




Propositions 

 
1. Network topology is irrelevant for fatigue in colloidal gels. 

 (this thesis) 
 

2. Wave propagation micromechanics of soft solids is a solution to the regular 
misuse of other microrheology methods that rely on heavy assumptions.  
(this thesis) 
 

3. Considering the second law of thermodynamics, a truly circular economy is an 
illusion. 
 

4. Letting artificial intelligence into our homes is no more harmful then taking cats 
in. 
 

5. Irrational fears for nuclear energy stand in the way of resolving climate change 
in the short term. 
 

6. When optimizing experiments, good enough is often best. 
 

7. Instead of a computer recipe, the term algorithm nowadays refers to a 
computer program we do not understand. 
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CHAPTER 1

Introduction

The discovery and use of new materials has shaped progress in the develop-
ment of human societies, from the stone, bronze and iron ages of the dis-
tant past, to our current society in which information technology is driven
by advances in semiconductor applications and in which plastics and syn-
thetic polymers are essential to our daily life. [1, 2]. For many applications,
from large buildings to soft implants, mechanical characteristics are central
when deciding what material to use and can be classified with two parame-
ters: strength and stiffness[1]. When designing a bridge we want a strong and
stiff material like steel, however when eating ice cream we prefer something
soft and a crunchy - easy to break - cone[3, 4, 5].

In most cases stiffness and strength are positively correlated: Stiff ma-
terials are in general stronger and soft materials tend to break earlier[Fig.
1.1][1]. However many biological materials do not follow this correlation,
for example skin has a relatively low stiffness but is incredibly strong[6, 7].
These remarkable and often non-linear mechanics are the result of a com-
plex interplay of cell components that exists in a delicate balance of enthalpic
and entropic forces [8, 9, 10]. While a low stiffness, connectivity and rigidity
are useful properties in nature, as this enables regulatory systems to achieve
large changes in material property with small external cues, it also implies
that thematerials are on the verge of becoming unstable. However this highly
dynamic environment is critical for biological systems to maintain their ro-
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Figure 1.1: Ashby plot of common engineering materials. Strong materials are usu-
ally stiff and weak materials are generally soft. The range of soft matter is indicated
by the yellow circle and extends beyond the lower limits of this graph.

bustness and adaptivity[11, 12, 13]. The relevance of solids close to a me-
chanical tipping point is not exclusive to nature; in the shaping of solid met-
als, one often works very close to their melting point, where the rigidity can
become very small and entropy begins to govern [14, 13, 15]. These systems
share many features with the biological systems such as a highly dynamic en-
vironment and an important role for entropy[16, 17]. In fact the entropic
fluctuations in these solids are so large, they dominate and completely alter
the nature of the solid itself[16].

Strength describes the resilience of a material to failure under the action
of a mechanical stress. In the limit of decreasing strength we find extremely
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weak materials that approach the point at which only the smallest stress will
cause mechanical failure[18]. Mechanical failure comes in many different
forms; a material can break in a brittle manner as glass or in a more duc-
tile manner like bubble gum and many forms in between[19]. Both for solids
with very low rigidity or strength, mechanical instability is around the cor-
ner. Even thermal fluctuations can drive these systems over the edge. This
changes the physics these systems obey, deviating from the framework of lin-
ear elasticity, being very sensitive to local effects and non-affinity. Yet despite
their importance both in the synthetic and biological world, much remains
unknown about their properties and how these emerge from the details of
the microscopic material structure. [20, 21].

The aim of this thesis is to establish the link between structure, dynamics and
mechanics in the limit of hyperweak and hypersoft materials. For hypersoft mate-
rials we focus on reversible mechanics and attempt to link structure and dynamics
to resulting mechanics. For hyperweak materials we aim to link structure to fail-
ure mechanics via dynamics. Finally for materials that are both hyperweak and
hypersoft we directly link their structure to the resulting failure mechanics. To
achieve all these links we use established experimental and numerical techniques.
When these do not suffice we develop new techniques, analysis methods and ma-
terials to get as close to the verge as possible.

Reversible mechanics: Stiffness

The common operational definition of a solid is a material which has a finite
resistance to shear deformations. In other words, a solid has a finite rigidity.
A formal physical measure for rigidity or stiffness is the shear modulus µ
which quantifies the resistance to shear deformation [Fig. 1.2 (a)][22]. The
shear modulus is defined as the ratio between the shear stress σ = F

A and the
shear strain γ = ∆x

l0
.

µ =
σ

γ
(1.1)
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Figure 1.2: (a) A cube under shear deformation. (b) A triangle is an example of a
structural rigid shape. A square is isostatic; it is only one bond away from being rigid.
(c) The Hohenzollern bridge in Cologne. The diagonal connections make this bridge
rigid which allows heavy trains to cross the Rhine river daily. ©Raimond Spekking
/ CC BY-SA 4.0 (via Wikimedia Commons)

If a material has a finite shear modulus it is considered a solid. Not every
microstructure provides a material with rigidity; a minimal number of bonds
has to be arranged in the correct configuration. A triangle resists shear defor-
mation and therefore is a rigid arrangement of bonds[Fig. 1.2 (b)]. By contrast,
a square is not rigid as opposite sides are free to move [Fig. 1.2 (b)]. Placing an
extra diagonal bond prevents this movement and makes the structure rigid.
This not only works on themicroscopic level in materials but also for macro-
scopic structures such as bridges where diagonal steel beams ensure a solid
construction that allows safe crossing[Fig. 1.2 (c)].

For triangles and squares it is easy to see whether they are rigid but for
large disordered systems this becomes much more challenging. For this rea-
son a mathematical theory has been developed by Maxwell. This theory pro-
vides a structural criterion for the minimal number of bondsNb required for
rigidity in dimension d based on the number of nodesNn[23].

Nb > d(Nn − 2) (1.2)

Systems that satisfy this condition can be rigid. Systems that have only one
bond above this threshold, e.g. Nb = d(Nn − 2) + 1, are called marginal
as removing one bond would make them collapse. The rigidity criterion is
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independent of the system size which means that even in very large marginal
systems the removal of a single bond in a rigid system will make it collapse.
The point just after collapse,Nb = d(Nn−2), is called the isostatic point and
systems or regions that have a number of bonds below this point are called
floppy. Whereas Maxwell’s criterion assumes rigid beams and hinging joints,
many joints in real-life materials resist bending. This bending contributes to
the overall rigidity andmay cause overall rigidity at a lower number of bonds
than prescibed by Maxwell’s criterion.

However, containing the minimal number of bonds as described byMax-
well’s criterion does not guarantee that the entire system is rigid[24]. When
a marginal system has redundant bonds in one part it will not have enough
bonds elsewhere. This highlights that also the distribution of bonds is im-
portant in maintaining rigidity. This is studied by percolation theory [25]. As
more andmore bonds are added to a system rigid and floppy regions emerge.
When the rigid regions connect and span the entire network the rigidity per-
colation threshold is reached. In this case the rigidity has percolated the sys-
tem. Similar to the Maxwell criterion the percolation threshold is critical as
only one bond is required to form a generally rigid system. For bonds on a
triangular lattice it has been shown that percolation occurs when 66% of the
bonds are placed[26].

Many biological fiber networks are marginal and near the percolation
threshold and thus on the verge of collapse [27, 28]. These materials how-
ever derive rigidity from the bending resistance of their fiber components as
well. This is not included by the percolation theory or byMaxwell’s criterion
and is studied intensively as bending resistance results in complexmechanical
responses[29, 30, 31].

Energy and length scales in soft materials

The rigidity criterion and the percolation threshold are structural only and
describe whether the Hohenzollern bridge or a gelatin pudding is rigid. How-
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ever , they do not tell us how rigid a material or structure is. To understand
why soft materials are soft, we have to define energy and lengths scales as can
be shown with dimensional analysis

µ ∝ kBT

a3
(1.3)

Thermal fluctuations play a large role in soft materials which results in a typ-
ical energy scale of kBT ≈ 4 · 10−21 J for soft materials[32]. The structural
components of soft materials have typical dimensions of 10−9 to 10−6 m.
For example, in a hydrogel, such as gelatin, mesh sizes are typically in the
order of tens of nanometers[33]. According to equation 1.3 this corresponds
to a shear modulus of around 4kPa which is in the same order of magnitude
of what is found in experiments[34]. This demonstrates that the stiffness is
largely defined by the density of bonds. In chapter 2 we study extremely soft
materials that consist of colloidal particles with dimensions of micrometers.
From the same dimensional analysis, we find that these solids have moduli of
only milliPascals and below, one milion times softer than a gelatin pudding;
a clear example of a material in which rigidity begins to vanish.

Fiber networks

Most biological materials such as the cytoskeleton and cell walls and pro-
cessed materials as paper and fabrics derive their rigidity from fiber net-
works. These fibers often consist of celulose, collagen, fibrin, actin filaments
and microtubules[Fig.1.3(a-c)]. Microtubules are part of the cytoskeleton and
are a pinnacle of a biological system that is on the verge of collapse. Mi-
crotubules constantly grow, collapse and reform, allowing cells to constantly
adapt their shape to a changing environment[35, 36]. From a mechanical
point of view fiber networks are prototypical examples of disorderedmateri-
als where resistance to bending plays an important role. For these systems the
classicMaxwell criterion does not hold and these networks are often rigid be-
low the isostatic point as defined by equation 1.2 because of the bending rigid-
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Figure 1.3: (a) A SEM image of collagen fibers in hip cartilage, adapted from[39].
(b) A Confocal image of fibrin fibers in a blood cloth[40](Copyright (2005) National
Academy of Sciences.). (c) A model fiber network on a triangular lattice, adapted
by permission from Springer Nature, Nature Physics [13], copyright 2011. (d) For
purely affine deformation (blue) all points follow the global deformation whereas
non-affine deformation (red) deviates from the global deformation. (e) Shear mod-
uli as function of strain for different biological fibers, many fiber networks show
a non-linear dependency, adapted by permission from Springer Nature, Nature [9],
copyright 2005.

ity of the fibers[13, 29, 30, 31]. Fibers and the mesh size of fiber networks are
usually large enough to study with electron and confocal microscopy. This
makes them one of the few marginal systems for which internal dynamics
can be studied both with simulations and experiments[27, 37, 38]. The com-
plex interplay of stretching, bending and structural disorder gives fiber net-
works highly nonlinear but reversiblemechanical properties[Fig.1.3(e)][9, 41].
As these systems approach the marginal regime this nonlinear behaviour is
more and more pronounced[13]. This is often associated with non-affinities
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that emerge undermechanical deformation[Fig.1.3(d)][42, 43, 44]. Non-affine
deformations are those in which individual components in the network e.g.
the fibers do not follow the general deformation that is imposed on the ma-
terial or network as a whole. These local non-affine deformations can have a
significant impact on themechanical behaviour of the network as awhole[45].
Therefore fiber networks are extremely difficult to model as the individual
behavior of each fiber has to be taken into account[46]. The further we ap-
proach the rigidity threshold the more these non affine deformations dom-
inate and the more difficult modeling becomes[13]. In chapter 9 we study
fiber networks near the rigidity threshold and attempt to predict mechanical
behavior based exclusively on the structure and topology of the networkwith
a machine learning approach.

