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Soil nematode abundance and functional 
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Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few 
quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes 
are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced 
samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the 
composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass 
of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions 
(38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide 
insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards 
representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling 
under current and future climate scenarios.

As we refine our spatial understanding of the terrestrial biosphere, 
we improve our capacity to manage natural resources effectively. 
With ever-growing functional information about the biogeography 
of aboveground organisms, an unresolved gap in our understanding 

of the biosphere remains the activity and distribution patterns of soil 
organisms1,2. The soil biota—including bacteria, fungi, protists and 
animals—has central roles in every aspect of global biogeochemistry, 
influencing the fertility of soils and the exchange of CO2 and other 
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gases with the atmosphere3. As such, biogeographical information on 
the abundance and activity of soil biota is essential for climate model-
ling and, ultimately, environmental decision-making2,4–6. However, the 
activity of soil organisms is not explicitly reflected in biogeochemical 
models owing to our limited understanding of their biogeographical 
patterns at the global scale.

In recent years, pioneering studies in soil biogeography have begun 
to provide valuable insights into the broad-scale taxonomic diversity 
patterns of soil bacteria7–11, fungi11–13 and nematodes14–17, and pat-
terns of microbial biomass11,18,19. However, we have been unable to 
generate a high-resolution, quantitative understanding of the abun-
dance or functional composition of active soil organisms because of 
two major reasons. First, owing to the methodological challenges in 
characterizing soil biota, most previous studies have focused on a rel-
atively limited number of spatially distinct sampling sites (fewer than 
500) and, therefore, cannot detect high-resolution regional-scale pat-
terns. Second, most global studies have used molecular sequencing 
approaches, which provide valuable semi-quantitative information on 
taxonomic diversity but do not provide information on absolute abun-
dances or biomass, which are essential to link biological communities 
to ecosystem functioning and global biogeochemistry20,21. DNA- and 
RNA-based approaches cannot unambiguously differentiate between 
living (that is, either active or dormant) and dead cells, so they cannot 
be used to quantify the active component of the belowground commu-
nity22,23. To generate a robust, global perspective of belowground biota 
and the roles of these soil organisms in biogeochemical cycling, we need 
a sampling design that provides a thorough global representation of the 

belowground communities and direct, quantitative abundance data that 
reflect the active community. Here we use this approach to generate a 
quantitative understanding of a critical component of the soil food web, 
for which direct extraction methods enable the quantification of active 
organisms: nematodes.

Nematodes are a dominant component of the soil community and 
are by far the most abundant animals on Earth2. They account for an 
estimated four-fifths of all animals on land24, and feature in all major 
trophic levels of the soil food web. The functional role of nematodes in 
soils can be inferred by their trophic position and nematodes are there-
fore often classified into trophic groups based on feeding guilds (that is, 
bacterivores, fungivores, herbivores, omnivores and predators). Given 
their pivotal roles in processing organic nutrients and control of soil 
microorganism populations25–27, they play critical parts in regulating 
carbon and nutrient dynamics within and across landscapes26 and are 
a good indicator of biological activity in soils28. However, we lack even 
a basic understanding of broad-scale biogeographical patterns in nem-
atode abundance and the composition of functional groups. Despite 
expectations that nematode abundances may peak in warm tropical 
regions with high plant biomass14,15, previous studies have suggested 
that the opposite pattern may exist, with high nematode abundances in 
high-latitude regions with larger standing stocks of soil carbon16,17,29–31. 
Disentangling the effects of these different environmental drivers of 
soil nematode communities is critical to generate a mechanistic under-
standing of the global patterns of soil nematodes, and for quantifying 
their influence on global biogeochemical cycling.

Here we use 6,759 spatially distinct soil samples from all terrestrial 
biomes and continents to examine the environmental drivers of global 
nematode communities. By using 73 global layers of climate, soil and 
vegetation characteristics, we then extrapolate these relationships 
across the globe to generate spatially explicit, quantitative maps of soil 
nematode density and functional group composition at a global scale.

Biome-level patterns of soil nematodes
By compiling soil sampling data from all major biomes and continents, 
we aimed to generate a representative dataset that captured the varia-
tion in global nematode densities. Within each sample, we quantified 
the total abundance of each trophic group using microscopy. To stand-
ardize sampling protocols, we focus on the top 15 cm of soil, which is 
the most biologically active zone of soils6,32. Consistent with previous 
reports33, nematode abundances are highly variable within and across 
terrestrial biomes, ranging from dozens to thousands of individuals 
per 100 g soil (Fig. 1b). This variation highlights the necessity for large 
datasets in soil biodiversity analyses to reliably predict large-scale pat-
terns, as the accuracy of our mean estimates for any region improves 
considerably with increasing number of samples (Fig. 2a). Specifically, 
the confidence in our mean estimates for nematode abundance in 
any region is relatively low at the scale of individual samples, but 
high only when calculated with larger sample sizes (that is, more than  
400 samples).

