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Emulsions are ubiquitous in foods, and decades of research

work have led to advanced, although often empirical, control

over the formulation and functionality of those systems.

However, the conventional strategies to make food emulsions

have to be revisited, due to the trends in the food sector area

that have emerged in recent years. This includes a strong focus

on naturalness, health and sustainability, which promotes the

use of plant-derived ingredients, ideally obtained from mild

processing, and thus, by essence, far from pure and well-

characterized. Adapting to this change of mind while ensuring

the physicochemical stability of emulsions is a challenge, and

requires that researchers invest effort into deep

characterization of the emulsions’ microstructure and

dynamics, for which tools to characterize multiple scales are,

more than ever, an essential need.
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Introduction
Many food products contain two or more immiscible

phases, often oil and water, which exist as one phase

dispersed in the other as colloidal droplets. Such systems

are water-in-oil (W/O) emulsions represented, for instance,

by butter and margarine, or oil-in-water (O/W) emulsions,

as found in a broad range of beverages, milk, infant formulas

and other dairy-based products, mayonnaise, dressings and

sauces (Figure 1) [1��]. Decades of fundamental and

applied work have built advanced state-of-the-art knowl-

edge on the factors that affect the properties and stability of

emulsion systems. However, in the current context of high

consumer demand for healthy and clean-label foods, and of

transition to more sustainable ingredients, some of the
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established paradigms and formulation rules need to be

reconsidered, which is a challenge for both the academic

and private sectors. We thus aim at identifying directions

that seem promising, and even essential, for the develop-

ment of the next generations of food emulsions.

Main properties of food emulsions
Emulsifiers

Because of the molecular incompatibility between oil and

water, emulsions are thermodynamically unstable, and

strive for minimizing the interfacial area between oil and

water, which involves the physical destabilization of the

system and ultimate complete phase separation. It is possi-

ble to retard this process to time scales that are substantially

larger than typical storage times, which can be achieved by

using emulsifiers. Emulsifiers are surface-active molecules

that consist of hydrophilic and hydrophobic parts, which

makes them able to adsorb at the oil-water interface [2,3�]
(Figure 1). Two main categories of food emulsifiers exist:

low molecular weight emulsifiers (LMWEs), which are

represented by, for example, lecithins, polysorbates, or

monoglycerides and diglycerides [4]; and amphiphilic

biopolymers, of which the main example is proteins

(e.g. whey proteins, caseins) [5].

In the past decade, interest has been rising in the use of

more sustainable food ingredients such as plant proteins,

of which the functional properties are not that thoroughly

characterized yet. Furthermore, a third category of food

emulsifiers, colloidal particles, has become popular. Such

particles, when having affinity for both oil and water, can

anchor at the interface, forming a strong mechanical

interfacial barrier in so-called Pickering emulsions.

Interfacial layers containing Pickering particles are much

thicker than conventional emulsifier-based ones; the

particles need a certain size, and wettability, to rather

irreversibly nest in the interface and give emulsions high

physical stability. Although the proof of concept and

development of Pickering emulsions had historically

been done using inorganic particles and non-food oils,

many biobased particles have now been identified as

useful in that respect [6��,7].

Physicochemical stability and related issues

Emulsions are, in essence, unstable systems. They may

destabilize physically through different phenomena, the

main ones being [1��]: flocculation, when two or more

droplets stick to each other while retaining their individ-

ual integrity, forming flocs; coalescence, when droplets

merge after rupture of the interfacial film, leading to
www.sciencedirect.com
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Schematic representation of an oil-in-water (O/W) emulsion and its

different phases. Such systems comprise molecules and colloidal

structures with affinity for both oil and water, which partition between

the different available phases. Drawing is not to scale.
larger droplets; gravitational separation between the

continuous phase and the droplets (e.g. creaming for

O/W emulsions), which is due to the density difference

between oil and water; and phase inversion, that is,

transition to a W/O emulsion from an O/W emulsion,

or vice versa. Although some of these phenomena are

sometimes used purposely to induce-specific structures

(e.g., partial coalescence of the fat droplets in ice cream,

or droplet flocculation in cream cheese), they are

generally unwanted, as they lead to defects in the texture

and appearance of the products. The droplet size is an

important property of emulsions and may vary by orders

of magnitude depending on the application, from around

0.1–0.2 mm to around 100 mm. This directly impacts the

total interfacial area, and thus the required amount of

emulsifier to cover it, and can be notably of importance in

emulsions combining small droplet sizes and aggregated

emulsifiers, where adjacent droplets may share adsorbed

aggregates [8].

