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Abstract

This paper presents a two-echelon inventory-routing problem for perishable products. Products
are delivered from a supplier to an intermediary depot, where storage may occur and from which
they are delivered by smaller vehicles to the customer locations. Holding costs are incurred for
storage at the depot. Customer availability is taken into account in the form of customer delivery
patterns. The objective is to minimise the total transportation and holding costs. We formulate the
problem as a mixed integer linear program and solve it by means of an adaptive large neighbourhood
search metaheuristic in combination with the solution of a reduced formulation. Three variants
of the heuristic are compared on a variety of randomly generated instances. Given the two-stage
structure of the problem, computational results show the importance of taking the cost structure
into account when choosing the most suitable solution approach.
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1 Introduction

Last-mile logistics and inventory considerations can play a crucial part in supply chain operations.
In fact, the last mile is often considered to be one of the most costly and least efficient stages of
the whole supply chain (Gevaers et al., 2009). Transporting products to the final customer can be
challenging, especially if these are perishable items, with a limited life span, for which the quality
degrades over time. Storage time and time spent on the road affect the quality of the products
and reduce their life time at the customer location, and may therefore reduce the value of the
product or result in product loss. While perishable products can be found in many areas, the food
sector presents an important example of an environment in which quality and safety aspects play
an important role (Akkerman et al., 2010), and where high perishability leads to considerable losses
and wastage (Yu and Nagurney, 2013). In today’s competitive markets, the quality and freshness
of a product are important aspects influencing the customers’ decision to purchase and hence are
vital for the survival of a business.

Last-mile distribution often arises in two-echelon systems that require intermediary storage of prod-
ucts, and needs to consider customer availability during a given time horizon, thus complicating the
delivery process. Efficient distribution systems and delivery planning for perishable products can
therefore help to avoid spoilage, save costs and positively affect the quality of a product. Periodic
vehicle routing as well as inventory management at the depot play an important role in this context,
by optimising the delivery schedule, the routes, the storage time and the quantity of products at
the depot.

1.1 Literature Review

Problems concerned with the optimal routing of vehicles, to improve delivery operations, have
been extensively studied for decades (Cordeau et al., 2007, Laporte, 2009). Over the course of
time, several variants of the basic vehicle routing problem (VRP) have incorporated other aspects
and more specific requirements related to decision making in the supply chain context (Schmid et
al., 2013). A number of studies can be found on the issues related to the routing of perishable
products. Thus, Tarantilis and Kiranoudis (2001) developed a metaheuristic for the vehicle routing
related to the distribution of fresh milk with a fleet of heterogenous vehicles. In the context of

fresh vegetable distribution, Osvald and Stirn (2008) included perishability into the vehicle routing



problem with time windows and time-dependent travel times. Amorim and Almada-Lobo (2014)
developed a multi-objective model for the vehicle routing problem with time windows to investigate
different distribution scenarios and the trade-off between cost and product quality. The problem
was solved by using the e-method for small instances and by applying an evolutionary algorithms
for larger instances. Rabbani et al. (2015) proposed a multi-objective VRP with time windows and
customer selection, assuming a heterogenous fleet of vehicles and considering multiple deteriorating
products. Wang et al. (2016) solved a multi-objective VRP with time windows and perishability
considerations using a two-phase heuristic method based on a variable neighbourhood search and
a genetic algorithm. Rabbani et al. (2016) considered the use of multiple middle depots and
incorporated several aspects, such as product freshness and profit maximisation into the objective
function. They developed a genetic algorithm for the solution of large instances. Considering
perishability in a site-dependent vehicle routing problem with time windows and a heterogeneous
fleet of vehicles, Amorim et al. (2014) developed a neighbourhood search algorithm and applied
it to a real-life case study arising in a Portuguese food distribution company. Hsu et al. (2007)
extended the vehicle routing problem with time windows by adding a stochastic cost component
related to the perishability of products. Song and Ko (2016) proposed a non-linear model with the
objective of maximising customer satisfaction related to the delivery of multi-commodity perishable
products with refrigerated and non-refrigerated vehicles. The problem is solved using a priority-
based heuristic approach.

A number of extensions exist on the integration of other aspects of the planning process into routing
models, such as production, location and inventory decisions. While the focus in the following will
be on the latter aspect, examples related to other features can be found in Farahani et al. (2012),
Govindan et al. (2014) and the review of Amorim et al. (2013).

Nahmias (2011) and Karaesmen et al. (2011) provide reviews related to the management and
modelling of perishable inventory systems. For a more general and extensive overview of the field
of inventory-routing problems (IRP), its variants and associated solution approaches we refer to
the reviews of Bertazzi et al. (2008), Andersson et al. (2010) and Coelho et al. (2013).

In the context of perishable products, Hiassat and Diabat (2011) proposed an integrated model for
a location-inventory-routing problem considering products with a limited life-span. Le et al. (2013)
developed an algorithm for an IRP based on column generation and cutting planes, the problem
is extended in Hiassat et al. (2017), integrating location decisions into the model, and solved

using a genetic algorithm. Coelho and Laporte (2014) applied branch-and-cut to optimally solve



the perishable inventory-routing problem (PIRP) under general assumptions and consideration
of two different selling policies. Jia et al. (2014) solved an IRP for perishable products with
multiple time windows and loading costs, solving the problem using a two-phase solution algorithm.
Mirzaei and Seifi (2015) considered the impact of lost sales in their inventory-routing problem. The
resulting mixed integer non-linear programming model was solved using a metaheuristic based on
simulated annealing and tabu search. Kande et al. (2015) proposed a tabu search metaheuristic
for a routing problem with inventory and lot-sizing decisions as well as multiple source nodes.
Dealing with uncertain demand in a multi-period IRP model, Soysal et al. (2015) further included
environmental aspects in the form of greenhouse gas emissions and fuel consumption. Rahimi
et al. (2017) developed a multi-objective model for the IRP of perishable products, allowing
for a choice of different vehicles. They incorporated environmental aspects as well as customer
satisfaction considerations on top of the traditional cost minimisation. The problem was solved
by means of a genetic algorithm. Diabat et al. (2016) proposed a new arc-based formulation and
a tabu search algorithm for the inventory-routing problem for perishable products. Azadeh et
al. (2016) considered an inventory-routing problem with transshipments for a perishable product
and apply a genetic algorithm to solve the problem. Li et al. (2016) developed a mixed integer
linear programming model for perishable supply chains, incorporating production decisions in the
inventory-routing problem and maximising profit. In addition, Zhao et al. (2008) proposed a
similar structured two-echelon inventory routing problem without perishability considerations. The
problem was solved using a variable large neighbourhood search. Table 1 provides a summary of

the related scientific literature.
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1.2 Contribution and organisation of this paper

This paper focuses on inventory-routing for perishable products in the context of last-mile city
distribution. Given this focus, it is reasonable to assume a multi-level system, resulting in a two-
echelon routing problem (Hemmelmayer et al., 2012). A survey of two-echelon routing problems
can be found in Cuda et al. (2015). This study, like many others, is about the solution of a
last-mile distribution system in a two-echelon setting. However, our problem differs from most
existing two-echelon problems in two main ways. First, we consider inventory at the depot and not
at the customer locations as is the case in many papers. Second, we are the first to handle multiple
delivery patterns in the context of a two-echelon system. Our aim is to introduce the two-echelon
perishable inventory-routing problem, model it and solve it heuristically through an adaptive large
neighbourhood search (ALNS).

The paper is organised as follows. In Section 2 a formal description of the problem will be given.
Section 3 introduces the mathematical formulation of the model, while Section 4 describes the

heuristic. Computational results follow in Section 5, and conclusions are presented in Section 6.

2 Formal Problem Description

We consider the inventory-routing problem for perishable products within the context of urban
last-mile delivery. We therefore assume a two-echelon system, with a supplier, an intermediary
depot and several customer locations. Fresh products are delivered from the supplier to the depot
and then stored until delivery occurs. Inventory levels are updated at the beginning of each day,
representing a time period. The depot, which belongs to the supplier, receives flower or vegetable
deliveries from producers. The customers, on the other hand, are independent and need to be
served according to their availability and preferences. The availability of a customer is provided in
the form of combinations of visit periods. These delivery day combinations are represented for each
location in the form of a list of combinations of daily time windows, during which deliveries can be
made, as it is the case in the periodic vehicle routing problem (PVRP) presented by Cordeau et al.
(1997). An example of this would be a customer needing to be supplied with fresh produce every
two days and delivery could take place either on days 1, 3, 5 and 7 or on days 2, 4 and 6. The
rationale is that customers will receive a new order of products every couple of days to guarantee
freshness of the product and fulfill the customer demand. This means that the departures of the

vehicles need to be scheduled according to the delivery time windows at the customer location.
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Figure 1: Two-Echelon Delivery System with Periodic Routing

This is because customers will commonly not accept delivery every day but rather follow a certain
delivery pattern. An overview of the system is depicted in Figure 1.

The problem is defined over a limited time horizon of a week and the solution must satisfy the
periodic customer demands. Customer demands are assumed to be deterministic and known for
each period at the beginning of the weekly time horizon. The supplier has enough capacity to
satisfy the demand and can deliver to the depot within a reasonably short-time frame. It is
therefore possible to deliver goods to the depot and thence to different customer locations within
the same day, i.e. a time period. Vehicle capacity, however, is limited and each delivery to the
depot incurs a linehaul travel cost.

Products can be stored at the depot up to a certain capacity or until they are discarded as waste due
to their perishable nature. Perishable products can be generally categorised into two types. The
first type is associated with an expiry date, meaning that the products are suitable for consumption
up until a certain point in time, after which they are discarded (Nahmias, 2011). This is often the
case for dairy products for example. The second type relates to a gradual decrease in product
quality and can be for example observed for salads, fruits and bread (Rong et al., 2011). The focus
in this research will be on the latter type. Thus, the deterioration of a product occurs over time
in relation to the age of the product. The cost of this deterioration is included in the inventory

holding cost. From the depot to the customer, delivery is carried out by a homogeneous fleet of



vehicles. Vehicles are readily available at the depot, though limited with respect to their capacity.

The problem consists of the following decisions:
e When and how much to deliver from the supplier to the depot?
e When and how much to deliver from the depot to the customers?

e What is the optimal routing from the depot to the customer locations for the different time

periods?