Jammed solids and the glass transition

Another class of marginal solids are jammed solids[15, 47]. Jamming occurs
when the volume fraction of particles is high enough that particles confine
each other[Fig. 1.4(a)][48]. This results in a force-bearing network that can
resist shear deformation in the system which can therefore be considered
a solid[Fig.1.4(b)][49, 50, 51, 52]. Jammed systems are disordered and have
many structural characteristics of a fluid and the question why, despite this
structure, they exhibit solid-like behaviour is one of the central themes in soft
matter science. The term jamming is in principle defined for athermal sys-
tems however it showsmany similarities with the glass transition for thermal
systems[Fig. 1.4(c)][53, 54, 55].

For atomic materials a glass is formed by cooling a liquid so rapidly that
the atoms have no time to nucleate in a crystal, resulting in a dynamically
arrested structure, which has solid-like features but which retains a liquid-
like order. [57, 58]. Macroscopically the glass transition is associated with
a strongly increased viscosity due to rapidly slowing down of microscopic
dynamics[59]. In a variety of molecular or polymeric glass formers, the tran-
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Figure 1.4: (a) A two-dimensional packing of a bidisperse mixture of disks, the re-
sulting force-bearing network is shown in red, adaptedwith permission from[24]. (b)
An emerging shearmodulus just after the jamming transition, reprintedwith permis-
sion from [47], copyright 2003 by the American Physical Society. (c) The jamming
phase-diagram proposed by Liu et al., increased temperature and applied stress will
move the jamming point to higher volume fractions, adapted with permission from
[15]. (d) Increasing relaxation times hallmark the glass transition, reprintedwith per-
mission from [56], copyright 1998 by the American Physical Society.

sition from freely flowing fluid to solid-like glass is induced by lowering
the temperature. Colloidal systems show an equivalent change in proper-
ties upon increasing the particle volume fraction φ, which plays the role of
an effective inverse temperature in this case[60, 61, 62]. When these systems
approach a volume fraction φg ≈ 0.58 dynamics start to slow down and
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viscosity rises rapidly[Fig. 1.4(d)]. Above φg increasing the volume fraction
by a small amount leads to a viscosity increase of orders of magnitude[63,
56]. Similarly to jammed systems, glasses resist shear deformation, which
gives them a finite shear modulus[64]. These similarities lead to the ques-
tion whether the glass transition and the jamming transition are separate
phenomena[54].

Jammed systems at their isostatic point, or glasses close to their transi-
tion point, often exhibit the features of marginality; very small changes in
the control parameter lead to very large changes in material properties[24].
Combined with their disordered nature this marginality makes jammed sys-
tems and their force bearing networks very similar to the fiber networks dis-
cussed earlier. In fact porous materials such as fiber networks show force
networks that are similar to granular systems[65]. Because glasses generally
contain much smaller particles that are influenced by thermal fluctuations,
different behaviour from jammed systems will only occur in regimes where
thermal fluctuations can be dominant; the ultra weak limit. Therefore, to
elucidate the distinction between jamming and the glass transition, colloidal
systems extremely close to the critical volume fraction need to be studied.
Similar to fiber networks, non-affine deformations dominate in this regime,
making modeling extremely challenging[66]. Experimentally studying these
systems is also difficult as current methods do not have the resolution to ac-
curately measure such low elastic moduli and thermal fluctuations maymask
any signal of rigidity. In chapter 2 we open up a new way to get past the ther-
mal fluctuations andmechanically characterize extremely soft solids near the
glass transition.

Composite soft materials

Composite materials are a class of materials with unique mechanical proper-
ties that consist of a combination of traditional materials[67]. Among these
materials are for example glass- or carbon fiber reinforced plastics, reinforced
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concrete and Glare, a composite of fused layers of glass and aluminum[68,
69, 70]. These materials often have an enhanced mechanical stiffness that
is larger than the sum of the stiffness of the individual components. Rein-
forced concreted for example derives this synergistic enhanced stiffness to
the fact that in reinforced concrete the steel supports all extensional stress
and the concrete supports all compressional stress. As concrete would easily
fracture under large extensional stress and a steel wire network would easily
buckle under compressional stress the composite ensures the individual com-
ponents are loaded such that they support the type of load for which they are
the strongest, leading to overall enhanced stiffness[69]. Most real-world soft
materials are composite materials. Foodstuffs and cosmetics often consist of
vast ranges of different ingredients that have complex interactions to give a
product unique properties[74]. Also skin consists of multiple, intertwined,
networks of various protein fibers[6, 10]. Inspired by this example, several
model hybrid polymer networks have been developed experimentally[Fig.
1.5(a)]These materials show, similar to reinforced concrete, significant me-
chanical enhancement of sometimes orders of magnitude[Fig.1.5(b)][72, 75].
However in contrast to reinforced concrete, these materials have a vastly dif-
ferent microstructure and a much larger contribution of entropic forces and
non-affine deformations which will make the underlying mechanics greatly
different for soft materials[76, 77, 78, 79, 80]. In chapter 4 we present an
in silico model for studying the mechanisms underlying this mechanical en-
hancement in dilute fiber networks. We find different mechanisms for dif-
ferent mechanical regimes and critical behavior when transitioning form one
regime to the other, which introduces a new verge of hyperstiffness.

As polymer networks have mesh sizes of several nanometers, studying
these microscopic mechanisms experimentally is extremely difficult. To over-
come this barrier and to study themechanical interactions between the fibers
of each component, the mesh and fiber size have to be enlarged. This could
be achieved by studying hybrid colloidal gels[Fig. 1.5(c) ][73]. These are net-
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Figure 1.5: (a) Schematic of a double polymer network. The blue network is chem-
ically cross-linked whereas the red network is entangled only. From [71]. Reprinted
with permission from AAAS. (b) The stiffness of a double networks is greatly in-
creased with respect to their individual components, reprinted with permission
from[72]. (c) Confocal image of a hybrid colloidal gel that is assembled with highly
specific DNA interactions[73].

works of colloidal particles with a highly specific interaction. This interac-
tion is generally difficult to achieve and has only successfully been demon-
strated by using DNA[81, 82]. In Chapter 5 we take the first steps towards a
facile assembly of such a hybrid colloidal network by bringing highly versa-
tile azide click chemistry for easy surface modification to tunable polymeric
particles[83].
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Table 1.1: Overview of common bonds in soft materials[32]

Type Bond Energy,∆E

Covalent 3 ·102 kBT
Ionic 1-3 ·102 kBT
Van der Waals interaction 3-10 kBT

Hydrogen bonds 20 kBT

Hydrophobic interactions 1-5 kBT

Depletion interaction 1-20 kBT

Non-linear irreversible mechanics: Strength

In the previous section we have only considered reversible mechanics; after
deforming a material it behaves and looks exactly the same as before defor-
mation. However we experience daily that is often not the case: yogurt is not
the same after scooping some out of the jar for breakfast, after tearing a wrap
from a candy bar it does not automatically glue itself back together and after
crushing a soda can it does not inflate itself back. When amaterial is deformed
too much, it does not return to its original shape. This is called plastic defor-
mation and is characterized by energy dissipation, e.g. the rupture of bonds
and a permanent shape change[84]. These irreversible transformations are
often referred to as nonlinear mechanics. However to avoid confusion with
the reversible nonlinear mechanics of marginal fiber networks we will use
the term irreversible mechanics in this section.

Molecular materials are held together by interactions on the molecular
scale such as covalent and ionic bonds, van der waals interactions and hy-
drophobic interactions[32][Table 1.1]. Many of these bonds have a fundamen-
tal origin. Covalent bonds result from the sharing electrons between atoms to
complete their electron shells. Ionic and hydrogen bonds result from funda-
mental electrostatic interactions and van der waals interactions are induced
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by the dipoles of the interacting molecules. In addition to these interactions
many emergent or entropic forces such as the hydrophobic interaction exist.

Hydrophobic interactions play a crucial role in biological and non-bio-
logical systems at themolecular scale[85]. Watermolecules on a hydrophobic-
hydrophilic interface have less degrees of freedom than water molecules in
bulk. This causes a decrease of entropy and an overall increase of free energy
near a hydrophobic-hydrophilic interface. Reducing this interface would re-
duce the number of restrictedwatermolecules and therefore reduce the over-
all free energy in the system. When applying this to two large hydrophobic
molecules it is favorable for these molecules to stay close to reduce the total
hydrophobic-hydrophilic interface in the system. This leads to an effective in-
teraction between the hydrophobic molecules, that is crucial in for example
protein folding, maintaining membrane integrity and micelle formation[86,
87].