Another major concern regarding the stability of food

emulsions is their chemical stability when they contain

labile components. These mainly include lipophilic

components, for instance polyunsaturated fatty acids

(PUFAs), which are well recognized for their health

benefits [9]; however, are also highly sensitive
www.sciencedirect.com 
to oxidation. This leads to the degradation of the

product’s nutritional quality, and generates off-flavors.

It is well known that lipid oxidation in O/W emulsions

depends on the structure and composition of the system,

through intricate and interrelated pathways [10,11]. A

prominent development in this field over the past decade

has been the conceptualisation of the so-called cut-off

effect [12,13�,14], according to which antioxidants that

have been lipophilized by grafting of an alkyl chain are

more efficient to counteract lipid oxidation in emulsions

than their unmodified hydrophilic counterparts, which is

attributed to their preferred location at the oil–water

interface, where oxidation is supposed to be initiated.

Beyond a certain alkyl chain length, a decrease in the

antioxidant activity is observed, which is attributed to the

aggregation and/or intra-droplet location of these

molecules. From this, it has be concluded that positioning

antioxidants at the right place in those multiphase

matrices seems to be a key strategy for controlling

lipid oxidation.

Trends and challenges in the design of food
emulsions
Sustainable ingredients

A leading trend in food design is the current transition to

more sustainable foods and ingredients (Figure 2), which,

for emulsions, mostly comes down to the origin of the

proteins used as emulsifiers. Although dairy proteins are

known for their high functionality, in the light of the

current protein transition it is desirable to consider

plant-derived alternatives [15,16]. Substantial work has

already been done to characterize the interfacial and

emulsifying properties of various plant-derived protein

ingredients, for a large part, focusing on soy proteins

[17,18]. Yet, the use of soy proteins has been subjected

to debate, due to, for example, allergenicity and genetic

modification issues, especially in Europe. Therefore, in

countries where soybean production is scarce [19], efforts

are currently made at considering other plant protein

sources, of which some have been proved useful as food

emulsifiers, such as pea [20,21,22�], lupin [23,24], or lentil

proteins [25–27].

The use of plant proteins as emulsifiers has been

extensively reviewed lately, for instance by Sharif et al.
[28], Lam et al. [29�] and Burger and Zhang [30]; despite the

great interest in their use, some drawbacks still need to be

overcome. First, a true sustainability superiority over

animal-derived proteins can only be achieved if the

separation process applied to obtain the protein ingredient

is not too energy-consuming and water-consuming (this is

often not the case for high purity isolates, which are

generally subjected to a thermo-aggregation step at low

pH, leading to protein aggregation and poor solubility).

Thus, mildly refined plant protein fractions should be

preferred, which implies that the non-protein ingredients

present in these fractions (e.g. polysaccharides) should be
Current Opinion in Food Science 2019, 27:74–81
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Figure 2
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Number of publications in the past two decades with the terms ‘sustainable food’, ‘clean-label food’, ‘functional food + health’, ‘food

digestion + health’, or ‘bioinspired food’ as title and/or topic (Web of Science, March 2019).
an integrate part of the emulsion design strategy [31].

Second, many plant protein ingredients show limited

solubility in aqueous media at neutral or acidic pH, which

may limit their ability to rapidly adsorb at fluid interfaces

[30,32]; besides, they exhibit relatively large surface loads

compared to, for example, dairy proteins [3�], possibly

requiring the use of higher emulsifier concentrations. As

previously mentioned, the interfacial behavior of plant

proteins is not comprehensively understood yet, and that

leads us to conclude that there is still a considerable gap to

bridge. The knowledge that needs to be generated should

be directed towards systematic understanding of interfacial

and emulsifying properties of plant proteins in relation to

their molecular and supramolecular structures (Figure 3),

and linking this to emulsion stability, which is a first step

towards actual food applications; in a later stage, also

sensory properties, digestibility, nutritional value and so

on, need to be considered.

Clean-label ingredients

Consumers are nowadays more and more reluctant

towards food products containing synthetic additives

often referred to as their official identification number

within the European Union, or E-number. This has

pushed food manufacturers to try to minimize the use

of such additives, and to prefer ‘natural’ ingredients,

which is referred to as the ‘clean-label’ trend [33].

Although no official regulation for clean-label food exists

yet, recently there has been a massive effort at investi-

gating the potential of natural, biobased molecules or
Current Opinion in Food Science 2019, 27:74–81 
ingredients to stabilize emulsions, both physically and

chemically. Already in 1993, Dickinson published a

review article entitled ‘Towards more natural emulsifiers’

[34], yet most of the research on this topic has been

published in the past five years.