Overall, we observed the highest nematode densities in the tun-
dra (median = 2,329 nematodes per 100 g dry soil), boreal forests 
(median = 2,159) and in temperate broadleaf forests (median = 2,136), 
and the lowest densities are observed in Mediterranean forests 
(median = 425), Antarctic sites (median = 96) and hot deserts 
(median = 81) (Fig. 1b and Supplementary Table 2). To examine the 
mechanisms that drive the patterns of soil nematode density and func-
tional group composition across biomes, we integrated the nematode 
abundance data with 73 global datasets of soil physical and chemical 
properties, and vegetative, climatic, topographic, anthropogenic and 
spectral reflectance information (Supplementary Table 3). Antarctic 
sampling points were excluded from the modelling dataset owing to 
limited coverage of several covariate layers. To match the spatial res-
olution of our covariates, all samples were aggregated to the 1-km2 
pixel level to generate 1,876 unique pixel locations across the world. We 
analysed a suite of machine-learning models (including random forest, 
and L1- and L2-regularized linear-regression models) to determine the 

Fig. 1 | Map of sample locations and abundance data. a, Sampling sites. 
A total of 6,759 samples were collected and aggregated into 1,876 1-km2 
pixels that were used for geospatial modelling, and abundance data from 
39 1-km2 pixels from Antarctica. b, The median and interquartile range of 
nematode abundances (n = 1,876) per trophic group (top) and per biome 
(bottom) from all continents. Axes have been truncated for increased 
readability. Biomes with observations from more than 20 1-km2 pixels are 
shown.
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environmental drivers of the variation in nematode abundance and 
functional group composition across the globe. We iteratively varied 
the set of covariates and model hyperparameters across 405 models 
and evaluated model strength using k-fold cross-validation (with 
k = 10). This approach allowed us to select the best performing model 
that had high predictive strength (mean cross-validation R2 = 0.43, 
overall R2 = 0.86), while taking into account issues that surround mul-
ticollinearity, as well as model overparameterization and overfitting.  

This final model—an iteration of random forests using all 73 covari-
ates—was then used to create per-pixel mean and standard deviation 
values. Mapping the extent of extrapolation highlighted that our dataset 
covered most environmental conditions, with the least represented pix-
els and highest proportion of extrapolation in the Sahara and Arabian 
Desert (Extended Data Fig. 1b, d). We acknowledge that our models 
cannot accurately predict nematode abundances at fine spatial scales, as 
local environmental heterogeneity can cause considerable variation in 
nematode abundances, even within individual locations. However, the 
strength of these predictions increases at the larger scales for which our 
modelled estimates are informed by more data observations (Fig. 2b), 
ensuring confidence in our estimates. Predicted versus observed plots 
revealed that, despite the high accuracy in most regions, the models 
tended to marginally overrepresent the observed numbers at low den-
sities and underrepresent abundances at higher nematode densities 
(Fig. 2c–h). Moreover, our cross-validation accuracy calculations may 
be optimistically biased, as we cannot entirely account for the potential 
effects of overfitting. Our analyses would have ideally included a subset 
of data that was removed at the beginning of the analyses to enable a 
fully independent accuracy assessment. However, as the removal of 
a subset of data would mean the loss of geographical representation, 
we chose instead to maintain the integrity of the entire dataset and 
generate spatially explicit maps of model confidence that allow for 
error propagation throughout the final global calculations (Fig. 2i and 
Extended Data Fig. 1a, b, d). These maps provide spatial insight into 
the prediction uncertainties rather than a single accuracy measure for 
overall model accuracy.

Our statistical models reveal the dominant drivers of nematode 
abundance across global soils. As with aboveground animals, climatic 
variables (that is, temperature and precipitation) had important roles 
in shaping the patterns in total soil nematode abundance. However, 
soil characteristics (for example, texture, soil organic carbon (SOC) 
content, pH and cation-exchange capacity) were by far the most impor-
tant factors driving nematode abundance at a global scale, with effects 
that largely overwhelmed those of climate (Supplementary Table 3). 
Linear models enabled us to assess the directionality of these relation-
ships, revealing that both SOC content and cation-exchange capacity 
had strong positive correlations, whereas pH had a negative effect on 
total nematode density (Extended Data Fig. 2). These trends support 
the suggestion that soil resource availability is a dominant factor that 
structures belowground communities at broad spatial scales, overriding 
the effect of climate to shape the belowground communities at broad 
spatial scales2,12,15.

Global biogeography of soil nematodes
The high predictive strength of the top model enabled us to extend the 
relationships across global soils to construct high-resolution (30 arcsec 
or approximately 1 km2) quantitative maps of total nematode densi-
ties (Fig. 3). These maps reveal notable latitudinal trends in soil nem-
atode abundance, with the highest densities in sub-Arctic regions, 
a trend that is consistent across all trophic groups (Extended Data 
Fig. 3a–e). Similar to the regional averages, the highest abundances 
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of soil nematodes are found in boreal forests across North America, 
Scandinavia and Russia. Whether nematode abundance is expressed 
as density per gram of soil or per unit area (thus controlling for the 
differences in soil bulk density), the models reveal a latitudinal gradi-
ent in soil nematode abundance (Fig. 3 and Extended Data Figs. 4, 5). 
Whether soil animals exist at highest abundances in the high or low 
latitudes has been a contentious issue in the soil ecology literature, with 
some studies indicating that the highest abundances occur in boreal 
forests and others suggesting that tropical forests support the great-
est abundances14,29,31. Our extensive data from every biogeographical 
region enabled us to see beyond these contrasting results to reveal a 
latitudinal pattern of nematode abundance, providing evidence that soil 
nematodes are present in considerably higher densities in high-latitude 
Arctic and sub-Arctic regions (Fig. 3).