Molecular interactions also manifest themselves on the larger colloidal
scale. Van der Waals interactions induce colloidal particle attraction on a
short range whereas equally charged particles repel each other on a longer
range. These interactions can be tuned with salt concentration in the sus-
pending liquid and are, together with the van der Waals interactions, de-
scribed by the DLVO theory[88, 89]. Also entropic forces can be observed on
the colloidal scale [90]. Here polymer molecules induce an effective interac-
tion between colloidal particles. On the solid-liquid interface of the particles,
in the depletion zone, polymers have less degrees of freedom than in bulk.
Minimizing the depletion zone by making the depletion zones of multiple
particles overlap reduces the amount of restricted polymers and decreases
the overall free energy. More examples of entropic forces include the elastic
behavior of a polymer chain and, more controversially, gravity has been pro-
posed to be an entropic force as well[91, 92]. Entropic forces are crucial to
softmatter systems, whichmakes softmaterials fundamentally different from
classicalmaterials such asmetals and concretewhere enthalpy dominates[93].
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All bonds between colloids and molecules can break. Without mechani-
cal force this occurs depending on the binding energy∆E and themagnitude
of the thermal fluctuations. The entropic bonds often found in soft materi-
als are weak and highly reversible with bonding energies that do not exceed
several kBT . This highlights the importance of entropy and thermal fluctu-
ations that make bond-dissociation a relevant procces, which can cause irre-
versible change. Even without external mechanical stimuli this leads to com-
plexmechanics[94, 95, 96]. The bond dissociation rate does not solely depend
on the binding energy but also on bonding geometry, such as the valency Z
of the bond; dissociating multiple bonds together is exponentially slower as
τB ∝ eZ·∆E/kBT . This makes the internal dynamics for ultra weakmaterials
intimately lined to their structure and, especially for heterogeneous materi-
als, highly complex. In chapter 6 we elucidate this intimate relation and show
that these complex dynamics can be predicted based exclusively on structural
information.

Mechanical failure

In extreme cases, a material under strain will not only deform permanently
but it will also fracture[97]. Here, at a critical fracture stress, a solid is sep-
arated in two or more pieces and loses a significant part of its load bearing
capability. A material can fail in a brittle or ductile fashion[Fig. 1.6(a,b)][19].
Brittle fracture happens almost instantly with no plastic deformation pre-
empting the failure, much like window glass. Ductile fracture is a much slow-
er process that is characterizedwith thematerial plastically deforming before
ultimately fracturing, much like stretching bubble gum. Whether a mate-
rial fractures in a brittle or ductile manner is governed by how much elas-
tic energy can be dissipated in the material itself rather than forming new
surface area. The creation of new surface area is often preferred in brittle
materials with low internal dynamics where strong bonds such as covalent
and ionic bonds are broken and not easily reformed. When bonds are softer
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or more delocalized like metallic bonds, plastic deformation is more likely
to dissipate mechanical energy before ultimate failure resulting in a ductile
fracture process[Fig. 1.6(d)]. The extreme limit where all energy is dissipated
through plastic deformation is called yielding. Here the solid flows like a liq-
uid during the failure process until the internal bonds are restored upon stress
relief[Fig.1.6(c)]. The critical stress at which we observe yielding is called
the yield stress. In soft materials the full spectrum of mechanical failure can
be found, from brittle fracture in hydrogels, ductile fracture in rubbers and
yielding in jammed emulsions like mayonnaise[98, 99, 100, 101].

The process of fracture is governed by crack nucleation. In a similar way
as occurs for rain drop nucleation in a cloud, crack nucleation is facilitated
by the existence of nucleation sites, or defects, in the material structure[103].
This makes fracture and the critical fracture stress greatly dependent on the
structure of thematerial and extremely complex in disorderedmaterials[104].
Once a crack has nucleated it propagates with a crack tip. In this tip bonds
are actually broken and dynamics are highly non-linear. For materials that
approach the rigidity transition this region expands up to a point where a
major part of thematerial can be considered the crack tip with accompanying
non-linearities[105]. Thismakes fracture in softmaterials extremely complex
and highly unpredictable. In chapter 9 we investigate how machine learning
methods can assist in predicting fracture and identify structural parameters
that govern fracture in these weak disordered materials.

Even whenmaterials are deformed below their critical fracture stress but
repeatedly, they can still build up damage that ultimately lead to mechani-
cal failure[Fig. 1.6][19]. This is a phenomenon known as mechanical fatigue
and in practice is the most ubiquitous threat to material lifetime. For met-
als and concrete this process has been studied intensively as the lifespan of
most buildings depends on the integrity of these materials[106, 107]. As a re-
sult the fatigue mechanisms for concrete and metals are quite well known.
Upon repeated deformation, microcracks, often invisible to the naked eye,
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Figure 1.6: (a) Example of brittle fracture as a result of extensional strain.
©Sigmund419 / CC BY-SA 3.0 (via Wikimedia Commons) (b) Ductile failure of an
aluminum rod. Plastic deformation preempting the failure caused thinning at the
fracture location, a neck. ©Sigmund419 / CC BY-SA 3.0 (via Wikimedia Com-
mons)(c) Spreading of butter is entirely plastic and therefore a typical example of
yielding. (d) Stress- strain curves for brittle and ductile failure. ©Amgreen / CC BY-
SA 3.0 (via Wikimedia Commons) (e) Collagen fiber networks progressively weaken
when strain cycles are applied repeatedly[102].

accumulate and progressively weaken the material up to the point that the
critical fracture stress is lowered and catastrophic failure is inevitable. For
soft materials fatigue is much less understood. Fiber networks are known
to progressively weaken as well, however muscles tend to strengthen when
using them often[Fig. 1.6][102, 108]. As soft materials are much more dy-
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namic and have a highly heterogeneous structure, fatigue mechanisms can be
extremely complex. In chapter 7 we study fatigue mechanisms in weak and
disordered solids and show how progressive weakening is related to highly
localized dynamics.

Kinetically arrested solids

Whereas ordered solids generally derive their solidity from a thermodynamic
equilibrium,many disorderedmaterials derive their stability fromamereme-
chanical equilibrium[113, 114, 57]. This mechanical equilibrium arises from
a kinetic arrest on the way to thermodynamic equilibrium[112]. A prototyp-
ical example of these kinetically arrested solids are colloidal gels[18]. These
are rigid networks of mesoscopic strands of attractive colloidal particles[115,
116]. When inter-particle attraction and volume fraction are sufficiently high
these particles cluster and eventually form a sample spanning cluster[Fig. 1.7
(a-d)][117]. This cluster is above the isostatic limit which provides rigidity
and mechanical equilibrium. In order to reach the thermodynamic equilib-
rium state and minimize the free energy in the system the systemwould have
to progress to an attractive crystalline sample. However during the aggre-
gation of the particles, induced by the attractive interactions, the system not
only crossed the colloidal glass transition line, but simultaneously forms a
percolated network structure. The combination of these two effects leads
to a kinetically-arrested solid-like material in which a complex network mi-
crostructure provides rigidity. For soft materials that are closer to the verge
of collapse, where interactions are much weaker and thermal fluctuations
more dominant, kinetically arrested systems still have residual dynamics[118,
95, 119, 95]. These dynamics give colloidal gels the unique property that ir-
reversible deformations towards the equilibrium state already occur at the
smallest strains and sometimes evenwithout external stimuli[120]. Thismak-
es them exemplaric for materials with vanishing strength.

Kinetically trapped colloidal gels can generally be reached via two mech-
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Figure 1.7: (a) Schematic gelation diagram, if volume fractionφ and attractionU are
high enough a colloidal gel will form. For low attraction strength but at high volume
fraction the systemwill enter a glassy state. (b) Electronmicrograph of aggrated gold
nanoparticles, a prototypical example of a hard colloidal gel, reprinted with permis-
sion from [109], copyright 1984 by the American Physical Society. (c) Confocal image
of a colloidal depletion gel, an example of a soft colloidal gel. Reprinted with permis-
sion from [110]. Copyright 2014, The Society of Rheology. (d) Simulation snapshot
of a soft colloidal gel. Reprinted with permission from [111]. Copyright 2014, The
Society of Rheology. (e) Similar to the glass transition the viscosity of the bulk rises
preempting gelation and an elastic modulus emerges after gelation, adapted by per-
mission from Springer Nature, Nature [112], copyright 2001. (f) Van Hove functions
for soft colloidal gels with different depletant concentrations. As attraction strength
increases the van Hove function becomes more and more non-Gaussian highlight-
ing strong heterogeneous dynamics, reprinted with permission from [95], copyright
2006 by the American Physical Society.
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anisms: (i) Diffusion Limited Cluster Aggregation (DLCA) or (ii) spinodal de-
composition. Depending on the strength of the inter-particle attraction these
routes lead to strong or soft colloidal gels respectively[109]. When inter-
particle attraction is so strong that particles are improbable to escape once
aggregated, particles bind irreversibly upon collision and clusters are rapidly
formed without rearrangement[121]. These clusters also aggregate upon col-
lision ultimately leading to a fractal sample spanning network[Fig. 1.7(b)].
Because particles in these strong colloidal gels have little opportunity to re-
arrange, strands in these gels remain thin and highly branched[122]. When
inter-particle attraction is weak enough to allow for rearrangements during
the aggregation process, an entirely different mechanism preludes the ki-
netic arrest[18]. This mechanism is called spinodal decomposition and origi-
nates from the theory for phase separation where concentration fluctuations
of each phase rapidly grow until one domain for each phase remains[123].
Soft colloidal gels gel by demixing in a particle-rich and a solvent-rich phase.
When the particle rich phase becomes large enough to form a rigid and sam-
ple spanning network, kinetic entrapment is reached and demixing is rapidly
slowed down. As during the growth of the particle rich clusters the particles
can still rearrange, a state closer to the equilibrium state can be reached. This
process causes the strands in soft colloidal gels to be much thicker than for
gels formed with DLCA[Fig. 1.7(c,d)][110]. Especially colloidal gels formed
by spinodal decomposition are extremely weak and soft and are on the verge
according to the two criteria defined earlier. These gels are so weak that ther-
mal fluctuations are sufficient to push the system out of mechanical equilib-
rium and further towards the thermodynamic equilibrium in a process that
is known as aging[96]. In extreme cases ageing builds up sufficient internal
tension to make the entire gel collapse[20, 21].