Of course, many emulsifiers that have been traditionally

used in food emulsions are of natural origin, such as lecithin

or dairy proteins, but many others are, in fact, synthetic,

such as polysorbates or sucrose esters (Figure 3). As

recently reviewed [35�], alternatives to synthetic LMWEs

can be compounds called bioemulsifiers or biosurfactants,

such as Quillaja saponin [36]. Yet natural polymers are the

most obvious candidates, including conventional or

alternative protein sources — which can also be a way to

mitigate sustainability issues, by using plant proteins.

Finally, as mentioned earlier, biobased particles have

recently met strong interest for stabilizing emulsions

instead of conventional emulsifiers. A distinction here

should be made depending on the level of processing

and chemical modifications that are necessary to obtain

particles with suitable functionality. Pickering particles

that naturally occur and need minimal modifications,

such as cocoa [37] or citrus fibers [38] are expected

to be preferred over particles that need chemical

modification (e.g. hydrophobization of starch granules

by octenylsuccinic anhydride, OSA [39]) or that are pur-

posely engineered from relatively pure ingredients (e.g.

colloidal lipid particles [40] or protein-polysaccharides

complex particles [41]).
www.sciencedirect.com
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Figure 3
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Comparison of different food emulsifiers based on: (X-axis) the state-of-the-art knowledge regarding their functionality, that is, interfacial and

emulsifying behavior; and (Y-axis) their potential to comply with sustainability and clean-label requirements. Obviously, the ideal emulsifier would

be located in the top right corner of this graph. It should be pointed out that this graph does not include the amount of material that would be

needed to stabilize an interface, that is, the surface load, which is much larger for colloidal particles compared to molecular emulsifiers.
Ensuring the oxidative stability of food emulsions

without using synthetic antioxidants such as ethylenedia-

mine tetra acetic acid (EDTA) is also a challenge, and the

development of natural alternatives is of great relevance.

It is well-known that proteins present in the aqueous

phase of O/W emulsions can have a strong antioxidant

activity [42], but whether this could fully be an industri-

ally relevant alternative is still to be explored. Besides, it

should be kept in mind that the efficiency of antioxidants

in emulsions is highly matrix-dependent, and so far,

effects have failed to be generalized [43��]. This is

certainly due to the dynamic physical location of antioxi-

dant molecules, due to diffusive transfer and exchange

between both phases and the interface, that has often not

been taken into consideration, and which could be crucial

to achieve rational solutions [44��,45].

Health-promoting emulsions and controllable digestive

fate

“Let food be thy medicine and medicine be thy

food”: here is the title of a recent review article dealing

with the trends in the food sector, and notably with the

increasing interest in health-promoting and functional

foods [46] (Figure 2). This trend has undoubtedly

influenced the design of food emulsions, and in particular

their composition. Emulsions can be used as a reservoir

for bioactive, health-promoting molecules such as

PUFAs, vitamins, or phytochemicals [47] that are often
www.sciencedirect.com 
lipophilic and can be combined directly with the

dispersed oil phase. The continuous hydrophilic

phase ensures compatibility with a broad range of food

formulations. It is also possible to design advanced

emulsion-based systems, such as double emulsions, for

the encapsulation of hydrophilic components, but this is

outside the scope of the present review.

Ensuring stable encapsulation of lipophilic components

in emulsions has been extensively studied; in addition,

the ultimate step in a food emulsion’s lifespan, that is, its

fate in gastrointestinal conditions, determines it efficacy

as a delivery system, which has become an important field

of research and an integral part of food emulsion

formulation. The point of the present article is not to

give a comprehensive overview of the emulsion digestion

process; for that, we refer the interested reader to, for

example, the reviews of Golding and Wooster [48], and

more recently of Corstens et al. [49�], Guo et al. [50], and

McClements [51]. When it comes to emulsion design, the

composition and structure of emulsion-based systems has

often been claimed to modulate their digestibility and

thus control their digestive fate. Promoting the digestion

and bioavailability of lipophilic bioactives (e.g. lipophilic

vitamins, pigments) via rational emulsion design has been

an active research area [47,52]. Independently of the

targeted emulsion fate, a key question is whether the

digestive model used under lab conditions is relevant to
Current Opinion in Food Science 2019, 27:74–81
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phenomena occurring in the human gastrointestinal tract

[53��]. Most studies are conducted using static in vitro
models, which are certainly useful for screening purposes,

but more advanced studies including dynamic in vitro and

in vivo models are essential before bringing promising

systems towards applications.