Along with the latitudinal gradient in nematode abundance, our 
nematode density map also reveals regional variation that stands out 
against the global trends. Although nematode abundances were rel-
atively low in tropical regions, our sampling data and models reveal 
a high nematode abundance in certain tropical peatlands such as the 
Peruvian Amazon (Figs. 1a, 3). These regions are characterized by 
high SOC stocks, which support high microbial biomasses that serve 
as the basic resource for most nematode groups. Similarly, increased 
SOC stocks at high altitudes compared to lowland regions drive higher 
nematode abundances in mountainous regions and highlands, such 
as the Rocky Mountains, Himalayan Plateau and the Alps (Figs. 1a, 
3). Although the respective climates of these regions exhibit large dif-
ferences in mean annual temperature (ranging from less than 0 °C to 
more than 10 °C), their soils are all characterized by relatively high SOC 
stocks (that is, more than 50 g kg−1). By contrast, the lowest nematode 
densities were predicted in hot deserts such as the Sahara, Arabian 
Desert, Gobi Desert and Kalahari Desert (Fig. 3), regions that are char-
acterized by very low SOC stocks. As such, the spatial variability in 
nematode abundance is highest in equatorial regions, which exhibit 
the full range of possible abundances from deserts to biomes charac-
terized by high SOC stocks. This is reflected by the spatial patterns in 
our model uncertainty, in which low-latitude arid regions with low 
sampling density and soil nematode abundances are characterized by 
larger uncertainties (Fig. 2i and Extended Data Fig. 1).

The strong correlation between temperature and SOC content at a 
global scale19 makes it challenging to identify the primary driver of 
the latitudinal gradient in nematode abundances. However, regional 
deviations from the global biogeographical pattern help to disentangle 
their relative roles, as they decouple the effects of climate and soil char-
acteristics. For example, low temperatures and high moisture content 
in high-latitude regions restrict annual decomposition rates, leading 
to the accumulation of soil organic material19,30. However, the positive 
effect of SOC in tropical peatland regions (which have not only high 
soil carbon levels, but also warm temperatures) suggests that it is the 
content of organic matter, rather than climatic conditions, that ulti-
mately determines the abundance of nematode in soil. These models 
reinforce the idea of a dominant role of soil characteristics in driving 
nematode abundances. These trends suggest that the influences of cli-
mate on nematode density are not direct, but instead act indirectly by 
modifying soil characteristics.

We next examined how the structure of nematode communities 
varied across landscapes by exploring the abundance of each trophic 

group across our dataset. At the global scale, all trophic groups were 
positively correlated with one another (Extended Data Fig. 6a), which 
suggests that biogeographical regions with high nematode abundances 
are generally hospitable for members of all trophic groups. Despite the 
distinct feeding habits, the global consistency across trophic groups 
provides some unity in the biogeography of the soil food web. That is, 
although different nematodes rely on distinct food sources for their 
energetic demands, the size of the entire food web is ultimately deter-
mined by the availability of soil organic matter. Nevertheless, the rel-
ative composition of nematode communities did vary across samples. 
To characterize the main nematode community types, we clustered the 
observed relative abundances into four types, on the basis of the relative 
abundance of each trophic group (Extended Data Fig. 6b). Although 
there were no clear spatial patterns in these community types, vector 
analysis revealed that the indices of vegetation cover (for example, the 
normalized difference vegetation index and enhanced vegetation index) 
were the best predictors of herbivore-dominated communities, whereas 
edaphic factors (such as sand content and pH) were strong predictors 
of communities dominated by bacterivores (Extended Data Fig. 6c).

By summing the nematode density information of each pixel, we can 
begin to generate a quantitative understanding of the abundances and 
biomass of soil nematodes at a global scale. We estimate that approx-
imately 4.4 ± 0.64 × 1020 nematodes inhabit the upper layer of soils 
across the globe (Table 1 and Supplementary Table 5). Of these, 38.7% 
exist in boreal forests and tundra, 24.5% in temperate regions and 
20.5% in tropical and sub-tropical regions (Supplementary Table 6). 
By combining our estimates of nematode abundance with mean bio-
mass estimates of each functional group (using a database that contains 
32,728 nematode samples)34,35, we can approximate that the global bio-
mass of nematodes in the global topsoil is approximately 0.3 gigatonnes 
(Gt; Table 1). This translates to approximately 0.03 Gt of carbon (Gt C; 
Table 1 and Supplementary Table 7), which is three times greater than 
a previous estimate of soil nematode biomass36, and represents 82% of 
total human biomass on Earth (see Supplementary Methods). Using 
the same database of nematode metabolic activity34,35, we estimate that 
nematodes may be responsible for a monthly C turnover of 0.14 Gt C 
within the global growing season, of which 0.11 Gt C is respired into the 
atmosphere (Table 1). By comparison, the amount of carbon respired by 
soil nematodes is equivalent to roughly 15% of carbon emissions from 
fossil fuel use, or around 2.2% of the total carbon emissions from soils 
(approximately 9 and 60 Gt C per year, or 0.75 and 5 Gt C per month, 
respectively)37. As such, our findings indicate that soil nematodes are 
a major—and, to date, poorly recognized—player in global soil carbon 
cycling.