The aim is therefore to determine an optimal delivery schedule and routing to the customer locations
during each time period, and optimise the storage time of the product at the depot, minimising
both the routing and inventory costs, while accounting for the loss of freshness of the product over

time.

3 Mathematical Formulation

This section introduces the notations and parameters used and provides a formal description of
the mixed integer linear programming (MILP) formulation based on the assumptions presented in

Section 2.



Table 2: Summary of notation

Sets
N

A
T
K
G

R;

Parameters

C; 7
C
dt

Qk
H
h9

art

Variables

bt

aji]

kt
Y;

set of nodes indexed by 14, 7,1l {depot: 0; customer: 1,...,n}
set of arcs (i,7): i,j € N,i #j

set periods indexed by ¢

set of vehicles indexed by k: k € {1,...,m}

set of product ages indexed by ¢

set of visit combinations of ¢

routing costs on arc (4,7) : 4,5 € {0, ...,n}

linehaul routing cost supplier-depot-supplier

demand of customer 7 in period ¢

capacity of vehicle k (k = 0: supplier-depot; k = 1,2, 3 : depot-customer)

inventory holding capacity at depot

unit inventory holding cost at depot (including deterioration cost) for product age g

1 if day t belongs to visit combination r

1 if customer j is visited immediately after customer ¢ by vehicle k in period ¢
1 if vehicle k visits customer ¢ in period ¢

1 if visit combination r of customer i chosen

number of vehicles supplier-depot in period ¢

quantity delivered of age g from depot to customer i in period t by vehicle k
quantity delivered from supplier to depot in period ¢

quantity held of age g at depot in period ¢

position of customer ¢ in the routing of vehicle k in time period ¢

The problem is then:

Minimise Y Cu'+ ) > W +Y """ "cyalt (1)

teT geG teT i€N jEN k€K teT



subject to

190 = oL NN g R g e G\ {0}, € T\{0} (2)
1eEN k€K

=wt teT (3)

19 > Z vakt geG,teT (4)

iEN\{0} ke K

> 10 =w (5)

geG

SN I<H teT (6)

geG

S artdll =) > WM ie N\{0}teT (7)

reR; geG keK

w' <H=Y 19" teT (8)

geG

Z Z o< QR keKiteT 9)

geG ieN\{0}

w' < Q%! teT (10)

Dyt <1 ieN\{0hteT (11)

keK

yt<y 2l ieNkeKiteT (12)
JEN

d zi=1 ieN\{0} (13)

reR;

SN N atr =0 jeN\{ohteT (14)

iEN kEK reR;

Soalt N abt=0 keKteTjeN (15)

iEN leN

skt ynakt <n—1 ije N\{0hteT ke K (16)

'ngt, wt, Igt’ Séct >0 (17)

xff? Ykt Z’Zd € {071} (18)

ut € 7. (19)

The objective function (1) minimises the sum of the delivery cost, consisting of linehaul travel
and customer routing cost, and of the inventory cost. Constraints (2) and (3) are inventory con-

straints related to the age of the product. Constraints (4) requires a delivery to update the inventory
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in period zero. Constraints (5) and (6) ensure that inventory levels cover at least the delivery during
the same period while also not exceeding the inventory capacity at the depot. Constraints (7) mean
that the demand at each consumer is met for the chosen delivery pattern. Constraints (8) restrict
the amount that can be delivered to the depot depending on depot capacity and existing inventory.
Constraints (9) and (10) impose a vehicle capacity for delivery to the customer and the delivery
to the depot. Constraints (11) state that delivery to a customer is made by only one vehicle,
while constraints (12) mean that a delivery can only be made by an activated vehicle. Constraints
(13) assign a delivery pattern to each customer and constraints (14) ensure that delivery can only
occur on days belonging to the chosen delivery pattern. Constraints (15) state that each vehicle
that visits a customer also leaves the customer. Constraints (16) are standard subtour elimination

constraints. Constraints (17) to (19) enforce the non-negativity and integrality of the variables.

4 Heuristic

For very small instances, the problem can be solved to optimality by a standard integer linear
programming solver, whereas this is not feasible for larger-size instances. We therefore propose a
two-stage matheuristic, i.e. a ”heuristic algorithm|[ | made by the interoperation of metaheuristics
and mathematical programming techniques” (Boschetti et al., 2010), combining an adaptive large
neighbourhood search (ALNS) with the solution of a MILP formulation, in order to solve the
problem for more realistic instances. This two-stage approach allows the exploitation of the two-
echelon structure of the problem by splitting it into routing and linehaul related decisions. The
overall performance of the heuristic, however, depends on the cost structure of the instances, thus
determining the order in which the different components of the heuristic are solved. As a result,

three variants obtained by altering the structure of the heuristic, are proposed in this research.

4.1 Heuristic Variant 1

In the first variant, the MILP model is solved first, determining optimal customer delivery pat-
terns, linehaul travel and the inventory of products at the depot. Based on this optimal solution,
the ALNS then aims to find good solutions for the second-stage routing problem, delivering each
customer according to the optimal delivery patterns determined in the first stage. The structure

of the approach is described in pseudo-code in Algorithm 1.
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Algorithm 1 General framework: Heuristic 1

1. Solve the MILP model (including delivery pattern selection)

2. Construct initial routing solution s

3. s+ s

4. Start search procedure:

while stopping criteria not met do

4.1. Select destroy and repair operators from list Z based on weighting

4.2. Apply chosen destroy and repair operators to s to obtain s

if acceptance criteria satisfied then

5+ s

if s better than s* then

s*+ s

5. Return best solution s*

4.1.1 Solution of a MILP and construction of an initial routing solution

The MILP formulation used to solve the first stage of the problem is a reduced version of the

mathematical formulation provided in Section 3. Note that while most parameters and variables

. . kt
remain the same, the variables v

are replaced with the variables v9¢, and new variables d' are

added to the model in order to determine the aggregated demand for each period t. The detailed

mathematical formulation is provided in the following:

Minimise Z Cul + Z Z hIT9t

teT
subject to
d' = Z vt teT
geG

Igt _ Ig—l,t—l . vg—l,t—l
IO = ot teT

I >9  geGteT

ZIQO =’

geG

12

geG teT

g € G\{0},t € T\{0}



ZlgtgH teT

geG

S S atdar =3 ter
1€N\{0} reR; geqG
w gH—ZIQ’H teT

geG
w< Q% teT

Y =1 ieN\{0}

7
reR;

vg, w', 198 >0, 2r € {0,1}, ul € Z.

(26)

(27)

(28)

(29)

(30)

(31)

Once the MILP model is solved, an insertion heuristic (see Algorithm 2) is applied in order to

determine the routing for each period ¢ based on the previously selected customer delivery patterns.

For each day, the customers allocated to the corresponding daily delivery list are chosen randomly

and inserted in the best feasible position under consideration of all the daily routes. If no feasible

insertion can be found due to the capacity restrictions, a new route is created and the customer is

inserted in it.

Algorithm 2 Construction heuristic for the initial solution

1. L+ {1,..,n}
for every customer i € L do
1.1. Consider selected delivery pattern v’ € R;
for every day t in delivery pattern v’ do
1.2. Insert customer i in daily delivery list L?
for every day t € T do
while L # () do
2. Randomly select customer i from daily delivery list L’
for every customer i do
2.1. Insert customer i in its best feasible insertion place
if no feasible insertion place then
2.1.1. Create new route and insert customer in new route

3. L'« L' — {i}

13



4.1.2 Destroy operators

We have developed a number of different destroy operators, operating at the customer and route
level. The operators remove a percentage INb of the customers from the current solution.
Random Customer Removal: This is a standard operator in which customers are selected
randomly and removed from their current route.

Worst Customer Removal: For a random day, this operator identifies the worst customer
according to its insertion cost in the current solution. This customer with the largest insertion cost
or savings potential is then removed from the solution.

Related Customer Removal: This operator is based on the related customer removal operators
used by Shaw (1998) and Azi et al. (2014). However, while Azi et al. (2014) build on Shaw (1998)
by defining a proximity measure based on spatial and temporal distance, we apply two variants of
the operator. The first uses a spatial distance measure, so that z;; = ¢;;, while the second applies
a distance measure based on the difference in demands between customers, so that z;; = |d} — d}].

The structure of the operator is described in Algorithm 3.

Algorithm 3 Related Customer Removal

1. Select a customer j at random from the solution
2. Consider the delivery pattern assigned to customer j and select a random day ¢ in the pattern
3. Remove customer j from day ¢
4. L+ {j}
while |[L|] < Nb do
5.1 Select a random customer ¢ from L
for each customer [ in day d do
5.1. Compute distance measure z;;
5.2 Sort the resulting z;;’s in decreasing order, storing them in a list B
5.3 Choose a random number x between 0 and 1
5.4 pos « |B|x?
5.5 Select customer [ associated with the z; value at position pos and remove it from day ¢
5.6 L+ LU{l}
6. Return L

Parameter b in 5.4 regulates the intensity of the bias towards closer customers. As a result of the

tuning of this parameter, b was set to 10 in our implementation.
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Random Route Removal: For a random day, the operator selects a number of routes at random

and removes them from the solution.

4.1.3 Repair operator

Customers that have been removed during the destruction procedure need to be reinserted using
a repair operator. The operator used for this is based on cheapest insertion and follows the same
insertion procedure as in the construction heuristic. Thus, for each day, customers are selected from
the list of removed customers and reinserted into the solution in the cheapest feasible position. This

process is repeated until, for each day, all of the daily customers are again part of the solution.

4.1.4 Acceptance criterion and adaptive mechanism

The acceptance criteria for candidates is based on a simulated annealing rule, as in Ropke and
Pisinger (2006). The adaptive mechanism is only applied to the destroy operators in this setting,
since the options to repair a solution are limited to the cheapest insertion operator. The heuristic

terminates after a fixed number of iterations.

