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SUMMARY

Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural

challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the

model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and

phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we

applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-envi-

ronment (G3E) modelling. Sub-populations defined from exomic profiles were coincident with barley’s biol-

ogy, geography and history, and explained a high proportion of trial phenotypic variance. Clear G3E

interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian

clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the

crop’s spread from the Fertile Crescent), illustrated complexities in G3E effect directions, and the impor-

tance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a

gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improve-

ment, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking

to cope with climate change and other stresses.

Keywords: barley, common garden trials, exome sequence haplotypes, genetic diversity, genotype-by-envi-

ronment interactions, adaptation, H. vulgare ssp. vulgare.

INTRODUCTION

Barley (Hordeum vulgare ssp. vulgare) is globally the

fourth most important cereal crop after maize, rice and

wheat (http://faostat.fao.org). Its cultivation across a wide

range of environments makes it a relevant crop for explor-

ing farmers’ adaption strategies to anthropogenic climate

change (Dawson et al., 2015; Khoury and Achicanoy, 2016),

while its founder status in the development of agriculture

in the Fertile Crescent 10 millennia ago has made it a focus

of crop evolutionary studies (Russell et al., 2016). In partic-

ular, the expansion in latitude and longitude of the crop to

production areas outside the Fertile Crescent means that it
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is regarded as a model for understanding crop adaptation

during anthropogenic range extension. With its structurally

simpler genome (2n = 2x = 14) than bread wheat (Triticum

aestivum) (2n = 6x = 42) (Brenchley et al., 2012; Mayer

et al., 2012), barley can be considered a model for the lat-

ter crop that originated in the same geographical region

and has also spread widely to become one of the world’s

most significant food sources.

Traits of key importance for responding to a wide range

of biotic and abiotic stresses have been identified, charac-

terized and reported for barley (Dawson et al., 2015). Flow-

ering time, reflected in the days to heading (DTH) trait,

which is the time elapsed between planting of the crop

and ear emergence, is an important adaptive feature in the

spread of many cereal crops from their origins, enabling

the matching of reproductive seed production to appropri-

ate environmental conditions of temperature, precipitation,

evapotranspiration, light and other variables (Nakamichi,

2015). Variation in DTH has underpinned barley’s spread

from the Fertile Crescent to more extreme latitudes

(Comadran et al., 2012), and circadian clock-related genes

that help control the trait in the crop have previously been

described (Calixto et al., 2015). Understanding genetic vari-

ation in DTH is therefore of academic interest for exploring

the domestication and expansion of cereal crops and of

practical importance for addressing the future climate

change-related shifts that will be required in production.

Possible climate-related responses may be complex and at

first sight appear counter-intuitive: for example, avoiding

summer droughts caused by climate warming could in the

case of barley be achieved by making varieties more cold

tolerant so that they can be planted in the autumn rather

than the spring, with the crop then flowering and maturing

earlier the following season (Fisk et al., 2013). The spring

and winter growth habits of different barley varieties, with

their different responses to cold, heat and light, thus make

the crop particularly interesting for exploring environmen-

tally adaptive responses in agriculture (Dawson et al.,

2015).

Although understanding the underlying genetics of

adaptation to varying environments and broadening the

genetic base of crops for flowering, flowering-associated

and other important traits are considered important for

developing varieties adapted to future production condi-

tions (Ellis et al., 2000; Tester and Langridge, 2010), the

genetic diversity deployed in breeding programmes has to

date been limited due to modern varietal selection pro-

cesses (Kilian et al., 2006). Broader genetic diversity in lan-

draces and wild progenitors has, however, been

maintained in genebanks worldwide for many crops,

including barley (Igartua et al., 1998; Kn€upffer, 2009;

Mu~noz-Amatria�ın et al., 2014). This diversity is now being

made more accessible to breeders through the adoption of

advanced methods that are better able to discover, dissect

out and employ relevant variation (Dempewolf et al., 2017;

Mascher et al., 2017). A crucial enabling factor is compre-

hensive genotyping and phenotyping of germplasm across

relevant contrasting environments to understand genomic

drivers of adaptation (Mu~noz-Amatria�ın et al., 2014). In

terms of genotyping, exome sequencing has become an

established approach in recent years. This method focuses

only on the gene space of organisms and thereby reduces

the costs of sequencing and analysis compared with

whole-genome approaches, making it highly appropriate

for crops such as barley that have a very high proportion

of non-genic genomic DNA (Mascher et al., 2017). The

exome approach for barley was initially described by

Mascher et al. (2013) and first applied seriously to examine

the crop’s adaptive responses in an analysis of 267 lan-

drace and wild relative (H. vulgare ssp. spontaneum, wild

barley) lines by Russell et al. (2016). Their analysis incorpo-

rated a combination of exome capture sequencing, field tri-

als, bioclimatic data and various statistical approaches to

landscape genomics, to initially explore drivers of environ-

mental adaption.

Here, we report a combined genomic and phenomic

analysis of 371 domesticated barley lines that allows for a

more detailed study of adaptive features in the crop. The

tested germplasm was carefully chosen through wide con-

sultation with breeders, genebank curators and research-

ers. Lines were, in parallel, exome captured and field

trialled, with common garden experiments taking place

across a range of environments (locations and seasons),

and phenotyped for a number of fundamental traits,

including DTH, 1000-grain weight, plant height and awn

length. We then applied refined statistical methods to

jointly model detailed exome capture and multi-environ-

ment phenotypic data sets in an analysis of variation. We

provide evidence extending the scientific understanding of

crop adaption that leads to practical opportunities for crop

improvement. We also illustrate how environmental adap-

tion can be further dissected through an in-depth examina-

tion of the control of DTH, which involved exploring

geographical patterns of variation of key flowering-related

gene haplotype states and phenotypes.

RESULTS

Exome sequences reveal substantial variation in the barley

collection

Exome sequences that revealed substantial variation in the

barley gene pool were obtained and validated. Data were

successfully derived for 403 genotypes from the WHEALBI

research project (EU FP7 no. FP7-613556), comprising for-

mally bred cultivars (henceforth referred to simply as culti-

vars), landraces and wild barley lines (Table S1 in the

online Supporting Information). This source material repre-

sents a range of worldwide barley genetic diversity,
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assembled to quantify variation and explore adaptation, to

determine possible breeding responses to environmental

change (http://www.whealbi.eu/). More than 64 million sin-

gle nucleotide polymorphisms (SNPs) were extracted from

sequences, which, after applying a quality criterion of at

least 80% of genotypes being represented at a SNP locus,

was reduced to just under 2.1 million SNPs (Table S2). All

seven of barley’s chromosomes (1H to 7H) were well cov-

ered (Figure S1), with a range of 262 014 (6H) to 334 501

(2H) polymorphisms and a median distance between SNPs

of between 14 and 27 bp, although a few large gaps in cov-

erage remained, especially close to centromeres. From this

initial data set, we used information for 371 domesticated

barleys, consisting of cultivars and landraces of both two-

and six-rowed types, for further analysis. Of the excluded

genotypes from the initial total of 403, 22 were wild barley

and another 10 did not pass phenotypic or other, geno-

typic, quality criteria. Considering only the 371 genotypes,

and after we applied a minor allele frequency (MAF) filter

of ≥0.05, 435 431 SNPs remained for analysis. (See Experi-

mental procedures for more information on genotype

exclusion and our choice of MAF.)

Population structure in barley corresponds with row type,

geographical origin, breeding history and growth habit

Analysis of 371 landrace and cultivar exome profiles

revealed significant genetic structuring. The method that

we applied, in which genomic population structure was

characterized taking linkage disequilibrium (LD) into

account when sampling SNPs to construct a kinship matrix

(see Experimental procedures and Table S3), identified six

barley sub-populations (A to F) that approximately coin-

cided with row type, geographical origins, breeding histo-

ries and growth habit classifications (Figure 1).

