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Propositions  

 

1. The population risk is a better measure than the risk per serving to decide on an 
appropriate level of protection against foodborne illnesses. 
(this thesis) 
 
2. Assessing the appropriate level of protection against foodborne illnesses is a matter of 
defining both what is an ‘acceptable risk’ and the timespan of ‘current’.  
(this thesis) 
 
3. Overconfidence or optimism is a factor biasing risk perception that has more negative 
impact for the beholder than pessimism. 

4. The term food security needs to be replaced by nutrition security. 
 
5. A good researcher is optimistic in the face of uncertainty and keeps a good balance 
between exploration (digging shallow) and exploitation (digging deep). 

6. Similar to bread and wine being symbols of civilization in ancient times, equitable 
access to food, education and health care should nowadays be viewed as key 
performance indicators of civilized societies. 

7. Fairly sharing CO2 emissions and refugees requires widespread adoption of basic 
human rights and values rather than just buying into scientific facts and numbers. 
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1. Food, relation to illness and impact on society 

Food is an essential part of our everyday life. Indispensable for our health and wellbeing, 

a defining characteristic of our identity and culture, and an important element, if not the 

centre, of many of our social activities. As such, it is no wonder that food security (i.e. the 

availability of food to people) has played and continues to play a fundamental role in 

shaping the economy, politics and history of nations. Food can also be the cause of different 

types of illness, when insufficient or imbalanced amounts are consumed to cover our 

nutritional requirements (under-nutrition, malnutrition)[1], when our energy intake 

exceeds our energy expenditure (overweight/obesity) [2] or when food contains hazards 

rendering it unsafe for consumption [3]. In the latter context, the term hazard refers to a 

chemical, biological or physical agent present in the food, or a condition of the food, that 

has the potential to cause an adverse health effect [3]. Despite great technological 

achievements rendering our food safer than ever, we have not reached a situation where 

the consumption of food is free of risk [4], and we may never will. Around the world, food 

related illnesses continue to take a great toll on human health [5, 6]. Developing countries 

bear the brunt of the problem, with the death of over half a million children every year due 

to gastrointestinal illnesses caused by the lack of safe water, sanitation or hygiene, often 

coinciding with poorer health and nutrition status of the consumers [7]. However, even in 

developed countries, where the situation is less severe, several hundred cases of food 

related illness per million inhabitants are reported each year (Figure 1)[8]. Most commonly 

these illnesses manifest as syndromes of diarrhoea and/or vomiting caused by bacteria, 

viruses or parasites (infectious gastroenteritis) but besides direct clinical symptoms, they 

may also result in long term conditions that occur independently or accompany the acute 

phase response to the pathogenic agents (chronic sequelae)  [9, 10]. Chronic sequelae 

occur in only a very small fraction of infectious gastroenteritis cases but can be severe with 

long term consequences on human health, having thus potentially a more detrimental 

impact on the health of the population than the acute incidents of the disease [10, 11].   

 

Globally the exact dimension of the public health burden of food related illness is not 

precisely known because the reported cases generally constitute only a small fraction of 

the actual number of cases occurring in a country. For a disease to catch the attention of 

public health authorities, a series of events need to take place (Figure 2) [12]. More 

specifically, an individual has to become infected, develop symptoms of the disease and 

seek medical attention; then the physician needs to decide on a suitable diagnostic test 

and send a specimen that is not compromised (e.g. by antibiotic use) to a laboratory, which 

in turn must be able to correctly identify the pathogen and report the findings to the public 

health authorities. The difference between the number of cases reported to the public 

health authorities and the cases that actually occur in a community is known as under-

11 
 

estimation or undercount or under-reporting [13-15]. In studies providing estimates of the 

impact of unsafe food consumption in a community, a correction is often made for under-

estimation of disease incidence, together with adjusting the estimates for the percentage 

of cases that are transmitted via food [14-16]. The latter is known as food attribution and 

is necessary for knowing how many of the illnesses are foodborne, i.e. actually due to the 

consumption of contaminated food, and not due to other sources such as for instance 

water, the environment, contact with animals or person to person transmission [17].  

 

 

Figure 1. Reported cases of food related illnesses in the European Union in 2017. Values 

on the x-axis are presented on a logarithmic scale. Cases due to outbreaks are presented 

for both strong and weak links with food vehicles. Bacterial toxin outbreaks refer to 

outbreaks caused by the toxins of bacteria other than C. botulinum. Data are based on the 

annual EFSA/ECDC report on trends of zoonoses and outbreaks [8] and are expressed as 

total confirmed cases per million inhabitants in the EU-28 using Eurostat demographic data 

[18].  
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Figure 2. The surveillance pyramid of foodborne illness (adapted from Clark et al., Vijgen 

et al., Mead et al. and van Lier et al.) [12, 13, 15, 19]. Since most illnesses are hidden 

from the health authorities by not resulting in physician consultations, correct diagnosis 

and reporting, their incidence can be compared to an “iceberg”, only the tip of which is 

exposed above the “sea level”, that is the actual horizon of the surveillance system. 

 

Although it is not possible to provide exact numbers of the incidence of foodborne illnesses 

in a community, mainly because of uncertainties associated with food attribution and 

under-estimation, different national studies [14, 20-22] have determined that a 

considerable percentage of the population is affected every year and that most of the 

illnesses are caused by hazards that remain unknown/unidentified. As an example, in a 

recent study in the US, it was found that for every estimated case of illness due to a known 

agent in food there are approximately four cases due to unknown/unspecified agents [14, 

20]. All these illnesses are associated with significant morbidity and mortality and have 

thus an important impact on public health and peoples’ lives, but also on the economy due 

to medical costs, loss of productivity, recall expenses, cost of legal actions and 

investigations [23]. In addition, foodborne illnesses can have a great political and social 

impact, looking for instance at the repercussions of well-known multi-country food crises 

(e.g. dioxins, bovine spongiform encephalopathy (BSE), melamine), which all attracted 

considerable media attention, resulted in several ministers resigning and seriously 

undermined consumer trust in food safety [24-27]. In terms of the societal impact of 

illnesses associated with the consumption of unsafe food, foodborne risks are often much 

less acceptable than for instance risks associated to driving or flying, as they tend to be 

characterized by several elements that render them more fearful in the eyes of the general 
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public. Such elements have been referred to as “fright factors” [28] or “outrage factors” 

[29]. Table 1 lists several fright factors and the foodborne hazard(s) that they may apply 

to. Notably, most of these fright factors apply to the global outbreak of variant Creutzfeldt–

Jakob disease (vCJD) as a result of exposure of consumers to BSE prions which may explain 

why the risk of contracting mad cow disease created such mass panic in the 1990s. 

Responding to this major food scare and earlier events, and in an effort to rebuild consumer 

trust, the European Union radically revised its Food Law and created the European Food 

Safety Authority (EFSA) [24, 25, 30]. Considering the significant political and social 

sensitivity around foodborne illnesses, over the years many learnings and technical 

advances have allowed governments to establish more effective food safety controls, 

although at times controls might be implemented that are ineffective or overcautious.  

 

Table 1. Fright factors with examples of foodborne hazards for which they may apply 

selected for the purpose of this study 

Fright factor build on Bennett (1999) 

[28] 

Example of foodborne hazard 

incorporating the fright element (this 

study) 

Involuntary nature waterborne hazards, e.g. Cryptosporidium 

cysts in drinking water [31] 

food adulterants, e.g. melamine in milk, 

Sudan red dyes in spices [32]  

Unfairly distributed in society Listeria monocytogenes in its severe form 

affecting mainly the susceptible population 

(young, old, pregnant and immune-

compromised) [33]  

Unavoidable even if taking personal 

precautions 

toxic chemical contaminants 

microbiological hazards when eating outdoors  

Uncommon or new prions, acrylamide, dioxins at the time they 

first appeared in the news 

Created by man and not nature certain toxic chemical contaminants, e.g. 

chemical pesticides  

Causing secret and irreversible damage 

which may result in disease many years 

later 

carcinogenic contaminants 

prions [34], stomach cancer as a result of 

Helicobacter pylori infection [35] 

Being a threat for future generations, 

pregnant women, infants, children  

Toxoplasma gondii (pregnant women)[36], 

Cronobacter spp. (neonates and infants) [37] 

12
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Haemolytic Uraemic Syndrome (HUS) in 

children as a result of enterohaemorrhagic 

Escherichia coli infection (EHEC)[38]  

Causing a terrible and/or fatal illness  Echinococcus multilocularis [39], prions [34] 

Insufficiently understood by science prions [40], Brainerd diarrhea [41] 

Related with contradictory statements from 

the authorities 

dioxins, prions [42] 

 

 

2. History of managing food safety 

Considering the impact of food safety on public health, the economy, politics and society, 

it is no wonder that it has been one of the first concerns of mankind, whose understanding 

and approaches of managing the issue grew over several millennia and most rapidly 

progressed since the industrialization of societies (Figure 3).  

In forager societies the selection of plant and animal species suitable for consumption was 

based on trial and error as well as experience gained over the years [43]. Gradual changes 

in the way hunting and gathering took place in those days led to men being more clearly 

involved and aware of plant and animal life cycles, which led to their domestication [44]. 

This allowed the formation of agricultural societies and the start of organized food 

production [43, 44]. 

In agricultural societies, the first observations were made regarding spoilage and food 

safety, in relation to the way food items were stored. The most obvious ones were that 

contact with water and air may spoil goods and that sometimes products that were 

accidentally allowed to stand for some days went into some kind of change that made them 

last longer (e.g. grape juice turning into wine, milk turning into yoghurt). This led to the 

first preservation methods (drying, salting, smoking, fermentation, immersion in oil) [43]. 

Archaeological evidence of this period, suggests that fermentation was already in use in 

the seventh millennium BC in China and Anatolia [45, 46], while salting, smoking and the 

use of spices were commonly applied to prevent spoilage by 1000 BC [47]. In those times, 

although most epidemics would be attributed to the wrath of gods or saints for the 

misdeeds of men (Figures 4 and 5), some observations related to food safety were made 

and passed into religious taboos as a means of preventing foodborne illnesses [48], e.g. 

hygiene laws in India, prohibition of pork in the Jewish and Muslim religions [43]. It was 

also in the first civilizations of this period that the role of food in human health was clearly 

recognised, for instance by Hippocrates (~460 BC) [49]. His perhaps most famous phrase 

“let thy food be thy medicine and thy medicine be thy food” pointed out the importance of 

diet in avoiding illness.  Eventually,  observations  related  with  the  role of food in health       
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Figure 3.  Timeline of major changes in the understanding and approaches of ensuring 
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Figure 4. “La peste d' Athènes” (The plague of Athens), oil painting on canvas by François 

Perrier, ©Dijon museum of fine arts, France. Plague in Greek may refer to any kind of 

illness, traditionally perceived as divine punishment [60]; this particular epidemic at ~430 

BC was favoured by over-crowded, wartime conditions and resulted in the demise of over 

one quarter of the inhabitants of Athens including its leader Pericles. DNA from the dental 

pulp of victims from a mass burial site points today to typhoid fever as a likely cause of 

the epidemic [61]. 

©Musée des Beaux-Arts de Dijon/François Jay (reproduced with permission). 

 

resulted in laws and even in the appointment of officers responsible for the control of goods 

in food markets. For instance, in ancient Greece, “αγορανόμοι” or market commissioners 

were responsible for checking that all articles were pure and unadulterated [62]. Similarly, 

in ancient Rome, the “aediles” or churchwardens were responsible for control and 

inspection of markets as well as for confiscating spoiled goods [43]. Some examples of 

laws enforced to protect public health from unsafe food are: 

 Mosaic and Egyptian decrees from around 2500 BC targeting the contamination of 

meat 

 The prohibition of the adulteration of grains and edible fats in India about 2000 years 

ago [63] 
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 The ban on blood sausages by Emperor Leo VI (886-911 AD) in Byzantium (because 

of their association with botulism) and  

 The prohibition of sale of fish that is older than one day in Switzerland (1319 AD) 

[43].   

 

In industrialized societies, production of food on a mass scale began and unlike before, the 

vast majority of people started relying on food produced by others. As a result, and despite 

several new preservation methods becoming available (see Figure 3), the first outbreaks 

were recorded and investigations allowed to link diseases to specific product groups and 

microorganisms. In other words, in contrast with forager and agricultural societies, a 

scientific cause and effect relationship was established between the hazard and the 

disease. As an example, in 1854 the first waterborne cholera outbreak was successfully 

investigated by John Snow, now considered to be the father of modern epidemiology [64, 

65], and some years later Louis Pasteur and Robert Koch consolidated the “germ theory of 

disease” which postulated microorganisms as the cause of infectious diseases [64]. The 

setting of science based criteria for ensuring the safety of products followed these events, 

with the work of Bigelow in 1921 on the heat resistance of Clostridium botulinum spores 

and of Esty and Meyer in 1922 on the 12 log reduction of these spores (botulinum cook) 

being considered as the first big developments in the field of predictive microbiology [66]. 

Three waves of change are apparent in the way food safety was managed in  industrialised 

societies and how it is managed to date: I) the microbiological sampling of end products 

alongside the use of Good Manufacturing Practices (GMP) and Good Hygienic Practices 

(GHP), II) the use of the Hazard Analysis and Critical Control Point (HACCP) system and 

III) the introduction of the risk analysis framework [67]. The last wave signified a 

fundamental transformation in the way food safety is managed, turning the focus from the 

hazard (presence in food or process environment) to the risk it pauses (significance of 

illness on public health) [68]. The trigger for this switch to risk-based approaches of 

managing food safety was the launching of the Agreement on Sanitary and Phytosanitary 

measures (SPS Agreement) in 1995 by the World Trade Organization (WTO) [52] 

suggesting that targets for food safety should be based on an assessment of the risk to 

the population. To help countries use this new framework of thought in food safety 

standards issues, the Food and Agricultural Organization of the United Nations (FAO) and 

the World Health Organization (WHO) launched the same year a consultation to agree on 

definitions for risk analysis, a general model for risk assessment and guidelines for its 

implementation [69]. The subsequent introduction of the “General Food Law” (Regulation 

178/2002) in the European Union [70], constituted the use of this risk analysis framework, 

legally binding for the Member States, and may be viewed as the beginning of risk-based 

food safety management within the European continent.    
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Figure 5. Detail from the “Temptations of Saint Antony panel” Isenheim altarpiece, oil 

on wood by Matthias Grünewald, Unterlinden Museum, Colmar, France. The saint is 

depicted here to fight daemonic figures next to a sufferer of ergotism, a disease also 

known as “Saint Antony’s fire” because of the burning sensations it caused resulting in 

gangrene limbs. Epidemics of ergotism were frequent in the Middle Ages and are now 

known to have been caused by eating bread contaminated with the sclerotia of the fungi 

Claviceps purpurea [71]. 

 

© Godong / Alamy Stock Photo (reproduced with permission). 
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3. The risk analysis framework 

Risk analysis is a framework designed to elaborate, science-based decisions in the area of 

food safety by allowing to identify interventions that are most effective in the protection of 

public health considering available resources and attendant uncertainties. Risk analysis 

consists of three unified components (Figure 6) [69, 72, 73]:  

i) Risk assessment: A systematic procedure of assessing, in a qualitative or quantitative 

way risk, the severity and probability of an adverse health effect resulting from the 

consumption of a hazard in food. Risk assessments consist of four separate steps: i) hazard 

identification, the recognition of which agents in food have the potential to cause an 

adverse effect, ii) exposure assessment, the qualitative or quantitative appraisal of hazard 

intake, iii) hazard characterization, the qualitative or quantitative evaluation of the 

probability and severity of health effect(s) as a function of the dose of the hazard and iv) 

risk characterization, the integration of the three previous steps that provides a qualitative 

or quantitative estimation of risk and includes associated uncertainties [69]. Within the 

European Union, risk assessment is primarily the responsibility of EFSA [74].  

ii) Risk management: The process of selecting, implementing and monitoring suitable 

options to accept, minimize or reduce the assessed risk after carefully evaluating different 

policy alternatives [69]. Within the European Union this is to a large extent the 

responsibility of the European Commission and authorities in the Member States [74].           

iii) Risk communication: The interaction between risk assessors, risk managers, 

consumers, food businesses, academics and other interested parties, who are likely to be 

affected by risk management decisions, throughout the risk analysis process, aiming at the 

exchange of information and opinions [69, 74, 75].  

Within the risk analysis framework, risk managers are responsible for identifying a potential 

food safety problem, establishing a profile of the situation and recognizing that it is a 

management priority by means of risk ranking, which may lead to the commissioning of a 

risk assessment [75]. After this step, the risk managers should ideally not interfere in the 

work of the risk assessors as a means of ensuring the scientific integrity of the process 

[75]. However, although a functional and organizational separation should take place, 

some interaction is unavoidable and even desired, for instance when clarifications of the 

questions raised to the risk assessors are needed or when the results of the assessment 

are to be communicated to the managers so that they can be properly understood and 

used efficiently [76], which is necessary for identifying and selecting suitable management 

options. Risk communication is essential throughout the risk analysis process framework 

and for it to be effective care should be taken that all interested parties are involved and 

risks are communicated by trained individuals, transparently and in a way that they are 
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readily understood by the target audience [77]. Following the implementation of a 

management decision, it is necessary to monitor the measures taken as well as their 

effectiveness to mitigate an issue, whereas the assessment itself and management options 

need to be reviewed in a timely manner as necessary [75].  

 

Figure 6. The process of risk analysis and key elements of its three interconnected 

components [72, 77]. 
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current risk of illness is unacceptable [80]. To translate the ALOP into manageable control 

targets in the food chain, a series of other benchmarks were proposed. First, a link was 

suggested between an ALOP and a Food Safety Objective (FSO), that is a target for the 

maximum level of the hazard in the product at the point of consumption [81, 82]. However, 

since an FSO is not a practical target to verify, two additional targets were suggested: the 

Performance Objective (PO), being the maximum level of the hazard in the product at a 

particular point before consumption and the Performance Criterion (PC) referring to the 

change in the hazard level that is required to meet the PO or FSO that it relates to [81].    

 

 

 

 

 

 

 

 

 

 

                         

 

 

Figure 7. Illustration of how the Appropriate Level of Protection (ALOP), Food Safety 

Objective (FSO), Performance Objective (PO) and Performance Criterion (PC) serve as links 

between governmental risk analysis and operational food safety management in the food 

supply chain (adapted from Gorris, 1995). MC: Microbiological Criterion; CM: Control 

Measure, HACCP: Hazard Analysis and Critical Control Point; GHP: Good Hygienic Practices; 

GMP: Good Manufacturing Practices; GAP: Good Agricultural Practices; PrPs: Prerequisite 

Programs [78]. 
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Table 2. Risk-based targets for the management of hazards in the food chain 

Risk-based 

target  

Definition  Fictive example 

Appropriate 

Level of 

Protection 

(ALOP) 

“The level of protection deemed appropriate by 

the Member (country) establishing a sanitary or 

phytosanitary measure to protect human, 

animal or plant life or health within its territory” 

[52] 

 

No more than 50 cases 

of salmonellosis per 

million inhabitants per 

year 

Food Safety 

Objective 

(FSO) 

“The maximum frequency and/or concentration 

of a hazard in food at the time of consumption 

that provides or contributes to the appropriate 

level of protection” [81]  

 

The concentration of 

Listeria monocytogenes 

in ready-to-eat deli 

meats at the time of 

consumption should not 

exceed 4 log CFU per 

gram 

Performance 

Objective 

(PO) 

“The maximum frequency and/or concentration 

of a hazard in food at a specified step in the 

food chain before the time of consumption that 

provides or contributes to an FSO or ALOP as 

applicable” [81] 

 

The concentration of L. 

monocytogenes in 

ready-to-eat products 

should not exceed 100 

CFU per gram when 

placed on the market 

Performance 

Criterion (PC) 

“The effect in frequency and/or concentration of 

a hazard in food that must be achieved by the 

application of one or more control measures to 

provide or contribute to a PO or FSO” [81] 

 

12 Log reduction of 

Clostridium botulinum in 

low acid canned foods 

and avoidance of 

recontamination 

 

Codex has published guidelines for microbiological risk management [83] in which the 

various risk-based metrics are elaborated. To date, no countries have actually formally 

stipulated ALOPs, FSOs or other related metrics, although the language already has been 

partly introduced by some, such as by the European Union [70], and the concept of ALOP 

has been the subject of some debate [79, 84]. Risk assessment (preferably quantitative 

for increased transparency when comparisons of protection levels are to be made) has 

been suggested to be the means of setting ALOPs and their associated targets [52, 85]. 

Since there are no specific guidelines for setting ALOPs, different risk assessment 

approaches can be followed: i) using epidemiological data as a starting point to first derive 

the current level of protection (LOP), decide on an ALOP and then an FSO, ii) using food 
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chain contamination data to first derive the current level FSO and then the LOP, decide on 

an ALOP and then the future FSO, iii) other approaches or combination of the above [86]. 

The selection of one approach over the other would depend on available data, resources 

and the nature of the hazard/food commodity.  

It is important to note that there is a separation of responsibilities when it comes to 

establishing the new risk-based targets. Thus, while ALOPs and FSOs can only be set by 

governments, POs and PCs may be set within a food supply chain by the industry as tools 

that helps to meet the end of chain FSO target. The industry has considerable flexibility in 

the way these POs or PCs are to be achieved [78]. The separation of responsibilities 

depicted in Figure 7 is not absolute as to some extent interaction between different key 

players can take place. For instance, considering that the setting of an ALOP and an FSO 

is fundamentally a risk management decision, besides science, other factors may also need 

to be taken into account such as for instance environmental, economical, societal, and 

ethical factors as well as traditions, feasibilities and practicalities related with controlling 

hazards [74]. So, although the risk-based targets themselves can originally be decided on 

by risk managers of competent authorities on the basis of risk assessment, consumers and 

the industry may influence the final decision through bringing up for instance specific 

societal factors or the practicalities of achieving these targets. Moreover, Regulation (EC) 

178/2002 that forms the basis of European food law legislation dictates that food law 

should be prepared, revised or evaluated in consultation with the public [70], which would 

provide the consumers and the industry with the opportunity to comment or voice their 

concerns. Similarly, although it is the industry that has the upper hand in producing food 

that complies with a set FSO/PO, the government and the consumer can influence 

compliance. For example, the government can impact by introducing a default PO or PC 

where it deems necessary, for instance when there is a concern that some industries may 

not have the ability to do so themselves. Consumers can impact meeting risk-based targets 

by changing their food handling practices e.g. ensuring that their fridge temperature is 

below 5oC or handling separately raw and cooked foods [87]. Generally, food safety needs 

multiple controls acting simultaneously and not one single measure can totally control 

risks.   

 

5. Aim of the thesis and outline of chapters 

From the above it should be clear that the use of the ALOP and FSO targets within the risk 

analysis framework is very much desired for making food safety management more 

transparent and quantifiable by clearly defining and separating responsibilities among all 

relevant stakeholders in the food chain [88]. Moreover, being based on an assessment of 

the impact of resulting risks on the health of the population, the targets have the potential 
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Table 2. Risk-based targets for the management of hazards in the food chain 
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Definition  Fictive example 

Appropriate 
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[52] 
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year 
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Listeria monocytogenes 

in ready-to-eat deli 

meats at the time of 
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exceed 4 log CFU per 
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food chain before the time of consumption that 

provides or contributes to an FSO or ALOP as 

applicable” [81] 
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Clostridium botulinum in 
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recontamination 
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to facilitate international trade by making the necessary measures for the control of 

foodborne hazards more defendable in case of disputes [52]. However, despite these 

obvious advantages, the ALOP and FSO are still evolving as concepts [89] and they are not 

explicitly used as such to inform national policy. A number of case studies dealing with 

their implementation are available, some as the result of an expert consultation 

coordinated by FAO/WHO [84, 90-92] and more as independent work from the academia, 

industry, national food safety agencies or combination of the above [89, 93-101]. However, 

very few of these studies are based on national data [99-101] discussing the actual 

bottlenecks and decision-making processes preceding the adoption of the targets in food 

safety management. Most importantly perhaps, only a small number of countries has 

attempted to estimate the public health impact of foodborne risks on a national level [14-

16, 20-22, 102-106], a process that is essential before resolving whether these risks can 

be tolerated or need to be reduced and deciding on an ALOP [80]. It seems that despite 

the availability of some practical guidelines on this topic [107], lack of available data and 

harmonization in methodologies are among the major challenges for such studies on the 

burden of foodborne diseases [108].  

To facilitate the use of the ALOP and FSO targets more studies are needed that address 

the challenges for competent authorities wishing to establish and implement these risk-

based metrics in order: i) to test the feasibility of their use at national or international 

levels, ii) to evaluate the use of different risk assessment approaches available for this 

purpose, iii) to demonstrate ways of making the best use of currently available data and 

iv) to identify key areas where more research is needed. The aim of this dissertation was 

to work on all of these topics. To this end four different case studies were developed (Tables 

3 and 4), dealing with different microbial hazards, food products and population groups as 

well as addressing a number of different “real life” settings faced by competent authorities 

in various countries. The general objective was to show that the risk-based targets can be 

applicable in different settings using publicly available data but that it does require dealing 

with bottlenecks and making decisions based on the available risk assessment estimates 

and potential risk management options. Overall, this thesis consists of 6 chapters: 

The current chapter introduces the reader to the impact of food related illnesses on 

society, the changes in approaches available to manage food safety in the course of 

mankind’s history leading to the risk analysis framework and its accompanying risk-based 

metrics (ALOP, FSO, PO, PC). 

In chapter 2, the first case-study is presented, which uses a range of publicly available 

data to rank all foodborne risks in Greece, in order to set national priorities for food safety 

management. The use of the results of this study for setting ALOPs is part of the discussion 

(chapter 6).  
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In chapter 3, the second case-study is presented, dealing with setting of ALOP and FSO 

targets for Listeria monocytogenes in deli meats in the Netherlands. Here the focus is on 

a severe, low incidence disease, usually associated with medium to high doses through 

contaminated products consumed on a regular basis by the vast majority of the Dutch 

population.   

In chapter 4, the third case study is presented that concerns the implementation of risk-

based targets for Salmonella in poultry meat in the Netherlands and in 22 other EU Member 

States. Here the focus is a mostly mild but, on occasion, severe disease, due to longer 

term sequellae, usually associated with ingestion of low doses of the pathogen through 

contaminated or undercooked products consumed frequently by the vast majority of the 

European population.      

In chapter 5, the fourth case is presented, addressing the application of the targets for C. 

perfringens in Cornish pasties in the United Kingdom. Here the focus is on a mostly self-

limiting, rarely fatal illness, usually associated with very high doses of the pathogen in a 

Protected Geographical Indication product [109], infrequently consumed by the British 

population.  

Finally, in chapter 6, the lessons learned from the case-studies are discussed, with 

emphasis on common issues regarding the implementation of ALOP and FSO and their use 

in the context of continuously improving food safety management. 

Table 3. Overview of different case-studies developed for the purpose of demonstrating the 

implementation of the ALOP and/or FSO targets 

Case study Country Pathogens Product Population 

Quantifying and ranking 
risks on a country level Greece All known All All 

Listeria in deli meat Netherlands 1 1 product group Healthy 
& YOPI 

Salmonella in poultry 23 EU countries 1 1 product group All 

C. perfringens in Cornish 
pasties UK 1 1 niche product All 

 

Table 4. Characteristics of diseases in case-studies dealing with specific pathogens 

Case study Incidence Severity Typical infectivity 

Listeria in deli meat Low Medium to very high Very low to medium 

Salmonella in poultry High Varies High 

C. perfringens in 
Cornish pasties Average/high Self-limiting Very low 
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Abstract 

The public health effects of illness caused by foodborne pathogens in Greece 

during 1996–2006 was quantified by using publicly available surveillance data, 

hospital statistics, and literature. Results were expressed as the incidence of 

different disease outcomes and as disability-adjusted life years (DALY), a health 

indicator combining illness and death estimates into a single metric. It has been 

estimated that each year ≈370,000 illnesses/million inhabitants are likely caused 

because of eating contaminated food; 900 of these illnesses are severe and 3 

fatal, corresponding to 896 DALY/million inhabitants. Ill-defined intestinal 

infections accounted for the greatest part of reported cases and 27% of the DALY. 

Brucellosis, echinococcosis, salmonellosis, and toxoplasmosis were found to be 

the most common known causes of foodborne illnesses, being responsible for 

70% of the DALY. Overall, the DALY metric provided a quantitative perspective on 

the impact of foodborne illness that may be useful for prioritizing food safety 

management targets. 
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Introduction 

To initiate and sustain efforts for prevention and control of foodborne diseases, it 

is essential to determine the extent and dimensions of the problem [1]. Accurate 

knowledge of disease incidence and severity is invaluable to competent national 

authorities for use in selecting appropriate management actions to reduce the 

overall public health impact. However, much of the information collated regarding 

foodborne illnesses by different systems cannot be directly translated into policy 

[2] for three main reasons. First, not all cases are reported to health authorities, 

and estimates of under-reporting result in considerable uncertainty in burden of 

illness studies, which limits the interpretation and analysis of available 

information [3, 4]. Second, often only a fraction of illnesses caused by food-

related pathogens are actually foodborne because transmission can also be 

through the environment, direct contact with animals, or from person to person 

[5]. Third, foodborne illnesses may vary not only in their incidence but also in 

their severity, resulting in widely different clinical manifestations and potentially 

involving long-term sequelae, although for their accurate description and 

quantification a uniform health measure would be needed [6].   

To circumvent the latter issue, the World Health Organization (WHO) 

recommends using Disability Adjusted Life Years (DALY) as a metric to express 

the public health effects of foodborne diseases [2], and DALY is increasingly used 

for a wide variety of illnesses [6-8]. The aim of this study was to test the 

feasibility of using publicly available relevant data sources combined with the 

DALY metric to quantify the annual impact of foodborne illnesses in a country in a 

format useful for policy decisions. The country selected was Greece. The study 

used available surveillance data, hospital statistics from 1996 through 2006, and 

literature. In an attempt to address the first two limitations of the types of study 

mentioned above, we account in our estimates for uncertainty caused by 

underreporting and food attribution by using probability distributions to describe a 

range of plausible values for these parameters. Results are also expressed as 

cases in the general population, reported or estimated severe cases, and deaths 

to enable comparisons with similar studies in other countries.  

 

Methods 

The various steps taken to estimate the incidence and impact of foodborne illness 

in Greece are shown in Figure 1.  
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Figure 1. Working scheme for estimating the incidence and effects of foodborne 

illness in Greece. For cryptosporidiosis and giardiasis, because estimated cases 

are on the same level of the surveillance pyramid as reported cases, the cases 

occurring in the community (under-estimated cases) were based on 

underreported factors suitable for these pathogens. In the case of toxoplasmosis, 

disability-adjusted-life years (DALYs) are calculated only on the basis of 

estimated cases which cover already the entire population. WHO, World Health 

Organization; YLL, years of life lost caused by premature death in the population; 

YLD, years lived with disability for incident cases of the health condition. 
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Reported cases of illnesses that may be transmitted through food were for the 

larger part collected from the Hellenic Statistical Authority (ELSTAT) [9] and the 

Hellenic Center for Infectious Diseases Control (HCIDC) [10]. A limited number of 

data were obtained from WHO disease surveillance reports where HCIDC was 

mentioned to be the source [12, 13] for better transparency and from other 

literature when no other information was available [14]. The study included the 

period 1996-2006 for which data were available from both national sources. 

ELSTAT collects information regarding hospitalizations for case-patients who have 

a duration of stay ≥1 day based on the Basic Tabulation List (BTL) of the 

International Classification of Diseases, 9th revision (ICD-9). ELSTAT data are 

based on sampling of hospitalized patients’ bulletins.  

This sampling includes bulletins of deceased patients, although these bulletins are 

not recorded separately. Hospitalizations recorded by the ELSTAT are likely to 

vary in their severity because the population in Greece had free access to hospital 

centers where it was possible to be treated even for minor health issues [15]. 

HCIDC collects information on notified cases from hospital microbiologic 

laboratories and district health authorities [12] and also performs active 

surveillance on the general incidence of gastroenteritis through physicians’ 

reports [10]. HCIDC data can thus be representative of hospitalizations or visits 

to physicians and are a mixture of laboratory-confirmed and symptom-based 

notified cases. In the absence of a study validating these two systems of 

collecting information on disease incidence, we considered ELSTAT and HCIDC 

data to be representative of reported (severe) cases of illness. Corrections for 

under-notification or over-notification were not made because this would require 

a country-specific study that is not currently available. For the few illnesses for 

which data were available from both systems, ELSTAT data were preferred. For 

cryptosporidiosis, giardiasis and toxoplasmosis, cases were estimated indirectly 

taking into account studies on prevalence of these parasites in the general 

population [16, 17]. The mean and standard deviation of reported and estimated 

cases for 1996-2006 were used to create normal distributions which were 

considered representative of the annual incidence of these illnesses [18]. 

Deciding on a precise estimate of the proportion of cases that can be attributed to 

food is complicated [5]. Because of differences in food production, consumption 

and the ecology of pathogens, the percentage of foodborne transmission is 

expected to vary among countries and constitutes a major area of uncertainty. To 

make an adjustment for food attribution, PERT distributions were used as 

multipliers [19] (Table 1). Minimum and maximum parameters of PERT 
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distributions were based on a literature search covering the range of potential 

values. Most likely values were based on data most relevant to Greece and 

Europe because endemicity of illnesses is often related to specific regions [20, 

21].  

Table 1. Parameters of the PERT distributions used to describe foodborne transmission, under-

reporting and case fatality rate for foodborne illnesses, Greece, 1996-2006 

 Minimum, most likely, maximum† 

Illnesses Food attribution 

(%) 
Under-reporting 

Case fatality  

(%) 

Bacterial    

Botulism 80, 100, 100 1.625, 1.8125, 2 3, 10.15, 17.3 

Brucellosis 50,84,100 2, 10.85, 19.7 0.9, 2, 5 

Campylobacteriosis 30, 55, 80 7.6, 274.8, 542 0.1, 0.1265, 0.153 

Enterohaemorrhagic Escherichia coli 40, 51, 90 2, 14.05, 26.1 0.25, 0.54, 0.83 

Leptospirosis 1, 5, 49 10, 15, 20 5, 10, 15 

Listeriosis 69, 99, 100 1.1, 1.7, 2.3 10, 30, 44 

Salmonellosis 55, 95, 95 3.2, 51.45, 99.7 0.5, 0.701, 0.902 

Shigellosis 8.2, 10, 31 3.4, 18.35, 33.3 0.1, 0.13, 0.16 

Typhoid and paratyphoid fever 55, 80, 95 2, 7.65, 13.3 0.4, 0.95, 1.5 

Food poisoning 87, 100, 100 29.3, 185.65, 342 0, 0.025, 0.05 

Parasitic    

Amoebiasis 10, 50, 100 9.2, 9.6, 10 0.1, 0.2, 0.3 

Cryptosporidiosis 5.6, 5.6, 8 7.4, 53, 98.6 0.07, 0.335, 0.6 

Echinococcosis 30, 30, 100 2, 3, 4 1, 2.24, 3 

Giardiasis 5, 10, 30 4.6, 25.45, 46.3 0, 0.05, 0.1 

Toxoplasmosis 30, 50, 63 NA* 3.3, 3.75, 4.8 

Viral    

Acute hepatitis A 5, 8, 11 2, 5.55, 9.1 0.3, 1.35, 2.4 

Mixed/Ill-defined causes    

Other helminthiases 30, 90, 100 4.6, 51.6, 98.6 3.37‡ 

Intestinal infections due to other 

specified microorganism 
1, 36, 70 2, 402, 1562 0.25‡ 

Ill-defined intestinal infections 1, 36, 50 2, 402, 1562 0.0045‡ 

*NA, Not applicable 

†Minimum, most likely (mean), and maximum parameters of each PERT distribution. More 

information, including an expanded version of this table can be found in the online 

Technical Appendix: https://wwwnc.cdc.gov/eid/article/17/9/10-1766-techapp1.pdf  

‡For these illnesses, an average fixed value was used for the case fatality rates estimated 

by using data from the World Health Organization Mortality Database on the deaths and 

incidence data from the Hellenic Statistical Authority.  
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Not all cases of foodborne illness are reported to health authorities [3] and the 

degree of under-reporting varies greatly among diseases between countries or 

within one country in different periods [22]. To make an adjustment for under-

reporting, PERT distributions were used as multipliers [19] and extremes were 

selected to cover the full range of values found in literature. Most likely values 

were set at the middle of this range to give equal weight to extremes of each 

distribution (Table 1). We assumed that under-reporting factors primarily 

represent under-reported cases for serious illnesses that result in physician visits, 

and under-reporting factors for gastrointestinal illnesses are primarily associated 

with cases not resulting in physician visits. Although in some studies an arbitrarily 

assigned factor is used to cover for misdiagnosed or undiagnosed hospitalizations 

and deaths [3, 19], it was omitted in the absence of specific data for Greece and 

under-reported cases caused by this phenomenon were considered to be included 

in the “ill-defined intestinal infections” BTL code as suggested by other authors 

[18]. We also assumed that all reported cases were diagnosed and coded 

correctly.  

DALY values were calculated as DALY = YLL + YLD, where YLL are the Years of 

Life Lost because of premature death in the population and YLD are the Years 

Lived with Disability for incident cases of the health condition [23]. YLD was 

estimated for reported or estimated cases and under-reported cases, while YLL 

was estimated based only on reported or estimated cases. The rationale for this 

was that fatal cases contributing to YLL occur at the top of the surveillance 

pyramid and, if diagnosed, most likely are notified, particularly for obligatory 

notifiable diseases such as most of the ones examined here. Moreover, for 

illnesses contributing to YLD such as gastrointestinal illnesses, under-reported 

cases not resulting in hospitalization are not expected to have fatal outcomes. 

The sole exception was listeriosis, in DALY values mainly accounted for through 

YLL [24] because it has been under surveillance only since 2004. Thus, even 

serious cases of this infection were expected to be considerably under-notified in 

part of the period under study because physicians and laboratories might not 

immediately be aware of the new reporting requirements. Therefore, to avoid 

under-estimation of deaths, YLD for listeriosis was estimated on the basis of 

reported and under-reported cases. 

The individual components of the DALY formula are estimated as follows: 

- YLL = d . e, where d is the number of deaths and e is the expected individual 

life span at the age of death in years. 
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part of the period under study because physicians and laboratories might not 

immediately be aware of the new reporting requirements. Therefore, to avoid 

under-estimation of deaths, YLD for listeriosis was estimated on the basis of 

reported and under-reported cases. 

The individual components of the DALY formula are estimated as follows: 

- YLL = d . e, where d is the number of deaths and e is the expected individual 

life span at the age of death in years. 
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- YLD = n . t . w, where n is the number of cases of a specific illness, t is its 

duration in years and w is a weight factor (disability weight) that reflects its 

severity on a scale from 0 (perfect health) to 1 (death) [23, 25]. 

In calculating YLL: 

- The number of deaths (d) was estimated by multiplying reported or estimated 

cases caused by food for each illness with a PERT distribution describing a 

plausible range of pathogen specific case-fatality rates [19] on the basis of 

literature data from other industrialized countries (Table 1). Selected case-

fatality ratios were always from the same level of the surveillance pyramid as 

reported or estimated cases. For some generic BTL codes (e.g. “Other 

helminthiases”, “Intestinal infections due to other specified microorganism” 

and “Ill-defined intestinal infections”) the number of deaths was based on 

data from the WHO Mortality Database [11]. 

- Regarding the expected individual life span at the age of death in years (e), 

the age of death was estimated on the basis of data collected by the HCIDC 

and ELSTAT on patients’ age in reported cases. When no explicit information 

was available in these sources, which was the case for 5 illnesses, age at time 

of death was assumed to be 40 years. To check the impact of this assumption 

on the ranking of foodborne risks, we tested both extremes by assuming 0 

years as the age of death and by assuming YLL to be 0. For “Other 

helminthiases”, data from the WHO Mortality Database were used. General life 

expectancy was based on the life table for Greece for 2000 [23]. For 

comparison, estimates were also made by using the WHO standard West Level 

26 life table [23]. 

In calculating YLD: 

- Duration of illness (t) was based on data collected by ELSTAT and on literature 

regarding serious and mild forms of each cause of illness. 

- Different disability weights (w) were used for each disease based on the 

severity of its sequelae and whether estimated cases likely reach the health 

system or not (Table 2). All under-reported cases were assumed to be mild or 

self-limiting for gastroenteritis-related illnesses. For serious, non-self-limiting 

diseases such as brucellosis or echinococcosis that are not related to 

gastroenteritis,  non-reported cases were considered to be as severe as 

reported or estimated cases.  

All estimations were performed by using the @RISK 5.7 software (Palisade 

Corporation, Ithaca, NY, USA) as an add-in in Microsoft Excel 2010 (Microsoft, 
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Redmond, WA, USA). Full details regarding estimations of DALY, selection of input 

distributions and simulation settings can be found in the online Technical 

Appendix (https://wwwnc.cdc.gov/eid/article/17/9/10-1766-techapp1.pdf). 

 

Table 2. Disability weights related to the diseases included in study of the effects 

of foodborne infections, Greece, 1996-2006 

 Disability weights* 

Illnesses 
Reported or 

estimated cases 
Under-reported cases 

Bacterial   

Botulism   

- moderate cases 0.600 0.600 

- severe cases 0.906 0.906 

Brucellosis 0.200 0.200 

Campylobacteriosis  0.067 

- gastroenteritis  0.393  

- reactive arthritis 0.140  

- Guillain-Barré Syndrome, 1st year 0.250  

- GBS long term sequelae 0.160  

- Inflammatory Bowel Disease 0.260  

- Irritable Bowel Syndrome 0.042  

Enterohaemorrhagic Escherichia coli  0.067 

- watery diarrhea and hemorrhagic 

colitis 

0.393  

- Haemolytic-uraemic syndrome and 

end-stage renal disease 

†  

Leptospirosis 0.920 0.096 

Listeriosis ‡ ‡ 

Salmonellosis  0.067 

- gastroenteritis 0.393  

- Inflammatory Bowel Disease 0.260  

- Irritable Bowel Syndrome 0.042  

- reactive arthritis 0.150  

Shigellosis 0.220 0.096 

- Irritable Bowel Syndrome 0.042  

Typhoid and paratyphoid fever 0.600 0.096 

Food poisoning 0.220 0.067 
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Parasitic   

Amoebiasis 0.400 0.067 

Cryptosporidiosis 0.393 0.067 

Echinococcosis   

- cured  0.200 0.200 

- post surgical conditions 0.239 0.239 

- relapse 0.809 0.809 

- undiagnosed 0.200 0.200 

Giardiasis 0.393 0.067 

Toxoplasmosis   

- clinical symptoms in the 1st year of 

life § 

0.140 -¶ 

 

- asymptomatic at birth, 

chorioretinitis later in life 

0.080 -¶ 

 

   

Viral: Acute hepatitis A 0.500 0.500 

   

Mixed/Ill-defined causes   

Other helminthiases 0.463 0.067 

Intestinal infections due to other 

specified microorganism 

0.400 0.067 

Ill-defined intestinal infections 0.400 0.067 

*For an explanation of this selection, see the online Technical Appendix.  

†For haemolytic-uraemic syndrome (including end-stage renal disease as a 

sequela) it is estimated that every case corresponds to 1.05 Years Lived with 

Disability [25]. 

‡Not applicable for listeriosis. Because of the high case fatality rate >95% of the 

DALY estimates is composed of YLL [24] that mainly determine the burden of the 

disease. Therefore no YLD were estimated. 

§Clinical symptoms in the first year of life include chorioretinitis, intracranial 

calcifications, hydrocephalus and central nervous system abnormalities that lead 

to neurological deficiencies such as mental retardation. 

¶Toxoplasmosis cases are estimates for the entire population. Consequently, 

under-reporting does not apply. 
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Results 

Annual incidence of foodborne illnesses  

For 1996-2006, we estimated 369,305 (95% credible interval [CrI]: 68,283-

910,608) illnesses per million inhabitants per year attributable to eating 

contaminated food, at least 905 of which (95% CrI: 499-1,340) are reported or 

estimated to be severe and 3 fatal (95% CrI: 2.0-4.8)  (Table 3). Ill-defined 

intestinal infections accounted for most (94%) cases (sum of reported/estimated 

and under-reported cases). Regarding reported/estimated cases, ill-defined 

intestinal infections were responsible again for the greatest part (72%), followed 

by salmonellosis (8.2%), brucellosis (7.1%), food poisoning (4.0%) and 

echinococcosis (2.7%). Most deaths (48%) were estimated to be due to 

brucellosis, although salmonellosis, echinococcosis, listeriosis and toxoplasmosis 

also contributed substantially to deaths.  

 

Table 3. Mean estimated incidence of total foodborne illnesses, reported /estimated 

illnesses and deaths attributed to food in Greece per 1 million inhabitants, 1996-2006*  

 Incidence per million inhabitants 

Illnesses 
Total illnesses 

Reported/estimated 

illnesses 
Deaths 

 
†mean 

‡95% 

CrI 
†mean ‡95% CrI †mean ‡95% CrI 

Bacterial       

Botulism 
0.13 

0.011-

0.28 
0.066 0.056-0.15 0.0067 0.00052-0.017 

Brucellosis 
699 

225-

1,378 
64 30-102 1.5 0.52-3.0 

Campylobacteriosis 
3,571 

851-

7,733 
13 5.6-22 0.016 0.0069-0.029 

EHEC 
1.0 

0.069-

2.8 
0.072 0.0058-0.17 

0.0003

9 

0.000030-

0.00098 

Leptospirosis 4.0 0.34-13 0.27 0.023-0.84 0.027 0.0022-0.087 

Listeriosis 0.89 0.11-1.9 0.41 0.049-0.85 0.19 0.021-0.45 

Salmonellosis 
3,793 

750-

8,350 
74 22-128 0.52 0.15-0.93 

Shigellosis 25 1.1-77 1.4 0.068-3.8 0.0018 0.000088-0.0050 

Typhoid and 

paratyphoid fever 
37 3.3-92 4.8 0.47-10 0.046 0.0043-0.11 

Food poisoning 
6,636 

450-

17,569 
36 2.8-80 0.0089 0.00055-0.025 
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Parasitic       

Amoebiasis 13 1.9-29 1.3 0.19-3.0 0.0026 0.00037-0.0064 

Cryptosporidiosis 197 71-360 3.7 2.4-5.3 0.013 0.0050-0.022 

Echinococcosis 72 29-140 24 10-45 0.52 0.19-1.0 

Giardiasis 159 47-358 6.3 2.7-12 0.0031 0.00069-0.0074 

Toxoplasmosis 3.4 2.5-4.1 3.2 2.4-4.0 0.12 0.090-0.16 

Other helminthiases 137 22-322 2.7 0.56-5.1 0.089 0.019-0.17 

       

Viral       

Hepatitis A 6.9 1.4-15 1.2 0.27-2.4 0.017 0.0031-0.038 

       

Mixed/Ill-defined 

causes 
      

Intestinal infections 

due to other 

specified 

microorganism 

7,394 
354-

25,558 
14 1.2-36 0.035 0.031-0.091 

Ill-defined intestinal 

infections 
346,558 

45,985-

886,276 
655 256-1,082 0.030 0.012-0.049 

       

Total of 

gastroenteritis  
368,520 

67,536-

909,457  
812 408-1,245 0.95 0.52-1.4 

TOTAL 
369,305 

68,283-

910,608 
905 499-1,340 3.1 2.0-4.8 

*Values have been rounded to include significant digits and thus not all 

summations necessarily tally. Boldface indicates the top five contributors to the 

estimates. EHEC, enterohemorrhagic Escherichia coli; CrI, credible interval. 

†These estimates correspond to the mean of the output distributions. 

‡95% credible interval representative of the 2.5 and 97.5 percentiles. 

 

Public health impact of foodborne illnesses expressed in DALY 

Foodborne illnesses accounted for approximately 896 DALY per one million 

inhabitants annually (95% CrI: 470-1,461), of which 14% were attributable to 

YLL and 86% to YLD (Table 4). As much as 34% of the estimated effects of 

foodborne disease in Greece could be attributed to gastroenteritis-related 

illnesses, and the remaining 66% was unevenly split among six non-

gastroenteritis-related illnesses (brucellosis, echinococcosis, toxoplasmosis, 

leptospirosis, hepatitis A and botulism). Notwithstanding attendant uncertainty 

(Figure 2), the most serious foodborne illness in Greece was brucellosis, 
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representing ≈55% of the estimated DALY and contributing greatly due to illness 

(>88%). Ill-defined intestinal infections were the second most serious contributor 

to disease burden (≈27% of DALY), followed by echinococcosis (7.8%) and 

salmonellosis (4.6%) as known causes of illness.  

