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ARTICLE INFO ABSTRACT

Keywords: With the aim of obtaining reliable estimates of Estrogen Receptor (ER) binding for diverse classes of compounds,
Estrogen receptor a weight of evidence approach using estimates from a suite of in silico models was assessed. The predictivity of a
In Silico simple Majority Consensus of (Q)SAR models was assessed using a test set of compounds with experimental
QSAR

Relative Binding Affinity (RBA) data. Molecular docking was also carried out and the binding energies of these
compounds to the ERa receptor were determined. For a few selected compounds, including a known full agonist
and antagonist, the intrinsic activity was determined using low-mode molecular dynamics methods. Individual
(Q)SAR model predictivity varied, as expected, with some models showing high sensitivity, others higher spe-
cificity. However, the Majority Consensus (Q)SAR prediction showed a high accuracy and reasonably balanced
sensitivity and specificity. Molecular docking provided quantitative information on strength of binding to the
ERa receptor. For the 50 highest binding affinity compounds with positive RBA experimental values, just 5 of
them were predicted to be non-binders by the Majority QSAR Consensus. Furthermore, agonist-specific assay
experimental values for these 5 compounds were negative, which indicates that they may be ER antagonists. We
also showed different scenarios of combining (Q)SAR results with Molecular docking classification of ER binding
based on cut-off values of binding energies, providing a rational combined strategy to maximize terms of tox-
icological interest.

Molecular docking
Low-mode molecular dynamics simulation

1. Introduction The majority of research on EDCs has been based on interactions of

compounds with nuclear hormone receptors (NR), especially estrogen

Exposure to endocrine disrupting chemicals (EDCs) has been linked
to an increase in reproductive problems, hormone-dependent cancers,
diabetes and obesity (Diamanti-Kandarakis et al., 2009; Piparo and
Worth, 2010; Schug et al., 2011, Vuorinen et al., 2013). There are di-
verse and complex mechanisms of endocrine disruption, including di-
rect activation or inactivation of key endocrine target receptors such as
estrogen, androgen, progesterone and several corticosteroid receptors,
as well as disruption of hormone synthesis and inhibition or activation
of hormone metabolizing enzymes such as hydroxysteroid dehy-
drogenases.
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receptors (ERa and ERf) and the androgen receptor (AR). Potential
EDCs are often identified by in vitro and in vivo screening tests (Borgert
et al., 2011), however this can be time consuming and expensive. In
silico screening is far quicker and has lower cost implications and so can
be a valuable tool for prioritising potential EDCs for further biological
evaluation. Additionally, in silico screening can be applied to substances
that are not synthesized (yet) or which would have physico-chemical
properties that makes in vitro testing difficult and/or unreliable.

There is a range of in silico methods available to predict potential
EDCs including (Q)SAR ((Quantitative) Structure Activity
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Relationships), Read across, molecular docking, pharmacophore mod-
elling and virtual screening (Diaza et al., 2012; Porta et al., 2016).
Although most methods will classify compounds as either binders or
non-binders of a particular receptor, methods such as Molecular
docking and some methods in the Endocrine Disruptor Knowledge Base,
EDKB (Ding et al., 2010) can provide a quantitative estimate of the
binding (Galli et al., 2014; Trisciuzzi et al., 2017). On the other hand,
molecular dynamics simulation allows to evaluate the intrinsic activity
of a chemical bound to a nuclear receptor, estimating the alpha helix 12
conformations. There are pros and cons to the different approaches. (Q)
SARs are quick and easy to run but individual models have a limited
chemical space ie. the types of compounds which fall within the ap-
plicability domain of the models. Molecular docking is applicable to
almost all compounds and is quantitative, however the more accurate
methods required for toxicology, rather than the preliminary low ac-
curacy pharmacology approach for large numbers of compounds, are
more computationally intensive and time consuming (Trisciuzzi et al.,
2005).

Recently a lot of effort is being put into the estimation of EDCs, for
example the estimation of ER activity in a large-scale modelling project
called CERAPP (Collaborative Estrogen Receptor Activity Prediction
Project), Mansouri et al., 2016. In this extensive project 48 QSAR
models to predict ER activity developed using a common training set of
1677 compounds, were combined and evaluated using a validation set
of 7522 compounds. There is also a large literature on using docking
against ERa applied to toxicology in order to reduce animal tests. For
example Trisciuzzi et al. (2005) present a study on estrogen receptors
by deriving ad hoc docking-based classification models to discern po-
tential estrogenic from non-estrogenic activity. On the other hand,
many authors used molecular docking simulations to evaluate both
affinity and molecular recognition mechanism of chemical::ERa com-
plexes in order to develop drugs (Maruthanila et al., 2018), test xeno-
biotics effect (Conroy-Ben et al., 2018; Pang et al., 2018; Ye and Shaw,
2019) or study the molecular recognition mechanism of endogenous
ligand at an atomistic level (Li et al., 2019).