Despite high confidence in our estimates of the total abundance 
and community composition of nematodes, these approximations of 
the metabolic footprint retain several assumptions that might lead to 
considerable uncertainty in our estimates. For example, seasonal cli-
matic variation in metabolic activity could influence the values that 
we present here, and total activity levels might be lower than expected 
based on these growing season estimates. On the other hand, extraction 
efficiency can be lower than 50% in some samples, which could lead to 
underestimation of the actual activity levels. Local variation in land-
use types and bias in our sampling data could cause variation in soil 
nematode abundances at local scales. Furthermore, even though our 
sampling locations cover the vast majority of environmental conditions 

Table 1 | Total nematode abundance, biomass and carbon budget
Trophic group Computed individuals (× 1020) Fresh biomass (Mt) Biomass (Mt C) Monthly respiration (Mt C) Monthly production (Mt C) Monthly carbon budget (Mt C)

Bacterivores 1.92 ± 0.208 68.57 ± 7.42 7.13 ± 0.77 34.17 ± 3.69 12.22 ± 1.31 46.39 ± 5.02

Fungivores 0.64 ± 0.065 9.56 ± 0.97 0.99 ± 0.10 6.49 ± 0.66 0.91 ± 0.09 7.40 ± 0.75

Herbivores 1.25 ± 0.114 83.41 ± 7.59 8.67 ± 0.79 26.74 ± 2.43 7.01 ± 0.64 33.75 ± 3.07

Omnivores 0.39 ± 0.046 96.50 ± 11.40 10.25 ± 1.19 27.38 ± 3.17 6.08 ± 0.70 33.46 ± 3.87

Predators 0.20 ± 0.031 42.25 ± 6.59 4.39 ± 0.68 15.06 ± 2.35 3.00 ± 0.46 18.06 ± 2.82

Total 4.40 ± 0.643 302.30 ± 33.99 31.44 ± 3.54 109.82 ± 12.31 29.24 ± 3.23 139.06 ± 15.54
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on Earth (Extended Data Fig. 1f), certain regions—such as the Sahara 
and Arabian Desert—are underrepresented in our data, leading to rel-
atively high uncertainties in these regions (Fig. 2i and Extended Data 
Fig. 1a, b, d). Moreover, as our sampling approach focuses on the top 
soil layer, we stress that our analysis will underestimate total nematode 
abundances in, for example, tropical regions where high nematode den-
sities are found in litter layers38. However, the metabolic footprint that 
we provide enables us to approximate the magnitude of soil nematode 
contributions to global carbon cycling and highlights their contribution 
to the total soil carbon budget. Furthermore, our findings emphasize 
the importance of high-latitude regions, characterized by high soil 
nematode abundances, for our understanding of soil carbon and feed-
back effects to ongoing climate change. These regions compose a major 
reservoir of soil carbon stocks6 and may release much more carbon as 
a result of increased soil activity of animals and a prolongation of the 
plant growing season owing to human-induced climate change.