4.2 Heuristic Variant 2

The second variant integrates the selection of customer delivery patterns within the routing deci-
sion, constructing daily delivery routes before optimally solving the linehaul and inventory part of
the problem. The MILP model is thus integrated into the ALNS framework and solved for each of
the found solutions with alternative delivery patterns. The structure of the approach is described

in pseudo-code in Algorithm 4.
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Algorithm 4 General framework: Heuristic 2

1. Construct initial solution s (including delivery pattern selection and MILP formulation)
2. s" s
3. Start search procedure:
while stopping criteria not met do
3.1. Select destroy and repair operators from list Z* based on weighting
3.2. Apply chosen destroy and repair operators to s to obtain s’
if change in delivery pattern selection then
4. Solve the MILP model and update solution s’
if acceptance criteria satisfied then
s+
if s better than s* then
§* s

5. Return best solution s*

4.2.1 Construction of an initial solution

Whereas in the previous variant, the pattern selection was predetermined by the MILP model, here
the construction heuristic starts by randomly selecting a delivery pattern for each customer. Once
every customer has been assigned a delivery pattern, the procedure is identical to the previous
construction heuristic, with the exception that a MILP model is solved at the end in order to
determine the linehaul and storage component of the problem under consideration of the chosen
delivery patterns. An overview of the construction heuristic can be found in Algorithm 5. The
corresponding MILP model is a simplified version of the model presented in Section 4.1.1, for which
the objective function and most of the constraints remain the same. However, the expressions
dg, representing the daily aggregated demand, are now predetermined by the heuristic and thus
become parameters in the model, while constraints (27) and (30), linked to the pattern selection,

are eliminated from the model, making the notations z/ and a" irrelevant.
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Algorithm 5 Construction heuristic for the initial solution
1. L+ {1,..,n}

for every customer i € L do
1.1. Randomly select delivery pattern r’ € R;
for every day t in delivery pattern ' do
1.2. Insert customer i in daily delivery list L’
for every day t € T do
while L! # () do
2.1. Randomly select customer i from daily delivery list Lt
for every customer i do
2.2. Insert customer 7 at its best feasible insertion place
if no feasible insertion place then
2.2.1. Create new route and insert customer in new route
3. Solve the MILP model for the linehaul travel and storage at the depot
4. L'+ L' — {i}

4.2.2 Destroy Operators

In addition to the destroy operators of the first heuristic variant, the second variant also includes
an operator at the delivery pattern level to allow for changes in the selection of customer delivery
patterns.

Random Customer and Pattern Removal: The idea is the same as in the standard customer
removal, but in addition to removing a random customer from all the routes, the operator also
removes the record of the customer’s delivery pattern from the solution, storing the customer in a

list of unassigned customers without a selected delivery pattern.

4.2.3 Repair Operators

Similar to the destroy operators, the repair operators consist of those used in the previous variant
and of a number of new operators related to the selection of customer delivery patterns. Note, that
the use of repair operators depends on the preceding destroy operator, i.e. whether the operator
affects solely the customer level or both the customer and the delivery pattern level. If both levels
are affected, the heuristic first chooses an operator to select the delivery pattern and assign the

customer to delivery days before choosing another operator to insert the customer in the routing
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solution.

Random Pattern Selection: The random pattern selection operates in the same manner as the
pattern selection in the construction heuristic, where a delivery pattern is chosen at random from
the list of customer specific delivery patterns.

Balanced Pattern Selection: This operator takes a more balanced approach for the pattern
selection by applying a customer density measure p. Note that two different customer density
scores are considered in this research. The first is based on the sum of the number of customers in
each day of the pattern, while the second is based on the sum of the daily demands of each day in

the pattern. The detailed structure of the operator is described in Algorithm 6.

Algorithm 6 Balanced Pattern Selection

while list of customers without patterns not empty do

1. Randomly select customer j from list of customers without patterns
for pattern € customer patterns R; do

2.1 Calculate the customer density measure p associated with the pattern
3. Select best pattern for customer j based on smallest p

4. Remove customer j from list of customers without patterns

4.3 Heuristic Variant 3

We have developed a third heuristic variant consisting of a hybrid of the first two variants. In this
variant, the initial solution is generated in the same way as for variant 1 (i.e. the MILP model of
variant 1 for the linehaul is solved first), while the general structure of the heuristic follows variant
2. This means that variant 3 starts with the optimal cost from the linehaul perspective but allows
for more flexibility since the linehaul problem can be solved for different customer patterns using

the MILP model of variant 2.

4.3.1 Acceptance criterion and adaptive mechanism

We use the same acceptance criterion as in the first variant, with the exception that the adap-
tive mechanism is applied to both the destroy operators and the repair operators used to restore

customer patterns.
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5 Computational Results

We have carried out a number of computational experiments in order to validate the MILP formu-
lation and test the heuristic approaches proposed in this study. The experiments were designed to
investigate the effect of the cost structure on the performance of the three heuristic variants. We
have coded the heuristics in Python3.5 and CPLEX 12.6 running on a single thread. All computa-
tions were executed on a machine equipped with an Intel(R) Xeon(R) X5675 processor running at

3.07GHz.

5.1 Instance description

The heuristics were tested on two sets of instances, each consisting of 90 small-size instances with
up to 150 customers. The two sets differ with respect to the size of the grid in which the customers
are located. In the first set of instances the customers are located in a 2 x 2 square (in km), i.e.
small grid, while in the second set the customers are located in a 25 x 25 square (in km), i.e. large
grid. In both cases, the depot is located at (2.5,2.5). The distance for the linehaul travel is set
at one of the following values for both sets: 20 km, 40 km or 80 km. Thus, the two different grid
sizes impact the relations between the cost components of the objective function, as linehaul and
inventory costs remain in the same range. This means, that in the case of the large grid instances,
the routing cost contributes relatively more to the total cost. The calculation of the routing costs
cij is based on the Euclidean distances between the locations in the plane and include fuel, wage

and vehicle costs per km.

Table 3: Routing cost components per vehicle type

Light Duty Vehicle Medium Duty Vehicle

Average speed 30 km/h 70 km/h
Fuel consumption 30 1 per 100 km 15 1 per 100 km
Fuel cost 0.42 €/km 0.21 €/km
Driver’s wage 9.5 €/h 12.5 €/h
Wage costs 0.3 €/km 0.18 €/km
Truck payment and insurance 0.3 €/km 0.3 €/km
Maintenance and repairs 0.15 €/km 0.15 €/km
Vehicle costs 0.45 €/km 0.45 €/km
Total routing cost per km 1.17 €/km 0.84 €/km
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The inventory costs increase exponentially and are calculated based on the formula h9 = price x p x
bt, where the price of the product is randomly selected from the interval [10, 30], p is a percentage
in [0.02, 0.04], b is a positive growth factor set at 2, and ¢ is the time period. The planning horizon
in this research is set for all instances to T' = 5. Five delivery patterns consisting of different
combinations of delivery days ({1,3}, {1,4}, {2,4}, {2,5}, {3,5}), are considered and each customer
is assigned two delivery patterns chosen at random. Based on the instances of Song and Ko (2016),
the customer demands are volume based and range between 0.3 m? and 1.8 m?, the capacity of
the vehicles used for the customer routing is set at 12 m3. The vehicle capacity for the linehaul
travel is 38 m?, which corresponds to the standard size of a small shipping container in Europe.
For the small grid instance structure the capacity at the depot is 50 m? for instances with up to
40 customers and 150m? for larger instances. The large grid instance structure features a larger
inventory capacity at the depot of 100 m? for instances of up to 40 customers and 200 m? for larger

instances.

5.2 Parameter settings

For the parameter tuning of the two heuristics, two sets of 18 test instances were selected at random,
representing the two different instance structures considered in this research. The tuning for these
two test sets was carried out separately. We executed 10 runs for each parameter setting of the
heuristics, and the setting with the best average deviation from the best found solution was chosen.
The results of the tuning were based on a search consisting of 25,000 iterations and a segment size
of 200 iterations, as this resulted in a good trade-off between run time and solution quality. Three
different intervals for the percentage of destruction (i.e. the percentage of customers to remove
from the solution) were reviewed, namely [10%, 30%], [20%,40%], [30%, 50%]. All other parameter
values were initially set equal to those of Ropke and Pisinger (2006) and then sequentially altered
in the tuning phase. The resulting best parameter setting for each heuristic variant and instance

structure is shown in Table 4.
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Table 4: Parameter settings

Instance structure 1 Instance structure 2
Parameters Variant 1 Variant 2 Variant 3 Variant 1 Variant 2 Variant 3

Percentage of destruction: ~ 30%-50%  30%-50%  30%-50%  30%-50%  30%50%  30%—50%

Acceptance criterion:
w 0.001 0.001 0.001 0.001 0.001 0.001
c 0.99976 0.99974 0.99983 0.99976 0.99983 0.99985

Weight adjustment:

o1 33 22 44 22 44 33

g9 9 13.5 4.5 13.5 4.5 9

o3 13 19.5 6.5 19.5 6.5 13

r 0.1 0.1 0.1 0.5 0.5 0.5
5.3 Results

This section presents the results for the two instance structures and three heuristic variants based
on the best parameter settings identified in Section 5.2. For very small instances, of up to ten
customers, these results are compared with the optimal solution values found by the mathematical
model, while for larger instances it is no longer possible to solve the problem to optimality. The run
time for solving the model to optimality differs considerably between the two instance structures,
as well as between individual instances. For the small grid instance structure, the model obtains
an optimal solution for instances with 10 customers on average within 86 seconds, while for the
large grid instance structure the run time is considerably longer, with an average of about 5,800
seconds. In addition, one of the large grid instances could not be solved to optimality, with a
remaining optimality gap of 6.63% after running the model for several days. Increasing the number
of customers to n = 15 for the small grid instances, leads to a considerable increase in the run time,
resulting in an average run time of 7435.5 seconds.