Estrogen Receptor binding is one of the endpoints being considered in
the EU-funded project EuroMix (https://www.euromixproject.eu/),
where in silico predictions are being used as input in the risk calculation
of combined exposure to multiple chemicals. Exposure can occur to a
diverse range of compounds which may be present in mixtures in food
and feed, for which experimental data may not be available. These
compounds include plant protection products, biocides, environmental
pollutants, mycotoxins, alkaloids, non-intentionally added substances
(NIAS), food contract materials and food additives. In the component-
based approach to mixture toxicity assessment proposed by the EuroMix
project, QSAR predictions are used as (lower tier) information to de-
termine which substances are likely to contribute to similar toxicological
effects, and therefore should be assessed together in Cumulative
Assessment Groups (CAG). This CAG approach to mixture toxicity as-
sessment is explained in draft guidance on mixture toxicity risk assess-
ment from the European Food and Safety Authority (EFSA, 2019) and
information on this approach can be found at the EFSA website (http://
www.efsa.europa.eu/en/topics/topic/chemical-mixtures). Also required

Table 1
ER activity estimated by the (Q)SAR models.
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in the proposed project risk assessment process are the relative potency
factors on the compounds in the cumulative assessment group. As no
single (Q)SAR method is likely to be capable of providing reliable pre-
dictions for such a wide range of compounds, an approach using a weight
of evidence of estimates from a suite of in silico models was proposed. We
identified a broad selection of (Q)SAR models which were fundamentally
different to each other, i.e. built using different chemicals, types of data
and using different approaches and algorithms, in order to enable a di-
verse range of compounds to be estimated with more confidence.

In the initial phase of the EuroMix project a simple Majority
Consensus approach for the interpretation of multiple QSAR results was
used. To test the validity of this approach a test set of compounds with
experimental Relative Binding Affinity (RBA) data was evaluated and
the predictivity of both the individual models and the Majority
Consensus prediction was assessed. Experimental values from reporter
gene (RA) assays (i.e. agonist specific activation assays) were also ex-
amined to investigate whether false negatives were likely to be an-
tagonists. In addition to application of the (Q)SAR models, molecular
docking was carried out and the binding energies of the test set com-
pounds to the ERa receptor were determined and we investigated
whether the Majority Consensus of QSAR models correctly predicted
the strongest binding compounds. As well as using Molecular docking
data to provide an assessment of the strength of binding, we in-
vestigated using different binding energies as a cut off to determine
whether a compound is a binder or non-binder and also how QSAR
model and molecular docking results can be best combined according to
a particular requirement, for example to minimise false negatives, or to
obtain the highest accuracy. A few test compounds were also evaluated
using low-mode molecular dynamics simulations to determine their
intrinsic activity and to investigate whether some of the negatives from
the QSAR Majority Consensus were actually ERa antagonists.

2. Methods
2.1. (Q)SAR models

Details of the models used are shown below and a summary of the
type of ER activity estimated by the models is shown in Table 1. The
input for the models was an .sdf file of the test set compounds (see 2.4).

2.1.1. COSMOS nuclear receptor model

The COSMOS project (www.cosmostox.eu) Nuclear Receptor model
implemented into KNIME workflows are available in the COSMOS
KNIME WebPortal. Although primarily developed to identify potential
binding to NRs important in hepatosteatosis, ER receptors are included
in the model, which was developed using structural and physico-che-
mical features of NR ligands using data from ChEMBL and the Protein
Data Bank (PDB). A total of 1489 ER agonists were identified and used
in the workflow. Further details of the methodology of the workflow are
available (Mellor et al., 2015).

2.1.2. DEREK Nexus endocrine alerts
DEREK Nexus is a rule-based expert system where Structural alerts

(Q)SAR Model

ER-related Endpoints considered

Access to models

COSMOS Nuclear Receptor model

DEREK Nexus

OCHEM estrogen receptor alpha agonists

OECD QSAR Toolbox DART scheme (ER binding)
OECD QSAR Toolbox alerts (ER binding alert)
OECD QSAR Toolbox alerts (rtER alert)

VEGA - RBA

VEGA - CERAPP

ER-agonists

Various endpoints related to ER activity
ER- a agonists

Various endpoints related to ER binding
Various endpoints related to ER binding
Various endpoints related to ER binding,
Relative Binding Affinity, hER- a

Various endpoints related to ER signalling

Freely available
License fee

Freely available
Freely available
Freely available
Freely available
Freely available
Freely available
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for a particular endpoint identify important structural fragments within
molecules that are associated with a specific toxicological effect
(http://www.lhasalimited.org/products/derek-nexus.htm). If a com-
pound contains a structural alert then the likelihood that the compound
will cause toxicity is provided (based on the species and other rules
such as bioavailability). If no Structural Alert is fired then DEREK re-
turns “Nothing to Report”. This does not necessarily mean a negative
result, just that that the compound contains none of the structural
fragments built into the rule-based system. Derek Nexus 5.01 contains 9
alerts for Estrogen receptor modulation and 2 alerts for Oestrogenicity.
Presence of these alerts is for our purposes interpreted as a substance
being an ER binder, and absence of any of the alerts is interpreted as
being a non-binder.

2.1.3. OCHEM estrogen receptor alpha agonists qualitative model

QSAR modelling efforts in the Tox21 Data Challenge 2014 (“TOX
21,” 2014) resulted in a number of models for ER receptor binding,
which were implemented in the online chemical modelling environ-
ment (OCHEM, http://ochem.eu). These include two ER-a agonist
models using two different cell lines and a third model developed using
log RBA data (Abdelaziz et al., 2016). For the purposes of this study
only one model was used (Consensus Estrogen receptor a agonists
qualitative), as the other Estrogen receptor agonist and RBA model
estimates for the test set used in this study were found to be highly
correlated. Other OCHEM models for ER agonists were available, but
again as these are similar to the VEGA CERAPP model (2.1.7) they were
not included in the study model selection.

