. How-

ever, farmers in Ethiopia also grow potato during the meher season. Hence, it would be 

of interest to repeat the same experimental design for comparative study among the two 

seasons (e.g. specifically crop disease pressure among seasons). 
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To conclude, in this thesis we adopted a combined approach of modelling and 

observations to study weather and the interplay between weather and crop dynam-

ics in a complex topographic region in the Gamo Highlands in southwest Ethiopia. 

The region is of interest because weather varies on small spatiotemporal scales and 

the potato crop plays a key role in improving food security in the region. The find-

ings indicate that there are still gaps in both modelling and observations that can be 

improved. With respect to modelling, there are two potential areas for improvement.  

 Increasing the horizontal resolution of the weather model to 1 km. This can better re-

solve topography and fine scale weather processes. The improved resolution would en-

able us to simulate crop yield to nearly plot-scales.  

 Using less complex crop models such as LINTUL-POTATO.  

With respect to observations, there are three areas in which improvements can 

be implemented.  

 Intensifying the GEMS network to improve our understanding of weather and crop 

dynamics in the Gamo Highlands. 

 Merging the GEMS datasets with remotely-sensed products for a better understanding 

of spatial variations in weather.  

 Adopting systematic strategies such as studying a range of different cultivars at a sin-

gle location and a single cultivar at different elevations, and comparing disease preva-

lence during the belg and meher seasons in field crop experiments.  
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Conclusions 
 

 

 

The aim of this PhD project was to provide quantitative insights into the role 

played by meteorology in the dynamics of the potato crop in a tropical highland 

environment. To this end, our research strategy and approach combined fine-reso-

lution numerical modelling with a dense network of meteorological stations. The 

resulting meteorological datasets were used to drive a crop growth model whose 

output was compared with data from field trials at various altitudes and in different 

seasons. The region under study was the Gamo Highlands in southwest Ethiopia, 

which plays an important role in the national potato production of Ethiopia. How-

ever, little attention has been paid to how different spatiotemporal weather scales 

influence the different stages of crop growth and yield. In this thesis, I have at-

tempted to repair the gap in our knowledge of this area. The thesis is based on three 

research questions presented below. Here, I provide a summary of my main find-

ings. 

 

Steep orographic gradients and heterogeneous landscapes significantly influence 

weather in mountainous regions, so weather models require fine resolution to ade-

quately describe topographic details and to resolve the associated atmospheric pro-

cesses. Currently, a typical General Circulation Model (GCM) employs a horizontal 

resolution of approximately 50 km. Simulated meteorological products of such a 

global scale model give rise to large biases in weather outputs as compared with 

observations. This is because the coarse resolution models smooth out topographic 

variations and thus cannot explicitly describe the true effect of topography on mete-

orology. Since the outputs of these models are used as inputs for crop growth mod-

els, the simulated crop yield and variables related to crop dynamics are likely to be 

 

Research question 1: How do complex topography and heterogeneous landscapes affect 

weather and crop dynamics on different spatiotemporal scales? 
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of poor quality. My aim in this first question was therefore to study how a fine res-

olution model with a 2 km horizontal resolution can improve our understanding of 

the weather and crop dynamics in a region with complex terrain and land-use vari-

ability – the Gamo Highlands. I focussed primarily on the major meteorological crop 

drivers such as precipitation (PPT), temperature (Tmax and Tmin) and the incoming 

shortwave radiation (SW↓). Spatial and temporal variations in the weather elements 

significantly influence key crop growth variables such as plant height, the Length of 

the Growing Season (LGS), Leaf Area Index (LAI), dry matter distributed between 

above- and below-ground plant biomass, yield and yield components. As a core 

strategy, I coupled (one-way) to the Weather Research and Forecasting (WRF) model 

output with the Genotype-by-Environment interaction on CROp growth Simulator 

(GECROS) model; the crop growth variables (LGS and LAI) were carefully investi-

gated. 

To this end, I employed the WRF model for weather simulations, studying a 10-

year period to represent a sub-climatological duration and determine the interan-

nual weather variabilities. I also selected the belg (February to May) season, as this 

is the most important cropping season for potato cultivation in Ethiopia, because soil 

moisture is fed by important rainfalls. Furthermore, I identified climatologically nor-

mal (2006) and anomalous (2008 and 2010) years drawn from the 10-year datasets. 

The model’s boundary and initial conditions were prescribed by the ERA-Interim 

reanalysis data. The model was run in four domains centred on the Gamo High-

lands, in which the outer coarse (52 grid-points and each grid with 54 km × 54 km 

model resolution) and the inner, nested fine resolution (42 grid-points each with 2 

km × 2 km model resolution) domains were chosen for further analysis. The coarse- 

and fine-resolution domains were run with temporal resolutions of three-hourly and 

hourly periods, respectively. Weather observations at representative elevations 

(Arba Minch in the lowlands, at 1200 m above sea level (a.s.l.) and Chencha in the 

highlands, at 2700 m a.s.l.) were used to evaluate the performance of the WRF model. 

The meteorological outputs and soil variables accessed from the ISRIC soil database 

were used as input to the GECROS crop model. 