The column headings of Tables 5 and 7 present the linehaul cost structure, the optimal solution
value found by the mathematical model, as well as the performance of the heuristic variants for each
of the small and large grid instances, respectively. The total cost term for the optimal solutions
is broken down into the different cost components, namely the first echelon cost (15'E), consisting
of linehaul (LC) and inventory cost (IC), and the routing cost (RC). For the heuristic variants

the tables provide the best solution values found, as well as the performance of the algorithms
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in terms of time and deviation. Best and average deviations are computed with respect to the
optimal solution values found for each of the instances. The comparison of the optimal solution
values with the three heuristic variants for instances with n = 10 in Table 5 shows that the variants
manage on occasions to find optimal or close to optimal solutions for most small grid instances.
On average, variant 3 performs best with an optimality gap of 1.79%, followed by variant 1 with a
gap of 2.12%, and variant 2 with a gap of 2.48%. In terms of finding optimal or close to optimal
solutions, variant 2 performs best, closely followed by variant 3, and considerably outperforming
variant 1. For instances with 15 customers, the comparison of the optimal solution values with
the three heuristic variants shows that each variant still finds reasonably good solutions. For this
instance size variant 1 performs best on average with an optimality gap of 2.1%, closely followed
by variant 3 with a gap of 2.4%, variant 2 under performs with an average deviation of 5.9%. A

comparison with larger instances is not possible due to significantly longer run times.
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For the large grid instances, the comparison shows that it is harder for the heuristic variants to find
optimal solutions. Variant 2 still performs best at finding good objective values, the best being on
average only 1.45% worse than the optimal ones. Variant 3 closely follows with its best objective
values being on average 1.64% worse than the optimal one, while the cost of the best solutions
found by variant 1 deviate on average by 6.52% from those of the optimal solution. Overall, variant
3 performs best with an average optimality gap of 4.52%, followed by variant 2 with a gap of 4.63%,
and variant 1 with a gap of 8.41%. This underperformance of variant 1 is caused by its structure
which decomposes the problem into the first echelon and a routing problem. Starting by solving the
first echelon problem to optimality, the variant fixes the customer delivery patterns and therefore
restricts the solution space of the ALNS solutions to the conditional routing problem.

To better quantify this behaviour, Table 8 makes a comparison between three algorithmic strategies.
The first one, in the left block, solves the problem optimally by CPLEX. The table reports the
total cost and its decomposition into its various components. The second strategy, in the middle
block, decomposes the problem into its two natural components: the first echelon problem and the
routing problem conditioned by the first-echelon solution. It solves each of these two components
optimally by CPLEX. The solution values obtained by means of this decomposition strategy deviate
on average by 5.97% from the optimal solution values, even though each component is solved
optimally. The third strategy, in the right block, solves the problem by our heuristic variant 1: the
first echelon component is again solved optimally, but the routing component is solved heuristically
by ALNS. The solution costs obtained under this strategy deviate on average by 7.96% from the
optimal solution values, but only by 1.87% from the costs obtained under the second strategy. In
other words, these results show that ALNS yields good solutions when compared with the optimal
values yielded by the second strategy. The deviations observed between variant 1 and the optimal
solutions are mostly a result of the decomposition of the problem into its two components, rather
than a result of the behaviour of the ALNS per se. Our recommendation is to apply variant 3 and

not variant 1 when the cost is relatively important with respect to the total cost.
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The results for larger instances are shown in Tables 9 and 10. The column headings present
the different instance size and linehaul cost for the two instance structures and the performance in
terms of time and deviation for each heuristic variant. The deviations in the table refer to average
percentage deviations from the best solutions found for each of the instances. The percentage in
brackets for variant 2 is the average percentage deviation of the final linehaul cost found by variant
2 from the optimal linehaul solution found by the MILP of variant 1. The best and worst values for
the individual instances of both instance structures are presented in Tables 11 -14 in the appendix.
Overall, heuristic variants 2 and 3 show a significantly longer run time than variant 1 due to the
destruction of customer patterns during the process of the ALNS and the associated resolution of
the MILP formulation. The detailed results in Table 9 show that for the instances with a small grid
size the first variant performs the best in terms of finding good solutions, followed by variant 3.
Both of these variants improve the initial solution by about 30%, with an overall average deviation
from the best found solutions of about 1.7% (variant 1) and 2.93% (variant 3). Breaking down
the results for the different linehaul costs indicates, that both variant 1 and 3 perform better for
instances with higher linehaul cost. Despite improving its initial solution on average also by about
30%, heuristic variant 2 significantly underperforms in comparison to the other two variants with
an average deviation from the best found solutions of about 6.95%. As the cost of the 1st echelon
(i.e the linehaul part) of the problem accounts on average for about 44% of the total cost this
underperformance seems closely related to the inability of variant 2 to reach better first echelon
solutions, with the first echelon solutions found by variant 2 being 8.9% worse than the optimal

solutions found by the MILP model of variant 1.
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Table 9: Average results by heuristic variant for small grid instances

Instance Structure 1 Variant 1 Variant 2 Variant 3

Size Linehaul cost Deviation (%) Time (s) Deviation (%) Time (s) Deviation (%) Time (s)

30 low 2.01 20.15  9.18 (13.84)  256.08 2.89 235.71
medium 1.50 19.76  7.13  (9.29)  273.00 2.81 265.72
high 1.44 20.35  7.53  (7.09)  291.06 1.73 275.43

40 low 2.09 2342 750 (10.28)  215.30 3.16 199.95
medium 1.34 2358  8.05 (11.15)  226.30 2.33 219.50
high 1.03 23.75  7.67 (7.58)  230.44 1.81 209.62

50 low 3.27 2955  6.27 (10.99)  208.00 5.56 202.66
medium 1.81 2948  8.04 (12.31) 219.54 2.52 208.40
high 1.24 30.00 6.94 (852)  213.35 2.06 201.29

100 low 2.23 52.66  6.50 (10.59)  201.97 4.45 198.41
medium 1.51 53.07 729 (9.07)  209.19 3.35 198.83
high 1.02 5342 569 (5.57)  216.60 2.58 204.91

150  low 1.73 86.90 5.04 (6.16)  196.52 3.14 198.48
medium 1.72 85.14 554  (6.94)  200.91 2.87 204.00
high 1.18 84.92 588 (6.69)  204.56 2.19 212.45

Low linehaul 2.27 4254 6.90 (10.37)  215.57 3.84 207.04

Medium linehaul 1.58 4221 721  (9.75)  225.79 2.78 219.29

High linehaul 1.18 4249 674 (7.09)  231.20 2.07 220.74

Overall 1.67 4241 6.95 (9.07)  224.19 2.90 215.69

The detailed results for the second instance structure with a larger grid size are presented in
Table 10. It can be seen, that the difference in performance between the three heuristic variants
isn’t as large as for the first set of instances. Variant 1 performs best with respect to the quality of
the solutions found, with an average deviation from the best solutions of 4.66%, followed by variant
2 with a deviation of 5.75%. Heuristic variant 2 performs only slightly worse than the other two
variants with an average deviation of 6.43%. The average deviations are higher than for instance
structure 1, but the improvement from the initial solutions is also larger, with an improvement
from the initial solution by all three variants of about 41%. When distinguishing between different
linehaul costs, the results show that all variants perform better for instances with high linehaul
costs. While variant 2 still underperforms in terms of finding good solutions for the first echelon of

the problem (with a deviation of 10.46%), 1st echelon costs only account for about 20% of the total
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costs. Thus, it partly compensates for the larger linehaul cost by allowing for more flexibility and
finding better solutions for the routing part of the problem. This suggests, that the ratio between

linehaul and routing costs impacts the performance of the heuristic variants.

Table 10: Average results by heuristic variant for large grid instances

Instance Structure 1 Variant 1 Variant 2 Variant 3

Size Linehaul cost Deviation (%) Time (s) Deviation (%) Time (s) Deviation (%) Time (s)

30 low 6.44 20.15  8.88 (13.53)  184.92 7.63 179.94
medium 5.00 19.96 5.33  (14.67) 184.08 4.78 183.00
high 4.35 19.89 6.96 (11.70) 193.27 5.68 184.82
40 low 6.40 25.18 6.47 (12.81) 166.42 7.53 174.02
medium 6.85 25.48 7.36  (14.75) 167.12 8.45 174.52
high 3.72 25.30 5.40  (8.27) 182.47 4.77 180.84
50 low 6.16 28.00 6.76  (9.28) 157.69 6.83 163.01
medium 6.20 28.76 6.29 (12.71) 163.82 6.52 167.10
high 4.51 29.41 7.32 (13.81) 166.85 5.42 165.15
100  low 3.41 51.41 6.03 (11.78) 177.38 4.78 175.16
medium 3.50 50.11 6.14 (7.84) 180.20 5.86 176.66
high 2.66 50.16 5.63 (7.42) 179.17 3.81 176.05
150  low 3.34 81.84 481 (5.22) 196.83 4.45 198.36
medium 3.94 81.86 722  (7.19) 200.69 5.46 202.50
high 3.39 80.50  5.87 (5.87)  203.12 4.31 201.64
Low linehaul 5.15 41.32 6.59 (10.52) 176.65 6.25 178.10
Medium linehaul 5.10 41.23 6.47 (11.43) 179.18 6.21 180.76
High linehaul 3.72 41.05 6.24  (9.41) 184.97 4.80 181.70
Overall 4.66 41.20 6.43 (10.46) 180.27 5.75 180.18

In addition, testing instances (of 30 to 50 customers), in which more delivery patterns are allowed
per customer, has shown that for both instance structures the differences in performance between
the three heuristic variants become more pronounced as the number of delivery patterns increases.

6 Conclusion

We have introduced the two-echelon inventory routing problem for perishable products. The prob-

lem was formulated mathematically and was solved by applying a two-stage matheuristic combining
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an ALNS with a MILP formulation. Three variants of the matheuristic were proposed and tested
on different types of instance structures, varying in grid size and linehaul cost. The results demon-
strate that instances of realistic sizes (involving up to 150 customers) can be solved by means of
the proposed heuristic within reasonable computing times. The three variants of the heuristic differ
greatly on small grid instances, but tend to become more similar on the larger grid instances. It is
also easier to solve the problem optimally on the smaller grids. One limitation of this paper, which
could possibly be overcome in future research, lies in the modelling of perishability. Indeed, we
have assumed in our model that all products deteriorate linearly as a function of time. However,
these phenomena are more complex in practice since not all products deteriorate linearly and at
the same rate. Therefore, a more refined model could be exploited, particularly one that would

take stochasticity into account.
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Appendix 1: Best and Worse Values - Small grid instances

This appendix presents the best and worst values for the instance structure with a small grid size
in Tables 11 and 12 respectively. The column headings present the instance size and linehaul cost
structure for each of the instances, the best known value and the best (Table 11) or worst (Table
12) solutions found by the three heuristic variants. The solutions are provided in terms of the total

cost (TC) as well as broken down into first echelon costs (1¥E) and routing costs (RC).