Landscape genomics indicate significant regional

geographical structuring

We identified a well-defined subset of spring growth habit

barleys (n = 174, comprising 111 cultivars and 63 lan-

draces) from our initial set of 371 domesticated accessions.

Because this subset of accessions excludes winter growth

habit lines, the confounding factor of vernalisation in

determining DTH has been removed. The genotypes cho-

sen in our subset were also all non-tropical, such that day

length adaptation at specific sampling latitudes should be

an important feature of the crop. We later use these lines

to analyse the geographical details of control of DTH by

specific gene sequences, as presented in subsequent sec-

tions. We first subjected this subset of 174 accessions to a

landscape genomics analysis to determine the overall pat-

tern of geospatially related genetic structure in the spring

habit crop. Spatial principal component analysis (sPCA)

revealed significant overall geographically based genetic

structuring. We found that for summed genomic data a

‘regional’ structure of allelic frequencies predominated

over a local one (Figure S2a), with these frequencies show-

ing large spatial autocorrelation (Figure S2b). The rele-

vance of regional over local structure indicated

geographical gradients in the overall distribution of genetic

variation. The main gradient, as represented by sPCA1 and

sPCA2, was from north-western Europe towards southern

latitudes. Northern European genotypes were clearly differ-

ent from those surrounding the Mediterranean, while a dif-

ferentiated group of accessions was also located in the

Middle East (Figure S2c). This pattern of genetic variation

corresponds with our earlier geographical analysis of all

371 accessions (Figure 1a). As we report later, it also corre-

sponds with differentiation at specific flowering-related

genes for our larger sample set (Figure S12). These results

further indicate the presence of regional geographical

structuring that extends to equatorial regions, with Ethio-

pian landrace barley differentiated from other sample loca-

tions.

Chromosome-level analysis reveals strong localised

differentiation by barley category and highly variable

linkage disequilibrium decay

Further analysis of row type and breeding history as dri-

vers of genetic differentiation (see Experimental proce-

dures) in our panel of 371 domesticated barley lines

revealed strong differentiation at specific chromosome

positions. For two-rowed versus six-rowed lines (Fig-

ure S3a), high differentiation was observed at relatively

distal portions of chromosome 2H (largest Fst = 0.82 at

648.3 Mbp) and 4H (largest Fst = 0.94 at 17.4 Mbp), close to

the locations of the known row-type genes Vrs1

(652.1 Mbp on 2H; Komatsuda et al., 2007) and INT-C

(17.6 Mbp on 4H; Ramsay et al., 2011), respectively. There

was also relatively high genetic differentiation at a position

on chromosome 5H not coincident with any known gene

regulating row type, indicating a candidate region for fur-

ther exploration. Considering differentiation between culti-

vars and landraces, genomic regions with clear contrasts

were also evident (Figure S3b), especially close to known

genes for row type and flowering time. This may, however,

reflect the specific structure of our germplasm panel where

most cultivars are two-rowed (including European malting

barleys) and most landraces are six-rowed (in particular,

the large group of Mediterranean accessions), so it is not

straightforward to draw firm conclusions based on breed-

ing history per se from the comparison.

As expected in barley (Cockram et al., 2010), LD profiles

along chromosomes characterized using the sliding win-

dows method (see Experimental procedures) indicated

large non-recombinant centromeric and peri-centromeric

regions, with variable decay patterns (Figure 2). Overall,

2H and 4H had higher LD than other chromosomes. The

LD pattern is largely expected to be driven by sub-

© 2019 The Authors.
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population structure (see Experimental procedures), with

the profiles for 2H and 4H possibly shaped by sub-popula-

tion specificities around loci regulating flowering time [the

circadian clock photoperiod response gene HvPPD-H1

(Turner et al., 2005) and the earliness per se gene HvCEN

(Comadran et al., 2012), both on 2H] and row type (Vrs1 on

Figure 1. Geographical composition and passport data of the barley panel.

(a) Geographical distribution of six sub-populations of genotypes identified through cluster analysis of significant kinship principal components for 371 barley

genotypes. Pie chart size reflects the number of genotypes collected from a particular geographical region, while slice size shows the proportion of genotypes

belonging to a particular sub-population.

(b) Principal components biplot of the kinship matrix, showing the classification of genotypes into the six sub-populations.

(c) Hierarchical clustering based on Ward distances, and composition of each of the six sub-populations, considering row type, breeding history and growth habit

classifications. Group A was composed of two-rowed types, most being European cultivars of spring habit. Group B was primarily six-rowed types, although a

substantial subset was two-rowed. Most genotypes in this sub-population were European cultivars, but a sizeable subset was landrace material. Sub-population B

contained all except one of the winter barley lines included in the study (the other winter habit accession grouped to sub-population F). Sub-population C con-

sisted primarily of six-rowed landraces of spring growth habit that came from the Mediterranean area, with some spring facultative habit (cold tolerant, vernalisa-

tion unresponsive; Von Zitzewitz et al., 2005) lines. Sub-population D consisted primarily of two-rowed landraces exhibiting spring or facultative growth habit

from the Fertile Crescent. Sub-population E was a small group of 18 genotypes of spring habit that were primarily Ethiopian landraces, with a mixture of two- and

six-rowed types, plus two intermedium lines (an intermediate state between the standard two- and six-rowed forms, characterized by enlarged, partially male fer-

tile, lateral spikelets; Ramsay et al., 2011). Sub-population F was composed mostly of six-rowed spring habit lines from Asia and the Middle East.

© 2019 The Authors.
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2H and INT-C on 4H). Regardless its basis, large observed

differences in LD indicate the importance of methods for

achieving local and flexible characterization, as related fur-

ther in Experimental procedures.

Single nucleotide polymorphisms in high LD that can be

grouped to form haplotype blocks (Daly et al., 2001)

indicated that genes in distal chromosome regions had lar-

ger numbers of blocks, with each block on average having

more haplotype states (Figure 2). While individual genes

normally comprised between one and five blocks, 32 were

observed for HORVU2Hr1G004930 [a zinc finger (Ran-bind-

ing) family protein on 2H at 11.1 Mbp] and 27 for
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Figure 2. Linkage disequilibrium (LD) and haplo-

type profiles for barley chromosomes for 371

domesticated barley genotypes.

The top of each chromosome’s schematic shows

LD decay profiles by indicating the genetic distance

for LD to fall below a given threshold with and with-

out correction for population structure, using dot-

ted or continuous (grey and blue) lines,

respectively. The middle section of each chromo-

some’s sub-figure shows the number of LD (subse-

quently defined as haplotype) blocks per gene

identified with the method of Gabriel et al. (2002).

The bottom section of each sub-figure shows the

number of haplotype states per block. The x-axis

represents physical distances.
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HORVU7Hr1G121250 (an aquaporin-like superfamily pro-

tein on 7H at 653.5 Mbp). Generally, individual haplotype

blocks had fewer than 10 haplotype states, although 18

were observed for HORVU2Hr1G005650 (a cullin-associ-

ated NEDD8-dissociated protein 1 on 2H at 12.2 Mbp).

G3E modelling of field trial data reveals diverse

adaptation patterns in barley

Days to heading, plant height, 1000-grain weight and awn

length phenotypes evaluated in three to five widely differ-

ent environments (Tables S4 and S5) for our panel of 371

domesticated barley lines are given in Table S1 and sum-

marised in Figure S4. Overall, all traits and environments

had a large heritability (Table S5), showing that the pheno-

typic data were useful for further genetic analyses. G9E

analysis indicated that the panel exhibited diverse adapta-

tion with extensive phenotypic plasticity. Considering the

season of sowing, as expected barley clearly headed

earlier (with reference to days from planting date) in spring-

planted than winter-planted trials (by around 79 days; Fig-

ure S4), indicating the importance of phenotypic plasticity

in DTH in promoting flowering under favourable environ-

ments. Spring- and winter-sown trials, however, showed

similar population means for our other analysed traits of

grain weight, plant height and awn length.