The analysis showed that the WRF model’s performance was reasonable in rep-

resenting the trends in the annual cycles of the weather elements as compared to the 

stations’ observations, with an r2 > 0.89 for precipitation for the fine-resolution do-

main. On daily averages; however, there was a large model bias. In short, the fine 

resolution output tends to a cool bias (mean bias error [MBE] of -3.2 ᴼC for Tmax), 

underestimated precipitation in the lowlands (e.g. Arba Minch, MBE of -1.3 mm∙d-1), 

but overestimated it in the highlands (e.g. Chencha, MBE of 3.7 mm∙d-1). Temporally, 

the model analysis showed a clear interannual variability. The simulated PPT from 

2001 to 2010, for instance, showed that 2006 (1162 mm∙belg-1), 2008 (740 mm∙belg-1) 

and 2010 (1755 mm∙belg-1) were the climatologically normal, driest, and wettest belg 

seasons, respectively. The model findings also revealed significant spatial variations 
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in the highlands. To mention, the temperature is dropped aloft in agreement with 

the environmental lapse rate of ~6 ᴼC/km. The 10-years belg averaged Tmin and Tmax 

fell from around 20 ᴼC and 30 ᴼC in the valley around Lake Abaya and Chamo to 

around 5 ᴼC and 15 ᴼC at the summit of Mount Guge, respectively. PPT increased 

almost exponentially from about 200 mm∙belg-1 in the lowlands to 1200 mm∙belg-1 in 

the highlands, while SW↓ also significantly fell by about 150 W∙m-2 in the Gamo 

Highlands.  

An analysis of the crop model datasets identified three different potato yield 

zones in the highlands. The classification is based on the representative potato crop 

variables: LGS and LAI. The three yield zones were: a zone with linearly increasing 

yield – Zone-I (1100 to 1500 m a.s.l.); a zone with constant yield – Zone-II (1600 to 

2650 m a.s.l) and another zone with linearly increasing yield – Zone-III (> 2950 m 

a.s.l). While the elevation is increasing, the modelled crop yield maintained nearly 

constant in yield Zone-II. I explained this unexpected result based on findings of 

model sensitivity experiments. This is related to the contrasting roles of precipitation 

and temperature in explaining yield. First, yield decreased as precipitation increased 

with altitude due to increased soil nutrient leaching. Second, yield increased when 

the temperature was becoming cooler due to larger LGS. These opposing roles of 

precipitation and temperature regimes in yield simulations resulted in a compensat-

ing effect on yield.  

Attainable yield simulations driven by the coarse and fine resolutions WRF 

model outputs yielded similar results (~22 t∙ha-1). However, the LAI based on the 

coarse resolution grid was too low (~ 1.0 vs 3.0 m2∙m-2), and moreover, the crop com-

pleted the growth cycle too early (~60 vs 140 days), which are physically not accepta-

ble for the potato crop. These unacceptable model outputs are obtained because of 

the warmer and drier weather simulated by the coarse resolution model. I attributed 

these to the smoothed topography of the model (e.g. in the coarse resolution domain 

Arba Minch and Chencha elevations deviated by -400 and +1100 m respectively from 

the observed measurements), causing the weather to resemble that in the valleys 

throughout the domain. I emphasise that it must be kept in mind that a comparable 

yield with observed data may be obtained whilst growth variables such as the LGS 

and LAI are unsuitable for the crop involved. For this reason, agrometeorological 

modellers need to investigate not only yields but also reasonable crop growth vari-

ables of the model outputs.  

From this study, I learned the need for accurate observations of weather and crop 

growth in space and time. In studying the impact of weather on potato growth, it is 

essential to employ an adequate network of stations to quantify the role of local to 

synoptic weather scales in complex terrain. However, observations on sub-hourly to 

hourly temporal scales with reasonable spatial coverage are seldom available in sub-

Saharan Africa. In my follow-up investigation, I therefore deployed a relatively 

dense network of automatic weather stations capable of providing weather/edaphic 
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variables records in sub-hourly temporal scales. The spatiotemporal variations in 

weather were studied as a function of altitude, and their impact on potato crop 

growth during belg season of 2017 was analysed. With this new weather-crop obser-

vational datasets, I formulated the following question:  

 

For high-quality and sub-hourly interval weather records, my two co-authors 

and I installed the Gamo Ethiopian Meteorological Stations (GEMS) network in the 

three yield zones specified in Chapter 3. The GEMS network consists of six (currently 

eight) automatic weather stations that have been operational since April 2016. The 

stations are systematically distributed and installed in the three yield zones, and 

cover a 30-km radius. The stations are installed as follows: in yield Zone-I: Arba 

Minch (1200 m a.s.l); in Zone-II: Tegecha (2091 m a.s.l), Zigiti (2414 m a.s.l), Chencha 

(2753 m a.s.l) and Gazesso (2847 m a.s.l); and in Zone-III: Gircha (3015 m a.s.l). This 

network of stations enabled me, for the first time in Ethiopia, to quantitatively in-

vestigate meteorological crop drivers in a complex and relatively large topographic 

region. Meteorological variables such as air temperature, PPT, SW↓, relative humid-

ity, sea-level pressure [SLP], wind, etc.; soil moisture and soil temperature (at 5, 10, 

20, and 40 cm soil depths); and leaf-wetness (two sensors to the east and west of each 

station) data were recorded at 15-min temporal resolution. This high-frequency da-

tasets enabled me to obtain a quantification of meteorological and edaphic factors 

on a sub-hourly scale and at a reasonable level of spatial detail.  