Table 11: Best Solutions Found - small grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3
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Table 11: Best Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC

# Size Linehaul TC 1**E RC TC 1 E* RC TC 1"E RC TC 1**E RC

16 30 low 223.7 133.5 90.2 223.7 133.5 90.2 230.4 1389 91.5 226.4 * 92.9
17 30  low 188.1 87.1 101.0 188.1 87.1 101.0 206.6 100.1 106.5 190.1 * 103.0
18 30 low 211.0 101.4 109.5 211.0 101.4 109.5 224.3 116.1 108.3 211.8 * 110.4
19 30 low 196.3 88.0 108.2 197.0 88.0 108.9 206.4 100.4 106.0 196.3 * 108.2
20 30 low 203.1 102.9 100.2 203.8 102.9 100.9 206.7 103.1 103.6 203.1 * 100.2

21 30 medium  267.7 176.4 91.3 267.7 176.4 91.3 283.0 182.6 100.5 269.8 * 93.4
22 30 medium  240.0 139.1 101.0 240.0 139.1 101.0 247.3 145.3 102.0 242.0 141.6 100.4
23 30 medium  223.7 1244 99.3 225.3 118.9 106.4 223.7 124.4 99.3 227.1 1222 104.8
24 30 medium  272.0 173.6 98.4 272.0 173.6 984 297.3 195.2 102.2 2741 * 100.5
25 30 medium  237.4 138.2 99.2 237.7 136.8 100.9 238.5 147.0 91.6 237.4 138.2 99.2

26 30 high 374.9 279.8 95.1 374.9 279.8 95.1 391.9  292.9 99.0 3782 * 98.4
27 30 high 350.0 262.3 87.7 350.0 262.3 87.7 370.9 274.8 96.1 3514 * 89.1
28 30 high 357.3 256.1 101.2 357.3 256.1 101.2 371.5 268.3 103.2 361.2 * 105.1
29 30 high 347.0 2458 101.2 347.5 245.8 101.7 365.8 261.3 104.5 347.0 * 101.2
30 30 high 344.0 250.8 93.2 344.0 250.8 93.2 359.6 262.1 97.5 3447 * 93.8
31 40 low 238.0 119.2 118.8 238.0 119.2 118.8 249.1 130.5 118.6 2385 * 119.4
32 40 low 238.7 131.2 107.5 239.1 131.2 107.9 2585 141.3 1172 238.7 * 107.5
33 40 low 214.3 89.0 125.3 214.3 89.0 125.3 223.3 929 1304 2184 * 129.4
34 40 low 301.1 167.8 133.3 301.1 167.8 133.3 304.8 176.7 128.2 304.8 * 137.0
35 40 low 246.9 107.8 139.1 248.1 107.8 140.3 2481 119.3 128.8 246.9 * 139.1

36 40 medium 311.9 187.8 124.2 311.9 187.8 124.2 332.7 205.5 127.2 312.8 * 125.0
37 40 medium 295.9 166.7 129.2 296.6 166.7 130.0 302.4 174.7 127.7 295.9 * 129.2
38 40 medium 307.5 183.7 123.8 308.6 183.7 124.9 331.6 196.9 134.7 307.5 * 123.8
39 40 medium 285.8 163.5 1224 285.8 163.5 1224 292.2 172.1 120.1 2859 * 122.4
40 40 medium  336.2 203.8 1324 336.2 203.8 1324 346.1 213.8 132.3 341.0 * 137.1

41 40 high 428.8 312.1 116.7 428.8 312.1 116.7 4453 321.4 123.9 4320 * 119.9
42 40 high 364.7 249.5 115.2 365.8 249.5 116.3 368.2 253.8 114.5 364.7 * 115.2
43 40 high 446.0 328.7 117.3 446.0 328.7 117.3 457.1 333.5 123.5 4465 * 117.8
44 40 high 428.3 302.1 126.2 428.3 302.1 126.2 446.1 308.3 137.8 429.0 * 127.0
45 40 high 413.4 298.1 1154 413.4 298.1 1154 429.3 306.0 123.3 4139 * 115.9
46 50 low 303.0 1589 144.2 315.6 148.7 166.9 303.0 1589 144.2 319.7 * 171.0
47 50 low 331.3 181.7 149.6 335.3 169.4 165.8 331.3 181.7 149.6 340.5 181.7 158.9
48 50 low 256.6 110.1 146.5 256.6 110.1 146.5 271.0 122.2 148.8 263.3 * 153.2
49 50 low 236.6 81.1 155.5 236.6 81.1 155.5 243.5 90.8 152.6 244.1 91.5 152.6
50 50 low 277.6 117.5 160.1 277.6 117.5 160.1 283.5 124.7 158.8 285.8 * 168.3
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Table 11: Best Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC

51 50 medium  364.6 204.7 160.0 366.7 204.7 162.0 379.5 215.5 164.1 364.6 * 160.0
52 50 medium  326.1 161.1 165.0 327.8 161.1 166.7 334.1 162.7 171.4 326.1 * 165.0
53 50 medium  303.8 151.1 152.7 303.8 151.1 152.7 314.0 1584 155.6 304.6 157.0 147.7
54 50 medium  351.9 203.2 148.7 351.9 203.2 148.7 355.5 212.3 143.2 355.6 * 152.4
55 50 medium  359.3 204.0 155.3 359.3 204.0 155.3 371.1 220.8 150.3 361.1 * 157.1
56 50 high 410.6 256.4 154.2 410.6 256.4 154.2 422.9 261.0 161.9 413.1 * 156.7
57 50 high 428.8 270.7 158.1 428.8 270.7 158.1 447.6 286.9 160.7 4294 * 158.7
58 50 high 437.2 287.0 150.2 437.2 287.0 150.2 457.2 300.3 156.9 439.6 * 152.6
59 50 high 433.2 267.6 165.6 434.2 267.6 166.6 438.0 280.3 157.7 433.2 * 165.6
60 50 high 411.9 268.6 143.3 411.9 268.6 143.3 443.6 301.4 142.2 4150 * 146.4
61 100 low 482.9 171.7 311.2 482.9 171.7 311.2 498.1 185.5 312.7 4885 * 316.9
62 100 low 514.6 200.9 313.7 514.6 200.9 313.7 521.1 219.2 301.9 533.6 217.8 315.8
63 100 low 496.1 189.5 306.6 496.1 189.5 306.6 514.3 201.5 312.8 502.5 * 313.0
64 100 low 457.3 165.5 291.8 457.3 165.5 291.8 480.8 185.0 295.8 471.6 * 306.1
65 100 low 522.6 226.5 296.2 522.6 226.5 296.2 542.0 243.3 298.8 532.0 * 305.5
66 100 medium 597.4 294.2 303.2 597.4 294.2 303.2 645.7 321.3 3244 600.8 * 306.6
67 100 medium 581.9 281.2 300.7 581.9 281.2 300.7 604.2 2934 310.8 587.3 * 306.2
68 100 medium 541.3 256.9 284.4 541.3 256.9 284.4 561.6 261.8 299.7 543.8 * 286.9
69 100 medium  634.9 334.9 300.0 634.9 334.9 300.0 668.7 356.7 312.0 637.0 * 302.1
70 100 medium 569.5 281.3 288.2 5759 281.3 294.7 596.9 298.5 298.5 569.5 * 288.2
71 100 high 928.2 641.9 286.3 928.2 641.9 286.3 975.6 670.4 305.2 933.7 * 291.8
72 100 high 783.1 491.4 291.7 783.1 491.4 291.7 796.2 507.8 288.5 785.2 * 293.8
73 100 high 811.7 502.7 309.1 811.7 502.7 309.1 835.7 514.4 321.4 8122 * 309.5
74 100 high 887.5 589.7 297.8 887.5 589.7 297.8 916.7 615.4 301.3 899.3 * 309.5
75 100 high 834.6 543.1 291.5 834.6 543.1 291.5 864.0 560.0 304.1 8449 * 301.8
76 150 low 829.5 357.7 471.7 829.5 357.7 471.7 853.8 374.5 479.3 841.0 * 483.3
77 150 low 748.3 282.0 466.3 749.5 282.0 467.5 776.7 315.6 461.1 T748.3 * 466.3
78 150 low 885.7 424.7 461.0 885.7 424.7 461.0 922.9 441.5 481.4 894.7 * 470.0
79 150 low 867.9 4249 443.0 870.0 424.9 445.1 895.4 441.7 453.8 867.9 * 443.0
80 150 low 981.1 525.3 455.9 981.1 525.3 455.9 989.7 542.1 447.6 983.1 * 457.9
81 150 medium  965.4 481.0 484.4 965.4 481.0 484.4 1012.6 514.6 498.0 979.2 * 498.2
82 150 medium  922.5 460.5 462.0 922.5 460.5 462.0 936.0 480.9 455.1 929.7 * 469.2
83 150 medium  932.2 483.2 449.0 932.2 483.2 449.0 951.2 488.6 462.6 937.8 * 454.7
84 150 medium  947.6 496.7 450.9 947.6 496.7 450.9 1003.8 530.3 473.5 962.6 * 465.9
85 150 medium  882.3 426.4 456.0 882.3 426.4 456.0 926.3 460.0 466.4 890.6 * 464.3
86 150 high 1180.2 731.9 448.2 1180.2731.9 448.2 1255.3 799.1 456.2 1188.7 * 456.8
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Table 11: Best Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
87 150 high 1158.3 680.3 478.0 1163.9 680.3 483.6 1239.6 747.5 492.1 1158.3 * 478.0
88 150 high 1242.9 783.1 459.8 1242.9783.1 459.8 1261.8 794.4 467.3 1251.3 * 468.2
89 150 high 1363.3 917.4 445.9 1363.3917.4 4459 14159 952.7 463.2 1367.7 * 450.3
90 150 high 1193.21745.7 447.4  1193.2 745.7 447.4 1206.2 761.8 444.3 1195.7 * 449.9
Total # of best known solutions found: 56 3 16