2.1.4. OECD QSAR toolbox DART scheme

DART (Developmental and reproductive toxicity) is a decision tree
developed on the basis of the combination of known modes of action
(MoA) and associated structural features, as well as an empirical asso-
ciation of structural fragments within molecules of reproductive or
developmental toxic chemicals when MoA information was lacking. The
decision tree is based on a detailed review of 716 chemicals (664 po-
sitive, 16 negative, 36 with insufficient data) that have DART end-point
data and are grouped into defined receptor binding and chemical do-
mains. When tested against a group of chemicals not included in the
training set, the decision tree is shown to identify a high percentage of
chemicals with known DART effects (Wu et al., 2013). The DART
scheme is incorporated into the OECD (Q)SAR Toolbox (http://www.
oecd.org/chemicalsafety/risk-assessment/theoecdgsartoolbox.htm).
For the purposes of this study a positive score was assigned if a DART
alert was present and the alert specifically mentioned ER binding.

2.1.5. OECD QSAR toolbox ER profilers
There are two profilers related to ER binding freely available in the
OECD (Q)SAR Application Toolbox software.

2.1.5.1. ER binding alert. The incorporated Toolbox ER binding
profiling scheme is based on structural and parametric rules extracted
from literature sources and supported by experimental data (Hamblen
et al., 2003; Saliner et al., 2006; Schultz et al., 2002). The ER-binding
profiler classifies chemicals as non - binders or weak, moderate, strong
or very strong binders depending on molecular weight (MW) and
structural characteristics of the chemicals. The performance of this
profiler was evaluated by Mombelli (2012) using large human and rat
binding datasets and the majority of compounds were correctly
predicted. For the purposes of the present study chemicals were
classed as positive if they had any alert for ER-binding (weak,
moderate, strong or very strong).

2.1.5.2. rtER alert. The rtER Expert System v1, USEPA Estrogen
Receptor Expert System (ERES) Profiler is an effects-based automated
system used to predict estrogen receptor binding affinity, based on
rainbow trout ER (rtER) (Hornung et al., 2014; Schmieder et al., 2014).
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It was specially designed to prioritise pesticides (inert and
antimicrobial) that do not include any steroidal structures and thus
are not capable of higher affinity ER interactions. The ERES is a logic
rule-based decision tree that encodes the experts' mechanistic
understanding with respect to both the chemical and biological
aspects of the well-defined endpoint, or the ER bioassay domain.

2.1.6. VEGA Estrogen RBA model (IRFMN) - v.1.0.1

This classification QSAR model for binding to human estrogen re-
ceptor alpha (hER-a) was developed using experimental values for re-
lative binding affinity (RBA), with 17p-estradiol as reference
(Roncaglioni et al., 2008). This model is incorporated into the VEGA in
silico platform, which is freely available online at http://www.vega-
gsar.eu/ (the version used for this study was 1.1.3).

2.1.7. VEGA Estrogen receptor-mediated effect (IRFMN/CERAPP) -v.1.0.0

This Structural alert rules-based model was built using Sarpy soft-
ware using a large dataset of high- quality ER signalling data (1529
chemicals screened across 18 high-throughput screening assays in-
tegrated into a single score), from the ToxCast program (Judson et al.,
2014). The model was developed within the framework of the Colla-
borative Estrogen Receptor Activity Prediction Project (CERAPP),
Mansouri et al., 2016.

2.2. Applicability domain

The (Q)SAR models considered in this study are in general applic-
able only for small organic molecules; inorganic compounds, organo-
metallic and polymeric structures are outside of the domain of the
models. The QSAR models available in the VEGA platform have a built-
in tool to measure the reliability of the prediction through the applic-
ability domain index, based on similarity to molecules in the training
set, accuracy of prediction of similar molecules, concordance for similar
molecules, errors of prediction among similar molecules, model's de-
scriptor range check and atom centered fragments similarity checks. For
the purposes of this study, estimates of low reliability were not con-
sidered in the majority consensus. For the other models considered in
the study based on Structural Alerts, training sets are often not readily
available and the domain thus difficult to define. Although the lack of
an alert thus does not necessarily mean a negative estimation, the
presence of these alerts is for our purposes interpreted as a substance
being an ER binder, and absence of any of the alerts is interpreted as
being a non-binder. Some compounds, for example Organophosphorus
compounds are not covered by the version of the DART scheme used in
the study and so are outside the applicability domain of this model.

2.3. Majority consensus

The model outputs were collated and a score of 1 assigned to po-
sitively predicted compounds and a score of 0 assigned to negatively
predicted compounds. Where no estimate was obtained from a model, if
it was outside the applicability domain of the model, or the compound
was in the training set of the model and so its estimate excluded from
the analysis, N/A was assigned. The total score of each compound (i.e.
the number of models with a positive prediction) was divided by the
total number of models producing an estimate. Where this was greater
than or equal to 0.5 a positive estimate was assigned and where less
than 0.5 a negative estimate was assigned.

2.4. Selection of the validation set

As the various models to predict ER-binding cover a range of ac-
tivities, for example some of the (Q)SAR models and the standard
molecular docking procedure do not distinguish between agonists and
antagonists, a validation set which isn't specific for agonists or an-
tagonists was required. The validation set selected contained Relative
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Binding Affinity (RBA) data for the ERa receptor and is the external
validation set used to test the VEGA RBA model (Roncaglioni et al.,
2008). It is a diverse dataset of compounds, including natural and
synthetic steroids, drugs and chemical contaminants such as pesticides,
PCBs and phthalates, originally obtained from the Japanese METI da-
tabase (METI 2002). The validation set was selected on the basis of it
containing RBA data for a heterogeneous group of compounds, in-
cluding chemical contaminant groups important in the Euromix project,
it's previous use as a validation set (Roncaglioni et al., 2008), data for
all of the compounds also being available from reporter gene assay and
it containing not too large a number of compounds to enable molecular
docking to be also carried out for all of the compounds within the time
constraints of the project. The validation set was downloaded as a text
file from VEGA version 1.1.3 (from the dataset of 806 compounds, the
150 compounds labelled with TEST status were selected) and then
converted to an .sdf file for input to the various models. Details of how
the chemical structures were originally obtained and modified for use
in QSAR modelling are available in Roncaglioni et al., 2008. Two
compounds containing tin were removed for this study as these metallo-
organic compounds are not predicted in several models, leaving 148
compounds of which 52 were active and 96 were inactive for ERa re-
ceptor binding.