Close to the GEMS network, I commenced potato crop field trials (five locations 

and eight cultivars) on smallholder farmers’ lands in belg-2017. The field experi-

mental setup is discussed in detail below. To answer this question, the GEMS net-

work datasets were used as input to the GECROS model, which calculates crop 

growth and yield at several elevations in the Gamo Highlands. The same GECROS 

model setup was deployed as for the previous question. I compared the attainable 

crop yield and crop growth variables such as the LGS and maximum plant height 

(MPH) with the observed datasets from the field trials, and performed model sensi-

tivity analyses to test the crop model’s sensitivity to variations (in elevations and the 

systematically manipulated GEMS datasets) in the meteorological observations. 

The GEMS observations and GECROS model outputs produced the following 

findings. The belg season’s mesoscale and synoptic weather phenomena showed 

large temporal (diurnal to intraseasonal) and spatial variations in the Gamo High-

lands. At the mesoscale level, strong daytime flows could be observed. The day 

 

Research question 2: What can we learn from a dense network of meteorological-soil 

observations with respect to the crop growth variables (e.g. length of growing season and 

attainable yield)? 
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flows are combinations of lake breezes – driven by the lake-land temperature differ-

ence; anabatic flows – updrafts developed due to differentially heated mountain 

slopes and are cross-valley flows; and valley winds – along-valley flows. At night, 

however, local and weaker flows as compared to the daytime were observed. These 

flows can be mountain breezes – again driven by the mountain-lake temperature 

difference; katabatic flows – thermally driven and cross-valley flows; and mountain 

winds – along-valley flows. The observed SLP and wind observations and reanalysis 

data displayed a strong dependence of synoptic flows (e.g. the Intertropical Conver-

gence Zone [ITCZ]) on a monthly basis. February (dry) is more mesoscale domi-

nated, while May (wet) was a synoptic-scale weather system influenced month dur-

ing belg-2017. In February, lakes and mountains played major roles, while in May, 

large-scale features such as the ITCZ played a prominent role. Subsequently, the 

day-night weather contrast (e.g. temperature and wind flow) were much larger in 

February than in May. An interesting finding was that the ITCZ overhead the Gamo 

Highlands (in mid-March) whereas, the main wet period was during May in belg-

2017. This shows that the ITCZ and precipitation belt did not coincide. Moreover, 

precipitation seldom occurred during the day, mostly falling in the late afternoon to 

night period. These weather phenomena could be associated with moisture conver-

gence between south-easterly to southerly synoptic winds, with local flows trig-

gered by afternoon solar heating and complex terrain. 

Data from the potato field trials and model experiment revealed wide variations 

in the LGS and MPH and attainable yield at different elevations in the Gamo High-

lands. The GECROS crop model was sensitive and reproduced well the trends in the 

observed growth variables and yield across elevations. However, the model greatly 

underestimated the observed yield, which revealed the need to calibrate the model 

specifically for Ethiopian cultivars in the tropical mountainous environment. Fur-

thermore, model sensitivity experiments based on fixing a weather variable to be 

constant (setting the seasonal average value for all the days of the growing season) 

while maintaining the others as observed, showed that precipitation was the most 

important meteorological factor (mainly in drier and warmer seasons such as belg-

2017) in determining yields. 

The earlier studies discussed in Chapters 3 and 4 revealed significant spatial 

(lowlands, midlands and highlands) and temporal (diurnal to interannual scales) 

variations in weather in the Gamo Highlands. Ultimately, these variations caused 

large differences in crop growth (e.g. variations in LGS and LAI as a function of ele-

vation) and yield (e.g. dry-matter distribution in the plant parts and three yield zones 

explained in Chapter 3) up in the Gamo mountains. These findings triggered and 

led me to design the environment-crop correlational study as presented below. 
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My third study thus had the following motivation: much of our knowledge re-

garding environmental factors and crop growth relationships has been gained in the 

temperate climate majorly in the developed world. Nevertheless, potato cultivation 

is expanding, and its production has shown an increasing trend in the developing 

world, while it is beginning to show a declining trend in developed countries. This 

shows that potato has become an important crop in food security in developing 

countries, among them specifically Ethiopia. This study therefore attempted to ana-

lyse the relationship between environmental conditions and potato growth at differ-

ent altitudes. I further explored how the growth and yield of the potato crop vary as 

a function of environmental conditions in different potato cultivars and stages of 

crop growth. Therefore, this study for the first time linked variations in environmen-

tal variables in several spatial and temporal scales to potato crop dynamics in Ethi-

opia. To realise this objective, I asked the following research question:  

 

In order to answer the question, I designed potato crop field trials in 2017 and 

2018, which turned out to become two climatologically contrasting (drier and wetter 

vs warmer and cooler) belg seasons. These trials were planned in such a way that 

they would complement the GEMS network as described in the previous question. 