Similar to the colloidal glass transition, the dynamics in colloidal gels
rapidly slow down upon reaching the percolation threshold. Also a shear
modulus rapidly arises after this point[Fig. 1.7 (e)]. This makes the colloidal
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gel transition related to the colloidal glass transition, as colloidal glasses and
colloidal gels can both be regarded as kinetically arrested solids[124]. There
are however some distinct differences. Unlike for the glass transition, the
structure of a colloidal gel is different from that of a liquid structure. The
structure for colloidal gels are network-like and show a clear load bearing
network which makes it in theory possible to define the gel transition from
structural data, whereas in colloidal glasses such a network can only be de-
rived from the dynamics[125]. Both colloidal glasses and colloidal gels exhibit
heterogeneous dynamics[Fig. 1.7 (f)]. For colloidal gels these heterogeneous
dynamics have a much larger range than for colloidal glasses; particles can
be completely stuck and hardly move or particles can be unbound and freely
diffusing[126]. In chapter 6 we account for this great range and link these to
the inherent heterogeneous structure of colloidal gels.

Colloidal gels often do not immediately collapse upon external deforma-
tion. This is a phenomenon know as delayed yielding and has been attributed
to the brittle rupture of the mesoscopic strands of particles[127, 128]. Un-
der an external strain, the bond-life time is decreased exponentially, τB ∝
e−F ·δ/kBT where δ is a microscopic lengscale. At sufficient external stress,
bonds are broken faster than they can reformwhich ultimately leads to a bro-
ken strand and brittle fracture of the network as a whole. This picture how-
ever overlooks the inherent dynamics and plasticity occurring in colloidal
gels, even at rest. In chapter 7 we show that these processes do play an role
important role in the mechanical failure of colloidal gels in fatigue.

Outline

The aim of this thesis is to explore themechanics of hypersoft and hyperweak
systems in terms of their underlying strcuture and dynamics. Here we pro-
vide a short summary for each chapter and explain how they contribute to
the general aim of the thesis.
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In chapter 2 we study mechanical wave propagation in ultra soft solids.
Mechanical waves are intimately linked to the mechanical properties of their
medium. We show how these waves can be generated and detected despite
abundant thermal fluctuations. Furthermore we develop an analytical theory
that allows us to interpret these waves in terms of mechanical properties,
directly linking the dynamics to the mechanics in these materials.

In chapter 3 we give a technical overview of the optical tweezers instru-
ment used for generation and detection of the waves in chapter 2. Further-
more we present a calibration method that allows for a more constant force
generation.

In chapter 4 we explore the different mechanical regimes of composite
fiber networks. We showhowmechanical enhancement arises by suppressing
non affine deformations in a dilute fiber network with a secondary elastic
network.

In chapter 5 we present a synthesis method for simple surface modifica-
tion of particles. The synthesis allows for precise control of the surface con-
centration of the attached molecules and paves the way for hybrid colloidal
networks that can provide experimental access to the mechanisms studied in
chapter 4.

In chapter 6 we study the dynamics of hyperweak colloidal gels. We show
how these heterogeneous dynamics are intimately coupled to the heteroge-
neous structure. Furthermore we provide a transition state theory that is
capable of predicting the dynamics, based solely on structural input which
directly links the structure to dynamic in hyperweak solids.

In chapter 7 we apply the results of chapter 6 to hyperweak solids under
repeated external strain. We show how a new mechanism of plastic defor-
mation weakens the mesoscopic strands gradually, leading to weakening and
mechanical failure. This mechanism provides the link of dynamics in hyper-
weak materials to their corresponding failure mechanics.

In chapter 8 we describe the synthesis of a new experimental system that
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allows for studying the effect of mechanical surface properties on the result-
ing dynamics and mechanics. We show that increasing the grating density on
the particle surface leads to rotational hindrance and mechanical stiffening.

In chapter 9 we explore how machine learning methods can be applied
to predict failure in dilute and disordered fiber networks. We also show how
structural parameters crucial to the failure process can be identified and aid
our understanding of fracture in dilute networks. This chapter provides a di-
rect link of structure to the resulting fracture mechanics in hyperweak solids

In the last chapter, the general discussion, we look back on our findings
and discuss how our findings can be placed in a more general context. Fur-
thermore we provide an outlook on how our results can be used to provide
more links that can lead to a more integral understanding of hypersoft and
hyperweak solids.
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CHAPTER 2

Elastic wave propagation in ultrasoft over-
damped solids

The propagation of elastic waves in soft materials plays a crucial
role in the spatio-temporal transmission of mechanical signals, e.g.
in biologicalmechanotransduction[15, 16] or in the failure ofmarg-
inal solids[24, 10, 5, 9]. At high Reynolds numbers Re � 1, inertia
dominates and wave propagation can be readily observed[6, 12, 19].
However, mechanical cues in soft and biological materials often oc-
cur at low Re [7], where waves are overdamped. Not only have low
Re waves been difficult to observe in experiments, their theoreti-
cal description remains incomplete. In this paper, we present direct
measurements of low Re waves propagating in ordered and disor-
dered soft solids, generated by an oscillating point force induced
by an optical trap. We derive an analytical theory for low Re wave
propagation, which is in excellent agreementwith the experiments.
Our results present both a newmethod to characterizewave propa-
gation in soft solids and a theoretical framework tounderstandhow
localized mechanical signals can provoke a remote and delayed re-
sponse.

This chapter was submitted as:
J.M. van Doorn, R. Higler, R. Fokkink, R. Wegh,A. Zaccone, J. Sprakel and J.
van der Gucht: Infrasonic wave propagation in ultrasoft solids at low Reynolds
numbers
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The spatiotemporal response to mechanical perturbations is one of the
key factors that determines the fate of soft materials[4, 11]. For example,
in marginally-stable systems, such as jammed packings or fiber networks, a
stress at the right position can cause total loss of rigidity[24, 10, 5, 9]. Also
in living cells, the propagation of mechanical signals through soft structures
is crucial in mechanotransduction[15, 16], and controls, for example, cell dif-
ferentiation[8]. Elastic wave propagation is a prototypic example of how a
localised mechanical signal can spread in space and time, and is intimately
linked to the mechanical properties of the medium[2]. However, it is gov-
erned by more complex mechanisms than the simple sum of elastic and vis-
cous responses [23]. The complex viscoelastic response of soft materials be-
comes particularly apparent uponmechanical excitation at Deborah numbers
De = ωτ ≈ 1, where ω is the excitation frequency and τ the intrinsic re-
laxation time of the solid[22]. Excitation at these low frequencies also im-
plies low Reynolds numbers where viscous attenuation of the wave signal
is strong and their detection challenging. Moreover, in ultrasoft solids the
relative amplitudes of thermal fluctuations are large, thus further obscuring
accurate wave detection in experiments. In this Letter we show how Fourier
filtering can reveal even very weak propagating elastic waves at extremely
low Reynolds numbers, Re ∼ 10−6, in ultrasoft solids, formed from crys-
tals and glasses of colloids in two dimensions. We create a localized oscilla-
tory perturbation within these solids with an optical tweezer and use video
microscopy and frequency-domain filtering to quantify the spatiotemporal
strain response. On the basis of an overdamped equation of motion, which
is in excellent quantitative agreement with our experimental results, this en-
ables a full characterization of the linear mechanics of even very weak elastic
solids.

We prepare two-dimensional hexagonal crystals by sedimenting mono-
disperse silica particles with diameter d = 6.25µm suspended in an aqueous
solution. This yields dense crystals with long-ranged hexagonal order at a
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Figure 2.1: (a) Schematic overview of our experiment. (b) Raw experimental particle
trajectories in the direction of the driven particle (grey), colors correspond to the
particles in (a). (c) Amplitude spectrumof the driven particle, the red line corresponds
to the driving frequency. (d) Trajectories of (b) after line filtering. (e) Unfiltered root-
mean-square displacement and (f) Fourier-filtered amplitude map of particles in a
crystal excited at 3.1 rad/s; the color scale in (e) and (f) represents the amplitude in
µm, scale bars represent 40µm.

packing fraction of 0.89 (Appendix E). To create a propagating mechanical
wave, we trap a single particle of the crystal in an optical trap and force it
into an in-plane oscillatorymotionwith an amplitude of 2.5µm(Fig.2.1a). We
vary the frequency of this motion between 0.05 and 10 rad/s, corresponding
to 2 < De < 2 · 102 and Re ≈ 3·10−6 and confirm that this mechanical
excitation is well within the linear regime (Appendix B, D).
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The oscillating particle creates amechanicalwave that propagates through
the surrounding material. This sets up a net ballistic displacement of the par-
ticles adjacent to the oscillating bead. However, the signal of interest is con-
voluted with the inherent Brownian motion of these microscopic colloids.
Especially far away from the trapped colloid, where the elastic signal is at-
tenuated, it may drown in the Brownian noise (Fig.2.1b,e). Upon filtering the
positional trajectory of each particle in the frequency domain at the driving
frequency (Fig.2.1c), even small displacements due to the propagating wave
become apparent (Fig.2.1 d). To ensure statistical reliability of these data, we
set-up a real-time distributed particle tracking algorithm that allows us to
collect data during 20 000 – 35 000 frames, which is equivalent to 50–500
oscillation cycles. While the unfiltered mean-square displacement of the par-
ticles shows no apparent signature of the perturbation, except at the forced
particle (Fig.2.1 e), the Fourier-filtered amplitude map clearly shows a prop-
agating mechanical wave with an amplitude that decays steeply with increas-
ing distance from the trapped bead (Fig.2.1 f) and a phase shift that gradually
increases with distance (Fig.2.1 d).