In conclusion, our maps provide spatially explicit, quantitative infor-
mation on belowground biota at the global scale. In addition to pro-
viding baseline information about soil nematodes as a fundamental 
component of terrestrial ecosystems, it also alters some of our most 
basic assumptions about the terrestrial biosphere by highlighting that 
soil animal abundances peak in high-latitude zones. The high num-
bers of nematodes that are present across all global soils highlights 
their functional importance in the dynamics of global soil food webs, 
nutrient cycling and terrestrial ecosystem functioning. This quantita-
tive understanding of these belowground animals enables us to begin 
to comprehend the order of magnitude of their influence on the global 
carbon cycle and the spatial patterns in these processes. By provid-
ing quantitative information about the variation in biological activity 
in soils around the world, our models can provide the information 
necessary to explicitly represent soil biotic activity levels in spatially 
explicit biogeochemical models. That is, this information can now be 
used to parameterize, scale or benchmark spatially explicit model pre-
dictions of organic matter turnover under current or future climate 
change scenarios. We highlight that this global nematode study can and 
should be supplemented with similar future efforts to understand the 
biogeography of other important soil organisms, including fungi, bac-
teria and protists. Our soil nematode abundance and biomass data can 
serve as a stepping stone to facilitate future modelling efforts that add 
additional layers of soil biodiversity information to build a thorough 
understanding of the overwhelming abundance of life belowground 
and its influence on global ecosystem functioning.
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MeThods
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Data acquisition. We collected data on soil nematode abundances from previously 
published studies and unpublished data collections that morphologically quanti-
fied nematodes and determined taxa to the level of trophic groups or taxonomic 
groups. Rather than taxonomic diversity, we decided to focus on trophic groups as 
this gives more functional information. Trophic groups were assigned according 
to a previously published study39. We retained only samples that contained the fol-
lowing metadata: longitude and latitude, season or date sampled, sampling depth, 
information on land use (agriculture or natural sites) and whether samples were 
collected from soils or litter. We then standardized our efforts by focusing on all 
samples that were derived from soils and in which samples were representative of 
the nematode functional group composition in the top 15 cm of soils. This resulted 
in a final subset of 6,759 samples that were used for further analyses. Of these, 
32.8% originate from agricultural or managed sites and 67.2% from natural sites. 
All data points that fell within the same 30 arcsec (approximately 1-km2) pixels 
were aggregated as an average, resulting in a total of 1,915 unique pixels across the 
globe as inputs into the models (Supplementary Table 1). The 39 pixels located 
in Antarctica were removed from the dataset as the covariate layers have limited 
coverage in these regions. This resulted in a total of 1,876 unique pixels that were 
used for geospatial modelling.
Acquisition of global covariate layers. To create spatial predictive models of 
nematode abundance, we first sampled our prepared stack of 73 ecologically rel-
evant, global map layers at each of the point locations within the dataset. These 
layers included climatic, soil nutrient, soil chemical, soil physical and vegetative 
indices, radiation and topographic variables and one anthropogenic covariate 
(Supplementary Table 3). All covariate map layers were resampled and reprojected 
to a unified pixel grid in EPSG:4326 (WGS84) at 30 arcsec resolution (approxi-
mately 1 km2 at the equator). Layers with a higher original pixel resolution were 
downsampled using a mean aggregation method; layers with a lower original res-
olution were resampled using simple upsampling (that is, without interpolation) 
to align with the higher resolution grid.
Geospatial modelling. Using the ClustOfVar package40 in R, we reduced the 
covariates of interest to the most representative and least collinear few. As we did 
not have a specific number of variables defined a priori to use as a parameter for 
the clustering procedure, we put a range of cluster numbers (that is, 5, 10, 15 and 
20) into the ClustOfVar functions to compute multiple covariate groups to test 
machine learning models. Using these selections of variables, we used a ‘grid search’ 
procedure to iteratively explore the results of a suite of machine-learning mod-
els trained on each group of covariates computed from the ClustOfVar function. 
Moreover, following recent advancements in machine learning for spatial predic-
tion41, we tested models using all covariates with and without latitude/longitude 
data as well as a specific selection of covariates that represented principal ecosystem 
components plus satellite-based spectral reflectance. In addition to grid searching 
through models trained on different groupings of the covariates, we also explored 
the parameter space of multiple machine-learning algorithms (including random 
forests and regularized linear regression with both L1 and L2 regularization) and 
optional post hoc image convolution using kernels of various pixel sizes. During 
the grid search procedure, we assessed each model using k-fold cross-validation, 
to test the performance and overfitting across each of the 405 models. For each 
fold, a 10% subset of the data was extracted and held back for validation. Then, 
the model was trained on the remaining data and tested on the validation data. To 
test each model on the entire dataset, this process was performed 10 times for each 
model (that is, k = 10). The coefficient of determination values for each fold were 
then used to compute mean and standard deviation values for the cross-validated 
model. These mean and standard deviation values were the basis for choosing the 
best model of all 405 explored models using the grid search procedure, which was 
an iteration of random forests using all 73 non-spatial covariates. The grid search 
procedure was performed using the total nematode abundance data, and this final 
model was then used to model the sub-functional group abundance. The final R2 
value for the ensembled total nematode abundance model (also assessed using 
tenfold cross-validation) was 0.43.
Model uncertainty. To create a per-pixel mean and standard deviation, we created 
an ensemble model using multiple versions of the best model; as the best model 
was an iteration of random forests using all 73 non-spatial covariates, the ensem-
ble procedure was to rerun this model 10 times (each with different random seed 
values) and then averaging the model results. Using these values, we calculated the 
coefficient of variation (standard deviation divided by the mean predicted value) 
as a measure of the prediction accuracy of our model (Extended Data Fig. 1a).

To create statistically valid per-pixel confidence intervals, we performed a strat-
ified bootstrapping procedure with the ‘total number’ collection of nematode point 
data. The stratification category was the sampled biomes of each point feature  

(to avoid biases), and the number of bootstrap iterations was 100. Each of the 
bootstrap iterations required the classification of the composite raster data—that 
is, 209,000,000 pixels classified 100 times. Doing so allows us to generate per pixel, 
statistically robust 95% confidence intervals (Fig. 2i).