 

Table 4. Estimates of YLL, YLD and DALY due to foodborne illnesses in an 

average year in Greece per one million inhabitants, including plausible range 

attributable to uncertainty*  

Illnesses estimated YLL 

(95% CrI)† 

estimated YLD  

(95% CrI)† 

estimated DALY 

(95% CrI)† 

Bacterial    

Botulism 0.27  

(0.021-0.67) 

0.0066 

(0.00056-0.015) 

0.28  

(0.021-0.69) 

Brucellosis 59  

(21-121) 

434  

(140-856) 

493 

(174-943) 

Campylobacteriosis 1.2  

(0.51-2.1) 

3.9  

(1.5-7.5) 

5.14 

(2.0-9.4) 

Enterohemorrhagic Escherichia 

coli 

0.016  

(0.0012-0.039) 

0.039 

(0.0031-0.091) 

0.054 

(0.0043-0.13) 

Leptospirosis 0.81  

(0.066-2.7) 

0.015 

(0.0013-0.046) 

0.83  

(0.067-2.7) 

Listeriosis 4.1  

(0.45-9.7) 
‡ 

4.1 

(0.45-9.7) 

Salmonellosis 31 

(8.7-55) 

10 

(2.9-19) 

41 

(12-72) 

Shigellosis 0.12  

(0.060-0.34) 

0.0411  

(0.0021-0.12) 

0.16 

(0.0081-0.46) 

Typhoid and paratyphoid fever 2.3  

(0.21-5.4) 

0.17 

(0.016-0.38) 

2.4 

(0.23-5.7) 

Food Poisoning 0.36  

(0.022-0.98) 

1.3 

(0.088-3.3) 

1.6 

(0.12-4.1) 

    

Parasitic    

Amoebiasis 0.079  

(0.011-0.20) 

0.013 

(0.0019-0.030) 

0.092 

(0.013-0.22) 

                                                
1 In the original publication of this article in Emerging Infectious Diseases a different mean 
YLD value was reported for shigellosis (4.1) due to a typographic error. 
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1 In the original publication of this article in Emerging Infectious Diseases a different mean 
YLD value was reported for shigellosis (4.1) due to a typographic error. 
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Cryptosporidiosis 0.50  

(0.20-0.88) 

0.20 

(0.10-0.32) 

0.69 

(0.35-1.2) 

Echinococcosis 16  

(5.9-31) 

54 

(22-106) 

70 

(28-135) 

Giardiasis 0.12  

(0.028-0.29) 

0.48 

(0.18-0.99) 

0.61 

(0.24-1.2) 

Toxoplasmosis 9.7  

(7.0 -13) 

14 

(10-17) 

23 

(17-29) 

Other helminthiases 0.92  

(0.19-1.8) 

0.17 

(0.029-0.38) 

1.1 

(0.23-2.1) 
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(20-68) 
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(55-643) 

308 

(94-687) 

TOTAL 130  
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767 

(361-1,308) 

896 

(470-1,461) 

*Values have been rounded to include significant digits and thus not all 

summations necessarily tally. Boldface indicates the top five contributors to each 

estimate category. YLL, Years of Life Lost; YLD, Years Lived with Disability; DALY, 

Disability Adjusted Life Years; CrI, credible interval. 

§95% credible interval representative of the 2.5 and 97.5 percentiles. 

‡DALY due to listeriosis are mainly determined by the YLL [24]; therefore, no YLD 

were estimated.  

§Gastroenteritis-related illnesses are considered to be all of the above except: 

botulism, brucellosis, leptospirosis, echinococcosis, hepatitis A and toxoplasmosis. 
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Figure 2. Disability-adjusted life years caused by different foodborne diseases 

per million inhabitants in the course of an average year in Greece, including 

uncertainty. Estimates are presented on a logarithmic scale on the y-axis. 

Whiskers represent 95% credible intervals. EHEC, enterohemorrhagic Escherichia 

coli. 
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Discussion 

The DALY metric provided a different view on the burden of foodborne illnesses 

on public health in comparison to incidence estimates (Table 5). Although 

salmonellosis was captured as a major contributor by all four rankings, there was 

variation regarding other causes of illness. Interestingly, diseases that have the 

highest effect on public health either in terms of illness (ill-defined intestinal 

infections), death (toxoplasmosis) or both (brucellosis) are not identified in the 

ranking based on a single individual incidence parameter, but they are captured 

by DALY, which has the advantage of enabling comparisons between different 

disease endpoints. For instance, although toxoplasmosis is not among the five 

major contributors on the basis of the total incidence or on reported/estimated 

cases, it is given more prominence through using the DALY metric because this 

also accounts for severe outcomes and sequelae of this disease. Although self-

limiting diseases may appear to be important in terms of incidence, on the basis 

of DALY they do not greatly contribute to either illness or death. Therefore, use of 

the DALY metric, gives a different and risk-based perspective of the influence of 

foodborne illnesses on the health of a country’s population because it is estimated 

on the basis of the diseases’ frequency (incidence) and severity (health impact).  

 

Table 5. Ranking of the top 5 causes contributing to the effects of foodborne 

illness in Greece as estimated on the basis of individual incidence parameters and 

disability-adjusted life years, 1996-2006 

 

 

Rank 

 

Incidence estimates 
Disability-

adjusted life 

years 
All illnesses 

Reported/ 

estimated 

illnesses 

Deaths 

1 

Ill-defined  

intestinal 

infections 

Ill-defined 

intestinal 

infections 

Brucellosis Brucellosis 

2 

Intestinal infections 

due to other 

specified causes  

Salmonellosis Salmonellosis 

Ill-defined 

intestinal 

infections 

3 Food poisoning  Brucellosis Echinococcosis Echinococcosis 

4 Salmonellosis  Food poisoning Listeriosis Salmonellosis 

5 Campylobacteriosis  Echinococcosis Toxoplasmosis Toxoplasmosis 
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Most of the foodborne illness cases in Greece were caused by ill-defined intestinal 

infections (Table 3). This finding is consistent with results from similar studies in 

other countries [3, 18]. Using the current Greek surveillance system, we cannot 

attribute this burden to known causes of gastroenteritis other than the ones 

included in this study. Noroviruses could be the etiological agents in a large 

proportion of these ill-defined intestinal infections because they have been 

considered the most likely agent of foodborne illness caused by unknown agents 

[26] and have been found in other studies to be a most common cause of 

foodborne illness due to known agents [18, 19]. Outbreak data found for these 

pathogens were scarce [27] and therefore  not included in this study. A 

considerable part of this category might also have been caused by other unknown 

agents of illness or known agents that have been misdiagnosed. For instance, 

campylobacteriosis, is expected to be undiagnosed to a great extent in Greece 

because few laboratories in the country have the ability to identify the pathogen 

[10]. This finding could partially explain the high under-reporting factor estimated 

for this illness for Greece, based on the approach of Ekdahl and Giesecke [28] 

compared with results for other Western countries [3, 29].  

Brucellosis was found to be the leading cause of illness and death in Greece. 

Although its incidence showed a reasonably consistent decline during the period 

of this study, it still constitutes a serious public health problem (Figure 3). The 

disease is most common in rural areas of the country, and risk factors for its 

contraction are occupational contact with animals and the consumption of 

unpasteurized milk and milk products [30, 31].  

 

 

 

 

 

 

 

 

 

Figure 3. Trends for the top 5 contributors to the burden of foodborne diseases 

in Greece, 1996-2006. DALY, disability-adjusted life years. 
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Echinococcosis was the second most notable foodborne illness. This disease has 

been recognized as a serious health problem in the country [32] and linked with 

contaminated food [10, 33]. Echinococcosis due to Echinococcus granulosus 

(cystic echinococcosis) is its dominant form in Greece [32], where the infection is 

hyperendemic [20]. Although its incidence has gradually reduced since 1984 as a 

result of a long anti-echinococcosis campaign and general improvements in living 

and hygiene standards [32], it still is a serious health risk for the population 

(Figure 3).  

Salmonellosis was the third most serious foodborne illness of known etiology in 

terms of public health impact, and it also was the most prominent gastroenteritis-

related illness of identified cause (Table 3). This finding is consistent with it being 

a noteworthy zoonosis, which contributes to a high prevalence of gastrointestinal 

illness in the European Union [34] and the most often reported causative agent of 

outbreaks of an identified etiological agent worldwide [35].  

After salmonellosis, congenital toxoplasmosis was also a major contributor to the 

disease burden, although in terms of incidence it is an uncommon illness with <4 

cases per million inhabitants. The disease has not been recognized as a major 

foodborne illness in the country, although its serious health consequences have 

been well documented [36].  

There are four major factors that add to the uncertainty in our estimates that are 

not independent: 1) under-reporting, 2) food attribution, 3) the quality of 

incidence data and 4) value choices in the DALY formula. Given the limited data 

available for Greece, data from other countries have been used to create 

multipliers for under-reporting and foodborne transmission (Technical Appendix), 

these data were of variable quality and representativeness. For instance, in the 

case of campylobacteriosis and salmonellosis, under-reporting factors based on 

tourist studies [28, 37] have been included in the multipliers which were higher 

than under-reporting factors from other western countries for the same 

pathogens [4, 19]. Such underreporting factors might not be completely 

representative of the difference between reported cases resulting in physician 

visits and cases in the general population because these studies can be subject to 

several biases (e.g. tourists differ from natives in exposure) [28] although at the 

same time they cover for phenomena such as under-notification and misdiagnosis 

of illnesses which were beyond our intention. As a consequence of including data 

derived by using different method approaches, the plausible range of these 

multipliers was wide, which resulted in DALY estimates with similarly wide 
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credible intervals (Figure 2). However, despite this limitation, our estimates can 

still be used for risk ranking purposes.   

Uncertainty is also an inherent property of incidence data. Specifically, data for 

reported cases in Greece (and elsewhere) rely on insufficiently detailed codes, 

there is incomplete or lacking separate surveillance for many foodborne 

pathogens, and a specific diagnosis is not given for most episodes of enteric 

illness requiring hospitalization. These factors result in the greater part of 

reported cases of gastroenteritis being attributed to ill-defined causes. As with 

other studies of this kind, assumptions had to be made, notably considering the 

age of death. Although this assumption did not change the five major foodborne 

risks, it had considerable impact on the individual estimates. We also had to 

assume that serious cases of illness that have been reported because of a specific 

agent have been diagnosed and coded correctly or notified to the appropriate 

authorities. This assumption might not always be the case because at least some 

of these illnesses are expected to be part of the ill-defined illnesses. A correction 

for misdiagnosis and under-notification cannot be included for the reported 

illnesses until country specific data are available. Assigning an arbitrary factor as 

in other studies [3] introduces new uncertainties and, unlike incidence data in the 

case of DALY, can affect the ranking of foodborne risks. Thus, our estimates are 

based only on the illnesses that the surveillance system in Greece currently 

exposes, and the estimates’ robustness can only be further improved through 

improved surveillance.  

As for uncertainty resulting from value choices in the DALY formula itself, in the 

present study no age-weighting or discounting were used because their combined 

use has been criticized as attributing considerably fewer disease impacts and 

effects to younger age groups [38], and disability weights were carefully selected. 

For policy-making purposes, ideally, disability weights should be based on the 

opinion of the general public because they should reflect preferences of the 

society being studied [22]. Conceivably, use of the DALY metric could help reduce 

a considerable part of overall uncertainty by accounting for sequelae, which are 

not normally taken into consideration in studies focusing solely on incidence of 

foodborne illness yet do constitute a substantial part of the overall effects on a 

population. In our study, all well-defined sequelae for which information existed 

in literature were used for DALY calculations, but our findings could be subject to 

change when new insights become publicly available. For instance, rates of post 

hospitalization morbidity related to gastrointestinal illnesses have not been taken 
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population. In our study, all well-defined sequelae for which information existed 

in literature were used for DALY calculations, but our findings could be subject to 

change when new insights become publicly available. For instance, rates of post 

hospitalization morbidity related to gastrointestinal illnesses have not been taken 

55

Risk-based estimate of effect of foodborne diseases on public health, Greece

2



56 
 

into account in the absence of a specific study, although the duration of illness 

can be longer than the actual hospital stay.  

Finally, selection of life tables is another factor that can influence the DALY 

estimates. When our estimates could be based on West Level 26 life tables, total 

burden of illness expressed as DALY increased by only 0.0042%, although 

individual estimates for illnesses could differ by up to 5.0% (results not shown).  

Regarding the total incidence of foodborne illnesses, our estimates were in the 

same range as the estimates for Australia (Table 6), although somewhat higher 

because the study by Hall et al. was restricted to gastroenteritis-related 

foodborne illnesses [18]. Our estimates of severe reported or estimated cases are 

between the range of hospitalization rates mentioned for different countries and 

the same is the case for our case-fatality rates.  Our DALY estimates were higher 

than estimates for the Netherlands [7] or New Zealand [39], although our 

estimated overall impact for gastrointestinal illnesses is still comparable to the 

one from the Netherlands where brucellosis is not a major foodborne risk.  

Our finding that brucellosis, salmonellosis, echinococcosis and toxoplasmosis 

together accounted for about 70% of annual DALY means that these diseases 

might be major targets for policy making regarding appropriate food safety 

management actions, especially because their causative agents and likely 

transmission routes are generally known. Overall, the approach may be of 

interest to competent authorities in other countries requiring risk-based estimates 

ranking the impact of foodborne pathogens on public health to prioritize risk 

management actions. 
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into account in the absence of a specific study, although the duration of illness 

can be longer than the actual hospital stay.  

Finally, selection of life tables is another factor that can influence the DALY 

estimates. When our estimates could be based on West Level 26 life tables, total 

burden of illness expressed as DALY increased by only 0.0042%, although 

individual estimates for illnesses could differ by up to 5.0% (results not shown).  

Regarding the total incidence of foodborne illnesses, our estimates were in the 

same range as the estimates for Australia (Table 6), although somewhat higher 

because the study by Hall et al. was restricted to gastroenteritis-related 

foodborne illnesses [18]. Our estimates of severe reported or estimated cases are 

between the range of hospitalization rates mentioned for different countries and 

the same is the case for our case-fatality rates.  Our DALY estimates were higher 

than estimates for the Netherlands [7] or New Zealand [39], although our 

estimated overall impact for gastrointestinal illnesses is still comparable to the 

one from the Netherlands where brucellosis is not a major foodborne risk.  

Our finding that brucellosis, salmonellosis, echinococcosis and toxoplasmosis 

together accounted for about 70% of annual DALY means that these diseases 

might be major targets for policy making regarding appropriate food safety 

management actions, especially because their causative agents and likely 

transmission routes are generally known. Overall, the approach may be of 

interest to competent authorities in other countries requiring risk-based estimates 

ranking the impact of foodborne pathogens on public health to prioritize risk 

management actions. 
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Technical Appendix 

Selection of input distributions and other parameters for the DALY 

estimates 

 

Reported cases: Reported cases of illnesses that may be transmitted through 

food were for the larger part collected from the National Statistical Service of 

Greece (NSSG) [9] and the Hellenic Center for Infectious Diseases Control 

(HCIDC) [10]. A limited number of data were obtained from WHO disease 

surveillance reports where HCIDC was mentioned to be the source [12, 13] and 

from other literature when no other information was available [14]. The study 

included the period 1996 through 2006 for which data were available from both 

national sources (Table 1A). NSSG collects information regarding hospitalizations 

for cases that have a duration of stay of at least one day based on the Basic 

Tabulation List (BTL) of the International Classification of Diseases, 9th revision 

(ICD-9). NSSG data are based on sampling of hospitalized patients’ bulletins. This 

sampling includes bulletins of deceased patients though the latter are not 

recorded separately. Recorded hospitalizations by the NSSG are likely to differ in 

their severity as Greece’s population had free access to hospital centers during 

the period of the study where it was possible to be treated even for minor health 

complaints [15]. HCIDC collects information on notified cases from hospital 

microbiological laboratories and district health authorities [12] while it also 

performs active surveillance on the general incidence of gastroenteritis in the 

country through physicians [10]. HCIDC data can thus be representative of 

hospitalizations or visits to physicians and they are a mixture of laboratory 

confirmed and symptom based notified cases. For the few gastrointestinal 

illnesses (shigellosis, typhoid and paratyphoid fever) for which data were 

available from both sources, cases were usually more for hospitalizations (NSSG 

data)  than for notified cases (HCIDC data). Amongst the non-gastrointestinal 

illnesses (echinococcosis and brucellosis) this was always the case. This could be 

due to the fact that either there is serious under-notification (both by hospitals 

and physicians) to the HCIDC or extended repetition of tests and prescriptions in 

hospitals as suggested by Mossialos et al. [15] that could result in more than one 

bulletin for the same person. For the purpose of our estimates we considered 

both NSSG and HCIDC data to be representative of reported (severe) cases of 

illness and we decided not to include under-notification (or possible over-

notification) since a correction for these phenomena would require a country 

specific study on the validation of the two systems which is not at the moment 
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available. For the four  illnesses for which data were available from both systems, 

NSSG data were often considered preferable. 

 

Percentage foodborne: To cover for the uncertainty associated with food 

attribution, Pert distributions were used as multipliers [19]. The minimum and 

maximum parameters of the Pert distributions were based on a literature search 

covering the range of potential values for this factor for every illness, while the 

most likely values were based on data most relevant to Greece/Europe as the 

endemicity of illnesses is often related to a specific region [20, 21, 41]. When no 

European data could be found, data from other developed countries [3, 19]  and 

in the absence of the latter expert elicitation data [5] were used. When no other 

information was available to construct an upper limit for foodborne transmission a 

value of 100% was assumed as in the case of brucellosis, echinococciasis, 

amoebiasis and other helminthiases. A synopsis of the selected parameters 

accompanied by the country of origin of the data is provided in Table 2A. More 

detailed information about the range of values found for every illness during the 

literature search is provided below. 

 

Under-reporting: To cover for the uncertainty associated with under-reporting,  

Pert distributions were used as multipliers [19]. The minimum and maximum 

parameters of these distributions were selected so as to cover the full range of 

values found in literature for this factor and the most likely values were set at the 

middle of this range for every illness since unlike food attribution there is no 

particular reason to consider European data more representative than data from 

other developed countries for this phenomenon. A synopsis of the selected 

parameters accompanied by the country of origin of the data is provided in Table 

2A. More detailed information about the range of values found for every illness 

during the literature search is provided below. 

 

Case fatality ratio: To cover for the uncertainty associated with the case-fatality 

ratio,  Pert distributions were also used as multipliers. The minimum and 

maximum parameters of these distributions were selected so as to cover the 

range of values found in literature for this factor and the most likely values were 

set at the middle of this range for every illness. The literature search was focused 

on reviews for specific pathogens, outbreak studies and national burden of 

disease studies. The selected case fatality ratios from these studies were always 

based on reported cases of serious illness resulting in physician visits so that they 

are on the same level of the surveillance pyramid as the cases reported in 
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Technical Appendix 

Selection of input distributions and other parameters for the DALY 

estimates 
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(HCIDC) [10]. A limited number of data were obtained from WHO disease 

surveillance reports where HCIDC was mentioned to be the source [12, 13] and 
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available from both sources, cases were usually more for hospitalizations (NSSG 

data)  than for notified cases (HCIDC data). Amongst the non-gastrointestinal 

illnesses (echinococcosis and brucellosis) this was always the case. This could be 

due to the fact that either there is serious under-notification (both by hospitals 

and physicians) to the HCIDC or extended repetition of tests and prescriptions in 

hospitals as suggested by Mossialos et al. [15] that could result in more than one 

bulletin for the same person. For the purpose of our estimates we considered 

both NSSG and HCIDC data to be representative of reported (severe) cases of 

illness and we decided not to include under-notification (or possible over-

notification) since a correction for these phenomena would require a country 

specific study on the validation of the two systems which is not at the moment 
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available. For the four  illnesses for which data were available from both systems, 

NSSG data were often considered preferable. 

 

Percentage foodborne: To cover for the uncertainty associated with food 

attribution, Pert distributions were used as multipliers [19]. The minimum and 

maximum parameters of the Pert distributions were based on a literature search 

covering the range of potential values for this factor for every illness, while the 

most likely values were based on data most relevant to Greece/Europe as the 

endemicity of illnesses is often related to a specific region [20, 21, 41]. When no 

European data could be found, data from other developed countries [3, 19]  and 

in the absence of the latter expert elicitation data [5] were used. When no other 

information was available to construct an upper limit for foodborne transmission a 

value of 100% was assumed as in the case of brucellosis, echinococciasis, 

amoebiasis and other helminthiases. A synopsis of the selected parameters 

accompanied by the country of origin of the data is provided in Table 2A. More 

detailed information about the range of values found for every illness during the 

literature search is provided below. 

 

Under-reporting: To cover for the uncertainty associated with under-reporting,  

Pert distributions were used as multipliers [19]. The minimum and maximum 

parameters of these distributions were selected so as to cover the full range of 

values found in literature for this factor and the most likely values were set at the 

middle of this range for every illness since unlike food attribution there is no 

particular reason to consider European data more representative than data from 

other developed countries for this phenomenon. A synopsis of the selected 

parameters accompanied by the country of origin of the data is provided in Table 

2A. More detailed information about the range of values found for every illness 

during the literature search is provided below. 

 

Case fatality ratio: To cover for the uncertainty associated with the case-fatality 

ratio,  Pert distributions were also used as multipliers. The minimum and 

maximum parameters of these distributions were selected so as to cover the 

range of values found in literature for this factor and the most likely values were 

set at the middle of this range for every illness. The literature search was focused 

on reviews for specific pathogens, outbreak studies and national burden of 

disease studies. The selected case fatality ratios from these studies were always 

based on reported cases of serious illness resulting in physician visits so that they 

are on the same level of the surveillance pyramid as the cases reported in 
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Greece’s surveillance system. In some instances few national data were available 

to estimate case fatality rates for generic codes (“Ill-defined intestinal infections”, 

“Other helminthiases” and “Intestinal infections due to other specified 

microorganism”) found in the  WHO Mortality Database [11]. A synopsis of the 

selected parameters accompanied by the country of origin of the data is provided 

in Table 2A. More detailed information about the range of values found for every 

illness during the literature search is provided below. 

 

Disability weights: To select the disability weights, studies were collected from 

literature in which the burden of every illness was quantified using DALY. Selected 

studies involved review studies on the global burden of specific illnesses (e.g. 

echinococcosis [42], brucellosis [43]) or on the burden of foodborne pathogens in 

the EU or in the Netherlands and other countries where the same indicator was 

used [22, 25, 36, 44]. For generic codes involving gastrointestinal illness due to 

various causes (e.g. “Other helminthiases”) or unknown causes  (e.g. “Ill-defined 

intestinal infections”) disability weights were selected conservatively using the 

classification system by Murray [45] in such a way that they would coincide with 

the upper range of every disability weight class. For example in the case of the ill-

defined illness a disability weight of 0.4 was selected which corresponds to the 

upper range of class 3 disability weights (ranging from 0.220-0.4) used to 

describe severe gastrointestinal illness in other studies (e.g. 0.393 for severe 

gastroenteritis due to EHEC and Giardiasis [22, 25]). For underreported mild 

cases of gastrointestinal illness when no data on disability weights could be found 

in literature (e.g. “Ill-defined intestinal infections” or “Amoebiasis”) given the 

similarity of mild diarrheal symptoms of infectious origin [46] a disability weight 

of 0.067 was chosen as in other studies where weights are assigned to mild 

diarrheal symptoms [22, 24]. A synopsis of all the selected disability weights is 

provided in Table 3A.  

    

BACTERIAL DISEASES 

Botulism 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: According to Abgueguen 80-100% of cases of botulism in 

the EU are foodborne [47] and 100% of the cases in France have been attributed 

to food [48]. Given the fact that wound botulism, which is the only form of the 

disease not related with food, occurs very rarely in Europe [49] the estimate of 

100% was chosen for Greece. 
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Case fatality: The most likely case fatality rate was considered to be 10.15%, the 

average of the range suggested by US data (3-17.3%) [19, 50].  

Disability weight: It is estimated that approximately 25% of the patients have to 

be intubated (severe cases) [50] and the remaining 75% are considered to be 

moderate cases. Disability weights of 0.906 were assigned to the severe cases 

and 0.6 to the moderate cases based on the description of the symptoms of the 

latter by Mann et al. [51] and the definitions of disability weights by Murray [45].  

Duration of illness: The duration of illness was estimated to be 60 days for the 

patients ending up in need of mechanical help for respiration according to EU 

studies [47, 52] while for the moderate cases the reported hospitalization time is 

1 [51] to 2 weeks [53]. The latter value was considered to be more reliable since 

it is based on estimates from a much larger outbreak of botulism that did not 

involve any pending legal actions unlike the former value.   

Under-reporting: A factor of 1.8125 was considered which is in the middle of the 

range 1.625-2 [3, 49].  

Note: The reported cases for Greece between 1998 and 2007 do not involve any 

incidents of infant botulism [10]. Reported and underreported cases were 

considered to be equally severe. Though mild cases of botulism can also occur 

and they have often been reported during outbreaks they were not considered 

here because affected persons seldom seek medical care and are not normally 

captured by surveillance unless they are part of an outbreak [19]. Annually 

reported cases in Greece are ≤1 and they do not fit the outbreak definition (≥2 

cases) [54]. 

 

Brucellosis 

Reported cases: Based on NSSG data (ICD-9 code 023; BTL code 031) (Table 

1A). 

Percentage foodborne: In a Greek study foodborne transmission was mentioned 

to be 84% [55] and in USA studies 50% [3, 19]. Given the fact that brucellosis is 

a disease that is considered to have a high transmission rate via food [7] the 

value from the Greek study was selected to represent the mean of the Pert 

distribution. The minimum value of the distribution was based on the USA studies 

and the maximum value on an arbitrarily assigned conservative value of 100% 

since no other upper limit has been found in literature.  

Case fatality: The case fatality of brucellosis is 5% based on Mead et al. [3] but 

on the HCIDC website it is stated that the mortality rate for the disease is less 

than 2% [10] and Roth et al. mention that mortality is negligible although the 

disease itself can last for several years [43]. A case-fatality rate of 2% was finally 
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Greece’s surveillance system. In some instances few national data were available 

to estimate case fatality rates for generic codes (“Ill-defined intestinal infections”, 

“Other helminthiases” and “Intestinal infections due to other specified 

microorganism”) found in the  WHO Mortality Database [11]. A synopsis of the 

selected parameters accompanied by the country of origin of the data is provided 

in Table 2A. More detailed information about the range of values found for every 

illness during the literature search is provided below. 
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used [22, 25, 36, 44]. For generic codes involving gastrointestinal illness due to 

various causes (e.g. “Other helminthiases”) or unknown causes  (e.g. “Ill-defined 

intestinal infections”) disability weights were selected conservatively using the 

classification system by Murray [45] in such a way that they would coincide with 

the upper range of every disability weight class. For example in the case of the ill-

defined illness a disability weight of 0.4 was selected which corresponds to the 

upper range of class 3 disability weights (ranging from 0.220-0.4) used to 

describe severe gastrointestinal illness in other studies (e.g. 0.393 for severe 

gastroenteritis due to EHEC and Giardiasis [22, 25]). For underreported mild 

cases of gastrointestinal illness when no data on disability weights could be found 

in literature (e.g. “Ill-defined intestinal infections” or “Amoebiasis”) given the 

similarity of mild diarrheal symptoms of infectious origin [46] a disability weight 

of 0.067 was chosen as in other studies where weights are assigned to mild 

diarrheal symptoms [22, 24]. A synopsis of all the selected disability weights is 

provided in Table 3A.  

    

BACTERIAL DISEASES 

Botulism 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: According to Abgueguen 80-100% of cases of botulism in 

the EU are foodborne [47] and 100% of the cases in France have been attributed 

to food [48]. Given the fact that wound botulism, which is the only form of the 

disease not related with food, occurs very rarely in Europe [49] the estimate of 

100% was chosen for Greece. 
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Case fatality: The most likely case fatality rate was considered to be 10.15%, the 

average of the range suggested by US data (3-17.3%) [19, 50].  

Disability weight: It is estimated that approximately 25% of the patients have to 

be intubated (severe cases) [50] and the remaining 75% are considered to be 

moderate cases. Disability weights of 0.906 were assigned to the severe cases 

and 0.6 to the moderate cases based on the description of the symptoms of the 

latter by Mann et al. [51] and the definitions of disability weights by Murray [45].  

Duration of illness: The duration of illness was estimated to be 60 days for the 

patients ending up in need of mechanical help for respiration according to EU 

studies [47, 52] while for the moderate cases the reported hospitalization time is 

1 [51] to 2 weeks [53]. The latter value was considered to be more reliable since 

it is based on estimates from a much larger outbreak of botulism that did not 

involve any pending legal actions unlike the former value.   

Under-reporting: A factor of 1.8125 was considered which is in the middle of the 

range 1.625-2 [3, 49].  

Note: The reported cases for Greece between 1998 and 2007 do not involve any 

incidents of infant botulism [10]. Reported and underreported cases were 

considered to be equally severe. Though mild cases of botulism can also occur 

and they have often been reported during outbreaks they were not considered 

here because affected persons seldom seek medical care and are not normally 

captured by surveillance unless they are part of an outbreak [19]. Annually 

reported cases in Greece are ≤1 and they do not fit the outbreak definition (≥2 

cases) [54]. 

 

Brucellosis 

Reported cases: Based on NSSG data (ICD-9 code 023; BTL code 031) (Table 

1A). 

Percentage foodborne: In a Greek study foodborne transmission was mentioned 

to be 84% [55] and in USA studies 50% [3, 19]. Given the fact that brucellosis is 

a disease that is considered to have a high transmission rate via food [7] the 

value from the Greek study was selected to represent the mean of the Pert 

distribution. The minimum value of the distribution was based on the USA studies 

and the maximum value on an arbitrarily assigned conservative value of 100% 

since no other upper limit has been found in literature.  

Case fatality: The case fatality of brucellosis is 5% based on Mead et al. [3] but 

on the HCIDC website it is stated that the mortality rate for the disease is less 

than 2% [10] and Roth et al. mention that mortality is negligible although the 

disease itself can last for several years [43]. A case-fatality rate of 2% was finally 
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selected since it was considered to be closer to the situation in Greece [30]. We 

considered 0.9% as a lower limit for the case-fatality rate based on recent US 

data [19]. 

Disability weight: A disability weight of 0.2 was assigned as in another study by 

Roth et al. based on the fact that the disease is perceived as very painful and 

affecting occupational ability even during periods of remission [43].  

Duration of illness: The median duration of the disease (clinical manifestation) is 

3.11 years based on Roth et al. [43]. 

Under-reporting: Given the seriousness of the disease whose clinical 

manifestations can last for years the under-reporting factor would in theory be 

expected to be low e.g 2 as suggested for serious illnesses [3]. Nonetheless, it 

can be as high as 19.7 based on estimates for the annual incidence of the disease 

in certain regions in Greece [56] and the average annual incidence of 

hospitalizations due to brucellosis in the period 1996-2005 [9]. The average of 

these extremes was selected (10.85).  

Note: Reported and under-reported cases were considered to be equally severe.  

 

Campylobacteriosis 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: The percentage of cases of campylobacteriosis that can be 

attributed to food ranges from 30 to 80% based on various European studies 

summarized by Havelaar et al. [5]. Although some of these studies mention 80% 

of the cases to be foodborne [3, 29] data from a recent publication of the 

European Food Safety Authority on campylobacteriosis in the EU point out 

towards lower food attribution values, since only 35% of outbreaks and less than 

50% of outbreak cases based on this study are due to food and drinking water 

[57] and the same is the case for another recent expert elicitation study 

according to which only 42% of the cases are due to food [5]. Therefore, given 

this large variation among studies the average of the reported range of food 

attribution values in the European studies was selected as the most likely value 

for the Pert distribution (55%).            

Case fatality: A case fatality ratio of 0.1265% was selected which is in the middle 

of the observed range 0.1-0.153 for reported cases [3, 19, 29]. 

Disability weight: Different disability weights were assigned to each of the 

potential outcomes for reported cases of campylobacteriosis based on van Lier 

and Havelaar [25] and Haagsma et al. [58] as can be seen in Table 4A of the 

Annex. All under-reported cases were assumed to be cases of self-limiting 

gastroenteritis and were thus assigned a disability weight of 0.067 [59]. 
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Duration of illness: The estimated duration of each outcome for the reported 

cases can be seen in Table 4A of the Annex. The under-reported cases were 

assumed to have a duration of 3.48 days which corresponds to gastroenteritis 

due to Campylobacter that does not result in a visit to GP [24]. 

Under-reporting: Mead et al. mention that the disease is under-reported by a 

factor of 38 [3]. According to European studies under-reporting of 

campylobacteriosis is estimated to be much lower; 7.6 based on Wheeler et al. 

[60] and 10.3 based on Adak et al. [29]. However, taking into account that in 

Greece very few laboratories have the ability to identify the pathogen [10] the 

underreporting is expected to be higher than in other European countries and this 

was indeed found to be the case in a study by Ekdahl and Giesecke [28]. 

However, in the latter study the incidence data for campylobacteriosis in Greece 

used to derive the underreporting factor where much lower than what is known 

for the year 2000 based on WHO. Therefore by repeating the calculations for the 

correct national data the under-reporting factor was estimated as:  

 

To cover for uncertainty due to this parameter the whole range of under-reporting 

factors was considered (7.6-542) and the most likely value (274.8) was 

considered to be at the middle of this range.  

 

EHEC 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: Approximately 51% of the sources of EHEC outbreaks are 

foodborne or waterborne in Europe according to a study by Ammon for the period 

1992-1996 [61]. The range of values for this percentage could be larger (40-

90%) [5]. 

Case fatality: The case fatality rate for E. coli O157 has been estimated to be in 

the middle of the range suggested for EHEC O157 (0.25-0.83%) [3, 62].  

Disability weight: There are four important conditions related with EHEC infection 

that determine the burden of the disease, watery diarrhea, haemorrhagic colitis, 

haemolytic-ureamic syndrome [63] and end-stage renal disease (ESRD). For 

watery diarrhea and haemorrhagic colitis a disability weight of 0.393 was 

assigned based on van Lier and Havelaar [25]. It was also considered that for 

every reported case of EHEC, 0.5 cases of HUS occur, and that every case of HUS 

(including ESRD as a sequella) corresponds to 1.05 YLD [25]. All under-reported 
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selected since it was considered to be closer to the situation in Greece [30]. We 

considered 0.9% as a lower limit for the case-fatality rate based on recent US 

data [19]. 

Disability weight: A disability weight of 0.2 was assigned as in another study by 

Roth et al. based on the fact that the disease is perceived as very painful and 

affecting occupational ability even during periods of remission [43].  

Duration of illness: The median duration of the disease (clinical manifestation) is 

3.11 years based on Roth et al. [43]. 

Under-reporting: Given the seriousness of the disease whose clinical 

manifestations can last for years the under-reporting factor would in theory be 

expected to be low e.g 2 as suggested for serious illnesses [3]. Nonetheless, it 

can be as high as 19.7 based on estimates for the annual incidence of the disease 

in certain regions in Greece [56] and the average annual incidence of 

hospitalizations due to brucellosis in the period 1996-2005 [9]. The average of 

these extremes was selected (10.85).  

Note: Reported and under-reported cases were considered to be equally severe.  

 

Campylobacteriosis 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: The percentage of cases of campylobacteriosis that can be 

attributed to food ranges from 30 to 80% based on various European studies 

summarized by Havelaar et al. [5]. Although some of these studies mention 80% 

of the cases to be foodborne [3, 29] data from a recent publication of the 

European Food Safety Authority on campylobacteriosis in the EU point out 

towards lower food attribution values, since only 35% of outbreaks and less than 

50% of outbreak cases based on this study are due to food and drinking water 

[57] and the same is the case for another recent expert elicitation study 

according to which only 42% of the cases are due to food [5]. Therefore, given 

this large variation among studies the average of the reported range of food 

attribution values in the European studies was selected as the most likely value 

for the Pert distribution (55%).            

Case fatality: A case fatality ratio of 0.1265% was selected which is in the middle 

of the observed range 0.1-0.153 for reported cases [3, 19, 29]. 

Disability weight: Different disability weights were assigned to each of the 

potential outcomes for reported cases of campylobacteriosis based on van Lier 

and Havelaar [25] and Haagsma et al. [58] as can be seen in Table 4A of the 

Annex. All under-reported cases were assumed to be cases of self-limiting 

gastroenteritis and were thus assigned a disability weight of 0.067 [59]. 
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Duration of illness: The estimated duration of each outcome for the reported 

cases can be seen in Table 4A of the Annex. The under-reported cases were 

assumed to have a duration of 3.48 days which corresponds to gastroenteritis 

due to Campylobacter that does not result in a visit to GP [24]. 

Under-reporting: Mead et al. mention that the disease is under-reported by a 

factor of 38 [3]. According to European studies under-reporting of 

campylobacteriosis is estimated to be much lower; 7.6 based on Wheeler et al. 

[60] and 10.3 based on Adak et al. [29]. However, taking into account that in 

Greece very few laboratories have the ability to identify the pathogen [10] the 

underreporting is expected to be higher than in other European countries and this 

was indeed found to be the case in a study by Ekdahl and Giesecke [28]. 

However, in the latter study the incidence data for campylobacteriosis in Greece 

used to derive the underreporting factor where much lower than what is known 

for the year 2000 based on WHO. Therefore by repeating the calculations for the 

correct national data the under-reporting factor was estimated as:  

 

To cover for uncertainty due to this parameter the whole range of under-reporting 

factors was considered (7.6-542) and the most likely value (274.8) was 

considered to be at the middle of this range.  

 

EHEC 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: Approximately 51% of the sources of EHEC outbreaks are 

foodborne or waterborne in Europe according to a study by Ammon for the period 

1992-1996 [61]. The range of values for this percentage could be larger (40-

90%) [5]. 

Case fatality: The case fatality rate for E. coli O157 has been estimated to be in 

the middle of the range suggested for EHEC O157 (0.25-0.83%) [3, 62].  

Disability weight: There are four important conditions related with EHEC infection 

that determine the burden of the disease, watery diarrhea, haemorrhagic colitis, 

haemolytic-ureamic syndrome [63] and end-stage renal disease (ESRD). For 

watery diarrhea and haemorrhagic colitis a disability weight of 0.393 was 

assigned based on van Lier and Havelaar [25]. It was also considered that for 

every reported case of EHEC, 0.5 cases of HUS occur, and that every case of HUS 

(including ESRD as a sequella) corresponds to 1.05 YLD [25]. All under-reported 
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cases were considered to be cases of mild gastroenteritis for which a disability 

weight of 0.067 was selected [59]. 

Duration of illness: The duration of EHEC related gastroenteritis varies between 

2-9 days [64]. Here, an average duration of 5.6 days was selected for watery 

diarrhea and hemorrhagic colitis due to EHEC infection according to van Lier and 

Havelaar [25]. For the under-reported cases a duration of 3 days was assumed 

based on the median duration of non-bloody STEC O157 gastroenteritis [24].  

Under-reporting: Can range between 2 a has been mentioned for VTEC in England 

and Whales [29] and 26.1 as mentioned for the US [19]. The most likely value 

(14.05) was considered to be in the middle of this range. Given the fact that 

cases of EHEC have only recently started to be under surveillance in Greece [10] 

under-notification of EHEC is also possible.  

 

Leptospirosis 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: Leptospirosis is contracted by direct or indirect contact 

with the urine of an infected animal [65] and thus common vehicles of the 

infection are contaminated food, water and soil [66]. Though leptospirosis is 

considered to be a foodborne disease [66, 67] estimating an actual percentage of 

cases that can be attributed to food is complicated since this disease has various 

ways of transmission [66]. In a recent review of leptospirosis in the north of 

Greece, the source of the infection had been identified in only 51% of the cases 

studied where it was  found to be non-food related [68]. This means that the 

percentage of cases that can be attributed to food is anywhere between 1 and 

49%. Taking into account another review of the disease in Germany where 

different types of exposure are mentioned [69] it can be concluded that food is 

not a common vehicle of the disease but keeping in mind that the only outbreak 

of leptospirosis in Greece reported in literature was foodborne (involved drinking 

water at a café) [65] we assumed a very low food attribution of 5% which is in 

the same range as the one of hepatitis A or Rotavirus infections [5].  

Case fatality: The severity of the disease caused by leptospirosis can vary a lot 

ranging from a subclinical infection to a severe syndrome of multi-organ infection 

with high mortality [65]. Among those that become ill, leptospirosis has two 

clinically recognizable syndromes, the anicteric form (90% of patients) and the 

icteric form or Weil’s Syndrome [70]. Mortality from the anicteric form of the 

disease has been reported as rare [70] or almost nil [65] while in the 

approximately 10% of the patients that have the icteric form there is an 

associated 10% mortality (ranging from 5% to 10%) [65, 70]. In our study we 
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assumed all reported cases to be representative of the icteric form of the disease 

and thus the latter case fatality rate was considered. 

Disability weight: The anicteric form includes the great majority of infections 

which are either subclinical or of very mild severity for which we assumed a class 

1 disability weight of 0.096 [45]. The icteric form of the disease is very severe 

and is characterized by impaired renal and hepatic function, hemorrhage, 

vascular collapse, and mental status changes [70] and can have severe sequelae 

like acute renal failure (ARF) which occurs in 16 to 40% of the cases [65]. Thus, 

for icteric leptospirosis a class 6 disability weight of 0.920 was assumed [45]. 

Duration of illness: Leptospirosis is listed in the ICD 10 coding system under code 

A27. Based on the average of countries that have submitted information in the 

EHMD for this disease in the years 2004-2006 we have considered the average 

duration of hospitalization to be  approximately 12 days [71]. The under-reported 

cases are assumed to belong to people that present the anicteric form of the 

disease which is not likely to result in medical consultation and lasts for about a 

week [65].  

Under-reporting: We assumed that all reported cases belong to the icteric form of 

the disease which is very serious and that all under-reported cases can be 

attributed to the anicteric form of the disease. Thus an under-reporting factor of 

15 was applied since the ratio of icteric/anicteric leptospirosis has a possible 

range between 1/20 and 1/10 [65].  

 

Listeriosis 

Reported cases: Based on HCIDC data. For 2001 and 2002 data from a European 

report on listeriosis in EU countries [14] were used since no data were available 

from the HCIDC for these years (Table 1A). 

Percentage foodborne: 99% of the cases were considered to be foodborne [29]. 

Other authors, however, mention this percentage being in the range of 69-99% 

[5] or 100% [19]. 

Case fatality: The case fatality rate can range between 10% and 44% based on 

outbreak data covering both perinatal and other outbreak cases of severe 

listeriosis tabulated by Schlech [72]. The average of these extreme values was 

considered (27%) 

Disability weight: No disability weight was assigned to this disease since the 

burden of illness is determined mainly by the fatal cases [24]. Moreover given the 

variety of symptoms related with either postnatal or adult acquired listeriosis 

(meningitis, sepsis, septicemia, pneumonia, abortion to mention but a few) 

assigning a uniform disability weight is extremely complex. 

64

Chapter 2



64 
 

cases were considered to be cases of mild gastroenteritis for which a disability 

weight of 0.067 was selected [59]. 

Duration of illness: The duration of EHEC related gastroenteritis varies between 

2-9 days [64]. Here, an average duration of 5.6 days was selected for watery 

diarrhea and hemorrhagic colitis due to EHEC infection according to van Lier and 

Havelaar [25]. For the under-reported cases a duration of 3 days was assumed 

based on the median duration of non-bloody STEC O157 gastroenteritis [24].  

Under-reporting: Can range between 2 a has been mentioned for VTEC in England 

and Whales [29] and 26.1 as mentioned for the US [19]. The most likely value 

(14.05) was considered to be in the middle of this range. Given the fact that 

cases of EHEC have only recently started to be under surveillance in Greece [10] 

under-notification of EHEC is also possible.  

 

Leptospirosis 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: Leptospirosis is contracted by direct or indirect contact 

with the urine of an infected animal [65] and thus common vehicles of the 

infection are contaminated food, water and soil [66]. Though leptospirosis is 

considered to be a foodborne disease [66, 67] estimating an actual percentage of 

cases that can be attributed to food is complicated since this disease has various 

ways of transmission [66]. In a recent review of leptospirosis in the north of 

Greece, the source of the infection had been identified in only 51% of the cases 

studied where it was  found to be non-food related [68]. This means that the 

percentage of cases that can be attributed to food is anywhere between 1 and 

49%. Taking into account another review of the disease in Germany where 

different types of exposure are mentioned [69] it can be concluded that food is 

not a common vehicle of the disease but keeping in mind that the only outbreak 

of leptospirosis in Greece reported in literature was foodborne (involved drinking 

water at a café) [65] we assumed a very low food attribution of 5% which is in 

the same range as the one of hepatitis A or Rotavirus infections [5].  

Case fatality: The severity of the disease caused by leptospirosis can vary a lot 

ranging from a subclinical infection to a severe syndrome of multi-organ infection 

with high mortality [65]. Among those that become ill, leptospirosis has two 

clinically recognizable syndromes, the anicteric form (90% of patients) and the 

icteric form or Weil’s Syndrome [70]. Mortality from the anicteric form of the 

disease has been reported as rare [70] or almost nil [65] while in the 

approximately 10% of the patients that have the icteric form there is an 

associated 10% mortality (ranging from 5% to 10%) [65, 70]. In our study we 
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assumed all reported cases to be representative of the icteric form of the disease 

and thus the latter case fatality rate was considered. 

Disability weight: The anicteric form includes the great majority of infections 

which are either subclinical or of very mild severity for which we assumed a class 

1 disability weight of 0.096 [45]. The icteric form of the disease is very severe 

and is characterized by impaired renal and hepatic function, hemorrhage, 

vascular collapse, and mental status changes [70] and can have severe sequelae 

like acute renal failure (ARF) which occurs in 16 to 40% of the cases [65]. Thus, 

for icteric leptospirosis a class 6 disability weight of 0.920 was assumed [45]. 

Duration of illness: Leptospirosis is listed in the ICD 10 coding system under code 

A27. Based on the average of countries that have submitted information in the 

EHMD for this disease in the years 2004-2006 we have considered the average 

duration of hospitalization to be  approximately 12 days [71]. The under-reported 

cases are assumed to belong to people that present the anicteric form of the 

disease which is not likely to result in medical consultation and lasts for about a 

week [65].  

Under-reporting: We assumed that all reported cases belong to the icteric form of 

the disease which is very serious and that all under-reported cases can be 

attributed to the anicteric form of the disease. Thus an under-reporting factor of 

15 was applied since the ratio of icteric/anicteric leptospirosis has a possible 

range between 1/20 and 1/10 [65].  

 

Listeriosis 

Reported cases: Based on HCIDC data. For 2001 and 2002 data from a European 

report on listeriosis in EU countries [14] were used since no data were available 

from the HCIDC for these years (Table 1A). 

Percentage foodborne: 99% of the cases were considered to be foodborne [29]. 

Other authors, however, mention this percentage being in the range of 69-99% 

[5] or 100% [19]. 

Case fatality: The case fatality rate can range between 10% and 44% based on 

outbreak data covering both perinatal and other outbreak cases of severe 

listeriosis tabulated by Schlech [72]. The average of these extreme values was 

considered (27%) 

Disability weight: No disability weight was assigned to this disease since the 

burden of illness is determined mainly by the fatal cases [24]. Moreover given the 

variety of symptoms related with either postnatal or adult acquired listeriosis 

(meningitis, sepsis, septicemia, pneumonia, abortion to mention but a few) 

assigning a uniform disability weight is extremely complex. 
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Duration of illness: For the same reason, as mentioned for disability weight, no 

assumptions were made regarding the duration of illness.  

Under-reporting: An under-reporting factor of 1.7 was selected which is in the 

midlle of the range found in literature for this pathogen 1.1-2.3 [4, 19]  Under-

reported cases were assumed to have the same severity as reported cases. 

Listeriosis is also the only disease in our study for which under-reported cases 

were also used in estimating the total number of deaths. The reason for this is 

that the disease has only recently started to be under surveillance in Greece by 

the HCIDC and it is thus expected to be under-notified. Given again the fact that 

the DALY due to listeriosis are defined by the fatal cases any under-notification of 

the disease is likely to lead to a considerable underestimation of its true impact 

on the health of a population. Thus deaths are also estimated based on the 

expected number of under-reported cases.    

Note: mild cases of listeriosis resulting in diarrhea are not considered in this 

study. 

 

Salmonellosis 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: 95% of the cases are considered to be foodborne [3, 48]. 

However, this value may also be considered to be in the range of 55-95% [5]. 

Case fatality: The case fatality rate is considered to be 0.701% which is in the 

middle of the range 0.5-0.902% suggested for laboratory confirmed cases [19, 

29].  

Disability weight: According to other studies on the burden of illness [25, 58] 

salmonellosis has 4 potential outcomes: gastroenteritis, inflammatory bowel 

disease, irritable bowel syndrome and reactive arthritis for which the incidence 

and disability weights are presented in Table 5A. For the under-reported cases, 

which we assumed that they did not result in a visit to a physician, a disability 

weight of 0.067 was selected [24].  

Duration of illness: The duration of illness for reported cases of illness is shown in 

Table 5A. For the under-reported cases a duration of 5.58 days was assumed 

based on the median duration of gastroenteritis in salmonellosis patients that do 

not visit a GP [24].  

Under-reporting: Mead et al. mention that the disease is under-reported by a 

factor of 38 [3] and in European studies under-reporting factors of 3.2 [60] or 3.9 

[29] are mentioned though in a recent study by de Jong and Ekdahl the 

underreporting factor for several other European countries was mentioned to be 

much higher and in particular for Greece 99.7 [37]. Thus the whole range was 

67 
 

considered (3.2-99.7) with a most likely value set at the middle of the extreme 

values (51.45). 