To explain these results we assume that the colloidal crystal can be treated
as a two-dimensional continuous elastic material. We write an equation of
motion for the displacement field �u in the solid [18] to which we add a dis-
sipative term to account for the damping fluid and an oscillating point force
�f(t) = �f0 · eiωt that represents the perturbation:

ρ
∂2�u

∂t2
+ γ

∂�u

∂t
= �f(t) +

E

2(1 + ν)
�∇2�u+

E

2(1− ν)
�∇(�∇ · �u) (2.1)

Here the first term describes the inertial forces with ρ the density of the 2D
material. The second term represents the viscous damping due to the solvent
with γ the drag coefficient per unit area, which we determine experimentally
to be γ = 2.9 · 103 Ns/m3 (Appendix D). The last two terms correspond to
the Navier-Cauchy equation that describes the elastic forces within the 2D
solid with E the 2D elastic modulus and ν the Poisson ratio.
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Since our experiments are performed at low Reynolds number, the iner-
tial term is negligible, resulting in overdamped mechanics. Solving the equa-
tion ofmotion for this case yields the displacement field in the form �u = α· �f
with α the complex response function, which has components α‖ and α⊥

that describe the components of the displacement field parallel and perpen-
dicular to the applied force, respectively. In polar coordinates, with r the
distance from the point where the force is applied and θ = 0 corresponding
to the direction of the force, this becomes (see Appendix A for full details):

α‖(r, θ) =
1− ν2

4πE

(
K0

(r√i

ζ

)
+ λ2K0

(r√i

λζ

)
+

cos (2θ)

[
K2

(r√i

ζ

)
− λ2K2

(r√i

λζ

)])
(2.2)

and

α⊥(r, θ) =
1− ν2

4πE
sin(2θ)

[
K2

(r√i

ζ

)
)− λ2K2

(r√i

λζ

)]
(2.3)

whereK0 andK2 denote modified Bessel functions of the second kind, ζ =

(ωγ(1−ν2)/E)−
1
2 is a characteristic attenuation length of the displacement

amplitude, and λ =
√

2/(1− ν) is a parameter that depends only on the
Poisson ratio and diverges for ν → 1 which is the maximum Poisson ratio
in 2D. The amplitude and the phase of the displacement fields are obtained
as the magnitude and the argument, respectively, of the complex response
functions.

To compare our experimental results with this prediction, we decompose
the measured displacement amplitudes into their parallel and perpendicular
components (Fig. 2.2a and e). This results in distinct lobed patterns for these
two components that can be observed in all of our experiments. Our theo-
retical prediction produces identical patterns that are in excellent agreement,
indicating that wave propagation in these colloidal crystals can indeed be de-
scribed by treating the material as a continuous 2D elastic solid (Fig. 2.2b and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4141



CHAPTER 2: Elastic wave propagation in ultrasoft overdamped solids
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2: (a) Experimental amplitude map of the parallel displacement. (b) Paral-
lel displacement amplitude predicted by our model. (c) Experimental phase shift for
the parallel displacement. (d) Phase shift of parallel displacement predicted by our
model.(e) Experimental map of perpendicular displacement. (f) Perpendicular dis-
placement amplitude predicted by our model. (g) Experimental phase shift for the
perpendicular displacement.(h) Phase shift of perpendicular displacement predicted
by our model. Amplitudes and phases have units micron and radians respectively,
scalebars represent 40µm, the red arrow indicates the oscillation direction.

f). The parallel component of the displacement response propagates prefer-
entially along the excitation axis and shows a distinct asymmetry in the atten-
uation length along the two primary axes. The perpendicular displacement
shows a four-lobed pattern, with maximum displacements at an angle of 45◦

with respect to the excitation direction. Also in the phase maps (Fig.2.2c,d),
we observe patterns that are in excellent agreement with the theoretical pre-
diction (Fig.2.2g,h).

We can now use our theoretical analysis to interpret the experimental
results in terms of the linear elasticity of the solid. For this, we consider the
parallel displacement component in the direction of the excitation, θ = 0.
An asymptotic expansion of Equation 2.2 for relatively large distances from
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Figure 2.3: (a) Bin-averaged phase of the parallel displacement in the direction of
the excitation for ω = 0.52 rad/s . Inset shows the phase velocity versus probed
frequency; dashed line depicts slope 1

2 , errorbars depict a 95% confidence interval.
(b) Elastic modulus as a function of frequency, obtained from the phase (blue) and
amplitude (blue) of the parallel displacement components; errorbars depict a 95%
confidence interval and dashed line indicates affine prediction. (c) Superposition of
parallel displacement amplitude for different frequencies along θ = 0 (blue) and
θ = π/2 (red) versus normalized distance. (d) Superposition of parallel displace-
ment phase for different frequencies along θ = 0 (blue) and θ = π/2 (red) versus
normalized distance. Lines in c and d represent the theoretical predictions.

the perturbation r > ζ (see Appendix A) leads to a phase lag in the far field

φ‖(r, 0) ≈ −π

8
− r

ζ
√
2

(2.4)

and an amplitude
A‖(r, 0) ∼ r−1/2e−r/ζ

√
2 (2.5)

According to Equation 2.4, the phase varies linearlywith r along θ = 0, which
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is indeed what we find experimentally (Fig. 2.3a). This means that the wave
propagates at a constant velocity in the direction of the excitation, with a
phase velocity v‖ = |ω(dφ‖/dr)

−1| ≈ ωζ
√
2 =

√
2Eω/γ(1− ν)2. As

shown in the inset of Fig. 2.3a, the phase velocity increases approximately
as v‖ ∼ √

ω for low frequencies, which indicates that the elastic modulus
and the Poisson ratio do not depend on the frequency in this regime. Using
Equations 2.4 and 2.5 we can determine the characteristic length ζ as a func-
tion of frequency in two independent ways. Taking a value of the Poisson
ratio ν = 0.5 (see below), we can then estimate the elastic modulus of the
colloidal crystal. Both the phase and amplitude data give moduli in the range
E ≈ 10−6 N/m (Fig. 2.3b). These values for E may be compared with a
simple estimate obtained by approximating the colloidal crystal as a hexag-
onal lattice of harmonic springs, for which E = 2k/

√
3 with k the spring

constant of a particle pair [3]. We estimate k by analyzing the thermal bond
length fluctuations (Appendix C) and find E ≈ 1 · 10−6 N/m in very good
agreement with the experimental values (dashed line in Fig. 2.3b).

We note that our method is limited at higher frequencies by the decrease
in the attenuation length with increasing frequency. Once the characteristic
length ζ becomes of the order of the particle size, discretization effects hinder
the accurate determination of the wave propagation. This gives a limiting
frequency ωmax ≈ E/γd2 ≈ 10 rad/s.

The linear elasticity of a two-dimensional solid is described by two in-
dependent mechanical parameters, the elastic modulus and the Poisson ratio.
While the modulus only affects the absolute magnitude of the response func-
tion and the characteristic length scale ζ , the shape of the spatial pattern is
uniquely determined by the Poisson ratio, as expressed by the parameter λ in
Equation 2.2 (SI Fig. 26). It should therefore be possible to superimpose the
measured displacement data obtained at different frequencies by normalizing
the distance r by the characteristic length ζ . Figure 2.3c and d show such a
collapse for the amplitude and the phase, respectively, of the parallel displace-
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Figure 2.4: Experimental maps of (a) parallel displacement amplitude, (b) parallel
displacement phase, (c) perpendicular displacement amplitude, and (d) perpendicu-
lar displacement phase of 2D colloidal glasses excited at ω = 0.52 rad/s. Amplitudes
and phases have units micron and radians respectively, scalebars represent 20µm.
(e) Superposition of parallel displacement amplitude of colloidal glasses for different
frequencies along θ = 0 (blue) and θ = π/2 (red) versus normalized distance, to-
getherwith theoretical prediction. (g) Bin-averaged phase-distance plot to determine
phase velocity for ω = 0.52 rad/s in the parallel direction.

ment components in the direction of the excitation (θ = 0) and perpendicular
to it (θ = π/2). We fit these curves to equation 2.2, using λ =

√
2/(1− ν)

as the only fit parameter, giving a value for the Poisson ratio ν = 0.5, com-
parable to values expected for crystalline solids in two dimensions [13, 21]. It
should be noted, however, that the profiles do not depend very sensitively on
ν , so that our determination of the Poisson ratio is not very precise. As a final
consistency check, we use the measured Youngs modulus and Poission ratio
to predict the absolute values of the response functions, which now provide
a reasonable quantitative match with the experimental results [Fig. 2.2 a-i].
This highlights that our theoretical description captures themain phenomena
in a quantitative fashion.
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Finally, to emphasize that our approach is not exclusive to ordered, crys-
talline, solids, we repeat the experiments described above for a disordered
colloidal glass that lacks long-ranged order[26, 14]. We prepare monolayers
of a bi-disperse mixture (d=6.25 and 3.75 µm) of silica spheres by sedimenta-
tion. We confirm the absence of structural order from the liquid-like shape of
the pair-correlation function and structure factor, while the particle dynam-
ics are strongly arrested and caged as evidenced from their mean-squared
displacement in the absence of external mechanical excitation (Appendix F).
Despite the very different microstructure, we find that the displacement am-
plitude and phase patterns are very similar to those observed for the crystals
(Fig.2.4 a-d). The same analysis (Fig. 2.4e,f) as for the crystals gives a Pois-
son ratio on the order of 0.5 and an elastic modulus on the order of 2 · 10−7

N/m for the glasses. This is roughly a factor of three lower than for the crys-
tals, which we attribute to non-affine softening due to the amorphous na-
ture of glass[27]. This highlights that the observation of mechanical waves
at low Re open up the way for mechanical characterization of both ordered
and disordered ultra-weak solids where conventional approaches fail. From
Fig. 2.4a-d it is also clear that the wave patterns are noisier for the glasses
than for the crystals, which is probably due to their inhomogeneous structure,
and therefore also inhomogeneousmechanical properties. This clearly shows
how elastic wave propagation is affected by the structure of the medium. We
note that this is not yet captured by the theory, which assumes a homoge-
neous elasticity.