Next, we tested the extent of extrapolation in our models by examining how 
many of the Earth’s pixels existed outside the range of our sampled data for each 
of the 73 global covariate layers. To evaluate the sampled range, we extracted the 
minimum and maximum values of each covariate layer of the pixels in which our 
sampling sites were located. Then, using the final model, we evaluated the number 
of variables that fell outside the sampled range, across all terrestrial pixels. Next, 
we created a per-pixel representation of the relative proportion of interpolation 
and extrapolation (Extended Data Fig. 1b). This revealed that our samples covered 
the vast majority of environmental conditions on Earth, with 84% of Earth’s pixels 
values falling within the sampled range of at least 90% of all bands (Extended Data 
Fig. 1c). Across all environmental layers, the percentage of pixels with values within 
the sampled range is generally above 85% (Extended Data Fig. 1f).

To evaluate how well our data spread throughout the full multivariate environ-
mental covariate space, we performed a principal component analysis (PCA)-based 
approach. After performing a PCA on the sampled data, we used the centring 
values, scaling values and eigenvectors to transform the composite image into the 
same PCA spaces. Then, we created convex hulls for each of the bivariate combi-
nations from the first 11 principal components (which collectively covered more 
than 80% of the sample space variation). Using the coordinates of these convex 
hulls, we classified whether each pixel falls within or outside each of these convex 
hulls. In total, 62% of the world’s pixels fell within the entire set of 55 PCA convex 
hull spaces computed from our sampled data, with most of the outliers existing in 
arid regions (Extended Data Fig. 1d).

Geospatial analyses and extrapolation were performed in Google Earth 
Engine42. Additional model results have been supplied as raw source code (see 
‘Code availability’).
Nematode density values. To compute the original nematode density values 
(which were calculated as numbers of nematodes per 100 g of soil), we performed 
the following calculations at a per-pixel level. First, we multiplied the value by 10 to 
compute the number of nematodes per 1 kg of soil; the new units, per pixel, became 
the ‘number of nematodes per 1 kg of soil’. Then, we multiplied this value by the 
per-pixel bulk density values as produced by SoilGrids43; bulk density values were 
then produced in ‘kg of soil per 1 m3’. Finally, the new units after multiplication 
are the ‘number of nematodes per 1 m3 of soil’. Next, we multiplied this value by 
0.15 m to compute the ‘number of nematodes per 1 m2 of soil (in the top 15 cm)’. 
For pixels that had a soil layer shallower than 15 cm, the pixel value was multiplied 
by the depth to bedrock values as produced by SoilGrids43. These respective pixel 
values were then multiplied by the area of each pixel presumed to have soil (that is, 
we exclude areas of ‘permanent snow/ice’ and ‘open water’ from the calculations, 
following the Consensus Land Cover classes found at https://www.earthenv.org/
landcover); the units at this point, per pixel, are the total number of nematodes 
(in the first 15 cm of soil). Finally, all pixel values were summed to compute the 
final nematode abundance values across all pixels (that is, across the entire globe).
Clustering. To delineate main nematode ‘community types’ (that is, the relative 
frequency of each trophic group in a given sample), we first defined the number of 
clusters for the analysis. On the basis of pairwise distances and partitioning around 
medoids (k-medoids) clustering, we chose to select four clusters. Each of the four com-
munity types was then plotted (Extended Data Fig. 6b) to reveal their composition. 
To examine which environmental variables best explained each of the community 
types, we plotted each of the samples using non-metric multidimensional scaling 
(stress = 0.0691) and fitted environmental variables as vectors (Extended Data Fig. 6c).
Biomass estimates. Using publicly available data34,35, a database with taxon- 
specific body-size values (that is, length and width) of 32,728 nematode taxa 
(including 9,497 observations of adult nematodes and 23,231 observations of 
juveniles) was created to calculate the biomass, and respiration and assimilation 
rates for each trophic group. A nematode community typically contains numerous 
juveniles35; we assume the presence of 70% juveniles and 30% adults. For all cal-
culations described in this section, we calculated per-trophic group means using 
per-taxon observations. To produce the final values, we multiplied the mean cal-
culated values per trophic group with the predicted number of individuals per 
trophic group and per biome. The biomass of an assemblage of nematodes can be 
calculated as the sum of the weights of the number of individuals of each species 
that is present. According to a previous study44, the fresh weight of individual 
nematodes is calculated by

=
. ×

W LD
1 6 10fresh

2

6

in which Wfresh is the fresh weight (μg) per individual, L is the length (μm) of the 
nematode and D is the greatest body diameter (μm)44. Assuming a dry weight of 
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nematodes as 20% of fresh weight and the proportion of carbon in the body as 
52% of dry weight45,46, the dry weight (Wdry) of an individual nematode can be 
calculated as

=
.
. ×

W LD0 104
1 6 10dry

2

6

Daily carbon used in production. To calculate the total carbon used per nematode 
per day, we assumed that life-cycle length in days can be approximated as 12 times 
the colonizer–persister (cp) scale47,48 and that the accumulation of fresh weight is 
linear. Then, the daily increase in fresh weight is

=R W
12cpW

t

t

in which Wt and cpt are the adult weight and cp value for a nematode of trophic 
group t, respectively. Then, we calculate the normalized daily carbon used in pro-
duction (PC) as

=
.P W0 104
12 cp

t

t
C

in which cpt is the mean cp value of the respective trophic group. For a nematode 
assemblage, the daily carbon used in production can be calculated as