Evaluation of predictive performance where the validation set
compounds were actually used to build the suite of (Q)SAR models and
therefore would lead to overestimation of the accuracy of the models is
to be avoided. Therefore, where the training sets for models are known,
any compounds in the validation set which were used to build models
were removed. For the VEGA CERAPP model, 50 of the 148 compounds
were used to build the model, so these were removed leaving 98 vali-
dation compounds (38 active, 60 inactive) for this model. For the
OCHEM ER agonist model 68 of the 148 compounds were used to build
the model, so these were removed leaving 82 validation compounds (35
Active, 47 Inactive) for this model. The training sets for the other
models considered in the study were not available.

Reporter gene (RA) assay experimental data for the validation set
were also obtained (Roncaglioni et al., 2008) in order to use alongside
RBA results with a view to identifying if compounds may be antago-
nists.

2.5. Cooper statistics

In order to compare the individual (Q)SAR models, the molecular
docking prioritization (Trisciuzzi et al., 2017) and majority consensus
predictions, the standard Cooper statistics (Cooper et al., 1979) and
Matthews correlation coefficient (Matthews, 1975) were used to assess
the quality of the predictions. Sensitivity is defined as the percentage of
correctly classified positive predictions among the total number of
positive instances. Specificity is the percentage of correct negative
predictions compared to the total number of negatives. Accuracy is
defined as the total number both positive and negatives correctly pre-
dicted among the total number of compounds. MCC (Matthews corre-
lation coefficient) is a weighted value that overcomes any imbalance in
the data classes which might lead to over optimistic values of accuracy.
The so-called Negative Predictive Value (NPV) was also computed for
the (Q)SAR and molecular docking results to evaluate the goodness of
the classification and, in particular, to represent the probability that a
chemical predicted as a non-binder (under-threshold) is actually a non-
binder (Trisciuzzi et al., 2017; Trisciuzzi et al., 2005).

2.6. Methods for molecular docking

Among all the solved structures of estrogen receptor alpha LBD in
complex with estradiol, the one with both good resolution and the
lowest number of crystallographic non-solved amino acids was re-
trieved from the RCSB Protein Data Bank [PDB entry: 3UUD.A]
(Delfosse et al.,, 2012). 3D structures were then verified and
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structurally-prepared using MOE Structure Preparation Module, in
order to correct crystallographic-related errors, adding hydrogens and/
or to fill up any unresolved residues. The 3D structure was then sub-
mitted to an energy minimization step with the Amber10:EHT force
field and the reaction field solvation model. Refinement was carried out
down to a Root Mean Square (RMS) gradient of 0.05 keal/mol/A’ 2,

For each chemical, stereochemistry was carefully checked according
to those reported in PubChem, the dominant protomer/tautomer and
protonation state was computed for at physiological pH for each che-
mical. 20,000 rotamers were also generated for each chemical.

In silico molecular docking was carried out with the MOE Dock
Program. ‘Triangle Matcher’ was selected as placement methodology, in
which the substance poses are generated by superposing triplets of li-
gand atoms on triplets of receptor site points, which are alpha spheres
centres representing locations of tight packing.

30 complexes were generated for each tested ligand, removing the
duplicate poses if the same set of ligand-receptor atom pairs is involved
in both hydrogen bond and hydrophobic interactions. Then, putative
poses were scored according to the London dG scoring empirical
function, to estimate the binding free energy of the ligand from a given
pose.

A refinement step was then applied to all the kept poses, basing on
molecular mechanics in which all receptor atoms were held fixed
during this step and the solvation effects were calculated using the
reaction field functional form for the electrostatic energy term. Then,
the GBVI/WSA dG scoring function with the Generalized Born solvation
model (GBVI) (Wojciechowski and Lesyng, 2004) was used to evaluate
the final energy (docking score) of ligand::protein complexes.

To verify the robustness of the molecular docking approach on ERa,
the binding pose of the 3UUD co-crystallized estradiol was computed,
obtaining a perfect overlapping (RMSD lower than 0.3 A) (Galli et al.,
2014). Moreover, with the aim of detecting the best cut-off energy
values for a toxicological evaluation, i.e. whether a compound could be
classed as an ER-binder or ER-non-binder, Cooper statistics were ap-
plied. To better visualize the docking behaviour, the Receiver Operating
Characteristic (ROC) curves were used to graphically compare docking
performances, for a range of different cut-off values.

2.7. Low-mode molecular dynamics simulations (LM-MD)

To study the flexibility of a-helix 12 of NR LBD due to ligand ac-
tivity, LM-MD simulation is a very efficient way to reproduce the low-
mode vibrations with respect to classical molecular dynamics for
minima troughs on the potential energy surface. To run these compu-
tations, MOE Conformational Search program was used, estimating the
low-frequency modes through an efficient implicit method, based on
the attenuation of high-range velocities as described in detail in Labute,
2010. The human ERa LBD bound to

i) a well-known full-agonist (173-estradiol),

ii) a well-known antagonist (4-hydroxytamoxifen),

iii) selected chemicals (listed in Table S2) and

iv) in its apo- form were simulated after the MOE QuickPrep prepara-
tion.