* optimal solution MILP model if linehaul is solved first

Table 12: Worst Solutions Obtained - small grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
16 30 low 223.7 133.5 90.2 231.9 133.5 98.4 257.6 150.3 107.3 245.6 148.1 974
17 30 low 188.1 &7.1 101.0 196.8 &7.1 109.7 216.1 101.5 114.6 199.3 * 112.2
18 30 low 211.0 1014 109.5 219.7 101.4 1183 235.1 122.6 112.5 218.8 106.7 112.1
19 30 low 196.3 88.0 108.2 204.6 88.0 116.6 215.6 101.4 114.2 203.1 * 115.0
20 30 low 203.1 102.9 100.2 212.1 102.9 109.3 2334 122.2 111.2 2155 * 112.6
21 30 medium 267.7 176.4 91.3 274.6 176.4 98.2 305.9 207.8 98.1 284.5 185.2 99.3
22 30 medium 240.0 139.1 101.0 247.6 139.1 108.5 262.5 148.5 114.0 248.5 140.3 108.2
23 30 medium 223.7 124.4 99.3 229.7 118.9 110.8 242.6 130.0 112.6 240.0 122.4 117.6
24 30 medium 272.0 173.6 984 279.9 173.6 106.3 309.1 209.0 100.1 280.9 173.6 107.3
25 30 medium 237.4 138.2 99.2 245.8 136.8 109.0 260.8 153.4 107.4 2504 * 113.6
26 30 high 374.9 279.8 95.1 383.2 279.8 103.4 4149 312.6 1024 396.6 299.8 96.8
27 30 high 350.0 262.3 87.7 360.8 262.3 98.6 397.3 288.5 108.8 363.3 * 101.0
28 30 high 357.3 256.1 101.2 368.3 256.1 112.1  398.8 275.1 123.7 373.5 263.4 110.2
29 30 high 347.0 2458 101.2 365.6 245.8 119.8 386.1 269.5 116.6 354.3 * 108.5
30 30 high 344.0 250.8 93.2 350.2 250.8 99.4 370.9 267.0 104.0 351.6 * 100.8
31 40 low 238.0 119.2 118.8 246.2 119.2 127.1 259.7 130.5 129.2 266.7 134.1 132.7
32 40 low 238.7 131.2 107.5 2529 131.2 121.7 268.0 147.0 121.0 2525 * 121.3
33 40 low 214.3 89.0 125.3 2256 89.0 136.6 249.0 103.5 1455 2254 * 136.4
34 40 low 301.1 167.8 133.3 311.0 167.8 143.2 323.1 176.7 146.4 3153 * 147.5
35 40 low 246.9 107.8 139.1 254.6 107.8 146.8 265.4 119.3 146.1 259.7 * 151.9
36 40 medium 311.9 187.8 124.2 324.1 187.8 136.4 352.0 2149 137.2 3344 2149 119.6
37 40 medium 295.9 166.7 129.2 301.5 166.7 134.8 3259 195.8 130.1 320.0 1824 137.6
38 40 medium 307.5 183.7 123.8 315.1 183.7 131.4 350.9 211.8 139.1 3182 * 134.5
39 40 medium 285.8 163.5 122.4 293.2 163.5 129.7 316.9 1854 131.6 294.8 * 131.3
40 40 medium  336.2 203.8 132.4 348.7 203.8 144.9 367.3 231.8 135.5 352.3 * 148.5
41 40 high 428.8 312.1 116.7 440.8 312.1 128.7 476.3 341.7 134.5 449.5 319.1 130.4
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Table 12: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
42 40 high 364.7 249.5 115.2 369.5 249.5 120.0 402.4 273.1 129.3 374.6 251.4 123.2
43 40 high 446.0 328.7 117.3 454.2 328.7 125.5 488.8 360.2 128.6 462.8 * 134.1
44 40 high 428.3 302.1 126.2 439.4 302.1 137.3 504.9 363.9 141.0 444.4 315.5 1289
45 40 high 413.4 298.1 1154 423.6 298.1 125.6 453.7 321.7 131.9 4276 * 129.6
46 50 low 303.0 1589 144.2 3334 148.7 184.7 3319 156.6 175.4 328.3 158.9 169.4
47 50 low 331.3 181.7 149.6 343.3 1694 1739 354.2 181.7 1725 361.9 181.7 180.2
48 50 low 256.6 110.1 146.5 269.7 110.1 159.6 289.2 1289 160.3 286.6 121.4 165.2
49 50 low 236.6 81.1 155.5 249.2 81.1 168.2 258.0 96.8 161.2 257.6 95.5 162.1
50 50 low 277.6 117.5 160.1 290.4 117.5 1729 3029 132.8 170.1 294.6 130.1 164.5

51 50 medium  364.6 204.7 160.0 3752 204.7 170.6 406.6 239.2 167.4 380.7 * 176.0
52 50 medium  326.1 161.1 165.0 336.8 161.1 175.7 362.1 193.8 168.3 337.7 * 176.6
53 50 medium 303.8 151.1 152.7 319.6 151.1 168.5 329.1 168.6 160.5 323.2 157.4 165.9
54 50 medium  351.9 203.2 148.7 362.7 203.2 159.5 404.6 238.8 165.8 365.0 * 161.8
55 50 medium  359.3 204.0 155.3 372.4 204.0 168.4 401.9 246.8 155.1 383.2 224.1 159.1

56 50 high 410.6 256.4 154.2 421.2 256.4 164.8 446.0 278.5 167.5 424.7 * 168.3
57 50 high 428.8 270.7 158.1 4399 270.7 169.2 485.0 318.6 166.5 463.8 297.0 166.8
58 50 high 437.2 287.0 150.2 445.8 287.0 158.8 496.8 339.6 157.2 450.2 * 163.3
59 50 high 433.2 267.6 165.6 439.5 267.6 171.9 460.8 306.0 154.7 474.5 288.3 186.2
60 50 high 411.9 268.6 143.3 420.0 268.6 151.5 469.3 306.0 163.3 425.1 * 156.5
61 100 low 482.9 171.7 311.2 500.3 171.7 328.6 523.2 201.2 322.0 511.5 190.2 321.3
62 100 low 514.6 200.9 313.7 528.5 200.9 327.6 553.3 225.0 3283 573.2 222.8 350.4
63 100 low 496.1 189.5 306.6 522.1 189.5 332.6 538.8 211.3 3274 523.6 205.2 318.4
64 100 low 457.3 165.5 291.8 479.9 165.5 314.3 508.4 184.5 323.9 500.0 186.9 313.1
65 100 low 522.6 226.5 296.2 544.6 226.5 318.1 580.1 263.7 316.3 557.2 248.2 309.1

66 100 medium  597.4 294.2 303.2 620.1 294.2 325.9 662.1 340.0 322.1 664.6 334.8 329.8
67 100 medium  581.9 281.2 300.7 602.0 281.2 320.8 634.1 316.5 317.5 633.4 311.0 322.4
68 100 medium  541.3 256.9 284.4 556.6 256.9 299.7 593.9 278.6 3154 5785 263.5 315.0
69 100 medium  634.9 334.9 300.0 650.8 334.9 3159 696.5 377.2 319.3 678.0 354.9 323.1
70 100 medium  569.5 281.3 288.2 587.3 281.3 306.0 624.1 317.4 306.7 602.8 * 321.5

71 100 high 928.2 641.9 286.3 946.7 641.9 304.8 1066.8 721.7 345.1 994.8 * 352.9
72 100 high 783.1 491.4 291.7 802.0 491.4 310.6 821.5 506.2 3153 830.7 * 339.3
73 100 high 811.7 502.7 309.1 825.2 502.7 322.5 861.4 5288 332.7 869.3 538.2 331.1
74 100 high 887.5 589.7 297.8 907.0 589.7 317.3 976.4 656.8 319.6 932.3 614.0 318.4
75 100 high 834.6 543.1 291.5 850.7 543.1 307.6 933.3 578.7 354.6 896.7 581.6 315.0
76 150 low 829.5 357.7 471.7 860.4 357.7 502.7 889.9 393.7 496.2 899.2 * 541.5
77 150 low 748.3 282.0 466.3 770.2 282.0 488.2 814.2 315.1 499.1 810.5 315.6 494.9
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Table 12: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
78 150 low 885.7 424.7 461.0 922.3 424.7 4975 948.1 4415 506.5 934.3 441.5 492.8
79 150 low 867.9 4249 443.0 905.8 4249 480.9 920.9 441.7 479.2 927.5 441.7 485.9
80 150 low 981.1 525.3 455.9 1018.8 525.3 493.6 1031.6 544.4 487.2 1028.6 552.4 476.2

81 150 medium  965.4 481.0 484.4 1000.2 481.0 519.2 1035.3 521.7 513.6  1016.4 * 535.3
82 150 medium  922.5 460.5 462.0 948.8 460.5 488.3 965.4 494.1 471.3 975.7 494.1 481.6
83 150 medium  932.2 483.2 449.0 964.2 483.2 481.1 997.8 516.8 481.0 977.3 509.3 468.1
84 150 medium  947.6 496.7 450.9 976.1 496.7 479.4  1029.3 530.3 499.0 1018.3 532.4 485.8
85 150 medium  882.3 426.4 456.0 911.7 426.4 485.3 946.5 467.2 479.3 941.1 459.9 481.2

86 150 high 1180.2 731.9 448.2 1207.4 731.9 4754 1284.4 799.1 485.2 1216.7 T47.6 469.1
87 150 high 1158.3 680.3 478.0 1191.5 680.3 511.2  1274.2 747.5 526.7 1250.4 747.5 502.9
88 150 high 1242.9 783.1 459.8 1277.0 783.1 493.9 1306.1 814.2 491.9 1323.4 799.8 523.6
89 150 high 1363.3 917.4 4459 1381.7 917.4 464.3 1501.5 1028.3473.2 1416.9 959.3 457.5
90 150 high 1193.2 745.7 447.5  1219.3 745.7 473.6  1253.8 779.1 474.6 1229.2 * 483.5

* optimal solution MILP model if linehaul is solved first

Appendix 2: Best and Worse Values - large grid instances

This appendix presents the best and worst values for the instance structure with a large grid size in Tables 13 and
14 respectively. The column headings present the instance size and linehaul cost structure for each of the instances,
the best known value and the best (Table 13) or worst (Table 14) solutions found by the three heuristic variants.
The solutions are provided in terms of the total cost (TC) as well as broken down into first echelon costs (1°‘E) and

routing costs (RC).