Data from the GEMS network were used for the environment – crop growth varia-

bles correlation study. I planted six improved (Belete, Gudene, Jalene, Ararasa, Horro, 

and Hunde) and two local (Suthalo and Kalsa) cultivars at five farms in 2017 and six 

farms in 2018 in the Gamo Highlands. The Randomised Complete Block Design 

setup was implemented in triplicates. The plot size was 3 × 3 m2 with a plant density 

of 4.4 plants∙m-2. Fertiliser rates and farm management practices were identical at all 

farms in both belg seasons and according to recommendations. Representative crop 

growth data (e.g. plant height and canopy cover), yield and yield traits (e.g. tuber 

number and weight per plant) were collected either on a daily basis (e.g. plant 

height), at crop maturity (e.g. branch number per plant) or at the end of the season 

(e.g. number of tubers per plant). For the sake of robust statistics, five plants from 

the middle two rows were continuously monitored, and averages of 15 plants (from 

three plots) are reported. These crop data were correlated with environmental (me-

teorological and edaphic) data calculated on daily, sub-seasonal, seasonal, and in-

terseasonal temporal scales during the two years of the study. 

  

 

Research question 3: How do variations in the observed environmental variables corre-

late with crop growth and yield on sub-seasonal, seasonal, and interseasonal scales in the 

Gamo Highlands? Can we identify periods in which the meteorological crop drivers have 

a different influence on potato growth characteristics? 
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I made this set of observations in three important phases of potato growth: can-

opy buildup (P1), maximum canopy (P2) and canopy decline (P3). In P1, canopy 

growth (i.e. plant height and canopy cover) and number of tubers per plant were 

associated with environmental variables observed during the growth phase. To ex-

plain further, I calculated temperature sum (Tsum) and correlated it with the canopy 

growth observation during P1. Tsum can be defined as the sum of the daily mean 

temperatures (Tmean) less the base temperature (Tbase: if 0 ᴼC ≤ Tmean ≤ 5.5 ᴼC). Tuber 

weight per plant was correlated with environmental factors during P2 and P3. The 

total dry matter stored in each plant was calculated as a function of intercepted ra-

diation throughout the growing season.  

Analysis of the data showed that Tsum was a strong predictor (r2 > 0.95) of can-

opy growth during P1. This is observed irrespective of cultivar type in a given farm, 

farms at different altitudes and during both seasons. However, there are some peri-

ods during which Tsum explained crop growth to a slightly lesser extent. Those var-

iations in Tsum and the crop growth curve were further explained in terms of pre-

cipitation, SW↓, soil moisture and cultivar type (i.e. either an improved or a local 

cultivar). As such, the local cultivar – Suthalo performed better under drought con-

ditions, whereas the improved cultivar – Gudene was more efficient under reduced-

radiation regimes. These explanations are based on increases in plant height per de-

gree-day. The results also showed that below-ground traits such as tuber number 

and weight and tuber yield are poorly explained by weather and edaphic variables. 

Among the crop-related variables, the number of branches per plant (data collected 

at crop maturity) well correlated with tuber yield at the end of the season. The poor 

correlations between environmental conditions and yield traits demonstrate the 

need for further investigation and continuous monitoring of above- and below-

ground biomass at different elevations for both improved and existing local culti-

vars. Furthermore, I recommend tuber seed multiplication of all the available culti-

vars in the same environment (i.e. in an elevated and cooler place, e.g. Gircha Horti-

cultural research centre in the Gamo Highlands) before field trials. This strategy can 

help us to improve seed quality with a defined standardised physiological status. 
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Summary 
 

 

 

 

Motivation: Ethiopia is one of the Sub-Saharan countries that are strongly influ-

enced by climate fluctuations. These meteorological changes directly affect agricul-

ture and consequently cause disturbances on the regional and local economy. To 

pinpoint a few crucial issues: (1) the agricultural sector in Ethiopia accounts for 80% 

of the employment and contributes 45% of the GDP. A relevant factor in relation to 

this PhD thesis is that the country’s agriculture is by 95% rainfed agronomy. (2) The 

Ethiopian landscape is composed of complex terrains of the East African mountain 

system – the Ethiopian Highlands (40% of the Ethiopia’s landmass is elevated more 

than 1500 m above sea level). This complex orography modulates weather and cli-

mate at scales ranging from local to regional. In the region, weather dynamics are 

mainly driven by both synoptic (e.g. Intertropical Convergence Zone – ITCZ) and 

mesoscale flows (e.g. lake and mountain breezes). These weather scales ultimately 

influence the way crops grow. The aim of this study was to evaluate how weather 

and crop growth vary in a complex terrain and heterogeneous landscape. I focus on 

the Gamo Highlands, south-west Ethiopia, a mountainous region with two large 

Rift-Valley lakes in Ethiopia. The crop of interest was potato – a crop that has become 

popular in Ethiopia, significantly contributing to food security and income, but sen-

sitive to climatic variations. As a research method, I deployed a high-resolution 

weather and crop modelling approach to describe how the growth and yield of the 

potato crop depend on the variations in weather. For observation-based studies and 

for testing the models’ performance, six automatic weather stations were installed 

and field crop experiments were conducted near the stations. More specifically, this 

thesis addresses the role of meteorological crop drivers (e.g. the incoming shortwave 

radiation (SW↓), maximum temperature (Tmax), minimum temperature (Tmin) and 

precipitation (PPT)) and edaphic variables (soil moisture and soil temperature) on 

the yield and growth of the Ethiopian potato cultivars. 
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Research methods and findings: In Chapter 1, I reviewed the contemporary global 

environmental challenge, the Anthropocene geologic era, in relation to the food sys-

tem in perspective. In this chapter, I cascaded the problem from the global to the 

local scale. The chapter argued that the global weather models need to be 

downscaled to the local scales in order to study weather and climate impacts on crop 

dynamics in complex topographic landscapes such as Ethiopia. 