(i) ERou::17B-estradiol complex was obtained from the above men-
tioned structure preparation procedure; (iv) the apo- form, the
protein moiety of a molecular complex, was obtained from the same
PDB, by removing the endogenous hormone in silico; (ii) the com-
plex with antagonist was obtained superimposing RCSB PDB 3ERT
(Shiau et al., 1998) and RCSB PDB 3UUD crystal structures and then
importing the coordinates of co-crystalized antagonist 4-hydro-
xytamoxifen from 3ERT to 3UUD in apo- form.

Complexes with selected chemicals were obtained with the fol-
lowing procedure: ERa::Ligand complexes resulting from docking pro-
cedures were superimposed to 3UUD bound to both full-agonist (i) and
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antagonist (ii); proteins were removed and two Flex-Alignments for
putative agonist/antagonist were performed keeping hold of the en-
dogenous hormone or antagonist, respectively; complexes with selected
ligands were rebuilt using the coordinates of the apo-3UUD 3D struc-
ture.

Both helix 12 (set as a rigid body) and the loop joining helix 12 to
the preceding helix were left free to move during the low-mode mole-
cular dynamics, whereas the residues more than 4.5 A away were fixed
(not free to move but used for the energy calculations); the other re-
sidues were defined as inert (fixed and not used for energy calcula-
tions). The simulation was carried out with default parameters, except
for strain energy cut-off, which was set at 200 kcal/mol. 100 con-
formations were generated and analysed. The Amber10:EHT force field
was used for all the computational procedures.

In order to classify the tested chemicals as agonist, partial agonist or
antagonist, the Root Mean Square Deviation (RMSD) values of helix 12
alpha carbons was computed between 3UUD crystal structure and si-
mulated complex.

3. Results
3.1. Predictivity of individual (Q)SAR models and the majority consensus

The predictivity of the individual (Q)SAR models was variable, as
expected; some models with a high sensitivity and others with high
specificity. The Majority Consensus gave very good results with an
accuracy of 0.8 and a reasonably balanced sensitivity and specificity
and a high NPV value (Table 2). The VEGA-RBA model gave slightly
better results (higher Accuracy, Specificity and MCC, the same Sensi-
tivity and a similar NPV value) than the Majority Consensus model.
Although it could be argued that the VEGA-RBA model alone could thus
be used instead of the Majority Consensus model, the consensus of a
number of different models is likely to be suitable for a wider range of
compounds, ie. will have a broader applicability domain, and if a
compound is out of the domain of the VEGA-RBA model, it may be
predicted by other models. It is also possible that the prediction sta-
tistics for the VEGA-RBA model may be inflated, as although the vali-
dation set was not used to build the model, the final model selection
would have been based on giving good results for the validation set.

Of the 52 compounds in the test set with active experimental RBA
values, there were 12 compounds which were predicted to be non-
binders by the majority QSAR Consensus. These compounds covered a
range of chemical classes, including phthalates, benzaldehydes, orga-
nophosphate, organochlorine, dicarboximide, organosulfur and poly-
cyclic aromatic hydrocarbons. These compounds were investigated
further and Reporter Gene assay (RA) results values were obtained
(Roncaglioni et al., 2008), the transcriptional activity values of which
are positive for agonists only. From the RA data it was found that 10 of
these 12 compounds were not able to activate the ER, which indicates
that they may be antagonists. The remaining two compounds, which
were not structurally similar to each other (2-hydroxy fluorene and 2,2-
Bis (4-aminophenyl) hexafluoropropane), are not indicated to be
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antagonists and so potential false negatives.

3.2. Molecular docking

3.2.1. Binding energies

From molecular docking to ERa, both the molecular poses and the
free binding energies of the 148 validation set compounds were ob-
tained. These energies ranged from —8.9 to 9.6 kcal/mol, with the ten
strongest binders shown in Table 3. Eight of these ten compounds were
classified as active from the RBA experimental values. Moreover, a free
binding energy of —8.1 kcal/mol was calculated for 17-estriadiol, the
endogenous hormone for ERa. Based on this value, it was possible to
classify within the database how many compounds have a lower value
of AG. As a result, only 7 compounds have a AG lower than —8.1 kcal/
mol, of which 5 are classified as active, while 2 are classified as in-
active, on the basis of VEGA RBA data.

3.2.2. Cut-off values of binding energies used to class as binders or non-
binders

In order to investigate the binding free energy value to be used as a
cut-off, regardless of the endogenous substrate value, an R-script was
written to compute the sensitivity, the specificity and the accuracy of
the docking procedure by changing cut-off value. Table 4 shows the
values of the Cooper statistics, calculated for four different cut-offs.
Based on accuracy, the optimal cut-off value is —6.5 kcal/mol, which
corresponds to a 10*E-06 M for dissociation constant (K;). Using this
cut-off value, although the accuracy of prediction was close to 0.7, the
Cooper statistics were not as good as for the QSAR Majority Consensus.

The NPV values ranged from 0.69 to 0.82 using the cut-off values of
—7 to —5.5kcal/mol (Table 4) and so a value of —5.5 kecal/mol would
minimise the false negative prediction. Considering also this term for
molecular docking, a good compromise between accuracy and NPV,
would be a cut-off value of —6 kcal/mol, for which there is also a good
sensitivity (0.75). For these reasons, in section 3.4 we also consider the
cut-off of — 6 kcal/mol for the majority consensus between (Q)SAR and
molecular docking.