Traditionally, microrheology is the method of choice to characterize the
visco-elasticity of very weak elastic materials whose moduli are below the
detection limit of conventional macroscopic rheometers. In microrheology,
the visco-elastic features of the material are extracted from the motion of
either actively-driven or thermally-excited (passive) tracer particles embed-
ded in the material [20, 17]. This analysis is based on the assumption that
the generalized Stokes-Einstein relation holds, which is only the case when
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the characteristic length scale of the material is much smaller than the probe
particles. In particular for very inhomogeneous soft solids, this condition is
often not met. As our approach is not bound by these limitations, the study of
mechanical wave propagation at lowRe provides experimental access to the
mechanical properties of extremely weak and strongly heterogeneous sys-
tems, such as marginal solids close to a mechanical critical point [25, 5].

In this paper we have shown how propagating elastic waves can be gen-
erated and detected at low Re in ultrasoft solids, both ordered and disor-
dered. Moreover, we have proposed an analytical model to describe and in-
terpret the wave propagation, which is in excellent quantitative agreement
with our experimental results. On the basis of this theory, a measurement
of the wave’s phase velocity and decay length gives access to the full linear
elasticity of the material, giving values in excellent agreement with lattice
theory predictions. In principle, our approach can be extended to probe the
mechanics of ultrasoft three-dimensional materials such a biopolymer net-
works, where the Fourier-filtered elastic displacements can be obtained e.g.
by embedding tracer particles in the material or by using digital image cor-
relation approaches. This could open the way to characterize how localised
mechanical signals acting on biological structures give rise to the complex
spatio-temporal response that underlies mechanical communication in liv-
ing organisms and on the role of local structures on the response of marginal
networks.

Materials and Methods

Weuse a home-built optical tweezers setup equippedwith a high-power 1064
nm laser and a water-immersion objective (Nikon, CFI Plan Apo IR SR 60X
WI, NA=1.27). Oscillation of the optical trap is achieved by beam steering
with Acoustic Optical Deflectors (AODs). The intensity of the deflected beam
deviates with position and therefore influences the trapping force. We mea-
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sure this effect and correct for it by modulating the intensity of the beam
that is transmitted through the AODs. A full description of this calibration
togetherwith an in-depth overview of our optical setup can be found in chap-
ter 3. We prepare our 2D colloidal solids by sedimenting monodisperse silica
particles (microParticles GmbH) with d = 6.25µm and d = 3.75µm dis-
persed in a 10 mM TAPS buffer at pH = 8.5. After equilibrating the samples
for 48h for crystals and 96h for glasses we start an experiment by trapping the
particle in the center of the field of view. We apply an oscillating point force
by oscillating the trapped bead with the optical trap. The resulting response
of the surrounding material is quantified by imaging the colloidal solid with
bright-field microscopy and recovering the particle trajectories using estab-
lished routines. We measure with a frame rate of 5 Hz for at least 20 000
frames. We locate particles in real-time during the experiment to improve
data size manageability. To this end, we combine existing locating algorithms
with a distributed messaging protocol ZMQ[1]. This approach enables to
distribute the computational load of particle locating over several comput-
ers, enabling real-time acquisition of the experimental particle positions in
time[15, 16, 8].
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Appendix A: Theory

We apply a point deformation to a 2D material with a force �f(t) = �f0 · eiωt
which gives the equation of motion

ρ
∂2�u

∂t2
+ γ

∂�u

∂t︸︷︷︸
Viscous drag

= �f +

Navier-Cauchy︷ ︸︸ ︷
µ�∇2�u+ (λ+ µ)�∇(�∇ · �u)) (2.6)

with γ the friction coefficient per unit volume and µ, λ the 2D Lamé coeffi-
cients

µ =
E

2(1 + ν)
(2.7)

and
λ =

νE

(1 + ν)(1− 2ν)
=

2νµ

1− ν
(2.8)

whereE and ν are the 2DYoungsmodulus and the Poisson ratio, respectively.
Equation 2.6 yields a solution for the resulting displacement �u(t) = �u · eiωt
with �u complex if there is a phase-shift with respect to the imposed force
�f(t). Fourier transforming the time-dependend part of equation 2.6 gives

−ρω2�u+ iωγ�u = µ∇2�u+ (λ+ µ)∇(∇ · �u) + f0 (2.9)

or
µ∇2�u+ (λ+ µ)∇(∇ · �u) + f0 +A�u = 0 (2.10)

withA = ρω2 − iωγ. Writing in components gives
[
µ
[∂2ux
∂x2

+
∂2ux
∂y2

]
+(λ+µ)

∂

∂x

[∂ux
∂x

+
∂uy
∂y

]]
+Aux+ fx0 = 0 (2.11)

and
[
µ
[∂2uy
∂x2

+
∂2uy
∂y2

]
+ (λ+µ)

∂

∂y

[∂ux
∂x

+
∂uy
∂y

]]
+Auy + fy0 = 0 (2.12)

Fourier transforming the spatially dependent part yields

µ[−k2xũx − k2yũx] + (λ+ µ)[−k2xũx − kxkyũy] +Aũx + ˜fx0 = 0 (2.13)
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and

µ[−k2xũy − k2yũy] + (λ+ µ)[−kxkyũx − k2yũy] +Aũy + ˜fy0 = 0 (2.14)

Assuming overdamped mechanics A = ρω2 − iωγ ≈ −iωγ and rewriting
gives

µ
[
�k2ũx +

1 + ν

1− ν
k2xũx +

iωγ

µ
ũx +

1 + ν

1− ν
kxkyũy

]
= fx (2.15)

and

µ
[
�k2ũy +

1 + ν

1− ν
k2xũy +

iωγ

µ
ũy +

1 + ν

1− ν
kxkyũx

]
= fy (2.16)

which corresponds to

�f = µ

(
�k2 + 1+ν

1−ν k
2
x +

iωγ
µ kxky

1+ν
1−ν

kxky
1+ν
1−ν

�k2 + 1+ν
1−ν k

2
y +

iωγ
µ

)
�̃u (2.17)

Inverting gives

�̃u =
1

µ(�k2 + iωγ
µ )( 2

1−v
�k2 + iωγ

µ )

(
�k2 + 1+ν

1−ν k
2
y +

iωγ
µ −kxky

1+ν
1−ν

−kxky
1+ν
1−ν

�k2 + 1+ν
1−ν k

2
x +

iωγ
µ

)
�f

(2.18)
which has the form �̃u = α̃ �fδ(�r). The complex response function α is ob-
tained as the inverse Fourier transform and has a perpendicular component

α⊥ = F−1
[
− 1

µ

1 + ν

2

kxky

(k2 + iωγ
µ )(k2 + iωγ

µ · 1−ν
2 )

]
(2.19)

and a parallel component

α‖ =
1

µ
F−1

[ 1
2

1−ν · k2 + iωγ
µ

+
1+ν
1−ν · k2y

(k2 + iωγ
µ )( 2

1−ν k
2 + iωγ

µ )

]
(2.20)

where F−1 indicates the inverse Fourier transform,

F−1
[
X̃(�k)

]
=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
X̃ei

�k·�rdkxdky (2.21)
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The integrals can be evaluated by transforming to polar coordinates, which
leads to

α‖(r, θ) =
1− ν2

4πE

(
K0

(r√i

ζ

)
+ λ2K0

(r√i

λζ

)
+

cos (2θ)

[
K2

(r√i

ζ

)
− λ2K2

(r√i

λζ

)])
(2.22)

and

α⊥(r, θ) =
1− ν2

4πE
sin(2θ)

[
K2

(r√i

ζ

)
)− λ2K2

(r√i

λζ

)]
(2.23)

(equations 2 and 3 in the main text). HereK0 andK2 denote modified Bessel
functions of the second kind, ζ = (ωγ(1 − ν2)/E)−

1
2 is a characteristic

attenuation length of the displacement amplitude, and λ =
√
2/(1− ν) is a

parameter that depends only on the Poisson ratio.
For the parallel displacement in the direction θ = 0 we find from Equa-

tion 2.22

α‖(r, 0) =
1− ν2

4πE

(
K0

(r√i

ζ

)
+K2

(r√i

ζ

))
(2.24)

For large r � ζ this can be expanded by using the approximationKn(z) ≈√
π
2z e

−z . In our case z has the form a
√
i, with a = r/ζ , so for a � 1

Kn(a
√
i) ≈

√
π

2a
· i− 1

4 · e−a
√
i (2.25)

With i
1
4 = e−

πi
8 and

√
i = eiπ/4 = (1 + i)/

√
2 we obtain

Kn(a
√
i) ≈

√
π

2a
· e−

πi
8
− 1√

2
·a·(1+i)

=

√
π

2a
· e−

a√
2
−i(π

8
+ a√

2
) (2.26)

so that

α‖(r, 0) ≈
1− ν2

2
√
2πE

√
ζ

r
· exp

(
− r√

2ζ
− i(

π

8
+

r√
2ζ

)

)
(2.27)
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and

φ‖(r, 0) = Arg
(
α‖(r, 0)

)
≈ −π

8
− r

ζ
√
2

(2.28)

and

A‖(r, 0) =
∣∣α‖(r, 0)

∣∣ ∼ r−1/2e−r/ζ
√
2 (2.29)

Appendix B: Plasticity analysis

Figure 2.5: Plasticity analysis for all measured frequencies. C(τ) remains 1.0 dur-
ing experimental timescales which indicates that no irreversible rearrangements are
occurring and we are measuring in the linear elastic regime.

Mechanical excitation with a too large amplitude could lead to irreversible
rearrangements of the colloids within the monolayers. In this case we are
no longer measuring in the linear regime. To ensure that linear elasticity ap-
plies during all our experiments, we test for irreversible rearrangements by
calculating the autocorrelation of the particles equilibrium position req(t) =
r(t)− 〈r(t)〉t:

C(τ) =
〈req(t+ τ) · req(t)〉

〈req(t)〉2
(2.30)
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We find hardly any decorrelation which confirms that no irreversible rear-
rangements occur andwe are performing our experiments in the linear elastic
limit (Fig. 2.5).