 

Shigellosis 

Reported cases: Based on HCIDC and NSSG data (ICD-9 code 004; BTL code 

012) (Table 1A). HCIDC data were not available for 1996-2003 and then NSSG 

data were used. For the remainder years (2004-2006) data from the HCIDC were 

used. 

Percentage foodborne: 10% of the cases were considered as foodborne [48]. This 

value may nonetheless range between 8.2 based on data from England [29] and 

31% based on recent US data [19]. 

Case fatality: The case fatality rate was considered to be in the range of 0.1-

0.16% [3, 19] with the average (0.13%) as the most likely value. 

Disability weight: A disability weight of 0.22 was selected based on Wijewardene 

and Spohr [44]. For the under-reported cases a disability weight of 0.067 was 

selected [24]. To describe sequelae related with irritable bowel syndrome the 

same disability weight as for campylobacteriosis and salmonellosis derived IBS 

was used [58]. 

Duration of illness: The duration of hospitalizations (4.6 days) is based on data 

from the NSSG. For the under-reported cases the duration of illness was assumed 

to be the same as for E. coli O157 i.e. 3 days [24]. For irritable bowel syndrome 

the same duration as for campylobacteriosis and salmonellosis derived IBS was 

used [58].  

Under-reporting: Scallan et al. mention an under-reporting factor of 33.3 [19] 

while Adak et al. report a factor of 3.4 [29]. The whole range was considered 

(3.4-33.3) with a most likely value set at the middle of the extreme values 

(18.35).  

  

Typhoid and paratyphoid fever 

The clinical manifestation of paratyphoid fever is very similar to the one of 

typhoid fever though usually milder [73].  Nonetheless, given the fact that these 

infections are discussed together we also decided to treat them as one when 

estimating their health burden. 

Reported cases: Based on HCIDC and NSSG data (ICD-9 code 002;  BTL code 

011) (Table 1A). 

Percentage foodborne: 80% of the total cases are estimated to be foodborne 

based on data from England and Whales [29]. Nonetheless, variation could be 
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Duration of illness: For the same reason, as mentioned for disability weight, no 

assumptions were made regarding the duration of illness.  

Under-reporting: An under-reporting factor of 1.7 was selected which is in the 

midlle of the range found in literature for this pathogen 1.1-2.3 [4, 19]  Under-

reported cases were assumed to have the same severity as reported cases. 

Listeriosis is also the only disease in our study for which under-reported cases 

were also used in estimating the total number of deaths. The reason for this is 

that the disease has only recently started to be under surveillance in Greece by 
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Salmonellosis 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: 95% of the cases are considered to be foodborne [3, 48]. 

However, this value may also be considered to be in the range of 55-95% [5]. 

Case fatality: The case fatality rate is considered to be 0.701% which is in the 

middle of the range 0.5-0.902% suggested for laboratory confirmed cases [19, 

29].  
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which we assumed that they did not result in a visit to a physician, a disability 
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Duration of illness: The duration of illness for reported cases of illness is shown in 

Table 5A. For the under-reported cases a duration of 5.58 days was assumed 

based on the median duration of gastroenteritis in salmonellosis patients that do 

not visit a GP [24].  

Under-reporting: Mead et al. mention that the disease is under-reported by a 

factor of 38 [3] and in European studies under-reporting factors of 3.2 [60] or 3.9 

[29] are mentioned though in a recent study by de Jong and Ekdahl the 

underreporting factor for several other European countries was mentioned to be 

much higher and in particular for Greece 99.7 [37]. Thus the whole range was 
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considered (3.2-99.7) with a most likely value set at the middle of the extreme 

values (51.45). 

 

Shigellosis 

Reported cases: Based on HCIDC and NSSG data (ICD-9 code 004; BTL code 

012) (Table 1A). HCIDC data were not available for 1996-2003 and then NSSG 

data were used. For the remainder years (2004-2006) data from the HCIDC were 

used. 

Percentage foodborne: 10% of the cases were considered as foodborne [48]. This 

value may nonetheless range between 8.2 based on data from England [29] and 

31% based on recent US data [19]. 

Case fatality: The case fatality rate was considered to be in the range of 0.1-

0.16% [3, 19] with the average (0.13%) as the most likely value. 

Disability weight: A disability weight of 0.22 was selected based on Wijewardene 

and Spohr [44]. For the under-reported cases a disability weight of 0.067 was 

selected [24]. To describe sequelae related with irritable bowel syndrome the 

same disability weight as for campylobacteriosis and salmonellosis derived IBS 

was used [58]. 

Duration of illness: The duration of hospitalizations (4.6 days) is based on data 

from the NSSG. For the under-reported cases the duration of illness was assumed 

to be the same as for E. coli O157 i.e. 3 days [24]. For irritable bowel syndrome 

the same duration as for campylobacteriosis and salmonellosis derived IBS was 

used [58].  

Under-reporting: Scallan et al. mention an under-reporting factor of 33.3 [19] 

while Adak et al. report a factor of 3.4 [29]. The whole range was considered 

(3.4-33.3) with a most likely value set at the middle of the extreme values 

(18.35).  

  

Typhoid and paratyphoid fever 

The clinical manifestation of paratyphoid fever is very similar to the one of 

typhoid fever though usually milder [73].  Nonetheless, given the fact that these 

infections are discussed together we also decided to treat them as one when 

estimating their health burden. 

Reported cases: Based on HCIDC and NSSG data (ICD-9 code 002;  BTL code 

011) (Table 1A). 

Percentage foodborne: 80% of the total cases are estimated to be foodborne 

based on data from England and Whales [29]. Nonetheless, variation could be 
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much greater if we accept the range of what is considered foodborne for 

Salmonella spp. (55-95%) [5].   

Case fatality: Is in the range of 0.4-1.5%. The average of these extremes 

(0.95%) was considered to be the most likely value [3, 48].  

Disability weight: A disability weight of 0.096 has been selected by Wijewardene 

et al. [44]. However, considering that the disability weight for non typhoidal 

gastroenteritis due to salmonellosis is 0.393 only for hospitalized cases according 

to van Lier and Havelaar [25] a disability weight of 0.096 does not reflect the 

severity of the disease. Therefore it was decided to arbitrarily assign a class 4 

disability weight of 0.6 to severe cases of typhoid fever (hospitalizations) and a 

class 1 disability weight of 0.096 to uncomplicated cases that can be treated at 

home since no other studies regarding the severity weight of this disease have 

been found in literature [45].  

Duration of illness: Acute cases were assumed to last approximately 2 weeks and 

uncomplicated cases usually 1 week [73, 74]. 

Under-reporting: An under-reporting factor of 2 has been used for typhoid fever 

[3, 29] but a factor of 13.3 has also been suggested [19]. The most likely value 

was set at the middle of this range (7.65). 

 

Food poisoning  

Reported cases: Based on NSSG data (ICD-9 codes 003, 005; BTL code 013) 

(Table 1A). 

The BTL code under this item includes the following two ICD-9 codes [75]: 

Other salmonella infections (003) and 

Other food poisoning (bacterial) (005). The latter category includes: 

 Staphylococcal food poisoning 

 Botulism 

 Cl. perfringens food poisoning 

 Food poisoning due to other Clostridium species 

 Food poisoning due to Vibrio parahaemolyticus 

 Other microbial food poisoning (B. cereus food poisoning) 

 Other unspecified food poisoning  

 Since we have separate data for the category “other salmonella infections” and 

“botulism” though the HCIDC, these have been used separately to estimate 

disease burden due to salmonellosis and botulism. Given the fact that fish and 

shellfish are always consumed cooked in Greece V. parahaemolyticus is not 

expected to be a pathogen of concern to the public health although it has been 

isolated from fresh fish in the country [76] and is currently not included in the 
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microorganisms that are notified to the HCIDC. B. cereus, St. aureus and Cl. 

perfringens are mentioned as the most frequent causes of food poisoning in 

different countries [77-81] and thus it was assumed that the DALY due to food 

poisoning are defined by these three microorganisms. The short duration of 

hospitalization in Greece for food poisoning (weighted average of 4 days based on 

data from 1998-2005 that include cases of salmonellosis and botulism that are 

known to last longer) supports this assumption.   

Percentage foodborne: By definition 100% is foodborne. Nonetheless, in some 

studies the percentage foodborne of the diseases caused by St. aureus, B. cereus 

and Cl. perfringens is somewhat lower ranging from 87-91% [5]. 

Case fatality: Food poisoning due to the above microorganisms is generally self-

limiting with an extremely low case fatality ratio, that ranges from 0 to 0.05% for 

these 3 pathogens [3, 82]. The average of this range (0.025%) was considered 

as the most likely value.  

Disability weight: B. cereus, St. aureus and Cl. perfringens cause mild, self-

limiting illnesses [83] so  a class 1 disability weight of 0.067 was assigned to 

under-reported cases to match the disability weights of other underreported 

gastrointestinal illnesses included in this study and a class 2 disability weight of 

0.220 to reported cases based on Murray, 1994 [45]. 

Duration of illness: Recovery from this kind of food poisoning is rapid and ranges 

usually from 1 to 3 days [64, 84]. The highest observed duration of illness (3 

days) was selected for hospitalized cases and the lowest 1 day for under-reported 

cases.  

Under-reporting: An under-reporting factor was difficult to establish since we do 

not know the relative incidence of B. cereus, St. aureus and Cl. perfringens food 

poisoning cases in this item. Nonetheless, since St. aureus has been mentioned to 

be responsible for more than half of documented food poisoning cases [77] an 

under-reporting factor of 185.65 was selected which is in the middle of the range 

found for this pathogen 29.3-342 [4, 19]. 

 

PARASITIC DISEASES 

Amoebiasis 

Reported cases: Based on NSSG data (ICD-9 code 006; BTL code 014) (Table 

1A). 

Percentage foodborne: Infection is initiated by ingestion of faecally contaminated 

food or water [63] and water, food and food-handlers have been reported to be 

the sources of infections [85] so in theory 100% of cases can be foodborne. 

However, the cysts of Entamoeba histolytica can survive in water [86] meaning 
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much greater if we accept the range of what is considered foodborne for 
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Case fatality: Is in the range of 0.4-1.5%. The average of these extremes 
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microorganisms that are notified to the HCIDC. B. cereus, St. aureus and Cl. 

perfringens are mentioned as the most frequent causes of food poisoning in 

different countries [77-81] and thus it was assumed that the DALY due to food 

poisoning are defined by these three microorganisms. The short duration of 

hospitalization in Greece for food poisoning (weighted average of 4 days based on 

data from 1998-2005 that include cases of salmonellosis and botulism that are 

known to last longer) supports this assumption.   

Percentage foodborne: By definition 100% is foodborne. Nonetheless, in some 

studies the percentage foodborne of the diseases caused by St. aureus, B. cereus 

and Cl. perfringens is somewhat lower ranging from 87-91% [5]. 

Case fatality: Food poisoning due to the above microorganisms is generally self-

limiting with an extremely low case fatality ratio, that ranges from 0 to 0.05% for 

these 3 pathogens [3, 82]. The average of this range (0.025%) was considered 

as the most likely value.  
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limiting illnesses [83] so  a class 1 disability weight of 0.067 was assigned to 

under-reported cases to match the disability weights of other underreported 

gastrointestinal illnesses included in this study and a class 2 disability weight of 

0.220 to reported cases based on Murray, 1994 [45]. 

Duration of illness: Recovery from this kind of food poisoning is rapid and ranges 

usually from 1 to 3 days [64, 84]. The highest observed duration of illness (3 

days) was selected for hospitalized cases and the lowest 1 day for under-reported 
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Under-reporting: An under-reporting factor was difficult to establish since we do 

not know the relative incidence of B. cereus, St. aureus and Cl. perfringens food 

poisoning cases in this item. Nonetheless, since St. aureus has been mentioned to 

be responsible for more than half of documented food poisoning cases [77] an 

under-reporting factor of 185.65 was selected which is in the middle of the range 
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PARASITIC DISEASES 

Amoebiasis 

Reported cases: Based on NSSG data (ICD-9 code 006; BTL code 014) (Table 

1A). 

Percentage foodborne: Infection is initiated by ingestion of faecally contaminated 

food or water [63] and water, food and food-handlers have been reported to be 

the sources of infections [85] so in theory 100% of cases can be foodborne. 

However, the cysts of Entamoeba histolytica can survive in water [86] meaning 
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that swimming in  pools and beaches can also result in infections [87] and 

venereal transmission has also been observed [88]. Moreover, the role of insects 

in the transmission of the disease has not been properly investigated [89]. Given 

these uncertainties we assumed that 50% of the cases are due to food. In theory 

this percentage could be as low as 10% which was the case for foodborne 

transmission of Giardia lamblia which like E. histolytica is also transmitted by 

water, food and food handlers [85] but has been reported to be more often 

transmitted by faecally contaminated water than food [90].  

Case fatality: The case fatality rate was considered to be approximately 0.2% 

based on tabulated data by Walsh [46] regarding the global prevalence and 

incidence of amoebiasis (range: 0.1-0.3%). 

Disability weight: A value of 0.4 was selected based on Wijewardene et al. [44]. 

For the cases that go under-reported a disability weight of 0.067 was selected 

[24] based on similarity of the mild diarrheal syndrome of amoebiasis with 

salmonellosis, giardiasis, toxigenic E. coli diarrhea, many other diarrheas of 

infectious origin, or the irritable bowel syndrome [46]. 

Duration of illness: Based on NSSG data the average duration of the illness was 

assumed to be 4.74 days based on the average duration of hospitalization 

according to the NSSG [9]. For the under-reported cases the duration of diarrhea 

was assumed to be 3 days based on the same rationale of the disability weight 

selection and the fact that non-bloody diarrhea by STEC O157 lasts for 3 days 

[24].  

Under-reporting: An under-reporting factor of 10 is plausible as suggested for 

protozoan infections by Casemore [91]. According to Evangelopoulos et al. (2001) 

[92] the prevalence of E. histolytica in Greece is 1 in every 38 immigrants. So 

considering that the total population of immigrants (people of foreign nationality) 

in Greece in 2001 was 796713 based on the NSSG [9], infected individuals were 

20966. About 10% of infected individuals have symptoms, and out of these 

people 2-20% (average = 11%) have symptoms related with the invasion of E. 

histolytica beyond the intestinal mucosa [86] which are presumed to require 

hospitalization. Therefore about 230 people with amoebiasis in 2001 are 

presumed to have required hospitalization. Nevertheless in 2001 only 25 people 

sought medical care [9] which means that the under-reporting factor is at least 

9.2. However, this is a very conservative estimate based on the prevalence of the 

pathogen in only one (although the largest) of the high risk groups in developed 

countries (immigrants, travellers, migrant workers, immunocompromised 

individuals, institutionalized individuals and sexually active homosexuals) [86]. 

Here a factor of 9.6 was selected which is in the middle of the range (9.2-10). 
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Cryptosporidiosis 

Estimated cases: No data are available for cryptosporidiosis so the number of 

cases is estimated indirectly as follows. The prevalence of Cryptosporidium 

parvum infection in the Greek population is 2.7% based on data collected from 

Papazahariadou et al. [17] which is in line with the available information on the 

incidence of this parasitic infection in Europe [86].  We assumed that this rate of 

infection applies to all patients getting hospitalized for gastroenteritis where a 

protozoan infection could be the cause (BTL Code 015, “intestinal infections due 

to other specified microorganism” and BTL code 016, “Ill-defined intestinal 

infections).  

Percentage foodborne: Based on the study for the USA [3] 10% of the cases are 

foodborne while based on a study for England and Wales [29] 5.6% of the cases 

are attributed to food. The data resulting from the European study were 

considered to be more relevant for Greece.     

Case fatality: A range of 0.07-0.6% has been mentioned [22, 29] and the 

average has been considered to be the most likely value. 

Disability weight: A disability weight of 0.393 was selected since in our scenario 

we estimated the cases of the disease as a proportion of the cases that result in 

visits to a physician for gastroenteritis or hospitalization. A disability weight of 

0.067 was selected for the under-reported cases [22]. 

Duration of illness: The average duration of illness was considered to be 18.4 

days for cases resulting in hospitalization and 3.5 days for cases not resulting in a 

visit to a physician [22]. 

Under-reporting: The under-reporting factors for Cryptosporidium parvum 

infections range from 7.4 [29] to 98.6 [19]. We set the most likely value for 

under-reporting at the middle of this range.   

 

Echinococcosis 

It is assumed that all cases in Greece are due to Echinococcus granulosus which 

causes cystic echinococcosis that is easier to treat and has a lower case fatality 

than alveolar echinococcosis caused by E. multilocularis [93]. This assumption is 

based on the fact that alveolar echinococcosis is a rare form of echinococcosis in 

Greece since this country is not among the endemic regions of E. multilocularis 

[94] and only one case has been reported between 1981 and 2000 [95]. 

Moreover, according to a recent review on echinococcosis in Greece [32] it is 

rather certain that the majority if not all of the cases of the disease in humans in 

the country are due to E. granulosus. Additionally it is assumed that all cases of 
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that swimming in  pools and beaches can also result in infections [87] and 

venereal transmission has also been observed [88]. Moreover, the role of insects 

in the transmission of the disease has not been properly investigated [89]. Given 

these uncertainties we assumed that 50% of the cases are due to food. In theory 
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Cryptosporidiosis 

Estimated cases: No data are available for cryptosporidiosis so the number of 

cases is estimated indirectly as follows. The prevalence of Cryptosporidium 

parvum infection in the Greek population is 2.7% based on data collected from 

Papazahariadou et al. [17] which is in line with the available information on the 

incidence of this parasitic infection in Europe [86].  We assumed that this rate of 
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It is assumed that all cases in Greece are due to Echinococcus granulosus which 

causes cystic echinococcosis that is easier to treat and has a lower case fatality 

than alveolar echinococcosis caused by E. multilocularis [93]. This assumption is 

based on the fact that alveolar echinococcosis is a rare form of echinococcosis in 
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cystic echinococcosis are treated with surgery which still remains the only 

potentially curative treatment for cystic echinococcosis [96].  

Reported cases: Based on NSSG data (ICD-9 code 122; BTL code 073) (Table 

1A). Though HCIDC data were also available for the same period, NSSG data 

were used instead as they were considered of better quality. This was because 

the officially reported cases (through the HCIDC) have been found to be few in 

comparison to the actual number of diagnosed cases in hospitals in the country as 

mentioned by Sotiraki et al. [32].  

Percentage foodborne: Cystic echinococcosis requires ingestion of the eggs [93] 

which can be the result of handling hosts of the parasite or ingesting food 

contaminated with eggs [20]. The exact percentage of cases that can be 

attributed to food is not known [7]. According to WHO [2], as much as 30% of 

cystic echinococcosis is transmitted through food by contamination with parasite 

eggs. Given the fact that the disease is hyperendemic in Greece [20] 

contamination of food from the environment can be high, so in our study 30% of 

the cases were considered to be foodborne. In theory though since E. granulosus 

is a helminth, foodborne transmission could be as high as 100% (see disease 

category “other helminthiases”). 

Case fatality: A case fatality rate of 2.24% was selected that corresponds to all 

cases receiving surgery in Greece [42]. A wider range of 1-3% is also possible 

[93, 97]. 

Disability weight: Several disability weights were selected depending on the 

outcome of surgery for cystic echinococcosis according to Budke et al. [42] and 

are presented in Table 6A. 

Duration of illness: The selected values are based on the recovery time reported 

for each possible outcome of surgery for cystic echinococcosis [42] and are shown 

in Table 6A. 

Under-reporting: Budke et al. [42] suggest an under-reporting factor of 4 on a 

global level, this was not found to be very realistic for a western developed 

country given the seriousness of the disease. Moreover, echinococcosis is 

considered to be a serious health problem in Greece and the notification of the 

disease is obligatory in both humans and animals. An under-reporting factor of 2 

based on the rationale of Mead et al. [3] for serious diseases is also possible. 

Given the fact that the reliability of official data was questioned in a recent review 

of the disease in the country [32] it was finally decided to select a factor of 3 

which is in the middle of the above range. It was also assumed that 10% of the 

total cases are undiagnosed and thus do not receive medical treatment. These 
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cases were assigned a disability weight of 0.2 for 10 years [42]. Lastly, reported 

and under-reported cases were assumed to have the same severity.    

 

Giardiasis 

Estimated cases: No data are available for giardiasis so the number of cases is 

estimated indirectly as follows. The prevalence of the parasite in the Greek 

population according to a recent study is 2.3% [17] which is in line with what has 

been mentioned about the rates of detection of this parasite in industrialized 

countries [86]. We assumed that this rate of infection applies to all patients 

getting hospitalized for gastroenteritis where a protozoan infection could be the 

cause (BTL Code 015, “intestinal infections due to other specified microorganism” 

and BTL code 016, “Ill-defined intestinal infections”).   

Percentage foodborne:  Mentioned anywhere between 5 and 30% [5]. Here a 

value of 10% was assumed as in [29]. 

Case fatality: The case fatality rate is very low according to Mead et al. [3] or 

zero according to Vijgen et al. [22] and this seems also to be the case in a more 

recent study by Adak et al. [29]. However based on more recent US data it can 

be 0.1% for laboratory confirmed cases [19]. Thus a most likely value of 0.05% 

was considered which is in the middle of this range (0-0.1%). 

Disability weight: A disability weight of 0.393 was selected for hospitalized cases 

and 0.067 for under-reported cases [22].  

Duration of illness: It was considered to be 10 days for people not visiting a 

physician and 30 days for hospitalized individuals [22].  

Under-reporting: This factor is in the range of 4.6-46.3 [19, 29] and the average 

has been considered to be the most likely value. 

  

Toxoplasmosis 

Estimated cases: The disease has only recently started to be reported to the 

HCIDC (since 2004) and almost no cases were notified in the period 2004-2008 

for which information is available [10]. At the same time there are hospital 

studies on congenital toxoplasmosis that point out towards a much higher 

incidence of the disease in the country [98, 99]. Given this situation, it was 

considered more logical to estimate the total number of cases by multiplying the 

number of pregnancies for each year of the study with the percentage of 

seronegative women of reproductive age (~70%), the incidence of primary 

infection among pregnant women (0.51%) and the maternofetal transmission 

rate (19.4%) [16, 98, 100] (see Table 7A of the Annex). The number of cases 

found in this way is in agreement with what is known so far regarding the 
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cystic echinococcosis are treated with surgery which still remains the only 

potentially curative treatment for cystic echinococcosis [96].  

Reported cases: Based on NSSG data (ICD-9 code 122; BTL code 073) (Table 

1A). Though HCIDC data were also available for the same period, NSSG data 

were used instead as they were considered of better quality. This was because 

the officially reported cases (through the HCIDC) have been found to be few in 

comparison to the actual number of diagnosed cases in hospitals in the country as 

mentioned by Sotiraki et al. [32].  

Percentage foodborne: Cystic echinococcosis requires ingestion of the eggs [93] 

which can be the result of handling hosts of the parasite or ingesting food 

contaminated with eggs [20]. The exact percentage of cases that can be 

attributed to food is not known [7]. According to WHO [2], as much as 30% of 

cystic echinococcosis is transmitted through food by contamination with parasite 

eggs. Given the fact that the disease is hyperendemic in Greece [20] 

contamination of food from the environment can be high, so in our study 30% of 

the cases were considered to be foodborne. In theory though since E. granulosus 

is a helminth, foodborne transmission could be as high as 100% (see disease 

category “other helminthiases”). 

Case fatality: A case fatality rate of 2.24% was selected that corresponds to all 

cases receiving surgery in Greece [42]. A wider range of 1-3% is also possible 

[93, 97]. 

Disability weight: Several disability weights were selected depending on the 

outcome of surgery for cystic echinococcosis according to Budke et al. [42] and 

are presented in Table 6A. 

Duration of illness: The selected values are based on the recovery time reported 

for each possible outcome of surgery for cystic echinococcosis [42] and are shown 

in Table 6A. 

Under-reporting: Budke et al. [42] suggest an under-reporting factor of 4 on a 

global level, this was not found to be very realistic for a western developed 

country given the seriousness of the disease. Moreover, echinococcosis is 

considered to be a serious health problem in Greece and the notification of the 

disease is obligatory in both humans and animals. An under-reporting factor of 2 

based on the rationale of Mead et al. [3] for serious diseases is also possible. 

Given the fact that the reliability of official data was questioned in a recent review 

of the disease in the country [32] it was finally decided to select a factor of 3 

which is in the middle of the above range. It was also assumed that 10% of the 

total cases are undiagnosed and thus do not receive medical treatment. These 
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cases were assigned a disability weight of 0.2 for 10 years [42]. Lastly, reported 

and under-reported cases were assumed to have the same severity.    

 

Giardiasis 

Estimated cases: No data are available for giardiasis so the number of cases is 

estimated indirectly as follows. The prevalence of the parasite in the Greek 

population according to a recent study is 2.3% [17] which is in line with what has 

been mentioned about the rates of detection of this parasite in industrialized 

countries [86]. We assumed that this rate of infection applies to all patients 

getting hospitalized for gastroenteritis where a protozoan infection could be the 

cause (BTL Code 015, “intestinal infections due to other specified microorganism” 

and BTL code 016, “Ill-defined intestinal infections”).   

Percentage foodborne:  Mentioned anywhere between 5 and 30% [5]. Here a 

value of 10% was assumed as in [29]. 

Case fatality: The case fatality rate is very low according to Mead et al. [3] or 

zero according to Vijgen et al. [22] and this seems also to be the case in a more 

recent study by Adak et al. [29]. However based on more recent US data it can 

be 0.1% for laboratory confirmed cases [19]. Thus a most likely value of 0.05% 

was considered which is in the middle of this range (0-0.1%). 

Disability weight: A disability weight of 0.393 was selected for hospitalized cases 

and 0.067 for under-reported cases [22].  

Duration of illness: It was considered to be 10 days for people not visiting a 

physician and 30 days for hospitalized individuals [22].  

Under-reporting: This factor is in the range of 4.6-46.3 [19, 29] and the average 

has been considered to be the most likely value. 

  

Toxoplasmosis 

Estimated cases: The disease has only recently started to be reported to the 

HCIDC (since 2004) and almost no cases were notified in the period 2004-2008 

for which information is available [10]. At the same time there are hospital 

studies on congenital toxoplasmosis that point out towards a much higher 

incidence of the disease in the country [98, 99]. Given this situation, it was 

considered more logical to estimate the total number of cases by multiplying the 

number of pregnancies for each year of the study with the percentage of 

seronegative women of reproductive age (~70%), the incidence of primary 

infection among pregnant women (0.51%) and the maternofetal transmission 

rate (19.4%) [16, 98, 100] (see Table 7A of the Annex). The number of cases 

found in this way is in agreement with what is known so far regarding the 
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incidence of the disease in developed countries which ranges between 1 and 10 

cases per 10,000 births [36]. 

Percentage foodborne: In a European study by Cook et al. foodborne transmission 

for toxoplasmosis has been mentioned to be in the range of 30 to 63% [101]. 

Here 50% of the cases were assumed to be foodborne since this value is 

approximately in the middle of the above range and has been used in other 

national studies as well  [3, 19, 48]. 

Case fatality: The case-fatality rate is 2.3% according to Gibbs based on the 

percentage of stillbirths or neonatal deaths observed when toxoplasmosis occurs 

during pregnancy [102] while according to Havelaar et al. [36] the incidence of 

fetal loss or neonatal death is 3.75% (3.3-4.8%) among cases of congenital 

toxoplasmosis in the Netherlands. The data by Havelaar et al. selected for this 

study because it is more recent and derived through traceable and better quality 

data.  

Disability weight: Toxoplasmosis can have various outcomes (fetal loss, neonatal 

death, chorioretinitis, abnormalities of the central nervous system that lead to 

neurological deficiencies such as psychomotor, convulsions and mental 

retardation, hydrocephalus and intracranial calcifications) which differ in their 

severity and incidence. These data are presented in Table 8A of the Annex.  

Duration of illness: All outcomes of toxoplasmosis are considered to be life-long 

sequelae of the disease. Their duration is summarized in Table 8A of the Annex. 

Under-reporting: Not applicable.  

Note: The study of Diza et al. [16] dealt with the seroprevalence of Toxoplasma 

gondii on the North of Greece and it was assumed that the seroprevalence of the 

parasite is the same for the whole of Greece. However, this is not the case since 

in rural areas and in the island of Crete the percentage of sero-positive individuals 

appears to be higher [103]. 

 

Other Helminthiases 

Reported cases: Based on NSSG data (ICD-9 codes 121, 123, 124, 127-129; BTL 

code 076) (Table 1A). 

Percentage foodborne: All of the helminthic parasites included in this category of 

diseases [75] have been reported to be transmitted through food [64, 85, 89, 

104-109]. However, it is not possible to make a precise estimate of the actual 

percentage of cases that are transmitted through food since this information is 

not available for many of the sub-categories of diseases included under this 

classification while the relative importance of each in this BTL code is not very 

clear. For some of these diseases (trichinellosis, taeniasis, anisakiasis) the 
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percentage foodborne is mentioned to be 100% [3, 48] and thus all the cases 

under this general category of diseases can be considered to be 100% foodborne. 

On the other hand certain species of helminthes included in this category have 

also been reported to have different modes of transmission i.e. Strongyloides 

stercoralis can enter the body through the skin [110] and since many of them can 

be found in contaminated water in pools [111] they can be transmitted by 

swimming in such waters. Finally, helminthic infections are also known to have a 

venereal mode of transmission [112]. Nonetheless, the above modes of 

transmission are not expected to be the case for most of the species in this 

category and thus 90% of the cases was assumed to be foodborne. In a very 

conservative scenario, only 30% of the cases were assumed to be foodborne as in 

the case of the tapeworm Echinococcus granulosus.  

Case fatality: A case fatality of approximately 3.4% has been estimated for this 

group of illnesses based on the number of deaths among hospitalized cases [11] 

and the total number of hospitalizations for the period 1996-2006 [9].   

Disability weight: Most of the helminthic intestinal infections in the Greek native 

population are caused by the species Enterobius vermicularis, Ascaris 

lumbricoides, Strongyloides stercoralis and Taenia sp. [17, 113]. However 

autochthonous cases of helminthic infections have been mentioned to be 

extremely rare in Greece and most of the reported cases of helminthiases are 

imported following the influx of immigrants in the country [113]. The helminthic 

infection most commonly identified in the foreign population (emigrants and 

refugees) is ancylostomiasis (caused by Ancylostoma sp.) [17, 113] while other 

species found in foreigners are Trichuris trichiura, Ascaris lumbricoides, 

Strongyloides stercoralis, Taenia sp., Enterobius vermicularis and Schistostoma 

mansonii [17]. Helminthic infections due to Ancylostoma sp. and Schistostoma sp. 

are part of other BTL codes (075 and 072) [75] while Strongyloides stercoralis is 

not transmitted through food but cutaneously [110] so only the rest of the 

species mentioned above are of relevance for this item. Though all of the 

remaining helminthic species are primarily associated with gastrointestinal 

symptoms [114-117] they can also be associated with sequellae such as nutrient 

deficiencies and anaemia or even epilepsia [114, 118]. The disability weights for 

these illnesses and their sequellae according to Lopez et al. [119] range from 0-

0.463. Here  the upper value of this range was considered to be of relevance for 

the reported cases and for the underreported cases which we assumed to be 

related with gastrointestinal symptoms a disability weight of 0.067 was selected 

[24]. 
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incidence of the disease in developed countries which ranges between 1 and 10 
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Percentage foodborne: In a European study by Cook et al. foodborne transmission 

for toxoplasmosis has been mentioned to be in the range of 30 to 63% [101]. 

Here 50% of the cases were assumed to be foodborne since this value is 

approximately in the middle of the above range and has been used in other 

national studies as well  [3, 19, 48]. 

Case fatality: The case-fatality rate is 2.3% according to Gibbs based on the 

percentage of stillbirths or neonatal deaths observed when toxoplasmosis occurs 

during pregnancy [102] while according to Havelaar et al. [36] the incidence of 

fetal loss or neonatal death is 3.75% (3.3-4.8%) among cases of congenital 

toxoplasmosis in the Netherlands. The data by Havelaar et al. selected for this 

study because it is more recent and derived through traceable and better quality 

data.  

Disability weight: Toxoplasmosis can have various outcomes (fetal loss, neonatal 

death, chorioretinitis, abnormalities of the central nervous system that lead to 

neurological deficiencies such as psychomotor, convulsions and mental 

retardation, hydrocephalus and intracranial calcifications) which differ in their 

severity and incidence. These data are presented in Table 8A of the Annex.  

Duration of illness: All outcomes of toxoplasmosis are considered to be life-long 

sequelae of the disease. Their duration is summarized in Table 8A of the Annex. 

Under-reporting: Not applicable.  

Note: The study of Diza et al. [16] dealt with the seroprevalence of Toxoplasma 

gondii on the North of Greece and it was assumed that the seroprevalence of the 

parasite is the same for the whole of Greece. However, this is not the case since 

in rural areas and in the island of Crete the percentage of sero-positive individuals 
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classification while the relative importance of each in this BTL code is not very 
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percentage foodborne is mentioned to be 100% [3, 48] and thus all the cases 

under this general category of diseases can be considered to be 100% foodborne. 

On the other hand certain species of helminthes included in this category have 

also been reported to have different modes of transmission i.e. Strongyloides 

stercoralis can enter the body through the skin [110] and since many of them can 

be found in contaminated water in pools [111] they can be transmitted by 

swimming in such waters. Finally, helminthic infections are also known to have a 

venereal mode of transmission [112]. Nonetheless, the above modes of 

transmission are not expected to be the case for most of the species in this 

category and thus 90% of the cases was assumed to be foodborne. In a very 

conservative scenario, only 30% of the cases were assumed to be foodborne as in 

the case of the tapeworm Echinococcus granulosus.  

Case fatality: A case fatality of approximately 3.4% has been estimated for this 

group of illnesses based on the number of deaths among hospitalized cases [11] 

and the total number of hospitalizations for the period 1996-2006 [9].   

Disability weight: Most of the helminthic intestinal infections in the Greek native 

population are caused by the species Enterobius vermicularis, Ascaris 

lumbricoides, Strongyloides stercoralis and Taenia sp. [17, 113]. However 

autochthonous cases of helminthic infections have been mentioned to be 

extremely rare in Greece and most of the reported cases of helminthiases are 

imported following the influx of immigrants in the country [113]. The helminthic 

infection most commonly identified in the foreign population (emigrants and 

refugees) is ancylostomiasis (caused by Ancylostoma sp.) [17, 113] while other 

species found in foreigners are Trichuris trichiura, Ascaris lumbricoides, 

Strongyloides stercoralis, Taenia sp., Enterobius vermicularis and Schistostoma 

mansonii [17]. Helminthic infections due to Ancylostoma sp. and Schistostoma sp. 

are part of other BTL codes (075 and 072) [75] while Strongyloides stercoralis is 

not transmitted through food but cutaneously [110] so only the rest of the 

species mentioned above are of relevance for this item. Though all of the 

remaining helminthic species are primarily associated with gastrointestinal 

symptoms [114-117] they can also be associated with sequellae such as nutrient 

deficiencies and anaemia or even epilepsia [114, 118]. The disability weights for 

these illnesses and their sequellae according to Lopez et al. [119] range from 0-

0.463. Here  the upper value of this range was considered to be of relevance for 

the reported cases and for the underreported cases which we assumed to be 

related with gastrointestinal symptoms a disability weight of 0.067 was selected 

[24]. 
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Duration of illness: The duration of the disease was assumed to be 5.67 days 

based on NSSG data [9]. For the under-reported cases the median duration of 

diarrhea before visiting a GP in the Netherlands (6 days) was selected [120].  

Under reporting: This factor could also be in the range of 4.6-98.6 based on what 

is known for the under-reporting of protozoan parasites [4, 19]. We set the most 

likely value for under-reporting at the middle of this range.   

 

VIRAL DISEASES 

Acute hepatitis A 

Reported cases: Based on HCIDC data (Table 1A). 

Percentage foodborne: 8% of the total cases were considered to be food-borne 

which is the average of the range suggested by a recent expert study (5%-11%) 

[5]. 

Case fatality: A case fatality rate of 0.4% was estimated by taking into account 

the age of acute hepatitis A patients in Greece and the case fatality rates for 

different age groups as presented in the HCIDC website [10]. 

Disability weight: A disability weight of 0.5 was selected for cases of acute 

hepatitis A [121]. Reported an underreported cases where assumed to have the 

same severity. 

Duration of illness: The duration of acute cases of hepatitis A is considered to be 

9.5 days for both reported and underreported cases according to the average 

duration of hospitalizations in EU countries for which information could be found 

in the European Health For All Database (HFA-DB) (Table 9A).  

Under-reporting: An under-reporting factor of 2 is possible based on the 

seriousness of the disease [3] though it can be as high as 9.1 [19]. We set the 

most likely value for under-reporting at the middle of this range.   

 

DISEASES DUE TO MIXED ILL-DEFINED CAUSES 

Intestinal infections due to other specified microorganism 

Reported cases: Based on NSSG data (ICD-9 codes 007, 008; BTL code 015) 

(Table 1A). 

Percentage foodborne: 36% based on the relative frequency of foodborne 

transmission for known pathogens [3]. In theory looking at the microorganisms 

included in this category (Table 10A) and at the percentages foodborne 

mentioned for some of these in literature this figure may vary between 1 and 

70%. 

Case fatality: To estimate mortality due to this category of diseases data for 

Greece from the WHO Mortality Database were used [11]. According to this 
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database mortality is very low for this particular ICD code ranging between 0 and 

1 cases per year for the whole country population. The upper limit was considered 

more realistic although it is still likely to result in under-estimating of the real 

situation since the quality of data in this particular source has been mentioned to 

be low [122]. Given the very generic nature of this category assuming a case-

fatality rate is not possible. 

Disability weight: Since the reported cases correspond to patients that were 

hospitalized, a class 3 disability weight of 0.4 was assigned [45]. For the under-

reported cases a class 1 disability weight of 0.067 was assigned [24]. 

Duration of illness: The average hospitalization time for these diseases in Greece 

(3.84 days) was considered [9]. For the under-reported cases the duration of 

illness before visiting a GP for Norovirus was considered (3.8 days) [24]. 

Under-reporting: It was estimated by multiplying two separate under-reporting 

factors: the first underreporting factor covers the underreporting of 

gastroenteritis related illnesses between hospitalizations (NSSG data [9]) and 

visits to physicians (HCIDC data (S. Bonovas, T. Panagiotopoulos, E. Triantafillou, 

pers. comm.) and the second one is used to cover the underreporting between 

visits to physicians for gastroenteritis and cases in the community [29]. In this 

way four different underreporting factors were estimated for the period 2006-

2003. For the rest of the years for which no information was available to estimate 

the first underreporting factor, the average of the estimated underreporting 

factors for the period 2005-2003 was used.  In theory these under-reporting 

factors could be anywhere between 2 and 1562 based on what is mentioned 

about the underreporting of some of the pathogens included in this category 

(Table 10A).      

 

Ill-defined intestinal infections 

Reported cases: Based on NSSG data (ICD-9 code 009; BTL code 016) (Table 

1A). 

Percentage foodborne: A value of 36% was selected for foodborne transmission 

as  in cases of acute gastroenteritis due to unknown etiology [3]. Given the fact 

that the nature of microorganisms in this category is not known this percentage 

could range between 1 and 100%.  

Case fatality: The mortality rate was considered to be 1 case per year for the 

whole country population based again on the WHO Mortality Database [11] as in 

the previous item. 
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more realistic although it is still likely to result in under-estimating of the real 

situation since the quality of data in this particular source has been mentioned to 

be low [122]. Given the very generic nature of this category assuming a case-

fatality rate is not possible. 

Disability weight: Since the reported cases correspond to patients that were 

hospitalized, a class 3 disability weight of 0.4 was assigned [45]. For the under-

reported cases a class 1 disability weight of 0.067 was assigned [24]. 
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Disability weight: Since the reported cases correspond to patients that were 

hospitalized a class 3 disability weight of 0.4 was assigned [45]. For the under-

reported cases a class 1 disability weight of 0.067 was assigned [24]. 

Duration of illness: The average hospitalization time for these diseases in Greece 

(3 days) was considered [9]. For the under-reported cases the duration of illness 

before visiting a GP for Norovirus was considered (3.8 days) [24]. 

Under-reporting: The same under-reporting rate as for the previous category was 

assumed. Nonetheless, the range of underreporting can vary a lot in theory given 

what we have so far observed regarding the range of under-reporting factors for 

foodborne pathogens (2-1562). 
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78 
 

Disability weight: Since the reported cases correspond to patients that were 

hospitalized a class 3 disability weight of 0.4 was assigned [45]. For the under-

reported cases a class 1 disability weight of 0.067 was assigned [24]. 

Duration of illness: The average hospitalization time for these diseases in Greece 

(3 days) was considered [9]. For the under-reported cases the duration of illness 

before visiting a GP for Norovirus was considered (3.8 days) [24]. 

Under-reporting: The same under-reporting rate as for the previous category was 

assumed. Nonetheless, the range of underreporting can vary a lot in theory given 

what we have so far observed regarding the range of under-reporting factors for 

foodborne pathogens (2-1562). 
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Table 7A. Number of births during the period 1996-2006 and cases of 

toxoplasmosis based on the percentage of seronegative women of reproductive 

age (~70%), the incidence of primary infection among pregnant women (0.51%) 

and the maternofetal transmission rate (19.4%) [16, 98, 100] 

Year Pregnancies/year Cases of toxoplasmosis 

1996 100718 70 

1997 102038 71 

1998 100894 70 

1999 100643 70 

2000 103274 72 

2001 102282 71 

2002 103569 72 

2003 104420 72 

2004 105655 73 

2005 107545 75 

2006 112042 78 

 

 

Table 8A. Possible outcomes of congenital toxoplasmosis, incidence among 

patients, duration of illness and disability weights. The duration of illness has 

been adjusted based on the life expectancy of the Greek population. Source: 

Havelaar et al. [36] 

 Incidence 

(%) 

Disability 

weights 

Duration 

(years) 

Fetal loss  3 1 78.2 

Clinical symptoms in the first year 

of life 
   

Chorioretinitis 14 0.17 78.2 

Intracranial calcification 11.4 0.01 78.2 

Hydrocephalus 1.9 0.36 78.2 

CNS abnormalities* 2.7 0.36 78.2 

Neonatal death 0.75 1 78.2 

Asymptomatic at birth,  

chorioretinitis later in life 
16.9 0.08 68.2 

*Includes abnormalities of the CNS that lead to neurological deficiencies, that is 

psychomotor or other neurological deficiencies, convulsions and mental 

retardation. 
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Table 10A. Microorganisms included in BTL code “015 – Intestinal infections due 

to other specified microorganism accompanied by the percentage foodborne and 

under-reported rates found for each species in literature 

Disease (microorganism) Percentage 

foodborne 

Under-reporting  

factor 

Protozoal infections   

Balantidium coli - ≥10 [91] 

Giardia lamblia 5-30% [5] ≥10 [91] 

Coccidiosis (Isospora belli, 

Isospora hominis) 

- ≥10 [91] 

Trichomoniasis  0 (not foodborne) - 

Other intestinal diseases due to 

protozoa 

- ≥10 [91] 

Undefined protozoal 

diarrhea/dysentery 

- ≥10 [91] 

Intestinal infections   

E. coli 30-70 [3] 38 [3] 

Arizona group of paracolon bacilli - - 

Aerobacter aerogenes - - 

Proteus mirabilis, P. morganii - - 

Table 9A. Average duration of acute hepatitis A 

based on data regarding the average length of stay in 

hospitals for 8 EU countries in 2006 according to the 

HFA-DB [123] 

Country Duration of illness 

Czech Republic 16.1 

Austria 6.9 

Slovenia 6.1 

Cyprus 7.0 

Croatia 12.7 

Denmark 5.5 

Finland 6.6 

Slovakia 15.2 

Average 9.5 
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Other defined microorganisms 

(staphylococcal enterocolitis) 

- - 

Microbial enteritis (undefined) - - 

Enteritis due to specified virus 

(adenovirus, enterovirus) 

6% - 10% based on 

what is known for 

Enterovirus [5] and 

Astrovirus/Adenovirus 

[18] 

 721.3 (for 

astrovirus) [29] 

Other microorganisms that 

cannot be classified elsewhere 

(viral gastroenteritis and 

enteritis) 

1-40% [5] (based on 

what is known for 

Norovirus and 

Rotavirus) 

21.5-1562 (based 

on data for 

Norovirus and 

Rotavirus) [29, 60] 
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Abstract 

To establish a link between governmental food safety control and operational food safety 

management, the concepts of the Appropriate Level of Protection (ALOP) and the Food 

Safety Objective (FSO) have been suggested by international governmental bodies as a 

means for competent authorities to make food safety control transparent and quantifiable. 

The purpose of this study was to investigate how the concepts of ALOP and FSO could be 

practically linked using currently available data. As a case study, the risk of severe 

listeriosis due to consumption of deli meat products in the Netherlands was taken. The link 

between the concepts was explored following a “top-down” approach, using 

epidemiological country data as the starting point, and following a “bottom-up” approach, 

using data on the prevalence and concentration of the pathogen at retail as the starting 

point. For the top-down approach, the mean estimated value derived for ALOP was 3.2 

cases per million inhabitants per year due to deli meats (95% CrI: 1.1-6.6). For the 

bottom-up approach, mean ALOP values ranged considerably, 12-44 cases per million 

inhabitants per year due to deli meats (with 95% CrI ranging from 5.2 to 122), depending 

on the combination of input parameters used in the risk assessment model. The level of 

detail considered in the stochastic models applied considerably influenced the ALOP and 

FSO estimates. Models based on both approaches however were able to describe the link 

between ALOP and FSO and our results showed that meaningful estimations are feasible, 

although interpretations need to be made with care. 

 

 

  

105 
 

1. Introduction 

Foodborne diseases are recognized as a cause of morbidity and mortality worldwide. For 

developed countries it has been stated that up to one fourth [1, 2] or even one third [3] 

of the population is affected by foodborne illness each year. Thus managing food safety is 

an issue of fundamental public health concern. The globalization of the food market has 

made this problem even more intricate and achieving a safe food supply poses major 

challenges for national food safety authorities [4] whose key responsibility is to articulate 

the level of control that they expect the food industry to achieve. To this end, competent 

authorities commonly use food safety metrics in the form of limits or criteria for 

microbiological contaminations in food [5]. Until recently, these metrics have often been 

based on experience of food production and processing, research and expert opinions of 

what was considered achievable in relation to the systems/practices operationally available 

to ensure food safety (GHP, GMP, HACCP) [6]. However, such metrics based on the 

capabilities of the food production system have been very difficult to directly link to the 

level of public health protection achieved by their implementation [7]. In the past two 

decades the risk analysis framework as laid down by the Codex Alimentarius [8] and recent 

advances in this area have made this link increasingly possible [5] and legally required 

[9]. While a clear connection between government policy and a reduction in foodborne 

illness would be required [10], to date this still is difficult to achieve in practice. 

To establish a link between public health outcomes and metrics in the food chain, the 

concepts of the Appropriate Level of Protection (ALOP) and the Food Safety Objective 

(FSO) have been proposed [11, 12]. The ALOP, introduced in the Agreement on Sanitary 

and Phytosanitary Measures (SPS Agreement) of the World Trade Organization (WTO), 

represents a country’s currently achieved public health status in relation to food safety [6] 

and is defined as: “the level of protection deemed appropriate by the Member establishing 

a sanitary or phytosanitary measure to protect human, animal and plant life or health 

within its territory” [13]. The FSO, introduced at a later stage [12] to translate the ALOP 

into a benchmark in the food chain that could be communicated and managed by the food 

industry, is currently defined as: “the maximum frequency and/or concentration of a 

hazard in food at the time of consumption that provides or contributes to the appropriate 

level of protection (ALOP)” [6, 14, 15]. Given the fact that the FSO is not always verifiable 

as a regulatory standard, as it applies at the moment of consumption, the concepts of the 

Performance Objective (PO) and Performance criterion (PC) were created to complement 

the ALOP and FSO, providing targets for operational food safety management earlier in 

the food chain [16]. By their very definition all these concepts provide a linkage between 

government policy and benchmarks in the food chain and thus are very much desirable 

for making food safety management transparent and quantifiable [17]. The establishment 
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of both ALOP and FSO values is a societal decision and the prerogative of competent 

authorities. Yet, to date, there is no country that deploys ALOPs and FSOs to inform 

operational food safety management. An important reason for this may be the difficulty 

for governments to set clear public health targets in the form of ALOPs and link them to 

FSOs. It seems that, despite their many strengths, there is still no uniform agreement with 

regards to their implementation [18].  

From a legal point of view, a consistent approach should be in place for setting these kinds 

of metrics [19]. While such an approach is not yet available, a few documents have been 

developed for this purpose through a joint expert consultation of the World Health 

Organization (WHO) and the Food and Agricultural Organization (FAO) [20-23]. Several 

case-studies already exist in literature considering different aspects of working with ALOP 

and FSO [7, 24-28]. However, the practical interpretation of the definitions of the concepts 

and the selection of units to express them are issues that are not always clear [17]. 

Clearly, practical examples of real case-studies are needed in these areas to facilitate the 

use of the concepts. 