3.3. Majority consensus (Q)SAR prediction of the strongest binding
compounds

Experimental values and Majority Consensus (Q)SAR predictions for
all compounds with binding energies below —6.5kcal/mol (50 com-
pounds in total) were examined. Results (Supplementary data Table S1)
show that out of these 50 strongest binding compounds, which also had
positive RBA experimental values, only 5 compounds were predicted by
the Majority Consensus QSAR to be negative. In addition to the RBA
experimental values, the data for the same compounds for the RA test
(agonist only) were also considered. The RA experimental results for
these 5 compounds were all negative. As the RA test is agonist specific
and RBA is general (could be agonists or antagonists) it indicates that
these 5 compounds are in fact ER antagonists. This suggests that the
majority consensus QSAR approach has not missed any of the highest

Table 2

Cooper statistics and NPV values for individual (Q)SAR models and Majority Consensus predicting experimental Relative Binding Affinity.
(Q)SAR Model Sensitivity Specificity Accuracy MCC NPV
COSMOS Nuclear Receptor model 0.85 0.40 0.55 0.25 0.83
DEREK Nexus 0.33 0.98 0.75 0.44 0.73
OCHEM estrogen receptor alpha agonists * 0.88 0.51 0.66 0.40 0.86
OECD QSAR Toolbox DART scheme (ER binding) 0.29 0.83 0.64 0.14 0.68
OECD QSAR Toolbox ER binding OR rtER alert 0.75 0.64 0.68 0.37 0.82
VEGA - RBA 0.77 0.88 0.84 0.64 0.88
VEGA - CERAPP * 0.73 0.68 0.70 0.40 0.82
Majority Consensus 0.77 0.82 0.80 0.58 0.87

@ — test set compounds used to build the model were not used in the evaluation and assigned a not predicted (N/A) score.



J.V. Cotterill, et al.

Table 3
Binding Energies for ten strongest binding compounds and experimental values.
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CAS number Chemical name Binding energy DG [kcal/mol] RBA Experimental value
17606-31-4 Bensultap -89 Active

1816-85-9 11-Hydroxytestosterone —8.5 Inactive

566-76-7 16alpha-Hydroxyestrone -8.3 Active

2772-45-4 2,4-Bis(alpha,alpha-dimethylbenzyl)phenol —-8.3 Active

67747-09-5 Prochloraz —-8.2 Inactive

71030-11-0 beta-Zearalenol -8.2 Active

571-20-0 5alpha-Androstane-3beta,17beta-diol —-8.2 Active

104-43-8 4-Dodecylphenol -8.0 Active

1476-34-2 6-Keto estrone -8.0 Active

5447-02-9 3,4-Bis(benzyloxy)benzaldehyde -7.7 Active

Table 4 With these analyses we have shown that depending on the requirement

Cooper statistics and NPV value for Molecular docking binding energy cut-off
values to assign whether compounds are binders or non-binders.

Cut-off (kcal/mol) Sensitivity Specificity Accuracy MCC NPV
-5.5 0.87 0.38 0.55 0.25 0.82
-6 0.75 0.58 0.64 0.32 0.81
—-6.5 0.54 0.77 0.69 0.31 0.76
-7 0.31 0.83 0.65 0.16 0.69

binding ER agonists in the validation set.

3.4. Majority consensus between methodologies

In order to highlight the weight of each model and to provide dif-
ferent scenarios for interpreting the results, a majority consensus be-
tween methodologies were evaluated. As a first step, the same weight as
a single (Q)SAR model was associated to molecular docking. Using
—6 kcal/mol as docking cut-off, two different scenarios were obtained
considering a chemical “positive” if it was classified as “positive” in
three or half of the models, respectively (Table 5). In the first case, we
obtained a high sensitivity value of 0.87, maximizing the true positive
rate, although the accuracy was reduced compared to the majority
consensus of QSAR models. In the second case there were more ba-
lanced Cooper statistics.

Using the same approach but with a — 6.5 kcal/mol as binding free
energy cut-off value, again where three or models were positive, we
obtained a high sensitivity value of 0.83, minimizing the number of
false negatives. Again there were more balanced the Cooper parameters
when we considering a chemical “positive” a chemical if at least half of
the models were positive.

Changing perspective and using the logical operator “OR”, we
considered a chemical “positive” if it was positive in least half of the Q)
SAR models OR positive for molecular docking (binding free energy
below the cut-off). Using — 6 kcal/mol as docking cut-off an extremely
high sensitivity value of 0.94 was obtained, but with a low specificity.
Slightly more balanced Cooper statistics were obtained using the
—6.5 kcal/mol as docking cut-off with the sensitivity still high (0.87).

e.g highest accuracy, or highest sensitivity to decrease the chances of
false negatives, it is possible to combine the (Q)SAR and molecular
docking results accordingly, providing a rational combined strategy to
maximize terms of toxicological interest.

3.5. Low-mode molecular dynamics simulations to determine intrinsic
activity of ER binders

To evaluate the procedure of LM-MD for identifying the intrinsic
activity of some strongly binding compounds, i.e. whether agonists or
antagonists, ten compounds were selected (Table S2 Supplementary
materials). Five likely agonists selected from the test set were the
strongest binding compounds with positive RBA and RA experimental
data and five possible antagonists selected were the negative com-
pounds from the Majority Consensus QSAR, which had positive RBA
data but negative results in the RA assay. In addition to these com-
pounds, a full-agonist (17-beta-estradiol), an antagonist (4-hydro-
xytamoxifen) and the apo-form were tested, in order to have a solid
background to work on considerations related to intrinsic activity.