Appendix C: Spring constant determination

To make a prediction for the appropriate moduli of our samples based on
a simple lattice model, we estimate the inter-particle spring constant. For
this we make a histogram of inter-particle distance fluctuations Rij(t) =

|�ri(t)− �rj(t)| (Fig 2.6). We normalize the histogram and apply a Boltzmann
distributionU(x) = −kBT log(F (x)) ,withU the potential ofmean force in
[ J] andF (x) the frequency of the histogram, to obtain a measure for the inter
particle potential of mean force (Fig. 2.7). While the potential of mean force is
not symmetric around theminimum, we extract the linear spring constant by
considering only the region around the minimum, where we fit a harmonic
potential U(x) − Umin = 1

2κx
2, with κ representing the effective spring

constant and sole adjustable parameter (Fig. 2.8). We repeat this for about
1000 particle pairs and average the resulting κ, giving κ = 4×10−6 N/m. To
convert the potential of mean force into the inter-particle potential, we must
average over the interactions with the surrounding particles. We do this in
an approximate way assuming that the potential of mean force can be built
up by linear superposition of pair-wise contributions with all neighbours.
Averaging over the different angles then gives a spring constant for a single
particle-pair k = 0.25κ ≈ 1 · 10−6 N/m. The 2D Young’s modulus of a
hexagonal spring network is then E = 2k/

√
3 ≈ 1 · 10−6 N/m.
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Figure 2.6: Example of a histogram of inter-particle distances between neighbour-
ing particles in our colloidal crystal sample.

Figure 2.7: Example of a potential of mean force, reconstructed with the Boltzmann
equation and the histogram in figure 2.6.
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Figure 2.8: Example of a fit (red) of a harmonic potential to the harmonic part of our
measured pair potential in our colloidal crystal sample (blue circles). The effective
potential of mean force spring constant determined by this fit is κ = 2 · 10−6 N/m.
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Appendix D: Determination of friction coefficient γ,

Reynolds number Re and Deborah numberDe

We experimentally determine the two-dimensional friction coefficient ξ by
tracking a dilute suspension of silica beads over time. We calculate their
ensemble-averaged 2D mean squared displacement (Fig. 2.9). Using 〈r2〉 =
4Dτ we find D ≈ 9.0 × 10−14 m2s−1. With the Einstein equation, D =

kBT/ξ, we find ξ = 4.6× 10−8 Ns/m. In our continuum description of the
material, we need the friction per unit area γ, which we estimate as γ ≈ ξ/d2

with d the particle diameter; this gives γ ≈ 2.9 · 103 Ns/m3.

Figure 2.9: Linear fit (red) to the mean square displacement curve of dilute particles
sedimented on the glass surface of the cover slip (blue circles).

We estimate the Reynolds number in our experiment, Re = ρvL/η by
taking themaximum velocity of the probe particle v = ωAwithA the ampli-
tude of the oscillation, and ρ and η the density and viscosity of the medium.
This gives, with A = 2 µm for the highest frequency Re ≈ 4× 10−6. Since
Re � 1, our experiments are in the overdamped regime.
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The Deborah number De = ωτ with ω the angular frequency of our
mechanical excitation and τ the intrinsic relaxation time in the solid set by
the self-diffusion time of the particles. We estimate τ ≈ 16s and with our
excitation frequency range find that during our experiments 2 < De < 2 ·
102.

AppendixE:Dynamic and structural characterization

of crystals

We investigate the dynamics and structure of our experimental system to
confirm that we are indeed looking at colloidal crystals. Crystals are char-
acterized by long-ranged order and arrested dynamics. As a measure for the
dynamics we measure the Mean Squared Displacement (MSD) (Fig. 2.10). At
short τ we observe a localization plateau which highlights the arrested dy-
namics that are typical for colloidal crystals.

Figure 2.10:MSD (blue circles) for a colloidal crystal that is notmechanically excited.
The green line represents a slope equal to one.
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Figure 2.11 shows a microscopy image of the colloidal crystal, clearly
showing the hexagonal ordering of the particles. The packing fraction is es-
timated from the number of particles per unit area and the particle diameter,
giving a packing fraction of 0.89. We further confirm the presence of long-
ranged order by obtaining the pair-correlation function g(r) from the mi-
croscopy images, which is in excellent agreement with the g(r) expected for
a two-dimensional hexagonal packed crystal (Fig 2.12). In addition we cal-
culate the two dimensional structure factor S(qx, qy), which shows discrete
peaks in a six-fold symmetry at fixed distances from the origin and each other
(Fig 2.13). Even at large qx and qy we see discrete peaks, which confirms the
presence of long-ranged order in our system.

Figure 2.11: Microscopy image of our colloidal crystal sample
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Figure 2.12: Pair-correlation function for the colloidal crystal sample

Figure 2.13: Two dimensional structure factor for the colloidal crystal samples
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Appendix F:Dynamic and structural characterization

of colloidal glasses

Colloidal glasses are characterized by arrested dynamics while having a dis-
ordered liquid-like structure. To confirm that we indeed have arrested dy-
namics, we measure the mean squared displacement curves for our colloidal
glass samples (Figures 2.14,2.15 and 2.16). As we prepare our glass samples
with a bidisperse mixture of particles we show separate curves for the dy-
namics of both large and small particles and for the combined dynamics. All
MSD curves show a localization plateau for intermediate τ that indicates ar-
rested dynamics for all types of particles. The upturn for large τ might be
due to long-wavelength fluctuations in the sample or to cage-breaking events
that are typical for colloidal glasses. Figure 2.17 shows a microscopy image
of the colloidal glass, showing no apparent ordering. Indeed, in contrast to
our crystalline samples, the pair-correlation functions for the glasses show a
liquid-like structure that highlights the disordered nature of our glasses (Fig-
ures 2.18,2.19 and 2.20). Furthermore the two-dimensional structure factors
show no distinct dots and are isotropic, indicating that we have no long-
ranged order in these systems (Figures 2.21,2.22 and 2.23).
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Figure 2.14: MSD (blue circles) for the small and large particles in a colloidal glass
that is not mechanically excited. The green line represents a slope equal to one.

Figure 2.15: MSD (blue circles) for the small particles in a colloidal glass that is not
mechanically excited. The green line represents a slope equal to one.
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Figure 2.16: MSD (blue circles) for the large particles in a colloidal glass that is not
mechanically excited. The green line represents a slope equal to one.

Figure 2.17: Microscopy image of our colloidal glass sample
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Figure 2.18: Pair-correlation function for large and small particles in the colloidal
glass samples

Figure 2.19: Pair-correlation function for the small particles in the colloidal glass
samples
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Figure 2.20: Pair-correlation function for the large particles in the colloidal glass
samples

Figure 2.21: Two dimensional structure factor for large and small particles in the
colloidal glass samples
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Figure 2.22: Two dimensional structure factor for the small particles in the colloidal
glass samples

Figure 2.23: Two dimensional structure factor for the large particles in the colloidal
glass samples
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Appendix G: Effect of the Poisson ratio

Figure 2.24: Amplitude and phase patterns for varying Poisson factors. From left to
right the columns represent the amplitude of the parallel displacement component,
the phase of the parallel displacement component, and the amplitude of the perpen-
dicular displacement component, respectively. The perpendicular phase pattern is
not affected by the Poisson ratio. Scalebar represents 40 µm.
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CHAPTER 3

Calibration of deflected AOD intensity for
optical tweezers

Acousto Optical Deflectors (AODs) together with optical tweezers
are widely used to manipulate colloidal particles at high frequen-
cies. The intensity of the steered beam depends heavily on the de-
flection angle of the AODs. For quantitative use of optical tweez-
ers these intensity variations are undesirable. Here we describe
a procedure for measuring and correcting the intensity inhomo-
geneities. Intensity variance is reduced with a factor 27.3. Further-
more we describe a distributed real-time particle tracking method
to verify the effect of the correction on force constant consistency.
Improved intensity control allows to employAODs for quantitative
force measurements and microrheology at high frequencies.

Manuscript in preparation as:
J.M. van Doorn, R. Higler, R. Fokkink, R. Wegh, J. Sprakel and J. van der
Gucht: Calibration of deflected AOD intensity field for optical tweezers
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Introduction

Optical trapping has become awidely used tool in the field of softmatter[6, 1].
The ability to spatially organize and move particles and the possibility to ac-
curately measure pico-Newton forces have made optical tweezers an excel-
lent method to characterize mechanics at the micro scale[11]. Moving par-
ticles requires moving of the optical trap and thus steering of the trapping
beam. This can be readily achieved with either moving mirrors, Spatial Light
Modulators (SLMs) and Acousto Optical Deflectors (AODs). Whereas mov-
ing mirrors and SLMs are relatively slow, AODs are used in situations where
high-frequency displacements are required and low inertia is crucial. How-
ever, withAODs the spatial intensity field suffers from strong heterogeneities,
as compared to, for example, SLMs[14].

Crystals that are applied in AODs consist of materials that exhibit the
acousto-optical effect. The efficiency of this effect, which determines the de-
flected intensity, depends mainly on the type of material, the acoustic fre-
quency and the acoustic amplitude[13]. The acoustic frequency also controls
the diffraction angle and is mainly used for beam steering. Because the ef-
ficiency varies for different acoustic frequencies and thus for different an-
gles, the deflected intensity is spatially heterogeneous. This results in a non-
constant trap stiffness and optical forces during trapmotion. This is problem-
atic, especially for applications in micro mechanical characterization, which
assume a constant optical force along the entire particle trajectory [11].

In this chapter we present a software-based method to quantify and cor-
rect for spatial intensity variations due to AOD beam steering; this is imple-
mented by means of a feedback algorithm which dynamically controls the
amplitude of the acoustic waves imposed on the deflecting crystals. This re-
sults in a significant increase in the homogeneity of the intensity field, yet
can also be used to design an intensity field on demand without the require-
ment for holographic projections. We combine this approach with direct dig-
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ital synthesizers that support fast switching and facile control over acoustic
frequency and amplitude. This allows to pre-calculate corrections for a spe-
cific trajectory of a trapped bead across the field-of-view and execute the tra-
jectory at high frequency. Finally we discuss how our set-up is capable of
both fast QPD detection and distributed real-time particle tracking for ob-
taining large amounts of particle displacement statistics. The combination of
different detection methods and multiple ways of bead manipulation offers
great flexibility and improved accuracy which opens up new ways to study
spatially-resolved dynamics at small time scales.