The purpose of this study was to investigate how the utilization of the ALOP/FSO concepts 

could be approached by competent authorities and to develop a practical example for this, 

i.e. the risk of severe listeriosis due to the consumption of deli meat products (cooked 

ready to eat meat products) in the Netherlands. In this example, presented for the first 

time in the 7th International Conference on Predictive Modeling in Foods [29] the two main 

approaches suggested for establishing this link between the concepts have been followed 

[5]. One approach was based on analysis of public health data and epidemiological surveys 

(from now on referred to as the top-down approach). The second approach was based on 

data related to the level and/or frequency of Listeria monocytogenes in deli meat which 

through a dose-response model are turned into disease incidence estimates (from now on 

referred to as the bottom-up approach). Our aims in this practical case study were 1) to 

test the feasibility of both approaches when using currently available and well documented 

work on this topic, 2) to compare their outcomes, 3) to discuss the advantages and 

disadvantages of each approach and 4) to pinpoint gaps in existing data that are needed 

to provide these estimates for deli meat products in the international food chain. 

Considering that the setting of the ALOP/FSO concepts is the responsibility of governments 

[12], we would like to emphasize that this is an exploratory study on the operationalization 

of the concepts from a risk assessor’s/ risk manager’s perspective, specific to the Dutch 

situation and that the final interpretation and setting of the benchmarks would still fall 

upon the shoulders of national policy makers.  
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2. Materials and methods 

2.1 Top-down approach 

2.1.1 Model description 

The status quo of public health protection in relation to severe listeriosis in the Netherlands 

was the starting point of this approach as the ALOP has been suggested to be 

representative of “the current public health status in relation to food safety” [6]. A 

stochastic model was built to convert epidemiological data into an ALOP, from which the 

FSO was derived through a series of estimation steps depicted in Figure 1. Given that 

dose-response models available for Listeria are based on a separate estimation of cases 

for the healthy and the susceptible population or YOPI (Young, Old, Pregnant, 

Immunocompromised), it was necessary to introduce two intermediate steps in the 

estimation of the link: the Level of Protection or LOPi, that is the number of cases of 

listeriosis occurring in each risk group and Safety Objective or SOi, that is the 

concentration of microorganisms responsible for the cases within each risk group. A 

detailed account of the parameters of the model is provided in Table 1 and a description 

of each estimation step is given below.  

Step 1 – Reported cases. Annually reported cases of severe listeriosis (hospitalizations) in 

the Netherlands were collected from the national statistical service (Centraal Bureau voor 

de Statistiek, CBS) for the period 1998-2006 [30] and from Prismant for the period 2007-

2009 [31]. The reported cases were expressed per million inhabitants based on population 

statistics for the Netherlands [30]. The mean and standard deviation of these data were 

1.59 and 0.40 reported cases per million inhabitants per year, respectively, and these 

were used to construct a normal distribution that was considered representative of the 

variability associated with the annual reported incidence of the disease [32].  

Step 2 – Total cases per million inhabitants (ALOP). The total number of cases in the 

population was derived from the reported number of cases after correcting for under-

notification, under-reporting and misdiagnosis. Comparison of the data from CBS (2009) 

and Prismant (2009) with data on active surveillance of infections due to Listeria 

monocytogenes obtained from the National Institute for Public Health and the Environment 

(Rijksinstituut voor Volksgezondheid en Milieu, RIVM) [33] provided a range of under-

notification factors for the period 2005-2009. The mean (2.5) and standard deviation 

(0.63) of these factors were used to build a normal distribution to cover for under-

notification [32]. Uncertainty due to under-reporting of the illness was assumed to be 

represented by a beta Pert distribution with minimum and maximum values being based 

on literature [2, 34].  
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of both ALOP and FSO values is a societal decision and the prerogative of competent 

authorities. Yet, to date, there is no country that deploys ALOPs and FSOs to inform 

operational food safety management. An important reason for this may be the difficulty 

for governments to set clear public health targets in the form of ALOPs and link them to 

FSOs. It seems that, despite their many strengths, there is still no uniform agreement with 

regards to their implementation [18].  

From a legal point of view, a consistent approach should be in place for setting these kinds 

of metrics [19]. While such an approach is not yet available, a few documents have been 

developed for this purpose through a joint expert consultation of the World Health 

Organization (WHO) and the Food and Agricultural Organization (FAO) [20-23]. Several 

case-studies already exist in literature considering different aspects of working with ALOP 

and FSO [7, 24-28]. However, the practical interpretation of the definitions of the concepts 

and the selection of units to express them are issues that are not always clear [17]. 

Clearly, practical examples of real case-studies are needed in these areas to facilitate the 

use of the concepts. 

The purpose of this study was to investigate how the utilization of the ALOP/FSO concepts 

could be approached by competent authorities and to develop a practical example for this, 

i.e. the risk of severe listeriosis due to the consumption of deli meat products (cooked 

ready to eat meat products) in the Netherlands. In this example, presented for the first 

time in the 7th International Conference on Predictive Modeling in Foods [29] the two main 

approaches suggested for establishing this link between the concepts have been followed 

[5]. One approach was based on analysis of public health data and epidemiological surveys 

(from now on referred to as the top-down approach). The second approach was based on 

data related to the level and/or frequency of Listeria monocytogenes in deli meat which 

through a dose-response model are turned into disease incidence estimates (from now on 

referred to as the bottom-up approach). Our aims in this practical case study were 1) to 

test the feasibility of both approaches when using currently available and well documented 

work on this topic, 2) to compare their outcomes, 3) to discuss the advantages and 

disadvantages of each approach and 4) to pinpoint gaps in existing data that are needed 

to provide these estimates for deli meat products in the international food chain. 

Considering that the setting of the ALOP/FSO concepts is the responsibility of governments 

[12], we would like to emphasize that this is an exploratory study on the operationalization 

of the concepts from a risk assessor’s/ risk manager’s perspective, specific to the Dutch 

situation and that the final interpretation and setting of the benchmarks would still fall 

upon the shoulders of national policy makers.  
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2. Materials and methods 

2.1 Top-down approach 

2.1.1 Model description 

The status quo of public health protection in relation to severe listeriosis in the Netherlands 

was the starting point of this approach as the ALOP has been suggested to be 

representative of “the current public health status in relation to food safety” [6]. A 

stochastic model was built to convert epidemiological data into an ALOP, from which the 

FSO was derived through a series of estimation steps depicted in Figure 1. Given that 

dose-response models available for Listeria are based on a separate estimation of cases 

for the healthy and the susceptible population or YOPI (Young, Old, Pregnant, 

Immunocompromised), it was necessary to introduce two intermediate steps in the 

estimation of the link: the Level of Protection or LOPi, that is the number of cases of 

listeriosis occurring in each risk group and Safety Objective or SOi, that is the 

concentration of microorganisms responsible for the cases within each risk group. A 

detailed account of the parameters of the model is provided in Table 1 and a description 

of each estimation step is given below.  

Step 1 – Reported cases. Annually reported cases of severe listeriosis (hospitalizations) in 

the Netherlands were collected from the national statistical service (Centraal Bureau voor 

de Statistiek, CBS) for the period 1998-2006 [30] and from Prismant for the period 2007-

2009 [31]. The reported cases were expressed per million inhabitants based on population 

statistics for the Netherlands [30]. The mean and standard deviation of these data were 

1.59 and 0.40 reported cases per million inhabitants per year, respectively, and these 

were used to construct a normal distribution that was considered representative of the 

variability associated with the annual reported incidence of the disease [32].  

Step 2 – Total cases per million inhabitants (ALOP). The total number of cases in the 

population was derived from the reported number of cases after correcting for under-

notification, under-reporting and misdiagnosis. Comparison of the data from CBS (2009) 

and Prismant (2009) with data on active surveillance of infections due to Listeria 

monocytogenes obtained from the National Institute for Public Health and the Environment 

(Rijksinstituut voor Volksgezondheid en Milieu, RIVM) [33] provided a range of under-

notification factors for the period 2005-2009. The mean (2.5) and standard deviation 

(0.63) of these factors were used to build a normal distribution to cover for under-

notification [32]. Uncertainty due to under-reporting of the illness was assumed to be 

represented by a beta Pert distribution with minimum and maximum values being based 

on literature [2, 34].  
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Figure 1. Outline of the estimation steps in the top – down approach model. 

Epidemiological data in the form of reported cases of severe listeriosis are the starting 

point for the estimation of the ALOP and the FSO. 
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Step 3 – Total foodborne cases per million inhabitants (ALOPfood). The ALOP estimated 

through the previous step was then attributed to food [17]. All of the cases were 

considered to be due to food since in a recent Dutch nationwide study, listeriosis was 

presented as an exclusively foodborne disease [38]. 

 

Step 4 – Total cases due to deli meats per million inhabitants (ALOPdeli meats). Only a part 

of the total number of foodborne cases of listeriosis is due to the consumption of deli 

meats. To estimate the size of the relevant part, a food attribution fraction for this 

particular product group needs to be established, which is subsequently multiplied with 

the ALOPfood [17]. For the purpose of our estimates we considered that the fraction of 

foodborne cases of listeriosis due to the consumption of deli meats can be described by a 

Pert distribution with a most likely value of 0.40 [39]. The minimum (0.27) and maximum 

(0.60) values of the Pert distribution were based on lowest and highest possible estimates 

for this factor based on several food product attribution studies [39-42].  

 

Step 5 – Level of Protection for the susceptible and healthy group. The estimated ALOPdeli 

meats was subsequently allocated over the susceptible and healthy population to estimate 

a so-called Level of Protection (LOP) for the healthy population (LOPhealthy) and for the 

susceptible population (LOPYOPI). The LOP signifies the number of cases per million people 

belonging to each specific risk group. To describe the uncertainty of the cases occurring in 

the each group, Pert distributions were used as multipliers (% cases in YOPI, % cases in 

healthy). The minimum and maximum values of these distributions were based on the 

FAO/WHO risk assessment of Listeria monocytogenes [43] which considers that only 2-

20% of the cases occurs in the healthy population and 80-98% of the cases affects the 

susceptible population. Based on the observations of Doorduyn et al. that only 5-10% of 

the total cases of listeriosis in the Netherlands occur in individuals healthy prior to infection 

[44], 7.5% was selected as the most likely value for the size of this fraction for the healthy 

group and 92.5% for the susceptible group. The proportion of people in the Dutch 

population belonging in the susceptible group or the so called “YOPI” group was considered 

to be the average of CBS data for the period 1998-2007 regarding the number of 

pregnancies, people older than 65 years of age and immunocompromised younger than 

65 years in the Netherlands [30]. The number of immunocompromised people has been 

calculated based on CBS hospitalization data due to conditions that have been reported to 

predispose to listeriosis [39, 45]. This is expected to be a rather conservative estimate of 

the proportion of YOPI in the Dutch population, since among patients of listeriosis more 

than one predisposing condition is possible [45]. 
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Step 3 – Total foodborne cases per million inhabitants (ALOPfood). The ALOP estimated 

through the previous step was then attributed to food [17]. All of the cases were 

considered to be due to food since in a recent Dutch nationwide study, listeriosis was 
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the total cases of listeriosis in the Netherlands occur in individuals healthy prior to infection 

[44], 7.5% was selected as the most likely value for the size of this fraction for the healthy 

group and 92.5% for the susceptible group. The proportion of people in the Dutch 

population belonging in the susceptible group or the so called “YOPI” group was considered 

to be the average of CBS data for the period 1998-2007 regarding the number of 

pregnancies, people older than 65 years of age and immunocompromised younger than 

65 years in the Netherlands [30]. The number of immunocompromised people has been 

calculated based on CBS hospitalization data due to conditions that have been reported to 

predispose to listeriosis [39, 45]. This is expected to be a rather conservative estimate of 

the proportion of YOPI in the Dutch population, since among patients of listeriosis more 

than one predisposing condition is possible [45]. 
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Step 6 – Safety Objectives for the susceptible and the healthy group. The LOPs for the 

healthy and the susceptible population were used to estimate a so-called Safety Objective 

(SO) for each risk group. An SO was defined here as the concentration of microorganisms 

at the time of consumption that provides for or contributes to the LOP for a particular 

population group. To estimate SO values, the exponential dose - response model of 

FAO/WHO risk assessment was used [43] taking into account the number of contaminated 

servings consumed as follows: 

D))r((P S LOP iretaili  exp1106                                                                   (1) 

where: 

LOPi = the number of cases of severe listeriosis per million people in each risk group i 

i = the risk group, i.e. the healthy or the susceptible part of the total population 

S = the number of servings per person per year 

Pretail = the prevalence of Listeria in deli meats at the point of retail 

ri = the probability of a single microorganism causing listeriosis for each risk group i 

D = the dose consumed (number of cells per serving) 

 

Given that iSO10 M D  , where M is the mass per serving and SOi is the logarithmic 

concentration of microorganisms at consumption, Eq. 1 becomes:  

))Mr((P S LOP iSO
iretaili 10exp1106                                                          (2) 

 

Step 7 – Food Safety Objective. As defined by Codex Alimentarius, the FSO may express 

a concentration, a prevalence, or a combination of both (Codex, 2007). The FSO was 

estimated here by selecting the strictest of the two SO values derived from the estimations 

of step 6 for the healthy and the susceptible population group and multiplying it with the 

prevalence at retail. The decision to estimate the FSO as a product of the prevalence and 

the concentration at consumption concurs with a previous study where this approach was 

suggested for pathogens with a prevalence lower than 100% [17] and recommendations 

of other authors to explicitly include prevalence when expressing an FSO [25, 46]. 
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2.2 Bottom-up approach 

2.2.1 Model description 

The bottom-up approach started with the occurrence of Listeria monocytogenes in the food 

chain prior to consumption to derive the population-level impact on public health. A 

stochastic risk assessment model was built to convert the available data on prevalence 

and concentration of the pathogen in deli meats at retail into an ALOP value through a 

series of estimation steps that are depicted in Figure 2. A detailed account of the 

parameters of the model is provided in Table 2. A description of each estimation step is 

given below. 

Figure 2. Outline of the estimation steps in the bottom-up  approach model. The 

concentration of Listeria at the retail level is the starting point for the estimation of the 

FSO and the ALOP. 

 

Step 1 – Prevalence and concentration at retail. Data on the prevalence of Listeria 

monocytogenes in cooked ready-to-eat meat products on the Dutch retail market were 

available for the period 2005-2009 [47-51]. These data refer to 3520 cooked ready-to-eat 

meat products (deli meat) which were tested for the presence/absence of the pathogen in 

samples of 25g each. Out of this total number of products, 49 were found positive for the 

pathogen and samples were enumerated to assess whether the concentration exceeded 

the  prevailing  legal  requirements of < 100 cfu/g [52]. Unfortunately,  the  enumeration 
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chain prior to consumption to derive the population-level impact on public health. A 

stochastic risk assessment model was built to convert the available data on prevalence 

and concentration of the pathogen in deli meats at retail into an ALOP value through a 

series of estimation steps that are depicted in Figure 2. A detailed account of the 

parameters of the model is provided in Table 2. A description of each estimation step is 

given below. 

Figure 2. Outline of the estimation steps in the bottom-up  approach model. The 

concentration of Listeria at the retail level is the starting point for the estimation of the 

FSO and the ALOP. 
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monocytogenes in cooked ready-to-eat meat products on the Dutch retail market were 

available for the period 2005-2009 [47-51]. These data refer to 3520 cooked ready-to-eat 

meat products (deli meat) which were tested for the presence/absence of the pathogen in 

samples of 25g each. Out of this total number of products, 49 were found positive for the 

pathogen and samples were enumerated to assess whether the concentration exceeded 
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values are not available from public sources. Since the specific enumeration data for 

products found positive on the Dutch retail market were not available, data reported for 

the concentration of positive samples in the FDA/FSIS risk assessment that had been 

carried out at retail [53] as cited by others [54] were used.       

 

Step 2 – Concentration at consumption. From the retail concentration data, the 

concentration at consumption was estimated by using the FDA/FSIS (2003) approach: the 

refrigeration time at the consumer household was multiplied with the exponential growth 

rate value to estimate growth during storage and this was added to the concentration of 

the positive samples at retail. Regarding the storage time of deli meats in the Netherlands, 

we assumed that this parameter is described by a Pert distribution with a most likely value 

of 5, a minimum value of 0 and a maximum value of 15 days, as was done in a recent 

similar study in Australia [39]. The value for the exponential growth rate at any given 

temperature T (EGRT) was estimated using a baseline EGR at 5oC (EGR5) through the 

formula [53]: 

EGRT = [(T+1.18)/6.18]2 . EGR5.  

A normal distribution was used to describe the variation in refrigeration temperatures [55] 

which was truncated at 0 and 15oC, to cover a wide range of temperatures that was 

considered plausible for household refrigerators. We also assumed that cells of the 

pathogen would not show any lag phase but were already adjusted to the relevant food 

environment given their psychrotrophic nature and the storage of deli meats before they 

reach retail at temperatures relevant for growth [56]. This assumption is realistic for a 

retail-to-table risk assessment model like ours since the incorporation of a lag phase has 

been shown not to have a significant effect on the risk after the retail phase [57]. To be 

consistent with the model of FDA/FSIS (2003), the same temperature dependant 

restrictions for the maximum concentration (Cmax) of the pathogen were applied here, i.e. 

105, 106.5 and 108 cfu/g for <5, 5-7 and >7oC, respectively [53]. However, unlike the 

FDA/FSIS risk assessment we did not assume a correlation between the refrigeration time 

and the refrigeration temperature, because such a correlation is not well supported on the 

basis of a more recent study [58]. The FSO was estimated by multiplying the concentration 

at consumption with the prevalence at retail [17]. 

 

Step 3 – Dose at consumption. The dose at consumption was estimated by multiplying the 

concentration at consumption with the mass per serving. The mass per serving was 

considered to have a most likely value of 15 g based on different Dutch studies that 

suggested that this amount is a typical portion for processed meat [59-61]. Based on data 
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regarding the variation in serving size for different ready-to-eat meat products in the 

Netherlands this parameter was also found to range between 10 and 20 g [62]. Besides 

the range and the most likely value no other information could be found regarding the 

mass per serving and thus a non-parametric distribution (triangular) was selected to 

describe it [63] although for the same purpose a Pert would have been an equally suitable 

choice. To be consistent with the FAO/WHO dose response model we assumed that the 

maximum dose of Listeria monocytogenes consumed (Dmax in log cfu) is represented by a 

discrete uniform distribution with seven possible outcomes (7.5; 8.0; 8.5; 9.0; 9.5; 10.0; 

10.5) [43] although a continuous uniform would at first glance seem a more logical choice 

to describe the same uncertainty range.       

Step 4 – Level of Protection for the susceptible and the healthy group. To estimate the 

current levels of protection achieved for each population group, the simulated distribution 

of the dose at consumption was divided into 23 half log intervals (Dn) ranging from -1 to 

10.5 log CFU, following approaches used in other risk assessments [53, 64].  Each half log 

interval of the dose was used to estimate 23 intervals of LOPn through equation 1. Every 

LOPn interval was then multiplied by fn, being the frequency of each Dn interval. These 

calculations result in values for the number of cases of listeriosis per half log interval of 

the dose. These 23 intervals were algebraically added to estimate the LOP for each risk 

group within the population: 
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                                                           (3) 

The number of servings per person per year (S) was estimated by dividing the annual per 

capita consumption of deli meats with the mass per serving (M). In the absence of a more 

specific dataset, the annual per capita consumption of deli meats was estimated by 

multiplying the average daily per capita consumption of processed meat [35] with 365 and 

with the proportion of deli meats amongst processed meats based on the consumption 

patterns of young adults in the Netherlands [36, 37].  

Step 5 – Appropriate Level of Protection. To estimate the ALOP from the two LOPs, the 

fraction of each risk group within the population (%YOPI and %healthy) was taken into 

account as follows: 

ALOP = %YOPI x LOPYOPI + %healthy x LOPhealthy               

 

2.3 Baseline models and models with alternative combinations of input parameters  

Considering that including all the different input parameters in a stochastic form would 

make the models complex and not necessarily more correct [65], models were built in 
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their baseline version as simple as possible and alternative, more complex versions were 

then constructed that included the same parameters in a stochastic form (Table 3). For 

instance, while in the baseline versions the r values used for the healthy and the 

susceptible group were the median values of these parameters in the FAO/WHO dose-

response model for Listeria [43], all other possibilities for these parameters (5th and 95th 

percentile values) were considered in the more complex models. Following the same 

rationale, the parameters M, S were given fixed values in the baseline version and 

incorporated in a stochastic form in the alternative versions. To avoid errors in the 

calculations, all r- values were given 0 and 1 as a lower and upper truncation value, 

respectively. For the same reason 0 was applied as a lower truncation limit in the 

distributions describing the number of reported cases and the under-notification factors. 

 

Table 3. Parameter combinations used in the top down and bottom up approach 

models 

Parameter  

combination 

Description Parameters 

Baseline r, M, S fixed  

 

rYOPI =1.06*10^-12 

rhealthy = 2.37*10^-14 

M = 15 g 

S = 315 

Alternative 1 r stochastic,  

M & S fixed  

 

rYOPI = RiskPert(5%,2.47*10^-13,1.06*10^-

12,95%,9.32*10^-12, RiskTruncate(0,1)) 

rhealthy = RiskPert(5%,3.55*10^-15,2.37*10^-

14,95%,2.7*10^-13, RiskTruncate(0,1)) 

M = 15 g 

S = 315 

Alternative 2 r fixed,  

M, S stochastic 

 

rYOPI =1.06*10^-12 

rhealthy = 2.37*10^-14 

M = RiskTriang(10,15,20) 

S = 4730/M 

Alternative 3 r, M, S 

stochastic 

 

rYOPI = RiskPert(5%,2.47*10^-13,1.06*10^-

12,95%,9.32*10^-12, RiskTruncate(0,1)) 

rhealthy = RiskPert(5%,3.55*10^-15,2.37*10^-

14,95%,2.7*10^-13, RiskTruncate(0,1)) 

M = RiskTriang(10,15,20) 

S = 4730/M 
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2.4 Simulation settings 

All calculations were made in Microsoft Excel using the @RISK 5.7 software (Palisade 

Corporation). For every combination of input parameters one simulation of one million 

iterations was performed by applying the Latin Hypercube technique using a Mersenne 

Twister random number generator in combination with a fixed seed value of 1 to allow our 

results to be reproduced by others and to enable comparisons between the different 

stochastic outcomes. Before that, 10 simulations of 100,000 iterations each were 

performed using the same random number generator with different seed values, in order 

to assure the stability of the outcome distributions (results not shown). 

 

3. Results and Discussion 

3.1. Appropriate Levels of Protection for deli meats 

The main results for the estimation of ALOPs related to deli meats by using the top-down 

or the bottom-up approach models and for the different combinations of input parameters 

considered in the two models can be seen in Figure 3. For the purpose of this study and 

given that the ALOP is an expression of public health related risk at population level that 

is to be established or communicated by governments, we have chosen to use “the number 

of cases per million people per year” as the unit of measure for the ALOP; this is in accord 

with earlier publications [64] and concurs with recommendations of ICMSF [15].  

 

Figure 3. ALOPs derived with the top-down and the bottom-up approach. To facilitate 

comparisons estimates are presented on a logarithmic scale on the y-axis. 
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2.4 Simulation settings 

All calculations were made in Microsoft Excel using the @RISK 5.7 software (Palisade 

Corporation). For every combination of input parameters one simulation of one million 

iterations was performed by applying the Latin Hypercube technique using a Mersenne 

Twister random number generator in combination with a fixed seed value of 1 to allow our 

results to be reproduced by others and to enable comparisons between the different 

stochastic outcomes. Before that, 10 simulations of 100,000 iterations each were 

performed using the same random number generator with different seed values, in order 

to assure the stability of the outcome distributions (results not shown). 
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Overall, mean estimates were different between the two approaches, though for some of 

the different input parameter combinations estimates were almost the same with the 

bottom-up approach. In particular, the baseline and alternative 2 yielded similar results 

(mean values of 11.8 and 12.2 cases per million inhabitants per year, respectively) as was 

the case for alternatives 1 and 3 (mean values of 43.4 and 44.2 cases per million 

inhabitants per year, respectively). The difference between the two sets of models related 

mainly to the use of the r parameter. When the r parameter of the exponential dose-

response model was incorporated in a stochastic form (alternatives 1 and 3), significantly 

higher values for ALOP were obtained but also the credibility intervals calculated were 

much wider. The mean estimate obtained with the top-down approach (3.2 cases per 

million people per year) was found to be significantly lower than all mean estimates 

obtained with the various input parameter combinations used in the bottom-up approach 

(ranging from 11.8 to 44.2 cases per million people per year). This difference, at least a 

factor of 4 between the estimates of the top-down and the bottom-up approach model 

was expected since risk estimates obtained through risk assessment are not always 

precisely in line with epidemiological estimates. For instance in a recently published risk 

assessment of Listeria in cold-smoked salmon in France the annual number of cases due 

to this food item was found to be 307 (95% CrI: 10-12,453) [66] while the total annual 

number of cases of foodborne listeriosis in the country in another study based on 

epidemiological data was estimated to be 304 [67]. For Australia or the US though such 

risk assessment-based estimates for Listeria in ready to eat meats were found to be even 

better aligned with epidemiological estimates [39]. However, in the case of ALOPs it is not 

recommended to attempt comparisons using only the mean values of the output 

distributions but to also include the degree of confidence in the risk estimate [11]. The 

degree of confidence to be set in the ALOP estimate is left to the discretion of the risk 

manager with 95% often used [11] and given that the concept could be associated with 

the articulation of the acceptance of a maximum incidence of risk [46], it is likely that the 

upper percentiles such as the 95th, the 97.5th or the 99th percentile are most useful 

comparisons informing risk manager’s decisions. For the several upper percentiles shown 

in Figure 3, the differences between outcomes are smaller between the top-down approach 

and the baseline and alternative 2 of the bottom-up approach than when comparing the 

mean values.  

A sensitivity analysis of the ALOP output distributions obtained with both approaches using 

alternative input parameter combination 3 is provided in Figure 4 and ranks the impact of 

the variance in all possible stochastic input variables on ALOP estimates. Correlation 

coefficients between inputs and outputs showed that the under-notification factor (0.57), 

the reported cases per million inhabitants (0.56), the misdiagnosis and under-reporting 

factor (0.42) and the attribution to the deli meats product group (0.33)  
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Figure 4. Ranking of the impact of the different stochastic input distributions using 

correlation coefficients (Spearman Rank) on the estimated ALOP using model 3 following 

the top-down approach (a) and the bottom-up approach (b). 
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other variables such the prevalence at retail (0.18), the mass per serving (-0.17) and the 

r parameter for the healthy population (0.14). The mass per serving was found to be 

negatively correlated because of its negative influence on the number of servings that has 

been estimated by dividing the per capita consumption with the mass per serving. Because 

of this, although the mass per serving is positively correlated for the dose during exposure 

assessment, in the risk characterization part its impact on the ALOP is negative. The fact 

that the r parameter for the YOPI has a substantial impact on the ALOP does not come as 
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Overall, mean estimates were different between the two approaches, though for some of 

the different input parameter combinations estimates were almost the same with the 

bottom-up approach. In particular, the baseline and alternative 2 yielded similar results 

(mean values of 11.8 and 12.2 cases per million inhabitants per year, respectively) as was 

the case for alternatives 1 and 3 (mean values of 43.4 and 44.2 cases per million 

inhabitants per year, respectively). The difference between the two sets of models related 

mainly to the use of the r parameter. When the r parameter of the exponential dose-

response model was incorporated in a stochastic form (alternatives 1 and 3), significantly 

higher values for ALOP were obtained but also the credibility intervals calculated were 

much wider. The mean estimate obtained with the top-down approach (3.2 cases per 

million people per year) was found to be significantly lower than all mean estimates 

obtained with the various input parameter combinations used in the bottom-up approach 

(ranging from 11.8 to 44.2 cases per million people per year). This difference, at least a 

factor of 4 between the estimates of the top-down and the bottom-up approach model 

was expected since risk estimates obtained through risk assessment are not always 

precisely in line with epidemiological estimates. For instance in a recently published risk 

assessment of Listeria in cold-smoked salmon in France the annual number of cases due 

to this food item was found to be 307 (95% CrI: 10-12,453) [66] while the total annual 

number of cases of foodborne listeriosis in the country in another study based on 

epidemiological data was estimated to be 304 [67]. For Australia or the US though such 

risk assessment-based estimates for Listeria in ready to eat meats were found to be even 

better aligned with epidemiological estimates [39]. However, in the case of ALOPs it is not 

recommended to attempt comparisons using only the mean values of the output 

distributions but to also include the degree of confidence in the risk estimate [11]. The 

degree of confidence to be set in the ALOP estimate is left to the discretion of the risk 

manager with 95% often used [11] and given that the concept could be associated with 

the articulation of the acceptance of a maximum incidence of risk [46], it is likely that the 

upper percentiles such as the 95th, the 97.5th or the 99th percentile are most useful 

comparisons informing risk manager’s decisions. For the several upper percentiles shown 

in Figure 3, the differences between outcomes are smaller between the top-down approach 

and the baseline and alternative 2 of the bottom-up approach than when comparing the 

mean values.  

A sensitivity analysis of the ALOP output distributions obtained with both approaches using 

alternative input parameter combination 3 is provided in Figure 4 and ranks the impact of 

the variance in all possible stochastic input variables on ALOP estimates. Correlation 

coefficients between inputs and outputs showed that the under-notification factor (0.57), 

the reported cases per million inhabitants (0.56), the misdiagnosis and under-reporting 

factor (0.42) and the attribution to the deli meats product group (0.33)  

121 
 

Figure 4. Ranking of the impact of the different stochastic input distributions using 

correlation coefficients (Spearman Rank) on the estimated ALOP using model 3 following 

the top-down approach (a) and the bottom-up approach (b). 

 

all are variables whose variance affect the ALOP significantly when estimated using the 

top-down approach. When using the same input parameter combination following the 

bottom-up approach, the variable with the greatest influence on the estimated ALOP is the 

r parameter of the dose response model for the YOPI (0.95) as compared to the impact of 

other variables such the prevalence at retail (0.18), the mass per serving (-0.17) and the 

r parameter for the healthy population (0.14). The mass per serving was found to be 

negatively correlated because of its negative influence on the number of servings that has 

been estimated by dividing the per capita consumption with the mass per serving. Because 

of this, although the mass per serving is positively correlated for the dose during exposure 

assessment, in the risk characterization part its impact on the ALOP is negative. The fact 

that the r parameter for the YOPI has a substantial impact on the ALOP does not come as 

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Under-notification factor

Reported cases per million inhabitants

Misdiagnosis and underreporting factor

Attribution to deli meats

Coefficient Value

a

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

r YOPI

Prevalence at retail

Mass per serving

r healthy

Coefficient Value

b

121

The Application of the Appropriate Level of Protection (ALOP) and Food Safety  Objective (FSO) 
concepts in food safety management, using Listeria monocytogenes in deli meats as a case study

3



122 
 

a surprise, since considerable uncertainty is associated with this variable (90% CrI: 

2.47.10-13-9.32.10-12). 

 

3.2. Food Safety Objectives 

The main results for the FSOs estimated with the top-down and the bottom-up approach 

models can be seen in Figure 5. The estimated FSOs were the same for all combinations 

of input parameters used in the bottom-up approach, with a mean value of -0.82 (95% 

CrI: -3.2 to 5.6), since the inputs were the same for this model. In the top-down approach, 

the FSOs were the same for the baseline and alternative 2, with a mean estimate of 3.4 

log CFU per g (95% CrI: 2.8-3.8 log CFU per g). For alternatives 1 and 3, the FSO 

estimates were also the same, with a mean of 2.7 log CFU per g (95% CrI: 2.0-3.5 log 

CFU per g). As in the case of the ALOPs, comparisons between different FSOs could also 

be made on the basis of upper percentiles [66]. Despite considerable differences when 

comparing the mean FSO values obtained with the two different approaches, in the case 

of the upper percentiles the differences observed were smaller with the FSO estimates 

coinciding at the 95th percentile, being around 4 log CFU per g. Smaller differences at the 

higher percentiles were anticipated since in the case of the bottom-up FSO distribution 

only the high percentiles contribute to the ALOP, while in the case of the top-down FSO 

distribution the higher percentiles relate to the maximum concentration of Listeria that 

can be responsible for the ALOP. Thus, based on the very definition of the FSO, the 

benchmark is expected to be based in the higher percentiles of these output distributions.  

 

Figure 5. Comparison of the FSOs derived with the top-down and the bottom-up 

approach. 
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It is worthwhile mentioning that although the estimated FSOs with this approach could 

vary for different input parameter combinations, the two estimated SO (step 6, Figure 1) 

were approximately the same for every combination of inputs used, with differences 

smaller than <0.15 log CFU. The reason for this was that the ratios rYOPI/rhealthy and 

LOPYOPI/LOPhealthy were in all cases such that they resulted in only small differences when 

estimating the SOYOPI and SOhealthy through equation 2. In theory, the SOYOPI and SOhealthy 

should also be the same as there is no particular reason for the concentrations of the 

pathogen consumed by the elderly to be any different than those of the healthy population. 

A sensitivity analysis of the FSO output distributions obtained with both approaches using 

alternative input parameter combination 3 is provided in Figure 6 to rank the impact of all 

possible stochastic inputs.  The variables that influence the FSO estimated with the top-

down approach are in declining order based on their correlation coefficients: the r 

parameter for the healthy (-0.57), the r parameter for the YOPI (-0.33), the under-

notification factor (0.31), the reported cases per million inhabitants (0.3), the percentage 

of cases amongst healthy (0.29), the misdiagnosis and under-reporting factor (0.23), the 

attribution to the deli meats product group (0.18) and the percentage of cases amongst 

YOPI (0.02). When using the same alternative input combination following the bottom-up 

approach, the variables found to be contributing to the variance of the FSO were in 

declining order: the exponential growth rate (0.63), the storage time (0.45), the 

temperature of household refrigerators (0.44), the concentration at retail (0.17) and the 

prevalence at retail (0.04). 
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a surprise, since considerable uncertainty is associated with this variable (90% CrI: 

2.47.10-13-9.32.10-12). 

 

3.2. Food Safety Objectives 
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Figure 5. Comparison of the FSOs derived with the top-down and the bottom-up 
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Figure 6. Ranking of the impact of the different stochastic input distributions in the 

estimated FSO with model 3 using correlation coefficients (Spearman Rank) following the 

top-down approach (a) and the bottom-up approach (b). 
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Overall, the bottom-up approach yielded ALOP values that were higher than the ones of 
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credible interval several orders of magnitude wider than the ones obtained with the top-

down approach (Figure 5, Table B of supplementary material). However results can still 

be comparable between the estimates for some of the input parameter combinations and 

also depending on the upper percentile that forms the basis for comparison. The 

introduction of more stochastic parameters in the place of point estimates was also found 

to lead to an increase in risk estimates (cases of listeriosis) using the bottom-up model, 

similar to the observations of other authors [68]. More specifically, by using a distribution 

instead of a point estimate for the r parameter (alternative input combination 1 and 3) 

considerably more cases were estimated compared to the baseline input combination. This 

difference was even more evident when attempting the same comparison on the basis of 

the higher percentiles. Evidently, the level of detail that is incorporated in risk assessment 

based models used to estimate the ALOP and FSO benchmarks is a point that needs to be 

further agreed upon by all relevant stakeholders, especially in view of the fact that most 
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of the factors that should be considered in the exposure assessment and risk 

characterization parts according to the guidelines of the Codex Alimentarius [8] can be 

characterized by considerable variability and uncertainty, which often dictates their 

incorporation in the form of stochastic inputs.     

The top-down and the bottom-up approach should ideally yield comparable results [69] 

but in practice this will not always be feasible, as comparability will depend on the level of 

detail included in the models and on the assumptions made. Moreover although we 

recommend the combined use of the two approaches to allow for the validation of the risk 

estimates in reality only one of the two should be used since “common approaches or 

consistent procedures” should be established and used by competent authorities when 

assessing risks and evaluating measures to achieve the ALOP [19]. Most importantly 

however to be able to compare ALOPs in different situations on an international or national 

level “sufficient common elements” should be in place to allow for such comparisons [19]. 

Considering that the bottom-up and top-down approach are based on different data sets, 

in practice only one of the two is likely to be selected for building in the ALOP/FSO 

benchmarks. 

 

3.4. Advantages and disadvantages of each approach for use in benchmarking   

Each of the two approaches developed in the current case study has its advantages and 

disadvantages and the selection of one over the other depends on the application context 

and the data available. Looking at our results, setting the benchmarks top-down in this 

particular case provides for an estimated ALOP that is as close to the real situation as 

possible (total number of cases of listeriosis in the country based on epidemiological data) 

and results in FSO values that are quite well aligned (Fig. 5). The credible intervals 

obtained with the top down approach were also narrower than the ones obtained with the 

bottom-up approach, given that there was less uncertainty and variability in the input 

data. Conversely, with the bottom-up approach there was considerable variation between 

ALOP estimates and significant uncertainty in the estimated FSOs, reflecting the variability 

and uncertainty of input data such as growth rate, storage time and temperature. In 

addition to the above, existing case law suggests that the ALOP should be the starting 

point of setting sanitary and phytosanitary (SPS) measures such as FSO since by using an 

SPS measure as a starting point, the ALOP would always be achieved which is clearly not 

the case [70]. Thus, considering all of the above, the top-down approach could be more a 

promising practice for setting ALOP and FSO benchmarks at a national level.  

 

124

Chapter 3



124 
 

 

Figure 6. Ranking of the impact of the different stochastic input distributions in the 

estimated FSO with model 3 using correlation coefficients (Spearman Rank) following the 

top-down approach (a) and the bottom-up approach (b). 

 

3.3. Comparing the outcomes of the two approaches 

Overall, the bottom-up approach yielded ALOP values that were higher than the ones of 

the top-down approach (Figure 3, Table A of supplementary material) and an FSO with a 

credible interval several orders of magnitude wider than the ones obtained with the top-

down approach (Figure 5, Table B of supplementary material). However results can still 

be comparable between the estimates for some of the input parameter combinations and 

also depending on the upper percentile that forms the basis for comparison. The 

introduction of more stochastic parameters in the place of point estimates was also found 

to lead to an increase in risk estimates (cases of listeriosis) using the bottom-up model, 

similar to the observations of other authors [68]. More specifically, by using a distribution 

instead of a point estimate for the r parameter (alternative input combination 1 and 3) 

considerably more cases were estimated compared to the baseline input combination. This 

difference was even more evident when attempting the same comparison on the basis of 

the higher percentiles. Evidently, the level of detail that is incorporated in risk assessment 

based models used to estimate the ALOP and FSO benchmarks is a point that needs to be 

further agreed upon by all relevant stakeholders, especially in view of the fact that most 

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Exponential growth rate

Storage time

Temperature of household refrigerators

Concentration at retail

Prevalence at retail

Coefficient Value

b

125 
 

of the factors that should be considered in the exposure assessment and risk 

characterization parts according to the guidelines of the Codex Alimentarius [8] can be 

characterized by considerable variability and uncertainty, which often dictates their 

incorporation in the form of stochastic inputs.     

The top-down and the bottom-up approach should ideally yield comparable results [69] 
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obtained with the top down approach were also narrower than the ones obtained with the 

bottom-up approach, given that there was less uncertainty and variability in the input 
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addition to the above, existing case law suggests that the ALOP should be the starting 

point of setting sanitary and phytosanitary (SPS) measures such as FSO since by using an 
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However, the top-down approach may be more difficult to implement as a way to compare 

ALOPs between different countries on an international level, since it requires good quality 

epidemiological data (active surveillance data) and attribution values to specific foods or 

food product groups that are currently not likely to be available for most countries. 

Conceivably, the surveillance systems that provide the epidemiological data should remain 

more or less the same over time so that fluctuations in the number of reported cases of a 

specific illness can be linked to the level of protection achieved in the food chain and not 

influenced by changes in the monitoring of foodborne diseases [6]. Taking this into 

account, the bottom-up approach might be more feasible to implement for international 

comparisons for instance in Europe, where the prevalence and concentration data for 

particular pathogens (such as Listeria) are generally available for most EU countries from 

the European Food Safety Authority (EFSA) [47-51] and are based on the same isolation 

protocol due to legal requirements [52]. Although the quality of these data is not yet 

optimal and deriving ALOP/FSO benchmarks bottom-up is technically more difficult and 

resource intensive, it is still possible to give useful results even with a relatively 

straightforward risk assessment model like the one used in the current study. A risk 

assessment based FSO furthermore allows the systematic and quantitative evaluation of 

the efficiency of different management options when aiming for a future level of protection 

(specified as an ALOP or as a public health goal) that is to be more strict; this is not 

possible when estimating the ALOP/FSO with the top-down approach.    

 

3.5. Further refinements in the estimates 

While working in this case study we identified several gaps in the data currently available 

for estimating ALOP/FSO benchmarks. We would like to point out the most important ones 

as areas where more information should become available to further refine such estimates 

and facilitate the use of these benchmarks in food safety management.  

 

3.5.1. Concentration of Listeria in deli meats 

At mentioned above, presently there is a considerable amount of information regarding 

the sampling of cooked ready-to-eat meat products for Listeria in the EU through the 

European Food Safety Authority (EFSA)  [47-51]. However the level of detail in the data 

only allows for estimations of the prevalence and not the concentration of the pathogen 

for this product group. Enumeration takes place to identify samples exceeding the current 

legal limit of 100 CFU/g [52] but it is currently not obligatory by law to disclose the actual 

concentrations [71]. For such enumeration data to be more useful for in depth comparisons 
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between different EU countries, it would be beneficial in the future to publicize also the 

precise concentrations in the positive samples.  

 

3.5.2. Additional information on the type of deli meat 

Additional information would be useful with regards to the type of deli meat sampled and 

in particular whether it was pre-packaged or retail sliced. In a recent study, retail sliced 

deli meat was associated with an about 4 times increased risk of listeriosis on a per serving 

basis in comparison to pre-packaged deli meat [72]. This means that over-representation 

of samples from either kind of deli meat in the EFSA data [47-50] in comparison to the 

actual situation in the market could lead to an over- or underestimation of the actual 

number of cases. More detailed information may also allow for grouping of deli meats into 

different categories for which then growth could be modelled using more specific models 

than currently possible. Finally, the country of origin of the deli meats tested would be 

another important piece of information that, when collected, could provide information on 

how representative the sampling results are with respect to the situation for products in 

different national/international markets. The latter would improve the utility of the ALOP 

concept, which was originally designed to aid in addressing international trade issues.  

 

3.5.3. Dose-response model 

A simple to use dose response model should ideally be in place for estimating the 

ALOP/FSO benchmarks. We selected the FAO/WHO dose-response model for Listeria [43] 

as one of the most recent ones and because of its international character. This considers 

several r values to be plausible on the basis of different underlying assumptions about the 

Dmax. Variability in virulence between different strains is considered in this model given 

that the data used for the estimation of the r values reflect the characteristics of many 

strains of L. monocytogenes including frequency of occurrence and virulence. For the 

purpose of risk estimates for products that can support the growth of Listeria (like deli 

meats), it is recommended to use the r values that we have chosen for our baseline model 

assuming that the Dmax varies uniformly from 7.5 to 10.5 log CFU. It is not evident whether 

r parameters should be used in a stochastic form or not and which distribution would be 

more representative when a stochastic form is used. Since Dmax was also found to be the 

most influential factor on the estimated risk of listeriosis [68], the appropriate choice of r 

parameters and the form of input are aspects of the modelling that need further work. It 

is also worthwhile to note that the FAO/WHO model is based on the assumption that the 

YOPI population varies between 15 and 20%, which may not be the case for some 

developed countries with an ageing population. In the Netherlands, this value was 18.3% 
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when considering elderly to be over the age of 65 years (as was done in the current study) 

and it was as high as 22.7% when they are considered to be older than 60 years. Had we 

used the latter value, our ALOP estimates with the top-down approach would remain 

almost the same (less than 2% difference) but our ALOP estimates with the bottom-up 

approach would be considerably increased (~21% difference). Given that the dose 

response model is a key element influencing estimates of the ALOP/FSO benchmarks, as 

can also be seen in our crude sensitivity analysis results (Figures 4b and 6a), adjusting 

the model so that it can account for an increase in the percentage of the susceptible 

population is an important point for future improvements. 

 

3.5.4. Storage time 

Data regarding the storage time of deli meats are scarce for the Netherlands as well as 

other EU countries. We choose to use expert elicitation data from Australia for deli meats 

[39] of which the range was in line with Swedish data for sliced cooked ham [73]. 

Considering that storage time was the second most influencing parameter in the FSO 

estimate (Figure 6b), more studies on consumer storage practices would be vital for 

providing more refined estimates. 

 

3.5.5. Exponential growth rate 

The exponential growth rate was estimated using a baseline exponential growth rate at 

5oC (EGR5) as was also done in the FDA/FSIS risk assessment [53]. This EGR5 was based 

on a meta-analysis of international literature data for different categories of deli meats. 

Though the range of values provided with this method may be accurate enough for 

prediction purposes and has been used in other risk assessments as well [56], a 

considerable amount of new data has been published since the FDA/FSIS risk assessment 

was published and also new approaches on how to make best use of it in risk assessments 

have been proposed [74]. Taking into account that also the EGR5 influences estimates 

greatly (Figure 6b), updating the dataset on which it is based would be helpful for future 

reference.           

 

3.5.6. International food consumption database 

If ALOPs are to be used more widely for the purpose of international comparisons, it 

would be of particular benefit when an international food consumption database would 

be in place that would allow for consistent compilation and retrieval of information on 

food consumption patterns from different countries. Such a database has recently been 
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launched in the EU, but because the consumption data collected so far have been 

generated using different methodologies their use for direct country to country 

comparisons is not recommended [75]. 

 

4. Conclusions 

Based on this case-study, obtaining meaningful estimations of ALOP/FSO is feasible with 

both the top-down and the bottom-up approach deployed using readily available data 

sources for the Netherlands. However, choices need to be made regarding the level of 

detail that will be incorporated in stochastic models and what upper percentile of the 

output distribution would be best to base the benchmark on. Additional studies on the 

storage time of deli meats and improvements in the way information regarding the 

sampling of Listeria in deli meats is currently gathered and reported in the EU could help 

in further refining the estimates. Developments since the time of FAO/WHO and FDA/FSIS 

risk assessments might allow for a more optimal estimation of the dose-response model 

and the growth rate for Listeria but this was outside the scope of our paper. The top-down 

approach yielded the best results for the data available for the Netherlands and it may be 

the preferred approach at the national level when good quality epidemiological data are 

available, although the bottom-up approach may be more promising for the purpose of 

international comparisons of ALOP values in different countries. As a best practice, we 

recommend that both approaches should be used so that risk estimates may be validated 

to an extent. Depending on the application context, ultimately, one approach may appear 

to be more appropriate than the other.   
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considerable amount of new data has been published since the FDA/FSIS risk assessment 

was published and also new approaches on how to make best use of it in risk assessments 

have been proposed [74]. Taking into account that also the EGR5 influences estimates 

greatly (Figure 6b), updating the dataset on which it is based would be helpful for future 

reference.           

 

3.5.6. International food consumption database 

If ALOPs are to be used more widely for the purpose of international comparisons, it 

would be of particular benefit when an international food consumption database would 

be in place that would allow for consistent compilation and retrieval of information on 

food consumption patterns from different countries. Such a database has recently been 

129 
 

launched in the EU, but because the consumption data collected so far have been 

generated using different methodologies their use for direct country to country 

comparisons is not recommended [75]. 