G9E amounted to between 50% and 81% of the variance

for the genotypic main effect for measured traits

(Table S6), indicating that our barley panel was diverse in

its mechanisms of adaptation to environment. As expected

based on genomic differentiation, classifications by sub-

population, row type, breeding history and growth habit

differed in the amount of genotypic (Figure 3a) and G9E

variance (Figure 3b) described. Our six defined sub-popu-

lations generally explained the largest amount of G9E vari-

ance for genotypes across traits [14% for DTH (but see also

effect of growth habit), 18% for plant height, 4% for grain

weight and 8% for awn length], thus emphasising the

value of explicit genotype characterizations for explaining

adaptive responses.

Focusing on G9E variance for DTH, season of sowing

was clearly the main driver for the interaction, with the

ranking of our identified sub-populations changing across

season (Figure S4). Finlay–Wilkinson regressions that

allowed estimation of general adaptation (mean perfor-

mance across environments) and adaptability (sensitivity

to environments, as related further in Experimental proce-

dures) indicated that a spring growth habit and a landrace

breeding history determined quicker heading across all

environments (top panels of Figure 4a,b). The defining

environmental contrast was that between winter-sown

(long DTH) and spring-sown (short DTH) trials, so that

adaptability (second row of panels in Figure 4a,b) reflects

the relative lateness of genotypes in winter trials versus

earliness in spring trials (see also Figure S5). The same

winter-sown versus spring-sown contrast determined the

first additive main effect and multiplicative interaction

(AMMI) axis (AMMI 1), with genotype scores being similar

to Finlay–Wilkinson adaptabilities (compare the second

and third rows of the panels of Figure 4a,b). Scores for

sub-population B (see Figure 1) genotypes were mostly

negative on AMMI 1, and so were the environmental

scores for the spring trials (blue vectors in Figure S6),

Days to heading
Plant height
1000 grain weight
Awn length

(a) (b)

Figure 3. Phenotypic variance explained by categories of barley genotypes.

(a) Genotype main effect.

(b) Genotype by environment (G9E) effect across multi-environment field trials.In each case, the percentage variance is shown for five barley categories: sub-

populations identified from exome data (six sub-populations), row type (two-row or six-row), breeding history (cultivar or landrace), growth habit (spring, spring

facultative or winter), and the combination of breeding history and growth habit, indicated as ‘BH and GH’ (spring cultivar, winter cultivar, spring landrace, win-

ter landrace, spring facultative landrace). Some of the total set of 371 barley accessions were excluded from analysis because they were unclassified by a speci-

fic sub-category (see Figure 1c). Missing bars indicate that the percentage variance explained was equal to zero. As expected from earlier analysis of accession

partitioning (Figure 1), sub-populations are effective in describing variation. Other interesting features are discussed in the text.
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implying that flowering time for this sub-population was

relatively more delayed in spring trials than that for other

sub-populations. Scores on the second AMMI axis (AMMI

2) (bottom panels of Figure 4a,b) corresponded to a con-

trast between Italian winter-sown and other winter trials in

Scotland and Hungary (Figure S6). Deviation from the ori-

gin for genotypes in AMMI biplots is proportional to adapt-

ability, as related further in Experimental procedures,

indicating that this was greater for winter habit barleys

(Figure 4a). This is consistent with delayed flowering of

winter barley lines under spring sowing due to sub-optimal

vernalisation (vernalisation generally accelerates flowering

in winter barleys only; Von Zitzewitz et al., 2005). In the

case of landraces, which tend to have a positive interaction

with winter trials (Figures 4b and S5a), many lines (espe-

cially from the earliest heading subgroups C and D; Fig-

ures 1 and S4) come from the Mediterranean area, where

earliness is effective in escaping terminal drought stress.

As most landraces have a spring growth habit, their DTH is

relatively more delayed in winter-sown trials than in

spring-sown trials.

Considering G9E for plant height (Figure 3b), this was

driven by the positive interaction between sub-populations

B and C (Figure 1) with the environments ‘Hungary winter’

and ‘Italy winter’ (genotypic and environmental scores in

similar directions in relation to the origin of a genotype plus

G9E (GGE) biplot; see Figure S5b), which may be explained

by Mediterranean landraces growing taller under temperate

European climates with high thermal time and plenty of

rainfall. In the case of grain weight and awn length traits,

sub-populations contributed primarily to the main geno-

type effect and less to G9E (compare Figure 3a and b),

which is reflected in the less clear separation between sub-

population groups in GGE biplots (Figure S5c,d).

Multi-environment genome-wide association scans

support the power of barley germplasm panels and multi-

environment field phenotyping for genetic trait analysis

Multi-environment genome-wide association scans

(GWAS) of individual SNPs (Figure 5) and haplotype states

(Figure S7) demonstrated large quantitative trait loci

(QTLs) for the four phenotypic traits under investigation,

with clear peaks coincident with or proximate to known

trait-related genes, indicating that our genotype panel and

common garden trials provide a powerful platform for

identifying the genetic basis of barley adaptation across

environments.

The most significant associations between individual

SNPs and DTH (Figure 5a) were observed on chromo-

somes 2H and 3H. On 3H a QTL located at 650.6 Mbp was

close to the semi-dwarfing gene sdw1/denso (encoding a

gibberellin 20-oxidase 3, 634.1 Mbp; Jia et al., 2009). The

most significant QTL evident on 2H, positioned at

620.1 Mbp, was relatively close to, although still some

distance from, the flowering-associated gene HvCEN

(523.4 Mbp). Specifically considering GWAS for chromo-

some 2H based instead on haplotype states (rather than

SNPs; Figure 6a, Table S7), clear peaks were, however,

observed with both HvPPD-H1 and HvCEN, genes that reg-

ulate flowering time [causal variation at these circadian

clock-related genes was investigated by Turner et al. (2005)

and Comadran et al. (2012), respectively]. In addition, this

haplotype-based analysis showed a third clear QTL (QTL3)

on 2H at 625.4 Mbp close to the position of HOR-

VU2Hr1G085910 that encodes a zinc finger protein CON-

STANS-LIKE 4 that is a candidate for flowering time

regulation (HvCO4, 620.6 Mb, Griffiths et al., 2003). Addi-

tive effects for DTH around the most significant genic hap-

lotypes on 2H coincided with the general G9E pattern,

especially for the QTL near HvPPD-H1, with clear differ-

ences for the spring-sown and winter-sown trials (Fig-

ure 6b). For HvPPD-H1, whereas haplotype states a and b

showed similar effects in spring and winter trials, consis-

tent with their classification as photoperiod-insensitive

alleles (Turner et al., 2005; see also Table S8), the haplo-

type states of c, d, e, f and h showed a contrasting

response across trial season (accelerating and delaying

DTH in spring-sown and winter-sown trials, respectively;

Figure 6b, Table S8), consistent with their classification as

all photoperiod-sensitive alleles (Turner et al., 2005). For

HvCEN, no haplotype effects consistently contrasted across

trial sowing season. Haplotype state b, however, showed a

clear negative effect on DTH (i.e. earlier heading) across all

trial environments, agreeing with its classification by

Comadran et al. (2012) as an early allele in contrast to the

late allele a (Figure 6b, Table S8). (The frequencies and

SNP allelic compositions of haplotype states at HvPPD-H1

and HvCEN are given in Table S9, along with those for

other clock-related genes discussed below.) With further

reference to DTH and haplotype states on 2H, the haplo-

type block associated with QTL3 (Figure 6b) had three hap-

lotype conditions, with b and c leading to delayed

flowering compared with a, and no obvious QTL9E pat-

tern. Although QTL profiles based on haplotype-based and

single SNP-based GWAS analyses were generally similar,

QTLs were placed closer to known genes in the former

case, demonstrating the added value of this approach (Fig-

ures 5, 6 and S7). This could relate to the larger number of

allelic states revealed when using haplotype blocks that

allows more flexibility in G9E modelling.

