Loss of Function Mutations in Essential Genes cause Embryonic Lethality in Pigs

Martijn Derks

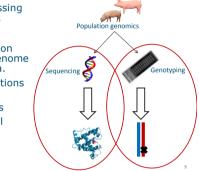
Animal Breeding and Genomics, Wageningen University $\&\ Research$

Data

Breed	80K	WGS	RNA-seq	Phenotypes (TNB, NBA, MUM)
Duroc	11.255	119	25	23,132
Landrace	28,085	167	34	9,920
Large White	23,117	89	3	33,595
Total	62,457	375	62	66,647

- Harmful genetic mutations causing early (embryonic) lethality in homozygous state
- Produced from carrier-by-carrier matings
- Produce a 1:2 phenotypic and genotypic ratio.
- Maintained by genetic drift or heterozygote advantage (overdominance)

AB

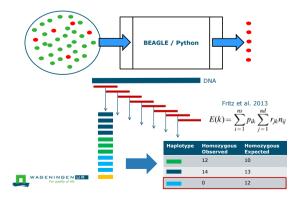

Methodology

Por quality of life

- Infer from missing homozygosity.
- Direct prediction from whole genome sequence data.
 - LoF mutationsMissense
 - mutations

 Structural
 - variation

For quality of life


Objective

WAGENINGEN UR For quality of life

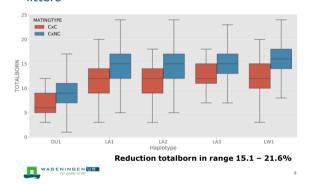
- 1. Map recessive lethal haplotypes in pig populations
- 2. Confirm lethality from carrier-by-carrier (CxC) matings
- 3. Identify causal mutation and downstream effect on protein
- 4. Investigate impact on population

Methodology (missing homozygosity)

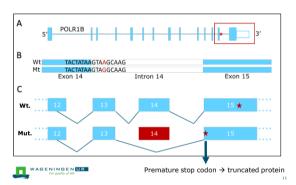
Candidate lethal recessives

Abbr.	SSC	Carrier. Freq (%)	Expected (trio)	Observed	# Genotyped progeny	# Heterozygote progeny
DU1	12	9.6	26.1	0	28	18 (64.3%)
LA1	3	13.4	126.0	0	208	120 (57.7%)
LA2	13	8.4	49.5	2	73	53 (72.6%)
LA3	6	4.7	15.5	0	24	11 (45.8%)
LW1	18	10.8	14.4	0	227	167 (73.6%)
Rel	ative	•	ndidate leth	The second	AB	1:2 genotype
.		INGENUR quality of life			19	AB AB BB

Candidate mutations


For quality of life

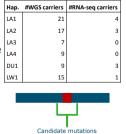
Hap.	Туре	SSC	Position	Ref	Alt	Gene	Gene name
DU1	Splice-donor	12	38922102	G	A	TADA2A	Transcriptional adapter- Ada2/Gcn5/Ada3
LA1	Splice-region	3	43952776	т	G	POLR1B	RNA polymerase I subunit B
LA2	Frameshift	13	195977037	С	-	URB1	Ribosome Biogenesis 1 Homolog
LA3	Non-synonymous	6	54880241	Т	с	PNKP	polynucleotide kinase 3'- phosphatase
LW1	Deletion	18	39817373- 40029300	-	-	BBS9	Bardet-Biedl syndrome 9


• Analysis yields strong candidate mutations for each haplotype!

• Mutations of different types all inducing a **loss-offunction**: Splice, frameshift, deletion, missense.

CxC matings produce significantly smaller litters

A splice region mutation in *POLR1B* inducing embryonic lethality for LA1



Search for the causal variant

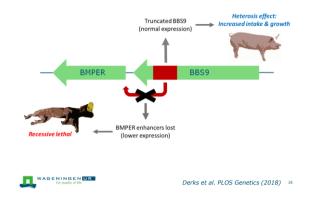
Assessment on **co**segregation and functional impact (LoF and missense)

 Located within 5 Mb of the haplotype boundaries.
 The mutation is carried in heterozygote state by the haplotype carriers
 No homozygous individuals are observed.

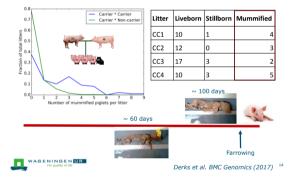
individuals are observed. 4. **Absent** non-haplotypecarrier animals.

Candidate genes involved in essential cellular housekeeping functions

EL.	Туре	Gene name	Gene ontology
DU1	Splice-donor	TADA2A	Regulation of transciption, DNA binding
LA1	Splice-region	POLR1B	RNA polymerase I transcription,
			regulation of gene expression
LA2	Frameshift	URB1	mRNA binding, maturation of rRNA.
LA3	Non-synonymous	PNKP	DNA repair
LW1	Deletion	BBS9	Cilium assembly, fat cell differentiation
Д,"	VAGENINGEN UR For quality of site	i	RNA polymerase I



Population impact of lethal recessives


Population	Hap.	#CxC	#CxNC	TNB	TNB	Reduction	% Affected	Piglet	%
				(CxC)	(CxNC)		litters	loss	Death
Landrace	LA1	297	2,350	11.51	14.18	18.8%	1.796	792.99	0.338
	LA2	127	1,527	12.00	14.26	15.9%	0.706	287.02	0.112
	LA3	30	872	11.96	14.09	15.1%	0.212	63.90	0.032
	LA4	29	950	11.48	14.05	18.3%	0.212	74.53	0.039
	SUM	483	5,699	-		- (2.926	1218.44	0.521
Duroc	DU1	21	293	7.33	9.35	21.6%	0.922	42.42	0.199
Large White	LW1	169	5,231	12.54	15.9	21.1%	1.210	567.84	0.256

- 2.9% of Landrace litters affected by recessive lethals identified in this study!
- Responsible for the death of 0.52% of the total population of embryos
- Reduction in TNB never reaches (expected) 25%.

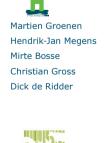
WAGENINGENUR For quality of life

Homozygotes for Large White *BBS9* deletion die during mid-late gestation resulting in mummification

Conclusions

- Combining population genomic (genotype, WGS) and transcriptomic (RNA-seq) data is powerful to detect embryonic lethal mutations.
- Different types of loss of function mutations in essential genes cause embryonic lethality in commercial breeds.
- Recessive lethals driven by genetic drift or overdominance (heterozygote advantage)
- Lethal recessives have significant impact on purebred fertility
 - Mutations breed-specific, no impact on crossbreds (heterosis?).

Balancing selection for BBS9 deletion in Large White


EBVs	TSI	Growth rate	Daily feed intake
Carrier (n=412)	112.13	19.618	-10.095
Non-carrier (n=3030)	109.24	17.450	-4.968
Ratios	1.027	1.124	2.032

- Carriers have on average ~3% higher total selection index (TSI)
- Carriers have ~12% higher growth rate breeding value (EBV) and higher feed intake EBVs
 - *BBS9* null-mutants associated with **obesity** in human and mouse.

Derks et al. PLOS Genetics (2018)

Acknowledgements

3111111100

AGENINGEN UR

Marcos Lopes Barbara Harlizius Maren van Son Eli Grindflek Arne Gjuvsland Hanne Hamland Egiel Hanenberg