As a first step, the ab initio flexible alignment with MOE
Conformational Search program was verified, on the basis of the mo-
lecular structures of reference compounds (17f3-estradiol and 4-hydro-
xytamoxifen). Subsequently, three reference conformations were com-
puted (Fig. 1) and verified, starting from the lowest energetic
conformation of 17f-estradiol, 4-hydroxytamoxifen and apo- form, re-
spectively. Closed conformation of full-agonist corresponds to starting
3UUD conformation, while both partially open and completely open
conformations, respectively for apo- and antagonist, have similar shape
with respect to AR open conformation reported in Galli et al., (2014).

Through an R script, the RMSD of the first 100 conformations was
evaluated for each generated complex, using as reference the 3UUD
crystallographic structure in closed conformation. For the five selected
putative agonists (Fig. 2, left), we found that 2 compounds (V2 and V3)
have low RMSD values, so they can be classified as full agonist, another
2 compounds (V4 and V5) have low RMSD values for approximately
70% of the generated poses, so they can be classified as partial agonist,
while the last one (v6) has a RMSD value similar as the reference

Table 5

Cooper statistics combining the (Q)SAR model and molecular docking results under different scenarios.
Methods Sensitivity Specificity Accuracy MCC
Majority Consensus using 7 QSAR models 0.77 0.82 0.80 0.58
Molecular docking cut off —6 0.75 0.58 0.64 0.32
Molecular docking cut off —6.5 0.54 0.77 0.69 0.31
Consensus including docking (—6 cut off) as one of the models (positive if half or more models positive 0.77 0.79 0.78 0.55
Consensus including docking (—6 cut off) as one of the models (positive if 3 or more positive) 0.87 0.63 0.71 0.47
Consensus including docking (—6.5 cut off) as one of the models (positive if half or more models positive) 0.75 0.81 0.79 0.55
Consensus including docking (—6.5 cut off) as one of models (positive if 3 or more positive) 0.83 0.66 0.72 0.46
Consensus half or more QSAR models OR docking positive (—6 cut off) 0.94 0.49 0.65 0.44
Consensus half or more QSAR models OR docking positive (—6.5 cut off) 0.87 0.63 0.71 0.47
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Fig. 1. Superimposition of lower energetic configuration for agonist (green),
antagonist (orange) and apo- form (light violet). (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)

antagonist, so it could be classified as an antagonist. On the other hand,
for the five selected putative antagonists (Fig. 2, right), 4 compounds
(V9, V10, V11 and V12) have RMSD values very high or comparable
with the antagonist reference value, while 1 compound (V8) showed for
approx. 50% of generated conformations a low RMSD value, compar-
able with the agonist value. In this case, we can assess that 4 com-
pounds are antagonists, while the fifth is a weak partial agonist.

The 17- estradiol, the reference full agonist, has a median RMSD
value of 0.67 A, as does compound V2, whereas compounds V3-V5 have
a median value of around 0.71 A. Compound V6 has a median value of
7 A, an order of magnitude higher than the reference agonist. On the
other hand, the 14-hydroxytamoxifen, the reference antagonist, has a
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median value of about 8 A, while the compounds V8-V12 have a median
value ranging from 7 A to 18 A. Apo-ERa has a median value of 13 A.
Compound V8, defined as very weak partial agonist, therefore presents
a higher interquartile range, because of the dispersion of the generated
configurations, which are in part those of an agonist, in part those of an
antagonist. A box plot of the RMSD of the generated complexes is also
shown, in Fig. 3.

4. Discussion/conclusions

The approach of using the results from a suite of in silico models
which account for different ER binding related endpoints, are built from
different compounds and using different methodologies, has the ad-
vantage of increasing the chemical space covered and thus the prob-
ability that any active compounds from diverse classes of chemicals
such as those considered in the EuroMix project will be correctly
identified. Weight of evidence from different (Q)SAR models has been
successfully used for a number of toxicological endpoints. For example,
Price and Chaudhry 2014 showed that this approach using different in
silico models can provide a rapid and reliable means of rapid screening
for mutagenicity and carcinogenicity for compounds that may migrate
from food packaging. Hewitt et al., 2010 and Marzo et al., 2016 in-
tegrated in silico models to enhance predictivity for developmental
toxicity. Benfenati et al., 2015 integrated QSAR and Read-across results
for the assessment of bioconcentration factors of chemicals.

In attempting to identify substitute compounds for known phtha-
late, bisphenol and parabens EDCs, Porta et al., 2016 applied a battery
of different models, along with EC priority lists and other rule sets
derived from authority's opinions. Similar to Porta et al., 2016, we se-
lected models which are fundamentally different to each other, i.e. they
were developed using different chemicals, using experimental results
from a range of different assays and thus different ER binding endpoints
and using different methodology (e.g. QSAR models generated using
molecular descriptors by a range of algorithms, SARs using molecular
fragments etc.), in order to enable a diverse range of compounds to be
estimated with more confidence. The (Q)SAR models used in the
EuroMix project were however also selected on the basis of being
readily available and implemented into software programs, easy to use
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Fig. 2. RMSD values for both putative ER-alpha agonists (left) and putative ER-alpha antagonists (right). Lines represent the reference conformations for agonists
(red), antagonists (blue) and apo-ERa (dark green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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and with the benefit of being able to run in batch mode and thus be able
to screen large numbers of compounds.