For plant height, GWAS based on single SNPs (Fig-

ure 5b) revealed a large QTL on 3H (at 634.4 Mbp) that also

featured in an analysis based on haplotypes (Figure S7b,

Table S7) and was very close to the sdw1/denso gene

(634.1 Mbp) known to be involved in determining plant

stature (Jia et al., 2009). Analysis based on single SNPs

and haplotypes also revealed a clear QTL at the beginning

of 2H (at 29.2 Mbp) that coincided with HvPPD-H1, as well

© 2019 The Authors.
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as a QTL on 7H (at 41.1 Mbp) close to HvFT1 (39.6 Mbp), a

gene known to link vernalisation and photoperiod path-

ways (Faure et al., 2007). This suggests that mechanisms

for regulating flowering time also impact plant height,

coinciding with Tondelli et al. (2014).

As expected, 1000-grain weight was clearly affected by

row-type genes, with INT-C (17.6 Mbp on 4H) showing as a

large-effect QTL, with both single SNP- and haplotype-

based GWAS analyses (Figures 5c and S7c, Table S7). A

large QTL for 1000-grain weight was also located on 2H (at

(a) N = 355)    Growth habit ( (b)      Breeding history (N = 340)

Spring Facultative   Winter      Cultivars   Landraces

Spring Facultative   Winter      Cultivars   Landraces

Spring Facultative   Winter      Cultivars   Landraces

Spring Facultative   Winter      Cultivars   Landraces

Figure 4. Box plots of general adaptation and adaptability, as characterized by Finlay–Wilkinson regression and an Additive Main effect and Multiplicative Inter-

action (AMMI) model fitted to days to heading (DTH) across multi-environment trials.

Barley genotypes were categorised by (a) growth habit (spring facultative, n = 38; spring, n = 288; winter, n = 29) and (b) breeding history (cultivar, n = 174; lan-

drace, n = 166). In the top row of panels of (a) and (b), Finlay–Wilkinson general adaptation, corresponding to mean performance across environments, is

shown. In the second row of panels of (a) and (b), Finlay–Wilkinson adaptability, relating genotype sensitivity to the environmental gradient, is indicated. Here,

genotypes that have a value (for the slope) of greater and less than one demonstrate more and less sensitivity to the environment compared with the population

mean, respectively. In the third and final rows of panels of (a) and (b), DTH is explored further by AMMI, with scores for AMMI 1 and AMMI 2 shown, respec-

tively, by row, to indicate categorised genotype contributions to genotype by environment interaction (G9E) (see also Figure S6). In these plots, genotypes the

deviate most from zero (positively or negatively) contribute more to G9E (i.e. genotypes with scores close to zero deviate little from the general population

response along the environmental gradient). For growth habit, the AMMI plots indicate the contrast between spring and winter habit types across trial sowing

date. Winter genotypes have strongly negative scores, indicating that their DTH is relatively more delayed in spring trials compared with other lines. For breed-

ing history, landraces show more positive scores in AMMI plots, indicating that their DTH is conversely relatively more delayed in winter trials compared with

spring trials. Some of our panel of 371 genotypes were excluded from analysis because they were unclassified by specific sub-categories (see Figure 1c). Letters

show significant differences based on a Tukey test (P <0.05).
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649.8 Mbp) close to the row gene Vrs1 (652.1 Mbp). A sec-

ond QTL on 2H, close to HvCEN, suggested that HvCEN

may have a pleiotropic effect on grain weight.

In the case of awn length, the haplotype-based GWAS

scan showed a clear QTL at the end of chromosome 1H

(547 Mbp; Figure S7d, Table S7). Locus HOR-

VU1Hr1G087460.6 is located close to this position (at

539.4 Mbp). We identified through sequence homology

searches that this locus coded for an orthologue of rice

AUXIN RESPONSE FACTOR 2 (OsETTIN2), a gene highly

expressed in developing inflorescences of rice that is

essential in awn development, along with the DROOPING

LEAF (DL) gene (Toriba & Hirano, 2014). While associations

with genes known to be involved in determining awn

development in barley, such as HvDEP1 (Wendt et al.,

2016) and HvTUD1 (Braumann et al., 2018), were not

significant in our haplotype-based analysis, the identifica-

tion of a QTL close to the OsETTIN2 orthologue suggests a

promising candidate for the control of awn length in the

crop. There was also a QTL at 642.6 Mbp on chromosome

3H (observed especially for SNP-based GWAS) that corre-

sponded to the region harbouring sdw1/denso

(634.1 Mbp), suggesting a pleiotropic effect of the semi-

dwarfing gene (Figure 5d).

Dissecting adaptation and the genetic control of DTH

confirms the importance of known circadian clock-related

genes in barley

The DTH trait underpins barley’s spread from the Fertile

Crescent to more extreme latitudes. We therefore further

analysed haplotypes associated with flowering-associated,

circadian clock-related genes that determine DTH. The

Figure 5. Multi-environment genome-wide associa-

tion scans of individual single nucleotide polymor-

phism profiles. Manhattan plots for (a) days to

heading, (b) plant height, (c) 1000-grain weight and

(d) awn length for 371 domesticated barley lines.

Blue and red lines indicate a multiple testing correc-

tion of a = 0.05 and a = 0.01, respectively. Vertical

lines indicate positions of some important known

genes reported in the literature. The x-axis repre-

sents physical distances.
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suite of genes we chose for analysis was identified by Cal-

ixto et al. (2015) and analysed by Russell et al. (2016) for

adaptive responses in the barley crop and wild barley. We

were able to construct haplotypes for 13 of the 19 genes

reported by Russell et al. (2016). As expected, these genes

explained a large proportion of phenotypic variation for

DTH (Figure S8). Most important was HvPPD-H1, which

explained 33% of the main genotypic effect (Figure S8a)

and 12% of the G9E variance (Figure S8b). HvCEN, as for

HvPPD-H1 located on chromosome 2H, also had important

effects, explaining 21% of the main genotypic effect and

5% of the G9E variance. The QTL effects were on occa-

sions different between spring-sown and winter-sown tri-

als (Table S8); as already noted, this was particularly clear

for haplotype states at HvPPD-H1, where additive effects

were negative in spring-sown trials (accelerating flowering)

and positive in winter-sown trials (delaying flowering).

Across haplotype blocks for all of the 13 circadian clock-re-

lated genes that we could test, haplotype frequencies dif-

fered between cultivars and landraces, with a greater

range of haplotype states revealed in the latter case

(Figure S9). This was also reflected in an exome-wide anal-

ysis of haplotype states, which demonstrated that the least

common states were more often observed in landraces

than in cultivars (Figure S10), indicating the value of lan-

draces as sources of alleles for breeding.