∑=
.P n W0 104
12cpt

t

t
C

for nt individuals of each trophic group present in the assemblage.
Carbon respiration. To estimate the carbon respiration rates of an assemblage of 
nematodes, we assume relationships between respiration rates and body weights 
for poikilothermic organisms, so that

=R a W b

in which R is the respiration rate, W is the fresh weight (μg) per individual, and 
a and b are regression parameters49,50. Following literature51,52, we assume that 
b is equal to 0.75. The parameter a varies with temperature and the time inter-
val on which the rate is based. For example, an average a value of approximately 
1.40 nl O2 h−1 for 68 nematode species has previously been determined53. This 
converts to an a value of 2.43 ng CO2 h−1 at 15 °C. To estimate CO2 respiration in 
μg per day, we make the assumption of an a value of 2.43 × 24/1,000 (= 0.058) 
for our calculations. Using the relative molecular weights of carbon and oxygen in 
CO2 (12/44 = 0.273), we can calculate the total rate of carbon respiration for all 
nematodes in the system as

∑= . ⋅ . .R n W0 273 0 058t t
0 75

or

∑= . .R n W0 0159t t
0 75

in which nt is the number of individuals and Wt the median body weight of each 
of the trophic groups summed over t trophic groups.
Total daily carbon budget. The total carbon budget (in μg per day) for each trophic 
group is the sum of the amounts that are respired and used for production, that is:
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Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
All raw data, sampled covariate layer data, models and maps are available at https://
gitlab.ethz.ch/devinrouth/crowther_lab_nematodes. The total nematode abun-
dance map is accessible online at https://www.crowtherlab.com.

Code availability
All source code and models are available at https://gitlab.ethz.ch/devinrouth/
crowther_lab_nematodes.
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Extended Data Fig. 1 | Model accuracy assessment and extent of 
interpolation and extrapolation across all terrestrial pixels in 73 
global covariate layers. a, Coefficient of variation (standard deviation 
as a fraction of the mean predicted value) as a measure of the prediction 
accuracy of our model. b, Proportional extent of interpolation (purple) 
versus extrapolation (red) in the univariate space. c, Percentage of pixels 
that fall within the convex hulls of the first 11 principal component spaces 
(collectively covering >80% of the sample space variation). d, Percentage 
of pixels interpolated as a function of the percentage of global 

environmental conditions covered by the sample set. On the global scale, 
86% of the Earth’s pixels have at least 90% of the covariate bands falling 
within the sampled range of environmental conditions. e, Percentage of 
pixels falling within the 55 convex hull spaces of the first 11 principal 
components (collectively explaining >80% of the variation). On the global 
scale, 62% of the Earth’s pixels fell within 100% of 55 convex hull spaces. 
f, Percentage of terrestrial pixels falling within the sampled range, per 
covariate band.



Article reSeArcH

R2 = 0.00115

R2 = 0.000143==

R2 = 0.0944

R2 = 0.031533

R2 = 0.0712==

R2 = 0.053400

R2 = 0.0103RR2

R2 = 1.34e−05

R2 = 0.08180= 0

R2 = 0.067122

Annual_Precipitation pHinHOX_15cm Aridity_Index Temperature_Seasonality Precipitation_Seasonality

Sand_Content_15cm OrgCStockTHa_5to15cm CatIonExcCap_15cm Nadir_Reflectance_Band1 Nadir_Reflectance_Band7

0 3 6 −2 −1 0 1 2 3 0 3 6 −2 0 2 4 −1 0 1 2 3

−2 −1 0 1 2 3 0 2 4 0.0 2.5 5.0 7.5 0 2 4 6 0 2 4

0

10000

20000

30000

40000

0

10000

20000

30000

40000

Value

To
ta

l n
um

be
r

Extended Data Fig. 2 | Linear regression models of the most 
important variables from the final random forest model and annual 
mean temperature. SOC and cation-exchange capacity have a positive 
correlation with total nematode abundance, whereas pH is negatively 

correlated. These linear regression models (n = 1,809) were not used to 
create global perspectives of nematode distribution patterns. The grey area 
represents the 95% confidence interval of the mean.
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Extended Data Fig. 3 | Global maps of nematode trophic group 
abundance. a, Bacterivores. b, Fungivores. c, Herbivores. d, Omnivores. 
e, Predators. Scales differ per map. Most trophic groups show similar 
patterns, but predators (e) are predicted to be present in particularly high 

abundances in some arid soils—for example, in the Sahara and Arabian 
Desert. Pixel values were binned into seven quantiles to create the colour 
palette.
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Extended Data Fig. 4 | Global map of total nematode abundance per 
unit area (m2). Correcting for the lower bulk density in soils that are high 
in organic matter, this map shows the same global patterns of nematode 
abundance as in Fig. 3. Hence, it is not the low bulk density of soils in 

boreal regions that result in the observed patterns, but rather the high 
nematode abundances. Pixel values were binned into seven quantiles to 
create the colour palette.
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Extended Data Fig. 5 | Global maps of nematode trophic group 
abundance per unit area (m2). a, Bacterivores. b, Fungivores. 
c, Herbivores. d, Omnivores. e, Predators. Scales differ per map. 
Correcting for the lower bulk density in soils that are high in organic 