 

4. Conclusions 

Based on this case-study, obtaining meaningful estimations of ALOP/FSO is feasible with 

both the top-down and the bottom-up approach deployed using readily available data 

sources for the Netherlands. However, choices need to be made regarding the level of 

detail that will be incorporated in stochastic models and what upper percentile of the 

output distribution would be best to base the benchmark on. Additional studies on the 

storage time of deli meats and improvements in the way information regarding the 

sampling of Listeria in deli meats is currently gathered and reported in the EU could help 

in further refining the estimates. Developments since the time of FAO/WHO and FDA/FSIS 

risk assessments might allow for a more optimal estimation of the dose-response model 

and the growth rate for Listeria but this was outside the scope of our paper. The top-down 

approach yielded the best results for the data available for the Netherlands and it may be 

the preferred approach at the national level when good quality epidemiological data are 

available, although the bottom-up approach may be more promising for the purpose of 

international comparisons of ALOP values in different countries. As a best practice, we 

recommend that both approaches should be used so that risk estimates may be validated 

to an extent. Depending on the application context, ultimately, one approach may appear 

to be more appropriate than the other.   
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Technical Appendix A 

ALOP values (cases of severe listeriosis due to the consumption of deli meat per million 

people per year) estimated with the top-down and the bottom up approach models for 

different combinations of input parameters. All values have been rounded to include three 

significant digits 

   Level of certainty (percentile) 

 mean SD 1st 2.5th 5th 95th median 97.5th 99th 

Bottom-up 

approach 

         

Baseline 11.8 1.68 8.27 8.77 9.21 14.7 11.8 15.3 16.1 

Alternative 1 43.4 29.8 3.28 5.22 7.49 102 36.9 116 133 

Alternative 2 12.2 2.46 7.60 8.14 8.64 16.6 11.9 17.7 19.0 

Alternative 3 44.2 31.4 3.27 5.17 7.44 106 37.0 122 142 

        

Top-down 

approach 

3.23 1.44 0.824 1.07 1.30 5.91 3.01 6.63 7.55 

 

 

Technical Appendix B 

FSOs (log CFU per gram) estimated with the top-down and the bottom up approach 

models for different combinations of input parameters. All values have been rounded to 

include two significant digits 

   Level of certainty (percentile) 

 mean SD 1st 2.5th 5th median 95th 97.5th 99th 

Top-down 

approach 

         

Baseline 3.4 0.24 2.7 2.8 2.9 3.4 3.7 3.8 3.8 

Alternative 1 2.7 0.38 1.9 2.0 2.1 2.7 3.4 3.5 3.7 

Alternative 2 3.4 0.24 2.7 2.8 2.9 3.4 3.7 3.8 3.8 

Alternative 3 2.7 0.38 1.9   2.0 2.1 2.7 3.4 3.5 3.7 

 

Bottom-up 

approach 

-0.82 2.2 -3.2 -3.2 -3.1 -1.5 4.2 5.6 6.1 
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Abstract 

In the course of the last decade, the Appropriate Level of Protection (ALOP), the Food 

Safety Objective (FSO) and their associated metrics have been proposed by the World 

Trade Organization and Codex Alimentarius as a means for competent authorities to 

ultimately translate governmental public health policy regarding food safety into risk-based 

targets for the food industry. The industry needs to meet these targets through the 

effective choice of control measures that are part of its operational food safety 

management system. The aim of this study was to put the practical application of ALOP 

and FSO to the test in the case of Salmonella in chicken meat in the Netherlands. Two 

different risk assessment approaches were applied to derive potential ALOP and FSO 

values, a ‘top-down’ approach based on epidemiological data and a ‘bottom-up’ approach 

based on food supply chain data. To this end, two stochastic models specific to the Dutch 

situation were built. Comparisons between 23 countries in Europe were also made using 

the top-down model. The mean estimated current Level Of Protection  values were similar 

for the two approaches applied, with the bottom-up model yielding 87 cases per 100,000 

inhabitants per year (95% CI: 0.03, 904) and the top-down model 71 (95% CI: 9.9, 155).  

The estimated FSO values on the other hand were considerably different with the mean 

‘top down’ FSO being -4.6 log CFU/g (95% CI: -5.4, -4.1) and the mean ‘bottom-up’ FSO 

-6.0 log CFU/g (95% CI: -8.1,-2.9) reflecting major differences in the output distributions 

of this parameter obtained with the two approaches. Significant differences were observed 

between current LOP values for different EU countries, although it was not clear whether 

this was due to actual differences in the factors influencing the risk of salmonellosis or due 

to the quality of the available data.  
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1. Introduction  

Food safety is an issue of ongoing public health concern. Recent mean estimates from 

developed economies show that known hazards in the food supply chain can account for 

approximately three to four thousand cases of foodborne illness per 100,000 inhabitants 

in the general community, while the total number of foodborne illness is much higher as in 

most cases the aetiological agent is not identified due to limitations of existing surveillance 

systems [1, 2]. These foodborne illnesses can have big economic and societal impacts 

associated with medical costs, loss of productivity, recall expenses and cost of legal actions 

but also with personal suffering, pain and death [3]. Managing food safety therefore is of 

the outmost importance for all stakeholders involved in the food supply chain (i.e. primary 

production, processing, distribution and sale), but especially for governments whose role 

is to develop and enforce policy and for food business operators who have the ultimate 

responsibility of producing safe products [4, 5].    

Food safety assurance is based on the establishment of appropriate control measures and 

operational food safety management systems throughout the food supply chain, which 

traditionally have been hazard-based. However, in the course of the last decades there has 

been a shift towards more risk-based approaches of managing food safety on an 

international level [6]. This shift began in the early 1970’s with the introduction of the 

HACCP system into food operations as a means of identifying potential hazards and 

determining those that are essential to control on the basis of a more quantitative 

appreciation of risks associated with individual hazards. However, it was not until the mid-

1990’s that risk-based approaches became the international standard with the introduction 

of an agreement regarding the application of sanitary and phytosanitary measures (SPS 

Agreement) by the World Trade Organization (WTO). In this agreement, it was suggested 

for the first time that targets related to food safety should be based on science and in 

particular on an assessment of the risk to the population [7], and that this risk assessment 

should be quantitative where feasible [8]. Immediately after the launch of the SPS 

Agreement, the Codex Alimentarius Commission was called on to provide a framework with 

which adherence to these guidelines could be achieved. This led to the first report regarding 

the application of the risk analysis framework to food standards issues [9]. Many more 

documents have followed since, providing elaborate guidelines for the application of risk 

management and risk assessment by governments [10-13]. Also, the European 

Community made the setting of risk-based benchmarks legally binding by dictating in 

Regulation (EC) 178/2002 that legislation forced to ensure food safety should generally be 

founded on science using the risk analysis framework [4].  

To make a risk-based approach of managing food safety operational, two new benchmarks 

can be set by governments on the basis of a quantitative risk assessment: the Appropriate 
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international level [6]. This shift began in the early 1970’s with the introduction of the 

HACCP system into food operations as a means of identifying potential hazards and 

determining those that are essential to control on the basis of a more quantitative 

appreciation of risks associated with individual hazards. However, it was not until the mid-

1990’s that risk-based approaches became the international standard with the introduction 

of an agreement regarding the application of sanitary and phytosanitary measures (SPS 

Agreement) by the World Trade Organization (WTO). In this agreement, it was suggested 

for the first time that targets related to food safety should be based on science and in 

particular on an assessment of the risk to the population [7], and that this risk assessment 

should be quantitative where feasible [8]. Immediately after the launch of the SPS 

Agreement, the Codex Alimentarius Commission was called on to provide a framework with 

which adherence to these guidelines could be achieved. This led to the first report regarding 

the application of the risk analysis framework to food standards issues [9]. Many more 

documents have followed since, providing elaborate guidelines for the application of risk 

management and risk assessment by governments [10-13]. Also, the European 

Community made the setting of risk-based benchmarks legally binding by dictating in 

Regulation (EC) 178/2002 that legislation forced to ensure food safety should generally be 

founded on science using the risk analysis framework [4].  

To make a risk-based approach of managing food safety operational, two new benchmarks 

can be set by governments on the basis of a quantitative risk assessment: the Appropriate 
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Level of Protection (ALOP) and the Food Safety Objective (FSO) [7, 14]. The ALOP has 

been defined in the SPS agreement as “the level of protection deemed appropriate by the 

Member establishing a sanitary or phytosanitary measure to protect human, animal or 

plant life or health within its territory” [7]. In relation to food safety, this may be 

interpreted as the level of risk that is accepted by a country for a specific hazard in food. 

The FSO has been defined as “the maximum frequency and/or concentration of a hazard 

in food at the time of consumption that provides or contributes to the appropriate level of 

protection” [15] and is in essence the level of the hazard in food at consumption that is 

attuned to a given ALOP. Next to the FSO, Codex also defined two associated risk-based 

metrics, namely the Performance Objective (PO) and the Performance Criterion (PC) [15]. 

The PO is defined as “the maximum frequency and/or concentration of a hazard in food at 

a specified step in the food chain before the time of consumption that provides or 

contributes to an FSO or ALOP, as applicable. Unlike the ALOP and FSO that can only be 

set by governments, POs can also be set by the industry to achieve the established FSO 

and they can be viewed as targets for food safety managers controlling food supply chain 

operations [16]. Both the FSO and PO allow for considerable flexibility in the selection of 

appropriate control measures for individual steps in the food supply chain. The overall level 

of control that these control measures achieve is what Codex has termed the PC, which 

expresses the change in the hazard level that needs to be obtained to achieve a certain 

FSO or PO [15]. As understood from the above, the ALOP, FSO and their associated metrics 

are closely interconnected and provide a link between governmental public health policy 

and targets for industry managing hazards in the food chain with the potential to render 

food safety management transparent and quantifiable [17].  

Although the advantages of the use of ALOP and FSO in managing food safety are clear, 

to this day no country applies the targets as such to inform national policy although some 

countries have established other specific targets in the food chain aiming at the reduction 

of their current disease burden. For instance, in Denmark several of these targets were 

established as part of a programme for the control of Salmonella in poultry and table eggs, 

initiated in 1996 [18]. Possible reasons for the ALOP and FSO targets on not being used as 

such could be that there is little guidance on how to establish them [19] and how to 

implement them in practice linked to each other [20, 21]. Several documents have been 

drafted as the result of a joint expert consultation to provide guidance on the use of the 

metrics for specific pathogen/food combinations [22-25]. There is growing number of peer-

reviewed studies available discussing the practical implementation of the metrics using 

national data [26-29] or data for actual products in the market [20, 30-34]. Most of these 

studies however deal with products that are ready-to-eat or partially cooked, involving 

little or no handling on the part of the consumer and only a few deal with raw products like 

meat [28, 29]. The latter studies focus on POs, set either at the end of a processing 
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operation [28] or at retail [29]. They do not consider the way the product is handled by 

consumers although this has been shown to substantially influence the risk of acquiring a 

foodborne disease [35]. Finally, despite the fact that the ALOP has originally been 

introduced as a means of solving trade disputes by comparing the level of risk that is 

accepted by different countries for the same type of product [7], the feasibility of 

international comparisons of ALOPs for pathogens between countries has not yet been 

investigated although it would be of considerable interest [21]. 

The goal of this study was to put the selection of the ALOP and FSO to the test for a specific 

country by investigating how values for these metrics can be derived from publicly available 

data, choosing the case of Salmonella in raw chicken meat in the Netherlands. Two different 

risk assessment strategies were followed to this end: an epidemiological approach having 

the current level of risk (current LOP) of the disease salmonellosis at country level as the 

starting point and a supply chain approach starting from data on the presence of the hazard 

(Salmonella) in the food product  [36]. From this point onwards, the  epidemiological 

approach will be referred to as the “top-down” approach, while the supply chain approach 

will be referred to as the “bottom-up” approach [26]. Also for the purpose of this study by 

“raw chicken meat” any type of raw chicken meat available at retail will be meant i.e. 

poultry carcasses, cuts (with or without skin), chicken fillets and uncooked preparations. 

Our specific objectives were to 1) investigate the selection of potential ALOP/FSO values 

regarding Salmonella in raw chicken meat on the basis of readily available national data 

following the two different approaches, 2) compare results obtained between the two 

approaches, 3) analyse the advantages and disadvantages of each approach, 4) examine 

the feasibility of comparing current LOP and FSO values for 23 member states of the 

European Union for the top-down approach  and 5) identify important data gaps and 

provide recommendations to consider in future efforts to implement the metrics.     

 

2. Materials and methods 

2.1. Bottom-up approach 

2.1.1. Model description 

A “retail-to-table” stochastic risk assessment model [37] was built, starting with publicly 

available data on the concentration of Salmonella in raw chicken at the retail level in the 

Netherlands. This starting point was selected because data at retail level have been 

proposed to be more suitable for risk assessment purposes since they are more pertinent 

to the exposure of consumers to the pathogen via raw meat [38]. Furthermore, data from 

earlier points of the meat processing chain post-slaughter have been suggested not to be 
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directly linked to the situation at retail due to cross-contamination and growth of 

Salmonella as a result of inadequate hygiene levels [39]. Events leading to the risk of 

consumers being exposed to the pathogen were considered to be: purchase and transport 

of a meat product home, storage at home, and preparation and consumption [37, 40-42]. 

A schematic representation of the different steps in the model is shown in Figure 1. A 

comprehensive overview of the inputs and outputs of the model is provided in Table 1. The 

calculations underlying each individual step are discussed in the paragraphs below. 

Figure 1. Outline of the estimation steps in the bottom-up approach model. The 

concentration of Salmonella at the retail level was the starting point for the estimation of 

the FSO and the current LOP. 
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Step 1 - Concentration at retail (Cretail). Risk was estimated on the basis of the 

concentration of Salmonella in contaminated portions of chicken meat at retail. Two 

relevant studies in the Netherlands could be retrieved with data on concentrations in 

positive samples: one involving chicken carcasses [56] and another involving chicken 

breast fillets [43]. Given the fact that contamination levels of Salmonella in chicken in the 

Netherlands have been declining since the first study was conducted as a result of the 

adaptation of control measures by the poultry industry [43, 57] only the data in Straver et 

al. (2007) were taken into consideration. Moreover, chicken carcasses represent a minor 

fraction of total household consumption (4.5%) within the country in comparison with 

chicken breasts fillets that represent approximately 48% followed by various chicken parts 

(~28.5%) and chicken legs (~19%) (Richard Hol, personal communication). In the study 

by Straver et al. (2007) 220 chicken fillets were sampled at the Dutch retail market 

(representative share of supermarkets and butchers) in the period from October to 

December 2005 and tested as a whole for the prevalence and concentration of Salmonella. 

Levels of the pathogen in positive samples ranged between 1 and 3.81 log MPN/fillet and 

were converted into log CFU/g on the basis of the average weight of fillets for use in this 

risk assessment and were assumed to be representative of all types of raw chicken meat. 

These concentration data for positive samples were used as part of a normal distribution 

to describe contaminated servings using the function RiskNormalAlt, which allows a normal 

distribution to be built based on percentile values. To avoid illogical values, the distribution 

was truncated at the physically possible minimum (-2.26 log CFU/g) and maximum 

concentration (8 log CFU/g) in positive fillets.  

 

Step 2 – Concentration after transport (Cafter transport). The concentration of the previous step 

was considered to be representative of samples stored already at retail temperatures. To 

estimate the concentration of Salmonella after transport, i.e. at the moment the meat 

product enters the refrigerator of the consumer, a simple exponential growth model 

without lag was used [58]. The time of transport (ttransport) was considered to be the sum 

of the time needed to transport the product from retail to home (tretail-to-home) and the time 

needed to unpack groceries (tunpacking) expressed as distributions on the basis of variation 

in consumer behaviour presented in a study regarding hygiene in households in the 

Netherlands [44]. Because this study is not available in English, a translation of the most 

important data used in this risk assessment is presented in Technical Appendix A. No 

pertinent Dutch data regarding transport temperature could be found and British data were 

used assuming that they were representative for the situation in the Netherlands as in 

other risk assessments for this country [45] while the meat was assumed to reach 

immediately environmental temperature. The growth rate (μ) for Salmonella was 

estimated by performing a meta-analysis of peer-reviewed publications as described by 
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was truncated at the physically possible minimum (-2.26 log CFU/g) and maximum 

concentration (8 log CFU/g) in positive fillets.  

 

Step 2 – Concentration after transport (Cafter transport). The concentration of the previous step 

was considered to be representative of samples stored already at retail temperatures. To 

estimate the concentration of Salmonella after transport, i.e. at the moment the meat 

product enters the refrigerator of the consumer, a simple exponential growth model 

without lag was used [58]. The time of transport (ttransport) was considered to be the sum 

of the time needed to transport the product from retail to home (tretail-to-home) and the time 

needed to unpack groceries (tunpacking) expressed as distributions on the basis of variation 

in consumer behaviour presented in a study regarding hygiene in households in the 

Netherlands [44]. Because this study is not available in English, a translation of the most 

important data used in this risk assessment is presented in Technical Appendix A. No 

pertinent Dutch data regarding transport temperature could be found and British data were 

used assuming that they were representative for the situation in the Netherlands as in 

other risk assessments for this country [45] while the meat was assumed to reach 

immediately environmental temperature. The growth rate (μ) for Salmonella was 

estimated by performing a meta-analysis of peer-reviewed publications as described by 
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den Besten and Zwietering [59]. ComBase [60] was used as the source of publications 

regarding the growth rate of Salmonella spp. in raw poultry (meat and/or skin), assuming 

that this source captured the available literature well, by applying the following filtering 

criteria: 2-46oC for the temperature range that allows growth [61, 62], 5.0-8.0 for the pH 

(rounding the range 5.7-7.2 published for poultry [63]) and 0.9-1.0 for the water activity. 

Studies involving antimicrobial compounds and studies involving irradiated, dried or 

smoked chicken m were excluded since our study dealt with unprocessed raw chicken meat 

only. Products with added fat or salt were taken into consideration since these might be 

relevant. These filtering criteria resulted in a total of eight traceable publications [64-71]. 

Where possible, μ values were collected directly from the retrieved publications, otherwise 

datasets from ComBase in which total growth greater than 0.5 log CFU was observed were 

used to estimate growth rates using DMFit on the basis of the lowest SE of fit [60]. Overall, 

61 maximum growth rate records (log10/h) for various temperatures were obtained. To this 

dataset, the simple square root model of Ratkowsky [72] was fitted [59], using the solver 

add-in of Microsoft® Excel 2010 after a log10-transformation of the data to improve the 

stabilization of the variance over the entire temperature range [59]. The estimated b and 

Tmin parameters of the model describing the mean growth rate of all data as a function of 

temperature were 0.021 and 5.26oC respectively (Table 1). In order to express strain 

variability, b was considered to be represented by a normal distribution whose confidence 

interval is estimated on the basis of the 95% confidence interval surrounding the mean 

growth rate. The predicted Tmin was in line with the minimum temperature for growth 

mentioned by ICMSF for Salmonella (5.2oC) [62] however in none of studies we used was 

growth observed at temperatures lower than 9oC for raw chicken meat (Technical Appendix 

B). Although these values then show potential growth at 7°C, it should be realised that 

these parameters would result in a generation time of 22 days at 7°C, meaning that 

practically no growth would be observed. 

 

Step 3 – Concentration after storage (Cafter storage). To estimate the concentration of 

Salmonella after storage of the product by the consumer the same growth model as in the 

previous step was used. No quantitative data could be found for the storage time of 

different chicken meat products in the Netherlands, but it was assumed that this parameter 

can be described by a Pert distribution with a most likely value of 2, a minimum value of 

0 and a maximum value of 5 days as used in the FAO/WHO risk assessment on Salmonella 

in broiler chickens [46]. The range from this distribution is in agreement with qualitative 

results of a Dutch study in which it is mentioned that the majority of consumers store meat 

for a few days at most [73] and in the absence of other data regarding this parameter has 

been used in another risk assessment for chicken fillets in the Netherlands [43]. Realistic 

storage temperatures were based on data for the Netherlands [47] (n=125) regarding the 
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frequency of different temperature ranges in household refrigerators and used in the form 

of a cumulative distribution truncated at 1 and 13oC (maximum temperature found). 

Step 4 – Preparation and consumption of chicken meat. During the preparation of chicken 

meat by the consumer, exposure to Salmonella is possible through either undercooking or 

cross-contamination to another food that is to be consumed raw (typically a salad). Both 

of these pathways have been taken into consideration and modelled separately as 

discussed below (step 4A and B) (Technical Appendix C). Since this step is the final stage 

prior to consumption, the FSO is derived at this point as discussed in step 4C.    

4A – Concentration in undercooked meat (Cundercooked meat). The incomplete inactivation of 

Salmonella as the consequence of undercooking was modelled using a linear primary model 

without lag [74], logC = logCo – t/D, where C is the concentration (in CFU/g) after a cooking 

time t (in min), Co is the concentration (CFU/g) at time t = 0 (start of cooking) and D is 

the decimal reduction time (in min). As in other risk assessments, it was assumed that a 

fraction of Salmonella in meat has the potential to survive the cooking process [37, 41, 

46]. Thus, the concentration of Salmonella at the start of cooking was considered to be 

equal to the concentration after storage multiplied with the percentage of cells in protected 

areas that have the potential to survive the cooking process estimated elsewhere [46]. To 

cover for the variability in heat resistance between different Salmonella strains as well as 

the impact of different cooking temperatures and times, a distribution was assigned to the 

cooking temperature and time [46]. The D-value was modelled as a function of 

temperature on the basis of the logarithm of a  reference D-value at 70oC (Dref) (mean       

-0.83, SD 0.72) and a z-value (9.1oC) obtained through meta-analysis of existing thermal 

inactivation data (n=1141) for this pathogen in different products and at different 

temperatures [48].  

4B – Concentration in cross-contaminated salads (CB-unwashed salad, CB-rinsed salad, CH salad). In 

our study, we considered cross-contamination from chicken meat to raw salad being 

consumed in the same meal. Unwashed hands of persons handling raw meat and improper 

cleaning of cutting boards/utensils have been suggested to be the most important cross-

contamination routes for chicken fillets [75] and these two contamination routes were 

assumed here to be the only events leading to Salmonella being present in the raw salad. 

The events were considered to be independent and thus modelled separately, taking into 

account the transfer rates of bacteria from one surface to the other and the frequencies of 

different kinds of unhygienic behaviour during food preparation [44, 76]. The 

concentrations of Salmonella in cross-contaminated salads through a cutting board and 

knife that were not washed after cutting meat (CBK-unwashed salad in CFU/g) or through a cutting 

board and knife only rinsed with water after cutting meat (CBK-rinsed salad in CFU/g), were 

estimated as:  
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-0.83, SD 0.72) and a z-value (9.1oC) obtained through meta-analysis of existing thermal 

inactivation data (n=1141) for this pathogen in different products and at different 
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our study, we considered cross-contamination from chicken meat to raw salad being 

consumed in the same meal. Unwashed hands of persons handling raw meat and improper 

cleaning of cutting boards/utensils have been suggested to be the most important cross-

contamination routes for chicken fillets [75] and these two contamination routes were 

assumed here to be the only events leading to Salmonella being present in the raw salad. 

The events were considered to be independent and thus modelled separately, taking into 

account the transfer rates of bacteria from one surface to the other and the frequencies of 

different kinds of unhygienic behaviour during food preparation [44, 76]. The 
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CBK-unwashed salad = Cafter storage x Mchicken x (TCB-unwashed + TCK-unwashed) x TBKS-unwashed/(104 x Msalad) 

(1)                                                                                                                  

CBK-rinsed salad = Cafter storage x Mchicken x (TCB-rinsed + TCK-rinsed) x TBKS-rinsed/(104 x Msalad)         (2) 

where Cafter storage is the concentration of Salmonella in the product after storage (in CFU/g). 

Mchicken and Msalad are the mass (in grams) of raw chicken and salad, respectively, based on 

ranges of the amount of these specific food items estimated to be consumed in a day in 

the Netherlands [77]. The following transfer rates of bacteria (%) were obtained from 

Ravishankar et al. (2010): TCB-unwashed being the transfer rate from chicken to a cutting 

board when it is unwashed after its use, TCK-unwashed being the transfer rate from chicken to 

a knife when it is unwashed after its use, TBKS-unwashed being the transfer rate from the 

unwashed cutting board and knife to the salad, TCB-rinsed being the transfer rate from the 

chicken to a cutting board when it is only rinsed with water, TCK-rinsed being the transfer rate 

from the chicken to a knife when it is only rinsed with water, TBKS-rinsed being the transfer 

rate from the rinsed cutting board and knife to the salad. 

Similarly, the concentration of Salmonella in cross-contaminated salad through the hands 

of the food handler (CH salad in CFU/g) was estimated as: 

CH salad = (Cafter storage x Mchicken x 10^TCH x 10^THS)/(104 x Msalad)                                 (3) 

where TCH is the log transfer rate of bacteria from the chicken to the hands (Log%) and 

TCH is the log transfer rate of bacteria from the hands to the salad (Log%) according to 

Montville et al. (2001). 

 

4C – Food Safety Objective for chicken meat (FSOchicken meat). Based on its definition, an 

FSO may incorporate both the concentration and the frequency of the hazard at the point 

of consumption [15]. For the case at hand, four different concentrations of Salmonella at 

the point of consumption would contribute to the FSO (undercooked chicken, cross-

contaminated salads by unwashed hands, unwashed cutting board or rinsed cutting board) 

(4A, B), each having a different frequency of occurrence. These frequencies would in turn 

be characterized by the prevalence of Salmonella in raw chicken meat at retail (Pretail) and 

with the probability of each distinct concentration level occurring. Thus to include both 

concentration and frequency in the FSO as its definition suggests, it was here estimated in 

log CFU per g as the  summation of the product of the two across the four different types 

of contaminated servings: 

FSOchicken meat = Log[Pretail x ((Pundercooked meat x 10^Cundercooked meat)+ (PBK-unwashed x CBK-unwashed 

salad) +( PBK-rinsed x CBK-rinsed salad)+ (PH salad x CH salad)]                                                    (4) 
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where Pundercooked meat is the probability of consuming undercooked meat, PH salad the 

probability of consuming salad cross-contaminated through handling, PBK-unwashed salad the 

probability of consuming a salad cross-contaminated through an unwashed cutting board 

and knife, and PBK-rinsed salad the probability of consuming a salad cross-contaminated 

through a board and knife that were only rinsed with water. Regarding Pretail, because the 

prevalence found in the study by Straver et al. (2007) was characterised by considerable 

variability (mean 8.6%, 90% CI: 5.7-12%) as a result of the relatively small number of 

samples tested (despite the greater level of detail for concentration data that the larger 

sample size allowed) prevalence data from RIVM on the basis of presence absence tests in 

25 g of retail chicken meat samples for the period 2004-2010 were used instead (mean: 

7.7%, 90% CI: 7.2-8.1% ) [51, 52]. 

The probability of consuming undercooked meat was estimated by taking into account data 

on the behaviour of Dutch consumers [44] as follows: 

Pundercooked meat = fmishandlers x fundercooking x Pno reheating                       (5) 

where fmishandlers is the fraction of consumers that acknowledges that their meat can be 

undercooked once in a while, fundercooking is the estimated frequency of undercooking among 

these consumers and Pno reheating is the percentage of consumers that decide to eat the 

undercooked meat without a reheating step. Notably, the frequency of undercooking, 

depends on the interpretation of the Dutch frequency adverb “wel eens” that expresses a 

frequency lower than the English adverb sometimes [78] and may range between 1-40% 

[79] 

The probabilities of consuming salads cross-contaminated via different routes (PH salad, PBK-

unwashed salad, PBK-rinsed salad)  were estimated assuming that they are the result of a series of 

independent events: 

PH salad = Peating salad with chicken x Ppreparing salad after chicken x Punwashed hands                                 (6) 

PBK-unwashed salad = Peating salad with chicken x Ppreparing salad after chicken x PBK-unwashed                                     (7) 

PBK-rinsed salad = Peating salad with chicken x Ppreparing salad after chicken x PBK-rinsed                                               (8) 

where: 

Peating salad with chicken is the probability of consuming salad and chicken in the same meal, 

estimated by dividing the total number of servings of chicken fillet with salad reported for 

2000 [53] with the total number of chicken meat servings in the Netherlands for the same 

year, estimated in turn by multiplying the per capita consumption of chicken meat [80] 

with the population for this year [81] and dividing the resulting quotient with the mean 
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mass per serving of chicken meat [53]. The resulting estimate was similar to estimates 

regarding the mean probability of eating a raw item with a chicken meal in Belgium [40]. 

Ppreparing salad after chicken is the probability of preparing the salad after the chicken [53].  

PBK-unwashed  is the probability of using the same cutting board and knife with which meat 

was handled to cut vegetables. This was assumed to be the same probability as that of 

using an unwashed cutting board, which is in the range of 0.01-0.05 based on Dutch 

studies [44, 53] and which was represented in the model by a Uniform distribution. 

 PBK-rinsed is the probability of using the same cutting board and knife with which meat was 

handled after rinsing only with water to cut vegetables for a salad. This was represented 

here by the probability of using a cutting board that has only been rinsed with water, which 

is 0.28 [44]. 

Punwashed hands is the frequency of not washing hands after handling meat [53]. 

Step 5 – Risk per serving of undercooked meat and cross-contaminated salad. The risk of 

salmonellosis per serving was estimated with the beta-Poisson model used in the FAO/WHO 

risk assessment of Salmonella in chicken products [46]. In this model, based on outbreak 

data, the probability of illness (Pill) is estimated using the equation:  

Pill =1- �1+ D
β

�
-α

                                                                            (9) 

 

where D is the dose of Salmonella consumed (in CFU), calculated by multiplying the mass 

per serving of food product (M, in g) [49] with the concentration of Salmonella at the point 

of consumption (Cconsumption, in CFU per g), and α, β are parameters of the model. The 

output of the model is defined as “acute gastroenteritis”, meaning a self-limiting 

gastrointestinal illness lasting 2-7 days that is characterized by diarrhoea, fever, abdominal 

cramps, and dehydration. The risk per serving of undercooked meat or cross-contaminated 

salad was assessed separately (5A and 5B). 

 

5A – Risk per serving of undercooked meat (Riskundercooking). The risk of salmonellosis per 

serving of undercooked chicken was estimated as follows: 

Riskundercooking = Pretail x Pundercooked meat x Pill-undercooked meat                                                                      (10) 

where Pretail is the prevalence of Salmonella in raw chicken meat at retail, Pundercooked meat the 

possibility of eating undercooked meat (Eq. 5) and Pill-undercooked meat the probability of illness 
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estimated through equation 9 based on the concentration of Salmonella in undercooked 

meat. 

 

5B – Risk per serving of cross-contaminated salad (RiskH salad, RiskBK-unwashed salad, RiskBK-rinsed 

salad). The risk of salmonellosis per serving of cross-contaminated salad through the hands 

(RiskH salad) or via the cutting board and knife (RiskB salad) was separately estimated using 

the following equations: 

RiskH salad = Pretail x PH salad x Pill-H salad                                                                        (11) 

RiskBK-unwashed salad = Pretail x PBK-unwashed salad x Pill-BK-unwashed salad                                     (12) 

RiskBK-rinsed salad = Pretail x PBK-rinsed salad x Pill-BK-rinsed salad                                                 (13) 

where PBK-unwashed salad, PBK-rinsed salad and PH salad are estimated as described in equations 6 to 

8 respectively and Pill-H salad, Pill-BK-unwashed salad and Pill-BK-rinsed salad are estimated through 

equation 9 based on the concentration of Salmonella in cross-contaminated salad by hands, 

unwashed board and knife, and rinsed board and knife, respectively. 

     

Step 6 – Level of Protection for chicken meat (LOPchicken). The LOP for chicken meat was 

considered to be the product of the number of servings per 100,000 people with the total 

risk per serving (RiskTotal): 

LOPchicken = S x 105 x RiskTotal 

where RiskTotal is the sum of all risks per serving due to undercooking and cross-

contamination and S is the number of servings of chicken meat per person per year 

calculated by dividing the per capita consumption (kg per person per year) after a 

correction of the data to include only the edible parts of the animals which is about 50% 

of the carcass (Richard Hol, personal communication) with the mass per serving [49]. 

 

2.2. Top-down approach 

2.2.1. Model description 

The starting point of this model was epidemiological data on the burden of salmonellosis 

in the Netherlands considering that the current level of public health protection (LOP) in a 

country has been suggested by some to be representative of an ALOP [82] though some 

countries may find this level of protection to be unacceptable and may wish to reduce it 

156

Chapter 4



156 
 

mass per serving of chicken meat [53]. The resulting estimate was similar to estimates 

regarding the mean probability of eating a raw item with a chicken meal in Belgium [40]. 

Ppreparing salad after chicken is the probability of preparing the salad after the chicken [53].  

PBK-unwashed  is the probability of using the same cutting board and knife with which meat 

was handled to cut vegetables. This was assumed to be the same probability as that of 

using an unwashed cutting board, which is in the range of 0.01-0.05 based on Dutch 

studies [44, 53] and which was represented in the model by a Uniform distribution. 

 PBK-rinsed is the probability of using the same cutting board and knife with which meat was 

handled after rinsing only with water to cut vegetables for a salad. This was represented 

here by the probability of using a cutting board that has only been rinsed with water, which 

is 0.28 [44]. 

Punwashed hands is the frequency of not washing hands after handling meat [53]. 

Step 5 – Risk per serving of undercooked meat and cross-contaminated salad. The risk of 

salmonellosis per serving was estimated with the beta-Poisson model used in the FAO/WHO 

risk assessment of Salmonella in chicken products [46]. In this model, based on outbreak 

data, the probability of illness (Pill) is estimated using the equation:  

Pill =1- �1+ D
β

�
-α

                                                                            (9) 

 

where D is the dose of Salmonella consumed (in CFU), calculated by multiplying the mass 

per serving of food product (M, in g) [49] with the concentration of Salmonella at the point 

of consumption (Cconsumption, in CFU per g), and α, β are parameters of the model. The 

output of the model is defined as “acute gastroenteritis”, meaning a self-limiting 

gastrointestinal illness lasting 2-7 days that is characterized by diarrhoea, fever, abdominal 

cramps, and dehydration. The risk per serving of undercooked meat or cross-contaminated 

salad was assessed separately (5A and 5B). 

 

5A – Risk per serving of undercooked meat (Riskundercooking). The risk of salmonellosis per 

serving of undercooked chicken was estimated as follows: 

Riskundercooking = Pretail x Pundercooked meat x Pill-undercooked meat                                                                      (10) 

where Pretail is the prevalence of Salmonella in raw chicken meat at retail, Pundercooked meat the 

possibility of eating undercooked meat (Eq. 5) and Pill-undercooked meat the probability of illness 
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estimated through equation 9 based on the concentration of Salmonella in undercooked 

meat. 

 

5B – Risk per serving of cross-contaminated salad (RiskH salad, RiskBK-unwashed salad, RiskBK-rinsed 

salad). The risk of salmonellosis per serving of cross-contaminated salad through the hands 

(RiskH salad) or via the cutting board and knife (RiskB salad) was separately estimated using 

the following equations: 

RiskH salad = Pretail x PH salad x Pill-H salad                                                                        (11) 

RiskBK-unwashed salad = Pretail x PBK-unwashed salad x Pill-BK-unwashed salad                                     (12) 

RiskBK-rinsed salad = Pretail x PBK-rinsed salad x Pill-BK-rinsed salad                                                 (13) 

where PBK-unwashed salad, PBK-rinsed salad and PH salad are estimated as described in equations 6 to 

8 respectively and Pill-H salad, Pill-BK-unwashed salad and Pill-BK-rinsed salad are estimated through 

equation 9 based on the concentration of Salmonella in cross-contaminated salad by hands, 

unwashed board and knife, and rinsed board and knife, respectively. 

     

Step 6 – Level of Protection for chicken meat (LOPchicken). The LOP for chicken meat was 

considered to be the product of the number of servings per 100,000 people with the total 

risk per serving (RiskTotal): 

LOPchicken = S x 105 x RiskTotal 

where RiskTotal is the sum of all risks per serving due to undercooking and cross-

contamination and S is the number of servings of chicken meat per person per year 

calculated by dividing the per capita consumption (kg per person per year) after a 

correction of the data to include only the edible parts of the animals which is about 50% 

of the carcass (Richard Hol, personal communication) with the mass per serving [49]. 

 

2.2. Top-down approach 

2.2.1. Model description 

The starting point of this model was epidemiological data on the burden of salmonellosis 

in the Netherlands considering that the current level of public health protection (LOP) in a 

country has been suggested by some to be representative of an ALOP [82] though some 

countries may find this level of protection to be unacceptable and may wish to reduce it 
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[83]. A schematic representation of the different steps in the model established to derive 

the metrics specifically relating to Salmonella in raw chicken meat is shown in Figure 2, 

while a comprehensive overview of the inputs and outputs of the model is provided in Table 

2. Detailed descriptions of each individual step follow below.   

 

Step 1 – Reported cases 100,000 inhabitants (RC). National data on the number of 

reported laboratory confirmed cases of salmonellosis for the period 2004-2010 [51, 52] 

were expressed per 100,000 inhabitants on the basis of official population statistics [81]. 

 

Step 2 – Total cases per 100,000 inhabitants (LOP). Reported cases of salmonellosis 

represent only part of the actual burden of the specific illness in the population since the 

majority of cases are self-limiting and do not result in a visit to a physician [84]. To 

estimate the total number of cases of salmonellosis within the population, a correction was 

performed for underreporting on the basis of a recent study for the period 2005-2009 [85] 

where the Netherlands was the reference country for estimating this parameter. 

 

Step 3 – Total foodborne cases per 100,000 inhabitants (LOPfood). Based on a recent study 

for the Netherlands, Salmonella is almost exclusively transmitted via food [86] and the 

majority of salmonellosis cases is regarded as foodborne [87]. The actual fraction of cases 

attributable to food was considered to have a most likely value of 0.95 that fits the 

description of the RIVM study similar to Mead et al. (1999) and a range of 0.87-1.0 based 

on what is known from international studies [88-91].  

 

Step 4 – Total cases per 100,000 inhabitants due to chicken meat (LOPchicken). To estimate 

the fraction of the cases that can be attributed to chicken meat, country specific data 

regarding the attribution of cases to broilers were used covering the period 2005-2010 

(van Pelt, personal communication related to published data [51]). The data were available 

in the form of mean annual estimates for this parameter accompanied by a 95% CI (from 

the 2.5th to the 97.5th percentile). The mean and standard deviation expressing the 

variation of the percentiles were used to build normal distributions which in turn were used 

to define a normal distribution to describe source attribution to broilers. This distribution 

was simulated separately under the same @RISK settings as the bottom-up model (see 

section 2.4.). Results from these simulations were best fitted with a loglogistic distribution 

and this distribution was therefore used in our estimates.  
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Figure 2. Outline of the estimation steps in the top-down approach model. Epidemiological 

data in the form of reported cases of salmonellosis in the Netherlands were the starting 

point for the estimation of the current LOP and the FSO. 

 

 

Step 5 – Food Safety Objective for chicken meat (FSOchicken meat). Similarly to the bottom-

up approach, the beta-Poisson model of the FAO/WHO risk assessment [46] was used to 

connect the cases of salmonellosis due to chicken meat with the concentration of the 

pathogen at the point of consumption as follows: 

ALOPchicken meat = S x 105 x Pretail x (Pundercooking + Pcontaminated salad) x Pill                       (15) 

where Pcontaminated salad = PBK-unwashed  + PBK-rinsed  + PH salad                                            (16) 

Taking into account equation 9 and solving for the concentration at consumption, equation 

15 becomes: 

Cconsumption= β
M
∙

⎣
⎢
⎢
⎢
⎡
10
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Similar to step 4C of the bottom-up approach where the FSO is set considering both the 

concentration of the hazard at consumption and its frequency, which, in turn is defined by 

the prevalence of Salmonella and probability of events leading to exposure (undercooking 

and cross-contamination of salads), the FSO is here estimated as:  

FSOchicken meat = Log[Cconsumption x Pretail x (Pundercooked meat + Pcontaminated salad)]                  (18) 

2.3. International comparisons of LOPs using the top-down approach. The suitability of the 

top-down approach model for comparisons of LOPs for salmonellosis specifically attributed 

to chicken meat between 23 different EU countries was investigated using generic data. To 

this end, salmonellosis incidence data reported in the annual zoonoses reports of the EU 

were used [92-98] as well as European studies regarding underreporting [85] and source 

attribution factors based on microbial subtyping [99]. Considering that cases of 

salmonellosis are regarded to be mainly foodborne [88-91, 100, 101], in all estimations 

the input distribution for foodborne transmission used in step 3 of the Dutch top-down 

model was used for all 23 countries, assuming that this represents well the range for this 

parameter in these EU countries. An overview of the generic input data used for different 

European countries with the top-down approach can be found in Table 3. To evaluate the 

impact of using the country specific data for the Netherlands selected in our study rather 

than the generic data reported at the EU level for the Netherlands to estimate current LOP 

values, estimates produced with both types of datasets were compared.  

2.4. Software and simulation settings. Models were built in Microsoft Excel 2010 (Microsoft, 

Redmond, WA, USA) using the add-in @RISK 5.7 (Palisade Corporation, Ithaca NY). For 

every model one simulation of 100,000 iterations was performed using Latin Hypercube 

sampling in combination with a Mersenne twister random number generator. A fixed seed 

value of 1 was selected so that the impact of alternative input parameters could be tested 

while avoiding changes in the outputs that are due to the effect of random sampling, but 

also to allow the exact reproduction of our results by others provided that the same 

spreadsheets are used [102]. Copies of the spreadsheets containing the models are 

available from the authors upon request.   

 

3. Results and Discussion 

3.1. Estimated LOP values for salmonellosis due to chicken meat in the Netherlands.  

The mean estimated ALOP for salmonellosis due to chicken meat in the Netherlands was 

found to be 71 cases per 100,000 people per year (95% CI: 9.9-155, SD 38) deploying 

the top-down approach model and 87 cases per 100,000 people per year (95% CI: 0.03-

904, SD 412) with the bottom-up approach model.
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Similar to step 4C of the bottom-up approach where the FSO is set considering both the 

concentration of the hazard at consumption and its frequency, which, in turn is defined by 

the prevalence of Salmonella and probability of events leading to exposure (undercooking 

and cross-contamination of salads), the FSO is here estimated as:  

FSOchicken meat = Log[Cconsumption x Pretail x (Pundercooked meat + Pcontaminated salad)]                  (18) 

2.3. International comparisons of LOPs using the top-down approach. The suitability of the 

top-down approach model for comparisons of LOPs for salmonellosis specifically attributed 

to chicken meat between 23 different EU countries was investigated using generic data. To 

this end, salmonellosis incidence data reported in the annual zoonoses reports of the EU 

were used [92-98] as well as European studies regarding underreporting [85] and source 

attribution factors based on microbial subtyping [99]. Considering that cases of 

salmonellosis are regarded to be mainly foodborne [88-91, 100, 101], in all estimations 

the input distribution for foodborne transmission used in step 3 of the Dutch top-down 

model was used for all 23 countries, assuming that this represents well the range for this 

parameter in these EU countries. An overview of the generic input data used for different 

European countries with the top-down approach can be found in Table 3. To evaluate the 

impact of using the country specific data for the Netherlands selected in our study rather 

than the generic data reported at the EU level for the Netherlands to estimate current LOP 

values, estimates produced with both types of datasets were compared.  

2.4. Software and simulation settings. Models were built in Microsoft Excel 2010 (Microsoft, 

Redmond, WA, USA) using the add-in @RISK 5.7 (Palisade Corporation, Ithaca NY). For 

every model one simulation of 100,000 iterations was performed using Latin Hypercube 

sampling in combination with a Mersenne twister random number generator. A fixed seed 

value of 1 was selected so that the impact of alternative input parameters could be tested 

while avoiding changes in the outputs that are due to the effect of random sampling, but 

also to allow the exact reproduction of our results by others provided that the same 

spreadsheets are used [102]. Copies of the spreadsheets containing the models are 

available from the authors upon request.   

 

3. Results and Discussion 

3.1. Estimated LOP values for salmonellosis due to chicken meat in the Netherlands.  

The mean estimated ALOP for salmonellosis due to chicken meat in the Netherlands was 

found to be 71 cases per 100,000 people per year (95% CI: 9.9-155, SD 38) deploying 

the top-down approach model and 87 cases per 100,000 people per year (95% CI: 0.03-

904, SD 412) with the bottom-up approach model.
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A more detailed comparison of the characteristics of the output distributions obtained with 

these models can be seen in Figure 3. Although the mean LOP estimates obtained with the 

two approaches were found to be very similar, they were associated with considerable 

variance mainly because of the underreporting factor in the top-down approach and the 

Salmonella concentration in the bottom-up approach (see Figure 4). Depending on the 

lower and upper percentiles selected for deriving a range for the confidence interval 

surrounding the mean, the LOP was found to vary up to a factor 36 for estimates derived 

top-down and even up to a factor 105 when estimates were derived bottom-up. The wide 

range of these confidence intervals is not surprising given the stochastic nature of the risk 

estimates. In particular, an inherent limitation of the bottom-up model is that it considers 

many more inputs than the top-down model, each associated with considerable variance 

that accumulates in the risk characterization step of the risk assessment. Setting an ALOP 

on the basis of these results would require a risk management decision.  

 

Figure 3. Detailed characteristics of the ALOP output distributions for chicken meat as 

obtained with the top-down (grey bars) and the bottom-up approach (black bars). Numbers 

on the y-axis are presented on a logarithmic scale to facilitate comparisons.  

 

Since an ALOP expresses the maximum level of illness that is tolerated within a population 

[19], it requires the governmental risk manager to judge the degree of confidence in a risk 
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Figure 4. Analysis of the impact of the stochastic inputs used in the top-down approach 

model (a) and the bottom-up approach model (b) on the estimated ALOP for chicken meat, 

using Spearman’s rank correlation coefficients. 

 

estimate derived either via a risk assessment of food supply chain data or on the basis of 

epidemiological data. This confidence will affect the ability to set a new ALOP, such that 

this level is not surpassed [12]. An important decision to be made by these risk managers 
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A more detailed comparison of the characteristics of the output distributions obtained with 

these models can be seen in Figure 3. Although the mean LOP estimates obtained with the 

two approaches were found to be very similar, they were associated with considerable 

variance mainly because of the underreporting factor in the top-down approach and the 

Salmonella concentration in the bottom-up approach (see Figure 4). Depending on the 

lower and upper percentiles selected for deriving a range for the confidence interval 

surrounding the mean, the LOP was found to vary up to a factor 36 for estimates derived 

top-down and even up to a factor 105 when estimates were derived bottom-up. The wide 

range of these confidence intervals is not surprising given the stochastic nature of the risk 

estimates. In particular, an inherent limitation of the bottom-up model is that it considers 

many more inputs than the top-down model, each associated with considerable variance 

that accumulates in the risk characterization step of the risk assessment. Setting an ALOP 

on the basis of these results would require a risk management decision.  

 

Figure 3. Detailed characteristics of the ALOP output distributions for chicken meat as 

obtained with the top-down (grey bars) and the bottom-up approach (black bars). Numbers 

on the y-axis are presented on a logarithmic scale to facilitate comparisons.  
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Figure 4. Analysis of the impact of the stochastic inputs used in the top-down approach 

model (a) and the bottom-up approach model (b) on the estimated ALOP for chicken meat, 

using Spearman’s rank correlation coefficients. 

 

estimate derived either via a risk assessment of food supply chain data or on the basis of 

epidemiological data. This confidence will affect the ability to set a new ALOP, such that 

this level is not surpassed [12]. An important decision to be made by these risk managers 

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

underreporting factor

attribution to chicken meat

reported cases

food attribution fraction

Coefficient Value

a

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

concentration of Salmonella in chicken meat at retail

LogDref Salmonella

transfer rate from hand to salad

transfer rate from chicken to hand

frequency of undercooking

b parameter of Ratkowsky model

α parameter of dose response model

storage time

cooking temperature

cooking time

storage temperature

β parameter of the dose response model

prevalence of Salmonella in chicken meat at retail

fraction of Salmonella cells in protected areas

annual per capita consumption of chicken meat

probability of not washing the cutting board and knife

Coefficient Value

b

Salmonella 

Salmonella 

Salmonella 

Salmonella 

167

Risk assessment strategies as a tool in th application of the Appropriate Level of
Protection (ALOP) and Food Safety Objective (FSO) by risk managers

4



168 
 

is which upper percentile of the stochastic estimates will be used to set the ALOP. The 95th 

percentile is often suggested for such purposes [12], but other upper percentiles such as 

the 90th or the 99th may also be options. Figure 3 illustrates that, for the specific case at 

hand, it may be more straightforward to base the selection of ALOP on the outcomes of 

the top-down approach, in which the values estimated for the 90th to 99th percentile range 

differ to a rather small extent, namely less than a factor of 2 when comparing the 90th with 

the 99th percentile and at maximum 10% when comparing neighbouring percentiles. The 

same selection may be less straightforward when basing it on the bottom-up approach, 

since the upper percentiles can differ in the estimated risk level by a factor of 15 when 

comparing again the 90th with the 99th percentile and differences between neighbouring 

percentiles are much greater. The parallel use of both approaches has been recommended 

so that the estimates can to some extent be validated against each other [26]. Thus, a 

possible option for setting the ALOP could be the 90th percentile, around which the ALOP 

estimates of the two models in this study coincide at approximately 119 cases per 100,000 

people per year. However, the percentiles at which the values of the two distributions will 

coincide will vary depending on the risk unit used to derive the population risk. In our case, 

to illustrate the impact that this selection has on the ALOP we have selected the risk per 

serving which resulted in great variance (95% CI: 0.03-904, SD 412). Had we selected the 

risk per person or the risk per 100,000 people (assuming an annual consumption of 71 

servings), the variance surrounding the estimates would have been narrower and the 

coinciding percentiles different. In particular using the central limit theorem to estimate 

the population risk as a normal distribution using our risk per serving simulation data, the 

top down ALOP would have been 96 cases per 100,000 people (95% CI: 15-185, SD 44) 

on the basis of the risk per person and 93 cases per 100,000 people (95% CI: 92.8-93.0, 

SD 0.047) on the basis of 100,000 people.    