Latitudinal distributions of haplotypes at key circadian

clock-related genes indicate the importance of sampling

contexts and barley category in understanding adaptive

responses

We further explored the geographical origins of haplotype

states at HvCEN and HvPPD-H1 genes with reference to the

latitude of genotype sampling for our subset of 174 spring

habit domesticated barley genotypes. Haplotype states for

both genes followed a clear geographical gradient (Fig-

ures 7 and S11) that parallels earlier gene-specific studies

(Jones et al., 2008; Russell et al., 2016) and the wider geo-

graphical sampling of haplotype states for all 371 of our

tested barley accessions (Figure S12). Most obviously for

HvCEN, haplotype a dominates in northerly clines and b in

more southerly locations. We also found a significant

Spring
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Spring

Spring

Spring

Spring

Winter

Winter

Winter

Winter

Winter

Winter

Winter
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b
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HvPPD-H1 HvCEN

Hungary

Hungary

Scotland
Hungary
Italy
Scotland

Scotland
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Scotland
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Scotland
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Scotland
Hungary
Scotland
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Italy
Scotland
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Scotland
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Scotland
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QTL3

Additive effects (days)

Figure 6. (a) Manhattan plot for days to heading (DTH) for 371 domesticated barley lines and (b) additive effects for specific haplotype states for HvPPD-H1,

HvCEN and quantitative trait locus (QTL) 3. In the last case, haplotype states are for the haplotype block associated with the identified QTL position itself, which

is close to but not coincident with HvCO4. In (b), rows indicate the additive substitution effects, in days, of specific haplotype states (all with reference to the

most common haplotype state, haplotype a, chosen as the baseline; see also Table S8). Haplotypes are shown in descending order of frequency of occurrence

(e.g. haplotype b is the most common after a), meaning that the effects of the haplotype states closer to the top of the schematic are more definitive (haplotype

state sample sizes given in Table S8). For HvPPD-H1, haplotype states a and b both correspond to photoperiod-insensitive alleles and haplotype states c, d, e, f,

g and h all to photoperiod-sensitive alleles according to the classification of Turner et al. (2005). For HvCEN, haplotype states b and d correspond to early alleles

and haplotype states a and c correspond to late alleles according to the classification of Comadran et al. (2012). The x-axis represents physical distance in Mbp.

Figure 7. Mean days to heading (DTH) of specific HvCEN haplotype states across five environments for 174 spring habit domesticated barley lines.

Each circle represents genotypes whose site of origin is within the same latitude bin of 10°. The x-axis was centred by the latitude of each trial site (i.e. points to

the right of the x/y intercept are south of the trial site). Genotypes were classified as (a) all genotypes, (b) cultivars or (c) landraces. The point size indicates the

relative number of accessions with a particular HvCEN haplotype in a specific latitude bin. The asterisk (*) indicates the position of a mid-latitude bin with clear

differentiation in DTH for haplotypes a and b in all tested material.
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latitudinal effect consistent with the importance of the lati-

tude-based genic context of domestication-related genes,

and coinciding with the cultivar and landrace categories

(Figures 7b,c and S11b,c). A comparison of haplotypes a

and b in the results presented for HvCEN (Figure 7a), for

example, indicated the key role for haplotype state in DTH

variation for genotypes sampled from mid-latitude points

especially [haplotype a heading on average more than

7 days later than b (mean across five trial environments),

which is also consistent with the QTL9E analysis]. Similar,

although less clear, effects (possibly reflecting smaller

sample sizes for the larger number of haplotype states for

our subset of spring habit accessions) to those for HvCEN

were observed for HvPPD-H1 (Figure S11). Results there-

fore reveal the importance of the genotype sampling con-

text and history of breeding in understanding the adaptive

responses of the barley crop, as these processes might

lead to collinearities between alleles for different genes.

DISCUSSION

Our joint modelling of the barley crop’s genotypes and

multi-environment phenotypes involved refined statistical

approaches to analyse exomic gene haplotype states and

explore environmental adaptation. Our assessment has

built on previous research (Russell et al., 2016) by includ-

ing a wider range of domesticated barley lines and by pro-

viding a more adaptive context to observed genotypic

variation, through a formal multi-environment analysis of

adaptive phenotypes. Our analysis is of particular rele-

vance for the development of the barley crop in important

European production environments.

In our study, exomic variation that corresponded with

barley classifications was distributed geographically in pat-

terns consistent with an isolation by distance model

(Wright, 1943), but contained specific features indicating

selective processes at particular sequences, as demon-

strated by circadian clock-related genes. Even in the case

of overall (rather than gene-specific) genomic variation,

however, local geographical components were not negligi-

ble, suggesting the presence of a degree of local sub-struc-

turing, probably due to more complex local climatic

mosaics and perhaps reflecting ancient anthropogenic pro-

cesses of landrace seed distribution. Taking the total exo-

mic data and applying statistical methods for local LD

characterization and clustering, we identified sub-popula-

tions that explained an important proportion of phenotypic

variance in the barley crop, with clear biological, geo-

graphical and historical interpretations. The large differ-

ences we observed in local LD patterns were consistent

with other studies on plants, humans and animals (Daw-

son et al., 2002; Wang et al., 2013), and indicate the impor-

tance of local LD characterization in genetic research.

Classifications and phenotype–genotype comparisons,

especially starting with exomic haplotype states that

provided additional insights into diversity, revealed greater

variation in landraces than cultivars and candidate gene

loci supporting crop sub-class identification and adaptive

trait variation. They also quantified the relative importance

of a panel of circadian clock-related genes in determining

genotype and G9E effects for the DTH trait. In addition,

comparisons, as expected (Beaumont, 2005; Russell et al.,

2016), revealed strong genetic differentiation for loci

known to be responsible for determining barley’s row clas-

sification (e.g. Vrs1 and INT-C) that confirmed the validity

of our data, as did strong associations revealed by GWAS

between known trait genes and our phenotypic field mea-

surements.

Patterns of multi-site phenotypic variation indicated

clear interactions with genotypic data consistent with

adaptation profiles that varied for spring and winter crop

growth habits, and were consistent with the known history

of crop development. Some differences in adaptability sug-

gest that landraces in particular might be a useful source

of alleles to breed for more broadly adapted cultivars.

However, it is hard to make solid conclusions when com-

paring the cultivar and landrace categories on this point,

as the comparison is partially confounded with row type

and growth habit. The nature of interactions can be com-

plex, with the directions of effects across trials varying for

a number of clock-related genes. In the case of the pho-

toperiod response gene HvPPD-H1, for example, particular

haplotype states were associated with contrasting

responses in spring-sown and winter-sown trials, while for

the earliness per se gene HvCEN the second most common

haplotype showed a consistent effect across all trials. The

identification of further haplotypes that have an equivalent

biological effect would be an additional step to character-

ize germplasm adaptation patterns and scope, with con-

trasting alleles in particular providing insights into the

geographical regions that are promising sources of alleles

useful for European crop breeding programmes. Contrast-

ing groups can for example be used for crosses to effi-

ciently search for causal genes (Ellis et al., 2000) and to

provide breeders with climate-ready alleles for inclusion in

pre-breeding initiatives. We also observed that known cau-

sal mutations in clock-related genes (Turner et al., 2005;

Comadran et al., 2012), especially for HvCEN, depended on

a genic context defined by the latitude of origin of crop

lines, as well as breeding history, for expressing pheno-

typic variation. This observation is consistent with theories

of the release of large effects at crop domestication-related

gene loci with geographical range expansion from the Fer-

tile Crescent to more northerly environments (Doust et al.,

2014).

At a practical level, the large number of SNPs and their

partitioning in our study has shown the extensive genetic

diversity available in the WHEALBI germplasm collection

for high-resolution novel allele mining to support crop
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adaptation. This will allow the prioritisation of genomic

regions and particular sets of lines for further inspection in

crosses to support breeding efforts that seek to cope with

climate change and a range of other abiotic and biotic

stresses (Dawson et al., 2015).