matter, these maps show the same global patterns of nematode trophic 
group abundance as in Extended Data Fig. 3a–e. Pixel values were binned 
into seven quantiles to create the colour palette.
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Extended Data Fig. 6 | Community types and driving variables of 
community type composition. a, Correlations between trophic groups. 
Overall, correlations of predators with other trophic groups are the least 
positive. b, On the basis of the relative abundance of each trophic group, 
soil nematode communities can be classified in four distinct types. We 
find that these soil nematode communities are dominated by herbivores 
(type 1), herbivores and bacterivores (type 2), bacterivores (type 3) or 
have a mixed composition (type 4). c, Non-metric multidimensional 

scaling to highlight environmental conditions that drive the composition 
of each of the four main community types. Vegetation-type indices, such 
as the normalized difference vegetation index (NDVI) and enhanced 
vegetation index (EVI), drive the dominance of herbivores in nematode 
communities (type 1), whereas edaphic characteristics are correlated with 
communities dominated by microbivores (types 3 and 4). The names of 
the environmental variables are listed in Supplementary Table 3.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.
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Data collection No code was used to collect data used in this study. 

Data analysis Custom code was generated for geospatial modeling and other analyses. Code was written in Python (version: 3.6.5) and R (version 3.5.1) 
using Jupyter (version 5.5.0) and R-Markdown (version 1.2.1335). All Google Earth Engine code was written in Javascript. We used the 
following Python packages: pandas, numpy, sklearn. We used the following R packages: reshape2, corrplot, tidyverse, cowplot, tidyverse, 
rworldmap, NbClust, factoextra, cluster, vegan, RColorBrewer, lemon, parallel, plotrix, caret, scales. 
All code is deposited in a GitLab repository linked to this manuscript: https://gitlab.ethz.ch/devinrouth/Crowtherlab_Nematode 
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Raw data is deposited in a GitLab repository linked to this manuscript: https://gitlab.ethz.ch/devinrouth/Crowtherlab_Nematode and is attached to the manuscript 
as Supplementary Table S1. Information from this dataset was used to produce all figures presented in the manuscript. 
Supplementary Table S3 lists all 73 covariate layers that were used in geospatial modeling, including their respective sources. 
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Study description This study used nematode abundance and trophic group composition data to characterize the global distribution patterns of soil 
nematodes across the world's soil. We collected 6,759 soil samples from 1,913 unique locations (1-km2 pixels) worldwide. In each 
sample we counted number of nematodes and assigned them to trophic groups based on morphology. 

Research sample Each sample consisted of a 15-cm deep soil core, from which soil nematodes were extracted.

Sampling strategy We collected 6,759 samples from 1,913 unique locations (1-km2 pixels) worldwide. Samples were collected from published or 
personal datasets. No sample size calculation was performed, the sample size was deemed to have sufficient spatial coverage 
compared to that used in previous global soil biogeographic studies. The representativeness of the sample set was assessed using 
univariate and multivariate analysis across the 73 covariate layers included in the modeling.  

Data collection Nematode abundance data was collated from published and personal datasets. 

Timing and spatial scale Samples were collected from all continents and all biogeographic regions on Earth. The bulk of samples was taken between 2002 and 
2017, full range of sampling dates was from 1963 to 2017.

Data exclusions After collection, all samples lacking spatial meta-information (i.e., lat/long coordinates) were excluded from the dataset. After 
aggregation into 1-km2 pixels, pixels classified as water bodies or snow/ice covered were excluded. Any points that fell off the pixel 
grid due to locational coordinate errors were excluded. Antarctic samples were excluded from geospatial modeling due to limited 
coverage of the covariate layers.  
For inter-trophic group correlation calculations, only samples with full observations (i.e., reported counts for each trophic group) 
were included.

Reproducibility Each model's strength was tested by K-fold cross validation (using k=10). As such, we assessed the reproducibility of the model on 10 
unique training datasets, providing high confidence (R2 0.86, mean k-fold R2 0.43) in the final model results. Spatially-explicit 
coefficient of variation-values, as a measure of prediction accuracy, were calculated for each pixel by calculating the standard 
deviation and mean values across each of the 10 folds.  
All random seeds were specified manually and written in the code.  
To create statistically valid per-pixel confidence intervals, we performed a stratified bootstrapping procedure with the “total number” 
collection of nematode point data. The stratification category was the sampled biomes of each point feature (to avoid biases), and 
the number of bootstrap iterations was 100, in each of the bootstrap iterations classifying the composite raster data 100 times. This 
protocol thus allowed us to generate per-pixel 95% confidence intervals. 

Randomization Samples were included in each trophic group analyses per their inclusion in trophic level information.

Blinding No treatments groups were assigned in the study, as we performed an observational and exploratory geospatial mapping project. 
Hence, we deem there is no need for blinding.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
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Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals N/A

Wild animals This study involved field-sampled microscopic nematodes.

Field-collected samples This study involved field-sampled microscopic nematodes that do not require special institutional review for ethics. 
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