At this point it should be emphasized that care needs to be taken that the severity of the 

illness estimated is the same when using both approaches in parallel. For the purpose of 

our study, we have chosen to express the ALOP as cases of salmonellosis per 100,000 

people per year according to the recommendations of the ICMSF [83]. In both models, 

salmonellosis refers to gastroenteritis caused by the ingestion of Salmonella, but there 

may be important differences in the way gastroenteritis is defined resulting in outcomes 

that are not fully comparable. For the input data used in the top-down model, 

gastroenteritis was defined as three or more loose stools in a period of 24h or the 

occurrence of three different gastrointestinal symptoms preceded by a two week period 

without symptoms [85, 104], but in the bottom-up model it is defined as “any degree of 

gastroenteritis” [46]. Although the latter definition of gastroenteritis encompasses the 

former and they both account for the total number of cases of gastroenteritis in the general 

population, it may be that the severity of the endpoint of the disease is different between 
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the two ALOP estimates. It is, for instance possible, that some very mild cases of 

gastroenteritis have been missed with the top-down approach, leading to an under-

estimation of the actual public health status in this case. With the information available to 

us, it is not possible to estimate how significant this difference may be, although it has 

been reported elsewhere that differences in the definition of gastroenteritis can influence 

disease incidence estimates 1.5-2.1 times in a given country [105].  

 

To determine the influence of stochastic inputs on the outputs of a model and to investigate 

if the model is behaving as expected, a sensitivity analysis was performed [102]. Tornado 

charts, using Spearman’s rank correlation coefficients, were built to assess the impact of 

the stochastic inputs on ALOP estimates for both approaches followed in our study (Figure 

4). For the ALOP estimated top-down, by far the most important input is the underreporting 

factor (0.91), followed by the percentage of cases attributed to chicken meat consumption 

(0.28) and the number of reported cases (0.24). In the bottom-up model, the 

concentration of Salmonella in chicken at retail (0.79) is the most influential input, followed 

by the logarithm of the reference decimal reduction time (0.37). The various other inputs 

were more weakly correlated with the ALOP, either negatively or positively.  

 

3.2. Estimated FSO values for chicken meat in the Netherlands. 

The estimated arithmetic mean value for the FSO for chicken meat derived by the top-

down approach and the bottom-up approach was found to be -4.6 log CFU/g (95% CI: -

5.4 to -4.1, SD 0.32)  and -6.0 log CFU/g (95% CI: -8.1 to -2.9, SD 1.3), respectively. 

This FSO can be considered to be the pooled concentration of Salmonella from several 

different types of cross-contaminated or undercooked servings at the time of consumption. 

A more detailed comparison of the characteristics of the output distributions obtained with 

these models is shown in Figure 5. The two approaches resulted in very different FSO 

estimates, both in terms of the mean estimate and the confidence interval, reflecting major 

differences in the way the FSO was derived. The top-down approach resulted in a 

leptokurtic, negatively skewed FSO distribution, with a very narrow confidence interval of 

about 1 log CFU/g surrounding the mean. Conversely, the bottom-up approach resulted in 

a very platykurtic distribution that was positively skewed, with a very broad confidence 

interval of about 5 log CFU/g. The two distributions coincided around the 90th percentile at 

-4.3 log CFU/g. Following the rationale suggested above for the ALOP, an upper percentile 

where both approaches yield comparable outcomes may possibly be chosen to set the FSO. 

If the 90th percentile is chosen for this purpose, then this would mean that for contaminated 

servings of meat or salad with Salmonella at the time of consumption their pooled 

concentration can only 10% of the time exceed -4.3 log CFU/g so that the overall health 

burden does not exceed 119 cases per 100,000 people. 
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Figure  5. Detailed characteristics of the FSO output distributions for chicken meat as 

obtained with the top-down model (grey bars) and the bottom-up model approach (black 

bars). 

 

Notably, estimating an FSO with either of the two models is subject to considerable 

limitations. Regarding the FSO estimated top-down in our study, the main issue is that it 

was estimated by reverse engineering the dose-response equation. Therefore it is only one 

of an infinite number of plausible solutions for this parameter, given the stochastic nature 

of the model [19]. In reality, while different types of distributions of the hazard 

concentration at the point of consumption could lead to the same or similar estimate for 

the ALOP, they could generate many different FSO values. Regarding the FSO estimated 

top-down, the most important limitation is the fact that it was calculated simplifying reality 

by assuming that undercooking and two specific cross-contamination pathways would be 

the only events impacting on pathogen levels at consumption. Obviously, more sources of 

cross-contamination may have an impact, such as the external packaging of raw meat 

[106], the water tap [107] or reusable shopping bags [108]. Also, ready-to-eat items other 

than salad may be involved in cross-contamination in households at the point of 

consumption. These were not modelled here because they were either recognized as less 

significant routes than hands, or utensils such as cutting boards and knives [75] or because 

of a lack of pertinent data to incorporate in the model. These and other important 

assumptions of the bottom-up model are summarized in Table 4. The availability of 
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knowledge and data for realistic modelling in this regard remains a challenge. Given that 

the setting of the benchmark is not optimal with either approach, a solution would be to 

use both approaches in parallel which would require a conscious decision on the side of the 

risk manager on which of the upper percentiles, where the two distributions tend to 

coincide, could be used to set the FSO. Such a decision would be better defendable than 

selecting only one of the two approaches and even more so when the comparison of upper 

percentiles involves multiple distributions from each approach based on alternative 

combinations of inputs or different scenarios.    

 

Table 4. Assumptions behind the bottom-up model that could lead in over- or under- 

predictions 

Over-predictions 

- The cross-contaminated salads are not washed and consumed as such. 

- All chicken meat is presumed to be cooked and consumed in households by people 

that did not receive appropriate training on how to handle raw meat. 

- Direct hand contact leads to cross-contamination; in reality cross-contamination 

through spigots is also possible and this would result in a lower transfer of cells 

to the salad. 

- No lag phase is used. 

Under-predictions 

- The undercooked meat is safe after reheating. 

- Hands are not considered a risk for cross-contamination after washing. 

- Salad is the only item that can be cross-contaminated. 

- Recent data regarding the heat resistance of pathogens on the surface of chicken 

meat when fried or boiled suggest that D-values may be higher than what is so 

far known when estimated under conditions that simulate handling by the 

consumer (Bergsma et al, 2007; de Jong et al. 2012). 

Either way 

- Data from chicken fillets are extrapolated to chicken meat. 

 
A sensitivity analysis of the impact of stochastic inputs on FSO estimates can be found in 

Figure 6. The inputs of the top-down model most strongly influencing the estimates were 

the underreporting factor (0.86), the percentage of cases attributed to chicken meat (0.27) 

and the α parameter of the dose response model (-0.26). For the bottom-up approach, the 

most strongly correlated input was the concentration of Salmonella in chicken meat at 

retail (0.77), followed by the logarithm of the reference decimal reduction time (0.42). The 

remainder of the inputs of the model were less strongly influential on the FSO estimates. 
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Figure 6. Analysis of the impact of the stochastic inputs used in of the top-down approach 

model (a) and the bottom-up approach model (b) on the estimated FSO for chicken meat, 

using Spearman’s rank correlation coefficients. 
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3.3. Comparison of current  LOPs for salmonellosis due to chicken meat between EU 

countries 

An overview of the current LOP values for salmonellosis transferred via chicken meat  

obtained with the top-down model for different European Union member states (including 

95% confidence intervals) on the basis of data from annual Community reports are shown 

in Figure 7. The calculated mean LOPs span a surprisingly wide range. For some countries 

(i.e Portugal, Poland, Luxemburg, Greece, Hungary and Estonia) estimates are well above 

100 cases per 100,000 people per year. For other countries (i.e. Sweden, Austria, Finland, 

United Kingdom, Ireland and Germany) these estimates are well below 5 cases per 100,000 

people per year. For the remainder of countries, estimates fall between 5 and 100 cases 

per 100,000 people per year. Unfortunately, it was not possible to establish correlations 

between the number of cases and the prevalence of Salmonella in chicken meat for 

different countries in detail, such as reported in studies for laying hen flocks [85], as data 

on the prevalence of the pathogen in fresh broiler meat at retail reported to EFSA [92-98] 

was either poor or completely lacking, such as in the case of Finland, Ireland, Poland and 

Portugal.  

 

Figure 7. Estimates of current LOP for 23 European Union member states using the top-

down model. Numbers on the y-axis are presented on a logarithmic scale to facilitate 

comparisons. Whiskers show the 95% confidence interval.  
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Estimates presented here for current LOPs across different countries in Europe need to be 

interpreted with due care as they are the result of the specific input data chosen in our 

top-down model which in turn are influenced by the methodology  used to collect them. 

For instance, the number of cases reported by countries may be subject to particular biases 

related to differences in the sensitivity of surveillance systems, case definition of 

salmonellosis and differences between national and international datasets regarding 

incidence. Although in our model potential differences in LOP estimates related to the first 

two considerations may be somewhat normalized through the use of underreporting factors 

that are based on tourist data to estimate total cases in the community, this is not the 

case for potential disagreements between national and international data for case rates in 

a given country. Moreover, differences in choices of available datasets concerning other 

inputs such as source attribution estimates are possible and may lead to different LOP 

values being estimated for a particular country. This was evident when attempting to 

compare the LOP distribution that we derived for the Netherlands on the basis of national 

data with the one we derived using data reported at the EU level (Figure 8a). In this case, 

the two distributions were markedly different with the national LOP estimate was much 

higher than the one obtained with EU level data. Interestingly, this phenomenon was not 

observed when attempting a similar comparison between LOPs for pork in the Netherlands 

using the same national and international literature sources (Figure 8b). Here the use of 

different datasets led to only slight deviations between the two output distributions that 

still coincide at their upper percentiles. The huge deviations observed in the case of LOP 

estimates for chicken meat possibly may be mainly due to differences in source attribution 

data for this product and to a far less extent due to differences in incidence data (see 

Tables 2 and 3 for the actual distributions) considering that the other inputs used for the 

estimation were the same. It has been reported elsewhere that variations in the 

methodology used to derive the percentage of cases attributed to a specific food source 

can lead to different estimates for this parameter [109] and could be responsible for the 

large differences we observed using either the data reported at EU level or data we 

retrieved from sources in the Netherlands. It should be noted that the same applies to 

underreporting factors estimated using tourist studies, despite the obvious advantage of 

these for expressing risks on a common basis [85, 110]. With regards to our case-study, 

the most important drawback of using underreporting factors based on tourist studies is 

the fact that they do not take into account potential differences in the endemicity of specific 

Salmonella serotypes and strains or acquired immunity between tourists and local residents 

[85]. Considering that the factors we used were based on tourists from the North of Europe, 

it would be interesting to see if similar results would occur when tourists from the South 

or East of Europe are used to derive the estimates. A comparative study using tourists 
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from other regions would be crucial before using such underreporting factors for 

international comparisons of ALOPs in the context of the SPS Agreement.   

 
Figure 8. Effect of using only national datasets or only international datasets reported at 

the EU level on the estimated current LOP for chicken meat (a) and pork (b) in the 

Netherlands.  
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3.4. Issues in the implementation of the concepts  

3.4.1. FSO definition  

Throughout the development of the FSO concept in Codex and deliberations in other fora, 

a major issue highlighted was implementation of an FSO for raw products, such as chicken 

meat. The majority of delegates at a workshop on the application of the FSO concept in 

food safety management [21] agreed that ideally the FSO should apply at the point of 

consumption but that, for products involving handling by the consumer, it would better be 

set at the start of the preparation of the meal or at the point of purchase. In our study it 

was considered that the FSO applies at the point of consumption according to its current 

definition [111] and that a PO could be set at the point of retail or even closer to the point 

of consumption, where relevant. Indeed, estimating an FSO based on the Codex definition 

proved to be quite challenging, as more than one food product in our models may 

ultimately contribute to illness and very few data on consumer handling are available. We 

chose to use two different products to estimate the likely concentration of the pathogen at 

consumption bottom-up (undercooked chicken and cross-contaminated salad) and 

simplified the top-down estimates using only chicken meat. In reality, the situation can be 

more complicated since exposure will depend on the number and type of items involved in 

cross-contamination events and some routes starting from the chicken meat such as hands 

to mouth either directly from the meat or indirectly from contaminated surfaces do not 

involve ingestion of a product but of cells directly. Since it is the number of cells ingested 

that defines the risk, it might be more appropriate to establish a maximum for the dose 

instead of the concentration and/or prevalence of the pathogen in the food that relates to 

an ALOP. This would be in agreement with suggestions from other authors to use a 

prevalence – dose curve (P-D curve) to set the FSO [19]. However, as the FSO has been 

developed as a metric to guide operational food safety management, it is valid to consider 

aspects of pathogen levels that may be controlled by the industry to an extent as specified 

by competent authorities in terms of concentration and prevalence.  

 

3.4.2. Level of complexity in the models used to derive ALOP/FSO values 

While it is evident that when establishing ALOP and FSO values specific to certain types of 

food based on epidemiological data, issues can be the source attribution and the sensitivity 

of surveillance systems, a specific issue related to using food supply chain data is the level 

of complexity of the risk assessment models used for this purpose [26]. In the case of raw 

products that involve preparation and handling by consumers prior to consumption, the 

level of illness in the population may be heavily influenced by phenomena such as 

undercooking and cross-contamination, which are highly uncertain and variable events and 

can be incorporated in a model in many different ways. Although these two phenomena 
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are considered in most risk assessments published elsewhere  [37, 40, 41, 46, 112], in 

some only undercooking [113] or only cross-contamination [76] are modelled. Notably, 

which events are included as contributing to these phenomena, whether their probabilities 

are independent or not and whether they are incorporated as point estimates or stochastic 

inputs into a particular model all vary considerably. It may also often be considered  that 

incorporating parameters in a stochastic way instead of point estimates increases the mean 

risk estimate [114] and the associated variance. As a good practice guideline, it has been 

recommended to use a rather simple model for validating results and a more complex one 

for providing additional insight [115], such as used here deploying a top-down and bottom-

up modelling approach differing in modelling complexity.     

 

3.4.3. Considerations regarding establishing current LOPs to evaluate equivalence of 

phytosanitary measures between countries  

In the context of the SPS agreement [7], the ALOP is a means of evaluating the equivalence 

of specific phytosanitary measures between different countries. In our study, it seemed 

that a top-down approach may be easier to apply for this purpose, given the international 

data available to us, than the bottom-up approach. This method allowed for a rather 

straightforward estimation of the risk associated with the consumption of chicken meat in 

different countries, even considering the substantial variance in the estimates. Neither the 

top-down nor the bottom-up model deployed in our study allowed for an equally 

straightforward estimation of FSOs with the current level of detail in international data.  

 

3.5. Improving the estimates 

Many authors before us have mentioned that the availability of better data would help 

improve predictions through risk assessment [37, 47, 112] and that for establishing values 

for ALOP/FSO, important data gaps need to be addressed through targeted research [21]. 

In this study we noted several research areas where future work could be targeted to 

further improve data. 

As discussed before, decisions regarding the way exposure to Salmonella through for 

instance undercooking and cross-contamination is modelled can have a profound impact 

on the estimated risk. Relatively few studies exist on consumer practices related with these 

phenomena and for but a handful of countries. Most of these are based on questionnaires 

or telephone interviews concerning food safety [116, 117], which also applies for the study 

that we used to estimate the incidence of undercooking and cross-contamination events 

for the Netherlands [44]. Only very few studies concern actual observations of consumer 

behaviour [118, 119]. Since awareness of food safety issues does not necessarily translate 

into safe food handling practices [120], more carefully designed observational studies 

176

Chapter 4



176 
 

3.4. Issues in the implementation of the concepts  

3.4.1. FSO definition  

Throughout the development of the FSO concept in Codex and deliberations in other fora, 

a major issue highlighted was implementation of an FSO for raw products, such as chicken 

meat. The majority of delegates at a workshop on the application of the FSO concept in 

food safety management [21] agreed that ideally the FSO should apply at the point of 

consumption but that, for products involving handling by the consumer, it would better be 

set at the start of the preparation of the meal or at the point of purchase. In our study it 

was considered that the FSO applies at the point of consumption according to its current 

definition [111] and that a PO could be set at the point of retail or even closer to the point 

of consumption, where relevant. Indeed, estimating an FSO based on the Codex definition 

proved to be quite challenging, as more than one food product in our models may 

ultimately contribute to illness and very few data on consumer handling are available. We 

chose to use two different products to estimate the likely concentration of the pathogen at 

consumption bottom-up (undercooked chicken and cross-contaminated salad) and 

simplified the top-down estimates using only chicken meat. In reality, the situation can be 

more complicated since exposure will depend on the number and type of items involved in 

cross-contamination events and some routes starting from the chicken meat such as hands 

to mouth either directly from the meat or indirectly from contaminated surfaces do not 

involve ingestion of a product but of cells directly. Since it is the number of cells ingested 

that defines the risk, it might be more appropriate to establish a maximum for the dose 

instead of the concentration and/or prevalence of the pathogen in the food that relates to 

an ALOP. This would be in agreement with suggestions from other authors to use a 

prevalence – dose curve (P-D curve) to set the FSO [19]. However, as the FSO has been 

developed as a metric to guide operational food safety management, it is valid to consider 

aspects of pathogen levels that may be controlled by the industry to an extent as specified 

by competent authorities in terms of concentration and prevalence.  

 

3.4.2. Level of complexity in the models used to derive ALOP/FSO values 

While it is evident that when establishing ALOP and FSO values specific to certain types of 

food based on epidemiological data, issues can be the source attribution and the sensitivity 

of surveillance systems, a specific issue related to using food supply chain data is the level 

of complexity of the risk assessment models used for this purpose [26]. In the case of raw 

products that involve preparation and handling by consumers prior to consumption, the 

level of illness in the population may be heavily influenced by phenomena such as 

undercooking and cross-contamination, which are highly uncertain and variable events and 

can be incorporated in a model in many different ways. Although these two phenomena 

177 
 

are considered in most risk assessments published elsewhere  [37, 40, 41, 46, 112], in 

some only undercooking [113] or only cross-contamination [76] are modelled. Notably, 

which events are included as contributing to these phenomena, whether their probabilities 

are independent or not and whether they are incorporated as point estimates or stochastic 

inputs into a particular model all vary considerably. It may also often be considered  that 

incorporating parameters in a stochastic way instead of point estimates increases the mean 

risk estimate [114] and the associated variance. As a good practice guideline, it has been 

recommended to use a rather simple model for validating results and a more complex one 

for providing additional insight [115], such as used here deploying a top-down and bottom-

up modelling approach differing in modelling complexity.     

 

3.4.3. Considerations regarding establishing current LOPs to evaluate equivalence of 

phytosanitary measures between countries  

In the context of the SPS agreement [7], the ALOP is a means of evaluating the equivalence 

of specific phytosanitary measures between different countries. In our study, it seemed 

that a top-down approach may be easier to apply for this purpose, given the international 

data available to us, than the bottom-up approach. This method allowed for a rather 

straightforward estimation of the risk associated with the consumption of chicken meat in 

different countries, even considering the substantial variance in the estimates. Neither the 

top-down nor the bottom-up model deployed in our study allowed for an equally 

straightforward estimation of FSOs with the current level of detail in international data.  

 

3.5. Improving the estimates 

Many authors before us have mentioned that the availability of better data would help 

improve predictions through risk assessment [37, 47, 112] and that for establishing values 

for ALOP/FSO, important data gaps need to be addressed through targeted research [21]. 

In this study we noted several research areas where future work could be targeted to 

further improve data. 

As discussed before, decisions regarding the way exposure to Salmonella through for 

instance undercooking and cross-contamination is modelled can have a profound impact 

on the estimated risk. Relatively few studies exist on consumer practices related with these 

phenomena and for but a handful of countries. Most of these are based on questionnaires 

or telephone interviews concerning food safety [116, 117], which also applies for the study 

that we used to estimate the incidence of undercooking and cross-contamination events 

for the Netherlands [44]. Only very few studies concern actual observations of consumer 

behaviour [118, 119]. Since awareness of food safety issues does not necessarily translate 

into safe food handling practices [120], more carefully designed observational studies 

177

Risk assessment strategies as a tool in th application of the Appropriate Level of
Protection (ALOP) and Food Safety Objective (FSO) by risk managers

4



178 
 

involving a statistically significant number of participants would be invaluable in reducing 

uncertainties in the way cross-contamination and undercooking are currently modelled.    

 

The FAO/WHO dose-response model used in the present study does not discriminate 

between the healthy and the susceptible part of the population (young, old, pregnant or 

immune-compromised individuals) as the level of detail in the outbreak data it is based on 

does not allow for this kind of separation. Nonetheless, it is known that among susceptible 

individuals, the elderly are proven to be more likely to contract the disease, in which case 

the associated morbidity and mortality is also expected to be higher than in the normal 

population [121]. It would be important to attempt to separately estimate the risk 

associated with these two different sub-populations because this would facilitate the 

provision of specific recommendations to protect particularly vulnerable consumers and 

enable policy makers to better estimate the impact of changing demographics (increasing 

elderly population) on the risk. An additional issue for consideration relating to our case-

study but relevant more generally is a more specific definition of the endpoint 

(gastroenteritis) so that it is compatible with epidemiological observations. Finally, 

collecting more quantitative data where there is low pathogen concentration,  is another 

area where more work is needed to improve the precision of model predictions [122].  

            

While working through our case-study, a lack of information was observed for modelling 

additional cross-contamination pathways only recently acknowledged as potentially 

significant such as external packaging of meat and reusable shopping bags [106, 108]. To 

model these additional pathways new data related with consumer practices and the 

transfer of microorganisms between surfaces would be necessary. Regarding the latter it 

is important to estimate the transfer rates using strains of Salmonella instead of surrogate 

microorganisms, since significant differences between the two have been observed [123].   

 

4. Conclusions 

Available data have allowed us to derive a current LOP and suggest ALOP and FSO values 

for chicken meat for the Netherlands, although with sometimes considerable variance. 

Decisions would have to be made by risk managers intending to establish such values in 

practice. These decisions primarily concern the choice of the percentile of the output 

distributions to be used for this purpose, taking into consideration variance in the inputs 

as well as potential bias. Using the top-down and the bottom-up approach in parallel was 

found to be of great value as a means of validating results and gaining additional insights 

on input parameters influencing the modelling results. The top-down approach showed 

somewhat more promise in the context of international comparisons when using readily 

available international data. It is important to note though that significant differences were 
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observed between estimates resulting from the top-down approach for the Netherlands, 

based on the available datasets from national sources as compared to international 

sources. Estimates can be refined with better quality data but they will never be perfect 

and ultimately the selection of an ALOP/FSO would be a management decision on the basis 

of the best insight the current situation allows with the accompanying uncertainty.  
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Technical Appendix A.  
 
General information and data used from the study of the Dutch Centre for Nutrition on 
hygiene in private households [44]. Results are based on individual “face-to-face” 
interviews based on structured questionnaires. Participants are consumers who are 
responsible for the housekeeping activities.  
 
Table 1A. General information on participants of the study 
 % of Total sample (n=302) 
Social class*  
A 11 
B-above 28 
B-below 18 
C 35 
D 8 
Gender  
Male 7 
Female 93 
Age  
Up to and including 34 32 
35 up to and including 49 36 
50 or older 32 
Family status  
Single (<35 years) 10 
Single (35+ years) 16 
Only adults (<35 years) 11 
With children up to and including 17 years 31 
2 persons, housewife 35+ 23 
Two or one parent family with only young 
adults (18+ kids living with the parents)  

9 

Region  
3 big cities + surrounding areas 19 
Remainder Western Netherlands 25 
Northern Netherlands 13 
Eastern Netherlands 18 
Southern Netherlands 24 

*where A is the highest social class and D is the lowest 
 
Table 2A. Time needed to transport fresh meat from the retail shop home among 
consumers representative of the Dutch population, who recently bought fresh meat  
Time to arrival home % of responders (n=291) 
After ±5 minutes 47 
After ± 10 minutes 29 
After ± 15 minutes 16 
After ± 30 minutes 7 
After ± 60 minutes 1 
After more than 60 minutes 0 
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Table 3A. Time needed to unpack fresh meat and store refrigerated upon arrival at 
home among consumers who recently bought fresh meat 
Time to unpacking % of responders(n= 291) 
Directly upon arrival* 93 
After ±5 minutes 5 
After ± 10 minutes 0 
After ± 15 minutes 1 
After ± 30 minutes 0 
After more than 30 minutes - 

*For the purpose of our study we considered this to be one minute when building the 
tunpacking distribution. 
Voedingscentrum. 1999. Hygiëne privé-huishouding Voedingscentrum, Den Haag. 
 
 Technical Appendix B 
Table 1B. Overview of the dataset underlying the meta-analysis of Salmonella growth 
rates for different types of raw chicken meat 

Strain  Product Inoculum Temperature 
(oC) 

Specific 
growth 
rate 
(log10/h) 

Source 

S. Typhimurium 
DT104 (ATCC 
700408) 

raw 
ground 
chicken 

1.12 log10 MPN g-1 
 

10 0.011 [64] 
12 0.026 
14 0.031 
18 0.048 
22 0.132 
26 0.202 
30 0.296 
34 0.361 
40 0.445 

3.7 log10 CFU g-1 
 

10 0.013 
12 0.020 
14 0.033 
18 0.052 
22 0.117 
26 0.185 
30 0.262 
34 0.314 
40 0.338 

S. Typhimurium 
DT104 (ATCC 
700408) 

raw 
ground 
chicken 
breast 

0.6 log MPN g-1 10 0.020 [65] 
11 0.220 
12 0.024 
14 0.018 
18 0.035 
22 0.062 
26 0.099 
30 0.134 
34 0.146 
40 0.171 
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After more than 30 minutes - 

*For the purpose of our study we considered this to be one minute when building the 
tunpacking distribution. 
Voedingscentrum. 1999. Hygiëne privé-huishouding Voedingscentrum, Den Haag. 
 
 Technical Appendix B 
Table 1B. Overview of the dataset underlying the meta-analysis of Salmonella growth 
rates for different types of raw chicken meat 

Strain  Product Inoculum Temperature 
(oC) 

Specific 
growth 
rate 
(log10/h) 

Source 

S. Typhimurium 
DT104 (ATCC 
700408) 

raw 
ground 
chicken 

1.12 log10 MPN g-1 
 

10 0.011 [64] 
12 0.026 
14 0.031 
18 0.048 
22 0.132 
26 0.202 
30 0.296 
34 0.361 
40 0.445 

3.7 log10 CFU g-1 
 

10 0.013 
12 0.020 
14 0.033 
18 0.052 
22 0.117 
26 0.185 
30 0.262 
34 0.314 
40 0.338 

S. Typhimurium 
DT104 (ATCC 
700408) 

raw 
ground 
chicken 
breast 

0.6 log MPN g-1 10 0.020 [65] 
11 0.220 
12 0.024 
14 0.018 
18 0.035 
22 0.062 
26 0.099 
30 0.134 
34 0.146 
40 0.171 
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S. Rochester raw 
minced 
chicken  

0.98 log CFU g-1 (air) 13 0.033 [66] 
1.0 log CFU g-1 (air) 13 0.024 
1.48 log CFU g-1 (air) 13 0.007 
1.01 log CFU g-1 (air) 13 0.019 
0.99 log CFU g-1 (air) 13 0.021 
1.29 log CFU g-1 (MA)a 13 0.009 
1.46 log CFU g-1 (MA) 13 0.009 
1.5 log CFU g-1 (MA) 13 0.011 
1.7 log CFU g-1 (MA) 13 0.01 
1.58 log CFU g-1 (MA) 13 0.01 

S. Enteritidis raw 
chicken 
breast 
with skin 

4 x 103 CFU per cm2 

(untreated meat) 
10 0.036 [67] 

4 x 103 CFU per cm2 
(decontaminated 
meat) 

10 0.029 

S. Stanley, S. 
Thompsonb 

raw 
minced 
chicken 

102 CFU g-1 10.7 0.024 [68] 
102 CFU g-1 30 0.450 

S. Typhimurium 
DT104 (ATCC 
700408) 

raw 
chicken 
skin  

 25 0.469 [69] 
30 0.6 
35 0.928 
40 1.118 
45 0.904 

S. Kentucky chicken 
skin 

0.47 log CFU per cm2 11 0.011 [70] 
S. Typhimurium 
DT104 

0.57 log CFU per cm2 10 0.019 
12 0.017 
9 0.0042 

S. Hadar chicken 
skin 

0.58 log CFU per cm2 25 0.328 [71] 
30 0.852 
35 0.861 
40 0.894 
45 0.806 

S. Kentucky 0.45 log CFU per cm2 25 0.210 
30 0.470 
35 0.57 
40 0.83 
45 1.03 

aModified atmosphere 
b1:1 mixture of the two strains is used 
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S. Rochester raw 
minced 
chicken  

0.98 log CFU g-1 (air) 13 0.033 [66] 
1.0 log CFU g-1 (air) 13 0.024 
1.48 log CFU g-1 (air) 13 0.007 
1.01 log CFU g-1 (air) 13 0.019 
0.99 log CFU g-1 (air) 13 0.021 
1.29 log CFU g-1 (MA)a 13 0.009 
1.46 log CFU g-1 (MA) 13 0.009 
1.5 log CFU g-1 (MA) 13 0.011 
1.7 log CFU g-1 (MA) 13 0.01 
1.58 log CFU g-1 (MA) 13 0.01 

S. Enteritidis raw 
chicken 
breast 
with skin 

4 x 103 CFU per cm2 

(untreated meat) 
10 0.036 [67] 

4 x 103 CFU per cm2 
(decontaminated 
meat) 

10 0.029 

S. Stanley, S. 
Thompsonb 

raw 
minced 
chicken 

102 CFU g-1 10.7 0.024 [68] 
102 CFU g-1 30 0.450 

S. Typhimurium 
DT104 (ATCC 
700408) 

raw 
chicken 
skin  

 25 0.469 [69] 
30 0.6 
35 0.928 
40 1.118 
45 0.904 

S. Kentucky chicken 
skin 

0.47 log CFU per cm2 11 0.011 [70] 
S. Typhimurium 
DT104 

0.57 log CFU per cm2 10 0.019 
12 0.017 
9 0.0042 

S. Hadar chicken 
skin 

0.58 log CFU per cm2 25 0.328 [71] 
30 0.852 
35 0.861 
40 0.894 
45 0.806 

S. Kentucky 0.45 log CFU per cm2 25 0.210 
30 0.470 
35 0.57 
40 0.83 
45 1.03 

aModified atmosphere 
b1:1 mixture of the two strains is used 
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Abstract 

To assess the risk of Clostridium perfringens toxico-infections related to the consumption 

of Cornish pasties in the United Kingdom, a stochastic risk assessment model was created. 

Exposure to the pathogen was modelled as the result of contamination of different 

ingredients (i.e. beef and pepper), application of different cooling scenarios at room 

temperature and considering pasties of a number of common sizes. The model predicted a 

mean of 213 cases of gastroenteritis per million people in the UK per year (95% CI: 128 - 

317), which might explain a significant proportion of annual C. perfringens toxico-infections 

according to epidemiological data. Major factors influencing this estimate and possible 

targets for interventions were the time to consumption and the concentration of the 

pathogen in contaminated ingredients, the impact of which in reducing the risk was tested 

in different intervention scenarios. The results of the model together with a number of 

possible risk mitigation measures are used as a basis to discuss the potential of setting of 

risk-based metrics as a risk management option in the context of food safety decision-

making.    
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1. Introduction 

Clostridium perfringens is a common cause of foodborne gastrointestinal illness in 

developed countries [1-3]. The disease usually manifests itself with abdominal pain, 

nausea and diarrhoea 6-24 h after the consumption of contaminated food and lasts for 

about 24h. Though in the vast majority of cases it is self-limiting, in the vulnerable 

population (elderly, very young patients) deaths can occur due to dehydration [4]. The 

microorganism is widely distributed in nature and can be considered a foodborne pathogen 

of importance to public health because of its abilities to produce heat resistant spores, 

grow very rapidly in food and produce toxins [5]. 

C. perfringens is mainly associated with meat dishes such as stews, meat gravies, roast 

joints and meat pies [6] because of its inability to synthesize essential amino acids that 

can be found in meat [7] but also because of the mode of preparation and consumption of 

these products [6]. Typically, a large number of vegetative cells need to be ingested to 

cause illness which is due to the release of enterotoxin during the sporulation of toxigenic 

strains of the microorganism (cpe+ strains) in the intestine and for this reason is referred 

to as a toxico-infection. This large number of vegetative cells may be reached when food 

has been temperature-abused after cooking, either during cooling or during unrefrigerated 

storage, processes which would allow the germination of spores being present in the 

product and the multiplication of vegetative cells of the pathogen [8].  

Meat pies and pasties are food items traditionally consumed in large quantities in the United 

Kingdom where the incidence of C. perfringens toxico-infections is high, with most recent 

estimates suggesting it is the third most common cause of bacterial gastroenteritis [3]. 

However, the extent of their contribution to the total number of cases in the country is 

unknown. Though in comparison with stews and roast joints they are less often reported 

to be the vehicle of outbreaks (Adedoyin Awofisayo, personal communication), deciding on 

the proportion of cases that are due to meat pies and pasties on the basis of available 

outbreak data is very difficult. The main reasons for this are that reported and investigated 

outbreaks represent only part of all outbreaks occurring and do not include sporadic cases 

while the implicated food vehicle is not always identified or described in enough detail [9] 

to be classified as a meat pie or a pasty. In view of the lack of epidemiological data 

regarding this product group, risk assessment could be another way to put the risk due to 

meat pies and pasties into perspective by investigating their potential contribution in the 

total number of cases of C. perfringens toxico-infections in the country.   

Performing a risk assessment for C. perfringens in meat pies and pasties can be relatively 

complicated as: 1) there is substantial variation in their recipes, both in terms of 

ingredients and preparation mode, 2) more than one ingredients (meat, spices, 

vegetables) can lead to the introduction of the pathogen to the product, 3) they vary 

considerably in size and shape, factors that can affect the cooling time which in turn is 
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Abstract 

To assess the risk of Clostridium perfringens toxico-infections related to the consumption 

of Cornish pasties in the United Kingdom, a stochastic risk assessment model was created. 

Exposure to the pathogen was modelled as the result of contamination of different 

ingredients (i.e. beef and pepper), application of different cooling scenarios at room 

temperature and considering pasties of a number of common sizes. The model predicted a 

mean of 213 cases of gastroenteritis per million people in the UK per year (95% CI: 128 - 

317), which might explain a significant proportion of annual C. perfringens toxico-infections 

according to epidemiological data. Major factors influencing this estimate and possible 

targets for interventions were the time to consumption and the concentration of the 

pathogen in contaminated ingredients, the impact of which in reducing the risk was tested 

in different intervention scenarios. The results of the model together with a number of 

possible risk mitigation measures are used as a basis to discuss the potential of setting of 

risk-based metrics as a risk management option in the context of food safety decision-

making.    
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1. Introduction 

Clostridium perfringens is a common cause of foodborne gastrointestinal illness in 

developed countries [1-3]. The disease usually manifests itself with abdominal pain, 

nausea and diarrhoea 6-24 h after the consumption of contaminated food and lasts for 

about 24h. Though in the vast majority of cases it is self-limiting, in the vulnerable 

population (elderly, very young patients) deaths can occur due to dehydration [4]. The 

microorganism is widely distributed in nature and can be considered a foodborne pathogen 

of importance to public health because of its abilities to produce heat resistant spores, 

grow very rapidly in food and produce toxins [5]. 

C. perfringens is mainly associated with meat dishes such as stews, meat gravies, roast 

joints and meat pies [6] because of its inability to synthesize essential amino acids that 

can be found in meat [7] but also because of the mode of preparation and consumption of 

these products [6]. Typically, a large number of vegetative cells need to be ingested to 

cause illness which is due to the release of enterotoxin during the sporulation of toxigenic 

strains of the microorganism (cpe+ strains) in the intestine and for this reason is referred 

to as a toxico-infection. This large number of vegetative cells may be reached when food 

has been temperature-abused after cooking, either during cooling or during unrefrigerated 

storage, processes which would allow the germination of spores being present in the 

product and the multiplication of vegetative cells of the pathogen [8].  

Meat pies and pasties are food items traditionally consumed in large quantities in the United 

Kingdom where the incidence of C. perfringens toxico-infections is high, with most recent 

estimates suggesting it is the third most common cause of bacterial gastroenteritis [3]. 

However, the extent of their contribution to the total number of cases in the country is 

unknown. Though in comparison with stews and roast joints they are less often reported 

to be the vehicle of outbreaks (Adedoyin Awofisayo, personal communication), deciding on 

the proportion of cases that are due to meat pies and pasties on the basis of available 

outbreak data is very difficult. The main reasons for this are that reported and investigated 

outbreaks represent only part of all outbreaks occurring and do not include sporadic cases 

while the implicated food vehicle is not always identified or described in enough detail [9] 

to be classified as a meat pie or a pasty. In view of the lack of epidemiological data 

regarding this product group, risk assessment could be another way to put the risk due to 

meat pies and pasties into perspective by investigating their potential contribution in the 

total number of cases of C. perfringens toxico-infections in the country.   

Performing a risk assessment for C. perfringens in meat pies and pasties can be relatively 

complicated as: 1) there is substantial variation in their recipes, both in terms of 

ingredients and preparation mode, 2) more than one ingredients (meat, spices, 

vegetables) can lead to the introduction of the pathogen to the product, 3) they vary 

considerably in size and shape, factors that can affect the cooling time which in turn is 
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related to the risk of the pathogen multiplying to significantly high levels in the product to 

cause illness, 4) they may be frozen, refrigerated, held hot or stored at ambient 

temperatures following baking.  

The goal of this study was to develop a stochastic risk assessment model for C. perfringens 

that could easily be adapted for different types of meat pies and pasties using product 

specific data on the prevalence of the pathogen in the raw ingredients and the time and 

temperature of baking, cooling and storage steps. The model is here described for Cornish 

pasties, a Protected Geographical Indication (PGI) meat pie consumed in large quantities 

in the UK which is not evidently associated with C. perfringens and serves as an example 

of building a risk assessment model with limited input. Our aims were: to quantify the 

current level of risk associated with the consumption of Cornish pasties in the country, to 

identify factors contributing to risk, to evaluate the efficiency of different approaches in 

mitigating the risk for this product on the basis of our model and to relate control measures 

to risk-based metrics for food safety decision-making [10, 11].  

 

2. Materials and Methods 

2.1. Product description 

The focus of this risk assessment is on Cornish pasties, i.e. D-shaped meat pies of various 

sizes that have gained in recent years the status of Protected Geographical Indication (PGI) 

products [12]. Cornish pasties are consisted of pastry dough used to encase a filling 

consisted traditionally of potato, swede, onion, uncooked beef, salt and pepper. They 

contain no artificial colours, flavours or preservatives and they are characterized by joining 

the edges of the dough (crimping) always on one side of the pasty. From a legal point of 

view, for marketed pasties to bear the indication Cornish they need to be assembled in 

Cornwall although ingredients can originate from different areas and the baking can also 

take place elsewhere [13]. For the purpose of this study, the production of Cornish pasties 

was mimicked following a traditional recipe [14] and using locally available ingredients.  

 

2.2. Design of the risk assessment model 

To estimate the risk associated with the consumption of pasties, a stochastic risk 

assessment model was built from the time point that the pasties enter the oven for baking 

until the moment of consumption (Figure 1). In short, exposure to C. perfringens was 

estimated taking into account contamination of recipe ingredients with spores of the 

pathogen (pepper, beef or both), spore inactivation during baking and spore 

germination/growth as a result of inappropriate cooling at room temperature.    The 

probability of acquiring a toxico-infection was estimated by coupling estimations on dose 

of vegetative cells per contaminated serving with an exponential dose response model 

derived from a combination of feeding trial and outbreak data [15-17].
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related to the risk of the pathogen multiplying to significantly high levels in the product to 

cause illness, 4) they may be frozen, refrigerated, held hot or stored at ambient 

temperatures following baking.  

The goal of this study was to develop a stochastic risk assessment model for C. perfringens 

that could easily be adapted for different types of meat pies and pasties using product 

specific data on the prevalence of the pathogen in the raw ingredients and the time and 

temperature of baking, cooling and storage steps. The model is here described for Cornish 

pasties, a Protected Geographical Indication (PGI) meat pie consumed in large quantities 

in the UK which is not evidently associated with C. perfringens and serves as an example 

of building a risk assessment model with limited input. Our aims were: to quantify the 

current level of risk associated with the consumption of Cornish pasties in the country, to 

identify factors contributing to risk, to evaluate the efficiency of different approaches in 

mitigating the risk for this product on the basis of our model and to relate control measures 

to risk-based metrics for food safety decision-making [10, 11].  

 

2. Materials and Methods 

2.1. Product description 

The focus of this risk assessment is on Cornish pasties, i.e. D-shaped meat pies of various 

sizes that have gained in recent years the status of Protected Geographical Indication (PGI) 

products [12]. Cornish pasties are consisted of pastry dough used to encase a filling 

consisted traditionally of potato, swede, onion, uncooked beef, salt and pepper. They 

contain no artificial colours, flavours or preservatives and they are characterized by joining 

the edges of the dough (crimping) always on one side of the pasty. From a legal point of 

view, for marketed pasties to bear the indication Cornish they need to be assembled in 

Cornwall although ingredients can originate from different areas and the baking can also 

take place elsewhere [13]. For the purpose of this study, the production of Cornish pasties 

was mimicked following a traditional recipe [14] and using locally available ingredients.  

 

2.2. Design of the risk assessment model 

To estimate the risk associated with the consumption of pasties, a stochastic risk 

assessment model was built from the time point that the pasties enter the oven for baking 

until the moment of consumption (Figure 1). In short, exposure to C. perfringens was 

estimated taking into account contamination of recipe ingredients with spores of the 

pathogen (pepper, beef or both), spore inactivation during baking and spore 

germination/growth as a result of inappropriate cooling at room temperature.    The 

probability of acquiring a toxico-infection was estimated by coupling estimations on dose 

of vegetative cells per contaminated serving with an exponential dose response model 

derived from a combination of feeding trial and outbreak data [15-17].
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To calculate cases due to contaminated pasties, the Central Limit Theorem (CLT) was 

applied to first calculate the mean and standard deviation of the probability of toxico-

infection distribution and then to calculate the number of cases using the  number of 

contaminated servings [18]. Basic calculation steps presented in flow diagram of Figure 1 

were repeated for pasties of six different sizes and two different cooling scenarios based 

on consumer practices for homemade pasties [19] or assumptions regarding commercial 

cooling and time to consumption following purchase for commercial pasties. Cooling for 

both homemade and commercial pasties was assumed to take place at ambient 

temperatures (20.5 ±0.5◦C). To acquire a time-temperature profile necessary for 

estimating inactivation during baking and growth during cooling, pasties of different sizes 

(160, 260, 500, 700, 900 and 1400 g) were baked in a fan assisted oven at 165oC and the 

temperature at the core of the products was monitored using either iButtons (DS1922T, 

MAXIM) or a thermocouple data logger (Eltek, 851). Selection of product sizes was based 

on data available regarding traditional recipes [14, 20, 21] for homemade pasties, UK retail 

data for commercial pasties [22, 23] and trends in portion sizes for pasties [24]. The risk 

associated with the consumption of Cornish pasties was expressed as cases per million 

people per year. A summary of the inputs and outputs of the model is given in Table 1 and 

a more detailed description of the estimation steps is provided below. 

 

2.3. Estimation steps in the risk assessment model  

Step 1 – Concentration of C. perfringens in contaminated ingredient x (Cx). Ingredients 

that were considered to be potentially contaminated with C. perfringens were beef and 

black pepper based on what is generally known about meat being commonly implicated in 

outbreaks of the disease  [25] and spices being considered a potential route of introducing 

the pathogen to foods [26]. C. perfringens given its presence in soil [5] could also be a 

contaminant of the vegetables (swede, potatoes) used in the preparation of pasties but 

these ingredients were not considered to be a source of contamination since their 

contribution in outbreaks is low [25] while in this particular product they are peeled, a 

process which would remove most of the microbial load. The concentration of C. 

perfringens in beef was based on swab data from the Food Standards Agency (FSA) 

collected from 3,249 fresh retail samples (whole cuts of various sizes: mean 511g, SD 

307g) [27]. Of the 489 swab samples found to be positive in this study, only 3 had a 

concentration >0 log CFU/g and 268 had a concentration <-2.5 log CFU/g. The cumulative 

probabilities of these concentrations were used to build a normal distribution in @RISK 

which was assumed to be representative  of  the  concentration  of  spores  in contaminated 

beef,  as studies  from other  countries show that spore levels in meat are similarly low 

[28].
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To calculate cases due to contaminated pasties, the Central Limit Theorem (CLT) was 

applied to first calculate the mean and standard deviation of the probability of toxico-

infection distribution and then to calculate the number of cases using the  number of 

contaminated servings [18]. Basic calculation steps presented in flow diagram of Figure 1 

were repeated for pasties of six different sizes and two different cooling scenarios based 

on consumer practices for homemade pasties [19] or assumptions regarding commercial 

cooling and time to consumption following purchase for commercial pasties. Cooling for 

both homemade and commercial pasties was assumed to take place at ambient 

temperatures (20.5 ±0.5◦C). To acquire a time-temperature profile necessary for 

estimating inactivation during baking and growth during cooling, pasties of different sizes 

(160, 260, 500, 700, 900 and 1400 g) were baked in a fan assisted oven at 165oC and the 

temperature at the core of the products was monitored using either iButtons (DS1922T, 

MAXIM) or a thermocouple data logger (Eltek, 851). Selection of product sizes was based 

on data available regarding traditional recipes [14, 20, 21] for homemade pasties, UK retail 

data for commercial pasties [22, 23] and trends in portion sizes for pasties [24]. The risk 

associated with the consumption of Cornish pasties was expressed as cases per million 

people per year. A summary of the inputs and outputs of the model is given in Table 1 and 

a more detailed description of the estimation steps is provided below. 

 

2.3. Estimation steps in the risk assessment model  

Step 1 – Concentration of C. perfringens in contaminated ingredient x (Cx). Ingredients 

that were considered to be potentially contaminated with C. perfringens were beef and 

black pepper based on what is generally known about meat being commonly implicated in 

outbreaks of the disease  [25] and spices being considered a potential route of introducing 

the pathogen to foods [26]. C. perfringens given its presence in soil [5] could also be a 

contaminant of the vegetables (swede, potatoes) used in the preparation of pasties but 

these ingredients were not considered to be a source of contamination since their 

contribution in outbreaks is low [25] while in this particular product they are peeled, a 

process which would remove most of the microbial load. The concentration of C. 

perfringens in beef was based on swab data from the Food Standards Agency (FSA) 

collected from 3,249 fresh retail samples (whole cuts of various sizes: mean 511g, SD 

307g) [27]. Of the 489 swab samples found to be positive in this study, only 3 had a 

concentration >0 log CFU/g and 268 had a concentration <-2.5 log CFU/g. The cumulative 

probabilities of these concentrations were used to build a normal distribution in @RISK 

which was assumed to be representative  of  the  concentration  of  spores  in contaminated 

beef,  as studies  from other  countries show that spore levels in meat are similarly low 

[28].
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The concentration of C. perfringens in pepper was based on a UK study categorizing 2090 

samples of spices at the retail level on the basis of their microbiological quality as 

satisfactory (< 2 logCFU/g), acceptable (2-3 logCFU/g) and unsatisfactory (>3 log CFU/g) 

[29]. The cumulative probabilities of the samples being of satisfactory (0.974) and 

acceptable (0.998) qualities were selected to build a normal distribution to describe the 

concentration using the RiskNormalAlt function. Concentration data for spices were 

considered to be representative of spores as vegetative cells are not likely to survive 

production steps involving exposure to air or chemical decontamination [15].    

 

Step 2 – Concentration at consumption after cooling (Cxy-F).  The concentration at 

consumption was estimated separately for beef and pepper taking into account the total 

inactivation and growth of C. perfringens spores during different cooling scenarios F for 

pasties of different sizes y. For homemade pasties (500, 700, 900 or 1400 g), four different 

cooling scenarios were considered (0-1.5h, 1.5h-3h, 3-6h and 6-12h) based on consumer 

storage time intervals following baking [19]. For commercial pasties (160, 260 g), three 

different cooling scenarios were assumed (0-2.5h, 2.5-3.0h and 3-6h) on the basis of 

available information about recommended storage times of pies in shops [39] and 

consumer eating out times [41]. Concentration at consumption following each cooling 

scenario was based on the following equation: 

Cxy-F = Cx –ΣRxy-F +ΣIxy-F                                                                                                                                 (Eq. 1) 

where:  

Cx is the initial concentration of the pathogen in contaminated ingredient x (beef, black 

pepper) in log CFU/g 

ΣRxy-F is the total inactivation observed during heating and cooling. Inactivation was 

estimated for temperatures ≥80°C since lower temperatures (used for pasteurization) are 

generally regarded not to have an effect on bacterial spores. Estimations were based on 

time increments (Δt) of 5 min using a linear primary model without lag [42] and a decimal 

reduction time (D, min) as a function of temperature derived from a meta-analysis of 

literature data [30]:  

Ct = Ct-1 – Δt/D                                                                                                (Eq. 2) 

ΣIxy-F is the total growth observed for different cooling scenarios F involving pasties of 

different sizes y. Growth was estimated for temperatures lower than 52.3oC and for time 

increments (Δt) of 5 min using a simple exponential model without lag [31]: 

Ct = Ct-1 + μ ∙ Δt/(60 ∙ ln10)                                                                              (Eq. 3) 

In this model the maximum specific growth rate (μmax, h-1) is temperature (T) dependant 

and modelled with a cardinal parameter gamma function using the formulas [31]:  

μmax = μopt ∙ γ(Τy)      and                                                                                  (Εq. 4) 
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                                        (Eq. 5) 

where: Tmin, Topt and Tmax are the minimum, optimum and maximum growth temperature 

of C. perfringens and Ty the temperature of the core of the pasty y. 