Table 13: Best Solutions Found - large grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 15*E* RC TC 1*E RC TC 1**E RC
16 30 low 707.8 97.9 609.9 727.0 934 633.5 707.8 97.9 609.9 719.8 * 626.4
17 30 low 660.3 131.7 528.5 705.6 119.1 586.5 660.3 131.7 528.5 693.6 128.2 565.4
18 30 low 626.0 83.6 5424 626.0 83.6 5424 6554 95.6 559.8 6357 * 552.1
19 30 low 689.6 110.6 578.9 696.1 106.0 590.1 706.2 115.8 590.4 689.6 110.6 578.9
20 30 low 631.4 88.1 543.3 631.4 88.1 543.3 673.7 106.8 566.9 636.7 91.8 544.9

21 30 medium 823.6 204.9 618.7 823.6 204.9 618.7 852.0 241.6 6104 831.6 * 626.8
22 30 medium  777.1 2221 555.0 795.3 193.3 602.0 777.1 222.1 555.0 788.8 * 595.4
23 30 medium 736.3 160.3 576.1 763.5 160.3 603.2 773.3 183.9 589.4 736.3 * 576.1
24 30 medium  690.5 131.7 558.9 699.1 111.9 587.2 690.5 131.7 558.9 696.0 130.6 565.5
25 30 medium  766.0 171.5 594.5 789.7 145.5 644.1 782.3 167.5 614.8 766.0 171.5 594.5
26 30 high 738.3 189.1 549.3 738.3 189.1 549.3 760.0 218.0 542.0 740.6 * 551.6
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Instances

Table 13: Best Solutions - large grid instances (continued)

Best known

Heuristic 1

Heuristic 2

Heuristic 3

# Size Linehaul

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

30
30
30
30
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

high
high
high
high
low

low

low

low

low
medium
medium
medium
medium
medium
high
high
high
high
high
low

low

low

low

low
medium
medium
medium
medium
medium
high
high
high
high
high

100 low
100 low

TC
715.6
827.2
753.2
799.5
854.0
868.6
825.3
832.5
881.8
822.3
853.6
872.0
863.7
836.1
995.0
976.1
875.9
962.2
1012.8
1003.6
982.0
1030.6
1049.0
971.6
1146.6
1058.6
979.1
1039.8
1009.9
1204.4
1165.1
1124.4
1074.4
1163.7
1988.6
1881.5

1°'E

178.6
233.0
189.4
266.9
177.4
138.4
134.9
120.4
112.3
187.8
186.5
167.9
169.3
170.4
277.3
234.6
187.0
249.3
223.7
185.1
134.0
168.2
139.1
127.4
242.9
204.1
144.1
160.2
143.7
341.2
283.8
285.8
240.8
283.2
147.9
167.7

RC TC
537.1 T715.6 178.6
594.2  831.2 233.0
563.8  782.0 175.0
532.6 837.7 251.0
676.6 913.1 162.8
730.2 868.6 138.4
690.4 825.3 134.9
712.0 832.5 1204
769.6 881.8 112.3
634.5 873.9 168.1
667.1 853.6 186.5
704.1 9125 155.1
694.3 863.7 169.3
665.7 836.1 170.4
717.6  998.7 274.1
741.5 976.1 234.6
689.0 875.9 187.0
7129  983.9 245.6
789.1 1012.8 223.7
818.5  1052.8 174.0
847.9 991.4 134.0
862.4 1109.4 145.9
909.9 1049.0139.1
844.2 971.6 1274
903.7 1146.6 242.9
854.5 1076.6 180.4
835.0 979.1 144.1
879.6  1083.7 148.4
866.1  1009.9 143.7
863.2 1204.4 341.2
881.4 1198.5 283.8
838.7  1127.1 260.5
833.6 1074.4240.8
880.5  1167.8 283.2
1840.7 1988.6 147.9
1713.9 1881.5167.7
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1"E* RC

537.1
598.2
607.0
586.8
750.3
730.2
690.4
712.0
769.6
705.8
667.1
757.5
694.3
665.7
724.6
741.5
689.0
738.3
789.1
878.8
857.4
963.5
909.9
844.2
903.7
896.2
835.0
935.3
866.1
863.2
914.8
866.6
833.6
884.6
1840.7
1713.9

TC 1°'E
754.4  202.2
851.3  256.0
753.2 189.4
804.0 264.1
854.0 177.4
879.9 154.9
839.4 154.2
847.9 141.7
882.2 128.5
822.3 187.8
883.0 219.8
872.0 167.9
914.5 191.0
867.8 195.5
1005.9 295.4
992.6  246.4
901.6 223.1
977.4  259.4
1026.9 233.2
1003.6 185.1
989.8 144.5
1068.7 157.9
1101.6 154.7
997.4  144.2
1159.3 246.8
1058.6 204.1
998.8  165.0
1039.8 160.2
1030.4 159.2
1328.4 419.2
1203.0 330.0
1124.4 285.8
1116.5 265.5
1200.3 309.9
2086.2 168.5
1933.1 177.0

RC
552.2
595.3
563.8
539.9
676.6
725.0
685.2
706.2
753.7
634.5
663.2
704.1
723.5
672.2
710.4
746.3
678.5
718.0
793.7
818.5
845.3
910.8
947.0
853.2
912.5
854.5
833.7
879.6
871.2
909.2
873.1
838.7
851.0
890.4
1917.7
1756.1

TC 1 E
763.2 *
827.2 *
757.2  177.4
799.5 266.9
881.6 167.2
872.0 146.2
842.2 *
849.4 141.7
920.2 *
856.3 *
867.6 *
925.7 *
925.5 *
864.2 *
995.0 277.3
978.2  240.5
878.2 *
962.2 249.3
1034.4 223.8
1050.0 *
982.0 *
1030.6 168.2
1081.0 *
986.9 *
1168.4 *
1083.3 *
993.0 *
1115.6 *
1041.5 155.2
1260.8 *
1165.1 *
1151.7 *
1106.2 247.5
1163.7 *
1989.0 *
1925.9 *

RC
584.6
594.2
579.8
532.6
714.3
725.8
707.3
707.8
807.9
688.2
681.1
770.6
756.2
693.8
717.6
737.7
691.2
712.9
810.6
876.0
847.9
862.4
942.0
859.5
925.5
903.0
848.9
967.2
886.3
919.6
881.4
891.3
858.7
880.5
1841.0
1758.2



Table 13: Best Solutions - large grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
63 100 low 2012.8 204.3 1808.5 2012.8 204.3 1808.5 2057.5 237.1 1820.4 2029.6 233.4 1796.2
64 100 low 2212.6 359.3 1853.3 2212.6 359.3 1853.3 2284.7 411.5 1873.2 2266.6 * 1907.3
65 100 low 2059.1 286.8 1772.3 2087.8 257.2 1830.6 2059.1286.8 1772.3 2074.4 * 1817.3
66 100 medium 2066.8 284.5 1782.3 2066.8 284.5 1782.3 2074.4 305.2 1769.2 2159.8 * 1875.3
67 100 medium  2002.3 305.1 1697.2 2002.3 305.1 1697.2 2044.2 337.6 1706.7 2038.6 * 1733.5
68 100 medium 1950.1 257.8 1692.3 1950.1 257.8 1692.3 2026.4 272.6 1753.8 1996.4 * 1738.6
69 100 medium 2071.3 351.4 1719.8 2071.3351.4 1719.8 2163.5 359.6 1803.9 2141.5 * 1790.1
70 100 medium 2088.0 285.9 1802.1 2088.0285.9 1802.1 2149.1 299.3 1849.8 2134.0 * 1848.1
71 100 high 2232.6 532.0 1700.7 2232.6 532.0 1700.7 2244.9 542.9 1701.9 2240.9 * 1708.9
72 100 high 2310.4 567.4 1743.1 2312.0 567.4 1744.7 2354.1 618.5 1735.6 2310.4 * 1743.1
73 100 high 2036.1 439.6 1596.4 2036.1439.6 1596.4 2076.7 486.4 1590.4 2039.7 * 1600.1
74 100 high 2311.4 468.4 1843.0 2311.4468.4 1843.0 2372.8 501.2 1871.6 2328.9 * 1860.5
75 100 high 2280.5 508.8 1771.7 2306.3 466.3 1839.9 2280.5508.8 1771.7 2284.2 * 1817.9
76 150 low 3032.6 306.0 2726.6 3032.6 306.0 2726.6 3115.3 322.8 2792.4 3071.8 * 2765.8
77 150 low 3118.1 397.3 2720.8 3125.0 380.5 2744.5 3118.1397.3 2720.8 3149.1 * 2768.5
78 150 low 2930.5 286.4 2644.2 2930.5 286.4 2644.2 2966.8 303.2 2663.6 2966.5 * 2680.1
79 150 low 3246.2 440.6 2805.5 3246.2440.6 2805.5 3266.2 457.4 2808.7 3338.6 * 2897.9
80 150 low 3178.5 422.3 2756.2 3178.5422.3 2756.2 3233.6 439.1 2794.6 3211.9 * 2789.6
81 150 medium  3006.7 429.3 2577.5 3006.7 429.3 2577.5 3161.4 476.0 2685.4 3052.1 * 2622.8
82 150 medium  3167.9 574.7 2593.2 3167.9574.7 2593.2 3306.7 608.3 2698.4 3201.9 * 2627.1
83 150 medium  3177.1 418.7 2758.5 3177.1418.7 2758.5 3323.0 439.1 2883.9 3199.9 * 2781.2
84 150 medium  3118.9 505.8 2613.0 3118.9505.8 2613.0 3214.1 532.3 2681.7 3205.2 * 2699.4
85 150 medium  3195.6 531.9 2663.7 3195.6 531.9 2663.7 3316.1 565.5 2750.6 3289.6 565.5 2724.1
86 150 high 3457.4 783.2 2674.3 3493.6 713.6 2780.0 3531.6 747.4 2784.2 3457.4783.2 2674.3
87 150 high 3623.2 802.9 2820.3 3623.2802.9 2820.3 3657.7 862.5 2795.2 3638.2 * 2835.3
88 150 high 3417.9 803.5 2614.4 3417.9803.5 2614.4 3492.6 841.1 2651.5 3465.2 * 2661.7
89 150 high 3643.0 848.4 2794.6 3699.4 848.4 2850.9 3787.5 917.8 2869.7 3643.0 * 2794.6
90 150 high 3374.4 784.9 2589.5 3374.4784.9 2589.5 3536.5 821.0 2715.5 3443.0 * 2658.1
Total # of best known solutions found: 46 15 14