The results showed that individual (Q)SAR model predictivity
varied, as expected, with accuracies ranging from 0.55 to 0.84. Some
models such as the COSMOS Nuclear Receptor and OCHEM models
showed high sensitivity, whilst others such as DEREK Nexus and the
OECD Toolbox DART scheme alert showed very high specificity. The
Majority Consensus prediction shows a high accuracy (0.8) as well as
well-balanced sensitivity and specificity.

To further investigate the false negative predictions from the QSAR
Majority Consensus, experimental values from reporter gene (RA) as-
says (an agonist specific assay) were obtained for these compounds. The
vast majority of these compounds had negative RA values, which in-
dicates that these compounds may be ER receptor antagonists. As the
(Q)SAR models covered a range of ER-compound interactions, in-
cluding relative binding to, and activation of the ER, then although the
Majority consensus used in the study predicts ER interaction in general
well, it is perhaps not surprising that it appears to be less predictive for
antagonists, as no specific ER-antagonist QSAR models were used in the
study.

Molecular docking was also used to provide quantitative informa-
tion on the strength of binding to the ERa receptor, thus allowing to
derive first-tier estrogenic potencies in the EuroMix project. Using a
range of cut-off values of binding energies to predict whether a com-
pound is a binder or non-binder, Cooper statistics showed that a
threshold of —6.5kcal/mol produced the highest accuracy. Using the
molecular docking energies with the threshold value for predicting ER
binding vs. non binding had a lower accuracy than the QSAR Majority
Consensus approach, but it provides invaluable (quantitative) in-
formation on the strength of receptor binding. Finally we demonstrated
that using Molecular docking cut-off values to assign ER binding can be
combined with (Q)SAR results either as an additional in silico model in
an overall consensus, or to assign a compound as an ER-binder if either
the (Q)SAR Majority consensus was positive OR the Molecular docking
classified it as a binder, for example if it is desired to optimise the
sensitivity of the model (at the cost of overall accuracy) to reduce the
chances of false negative predictions.

Further investigations on the 50 highest binding affinity compounds
showed that the QSAR Majority Consensus correctly predicted these
compounds to be binders in 90% of the cases. Of all compounds with
positive RBA experimental values, only 5 were predicted as non-binders
by the QSARs. Furthermore, the experimental values from RA assays for
these 5 compounds were all negative, indicating that the negatives from
the consensus of QSARs may be ER antagonists. Low Mode Molecular
dynamics simulation was used to determine intrinsic activity of these

negative compounds, together with 5 likely agonists and the results
were mostly consistent with expectation. Four of the five proposed
agonists were confirmed as such (16alpha-Hydroxyestrone, beta-
Zearalenol, 5alpha-Androstane-3beta,17beta-diol and 4-
Dodecylphenol) and four of the five proposed antagonists were con-
firmed as such (3,4-Bis(benzyloxy)benzaldehyde, Chlorpyriphos, 2-(4-
Chlorophenyl)-1,1-diphenylethanol and Captafol).

QSAR models are available which can provide quantitative esti-
mation of ER binding (e.g those developed in the CERAPP project,
Mansouri et al., 2016), which could also be used to provide strength of
binding estimates, in addition to, or instead of the Molecular docking
results. For other endpoints considered in the Euromix project, such as
steatosis, quantitative QSAR models are not available at present for all
of the NR's associated with steatosis and so the approach of using
Molecular docking data was adopted in the project. Similarly, QSAR
models have been developed to predict ER agonists or ER antagonists,
rather than binding in general (e.g Mansouri et al., 2016), which could
be used in place of the Molecular Dynamics simulations to identify if a
compound is an agonist or antagonist. Again, such models are not
available for all endpoints considered in the Euromix project and so the
Molecular Dynamics simulation approach was investigated here.

Overall the results show that the Majority Consensus of the (Q)SAR
models is a good method to predict whether a compound is an ER-
receptor binder or non-binder. It predicts ER binding well for the ma-
jority of the highest binding compounds and the majority of the rela-
tively few false negatives may be antagonists. This method has the
benefit of being quick to provide results, being simple to use and is
based on readily available (Q)SAR models. Compounds predicted po-
sitive by QSARs could then be screened by molecular docking to assess
whether they are weak or strong binders. We also showed different
scenarios of combining (Q)SAR results with Molecular docking classi-
fication of ER binding based on cut-off values of binding energies,
providing a rational combined strategy to maximize terms of tox-
icological interest, for example to minimise false negatives. As com-
plementary approach, low-mode MD can be applied to distinguish be-
tween agonists and antagonists, improving both the (Q)SAR- and
molecular docking-related information. A logical improvement over a
simple Majority Consensus approach of interpreting multiple (Q)SAR
predictions would be to take into account the individual predictive
performance (sensitivity, specificity) of the (Q)SAR models and apply
Bayesian statistical theory. Examples of application of this approach are
e.g in Rorije et al., 2012; Buist et al., 2012. In this case the predictive
results from the Majority Consensus approach are such that not much
improvement was expected and hence, Bayesian statistics were not
applied. All the prediction data (QSAR predictions and Molecular
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Docking energies, but not the low mode MD results) are available for a
set of ~1600 food and feed relevant substances — the EuroMix In-
ventory. This data can be accessed and subsequently used in risk as-
sessment calculations for combined exposure to multiple chemicals as a
part of the EuroMix Software tool / MCRA 9.0 Beta - https://mcra-test.
rivm.nl/Select.
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