An important motivation of our work was to provide not

only genotypic and phenotypic data to the wider barley

research community but also associated seed, and all are

freely available through the WHEALBI project (http://www.

whealbi.eu/). The suite of powerful refined statistical tools

for multi-environment GWAS and other analyses that we

have developed here to address methodological chal-

lenges, including those posed by the significant genetic

structuring in our germplasm panel (which is not unique to

barley collections but occurs for many crops), are also

freely available from the project website. Genotypes that

are genetically similar because of population structure

share both causal and non-causal alleles, potentially lead-

ing to complex collinearities between different regions and

spurious marker–trait associations that require correction

(Korte and Farlow, 2013; Vilhj�almsson and Nordborg,

2013). In addition, the mixed model methodologies (Hoff-

man, 2013; Millet et al., 2016; Price et al., 2006) that we

have used here are useful for providing insight into the

genetic basis of adaptation across environments for crops

other than barley. Finally, in the current study, we have

focused on the analysis of exomic SNPs above a minimum

minor allele frequency. Further research will explore lower-

frequency SNPs as well as indels and copy number vari-

ants to classify barley genotypes and for allele mining.

EXPERIMENTAL PROCEDURES

Plant material

The domesticated barley germplasm employed for our

genomic–multi-environment phenomic comparison was

taken from a wider sample of 512 accessions assembled

by partners of the WHEALBI research project (EU FP7 no.

FP7-613556). This source material represents a range of

worldwide barley genetic diversity, including landraces,

cultivars and progenitors, assembled to quantify variation

and explore adaptation, to determine possible breeding

responses to production challenges (http://www.whealbi.e

u/). In order to represent the geographical and environ-

mental variation that reflects responses to biotic and abi-

otic stresses, the WHEALBI panel includes accessions

originating from a wide range of locations covering key

crop production regions in Europe, Africa, the Middle East

and Asia. As explained further below, a subset of 371

domesticated lines was chosen from the entire WHEALBI

germplasm set for current analysis, considering the com-

pleteness of both genomic and phenotypic data that allow

detailed comparison. Chosen accessions covered landraces

and cultivars (Figure S13) of both two- and six-row types,

and spring and winter growth habits [i.e. barleys that are

generally planted in the spring and autumn (or winter),

respectively, with cold-tolerant winter barleys requiring

vernalisation for timely flowering and crop production;

Sasani et al., 2009]. Data on the origins of accessions are

provided in Table S1. For some previously non-located

cultivars, we assigned geographical coordinate positions

based on mid-points of the main sub-national barley

production regions within their countries of origin,

based on EUROSTAT (http://ec.europa.eu/eurostat/web/agri

culture/data/) and other online data sources. Seed from

each original genebank accession was multiplied through

two rounds of single-seed descent. One seed from the sub-

sequent seed stock was germinated for DNA extraction,

while most of the remainder was placed into the IPK gene-

bank as reference material for future further testing and

distribution (seed available on request from IPK). The final

portion of the seed stock was further multiplied and then

used to establish field trials.

Collecting phenotypic data

Common garden trials were sown in Dundee (Scotland,

winter and spring planting), Martonvasar (Hungary, winter

and spring planting) and Fiorenzuola d’Arda (Italy, winter

planting only). Details of the locations of trial sites, with

summary weather conditions during field experimentation,

are provided in Table S4. Field trials followed an aug-

mented partially replicated design. In each field trial, the

full set of 512 accessions that make up the entire WHEALBI

collection was sown in single plots, and in addition 102

accessions (almost 20%) had two replicates. Replicated

lines were randomly drawn from the full accession set and

therefore the complement used differed from one experi-

ment to the next. To integrate results across experiments,

two check cultivars were also included. These were the

winter growth habit variety Meridian and the spring

growth habit variety Irina, which were both recently

released and are grown across Europe. To distribute

checks evenly within each trial, each check was added to

eight out of the ten incomplete blocks that were laid out

following the principles of an alpha design. Eight of these

blocks represented subdivisions of the full set of plots (512

accessions) being tested, while a further two blocks repre-

sented duplicated accessions. Each plot consisted of two

rows of length 1.5 m, with 30 seeds planted per row. Plots

were separated from each other by buffer rows of wheat. A

sample of seed was collected from each plot at each site. A

quality control phenotypic ‘grow-out’ of each of these sam-

ples was made at KWS (Cambridge, UK). Ten accessions

were excluded from the analysis owing to mismatches

between the site samples.

The subset of key life history traits considered in the cur-

rent analysis consisted of DTH, plant height, 1000-grain

weight and awn length. Collected phenotypic data are
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provided in Table S1. During trait measurement, heading

was considered to occur when half of the heads had

emerged for 50% of the plants in a plot (Z55 according to

the Zadok growth scale). Plant height at maturity was mea-

sured from the base of the plant to the insertion of the

spike for at least four plants per plot and values averaged.

Grain weight was measured for three aliquots of seed that

were oven-dried at 60°C for 48 h. The 1000-grain weight

was calculated by dividing the aliquot weight by the num-

ber of grains and averaging across aliquots. Awn length

was measured for at least four spikes per plot and values

averaged. Adjusted means (Table S1) and generalized heri-

tabilities (Table S5) were calculated using the R package

SpATS, fitting a model using two-dimensional (2D) pena-

lised splines (P-splines) for the correction of spatial trends

(Rodr�ıguez-�Alvarez et al., 2018; Velazco et al., 2017).

Library preparation and sequencing

Genomic DNA (gDNA) was extracted from leaf material of

single barley individuals grown in the laboratory at IPK.

Genomic DNA samples were checked with a Genomic DNA

ScreenTape on the Agilent 2200 Tape Station System (Agi-

lent, https://www.agilent.com/) to verify integrity. Samples

were quantified by the Picogreen assay (Thermo Fisher,

https://www.thermofisher.com/) and normalised to 20 ng

ll–1 in 10 nM TRIS-Hcl (pH 8.0) according to the NimbleGen

SeqCap EZ Library SR protocol v.4.0. Genomic DNA was

then fragmented to a size range of 180–200 bp using Cov-

aris microTUBEs and a Covaris S220 Instrument (Covaris,

https://covaris.com/), and whole-genome libraries prepared

according to the Kapa LTP Library Preparation protocol.

Libraries were quantified using the Nanodrop method

(Thermo Fisher) and analysed electrophoretically with an

Agilent 2200 TapeStation System using a D1000 Screen-

Tape. Libraries were pooled in 8-plex and hybridised with

the barley SeqCap EZ oligo pool (Design Name

120426_Barley_BEC_D04; Mascher et al., 2013) in a thermo-

cycler at 47°C for 48–72 h. Capture beads were used to pull

down the complex of capture oligos and gDNA fragments,

with unbound fragments removed by washing. Enriched

fragments were amplified by PCR, and the final library

quantified by quantitative (q)PCR and visualised using the

Agilent TapeStation. Sequencing libraries were normalised

to 2 nM, denatured with NaOH and used for cluster amplifi-

cation on the cBot. The clustered flow cells were sequenced

on an Illumina HiSeq2000 with an 8-plex strategy (i.e. eight

samples per HiSeq lane), with a 100-bp paired-end run

module, at Parco Tecnologico Padano, Italy.

Sequence processing and alignment

Sequence quality control was performed with FastQC

(Babraham Institute, http://www.bioinformatics.babraha

m.ac.uk/projects/fastqc/). Raw Illumina reads were then

trimmed with Trimmomatic v.0.30 (Bolger et al., 2014) to

remove sequencing adapters and quality filtered using a

sliding window of four bases, requiring a Phred quality

score of >20. Trimmed reads were mapped to the reference

genome (Mascher et al., 2017) with BWA v.0.7.5a, using

the MEM algorithm with default parameters (Li & Durbin,

2009). A total of approximately 24 million reads per sample

were mapped to the reference genome. The resulting BAM

files were sorted with Samtools (http://samtools.sourcef

orge.net/) and duplicated reads marked using Samblaster

(Faust and Hall, 2014). Only properly paired reads longer

than 50 bp were used in further processing. All bioinfor-

matic analyses were performed using Pipengine (Strozzi

and Jean Pierre Bonnal, 2017).