* optimal solution MILP model if linehaul is solved first
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Table 14: Worst Solutions Obtained - large grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
16 30 low 707.8 97.9 609.9 7584 934 665.0 7821 109.5 672.6 766.2 * 672.8
17 30 low 660.3 131.7 528.5 762.1 119.1 642.9 757.1 139.8 617.3 7434 * 624.2
18 30 low 626.0 83.6 5424 670.6 83.6 587.0 721.2 93.0 628.2 697.1 * 613.5
19 30 low 689.6 110.6 578.9 740.2 106.0 634.2 815.0 118.7 696.4 7853 * 679.2
20 30 low 631.4 88.1 5433 7235 88.1 6354 7342 101.5 632.7 743.1 91.7 651.5
21 30 medium  823.6 204.9 618.7 854.2 204.9 649.3 893.3 242.1 651.2 8659 * 661.1
22 30 medium 777.1 2221 555.0 854.1 193.3 660.8 843.5 226.6 617.0 835.5 * 642.2
23 30 medium 736.3 160.3 576.1 819.8 160.3 659.6 830.0 178.0 652.0 793.8 * 633.6
24 30 medium  690.5 131.7 5589 768.5 111.9 656.7 721.2 140.5 580.7 T67.7 * 655.8
25 30 medium 766.0 171.5 594.5 831.3 145.5 685.8 830.1 167.4 662.7 832.8 * 687.3
26 30 high 738.3 189.1 549.3 805.6 189.1 616.5 830.0 217.2 6129 8124 192.8 619.6
27 30 high 715.6 178.6 537.1 758.5 178.6 579.9 837.2 191.6 645.6 817.5 187.9 629.7
28 30 high 827.2 233.0 594.2 859.5 233.0 626.6 956.0 273.6 682.5 864.3 * 631.3
29 30 high 753.2 189.4 563.8 825.6 175.0 650.6 797.6 198.3 599.3 835.5 176.5 659.0
30 30 high 799.5 266.9 532.6 877.3 251.0 626.3 861.2 256.4 604.8 891.3 * 640.4
31 40 low 854.0 177.4 676.6 982.3 162.8 819.5 947.5 177.4 770.1 1001.3 * 838.5
32 40 low 868.6 138.4 730.2 9534 138.4 815.0 968.3 154.9 8134 968.3 * 829.8
33 40 low 825.3 134.9 690.4 904.3 1349 769.4 917.5 152.2 765.3 931.2 148.2 783.1
34 40 low 832.5 1204 712.0 906.7 120.4 786.3 926.1 141.7 784.4 917.0 * 796.6
35 40 low 881.8 112.3 769.6 960.7 112.3 848.4 987.4 121.0 866.5 978.0 * 865.8
36 40 medium  822.3 187.8 634.5 924.0 168.1 755.9 940.6 179.0 761.6 9329 * 764.8
37 40 medium 853.6 186.5 667.1 911.2 186.5 724.7 924.3 219.5 704.8 9279 * 741.4
38 400 medium  872.0 167.9 704.1 1015.1 155.1 860.0 992.9 169.7 823.2 1016.8 * 861.7
39 40 medium  863.7 169.3 694.3 958.5 169.3 789.1 976.1 208.6 767.5 989.9 202.7 787.1
40 40 medium  836.1 1704 665.7 914.1 170.4 743.7 931.4 194.1 737.3 934.0 186.0 748.0
41 40 high 995.0 2773 717.6 1046.9 274.1 772.7 11144 311.8 802.6 1074.1 285.4 788.7
42 40 high 976.1 234.6 741.5 1034.7 234.6 800.1 1046.9 243.2 803.7 1037.8 * 803.2
43 40 high 875.9 187.0 689.0 9289 187.0 741.9 953.5 205.1 7484 936.7 * 749.8
44 40 high 962.2 249.3 712.9 1047.9 245.6 802.3 1059.8 256.2 803.6 1052.2 * 806.6
45 40  high 1012.8 223.7 789.1 1099.7 223.7 876.0 1097.7 231.0 866.7 1123.1 225.5 897.7
46 50 low 1003.6 185.1 818.5 1097.0 174.0 923.1  1117.5 185.1 932.3  1120.7 * 946.8
47 50  low 982.0 134.0 847.9 1068.0 134.0 934.0 1067.5 148.7 918.8 1054.5 * 920.5
48 50 low 1030.6 168.2 862.4 1160.6 145.9 1014.7 1126.5 157.9 968.5 1194.3 * 1048.4
49 50 low 1049.0 139.1 909.9 1146.5 139.1 1007.5 1189.2 154.7 1034.5 1191.8 * 1052.7
50 50 low 971.6 127.4 844.2 1067.9 127.4 940.6 1128.3 144.2 984.1 1070.5 143.1 927.4
51 50 medium 1146.6 242.9 903.7 1225.3 242.9 9824  1239.8 269.5 970.3 1238.7 * 995.9
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Table 14: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC

52 50 medium  1058.6 204.1 854.5 1144.8 180.4 964.4 1189.1 212.8 976.3 1146.1 * 965.8
53 50 medium  979.1 144.1 835.0 1071.9 144.1 927.8 1086.7 157.2 929.5 1072.0 156.7 915.3
54 50 medium  1039.8 160.2 879.6 1198.9 148.4 1050.4 1192.9 178.6 1014.3 11724 * 1023.9
55 50 medium  1009.9 143.7 866.1 1095.7 143.7 951.9 1123.0 161.1 961.9 1104.2 * 960.4

56 50 high 1204.4 341.2 863.2 1290.4 341.2 949.2  1420.2 420.6 999.6  1308.6 * 967.4
57 50 high 1165.1 283.8 881.4 1240.6 283.8 956.8 1337.8 324.8 1013.0 1259.3 * 975.6
58 50  high 1124.4 285.8 838.7 1190.1 260.5 929.6 1228.1 295.5 932.6 1226.6 286.1 940.4
59 50 high 1074.4 240.8 833.6 1248.0 240.8 1007.1 1144.7 247.7 897.0 1166.6 249.3 917.3
60 50 high 1163.7 283.2 880.5 1251.7 283.2 968.4 1283.9 338.6 945.3 1273.7 292.1 981.6
61 100 low 1988.6 147.9 1840.7 2154.6 147.9 2006.7 2280.1 161.3 2118.7 2151.9 169.8 1982.1
62 100 low 1881.5 167.7 1713.9 2082.6 167.7 1914.9 2037.2 179.1 1858.1 2058.4 * 1890.8
63 100 low 2012.8 204.3 1808.5 2162.0 204.3 1957.7 2155.1 239.7 1915.4 2181.1 233.1 1947.9
64 100 low 2212.6 359.3 1853.3 2340.9 359.3 1981.6 2457.1 416.5 2040.5 2416.0 400.8 2015.2
65 100 low 2059.1 286.8 1772.3 2206.9 257.2 1949.8 2263.8 284.5 1979.3 2255.3 288.1 1967.2

66 100 medium  2066.8 284.5 1782.3 2166.0 284.5 1881.5 2201.0 305.5 1895.5 2256.3 291.4 1964.9
67 100 medium  2002.3 305.1 1697.2 2160.1 305.1 1855.0 2274.3 348.4 1925.9 2224.7 322.9 1901.8
68 100 medium  1950.1 257.8 1692.3 2088.9 257.8 1831.1 2148.7 285.4 1863.3 2146.2 * 1888.3
69 100 medium  2071.3 351.4 1719.8 2200.0 351.4 1848.5 2251.5 373.6 1877.9 22389 373.2 1865.7
70 100 medium  2088.0 285.9 1802.1 2215.9 285.9 1930.0 2299.5 320.2 1979.3 2260.2 334.5 1925.6

71 100 high 2232.6 532.0 1700.7 2361.0 532.0 1829.0 2449.7 548.0 1901.7 2398.3 548.1 1850.3
72 100 high 2310.4 567.4 1743.1 2414.0 567.4 1846.6 2590.7 607.8 1982.9 2483.5 620.7 1862.8
73 100 high 2036.1 439.6 1596.4 2202.6 439.6 1763.0 2362.5 517.0 1845.4 2276.2 479.9 1796.4
74 100 high 2311.4 468.4 1843.0 2444.9 468.4 1976.6 2490.7 486.4 2004.4 2517.3 505.4 2011.8
75 100 high 2280.5 508.8 1771.7 2455.1 466.3 1988.8 2492.8 506.3 1986.5 2454.5 475.2 1979.4
76 150 low 3032.6 306.0 2726.6 3265.4 306.0 2959.4 3409.5 322.8 3086.7 3303.4 * 2997.4
77 150 low 3118.1 397.3 2720.8 3300.0 380.5 2919.5 3316.1 405.6 2910.5 3264.2 403.5 2860.6
78 150 low 2930.5 286.4 2644.2 3146.5 286.4 2860.1 3173.9 312.5 2861.4 3192.2 * 2905.8
79 150 low 3246.2 440.6 2805.5 3542.6 440.6 3101.9 3515.2 457.4 3057.7 3483.1 457.4 3025.6
80 150 low 3178.5 422.3 2756.2 3330.4 422.3 2908.1 3464.3 439.1 3025.2 3424.9 455.9 2969.0

81 150 medium  3006.7 429.3 2577.5 3202.0 429.3 2772.7 3337.0 484.7 2852.2 3308.4 * 2879.1
82 150 medium  3167.9 574.7 2593.2 3358.0 574.7 2783.2 3429.9 609.5 2820.4 3411.9 * 2837.2
83 150 medium  3177.1 418.7 2758.5 3399.3 418.7 2980.6 3439.2 434.5 3004.7 3435.8 * 3017.1
84 150 medium  3118.9 505.8 2613.0 3386.6 505.8 2880.8 3582.6 539.4 3043.2 3440.3 * 2934.5
85 150 medium  3195.6 531.9 2663.7 3461.9 531.9 2930.0 3563.1 565.5 2997.5 3514.2 548.9 2965.2
86 150 high 3457.4 783.2 2674.3 3669.6 713.6 2956.0 3715.1 780.8 2934.3 3756.2 790.7 2965.5
87 150 high 3623.2 802.9 2820.3 3811.2 802.9 3008.2 3878.8 855.4 3023.4 3862.7 872.0 2990.7
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Table 14: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1**E RC TC 1°*E* RC TC 1*E RC TC 1**E RC
88 150 high 3417.9 803.5 2614.4 3609.8 803.5 2806.3 3748.0 840.6 2907.4 3693.6 * 2890.1
89 150 high 3643.0 848.4 2794.6 3849.9 848.4 3001.5 4149.7 956.8 3192.8 3962.9 972.8 2990.1
90 150 high 3374.4 784.9 2589.5 3613.1 784.9 2828.2 3744.0 822.1 2921.9 3755.4 855.3 2900.0

* optimal solution MILP model if linehaul is solved first
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