In Chapters 2 and 3, I presented the model-observation combined research strategy 

implemented in this thesis. The temporal and spatial variations in weather and crop 

dynamics are analysed using data from 2001 to 2010. To this end, the Weather Re-

search and Forecasting (WRF) model is used to simulate weather at coarse (54 × 54 

km2) and fine (2 × 2 km2) resolutions during the 10-years. The model is validated 

with in situ data. The meteorological crop growth drivers (SW↓, Tmax, Tmin, PPT, va-

pour pressure deficit and wind speed) and soil data from the ISRIC soil database are 

supplied as inputs to a process-based crop model called GECROS. The 10-year belg 

seasons WRF model analysis is showed large temporal and spatial variabilities in 

SW↓, Tmax, Tmin and PPT in the Gamo Highlands. For example, Tmax ranged from 10 

°C on the summit of mount Guge to 30 °C in the valley around Lake Abaya and Lake 

Chamo. Temporally, the belg season of 2006 is identified as climatologically normal 

whilst the 2008 (driest) and 2010 (wettest) belg seasons are categorized as anomalous 

years. The temporal variations in simulated attainable potato yield showed a high 

yield (~20 to 30 t·ha-1) during the normal belg season whereas the yield was lower (5 

to 10 t·ha-1 less than in the normal year) for the anomalous belg seasons (Chapter 2). 

As compared to the coarse resolution domain, the fine resolution domain is better 

represented topography and weather variations. Because of the improved represen-

tation of topography and weather in the fine resolution domain, the leaf area index 

(LAI) and the length of the growing season (LGS) simulated by the GECROS model 

were in the recommended range for potato (LAI of 3 m2·m-2 and LGS of 120 days are 

simulated). For comparison, modelled values were unacceptably low in the coarse 

resolution domain (LAI of 1.0 m2·m-2 and LGS of 60 days). It is also interesting to see 

that temperature and precipitation played opposing roles in the modelled yield, a 

phenomenon I called a compensating effect. To explain the term, moving up the moun-

tains, the temperature decreases – with a positive effect on yield, and precipitation 

increases with a negative effect on yield. The lower temperature at higher elevation 

increases the LGS; as a result, more carbon is allocated to the tubers than in a shorter 

growing season. The higher precipitation at higher elevation may give rise to soil 

nutrient loss caused by leaching. Aloft the highlands, temperature and PPT are 

showed opposite trends, but their effects are balanced out in the ultimate yield 

(Chapter 3). 
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Chapter 4 presented the Gamo Highlands Meteorological Stations (GEMS) – a net-

work of six automatic weather stations, which were operational since April 2016 in 

two transects of the highlands. Near to the GEMS network, potato field trials are 

conducted. I used the GEMS data to study both the mesoscale and synoptic weather 

scales influencing the Gamo Highlands. Furthermore, I deployed the in situ data to 

the GECROS crop model. The GEMS data are analysed for belg-2017 showed major 

differences between the start (February) and the end (May) of the belg season. Feb-

ruary and May are more mesoscale and synoptic scale weather system dominated 

months, respectively. During February, the day-night wind sources showed strong 

variation. Strong south to south-easterly lake breezes are observed during daytime; 

whereas, weak and more localised mountain winds are identified during the night-

time. In May, the day-night flow contrast was small and the dominant flows were 

southerly. The location of ITCZ calculated by the NOAA (National Oceanic and At-

mospheric Administration) and the GEMS observed sea-level-pressure (SLP) data 

showed strong correlation. My analysis showed that the low-pressure system (ITCZ) 

and the rainbelt are not coincided in the Gamo Highlands. The maximum PPT is 

received in May where the ITCZ is located on average nearly 6° (north) away from 

Gamo Highlands. During the maximum PPT in May 2017, the southerly moist air 

masses from the moisture sources (e.g. Indian Ocean) may move to the low-pressure 

system located to the north of the study area. During the daytime, PPT is less prob-

able as cloud formation was less likely due to the enhanced solar radiation. How-

ever, during night-time, the southerly moisture can be trapped in the highlands and 

orographic PPT can be triggered. This PPT is locally modulated due to the presence 

of the Gamo Highlands and presence of the lakes. The moisture is crucial for potato 

agronomy during the belg season. The GECROS model sensitivity analysis, using the 

GEMS data, showed that model input of constant PPT (belg-averaged) gave the high-

est crop yield due to improved soil moisture throughout the growing season.  
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Chapter 5 dealt with investigating the role of environmental factors on potato yield 

and growth in the Gamo Highlands. Here, the GEMS weather and edaphic data are 

correlated with crop growth variables such as plant height, canopy cover, yield and 

yield traits. The GEMS and crop observation datasets showed that plant height and 

canopy cover are strongly correlated with temperature sum (Tsum) with an r2 > 0.95 

during the canopy buildup phase (P1). Tsum (d °C) is defined as the sum of the daily 

average temperatures during the growing season. The crop growth - Tsum correla-

tion is further explained in terms of SW↓ and soil moisture, in which an improved 

(Gudene) and a local (Suthalo) cultivar showed different responses to SW↓ and soil 

moisture regimes. Data also showed that tuber yield is poorly explained by meteor-

ological and edaphic data, suggesting further research activity in this regard. When 

the number of days to crop maturity was between 100-110 days, an optimal tuber 

yield is obtained. 