Alternatively, delaying lipid digestion has also been a hot

topic, because slow and more distal hydrolysis and

absorption of triglycerides are associated with enhanced

satiety [49�]. This is, however, difficult to achieve as the

human gastrointestinal has evolved over millions of years

to optimally digest food materials and absorb their

nutritional components. Some attempts have been made

at manipulating the physical state of the lipid phase

[54,55], or the composition and structure of the oil droplet

surface [56–59], leading to mixed, sometimes contradic-

tory, and highly matrix-dependent results. A more robust

approach to delay lipolysis seems to lie in the entrapment

of emulsion droplets within a hydrogel matrix, for

example protein gels [60,61] or alginate beads [62�,63],
which mostly revolves around the design of the gels beads

and not so much around that of the emulsion and

its interface.

Bioinspired emulsions

Emulsion droplets naturally exist in living organisms, in

the form of, for example, oil bodies for plants, and

lipoproteins or milk fat globules for mammals. For

example, the oil–water interface in these emulsions has

a complex composition and structure: oil bodies are

covered by a monolayer of phospholipids and embedded

proteins, mostly from the oleosin family, and milk fat

globules are covered by a trilayer of phospholipids with

embedded membrane proteins and cholesterol [64].

These systems have optimal physical and chemical

stability, which is explained by their formation mecha-

nisms, and show targeted responsiveness towards their

physiological roles. For example, the natural milk fat

globule membrane present in breast milk is recognized

for its health benefits in infants [65��]. This has been a

source of inspiration for researchers in the food science

area [66�] (Figure 2). In the past few years, a number of

articles have reported strategies for mimicking the milk

fat globule membrane in O/W emulsions, such as

incorporating bovine milk phospholipids [67] or milk

fat globule membrane fragments [68], or by adsorbing

an external phospholipid layer onto pre-formed droplets

using electrostatic deposition [69]. The applicability of

such strategies to industrial emulsion formulation

depends, however, on the complexity and scaling-up

possibilities of the involved interfacial engineering,

which can be a real challenge.

Towards multiscale analysis and design
Achieving a high level of control over emulsion structure

is only possible when the structure itself can be accurately
Current Opinion in Food Science 2019, 27:74–81 
characterized at various scales, going from molecular

composition of both phases and the interface, to interface

functionality, and ultimately food product stability. Food

emulsions are complex systems from a composition and

morphology point of view, and the various molecules

present may partition among the available phases. For

instance, the effect of the continuous phase fraction of

emulsifiers on the physicochemical stability of emulsions

is often overlooked, even though these non-adsorbed

emulsifiers can play an important role as they may induce

depletion flocculation [1��], enhance compositional

ripening [70] and more generally, influence transport

phenomena, and often have an antioxidant role [11].

Excess emulsifiers may represent a very large fraction

of the total used (Figure 1), and the interfacial composi-

tion may differ substantially from the composition of

the emulsifier ingredients used. Thus, the interfacial

composition should be systematically characterized, also

as function of time to chart exchange processes.

This can be done in different ways, by non-invasive,

invasive, or destructive methods [3�]. The structure of

the corresponding interfacial layer is of importance, and

may be studied in situ by, for example, microscopy

techniques, or using two-dimensional model interfaces

[3�]. A drawback of most of these methods is their static

character, which to some extent can be mitigated by using

expanding/compressing interfaces as is possible in a

Langmuir trough, and in droplet volume tensiometry,

and from which data related to interface rheology can

be extracted [71��]. Still there is an essential drawback;

the interfacial layers are formed by passive spreading or

diffusion, whereas the conditions encountered in conven-

tional emulsification devices, such as high pressure

homogenizers, are highly dynamic and involve active

mass transport. An interesting approach to take these

aspects into account is the use of microfluidic methods

to study the formation and short-term coalescence

stability of emulsion droplets, as these devices operate

at very short time-scales, and involve convective transport

[72�,73–75].

To wrap up, combining different techniques and scales

seems essential to unravel the interfacial microstructure

in food emulsions, particularly when ingredients of high

compositional complexity are used, such as plant protein

and biobased particulate materials. Although the optimal

link between industrial conditions and those that can be

achieved under lab conditions is still a difficult one to

establish, more and more tools become available to do

exactly that.

Conclusions
In the past few years, research in the field of food

emulsions has encountered pivotal influences that open

perspectives, but also identify many challenges. Some

leading trends may be conflicting, such as increasing the
www.sciencedirect.com
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levels of PUFAs while removing synthetic antioxidants,

or striving for stable emulsion products while using less

refined and well-characterized ingredients. Despite the

exponential number of scientific articles published in the

field of food emulsions, there is a large gap between

scientific research and industrial applications. Taking

the complexity of relevant components and of the

structures formed as an integral part of the studies, and

using a multiscale, multidisciplinary approach to deal

with this complexity is expected to be key for future

developments.
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