In both the inactivation and the growth model the temperature refers to the temperature 

of the core of each pasty size y. This was assumed to be homogeneous within the product 

and was modelled as a function of time using Newton’s law of cooling or heating [32, 43]: 

Ty = [(Toy-T1) ∙ exp(-Ky ∙ t)] + T1                                                                          (Eq. 6) 

where: 

Ty = the temperature of the core of a pasty of size y at time t 

Toy the initial core temperature of a pasty of size y (oC), equal to 100 oC when cooling starts 

and equal to 20.5 oC when heating starts 

T1 the air temperature, 20.5oC for cooling and 165oC for heating  

t is the cooling or heating time (min) 

Ky the rate of temperature change; the cooling (Ky-c) or heating (Ky-h) rate for pasties of 

different sizes (min-1) was estimated by fitting the temperature data collected from the 

sensors to equation 6 using the least sum of squares method and the Solver add-in of 

Microsoft® Excel 2010.  

Baking was assumed to last until the core temperature of the pasties reached 100°C. This 

resulted in heating times varying from approximately 83 minutes for the largest pasties 

(1400 g) to 35 minutes for the smallest ones (160 g) which were similar to the actual 

baking times determined empirically by observation and within ranges of baking times 

mentioned in recipes for different pasty sizes.  

 

Step 3 – Probability of illness per contaminated serving (Pill-xy-F).  

Pill-beef-y-F, Pill-pepper-y-F, Pill-beef & pepper-y-F are the probabilities of illness for pasties contaminated 

through beef, pepper or both beef and pepper respectively. Three dose response models 

are available in literature to estimate these probabilities: an exponential model based on 

human feeding trials in the US [15] and two Bayesian binomial models: one based on 

feeding trials and another based on outbreak data collected from literature or investigated 

in the region of Paris [16]. For the purpose of our study the datasets used in the 

abovementioned models were combined and supplemented with additional outbreak data 

summarized in a Dutch qualitative risk assessment for C. perfringens [17] to build an 

exponential dose-response model [44] as follows. The resulting dataset was used to 

estimate r-parameters from each individual feeding trial and outbreak. For the outbreak 

data for which no information on the mass of the product consumed was available to 

estimate the dose, we assumed that the mean mass was 100 g with a range between 30 

and 300 g given what is known about consumption levels for most food items [45]. To take 
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in the region of Paris [16]. For the purpose of our study the datasets used in the 

abovementioned models were combined and supplemented with additional outbreak data 

summarized in a Dutch qualitative risk assessment for C. perfringens [17] to build an 

exponential dose-response model [44] as follows. The resulting dataset was used to 

estimate r-parameters from each individual feeding trial and outbreak. For the outbreak 

data for which no information on the mass of the product consumed was available to 

estimate the dose, we assumed that the mean mass was 100 g with a range between 30 

and 300 g given what is known about consumption levels for most food items [45]. To take 
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this uncertainty regarding the dose into account, three r-parameters were estimated from 

each outbreak and were given equal weight when further analysing the data. All r-

parameters estimated from feeding trials and outbreaks that were >0 and <1 were log 

transformed (Table 2) and were best fitted by a beta distribution using the Anderson-

Darling statistic in @RISK to give equal importance to the tails and the main body of the 

distribution during fitting [46]. The resulting model had a wide enough credible interval of 

predictions to describe both outbreak and human trial data (Figure 2).        

When using this exponential model to estimate the probability of illness per contaminated 

serving, the dose was estimated on the basis of the beef (fbeef) and pepper (fpepper) content 

of the pasties and the mass per serving (Table 1). For both commercial and homemade 

pasties the mass per serving was considered to be the same and equal to what is mentioned 

in UK studies regarding portion sizes for pasties [24].  

 

Step 4 – Mean and standard deviation of probability of illness per contaminated serving 

(meanPill-xy-F, SDPill-xy-F). The mean and standard deviation were estimated for Pill-beef-y-F, Pill-

pepper-y-F and Pill-beef & pepper-y-F using the RiskMean and RiskStdDev statistic functions of 

@RISK. 

 

Step 5 - Mean and standard deviation of cases per contaminated ingredient x, cooling 

scenario F and pasty size y (meanCasesxy-F, SDCasesxy-F). These are calculated as follows for 

pasties contaminated through beef, pepper or both ingredients: 

meanCasesbeef-y-F  =  �𝑃𝑃���� – �𝑃𝑃����  ∙  𝑃𝑃�������� ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ meanPill-beef-y-F                 (Eq. 7) 

SDCasesbeef-y-F  =  ��𝑃𝑃���� – �𝑃𝑃����  ∙  𝑃𝑃�������� ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙  SDPill-beef-y-F                 (Eq. 8) 

meanCasespepper-y-F  =  �𝑃𝑃������ – �𝑃𝑃������  ∙  𝑃𝑃������ ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ meanPill-pepper-y-F             (Eq. 9) 

SDCasespepper-y-F  = ��𝑃𝑃������ – �𝑃𝑃������  ∙  𝑃𝑃������ ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙  SDPill-pepper-y-F
                 (Eq. 10) 

 
meanCasesbeef & pepper-y-F  =  𝑃𝑃����  ∙  𝑃𝑃������ ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ meanPill-beef & pepper-y-F               (Eq. 11) 

SDCasesbeef & pepper-y-F
= ��𝑃𝑃����– �𝑃𝑃���� ∙ 𝑃𝑃�������� ∙ 𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ SDPill-beef & pepper-y-F             (Eq. 12) 
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this uncertainty regarding the dose into account, three r-parameters were estimated from 

each outbreak and were given equal weight when further analysing the data. All r-

parameters estimated from feeding trials and outbreaks that were >0 and <1 were log 

transformed (Table 2) and were best fitted by a beta distribution using the Anderson-

Darling statistic in @RISK to give equal importance to the tails and the main body of the 

distribution during fitting [46]. The resulting model had a wide enough credible interval of 

predictions to describe both outbreak and human trial data (Figure 2).        

When using this exponential model to estimate the probability of illness per contaminated 

serving, the dose was estimated on the basis of the beef (fbeef) and pepper (fpepper) content 

of the pasties and the mass per serving (Table 1). For both commercial and homemade 

pasties the mass per serving was considered to be the same and equal to what is mentioned 

in UK studies regarding portion sizes for pasties [24].  

 

Step 4 – Mean and standard deviation of probability of illness per contaminated serving 

(meanPill-xy-F, SDPill-xy-F). The mean and standard deviation were estimated for Pill-beef-y-F, Pill-

pepper-y-F and Pill-beef & pepper-y-F using the RiskMean and RiskStdDev statistic functions of 

@RISK. 

 

Step 5 - Mean and standard deviation of cases per contaminated ingredient x, cooling 

scenario F and pasty size y (meanCasesxy-F, SDCasesxy-F). These are calculated as follows for 

pasties contaminated through beef, pepper or both ingredients: 

meanCasesbeef-y-F  =  �𝑃𝑃���� – �𝑃𝑃����  ∙  𝑃𝑃�������� ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ meanPill-beef-y-F                 (Eq. 7) 

SDCasesbeef-y-F  =  ��𝑃𝑃���� – �𝑃𝑃����  ∙  𝑃𝑃�������� ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙  SDPill-beef-y-F                 (Eq. 8) 

meanCasespepper-y-F  =  �𝑃𝑃������ – �𝑃𝑃������  ∙  𝑃𝑃������ ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ meanPill-pepper-y-F             (Eq. 9) 

SDCasespepper-y-F  = ��𝑃𝑃������ – �𝑃𝑃������  ∙  𝑃𝑃������ ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙  SDPill-pepper-y-F
                 (Eq. 10) 

 
meanCasesbeef & pepper-y-F  =  𝑃𝑃����  ∙  𝑃𝑃������ ∙  𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ meanPill-beef & pepper-y-F               (Eq. 11) 

SDCasesbeef & pepper-y-F
= ��𝑃𝑃����– �𝑃𝑃���� ∙ 𝑃𝑃�������� ∙ 𝑃𝑃���� ∙  𝐹𝐹 ∙  𝑆𝑆� ∙ SDPill-beef & pepper-y-F             (Eq. 12) 
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Figure 2. Mean predictions (solid lines) and 95% confidence intervals (dotted lines) for 

the dose response model of this study (exponential) and the one of the study of Crouch 

and Golden (USDA-FSIS) [15]. The range of predictions is compared to observed data from 

outbreaks [16, 17] and feeding trials [47-49].   

 

 
where: 

Pbeef, Ppepper  the prevalence of the pathogen in the beef and pepper respectively, estimated 

on the basis of  available literature [17, 26, 27, 33] and treated as independent and not 

mutually exclusive events [46].  

Pcpe+  the prevalence of cpe+ strains among C. perfringens isolates, estimated on the basis 

of a literature review for beef and spices [17, 26, 33-36].  

F the frequency of cooling (time period from the end of baking until consumption). For 

homemade pasties, the frequencies of cooling were Fhp_1.5h, F hp_3h, F hp_6h, F hp_12h  based 

on a survey of consumer food handling practices [19]. For commercial pasties, the 

frequencies of cooling were Fcp_2.5h, Fcp_3h and Fcp_6h, arbitrarily selected based on eating 

times out of home [40, 41] and assuming as a worst case scenario an initial storage of the 

pasties for two hours at the retailer [39]. 
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Sy is the number of pasty servings of size y consumed annually per person. Information 

on the number of servings or the total mass of pasties consumed in the UK was not 

available. Thus for commercial pasties, the number of servings (Scp) was assumed to be 

equal to the number of product units produced in Cornwall [14] and considered to be 

spread evenly over different sizes y. For homemade pasties, it was assumed that the same 

number of servings as for commercial pasties is consumed (Shp) and that it is again spread 

evenly over different product sizes y. 

 

Step 6 – Cases per contaminated ingredient, cooling scenario and pasty size (Casesxy-F). 

The number of cases of C. perfringens food poisoning per million people per year due to 

pasties of size y, contaminated through ingredient(s) x and cooled under scenario F was 

estimated  on the basis of the CLT: 

Casesxy-F = RiskNormal(meanCasesxy-F; SDCasesxy-F; 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(0; )) 

To avoid negative values, the normal distribution was truncated at zero. 

 

Step 7 – Total cases across pasty sizes, across product categories (homemade versus 

commercial) and in the country. The total number of cases for each pasty size y was 

estimated by summing cases for pasties contaminated through different ingredients and 

different cooling scenarios.   

For commercial pasties:  

Casesy = ∑ ∑ 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�����∈{�.��,�.��,�.��}�∈{����,������,����&������}                                          (Eq. 13) 

For homemade pasties:  

Casesy = ∑ ∑ 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�����∈{�.��,�.��,�.��,�.��}�∈{����,������,����&������}                                    (Eq. 14) 

The total number of cases (CasesTotal) in the country due to commercial (Casescp) and 

homemade pasties (Caseshp) was estimated by summing cases across different sizes y:  

CasesTotal = Casescp + Caseshp                                                                          (Eq. 15) 

where:  

Casescp =  ∑ 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��� y∈{260,160}                                  (Eq. 16) 

Caseshp = ∑ 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅���y∈{1400,900,700,500}                       (Eq. 17) 

                                                           

 2.4. Software and simulation settings 

The model was built in Microsoft Excel 2016 (Microsoft, Redmond, WA, USA) using the 

@RISK 7.5 software (Palisade Corporation, Ithaca, NY) and run in two simulations of 

100,000 iterations each based on Latin Hypercube sampling. A fixed seed value of one was 

selected using a Mersenne Twister random number generator to prevent variations in the 

sensitivity analysis and “what if” scenarios due to the effect of random sampling and to 

allow the repetition of our results by others [46].  
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3. Results and discussion 

 

3.1. Risk estimates for Cornish pasties 

The model predicted a mean of 213 (95% CI: 128-317) cases of C. perfringens toxico-

infections per million inhabitants each year due to the consumption of Cornish pasties, 

whose contribution varied with mean estimates ranging from 4.1 to 61 cases per million 

inhabitants for different pasty sizes and from 0-182 cases for different times to 

consumption (Table 3 and Figure 3). Major contributors to risk was time to consumption 

with homemade pasties consumed within 6 to 12h being representative of about 86% of 

total cases. Homemade pasties and commercial pasties consumed within 3 to 6 hours 

contributed to the risk to a less extent with 8.8 and 4.7% of total cases respectively. The 

contribution of homemade and commercial pasties consumed up to 3h after baking was 

negligible and represented less than 1% of total cases (Figure 3). The individual 

contribution of commercial pasties when consumed within up to 1h after purchase, 

assuming a prior maximum display period of 2 hours based on current temperature control 

regulations in the UK [39], was slightly less than 2 cases per million inhabitants. These 

findings highlight the importance of short storage times in keeping the risk of C. perfringens 

in relation to Cornish pasties low.  

 

Table 3. Mean risk estimates and 95% confidence intervals 

(2.5th-97.5th percentile) for different sizes of Cornish pasties 

expressed as cases per million people per year. Values have 

been rounded to include significant digits 

Pasty size (g) Cases per million people per year 

160 4.1 (1.9-6.9) 

260 7.7 (3.7 – 13) 

500 39 (22 – 61) 

700 51 (29 - 78) 

900 50 (28-77) 

1400 61 (35 - 94) 

Total 213 (128 – 317) 
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Figure 3. Mean risk estimates (cases per million people per year) for different pasty sizes 

and times to consumption. Numbers on the y-axis are presented on a logarithmic scale.     

Larger commercial pasty sizes were generally found to be related to higher risk in the case 

of times to consumption in excess of 3h, as a consequence of pasties staying for slightly 

longer times at temperatures permitting growth of C. perfringens. However, this was not 

the case for shorter times to consumption (<3h) due to the faster cooling rate of smaller 

sizes. In the case of homemade pasties, larger sizes were related to relatively lower risk 

for times to consumption up to 3h. This was due to pasties staying at core temperatures 

unfavourable for the growth of C. perfringens for slightly longer times during heating and 

cooling down, causing higher estimated spore inactivation. All in all, this resulted  in an 

extremely low risk for homemade pasties consumed <1.5h (mean value being less than 2 

cases per billion inhabitants). For times to consumption of homemade pasties in excess of 

3h, the effect of higher core temperature and greater spore inactivation for larger sizes 

was outweighed by that of more favourable growth temperatures for larger pasties.  

 

Pasties contaminated through black pepper were found to be responsible for relatively 

(slightly) more cases (mean 100, 95% CI: 58-151) than pasties contaminated through 

beef (mean 84, 95% CI: 49 - 127) or through both ingredients at the same time (mean 

29, 95% CI: 16 - 46). Despite that black pepper is being added in much lower amounts to 
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pasties than beef, the prevalence and concentration levels of C. perfringens spores in 

pepper used in our model were considerably higher than in beef (Table 1), which explains 

this relatively higher risk contribution of black pepper. This finding also shows that spices 

can be an important source of introducing spores of C. perfringens to pasties and similar 

products, which when abused allow the pathogen to multiply and reach sufficient numbers 

to cause illness. The rationale for the number of cases resulting from pasties contaminated 

through both ingredients being relatively lower despite the higher initial concentration of 

spores in the product, is that the probability of the occurrence of double contamination 

(Ppepper x Pbeef) is much lower than contamination through individual ingredients (Ppepper or 

Pbeef).   

All risk estimates were surrounded by considerable variance, due to variability of inputs 

such as for instance the r-parameter of the dose response model, the Dref  value or the 

concentration of the pathogen in the raw ingredients (pepper, beef) that accumulated in 

the risk characterization step of the risk assessment [45]. Advanced sensitivity analysis 

results on the basis of 10,000 iterations showing the impact of different inputs on the total 

number of cases can be seen in Figure 4. Bars of the tornado graph represent the range 

of impact of different percentiles of stochastic inputs (1st-99th) on the mean total number 

of toxico-infections (mean 213 cases per million people) and show that impact of the 

variability of r-, Dref, Cbeef and Cpepper is more significant in comparison to that of other inputs 

such as the prevalence of cpe+ strains, the portion size or the spice and meat content. A 

limitation of this sensitivity analysis technique is that it does not evaluate the impact of 

non-stochastic inputs on the output, most importantly the variation in time to consumption 

that was captured in this model by using deterministic inputs (frequencies of different times 

to consumption following baking), which was already shown to have a significant impact 

on the risk estimates (Figure 3). All variable inputs identified to contribute the most to risk 

and that can be the subject of interventions (time to consumption, Cbeef and Cpepper) are 

discussed further in section 3.2.                  

Our annual estimate of total cases due to Cornish pasties seems to be within the range of 

recent epidemiological predictions regarding the total incidence of C. perfringens cases in 

UK (mean 1278 cases per million, 95% CI 493-3,933) [56, 57]. At a mean of 213 cases 

per million per annum, our estimate possible explains a significant proportion (about 15%) 

of the total UK burden of illness due to C. perfringens toxico-infections. Although pasties 

could play an important role as a vehicle of the disease, it is not possible to conclude with 

more certainty what their relative contribution is in the total number of cases in comparison 

with other products. To attribute the total burden of C. perfringens toxico-infections due 

to specific different food products, a comparative exposure assessment approach would be 

needed that, coupled with the hazard characterization step, would allow for the estimation 
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of cases from different sources [58]. However, this was beyond the scope of our risk 

assessment. Nonetheless, our model shows that pasties may be a potential source of risk 

that justifies further study and can be used to decide on risk mitigation strategies for this 

pathogen which are discussed in the following section.  

 

 
 
Figure 4. Advanced sensitivity analysis of the impact of stochastic inputs on the mean 

total number of estimated C. perfringens toxico-infections per million people.   

 
 

3.2. Risk management options 

Considering that the presence of C. perfringens in both beef and pepper is unavoidable, 

although it can be reduced to low levels when good hygienic practices are applied 
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education campaigns. In view of this, reducing the levels of the pathogen in pepper and 

beef by different treatments, and preventing its growth to dangerous levels by reducing 

time to consumption or applying hot-holding were investigated as possible risk reduction 
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and their impact on the mean risk estimates of the risk assessment model can be seen in 

Table 4.  

 

Table 4. Effect of different intervention scenarios in mitigating the risk of C. perfringens 

toxico-infections due to pasties 

Scenario 

Mean risk 

(cases per million 

per year) 

Risk reduction in 

comparison to baseline 

(%) 

Baseline 213 - 

Consumption up to 3h 2.5 99 

Consumption up to 6h 34 84 

Correct hot-holding (retail) 207 3 

Correct hot-holding (consumers) 12 94 

Correct hot-holding (all) 7.0 97 

Irradiation (pepper) 130 39 

Steam treatment (pepper) 183 14 

Ozone treatment (pepper) 161 24 

Ozone treatment (beef) 164 23 

Ozone treatment (beef and pepper) 111 48 

Hot water decontamination (beef) 131 39 

 

In short, four methods currently available for decontamination of raw materials were 

investigated: steam treatment being extensively used by the European spice industry [60], 

irradiation being more efficient for spices than steam treatment [61, 62] though less 

accepted by consumers [59], ozone treatment considered by some researchers as an 

alternative approach especially for spices [63] and hot water decontamination of meat 

carcasses advocated by some as most effective among surface decontamination 

treatments [64]. Other methods were rejected, either because they are forbidden in the 

European Union (fumigation with ethylene oxide) [60] or the UK (irradiation of beef) [65] 

or because they are less practical such as high temperature short time (HTST) requiring 

the spices to be frozen after treatment [66]. To investigate the impact of the selected 

decontamination methods on the population of C. perfringens spores in beef and pepper, 

a literature search was performed. Regarding irradiation, for black pepper, for which this 

method can be used in the UK up to a maximum dose of 10 kGy [65], a 2 log CFU/g 

reduction was considered possible [67]. In the case of ozone, a reduction of 1 log CFU/g 

was regarded feasible for beef surfaces [68]. Similar data could not be found for black 

pepper for which it was considered safe to assume a similar reduction of 1 log CFU/g, on 
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of cases from different sources [58]. However, this was beyond the scope of our risk 

assessment. Nonetheless, our model shows that pasties may be a potential source of risk 

that justifies further study and can be used to decide on risk mitigation strategies for this 

pathogen which are discussed in the following section.  
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and their impact on the mean risk estimates of the risk assessment model can be seen in 

Table 4.  

 

Table 4. Effect of different intervention scenarios in mitigating the risk of C. perfringens 

toxico-infections due to pasties 

Scenario 
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comparison to baseline 
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Hot water decontamination (beef) 131 39 
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the basis of the efficiency of ozone treatment on the reduction of spores of B. cereus in red 

pepper [69] and in view of the fact that these spores are particularly resistant to ozone 

[70]. For steam treatment, in the absence of data specific to spores, it was estimated to 

result in a reduction of 0.5 log CFU/g on the basis of thermal inactivation conditions applied 

to black pepper (98◦C, 3min) and the Tref, mean Dref and z-values for C. perfringens used 

in our risk assessment model [61]. Finally, for hot water decontamination, no data were 

found specific to beef and C. perfringens while a wide variation of the efficiency of this 

process was observed depending on parameters of the selected methodology and carcass 

characteristics. Therefore as a best case scenario a reduction of 2.5 log CFU/g was assumed 

on the basis of the range of efficiencies of this process and available data for other 

sporeformers (C. sporogenes) on beef carcasses [64]. When comparing the above risk 

reduction scenarios to our baseline model, it was evident that the most efficient ones in 

reducing the risk were the ones associated with changes in consumer practices (reducing 

time to consumption and applying hot-holding). Provided these changes are adopted by all 

consumers, the risk associated with the consumption of pasties can be reduced almost 

completely (84-99%). Among decontamination scenarios, it was found that the greatest 

reduction in risk can be achieved by treating both beef and pepper with ozone (48% 

reduction). This was followed by irradiation of pepper and hot water decontamination of 

beef carcasses, each resulting in an approximately 39% risk reduction. Steam treatment 

of pepper resulted in a much lower risk reduction (14%) since it had only a minor impact 

on spore inactivation.   

 

3.3. Use of risk-based metrics 

The use of risk-based metrics has been promoted in the past two decades by international 

bodies [71, 72] as a means of making food safety management transparent and 

quantifiable [73]. Such metrics have the potential of linking governmental policy regarding 

acceptable levels of illness because of a particular hazard in a product (Appropriate Level 

of Protection, ALOP), with specific guidelines to the industry in the form of maximum 

permitted frequency/concentration level of the same hazard in the product at a specified 

step in the food chain, before (Performance Objective, PO) or at the moment (Food Safety 

Objective, FSO) of consumption [74]. While an ALOP and an FSO can only be set by 

governments, a PO can also be set by the industry who is allowed to decide on the required 

performance criteria (PC) and control measures (CM) it needs to meet this target [75]. The 

application of these risk-based metrics has been the subject of a number of case studies 

dealing with products in the market [76-82]. Although a niche food product even in the 

UK, the risk of C. perfringens in Cornish pasties also constitutes an interesting case study 
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because the moment of consumption for this product group varies considerably, while it is 

one of the most important factors influencing risk. 

Using the risk assessment model developed in our study, an assessment was done of the 

current public health burden related to this food/pathogen combination, i.e. 213 (95% CI: 

128-317) cases of C. perfringens toxico-infection in the UK per year, which in essence 

represents the current Level of Protection (LOP) in the UK. Based on the SPS Agreement 

[72] this risk level could be considered by the competent authorities as an ALOP level that 

can be tolerated further. To more clearly specify the actual level of risk accepted, the ALOP 

could be set on the basis of one of the upper percentiles of the output distribution of total 

cases per million per year. Which percentile can be selected for this purpose will depend 

on how confident the risk manager needs to be that this safety target is achieved, and 

although the 95th percentile is often selected for this purpose [83] corresponding here to 

298 cases, other percentiles such as for instance the 97.5th or the 99th are also an option 

corresponding to 317 and 340 cases respectively. In this case, this ALOP would represent 

accepting a status quo regarding public health protection. Alternatively, in the context of 

continuous improvement of food safety, the ALOP could also be set on the basis of an 

intervention to reduce risk, taking again into account the degree of confidence that needs 

to be placed on the risk estimate [83]. Interventions may either target industrial or 

consumer practices. For instance, looking at the comparison of different intervention 

scenarios that the industry could apply with our baseline (Figure 5) it may be decided that 

for practical reasons, the easiest option for reducing the risk could be introducing an 

irradiation step for pepper. In this case, if the risk manager needs to be certain that this 

safety target is reached 95% of the time, the ALOP could then correspond to the 95th 

percentile and be set at 183 cases per million people per year. Similarly, among 

interventions targeting consumer practices, the introduction of a hot holding step by 60% 

of consumers (e.g. as a result of an education campaign) could be an alternative target, 

in which case assuming again 95% confidence in the risk estimate the ALOP could be set 

at 130 cases per million people per year. Based on the above, the setting of the ALOP will 

depend heavily on the interpretation of the target (current or future level of protection) 

and the level of confidence on the risk estimate.  

Having an ALOP specified, an FSO and PO values, as considered appropriate, can be 

decided on by the competent authorities, using our purpose built risk-assessment and 

hazard-characterization information to define what pathogen levels at consumption or at 

earlier stages in the value chain could be tolerated. Given the complexity of the risk 

assessment model, the available data and various assumptions made, setting these risk-

based metrics may require particular skills and expertise for decision-making. As per the 

Codex Alimentarius definition [71, 84], FSO and PO values can be expressed as a 
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concentration, a prevalence or a combination of both. Given that concentrations and 

prevalences of spores and cpe+ strains vary in raw materials, in pasties of different sizes, 

in pasties treated with different methods, and in the ready-to-eat food at the time of 

consumption, setting FSO and PO values is not necessarily straightforward. Although it is 

still theoretically possible to define an FSO for C. perfringens in pasties, PO values might 

be more relevant but then it is up to the commercial producers and home producers of 

pasties to choose and correctly implement the measures that assure meeting the PO. In 

this situation, it is most likely more useful to communicate hazard reduction targets 

(Performance Criteria) associated with the different mitigation scenarios we examined as 

means of achieving an ALOP. For instance, if the current level of protection is not accepted 

and a decision has been made that a risk reduction of 39% would result in an acceptable 

level of protection, then it can be communicated to the industry that either pepper or beef 

need to be decontaminated having as a target a 2 and 2.5 log CFU/g reduction respectively 

(Performance Objectives). Naturally, if the current level of risk is accepted, it is not 

required to communicate any other risk-based metrics to the industry. 

Figure 5. Levels of protection achieved for different intervention scenarios in comparison 

to the baseline. Whiskers show the 95th percentile of estimates. Potential ALOPs could be 

set on the basis of the current level of protection (red dotted line) or future levels of 

protections on the basis of interventions targeting consumers (dark blue dotted line) or 

industrial practices (yellow dotted line).  
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3.4. Assumptions and limitations of the model  

Any model is a simplification of reality and ours is no exception to this rule. When building 

the skeleton of the model all major factors influencing risk were taken into consideration 

and incorporated into the different estimation steps to the best of our ability and to the 

extent that existing literature allowed. Unavoidably though simplifications and assumptions 

needed to be made that could lead in either over- or under-predictions. When possible, 

these were made on the conservative side and they are summarized in Table 5. The impact 

of each assumption on the model is discussed in more detail in Technical Appendix I. More 

research on the type of C. perfringens contamination of carcasses (spores/vegetative 

cells), consumer and store practices regarding the preparation of this product (cooling, 

hot-holding, re-heating, formulating) could significantly help in reducing the number of 

assumptions and in further refining our estimates.  

 

4. Conclusions 

A stochastic risk assessment model was built for Cornish pasties that can be used by 

companies and government authorities for estimating the risk of C. perfringens toxico-

infections associated with this product group, when not held hot in retail outlets, a practice 

that may become more common given discussions for increase in their price when held hot 

or reheated before purchase [85]. The model may provide a basis to estimate the risk of 

the domestic preparation of Cornish pasties, which is also of interest since homemade food 

has the potential to contribute to outbreaks though not to the same extent as food from 

commercial establishments [25, 86]. The predictions were within the range of existing 

epidemiological data and showed that this product group may be an important source of 

C. perfringens toxico-infections. Use of the model for food safety decision-making indicated 

that reducing time to consumption, correct application of hot-holding and decontaminating 

the raw ingredients (beef, pepper) were all viable options for reducing the risk, with 

changes in consumer practices having the greatest impact on risk. These risk reduction 

interventions could also serve as a basis for setting risk-based metrics for this product 

group when using the model.    
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Table 5. Model assumptions and their impact on the risk estimates  

Over-predictions Impact on risk 

All ingredient contamination is due to 

spores 

Significant  

No forced cooling/chilled storage/re-

heating of Cornish pasties at shops after 

baking 

Potentially significant for commercial pasties 

No GOL phase (Germination – Outgrowth 

– Lag) for spores 

Unknown, cannot be modeled 

No lag due to shifts in temperature Unknown, cannot be modeled  

Commercial pasties formulated to 

prevent pathogen growth 

Potentially significant for commercial pasties 

Under-predictions  

No contamination from flour and 

vegetables 

Negligible 

No contamination from food handler Unknown, insufficient data to model 

Cpe+ strains only cause of C. 

perfringens gastroenteritis 

Unknown, insufficient data to model 

Prevalence and concentration based on 

data for spices rather than black pepper 

Unknown, impact on risk depends on whether 

or not black pepper vs other peppers is used 

Either way  

No hot-holding  Potentially significant 

No re-heating Potentially significant 

Cooling temperature Potentially significant for commercial pasties 

consumed outdoors. 

Recipe variation Potentially significant depending on variations 

in size, ingredients and baking times. 
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Technical Appendix I 

Assumptions and limitations of the model 

 

Assumptions that could lead to over-predictions 

All ingredient contamination is due to spores. In practice contamination with vegetative 

cells is also possible though less likely for spices. In the case of beef, C. perfringens 

contamination has been mentioned to be mainly due to vegetative cells [64] but no data 

on the relative contribution of spores/vegetative cells could be found. This means that our 

risk estimate is likely to be an over-estimation of the actual situation by more than 20% if 

we accept that less than half of the contamination is due to spores. 

All commercial pasties were assumed to be let to cool at ambient temperatures while in 

practice some may be held refrigerated prior to sale. In the event of refrigerated storage, 

the risk in relation to commercial pasties would be even lower than what is currently 

estimated but the overall risk which is mainly due to homemade pasties would remain 

mostly unaffected. 

Absence of germination-outgrowth-lag time (GOL time) for bacterial spores. The GOL time 

for bacterial spores is dependent on the conditions the vegetative cells from which they 

originated from, have experienced. These conditions should ideally also be considered 

when modelling this growth phase for spores [87] which is not possible for pasties unless 

additional assumptions are made that all spores present in the product are produced under 

uniform conditions regardless of the raw ingredient they are found. Therefore for simplicity 

reasons the GOL time was not taken into consideration in the estimations. 

Absence of additional lag due to shifts in temperature. When modelling growth for time 

increments of 5 min, temperature was assumed to be constant for the duration of this time 

period and no additional lag due to a shift in temperature was used. Though this is not 

likely to have had an impact for cells in the exponential phase, for which temperature shifts 

can be assumed not to result in a lag phase, for cells already within the lag phase a 

temperature shift is expected to prolong this phase [88] as cells are then less efficient in 

growing [89]. Considering that the same uncertainties as with the GOL time of spores apply 

here (pre-history of vegetative cells) and that even under controlled experimental 

conditions, measurements of lag time are much less repeatable than those for growth rate 

[90] and more difficult to predict for shifts of temperature around the boundaries for 

growth [88] this factor was left out of the estimations.     

No refrigerated storage before consumption. The population of vegetative cells of C. 

perfringens would either remain stable or die during this step [28] depending on duration 
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the risk in relation to commercial pasties would be even lower than what is currently 

estimated but the overall risk which is mainly due to homemade pasties would remain 

mostly unaffected. 

Absence of germination-outgrowth-lag time (GOL time) for bacterial spores. The GOL time 

for bacterial spores is dependent on the conditions the vegetative cells from which they 

originated from, have experienced. These conditions should ideally also be considered 

when modelling this growth phase for spores [87] which is not possible for pasties unless 

additional assumptions are made that all spores present in the product are produced under 

uniform conditions regardless of the raw ingredient they are found. Therefore for simplicity 

reasons the GOL time was not taken into consideration in the estimations. 

Absence of additional lag due to shifts in temperature. When modelling growth for time 

increments of 5 min, temperature was assumed to be constant for the duration of this time 

period and no additional lag due to a shift in temperature was used. Though this is not 

likely to have had an impact for cells in the exponential phase, for which temperature shifts 

can be assumed not to result in a lag phase, for cells already within the lag phase a 

temperature shift is expected to prolong this phase [88] as cells are then less efficient in 

growing [89]. Considering that the same uncertainties as with the GOL time of spores apply 

here (pre-history of vegetative cells) and that even under controlled experimental 

conditions, measurements of lag time are much less repeatable than those for growth rate 

[90] and more difficult to predict for shifts of temperature around the boundaries for 

growth [88] this factor was left out of the estimations.     

No refrigerated storage before consumption. The population of vegetative cells of C. 

perfringens would either remain stable or die during this step [28] depending on duration 
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and temperature. Although refrigerated storage can last up to one week for products such 

as cold pies [91], because pasties are usually consumed warm, this step was considered 

less relevant for this type of product and left out of the model.   

Accuracy of standard methods. The detection protocols for C. perfringens in the prevalence 

studies that we used [17, 26, 27, 29, 33] were all assumed to be the same and equally 

accurate. In a recent study nevertheless it was pointed out that standard methods for the 

detection of this pathogen based on the isolation of sulphite reducing colonies which are 

subsequently confirmed with biochemical tests may result in false positive results [92].  

Adjusting our estimates for this phenomenon is not possible without additional studies 

quantifying differences between standard detection protocols currently in place. 

 

Assumptions that could lead to under-predictions 

Absence of C. perfringens spores in other ingredients. Although the spores, being 

ubiquitous in nature [5], can be found in both the vegetables and the flour used for making 

pasties, they were not considered a source of introducing the pathogen to the product. 

Bearing in mind that for vegetables the contaminated part (skin) is removed, while the 

dough is the part of the product that comes partly into contact with air and unlike meat is 

not a good substrate for the microorganism, the impact of this assumption is likely to be 

negligible. 

Food handler not a source of contamination. Recent studies have identified healthy humans 

handling foods as a potential source of product contamination [5]. The impact of this 

assumption is likely to be negligible for commercial pasties made by professionally trained 

staff wearing gloves. However, it is uncertain how significant this assumption is for 

homemade pasties in the absence of data on contamination levels in human carriers and 

spore transfer rates between surfaces. 

Only cpe+ strains cause gastroenteritis. Recently it has been shown that other enterotoxin 

producing strains  (BEC, binary enterotoxin of C. perfringens) can also cause acute 

gastroenteritis in humans [93]. It is currently unknown what is the relative contribution of 

BEC strains in comparison to cpe+ strains in cases of C. perfringens gastroenteritis.  

Selecting data for the prevalence and concentration of C. perfringens in spices instead of 

black pepper. Black pepper is a spice that because of the way it is produced it has a high 

chance of being contaminated with pathogenic microorganisms [63] and in a recent study 

on the microbiological quality of spices in the UK it was found to be relatively more often 

of unacceptable quality in comparison with other spices [29]. Data for black pepper were 

limited and taking into account that the pepper used in some recipes might also be white 
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(which is less heavily contaminated because the hull is removed) general data for spices 

were considered to be more relevant.   

 

Assumptions having an unforeseeable effect on the estimates  

Hot holding. Although correct application of hot-holding would completely eliminate the 

risk, in reality a certain percentage of consumers can be expected to improperly hold hot 

food [94]. This percentage in combination with data regarding the frequencies with which 

pasties are held at different incorrect temperatures would be necessary to model this step. 

Because of the absence of this kind of information and because assumptions for different  

hot-holding temperatures can result in over- or under-predictions in comparison to our 

baseline model (results not shown), this step was left out altogether.  

Reheating. If this step is performed efficiently then the risk can be completely eliminated, 

similar to applying hot-holding. However, when this step is carried out inadequately, as in 

the case of certain outbreaks of C. perfringens, it can also promote the growth of vegetative 

cells [17]. Given the absence of data necessary to model this step and because it has been 

suggested that reheating temperatures are usually not high enough to destroy pathogenic 

bacteria potentially present in food [95] it was decided to leave it out of the estimations. 

Cooling temperature. Current assumption on cooling temperature is based on average 

temperatures in consumer households [19]. Commercial pasties consumed outdoors may 

be exposed to significantly higher or lower temperatures than this depending on the 

season. 

Cornish pasty recipe. We have assumed that all pasties are made with the same traditional 

recipe though many different recipes exist and it is likely that each recipe is executed in 

different ways, especially in the case of homemade pasties. Variations in pasty sizes, 

baking times and ingredients are possible and they may impact the risk both ways. 
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1. Need for risk-based food safety metrics 

With the world’s population exceeding 7 billion at the time this thesis is being written [1] 

and projections for the coming decades showing that it may probably reach 9 billion by 

2050 [2], achieving global food security is going to be one of humanity’s great challenges 

in the years to come [3]. Food safety is undoubtedly a key feature of the envisioned food 

security which has been defined as the right of “all people at all times to have physical and 

economic access to sufficient, safe and nutritious food to meet their dietary needs and food 

preferences for an active and healthy life” [4]. So the safety of food is recognized as a vital 

part of a sustainable and secure food system [5], which is only natural considering the 

impact of unsafe food on public health, the economy and society as we have demonstrated 

in more detail in chapter 1.    

However, managing food safety is becoming a more and more complex issue. To catch up 

with increased food demands, food production has grown tremendously since the green 

revolution and food exports have increased almost exponentially with a rising number of 

countries depending on international long-distance trade and a shift of traded products 

from raw ingredients to processed foods [5]. As a result, markets have become 

international and more versatile than ever, including myriads of products that may vary 

greatly in their origin, manufacture, production standards and target groups. Practices 

surrounding the consumption of food have also shifted towards more and more people 

eating outdoors, relying on ready-to-eat products or introducing ethnic food into their diet. 

This is an enormous difference in comparison with the situation about a century ago when 

food supply chains were mainly short, with most meals being prepared at home using 

ingredients that were in their vast majority locally produced and placing the blame in case 

of mishaps relatively straightforward. Because of the international nature and complexity 

of markets, the use of new, transparent and generally accepted targets for managing food 

safety has become necessary [6]. Such targets would help governmental agencies in better 

controlling the safety of food on a national level but also in food trade situations, to avoid 

arbitrary or unjustifiable measures set by trading countries in the context of public health 

protection.  

In this direction, in the last two decades, risk-based approaches for managing food safety 

have been acknowledged as a way of ensuring access to an adequate food supply, 

facilitating trade and, above all, protecting public health [7]. To make this risk-based food 

safety management system a reality, new targets were designed. Firstly, the Appropriate 

Level of Protection (ALOP) was accepted by WTO member states as an expression of the 

“acceptable level of risk” in a country in relation to foodborne illnesses [8]. Secondly, in 

order to translate the ALOP into meaningful targets for the industry, the Food Safety 

Objective (FSO) and its associated targets (Performance Objective, PO; Performance 
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Criterion, PC) were adopted a few years later by Codex Alimentarius [9, 10]. These new 

risk-based targets have several benefits that can be summarized as follows:  

 Clear connection between government public health targets (ALOPs) and 

appropriate food safety measures in the food chain [11, 12]. The ALOPs can here 

be viewed as the current level of foodborne illness in a country, given that the 

country apparently accepts that level of risk, although the country may wish to 

reduce the current level and set targets for a future ALOP [13]. This link is highly 

desirable because it offers a food chain approach to food safety and has the 

potential to make it transparent and quantifiable [14]. In chapters 3-4 of this thesis 

we have shown how a connection could be made between an ALOP and an FSO. In 

chapter 5 we demonstrated how a link can be established between future reduced 

levels of foodborne illness or future Levels of Protection (LOPs) and alternative 

reduction targets (PC). 

 Facilitation of international trade. According to the SPS agreement, each WTO 

member has to accept the potentially different sanitary or phytosanitary measures 

of other Member State as equivalent, if it is objectively demonstrated that the 

measures  achieve its “appropriate level of sanitary or phytosanitary protection” i.e. 

the ALOP. This ALOP is required to be based on a scientific assessment of risk to 

human health in order to avoid arbitrary or unjustifiable measures that could serve 

as a disguised restriction on international trade [8]. In chapter 4 we have 

demonstrated how current levels of protection can be estimated and compared for 

different European countries for Salmonella in poultry meat. 

 Flexibility in their application. The FSO concept provides a concise statement of the 

required safety level of a food product at the point of consumption which can be 

communicated to the industry but it leaves open how the latter is going to meet 

this target [15, 16]. Therefore it allows for considerable flexibility in the way 

equivalent food safety levels are achieved by different food chains [15]. The model 

developed in chapter 4 can be used to decide on alternative ways of meeting a 

target FSO (Box 1) based on the conceptual equation of ICMSF (Ho -  ΣR + ΣI ≤ 

FSO) and serves as proof of this flexibility.  However, an FSO may in practice also 

be too complicated to communicate to small scale industries that lack the technical 

resources to interpret it into a more meaningful intervention target for the step in 

the food chain that they are responsible for (i.e. PO, PC) and in that case the 

competent authority in a country may propose or require a “default” or safe heaven 

value for such metrics [17]. In instances where the consumer preparing meals at 

home from raw ingredients is the main factor contributing to the ALOP, countries 

may have to find ways to educate/inform those that prepare the meals to adopt 
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practices that help meeting the ALOP. In the latter case, alternative targets to the 

FSO may be used by governments so that the flexibility of communicating a risk 

reduction target is maintained. For instance, in the case of Cornish pasties discussed 

in chapter 5, where neither the small-scale industry nor the consumer are expected 

to have the technical skills to decide themselves on a PO or a PC, the government 

can recommend a number of specific interventions that can help meet a target Level 

of Protection (LOP) considering interventions shown in Figures 1a and 1b. The 

recommended interventions may differ in their efficiency or may result in the same 

risk reduction as long as the LOP is met.  

 Promoting technological developments in the food industry. The introduction of an 

ALOP-FSO policy might encourage industry innovation through the setting of public 

health goals that are oriented towards a continuous risk reduction [12].  Moreover 

the implementation of these targets is likely to promote a shift from qualitative to 

quantitative approaches for evaluating risk, which would be preferable for the 

setting of their intermediate targets in the food chain (PO, PC, CM) and would offer 

additional insights into the factors that contribute towards product safety. This 

would overall improve our understanding and managing of safety. For instance, the 

quantitative risk assessments of chapters 3-5 could be used by stakeholders in the 

food supply chain to evaluate and decide on control measures for Listeria, 

Salmonella and C. perfringens in deli meats, poultry meat and Cornish pasties 

respectively. 

 

Despite the potential advantages of the ALOP-FSO framework listed above, approximately 

10 years since its introduction no country explicitly applies the FSO concept for local 

regulated targets and there is ongoing debate and disagreement about the use of the ALOP 

concept as a current or future public health protection target. Possible reasons for this 

could be that there is little guidance on how to establish the concepts [16] or how to 

implement them in practice linked to each other [6, 18]. An overlooked reason could also 

be the political courage it takes to set an acceptable level of risk and communicate it to 

the general public. However, considering the historical evolution of food safety 

management, the implementation of similarly new concepts also took a considerable 

amount of time e.g. for HACCP it took more than 30 years from the moment it was available 

for use to the industry until it became obligatory by law in the EU [19, 20]. The steps in 

the implementation of the concepts and potential bottlenecks s experienced through 

chapters 2-5 of this thesis and available literature are discussed in the following sections.  
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Figure 1a.  Efficiency of different interventions in meeting a target future LOP for C. 

perfringens in Cornish pasties (230 cases per million people, ~23% risk reduction from 

baseline) based on the model described in chapter 5. Whiskers show the 95th percentile of 

estimates. Hot holding refers to storing pasties at temperatures ≥63°C after baking; 60% 

of consumers comply to this practice. Irradiation has as a target a ≥2 log CFU/g reduction 

of spores in pepper. Hot water decontamination aims for a ≥2.5 log reduction of spores on 

beef carcasses while ozone treatment aims for a ≥1 log reduction of spores on beef. 

Compliance is assumed to be 100% for irradiation, ozone treatment and hot water 

decontamination.  

 

Figure 1b. Effect of same interventions in meeting the same LOP as in Figure 1a for C. 

perfringens in Cornish pasties but for different compliance percentages (values between 

brackets). 
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2. Steps in the implementation of ALOP, FSO and associated targets  

The steps taken when implementing an ALOP-FSO framework are listed and described in 

detail below. 

2.1. Risk ranking 

Foodborne risks should logically be identified and quantified before deciding whether they 

can be tolerated or need to be reduced; in other words before setting an ALOP [13]. This 

is done through a process known as risk or hazard ranking which may be considered to lie 

at the interface of risk assessment and risk management. Risk ranking is part of the 

preliminary activities of risk management [22, 23] but it is also mentioned to be a risk 

assessment tool [24]. Risk ranking may be done on the basis of risk profiles [17] 

established for various food pathogen combinations in scope of the risk management 

activity, where these profiles are not full-blown risk assessments but contain sufficient 

information to understand the magnitude of risk impact associated to different 

hazards/foods. Van der Fels-Klerx et al. have shown in a recent review that there is a wide 

variety of risk ranking methodologies [25]. Though most studies follow the risk assessment 

method using metrics suitable for quantifying the probability and severity of the risks, 

Box 1. Combinations of factors that may result in the same FSO value for Salmonella in poultry based 
on use of factors 3-5 in the model described in chapter 4. All figures refer to mean values. 

Scenario 1: Greater initial concentration of Salmonella by 0.5 log CFU/g due to accidental post 
slaughter increase which is mitigated by consumer education campaign resulting in 60% reduction in 
undercooking and the probability of preparing a salad after handling chicken. 

Scenario 2: Even greater initial concentration of Salmonella with is mitigated by a more intensive 
consumer education campaign resulting in 80% reduction for the same practices. 

Scenario 3. High initial concentration of Salmonella which is mitigated by improvements in the 
decontamination process (change from hot water to steam decontamination) 

 

Factors  

1. 
Carcass 

concentration 
(log CFU/g) 

2. 
Decontamination 

reduction (log 
CFU)* 

3. 
Retail 

concentration 
(log CFU/g) 

4. 
Probability of 
making salad 
after chicken 

5. 
Frequency 

of 
undercooking 

FSO 
(log 

CFU/g) 

Baseline 0.5 -1.5 -1 0.5 0.2 -6 
Scenario 
1 1 -1.5 -0.5 0.2 0.082 -6 

Scenario 
2 1.25 -1.5 -0.25 0.1 0.041 -6 

Scenario 
3 2 -3 -1 0.5 0.2 -6 

*It is assumed that in the baseline and scenarios 1-2 decontamination is based on hot water and 
results in an average reduction of 1.5 log CFU while in the scenario 3 it is assumed that 
decontamination is based on steam which has double the efficiency [21]. 
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some studies follow methods that quantify societal preferences for risk reduction using 

more subjective metrics such as for instance willingness to pay. 

In chapter 3, a risk ranking study was performed for Greece, using the Disability Adjusted 

Life Year (DALY) which is a risk metric recommended by the WHO for use in burden of 

disease studies [26] and is increasingly used in describing the public health impact of 

foodborne illnesses on a national and international level [27-30]. DALY is a time based 

health indicator that is calculated as the number of healthy years of life lost due to death 

and disability [26]. Therefore, it has an advantage over incidence in that it can quantify 

the public health effect of diseases that vary in their associated morbidity and mortality in 

a unified way using time as a unit and also including health effect weighing, which allows 

comparison over illnesses that have different outcomes. Such estimates can be used by 

governments for consultation and agreement on ALOPs with the general public or by risk 

managers or policy makers to order/rank risk assessments [29] but most importantly to 

make rational decisions about whether or not resources should be allocated for increased 

management or regulation of one hazard over another [31]. In that regard, the risk ranking 

estimates for Greece showed that four illnesses, brucellosis, salmonellosis, echinococcosis 

and toxoplasmosis were responsible for approximately 70% of the annual DALY in the 

country and may thus be considered a priority for food safety management measures. 

Such measures could be taken after commissioning a risk assessment to evaluate the 

impact of different interventions on reducing the risk of each illness but they could also be 

taken immediately when control measures for an illness are already well known from other 

risk assessments and/or there are examples of their successful application in other 

countries. In this particular case, because risk factors for all four illnesses have been 

identified and their management has been successful in other countries, control measures 

could be selected among what is already mentioned in literature. More specifically: 

 For the control of brucellosis, standard prevention measures may involve 

eradication of the disease in animals (by vaccinations and testing of herds), special 

precautions by individuals that might be exposed as a result of their occupation and 

inactivation of the pathogen in dairy and other potentially contaminated products 

by heating [32]. As the urban population is not exposed to any significant risk of 

acquiring the infection since all commercially available dairy products in Greece are 

produced from pasteurized milk [33], these measures should be focused on the 

rural areas of the country. Considering also that the consumption of unpasteurized 

dairy products is the main cause of childhood brucellosis where the manifestation 

of the disease can be more severe [34, 35], and a cause of outbreaks that can 

affect a large number of persons [36] a program of health education of people at 

risk in these areas was also considered to be necessary for the incidence of the 

disease to decrease [33].  
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Scenario 
1 1 -1.5 -0.5 0.2 0.082 -6 

Scenario 
2 1.25 -1.5 -0.25 0.1 0.041 -6 

Scenario 
3 2 -3 -1 0.5 0.2 -6 

*It is assumed that in the baseline and scenarios 1-2 decontamination is based on hot water and 
results in an average reduction of 1.5 log CFU while in the scenario 3 it is assumed that 
decontamination is based on steam which has double the efficiency [21]. 
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some studies follow methods that quantify societal preferences for risk reduction using 

more subjective metrics such as for instance willingness to pay. 