Chapter 6 presented the main findings of the thesis in perspective. Finally, Chapter 

7 discussed the key findings in-line with the research questions stated in Chapter 1.  

Conclusions and perspectives: In complex terrain, weather/climate varies over 

short distances affecting crop growth. To describe crop growth and yield in the re-

gion, a high-resolution weather model, coupled to a crop model is needed. The 

weather model outputs can be used as input to the crop model. A dense station net-

work installed in a complex topographic region can give us insights on mesoscale 

flows (e.g. lake-mountain flows), synoptic systems (e.g. south-north movement of the 

ITCZ) and crop growth (e.g. LGS and LAI). Additional weather stations (e.g. on the 

lee-side of the Gamo Highlands and east of the Lakes Abaya and Chamo) can give 

us improved understanding of weather scales and crop growth. Tsum during the P1 

is found to be a good predictor of plant height and canopy cover for the Ethiopian 

potato cultivars. The poor correlation between environmental variables and yield 

and yield traits suggests more dedicated field experiments should be designed. One 

of the suggested field experiments is continuous monitoring of the partitioning of 

dry matter to the tubers to study how crop yield varies as a function of elevation and 

meteorology.  

Keywords: canopy buildup phase, complex topography, local and global weather 

scales, potato, weather and crop modelling. 
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Motivatie: Ethiopië is een van de landen in Sub-Sahara-Afrika die sterk worden be-

invloed door klimaatschommelingen. Deze meteorologische veranderingen zijn 

rechtstreeks van invloed op de landbouw en veroorzaken verstoringen in de regio-

nale en lokale economie. Enkele belangrijke zaken zijn: (1) de landbouwsector in 

Ethiopië zorgt voor 80% van de werkgelegenheid en omvat 45% van het BNP. Een 

relevante factor voor dit proefschrift is dat de landbouw van het land voor 95% re-

genafhankelijk is. (2) Het Ethiopische landschap bestaat uit complexe terreinen van 

het Oost-Afrikaanse gebergte - de Ethiopische hooglanden (40% van Ethiopië ligt 

meer dan 1500 m boven de zeespiegel). Deze complexe orografie moduleert weer en 

klimaat op schalen variërend van lokaal tot regionaal. In de regio wordt de weers-

dynamiek voornamelijk bepaald door zowel synoptische (bijv. Intertropical Conver-

gence Zone - ITCZ) als mesoschaalstromen (bijv. meer- en bergwinden). Deze mete-

orologische omstandigheden beïnvloeden de manier waarop gewassen groeien. Het 

doel van deze studie was om te evalueren hoe weer en gewasgroei variëren in een 

complex terrein en heterogeen landschap. Ik concentreer me op de Gamo Highlands, 

Zuidwest-Ethiopië, een bergachtig gebied met twee grote Riftvallei-meren. Het ge-

was dat onderzocht is, is de aardappel. De aardappel is populair geworden in Ethi-

opië en draagt aanzienlijk bij aan voedselzekerheid en inkomen, maar het is gevoelig 

voor klimatologische variaties. Als onderzoeksmethode heb ik een methode voor 

weer- en gewasmodellering met hoge resolutie gebruikt om te beschrijven hoe de 

groei en de opbrengst van het aardappelgewas afhangen van de variaties in het 

weer. Voor het doen van observaties en voor het testen van de prestaties van de 

modellen werden zes automatische weerstations geïnstalleerd. Experimenten met 

veldgewassen werden uitgevoerd in de buurt van de weerstations. Dit proefschrift 

gaat in op de rol van meteorologisch bepalende factoren voor gewasgroei (bijv. de 

inkomende kortegolfstraling (SW↓), maximum temperatuur (Tmax), minimum tem-

peratuur (Tmin) en neerslag (PPT)) en edafische variabelen (bodemvocht en bodem-

temperatuur) op de opbrengst en groei van de aardappel in Ethiopia. 
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Methoden en resultaten: In hoofdstuk 1 besprak ik de hedendaagse mondiale uit-

daging voor het milieu, het Antropoceen, in relatie tot het betreffende voedselsys-

teem. In dit hoofdstuk heb ik het probleem van de mondiale naar de lokale schaal 

vertaald. Het hoofdstuk beargumenteerde dat de mondiale weermodellen moeten 

worden teruggeschaald naar een lokaal niveau om de weers- en klimaateffecten op 

de gewasdynamiek in complexe topografische landschappen, zoals Ethiopië, te be-

studeren. 