Single nucleotide polymorphism calling, validation and

imputation

Variant calling and realignment around indels were per-

formed with GATK v.2.7.4 (https://www.broadinstitute.

org/gatk/) following best practices. Final BAM files were

combined using GATK UnifiedGenotyper, with default

parameters and a minimum base quality of 30. Raw variant

calls were initially hard filtered by requiring QD >30.0,
MQ >40.0 and sample DP ≥10. High-quality exome

sequence data were obtained for 403 of a starting set of

512 WHEALBI genotypes. Where exome data quality was

too low (for the balance of 109 genotypes), exome capture

was later repeated. These repeat data are available in archi-

val records but were not included in our current analysis.

Single nucleotide polymorphisms taken forward for further

consideration at this stage had to pass filtering criteria of

≥80% of genotypes represented, a quality score of >30 and

≥98% of all scores in the homozygous condition. Validation

to confirm the identity of exome-captured accessions con-

sisted of comparing SNPs obtained from exome capture

with SNPs independently obtained with GBS and a SNP

array. Data were consistent for the 403 lines reported here.

From the 403 initial genotypes for which we had high-

quality exome data, current analysis focused on 371

domesticated genotypes, where we excluded 22 wild bar-

ley lines (identified according to passport data) and

another 10 genotypes for which an alternate (from expecta-

tion) row-type status during phenotyping was revealed or

initial testing of SNP data revealed accession profiles that

were not consistent with a domesticated status.

For the purposes of the current analysis we applied a

further filtering criterion to SNPs by only including markers

with a MAF of ≥0.05. This was because our primary con-

cern in the current study was to focus on constructing

‘basal’ haplotypes with higher frequencies more amenable

for statistically valid phenotype–genotype comparisons.

Our further analysis of the frequency spectra of SNP mark-

ers for landrace and cultivar categories, including lower-

frequency markers, showed that these spectra were fairly

similar (although with landraces having a somewhat great
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proportion of very low-frequency markers; Figure S14);

thus our choice to apply a relatively stringent MAF should

not unduly bias SNP inclusion toward either landrace or

cultivar categories that could then very markedly influence

relative diversity parameters (although it does of course

‘underestimate’ total diversity). Future allele mining and

further assessment of diversity levels will involve analysis

of SNP profiles without application of MAF.

For our set of 371 chosen accessions, absent SNP entries

based on a MAF ≥0.05 were imputed with Beagle, imple-

mented in the R package Synbreed (Wimmer et al., 2012).

The SNP data set that included imputed SNPs was used

for all subsequent analyses. These data were deposited at

the Plant Genomics and Phenomics Research Data Reposi-

tory of IPK and can be accessed via https://doi.org/10.5447/

ipk/2019/5 (WHEALBI Consortium, 2019). The DOI was reg-

istered in the Plant Genomics and Phenomics Research

Data Repository (Arend et al., 2016) with e!DAL (Arend

et al., 2014).

Measuring local LD

Patterns of meiotic recombination are known to be highly

heterogeneous along barley chromosomes, with, for exam-

ple, large peri-centromeric regions virtually devoid of

genetic crossing over (Mascher et al., 2017). In the current

study we therefore developed and applied a method that

characterizes local LD along chromosomes, using markers

thinned to every 25th SNP. The method was employed

twice, first without and then with kinship correction having

been applied to the data (Mangin et al., 2012).

Method 1: LD characterization without kinship correc-

tion. A sliding window of 500 thinned SNPs was used to

calculate local LD for each SNP position, employing the R

package LDcorSV (https://cran.r-project.org/package=LDc

orSV). Consecutive sliding windows had an overlap of 475

out of the 500 SNPs. Subsequently, SNPs within a distance

of 20 000 bp were binned and the 0.95 quantile for the LD

calculated for each bin. A monotonically decreasing spline

was fitted to these binned SNPs and used to estimate the

distance at which R2 decreased to levels of 0.1 or 0.3 (these

thresholds were applied because they correspond with

those commonly used in the literature). Splines were then

fitted with the R package mcgv (Wood, 2017). Distances

characterizing the LD decay along the genome were then

used to define the number of SNPs used for kinship sub-

population construction (see below), so that genomic

regions where LD decayed more quickly by physical dis-

tance were sampled more intensively than regions with

slower LD decay, allowing us to more effectively discrimi-

nate genotypes (Speed et al., 2012).

Method 2: LD characterization with kinship correc-

tion. Using R2 as a measure of LD assumes that its extent

around a causal polymorphism depends only on a drift–re-
combination process in a random-mating population with-

out selection (Mangin et al., 2012). As this assumption

does not hold in the case of diversity panels such as that

used here, LD was also characterized after correcting for

population structure, based on a kinship constructed with

SNPs sampled taking LD decay into account (as related fur-

ther elsewhere in Experimental procedures). In this second

approach, we again used a sliding window of 500 thinned

SNPs. Calculation of kinship-corrected LD followed the

method proposed by Mangin et al. (2012) and was imple-

mented in the R package LDcorSV. As for LD calculations

without correction for population structure, we binned

SNPs and fitted a monotonically decreasing spline to

bins, and then used this to estimate the distance at which

R2 decreased to 0.1 or 0.3. Our purpose for calculating LD

estimates after applying kinship correction was to gain

insights into changes in LD along chromosomes that were

independent of otherwise-confounding population struc-

ture, as this knowledge is useful for a number of purposes,

including determining the width of QTL regions.

Characterizing population structure and genetic

differentiation

To characterize population structure, 12 819 SNPs were

sampled genome wide after local LD (not corrected for

population structure, see above) had been taken into

account. To define the number of sampled SNPs, all SNPs

were first assigned to bins of 2 Mbp. Five SNPs were then

sampled from the bins with the highest LD, but for bins

with more rapid LD decay the number of SNPs sampled

was increased proportionally to give greater weight to

those genomic regions that provide for better genotype

discrimination (Speed et al., 2012). Total sampled SNPs

were then used to calculate a kinship matrix with the equa-

tion proposed by Astle and Balding (2009), implemented in

the R package Synbreed (Wimmer et al., 2012). To infer the

number of sub-populations, significant principal compo-

nents were calculated after applying a spectral decomposi-

tion to the kinship matrix (Patterson et al., 2006). We then

assigned genotypes to sub-populations using a hierarchi-

cal clustering procedure that was applied to the significant

principal components, following Odong et al. (2013).

Values of genetic differentiation (Fst), based on row type

(two-rowed versus six-rowed) and breeding history (lan-

drace versus cultivar) were also calculated, using the R

package pegas (Paradis, 2010). Differentiation was calcu-

lated for each SNP and moving medians of values were

then obtained for windows of 100 SNPs using the R pack-

age zoo (Zeileis and Grothendieck, 2005).