In chapter 3, a risk ranking study was performed for Greece, using the Disability Adjusted 

Life Year (DALY) which is a risk metric recommended by the WHO for use in burden of 

disease studies [26] and is increasingly used in describing the public health impact of 

foodborne illnesses on a national and international level [27-30]. DALY is a time based 

health indicator that is calculated as the number of healthy years of life lost due to death 

and disability [26]. Therefore, it has an advantage over incidence in that it can quantify 

the public health effect of diseases that vary in their associated morbidity and mortality in 

a unified way using time as a unit and also including health effect weighing, which allows 

comparison over illnesses that have different outcomes. Such estimates can be used by 

governments for consultation and agreement on ALOPs with the general public or by risk 

managers or policy makers to order/rank risk assessments [29] but most importantly to 

make rational decisions about whether or not resources should be allocated for increased 

management or regulation of one hazard over another [31]. In that regard, the risk ranking 

estimates for Greece showed that four illnesses, brucellosis, salmonellosis, echinococcosis 

and toxoplasmosis were responsible for approximately 70% of the annual DALY in the 

country and may thus be considered a priority for food safety management measures. 

Such measures could be taken after commissioning a risk assessment to evaluate the 

impact of different interventions on reducing the risk of each illness but they could also be 

taken immediately when control measures for an illness are already well known from other 

risk assessments and/or there are examples of their successful application in other 

countries. In this particular case, because risk factors for all four illnesses have been 

identified and their management has been successful in other countries, control measures 

could be selected among what is already mentioned in literature. More specifically: 

 For the control of brucellosis, standard prevention measures may involve 

eradication of the disease in animals (by vaccinations and testing of herds), special 

precautions by individuals that might be exposed as a result of their occupation and 

inactivation of the pathogen in dairy and other potentially contaminated products 

by heating [32]. As the urban population is not exposed to any significant risk of 

acquiring the infection since all commercially available dairy products in Greece are 

produced from pasteurized milk [33], these measures should be focused on the 

rural areas of the country. Considering also that the consumption of unpasteurized 

dairy products is the main cause of childhood brucellosis where the manifestation 

of the disease can be more severe [34, 35], and a cause of outbreaks that can 

affect a large number of persons [36] a program of health education of people at 

risk in these areas was also considered to be necessary for the incidence of the 

disease to decrease [33].  
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 For the control of salmonellosis, the use of new epidemiological methods [37] but 

also existing information regarding the most commonly implicated foodstuff in 

salmonellosis outbreaks [38, 39] and existing risk assessments [40] can be put to 

use for the prevention and control of the disease for which a coordinated 

multidisciplinary effort from public health, veterinary and food safety experts is 

required [41].  

 In the case of echinococcosis, preventive measures could include disinfecting 

carriers of the parasite, prohibiting unauthorized slaughtering of animals, 

incinerating infected organs and improving cooperation between physicians and 

veterinarians with the aim to inform people who either because of their occupation 

or because of their residence in rural areas are at particular risk of contracting the 

disease [42].  

 Finally, to reduce the risk of congenital toxoplasmosis, efforts should be targeted in 

educating pregnant women on risk factors for contracting the disease, i.e. eating 

raw or undercooked meat, travelling in developing countries and having contact 

with soil [43]. Interestingly, cat ownership is not found to be a major risk factor for 

infection with Toxoplasma [43-46] although domesticated and feral cat populations 

are a recognized risk factor for seropositivity [47, 48].         

The selection of appropriate control measures could be based on multi-criteria decision 

analysis tools that allow the optimal evaluation of different interventions and selection of 

one over others on the basis of multiple criteria such as weight of evidence, effectiveness, 

cost and practicality [49]. 

 

2.2. Selection of a risk assessment method 

When there is insufficient information to manage the risks that constitute a priority in terms 

of public health burden, a risk assessment can be commissioned by risk managers to 

evaluate interventions [7]. Another use of risk assessment is to provide a scientific link 

between the ALOP and the sanitary or phytosanitary measure [8], which in this case can 

be the FSO, PO or PC, that can then be used as a basis for selecting the necessary control 

measures (CM). The development of such a risk assessment is dependent on the needs of 

the risk managers, existing data and resource limitations [7]. Depending on data 

availability a risk assessment may be quantitative, when its individual components are 

linked by models, or qualitative when this is not the case [50]. Furthermore, depending on 

the level of detail in the available data, a risk assessment may be deterministic when inputs 

are point estimates, or stochastic when inputs are incorporated in the form of distributions 

to include variability and uncertainty [31]. In general, there are two different 

methodologies for performing a risk assessment, an epidemiological approach, having the 

risk of illness as a starting point and a supply chain approach having the hazard as a 

245 
 

starting point [51]. In chapters 3 and 4, both of these approaches were followed with the 

epidemiological one, estimating first an ALOP and then an FSO being referred to as “top-

down” and the supply chain approach, estimating first an FSO and then an ALOP being 

referred to as “bottom-up”. A general overview of the estimation steps and data needs for 

each risk assessment approach can be seen in Figures 2 and 3.  

It would be recommended to use both approaches when implementing the ALOP-FSO 

benchmarks. First applying the top-down approach so that the current situation in relation 

to food safety can be evaluated on the basis of disease surveillance and a target for 

reduction can be set, and then the bottom-up approach so that the efficiency of different 

intervention measures in achieving the desired risk reduction can be weighed. Given that 

the responsibility for deciding on ALOP and FSO values is with governments, they would 

need the resources and capabilities to conduct the necessary risk assessment(s) as well as 

have access to relevant epidemiological data and supply chain data. Naturally the 

application of both approaches in this context would also require an integrated food and 

disease surveillance system to verify compliance with the FSO and ALOP benchmarks [52]. 

Such a system would also need to be stable over time so that changes in the observed 

disease incidence or prevalence of microorganisms cannot be attributed to changes in 

surveillance methods or isolation and detection protocols respectively. Finally, care should 

be taken that the end-point of the bottom-up approach is the same as the starting point 

of the top-down approach. In other words, the cases of  

illness estimated through the use of a dose-response model should be of the same severity 

as the cases estimated through epidemiological data to allow for comparisons between the 

two approaches. A way to overcome this problem could be to introduce the use of DALY 

[53, 54] as a metric to express the ALOP. DALYs provide the means to express public 

health burden in a consistent way by summing up the years of human life that are lost in 

a population due to a specific illness that may manifest in symptoms varying considerably 

in terms of their severity. Thus the metric can serve as a means of normalizing the outputs 

of different kinds of risk assessment models [55].  

In general, both types of assessments may result in valuable interventions for reducing 

risk though not of the same kind. It is also important to note that new knowledge from one 

type of risk assessment can help improve the other type and vice versa. For instance, 

epidemiological data from outbreak investigations used in top down risk assessments may 

help identify high risk product-pathogen combinations or contamination scenarios for which 

a bottom-up risk assessment is needed to identify interventions in the food chain. Similarly, 

a knowledge gap with regards to dose-response modelling in bottom-up risk assessments 

may be narrowed by better quality epidemiological data from outbreaks collected in a top-

down risk assessment. 
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epidemiological one, estimating first an ALOP and then an FSO being referred to as “top-

down” and the supply chain approach, estimating first an FSO and then an ALOP being 

referred to as “bottom-up”. A general overview of the estimation steps and data needs for 

each risk assessment approach can be seen in Figures 2 and 3.  

It would be recommended to use both approaches when implementing the ALOP-FSO 

benchmarks. First applying the top-down approach so that the current situation in relation 

to food safety can be evaluated on the basis of disease surveillance and a target for 

reduction can be set, and then the bottom-up approach so that the efficiency of different 

intervention measures in achieving the desired risk reduction can be weighed. Given that 

the responsibility for deciding on ALOP and FSO values is with governments, they would 

need the resources and capabilities to conduct the necessary risk assessment(s) as well as 
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However, both the top-down and the bottom-up approach are quite demanding in terms 

of data and particularly in the case of the former, an integrated food chain surveillance 

system would be needed for the results to be suitable for model validation [56]. At present, 

very few countries hold this type of surveillance system and not for all pathogens. This 

means that in practice it may only be possible to apply one approach to setting risk based 

metrics, as has been the case in chapter 5 where only a bottom-up risk assessment model 

could be developed for a niche product. Though using only one risk assessment approach 

is not optimal, this may still allow for risk-based interventions connected to an ALOP or a 

LOP as shown before in Figure 1. An overview of the differences between top-down and 

bottom-up risk assessments can be seen in Table 1. 

 

Table 1. Overview of similarities and differences between top-down and bottom-up risk 

assessments 

 Bottom-up risk assessment Top-down risk assessment 

F
o

cu
s 

Single hazard-food combination Single hazard-multiple foods  

More on interventions than on risk More on risk than on interventions 

Targeted more towards the 

industry and food chain safety 

managers. 

Targeted more towards public health 

authorities and governmental food safety 

managers. 

O
u

tp
u

t 

Interventions based on the effect 

of processing/consumer practices 

on risk. E.g. irradiation in 

combination with MAP can  reduce 

the mean risk of listeriosis per 

serving of baby spinach by 65.6% 

[57] 

Interventions based on risk factors, 

frequently implicated vehicles in outbreaks 

and high-risk product-pathogen 

combinations. E.g. guidelines on how to 

manage risk of viral product 

contamination from food handlers [58] 

following outbreak investigations 

identifying asymptomatic food handlers in 

contact with sick household members as a 

major cause of Norovirus outbreaks [59]. 

Risk estimate based on standard 

industrial/household practices. 

E.g risk estimate for Salmonella in 

poultry based on retail data and 

common consumer mishandling 

practices described in chapter 4. 

Risk estimate also includes incidental 

contamination during non-standard 

industrial/consumer practices (outbreaks, 

sporadic cases). 

E.g. top-down risk estimate for Listeria in 

deli meats in chapter 3. 
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Estimation steps Inputs 

Reported cases of illness 

 

 

 

Surveillance data on laboratory confirmed 

cases, population statistics 

Total cases of illness 

 

 

 

Underreporting factor, under-notification 

factor 

Total cases of illness due to food 

 

 

 

% cases transmitted through food  

Appropriate level of Protection: 

Total cases of illness due to food product 

 

 

 

% cases due to food product 

Dose consumed 
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Concentration at consumption 
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Figure 2. General outline of the estimation steps and input requirements in the “top-

down” risk assessment methodology for the determination of ALOP and FSO.  
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Estimation steps Inputs 

Appropriate Level of Protection: 

Total cases of illness due to food 

product 

 

 

 

Dose response model, number of servings, 

prevalence 

Dose 

 

 

Food Safety Objective 

 

 

Mass per serving Prevalence 

Concentration at consumption  

 

 

 

Frequency of consumer practices resulting 

in growth, reduction and/or recontamination    

Recontamination (if applicable) 

 

 

 

Transfer rates between surfaces, 

concentration levels in source of 

recontamination 

Reduction (if applicable) 

 

 

 

D-value, z-value, time, temperature 

Growth (if applicable) 

 

 

 

Growth rate, time, temperature, primary 

growth model, secondary growth model 

parameters 

Initial concentration in the product 

 

Sampling data  

Figure 3. General outline of the steps in the “bottom-up” risk assessment methodology 

for the estimation of ALOP and FSO. Examples of input requirements are given in the 

second column. 

 

2.3. Considerations on the targets  

Once the risk assessment has been set and a link has been established between the risk 

of illness and the prevalence and concentration of the hazard in the food chain, the ALOP 

and FSO (or other risk-based targets) can be set. However, a series of decisions need to 
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made, sometimes prior to the completion of the risk assessment. These decisions are 

summarized in the paragraphs below. 

2.3.1. Interpretation of definitions and agreement on units for expressing the metrics. 

Though it is generally agreed that an ALOP is an expression of risk in relation to a hazard 

in food in a country, not all WTO members may agree that their current LOP represents an 

“acceptable risk” and they may wish to link their sanitary measures to a future LOP. So in 

practice, a LOP may either be linked to a current of future public health protection level. 

Furthermore, considering that data gathering for risk assessment purposes takes time and 

typically includes studies from different years, both top-down and bottom-up risk 

assessments would inevitably provide risk estimates for recent past years and not the 

current situation. For instance, in chapter 4, in the case of the top-down LOPs for 

salmonellosis, estimates were based on data from a 7-year period prior to the time of the 

assessment while in the case of the bottom-up LOP data were based on a 14-year period. 

Considering that it is inevitable to exclude data from past studies, an agreement has to be 

made prior to the start of a risk assessment on the timeframe from which relevant data 

can be extracted for building the model and that this can be considered an approximation 

of the current situation or a basis for discussing future LOPs.  

The selection of the units for expressing risk is also important. Both the risk per serving 

and the population risk would fulfil the criteria for defining risk (probability and severity of 

the adverse effect in relation to the hazard in food). However, the selection of one over 

the other would influence the communication of the risk, particularly when targets for the 

same pathogen in multiple foods are to be set. Population risk (especially when expressed 

as DALYs instead of incidence), gives a more accurate picture of the disease burden that 

is accepted (ALOP) or is a target for future interventions (public health goal LOP) and 

therefore is better for communication to food safety managers and the general public. The 

risk per serving may be preferable for communicating risk to consumers, food handlers or 

the industry but it does not give on its own a clear picture of the disease burden it 

represents unless combined with population consumption data. This is because a high risk 

per serving means that the concentration/prevalence of the hazard is high or the consumer 

is particularly sensitive to the hazard (and therefore a target for interventions by 

consumers, food handlers or the industry) but when it is very infrequently consumed 

and/or by a small part of the population, the food product does not necessarily contribute 

significantly to the disease burden in the whole population. This difference between 

population risk and risk per serving has already been observed during the FDA/FSIS Listeria 

monocytogenes risk assessment in ready-to-eat foods where products with relatively low 

risk per serving (pasteurized milk) were found to be linked with a high population risk and 

products with a high risk per serving (pâté and meat spreads) were linked to moderate 

248

Chapter 6



248 
 

Estimation steps Inputs 

Appropriate Level of Protection: 

Total cases of illness due to food 

product 

 

 

 

Dose response model, number of servings, 

prevalence 

Dose 

 

 

Food Safety Objective 

 

 

Mass per serving Prevalence 

Concentration at consumption  

 

 

 

Frequency of consumer practices resulting 

in growth, reduction and/or recontamination    

Recontamination (if applicable) 

 

 

 

Transfer rates between surfaces, 

concentration levels in source of 

recontamination 

Reduction (if applicable) 

 

 

 

D-value, z-value, time, temperature 

Growth (if applicable) 

 

 

 

Growth rate, time, temperature, primary 

growth model, secondary growth model 

parameters 

Initial concentration in the product 

 

Sampling data  

Figure 3. General outline of the steps in the “bottom-up” risk assessment methodology 

for the estimation of ALOP and FSO. Examples of input requirements are given in the 

second column. 

 

2.3. Considerations on the targets  

Once the risk assessment has been set and a link has been established between the risk 

of illness and the prevalence and concentration of the hazard in the food chain, the ALOP 

and FSO (or other risk-based targets) can be set. However, a series of decisions need to 

249 
 

made, sometimes prior to the completion of the risk assessment. These decisions are 

summarized in the paragraphs below. 

2.3.1. Interpretation of definitions and agreement on units for expressing the metrics. 

Though it is generally agreed that an ALOP is an expression of risk in relation to a hazard 

in food in a country, not all WTO members may agree that their current LOP represents an 

“acceptable risk” and they may wish to link their sanitary measures to a future LOP. So in 

practice, a LOP may either be linked to a current of future public health protection level. 

Furthermore, considering that data gathering for risk assessment purposes takes time and 

typically includes studies from different years, both top-down and bottom-up risk 

assessments would inevitably provide risk estimates for recent past years and not the 

current situation. For instance, in chapter 4, in the case of the top-down LOPs for 

salmonellosis, estimates were based on data from a 7-year period prior to the time of the 

assessment while in the case of the bottom-up LOP data were based on a 14-year period. 

Considering that it is inevitable to exclude data from past studies, an agreement has to be 

made prior to the start of a risk assessment on the timeframe from which relevant data 

can be extracted for building the model and that this can be considered an approximation 

of the current situation or a basis for discussing future LOPs.  

The selection of the units for expressing risk is also important. Both the risk per serving 

and the population risk would fulfil the criteria for defining risk (probability and severity of 

the adverse effect in relation to the hazard in food). However, the selection of one over 

the other would influence the communication of the risk, particularly when targets for the 

same pathogen in multiple foods are to be set. Population risk (especially when expressed 

as DALYs instead of incidence), gives a more accurate picture of the disease burden that 

is accepted (ALOP) or is a target for future interventions (public health goal LOP) and 

therefore is better for communication to food safety managers and the general public. The 

risk per serving may be preferable for communicating risk to consumers, food handlers or 

the industry but it does not give on its own a clear picture of the disease burden it 

represents unless combined with population consumption data. This is because a high risk 

per serving means that the concentration/prevalence of the hazard is high or the consumer 

is particularly sensitive to the hazard (and therefore a target for interventions by 

consumers, food handlers or the industry) but when it is very infrequently consumed 

and/or by a small part of the population, the food product does not necessarily contribute 
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risk per serving (pasteurized milk) were found to be linked with a high population risk and 

products with a high risk per serving (pâté and meat spreads) were linked to moderate 
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population risk (Figure 4). It is therefore recommended to express risk both on population 

level (risk per population unit) and on consumer level (risk per serving) when designing 

risk communication to stakeholders. 

With regards to the FSO units, in the case studies of chapters 3 and 4, it was selected to 

use log CFU/g as this would allow for the incorporation of the concentration, prevalence 

and frequency of events leading to the hazard being introduced in the food (unwashed 

hands, unwashed or only rinsed cutting board and knife) in the FSO equation as the 

definition of this target would require. 

 

Figure 4. Top-10 of riskiest ready-to-eat products for Listeria in terms of risk per serving 

(bullets) and their correspondent population risk (dashes of same colour as the bullets) in 

the US. Risk per serving is the risk of listeriosis per single serving of each ready-to-eat 

food for the individual consumer. Risk per serving is considered high when the product 

contributes to >5 cases per billion servings, moderate for 1-5 cases per billion servings 

and low for <1 case per billion servings. Population risk is the annual number of listeriosis 

cases for the entire US population. Population risk is considered very high for >100 cases 

per annum, high for >10 cases per annum, moderate for 1-10 cases per annum and low 

for <1 case per annum [60].  
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However, a complication of selecting concentration is that exposure to a pathogen may not 

only be the result of consuming the food item it originated from (e.g. chicken meat) but 

also a number of other products that may have incidentally been contaminated from this 

item during the preparation of a meal (e.g. salad). Furthermore, in the case of multi-

ingredient foods like Cornish pasties, concentration of more than one contaminated 

ingredients may contribute to exposure. For these reasons it has been suggested to use 

the dose instead of the concentration at consumption as a means of defining an FSO. This 

can be done by building a prevalence-dose curve (P-D curve) [16]. An example of this 

approach is shown in Figure 5 where the P-D curve is built by solving the LOP formulas of 

the bottom-up model of chapter 3 for the prevalence, using fixed values for the LOP (99th 

percentile values for yopi and healthy population) and dose (5-10 log CFU). The outer part 

of each curve corresponds to combinations of prevalence and dose at consumption that 

result in meeting a target LOP.  

 

 

Figure 5. Combinations of prevalence (P) and dose (D) that result in a target Level of 

Protection (LOP) for Listeria in deli meats in the Netherlands for the susceptible (red dashed 

line) and the healthy population (blue dashed line). Target protection levels correspond to 

the 99th percentile of calculated LOPs for these two population groups based on the bottom-

up risk assessment model of chapter 3 (~80 cases per million susceptible individuals and 

~2 cases per million healthy individuals). 
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population risk (Figure 4). It is therefore recommended to express risk both on population 

level (risk per population unit) and on consumer level (risk per serving) when designing 

risk communication to stakeholders. 

With regards to the FSO units, in the case studies of chapters 3 and 4, it was selected to 

use log CFU/g as this would allow for the incorporation of the concentration, prevalence 

and frequency of events leading to the hazard being introduced in the food (unwashed 

hands, unwashed or only rinsed cutting board and knife) in the FSO equation as the 

definition of this target would require. 

 

Figure 4. Top-10 of riskiest ready-to-eat products for Listeria in terms of risk per serving 

(bullets) and their correspondent population risk (dashes of same colour as the bullets) in 

the US. Risk per serving is the risk of listeriosis per single serving of each ready-to-eat 

food for the individual consumer. Risk per serving is considered high when the product 

contributes to >5 cases per billion servings, moderate for 1-5 cases per billion servings 

and low for <1 case per billion servings. Population risk is the annual number of listeriosis 

cases for the entire US population. Population risk is considered very high for >100 cases 

per annum, high for >10 cases per annum, moderate for 1-10 cases per annum and low 

for <1 case per annum [60].  
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2.3.2. Interpretation of probability distributions (percentile selection for setting risk based 

targets)   

Considering the stochastic nature of many risk assessments, another major decision is how 

to set a risk-based target, that for all intents and purposes needs to be a numerical 

threshold, on the basis of a distribution that is a continuous range of values. This is not a 

real issue for deterministic risk assessments since their outputs are by definition numerical 

(point estimates) or for qualitative risk assessments that by definition do not result in 

numerical outputs. For stochastic risk assessments, this decision depends on the 

interpretation of the “maximum frequency and/or concentration of the hazard” that is part 

of the FSO definition and thus affects all its related targets. Currently there is no uniform 

agreement among experts on how to relate this “maximum” to the outputs of a stochastic 

risk assessment (probability distributions) [7]. In chapters 3 and 4 it was suggested that 

the interpretation of maximum may relate to the selection of an upper percentile of the 

probability distribution of the risk estimate (ALOP/FSO) that covers for both uncertainty 

and variability. Which percentile is selected depends on the level of confidence the food 

safety manager wishes to have on the risk estimate so that it is not surpassed. When both 

a top-down and bottom-up approach are used, then the selected percentile could be one 

of the upper percentiles after the median for which both outputs are aligned, e.g. with this 

approach the 90th percentile could be a good selection for setting a LOP for Salmonella in 

chicken based on the risk assessments of chapter 4. In general, looking at risk assessments 

from other fields than food microbiology, the median or percentiles at very different 

distances from the median may be used to set targets. For instance, Peters et al. selected 

the 66th percentile to suggest targets for carbon emissions on the basis of temperature 

increases (global warming) [61]. In toxicological risk assessments, the selection of 

percentiles may also vary considerably depending on the aim of the assessment. As an 

example, for estimating chronic dietary exposures to pesticide and veterinary drug 

residues, the median of the residue distribution is selected. In contrast, for estimating 

acute dietary exposure, upper percentiles of serving sizes (e.g. 97.5th) in combination with 

highest residue concentrations measured in supervised trials are selected [62]. In any 

case, the selected percentile expresses the probability of reaching the risk based target 

and is mentioned by different authors in relation to the FSO as the “compliance rate” [63] 

or the “food safety margin” in meeting this target [64].  

 

2.3.3. Rate of industrial and consumer compliance in meeting a risk-based metric 

Every risk assessment model is a simplification of the real world and thus may not cover 

for all pathways leading to exposure to microbial hazards and illness. Failure to cover for 

all relevant risk pathways may be due to failure to capture certain types of unpredictable 

human error events (unforeseen malpractices/accidents at the consumer or industry level 
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leading to sporadic cases or outbreaks) or the actual variation in production, distribution 

and consumer use of a specific food commodity. For these reasons it is unrealistic to expect 

100% compliance to a risk-based target and it is advisable to consider the potential failure 

rates at the consumer and industry level in meeting the target. A way to do this is by 

allowing for some extra ceiling in the numerical LOP for these unforeseen cases and/or  

clarifying that the ALOP/LOP target is representative of the main factors identified to 

contribute to the risk and/or setting separate targets for the percentage of cases due to 

uncertain human error events.  

On the side of the industry, the abovementioned human error events are relatively rare 

food contamination incidents due to failure to meet HACCP prerequisites or to achieve a 

safe formulation. Examples of such single events that have affected an exceptionally large 

number of people are for instance: 

- the 1994 US Salmonella outbreak in relation to ice cream that resulted in an increase of 

about 20% in the annual reported number of salmonellosis cases (>200,000 cases of 

gastroenteritis in the general population). The incident originated from tanker trailers of 

ice cream premix that had been previously used to carry liquid non-pasteurized eggs 

without being properly washed and sanitized [65]    

- the 1989 UK botulism outbreak in relation to hazelnut yoghurt that resulted in 27 cases 

[66], representing in itself more than a third of all cases reported in the UK in the period 

1922-2005 [67]. The source of this outbreak was traced back to a change in the 

formulation of the hazelnut conserve (replacement of sugar with aspartame) that was 

made without an assessment of the risk of growth of C. botulinum. 

On the side of the consumer, human error events could be unforeseen malpractices 

resulting in sporadic cases or outbreaks. An example of this type of human error is the 

consumption of raw cookie dough by a large percentage of consumers in the US in 2009, 

despite package instructions to bake the product, that resulted in 77 illnesses due to E. 

coli O157:H7 [68].  

Non/compliance to risk-based metrics due to unforeseen human error events such as those 

described above is different to non/compliance due to the variability and uncertainty of risk 

assessment models discussed in the previous section. It is also important to note that 

common malpractices are usually part of the risk assessment model (use of contaminated 

cutting boards or poor food handler hygiene resulting in product contamination [40, 69]) 

and therefore their impact on the risk based metric should be covered by the selected 

compliance rate or food safety margin. 
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2.3.4. Social and economic factors  

Other considerations before making a decision on a value for an ALOP/LOP and related risk 

based targets is the technical and economic feasibility of achieving them and that they 

should not be more restrictive to trade with other countries than necessary [8]. This allows 

for different countries to opt for different public health targets due to societal differences 

or financial reasons, even if they have the same level of technological resources. An 

example of this are the different public health targets for the reduction of Salmonella 

between Denmark and the United States. Both countries have intensive broiler/hen farming 

systems and started Salmonella control programmes at periods when salmonellosis in 

relation to poultry and eggs was recognized as a major public health issue with comparable 

incidence rates. However, they opted for very different targets (eradication in Denmark vs 

reduction in the US) and control approaches (top-down eradication in Denmark vs control 

measures at/following slaughter in the US) [70, 71] (see also Table 2). Suggested reasons 

for the selection of different control measures is the larger size of the US poultry industry 

in comparison to the Danish one, willingness to pay for Salmonella free meat and issues 

with the implementation of uniform control measures across the food chain due the US 

regulatory framework [72].  

Financial and societal reasons such as the eating culture, customs and traditions in a 

country may also result in the acceptance of relatively high LOPs for some niche products. 

An example of this is the sale of soft raw milk cheeses in Europe where they are an 

important part of the economy of many countries despite risk assessments and 

epidemiological investigations showing that they can be a significant contributor to the 

incidence of listeriosis [73, 74]. The European approach in controlling products such as 

these that support the growth of Listeria monocytogenes, is to set a maximum legal 

threshold for the concentration of the pathogen (i.e. ≤100 CFU/g throughout shelf-life for 

products placed in the market, absence in 25 g at the manufacturer; thresholds based on 

5 samples in each case) in combination with environmental sampling covering the 

processing areas and equipment used for their production [75]. In contrast, the US current 

approach is to prohibit the sale of raw milk cheeses that have been aged for less than 60 

days and to have a zero tolerance policy for the presence of the pathogen in ready-to-eat 

products [76]. Interestingly, the strictness of the latter policy is not necessarily related to 

a higher level of public health protection, since it has been shown when combining food 

survey and epidemiological data by means of risk assessment techniques that interventions 

targeting the concentration of Listeria rather than its prevalence have a greater risk 

reduction potential [77]. Similar findings have been reported in the EU where it is shown 

that ~92% of invasive listeriosis cases due to ready-to-eat foods are caused by ingestion 

of contaminated servings with concentrations in excess of 2,000 CFU/g [78]. 
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*1 Approximate numbers from data presented in graph 

*2 Estimate based on  incidence data from Scallan et al. [81], average population for the 

period 2000-2008 and range of source attribution estimates derived from outbreaks [83]  

*3 Total incidence (total cases in country) at the start of the program 

*4 No available information on the cost benefit. 

 

Table 2. Background of Salmonella control programs in Denmark and the United States 

 Denmark United States 

Program name National Salmonella Control 

Programme [79] 

“Salmonella Action Plan” 

Active period 1988-1989 for poultry [71] 

1997 onwards for table eggs 

[80] 

2011-2016 [70] 

Total salmonellosis 

incidence  

~3500 cases (1988) [71] 

~5000 cases (1997) [80]*3 

~1,000,000 cases (2011) [81]*3 

Salmonellosis 

incidence, annual 

per million 

~700 cases due to poultry 

~950 cases due to eggs 

[71]*1*3 

~342-988 due to poultry 

~392-981 due to eggs*2 

 

Target public 

health reduction 

Zero tolerance (initial target was 

reduction of Salmonella 

prevalence in broilers flocks 

from >65% to <5%) [71]  

4.5% reduction of salmonellosis [70] 

Technical 

approach 

Top down eradication, starting 

from breeding flocks [71] 

Interventions at/following slaughter 

(inspections, sampling and testing 

programmes) [70] 

Population*3 ~5.1 million [82]  ~315 million [82] 

Production per 

million*3 

24 kt poultry 

16 kt eggs [82] 

63 kt poultry 

17 kt eggs [82] 

Imports per 

million*3 

0.98 kt poultry 

4.4 kt eggs [82] 

0.27 kt poultry  

0.03 kt eggs [82] 

Exports per 

million*3 

12 kt poultry 

2.7 kt eggs [82] 

12 kt poultry  

0.57 kt eggs [82] 

Chicken slaughter 

annually  

8.5 billion [72] 100 million [72] 

Investment Initial investment ~25 million €, 

maintenance <900,000€ 

annually [71]  

-*4 

Benefits  Cost benefit ratio well below 1 

[71, 80] 

-*4 
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2.3.5. Risk communication 

Last but not least, both the ALOP and the FSO are to be communicated to different parties 

and this is perhaps the most challenging part of the whole process as most consumers are 

likely to have a difficulty in understanding the uncertainty and variability involved in the 

estimations and the fact that it is not possible to achieve a zero level of risk [84]. For these 

reasons perhaps, communication in relation to food safety has so far been mainly focused 

not on the risk itself but on general mitigation strategies as for instance in the World Health 

Organization’s “Five keys to safer food” educational material targeting food handlers and 

consumers [85].  An exception to this is the Dutch campaign “Ziekmakers zie je niet” (“You 

cannot see pathogens”) where both the risk and the mitigation strategy are communicated 

to the general population. The campaign that involved YouTube videos and posters 

published on high traffic public locations such as bus shelters and city information panels 

aimed to reduce the incidence of foodborne illness in the Netherlands by raising awareness 

over the most dangerous food handling/preparation behaviours. In each poster, the impact 

of foodborne illnesses on the population is highlighted (2000 people sick every day in the 

country) alongside messages on safe practices that can help reduce it [86-88](Figure 6).  

It is also important to acknowledge that risk communication has gradually evolved since 

the time of the first food scandals with the public becoming gradually more involved and 

in some cases given the opportunity to influence the decision making process [89]. One of 

the most notable examples of the latter being the debate on genetically modified crops 

that took place in the United Kingdom in the period 2002-2003 when the general public 

was given the opportunity to voice their concerns regarding their commercialization in the 

country [90].  

 

3. Risk-based food safety management today 

As noted before, no country to this day uses the concepts of ALOP and FSO as risk based 

benchmarks for guiding food safety management in food supply chains. However, there 

are several examples of countries establishing links between a future public health goal 

(target for the reduction of incidence foodborne illnesses) and a control measure in the 

food chain based on the principles of risk analysis. Creating in these cases a quantitative 

or qualitative link between the risk and the control measure makes food safety 

management risk-based and has all the advantages discussed in section 1. A few notable 

examples of risk-based food safety management linked to LOPs are discussed below. 

The Danish Salmonella control programme started after a sharp increase in the incidence 

of salmonellosis in the country in the second half of the 1980s due the spread of Salmonella 

in broiler chickens [71]. The program was thus first implemented in poultry and later on in 

pork and table eggs [80, 91]. With regards to poultry and eggs several targets were 

established with the aim of reducing the level of Salmonella in broilers from >65% to less  
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Figure 6. Posters from the Dutch campaign “Ziekmakers zie je niet” (“You cannot see 

pathogens” or freely translated: “Foodborne pathogens are invisible”). Top left: “Cut meat 

on a separate cutting board”, top middle: “Set your fridge at 4◦C”, top right: “Buy chilled 

products last”, bottom left: “Clean every day your dish cloth”, bottom middle: “Stir 

microwave heated food”, bottom right: poster display at a bus stop. Messages are written 

on laboratory media using microorganisms that have been isolated from Dutch kitchens as 

stated in small print on the upper part of each poster.  

Source: Voedingscentrum en Lemz (reproduced with permission) [86-88]. 
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was given the opportunity to voice their concerns regarding their commercialization in the 

country [90].  
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benchmarks for guiding food safety management in food supply chains. However, there 
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food chain based on the principles of risk analysis. Creating in these cases a quantitative 

or qualitative link between the risk and the control measure makes food safety 

management risk-based and has all the advantages discussed in section 1. A few notable 

examples of risk-based food safety management linked to LOPs are discussed below. 

The Danish Salmonella control programme started after a sharp increase in the incidence 

of salmonellosis in the country in the second half of the 1980s due the spread of Salmonella 

in broiler chickens [71]. The program was thus first implemented in poultry and later on in 

pork and table eggs [80, 91]. With regards to poultry and eggs several targets were 

established with the aim of reducing the level of Salmonella in broilers from >65% to less  
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Figure 6. Posters from the Dutch campaign “Ziekmakers zie je niet” (“You cannot see 

pathogens” or freely translated: “Foodborne pathogens are invisible”). Top left: “Cut meat 

on a separate cutting board”, top middle: “Set your fridge at 4◦C”, top right: “Buy chilled 

products last”, bottom left: “Clean every day your dish cloth”, bottom middle: “Stir 

microwave heated food”, bottom right: poster display at a bus stop. Messages are written 

on laboratory media using microorganisms that have been isolated from Dutch kitchens as 

stated in small print on the upper part of each poster.  

Source: Voedingscentrum en Lemz (reproduced with permission) [86-88]. 
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Figure 7. Danish egg cartons and chicken meat package bearing the logos “eggs from 

Danish hens that tested free from all types of Salmonella (yellow logos in top picture “Æg 

fra Danske høner er testet fri for alle typer Salmonella”) or “Salmonella free” (circular logo 

in bottom picture “SALMONELLAFRI”). 

 

than 5%. Later on the target was revised as zero tolerance and products complying to 

state regulations were allowed to bear the logo “Salmonella-free” (Figure 7) [71, 92]. 

These targets were based on the principle of top-down eradication and involved measures 

such as intensive serologic and bacteriological testing of broilers and breeding flocks for 
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the presence of Salmonella, slaughter of infected animals at separate lines, processing of 

contaminated products or products suspected of contamination in such a way as to 

eliminate the pathogen (e.g. pasteurization of eggs), thorough cleaning, disinfection and 

resting periods for poultry houses [71]. The implementation of these measures resulted in 

practice in a very low prevalence of Salmonella in animal flocks in Denmark which is 

mirrored in a very low incidence of salmonellosis due to table eggs and broiler meat. E.g. 

in 2017 <1% of table egg and broiler flocks were found to be positive for Salmonella and 

the incidence of salmonellosis due to these products was <5 cases per million inhabitants 

[93]. Similarly, specific targets for the reduction of different foodborne illnesses have been 

established through the US Healthy People programmes and are accompanied by targets 

for the improvement of key food safety practices by consumers, food services and retail 

establishments [94]. The targeted food safety practices are in this case based on the World 

Health Organization’s guidelines for safer food [85] and represent major interventions at 

the household level for reducing the risk of foodborne illness. In both the Danish and the 

US programs, measures are based on the assessment of risk factors and are related to 

public health targets. However, in neither case are the public health targets described as 

ALOPs or the measures selected to achieve these targets as FSOs, POs and PCs. This 

demonstrates that perhaps the greater limitation in the implementation of the concepts is 

not the lack of guidance on how to establish them [16] or link them to each other [6, 18], 

nor the legal constraints, but it could also be due to the political courage that might come 

from making known to the public that a certain level of risk with regards to foodborne 

illness is accepted. 

 

The European Drinking Water Directive, aiming to protect public health from microbial and 

chemical contaminants in water, is another example of risk based guidelines linked with 

specific control standards [95]. The Directive has as a scientific basis the guidelines of the 

World Health Organization on drinking water that define a “tolerable level of risk” in relation 

to drinking water as an upper limit of 10-6 DALYs per person per year [96] and the opinion 

of the Commission’s Scientific Advisory Committee to determine the toxicity of chemical 

compounds [95]. When incorporating the Directive’s thresholds on microbial and chemical 

contaminants into their own legislation, EU Member States have the right to aim for higher 

standards or additional requirements (e.g. regulate more substances or microorganisms 

relevant for their territory) but it is not possible to set lower standards since the level of 

protection of human health should be the same within the whole European Union. 

Nonetheless, Member States are allowed to deviate from the standards of the Directive for 

a limited period of time, provided that in this period the quality of the water supply cannot 

be maintained by any reasonable means and it can be demonstrated by means of risk 

assessment that the deviation does not constitute a danger to human health [97]. Thus it 
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can be said that the Directive allows for the setting of sanitary measures in the same way 

as the SPS agreement [8]: based on a scientific assessment of the risk to the population 

and giving the freedom to Member States to aim for stricter measures when deemed 

necessary to protect human health within their territory.  

 

4. Concluding remarks 

A country study on the impact of foodborne diseases is recommended before deciding on 

an ALOP to quantify and put risks into perspective before deciding whether they are 

acceptable or not. In chapter 2 we have shown that such a study is possible for a country 

with laboratory-based surveillance and that despite uncertainties, results can still be useful 

for risk ranking. The developed approach for working with limited country specific data for 

source attribution, under-reporting and case fatalities was presented at the fourth meeting 

of the Foodborne Disease Epidemiology Reference Group (FERG) of the World Health 

Organization where it was positively received [98] 

ALOPs, FSOs and other risk-based metrics can be used to manage food safety on a national 

level besides food trading situations but decisions need to be made by competent 

authorities: definition, risk assessment approach, political courage to make decisions on 

acceptable risk and communication to the general public. In chapters 2-4 we have shown 

that setting these metrics is possible in situations that differ as much as possible in terms 

of the infectivity of the pathogen, the frequency of consumption and mode of preparation 

of the commodity and the availability of data.  

When possible, it is advisable to implement both a top-down and a bottom-up risk 

assessment approach for setting risk-based metrics. In this chapter and chapters 3-4  we 

have shown that the top-down approach can be used to decide on a target level of 

protection and that the bottom-up approach can be used to decide on interventions to 

meet the target level of protection and set relevant targets in the food chain to guide 

management decisions. Though ideally the two approaches are recommended since they 

complement each other, the availability of data and/or complexity of a case may result in 

only one of the two approaches being implemented as was the case in chapter 5. 

Despite the uncertainty and variability that is inherent to stochastic risk assessments, risk-

based metrics can make decision making in relation to food safety transparent by providing 

a quantitative link between a hazard and the risk it pauses to the population. Furthermore, 

such metrics provide flexibility to decision makers by allowing for the objective evaluation 

of alternative public health protection levels and risk mitigation strategies.   
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Summary 
 

Foodborne illnesses are a significant cause of morbidity and mortality worldwide and are 

therefore important to manage for the protection of public health. In the course of the last 

half century, when it comes to prioritizing resources for their management, there has been a 

gradual shift of focus from the hazards that cause the illnesses (microorganisms, chemical and 

physical agents) to the actual risk that these hazards pose to the population (probability and 

severity of adverse health effects in relation to hazards in food) and their impact on public 

health. To accommodate these different schools of thought, new health metrics could be 

operationalized (DALY, Disability Adjusted Life Year) but also new benchmarks were created 

for the control of foodborne hazards in food supply chains (ALOP, Appropriate Level of 

Protection; FSO, Food Safety Objective). These risk-based metrics have been proposed by 

international organizations as a means of establishing a link between governmental public 

health policy and the management of hazards in the food supply chain.  

The aim of this thesis was to develop four different case studies on the operationalization of 

these risk-based metrics (DALY, ALOP, FSO). Cases were selected so as to deal with different 

microbial hazards, food products and population groups as well as addressing a number of 

different real life settings faced by competent authorities in various countries. 

The first case study used a range of publicly available data to rank all foodborne risks in Greece 

on the basis of DALYs, in order to set national priorities for food safety management. The use 

of the results of this study for setting ALOPs is part of the general discussion of the thesis.  

The second case study dealt with setting of ALOP and FSO targets for Listeria monocytogenes 

in deli meats in the Netherlands. Here the focus was on a severe, low incidence disease, mainly 

relevant for susceptible subpopulations, usually associated with medium to high doses of the 

pathogen in contaminated products consumed on a regular basis by the vast majority of the 

Dutch population.   

The third case study concerned the implementation of risk-based targets for Salmonella in 

poultry meat in the Netherlands and in 22 other EU Member States. Here the focus was on a 

mostly mild but, on occasion, severe disease, due to longer term sequelae, usually associated 

with ingestion of low doses of the pathogen through contaminated or undercooked products 

consumed frequently by the vast majority of the European population.      

The last case study addressed the application of the targets for Clostridium perfringens in 

Cornish pasties in the United Kingdom. Here the focus was on a mostly self-limiting, rarely 

fatal illness, usually associated with very high doses of the pathogen in a Protected 

Geographical Indication product, infrequently consumed by the British population.  
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The developed case studies showed that the operationalization of the new metrics is feasible 

and valuable in creating insight and for making food safety more transparent and quantifiable 

despite data scarcities, inherent uncertainty and variability in the risk estimates and the need 

for decisions to be made on the interpretation of the metric definitions and their 

communication to the public.  

273 
 

Περίληψη 
 
Οι τροφιμογενείς ασθένειες αποτελούν σημαντική αιτία νοσηρότητας και θνησιμότητας 

παγκοσμίως και κατά συνέπεια η καταπολέμηση τους είναι μείζων σημασίας για την προστασία 

της δημόσιας υγείας. Στο δεύτερο μισό του τελευταίου αιώνα, σε ότι αφορά στην ιεράρχηση 

της ανάθεσης πόρων για τη διαχείριση τους, έλαβε χώρα μία διαδοχική μετατόπιση του 

επίκεντρου προσοχής από τους παράγοντες κινδύνου πρόκλησης ασθενειών (μικροοργανισμοί, 

χημικοί και φυσικοί παράγοντες) στον αυτό καθεαυτό τον κίνδυνο που αυτοί οι παράγοντες 

συνιστούν για τον πληθυσμό (πιθανότητα και δριμύτητα των δυσμένών επιδράσεων στην υγεία 

σε σχέση με παράγοντες κινδύνου στα τρόφιμα) και στις επιπτώσεις τους στη δημόσια υγεία. 

Για την προσαρμογή σε αυτά τα διαφορετικά ρεύματα σκέψης, μπορούν να χρησιμοποιηθούν 

νέα συστήματα μέτρησης υγείας (AΕΖ: Αναπηροσταθμισμένα Έτη Ζωής) όπως και νέοι δείκτες 

αναφοράς για τον έλεγχο των τροφιμογενών παραγόντων κινδύνου στις τροφικές αλυσίδες 

(ΚΕΠ: Κατάλληλο Επίπεδο Προστασίας, ΣΑΤ: Στόχος Ασφάλειας Τροφίμων). Αυτά τα βασισμένα 

στον κίνδυνο συστήματα αναφοράς προτάθηκαν από διεθνείς οργανισμούς ως μέσα σύνδεσης 

της κυβερνητικής πολιτικής για τη δημόσια υγεία με τη διαχείριση των παραγόντων κινδύνου 

στην τροφική αλυσίδα.   

 

Ο στόχος αυτής της πτυχιακής διατριβής ήταν η ανάπτυξη τεσσάρων διαφορετικών 

περιπτωσιολογικών μελετών πάνω στην λειτουργικοποίηση αυτών των βασιζόμενων στον 

κίνδυνο συστημάτων αναφοράς (ΑΕΖ, ΚΕΠ, ΣΑΤ). Οι μελέτες διαλέχτηκαν έτσι ώστε,  να 

περιλαμβάνουν διαφορετικούς παράγοντες μικροβιακού κινδύνου, προϊόντα και πληθυσμιακές 

ομάδες όπως επίσης και να αντιμετωπίζουν ορισμένες καταστάσεις παρμένες από την 

καθημερινή πραγματικότητα των αρμοδίων αρχών σε διάφορες χώρες. 

 

Για την πρώτη περιπτωσιολογική μελέτη χρησιμοποιήθηκε ένα φάσμα δημόσια διαθέσιμων 

δεδομένων για την ιεράρχηση των τροφιμογενών κινδύνων στην Ελλάδα με βάση τα ΑΕΖ, με 

στόχο τον καθορισμό εθνικών προτεραιοτήτων για τη διαχείριση της ασφάλειας των τροφίμων. 

 

Η δεύτερη περιπτωσιολογική μελέτη ασχολείται με τη θέσπιση των στόχων ΚΕΠ και ΣΑΤ για τη 

Λιστέρια τη μονοκυτογόνο (Listeria monocytogenes) στα αλλαντικά στην Ολλανδία. Εδώ 

δόθηκε έμφαση σε μία σοβαρή ασθένεια με χαμηλή συχνότητα εμφάνισης, ως επί το πλείστον 

σημαντική για τις ευπαθείς ομάδες του πληθυσμού και συνήθως συνδεδεμένη με μέτριες έως 

υψηλές μολυσματικές δόσεις του παθογόνου από μολυσμένα προϊόντα τα οποία 

καταναλώνονται σε τακτική βάση από τη συντριπτική πλειονότητα του Ολλανδικού πληθυσμού. 

 

Η τρίτη περιπτωσιολογική μελέτη εξετάζει την εφαρμογή των βασιζόμενων στον κίνδυνο 

δεικτών αναφοράς για τη Σαλμονέλλα (Salmonella) στο κρέας πουλερικών στην Ολλανδία και 

στα υπόλοιπα 22 Κράτη Μέλη της Ε.Ε. Η έμφαση εδώ δόθηκε σε μία κυρίως ήπια, όμως 

περιστασιακά σοβαρή ασθένεια εξαιτίας μακροπρόθεσμων επακόλουθων, συνήθως 
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Η τρίτη περιπτωσιολογική μελέτη εξετάζει την εφαρμογή των βασιζόμενων στον κίνδυνο 
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περιστασιακά σοβαρή ασθένεια εξαιτίας μακροπρόθεσμων επακόλουθων, συνήθως 
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συνδεδεμένη με την πρόσληψη χαμηλών μολυσματικών δόσεων του παθογόνου μέσω 

μολυσμένων ή μισομαγειρεμένων προϊόντων τα οποία καταναλώνονται συχνά από τη 

συντριπτική πλειονότητα του Ευρωπαϊκού πληθυσμού. 

 

Η τελευταία περιπτωσιολογική μελέτη αφορά την εφαρμογή των στόχων για το Κλωστηρίδιο το 

διαθλαστικό (Clostridium perfringens) στα Κόρνις πάστις στο Ηνωμένο Βασίλειο. Προσοχή εδώ 

δόθηκε σε μία κυρίως αυτοπεριοριζόμενη, σπανίως θανάσιμη λοίμωξη, συνήθως συνδεδεμένη 

με πολύ υψηλές δόσεις του παθογόνου σε ένα προϊόν Προστατευόμενης Γεωγραφικής Ένδειξης 

το οποίο καταναλώνεται σποραδικά από τον Βρετανικό πληθυσμό. 

 

Οι παραπάνω περιπτωσιολογικές μελέτες έδειξαν ότι η λειτουργικοποίηση των νέων 

συστημάτων αναφοράς κινδύνου είναι εφικτή και χρήσιμη για το σχηματισμό μίας πλήρους 

εικόνας και για να κάνει την ασφάλεια των τροφίμων ποιο διαφανή και ποσοτική παρά τις 

ελλείψεις σε δεδομένα, την εγγενή αβεβαιότητα και διακύμανση των εκτιμήσεων κινδύνου και 

την ανάγκη λήψεως αποφάσεων για την ερμηνεία ορισμών και την επικοινωνία τους στο κοινό. 
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