In Hoofdstukken 2 en 3 presenteerde ik de in dit proefschrift gehanteerde gecombi-

neerde onderzoeksstrategie van modelleren en observeren. De temporele en ruim-

telijke variaties in weer- en gewasdynamiek werden geanalyseerd met behulp van 

gegevens van 2001 tot 2010. Het Weather Research and Forecasting (WRF) model 

werd gebruikt om het weer bij een grove (54 × 54 km2) en fijne (2 × 2 km2) resolutie 

gedurende de 10 jaar te simuleren. Het model werd gevalideerd met gegevens ter 

plaatse. De meteorologische gewasgroeifactoren (SW↓, Tmax, Tmin, PPT, dampdruk 

verschil en windsnelheid) en bodemdata van de ISRIC-bodemdatabase werden be-

nut als input voor het gewasmodel GECROS. De WRF-modelanalyse voor de 10 belg-

seizoenen toonde grote temporele en ruimtelijke variabiliteit in SW↓, Tmax, Tmin en 

PPT in de Gamo hoogvlaktes. Tmax varieerde bijvoorbeeld van 10 °C op de top van 

de berg Guge tot 30°C in de vallei rond de meren Abaya en Chamo. Betreffende de 

temporele variatie werd het belg-seizoen in 2006 geïdentificeerd als klimatologisch 

normaal, terwijl de belg-seizoenen 2008 (droogste jaar) en 2010 (natste jaar) als afwij-

kend werden gecategoriseerd. De temporele variaties in de gesimuleerde haalbare 

aardappelopbrengst vertoonden een hoge opbrengst (~20 tot 30 t·ha-1) tijdens het 

normale belg-seizoen, terwijl de opbrengst lager was (5 tot 10 t·ha-1 minder dan in 

het normale jaar) voor de afwijkende belg-seizoenen (hoofdstuk 2). In vergelijking 

met de grove resolutie werd bij fijne resolutie de variatie in topografie en meteoro-

logie beter weergegeven. Vanwege de verbeterde weergave van topografie en het 

weer bij fijne resolutie, lagen de bebladeringsindex (LAI) en de lengte van het groei-

seizoen (LGS) gesimuleerd door het GECROS-model in het aanbevolen bereik voor 

aardappel (een gesimuleerde LAI van 3 m2·m-2 en een LGS van 120 dagen). Ter ver-

gelijking: de waarden bij grove resolutie waren onaanvaardbaar laag (LAI van 1,0 

m2·m-2 en LGS van 60 dagen). Het is ook interessant om te zien dat temperatuur en 

neerslag een tegenovergestelde rol speelden in de gemodelleerde opbrengst, een fe-

nomeen dat ik het ‘compenserend effect’ noemde. Om de term uit te leggen: tegen 

de bergen op neemt de temperatuur af, met een positief effect op opbrengst, terwijl 

de neerslag toeneemt, met een negatief effect op opbrengst. De lagere temperatuur 

op grotere hoogte verhoogt de LGS; als gevolg hiervan is meer koolstof beschikbaar 

voor de knollen dan in een korter groeiseizoen. De hogere neerslag op grotere 

hoogte kan aanleiding geven tot verlies van voedingsstoffen in de bodem veroor-

zaakt door uitloging. In de hooglanden zijn temperatuur en PPT tegengestelde 



Samenvatting 

161 

  

S 

trends, maar hun effecten worden gecompenseerd in de uiteindelijke opbrengst  

(Hoofdstuk 3). 

Hoofdstuk 4 presenteerde de Gamo Highlands Meteorological Stations (GEMS) - 

een netwerk van zes automatische weerstations, die sinds april 2016 operationeel 

waren in twee doorsnedes van de hooglanden. In de buurt van het GEMS-netwerk 

werden veldproeven met aardappelen uitgevoerd. Ik heb de GEMS-gegevens ge-

bruikt om zowel de mesoschaal als de synoptische weerschalen te bestuderen die de 

Gamo Highlands beïnvloeden. Verder heb ik de in-situ gegevens ingezet voor het 

GECROS-gewasmodel. De GEMS-gegevens geanalyseerd voor belg-2017 toonden 

grote verschillen tussen de start (februari) en het einde (mei) van het belg-seizoen. 

Februari en mei zijn maanden gedomineerd door weer op respectievelijk een meer 

meso- of synoptische schaal. In februari vertoonde de herkomst van wind overdag 

of ’s nachts sterke variatie. Overdag wordt er sterke zuidelijke tot zuidoostelijke 

wind vanuit de meren waargenomen, terwijl er gedurende de nacht sprake is van 

een zwakke en meer plaatselijke wind. In mei was het contrast tussen dag en nacht 

klein, en de dominante windrichting zuidelijk. De locatie van ITCZ berekend door 

de NOAA (National Oceanic and Atmospheric Administration) en de door GEMS 

waargenomen druk op zeeniveau (SLP) vertoonden een sterke correlatie. Mijn ana-

lyse toonde aan dat het lagedruksysteem (ITCZ) en de regenzone niet samenvallen 

in de Gamo hooglanden. De maximale PPT wordt bereikt in mei, wanneer de ITCZ 

gemiddeld bijna 6 ° (noord) van de Gamo Highlands verwijderd is. Tijdens de maxi-

male PPT in mei 2017 kan de zuidelijke vochtige lucht (vanuit bijvoorbeeld de Indi-

sche Oceaan) naar het lagedruksysteem ten noorden van het studiegebied bewegen. 