Landscape genomic analysis

We identified a well-defined subset of spring growth habit

barleys (n = 174, comprising 111 cultivars and 63
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landraces) from our initial set of 371 domesticated acces-

sions for which the confounding factor of vernalisation in

determining DTH had been removed by excluding winter

growth habit lines. The genotypes chosen for this panel

were non-tropical, such that day length adaptation at

specific latitudes should be an important feature for the

crop. All the chosen genotypes also had collection site

coordinate data. We use this panel to analyse some of the

geographical details of control of DTH by specific gene

sequences. Initially, however, we subjected the panel to a

landscape genomics analysis using sPCA (Jombart et al.,

2008), implemented in the R package adegenet, to deter-

mine the overall pattern of geospatially related genetic

structure in the spring habit crop. In this method, the pat-

tern of genomic variation is characterized in relation to

spatial data using a matrix X, with dimensions genotype

(individual) by marker (SNP). Spatial information contained

in a degree distance matrix L, standardized by rows and

with diagonal terms set as zero, was used to calculate the

spatial autocorrelation of the SNP alleles using Moran’s I:

I xð Þ ¼ XT LX

XTX
(1)

Moran’s I can be used to measure spatial structure in

the values of X: it is highly positive when values of X

observed at neighbouring sites tend to be similar (positive

spatial autocorrelation, referred to as global or regional

structures), while it is strongly negative when values of X

observed at neighbouring sites tend to be dissimilar (nega-

tive spatial autocorrelation, referred to as local structures).

Moran’s index measures only spatial structures and not

genetic variability, because it is standardized by the vari-

ance of X. Spatial structure and variation can be estimated

in sPCA as

C Xð Þ ¼ var Xð ÞI Xð Þ ¼ 1

n
XT LX (2)

C(X) is highly positive when X has a large variance and

exhibits a global structure. C(X) is negative when X has a

high variance and displays a local structure.

G3E characterization and genome-wide association scans

G9E patterns were studied for the 371 domesticated barley

lines with high-quality genotypic and phenotypic data.

Days to heading, plant height, 1000-grain weight and awn

length were evaluated with various genotype to phenotype

models, focusing on the genotypic response across envi-

ronments. Models will be presented here by increasing

complexity:

yij ¼ lþ Ej þGi þGEij þ eij (3)

In Equation (3), yij is the phenotype for genotype i in

environment j, l is the intercept, Ej is the fixed effect of

environment j, Gi is the random effect of genotype i, GEij is

the random G9E interaction and ɛij is the residual. To

quantify the contribution of genotype classifications to the

phenotypic variance, model (3) was expanded as follows:

yij ¼ lþ Ej þ Ck þ CEjk þGiðkÞ þGEijðkÞ þ eij (4)

where Ck is the fixed effect of genotype category and

CEjk stands for the fixed category-by-environment effects.

Model (4) was fitted four times considering sub-popula-

tions (kinship group, as related further elsewhere in

Experimental procedures), row type (two-rowed and six-

rowed), breeding history (cultivars and landraces), growth

habit (winter landraces, winter cultivars, spring landraces

and spring cultivars) and the combination of breeding his-

tory and growth habit [‘BH and GH’ (spring cultivar, win-

ter cultivar, spring landrace, winter landrace, spring

facultative landrace)] as categories. To have an estimate

of the importance of a suite of known candidate genes

related to DTH, model (4) was also fitted, replacing Ck and

CEjk by the haplotype states of these genes. The contribu-

tion of categories (Figure 3) or of known genes related to

DTH (Figure S8) to genotypic and G9E variance was

quantified by calculating the reduction in Gi and GEij

between models (3) and (4). To further characterize adap-

tation patterns, Finlay–Wilkinson, GGE and AMMI models

were used.

yij ¼ lþGi þ biEj þ eij (5)

In the Finlay–Wilkinson model (Equation 5; Finlay and

Wilkinson, 1963), the genotype main effect Gi provides an

indication of general performance across all environments,

bi is the genotypic sensitivity to the environment and Ej is

a covariable that characterizes the environmental quality

and corresponds to the genotypic mean in environment j.

Intercepts and slopes were compared for genotypes

belonging to different categories using a one-way ANOVA

and a Tukey test.

To characterize adaptation patterns of the groups of

genotypes across environments, the GGE interaction

model was fitted (Yan et al., 2000; Yan and Kang, 2002).

yij ¼ lþ Ej þ
XP

p¼1

rpicpi þ eij (6)

In Equation (6),
PP

p¼1

rpicpi represents the P bilinear terms

that are used to model (Gi + GEij). The first two bilinear

terms are used to create a visual representation of the

adaptation patterns (Yan and Kang, 2002). The AMMI

model was also used to compare the contributions of

genotype categories to the DTH G9E:

yij ¼ lþGi þ Ej þ
XA

a¼1

raicaj þ eij (7)

In model (7), A bilinear terms are used to represent GEij.

The scores for the first two bilinear terms were compared

for the different genotype categories using a one-way

ANOVA and a Tukey test.
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Further investigation of the structure of G9E and its under-

lying genetic basis involved multi-environment GWAS

applying equation (8), which was fitted with ASREML-R

(VSN-International, 2015). This model is similar to those

applied by Millet et al. (2016) and Thoen et al. (2017). The

model addresses the analysis of multi-environment data

with the identification of genomic regions related to differen-

tial QTL expression across environments (QTL9E).

yij ¼ lþ Ej þ
XP

p¼1

ðxPC
ip bGp Þ þ

XP

p¼1

ðxPC
ip bGE

jp Þ þ xSNP
i bSNP

j þGEij þ eij

(8)
In Equation (8), yij is the phenotype of genotype i in

environment j, l is an intercept and Ej is the fixed effect of

environment j. The terms
PP

p¼1

ðxPC
ip bGp Þ and

PP

p¼1

ðxPC
ip bGE

jp Þ cor-

rect for population structure representing, respectively, the

main effect population structure and the population struc-

ture by environment interaction. xPC
ip is the pth principal

component extracted from the kinship matrix and bGp is a

regression slope indicating the importance of this principal

component for the main effect population structure, while

bGE
jp indicates the importance of this principal component

for G9E. A specific kinship matrix was calculated for each

chromosome when testing for marker–trait associations by

excluding the markers on that particular linkage group

(Rincent et al., 2014). The QTL/SNP effects are included via

the term xSNP
i bSNP

j , with fixed environment-specific SNP

effects, bSNP
j , and marker information (allele counts) in

xSNP
i . Thus, at each marker position, xSNP

i bSNP
j models a

QTL main effect and a QTL9E term simultaneously. Fitted

QTL effects can be inspected and tested to identify QTLs

that have a consistent effect across environments versus

those that show QTL9E. Importantly, this latter category,

related to adaptation, can be used to identify genotypes

with adaptive alleles for specific production conditions.

The significance of the QTL effect was assessed with a

Wald test (Boer et al., 2007; Welham and Thompson,

1997). The significance threshold employed for testing

marker–trait associations was established using a Bonfer-

roni correction for independently segregating chromosome

segments (Li and Ji, 2005) in combination with a correction

for genomic control (Devlin and Roeder, 1999; Kang et al.,

2008). The model in equation (8) was used for testing QTL

effects related to individual SNPs as well as for QTL effects

related to haplotype blocks within gene regions (as

described in the next section).

Defining haplotypes

As input to the construction of haplotype blocks we used

37 535 candidate gene regions annotated with high confi-

dence in the most recent version of the barley genome

assembly (Beier et al., 2017; Mascher et al., 2017). For

18 278 genes that had multiple SNPs with MAF ≥0.05, we

attempted to construct haplotype blocks and states with

Haploview (Barrett et al., 2005) following the method of

Gabriel et al. (2002). Sufficient LD was present to create

haplotype blocks for 17 235 genes, with multiple blocks

identified for some genes. To then explore the genetic

basis for adaptation in a unique contribution to the

methodology of genome-wide association analysis, we

developed a multi-environment model that tested for hap-

lotype block–trait associations on a genome-wide scale,

based on a total of 25 009 haplotype blocks. To this end,

the SNP term xSNP
i in equation (8) above was replaced by a

vector of haplotype states, xH
i , while the allele substitution

effect bSNP
j was replaced by a vector of haplotype state sub-

stitution effects bHj representing the effect of each haplo-

type state relative to the most common haplotype state

(baseline reference).
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