Overdag is PPT minder waarschijnlijk omdat wolkvorming minder waarschijnlijk is 

vanwege de toegenomen zoninstraling. 's Nachts kan echter het zuidelijke vocht in 

de hooglanden opgesloten raken, wat kan leiden tot orografische PPT. Deze PPT 

wordt plaatselijk bepaald door de aanwezigheid van de Gamo hooglanden en de 

aanwezigheid van de meren. Het vocht is cruciaal voor de aardappelteelt tijdens het 

belg-seizoen. De gevoeligheidsanalyse van het GECROS-model, met behulp van de 

GEMS-gegevens, toonde aan dat een stabiel PPT (belg-gemiddelde) de hoogste op-

brengst gaf, als gevolg van een verbeterde bodemvochtigheid gedurende het groei-

seizoen. 
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Hoofdstuk 5 ging over het onderzoeken van de rol van omgevingsfactoren op de 

aardappelopbrengst en -groei in de Gamo hooglanden. In dit hoofdstuk zijn de 

GEMS meteorologische en edafische gegevens gecorreleerd met variabelen voor ge-

wasgroei, zoals planthoogte, bebladeringsindex, opbrengst en opbrengstkarakteris-

tieken. Uit de GEMS en gewaswaarnemingsdatasets bleek dat planthoogte en bebla-

deringsindex sterk samenhangen met de temperatuursom (Tsum), r2> 0.95, tijdens 

de loofopbouwfase (P1). Tsum (d°C) wordt gedefinieerd als de som van de dage-

lijkse gemiddelde temperaturen tijdens het groeiseizoen. De correlatie tussen gewas-

groei en Tsum wordt verder uitgelegd in termen van SW↓ en bodemvocht, waarbij 

een verbeterd (Gudene) en een lokaal (Suthalo) aardappelras verschillende reacties 

toonden op SW↓ en bodemvochtregimes. Gegevens toonden ook aan dat de knolop-

brengst slecht wordt verklaard door meteorologische en edafische gegevens, het-

geen duidt op de noodzaak voor aanvullend onderzoek. Wanneer het aantal dagen 

tot volle wasdom 100-110 dagen bedroeg, was de knolopbrengst optimaal. 

Hoofdstuk 6 plaatste de belangrijkste bevindingen van het proefschrift in perspec-

tief. Ten slotte besprak Hoofdstuk 7 de belangrijkste bevindingen in antwoord op de 

onderzoeksvragen in hoofdstuk 1. 

Conclusies en perspectieven: Op complex terrein varieert het weer en klimaat over 

korte afstanden, wat de groei van gewassen beïnvloedt. Om de gewasgroei en -op-

brengst in de regio te beschrijven, is een weermodel met hoge resolutie, gekoppeld 

aan een gewasmodel, nodig. De resultaten van het weermodel kunnen worden ge-

bruikt als invoer voor het gewasmodel. Een fijnmazig netwerk van meetstations dat 

in een complexe topografische regio is geïnstalleerd, kan ons inzicht verschaffen in 

de luchtstromen op mesoschaal (bijv. meer – berg stromen), synoptische systemen 

(bijv. zuid-noordbeweging van de ITCZ) en gewasgroei (bijv. LGS en LAI). Extra 

weerstations (bijv. aan de lijzijde van de Gamo hooglanden en ten oosten van de 

meren Abaya en Chamo) kunnen ons een beter begrip geven van weerschalen en 

groei van gewassen. Tsum tijdens de P1 blijkt een goede voorspeller te zijn van 

planthoogte en bebladeringsindex voor de aardappelrassen in Ethiopia. De zwakke 

correlatie tussen omgevingsvariabelen en opbrengst en opbrengstkenmerken sug-

gereert dat er meer specifieke veldexperimenten moeten worden ontworpen. Een 

van de voorgestelde veldexperimenten is het continu monitoren van de opslag van 

droge stof naar de knollen om te bestuderen hoe de gewasopbrengst varieert als een 

functie van hoogte en meteorologie.  

Trefwoorden: loofontwikkeling, complexe topografie, plaatselijke en mondiale 

weerschalen, aardappel, weermodellering, gewasmodellering. 
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Propositions 

1. High-resolution weather data are crucial to study crop dynamics in a complex 

terrain.  

(this thesis)   

2. The synoptic and mesoscale weather systems have specific yet integrated roles 

during the belg season in the Gamo Highlands of Ethiopia.  

(this thesis)  

3. The advancements in computational capabilities will improve weather forecast 

in complex terrain, but those benefits might not be realized in sub-Saharan Af-

rica due to economic constraints.   

4. Food security, weather and climate need to be integrated to design and imple-

ment agricultural programmes and policies in Ethiopia. 

5. Complex problems in sub-Saharan Africa do not necessarily require complex 

solutions.  

6. Maternal and paternal roles are not in-born in humanity but inculcated from 

caring mothers and fathers.  

7. Life is more about generality than specialty.  
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