Acousto optical deflection

The functioning of AODs is based on the acousto-optical effect. When an
acoustic wave with frequency fa, amplitude Aa and velocity va = λa · fa
propagates trough a crystal it locally deforms the crystal. In acousto-optical
materials, such as dioxide, this strain causes a local shift in refractive index.
This allows to establish dynamic diffraction gratings within the crystal with a
slit-size equal to the acoustic wavelength λa sin θn = nλo. Within the small-
angle approximation and only considering first-order diffraction, the diffrac-
tion angle that results from the acoustic frequency shift, is given as

∆θd =
λo

va
∆fa (3.1)

where ∆θd is the shift in diffraction angle. The change in refractive index
due to acoustic strains is proportional to the amplitude of the acoustic wave
so that [13]

∆n0 =

√
1

2
MIa (3.2)

where Ia = A2
a is the acoustic intensity andM a material constant related to

the efficiency of the acousto-optical effect [13].
As the diffraction is caused by reflections within the crystal, the intensity

of the diffracted beam is governed by the reflectance R on the parts with a
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higher refractive index∆n0. A higher difference in refractive index and thus
a higher reflectance will cause more light to be defracted by the crystal. At
the Bragg angle, θ = θn, it follows that [13]

Id
Ii

= 2π2n2L
2λ2

a

λ4
o

∆n2
0 = 2π2n2L

2λ2
a

λ4
o

MA2
a (3.3)

where L is the length of the crystal and n the refractive index of the unper-
turbed crystal. The above equation permits the reflectance to increase above
1 which is physically impossible as no light is created upon reflection. When
saturation processes are taken into account the ratio between the intensity
of the incident and the diffracted beam Id

Ii
does not exceed unity and can be

expressed as[13, 9]

Id
Ii

= sin2

√
2π2n2

L2λ2
a

λ4
o

MA2
a (3.4)

which relates the intensity of the diffracted beam to the acoustic power ex-
erted on the crystal and also to the acoustic wavelength λa. The local in-
tensity fluctuations are caused by the λ4

a dependence. We can however use
the quadratic dependence of output power on the acoustic amplitude Aa to
correct for these local intensity variations.

Experimental setup

Optics

We use a near infrared laser beam for optical trapping. This beam with λ =
1064nm and a Gaussian intensity profile is generated with a 1.5 W Nd:YAG
laser (Laser Quantum Ventus IR). After reflection by mirror M1 [Fig. 3.1], the
laser beam is linearly polarized with a half-lambda waveplate (λ2 )(Newport).
A polarizing beam splitter cube (PBS) (Optosigma, 20.0 mm) decomposes the
beam into its two polarization components. To minimize power fluctuations
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Figure 3.1: Schematic drawing of the optical tweezers setup. The laser path is de-
picted in green. The position of the IR camera for calibration measurement is indi-
cated with the intermittent lines

the laser is operated at full power and the incident intensity into the micro-
scope is controlled by adjusting the rotation angle of the half-lambda wave-
plate. The reflected component is directed into a beam dump and the trans-
mitted component is split a second time again with an identical λ

2 /PBS con-
struction. The transmitted component is guided into the microscope directly
to create a stationary optical trap.

The reflected component is guided to a pair of AcoustoOptical Deflectors
(AODs)(AA Opto-Electronic, DTSXY 250), to create a mobile trap that can be
steered. Both beams for the static and mobile trap are recombined with a
third PBS. To fit the rear aperture of the microscope objective, the diameter
of the exiting beam is increased by a factor of 3.4 with a Keplerian beam ex-
pander consisting of lenses L1 (Sill Optics, f=50.0mm) and L2 (OptoSigma,
f=170.0mm) [Fig. 3.1]. A combination of a second beam expander, consisting
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of lenses L3 (OptoSigma, f=350.0mm) and L4 (OptoSigma, f=350.0mm), and a
periscope guides the beam into the microscope (Nikon, ecplipse Ti). The sec-
ond beam expander ensures that the beam for the mobile trap always hits the
rear aperture of the objective regardless of the AOD deflection angle. After
reflection by a dichroic mirror (Chroma, z1064rdc-SP), a water-immersion
objective (Nikon, CFI Plan Apo IR SR 60XWI, NA=1.27) focuses both beams
in diffraction limited spots that act as optical traps. Sample chambers are
mounted on a motorized and computer controlled stage (Pi, Piline m-687).
The forward scattered light is collected by the condenser lens of the micro-
scope and reflected by a dichroic mirror (Thorlabs, DMSP805L). The scatter-
ing patterns from the static and mobile trap are separated with a PBS (Ed-
mund optics, 50mm) and both exiting beams are focused with lenses L5 and
L6 (Thorlabs, Biconvex f=100.0mm) on a Quadrant PhotoDiode (QPD)(OSI
optoelectronics, SPOT-9DMI) to detect positions of optically trapped beads
[5]. Rotatable polarizers (Thorlabs, LPVIS100) reduce the scattered light in-
tensity to prevent saturation of the QPDs. Additionally 1064 nm laser line
filters (Thorlabs, FL1064-10) are employed to exclude environmental light.
Two separate QPDs allow for cross-power spectral analysis of the static and
mobile trap[2, 15]. In addition, trapped beads can be imaged with bright-field
microscopy using a high-speed camera (Fasttec Imaging, HiSpec 2g Mono).
Epifluorescencemicroscopy allows to detect positions of fluorescently-label-
led beads, which can for example be refractive-index matched as not to expe-
rience trapping forces. Vibrations are minimized by mounting the set-up on
an air-suspended optical table (TMC, 78 Series CleanTop�) while all power
supplies and controllers are positioned on a separate table.

Sample chambers are prepared by attaching two rectangular cover slips
(21 × 26 mm) to a microscope slide (76 × 26 mm) with Norland Optical
Adhesive 61 (NOA61). On top of the rectangular coverslips a circular cover
slip (� = 50 mm) is glued. To prevent drift the formed channel is sealed with
two component epoxy glue (Bison).
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Electronics

Acoustic waves in the AODs are generated with direct digital synthesizers
(AA Opto-Electronic, DDSPA 15 bits 10-400MHz) and analog amplifiers (AA
Opto-Electronic, AMPA-B-34). The digital synthesizers are controlled using
two National Instruments NI-6323 computer cards that share their internal
clock. Each card sends out a 31 bit instruction integer consisting of a 23 bit
instruction for its AOD and 8 bits for triggering external devices(Table 3.1).

Triggering AODFrequency AODAmplitude
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

8 bits 15 bits 8 bits

Table 3.1: The 31 bit instruction integer that is send out by the NI-6323 computer
cards. The 23 bits for the AOD instructions are directly connected to the synthesiz-
ers.

The 23 bit AOD intstruction contains 15 bits for specifying the acoustic
frequency and 8 bits for specifying the acoustic amplitude. An array of 2000
computer generated instruction integers can be stored in the internal mem-
ory of the computercards and can be executed either linearly or in a loop.
Because the acoustic wave has to propagate trough the AOD crystal the min-
imal time between instructions is set to 9µs which corresponds to a maximal
clockrate of 111kHz.

QPDs are mounted on custom electronic boards that output three volt-
ages: X, Y, SUM [Fig. 3.2]. After conversion of the currents to voltages, the
analog signal of each quadrant is amplified with a low noise electrometer am-
plifier(Analog devices, AD8513). The resulting signals are summed electron-
ically such that

X = (ITopRight + IBottomRight)− (ITopLeft + IBottomLeft) (3.5)

Y = (ITopRight + ITopLeft)− (IBottomRight + IBottomLeft) (3.6)
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Figure 3.2: Electric circuit drawing of the custom QPD electronics.

SUM = ITopRight + ITopLeft + IBottomRight + IBottomLeft (3.7)

Data acquisition is performed by a National Instruments NI-6143 computer
card. This card digitizes 8 channels at 250 kS/s simultaneously. Each QPD
occupies 3 channels and the remaining channels measure the triggers sent
to the AODs in order to synchronize trap positions with QPD force mea-
surements. To reduce noise the QPD electronics are powered with a floating
power supply.

Software

To orchestrate all components of the setup custom software has been devel-
oped. The software interfaces with the National instrument cards, the high-
speed camera and the motorized stage. It includes an easy interface with
Matlab scripts to calibrate the force constant of the optical trap with power-
spectral analysis[3, 7]. Furthermore the software can calibrate the force con-
stant using the Boltzmannmethod[4]. The software is available upon request.
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Distributed real time particle tracking

High-speed video microscopy produces vast amounts of data. In order to re-
duce hard disk usage and facilitate efficient data transport, real-time particle
tracking is applied. This is carried out by streaming images obtained from
the high-speed camera over a gigabit ethernet network to worker computers.
The worker computers perform particle tracking using the python version of
established particle tracking routines[12]. ZeroMQ is used for setting up the
streambetween the acquisition computer and theworker computers[8]. After
obtaining an image from the camera stream, the acquisition CPU copies the
image in binary form together with its timestamp to a ZMQ message which
is sent out to the workers. The worker CPUs locate the particles and output
their coordinates and timestamp to a HDF5 or .csv datafile. When the ex-
periment is finished, particle trajectories are reconstructed from the separate
datafiles and sorted by their timestamp. Scaling up the processing capability
can be easily achieved by adding more workers as the images are automati-
cally distributed over all available workers.

Epifluorescence microscopy and force detection

Structural changes and dynamics are monitored with epifluorescence video
microscopy. To demonstrate this a cropped epifluorescence picture of a col-
loidal gel is shown in figure 3.3 (a). The depletion gel consists of a=1.55µm
tFEMA/tBMA core-shell particles in a refractive index matched solvent[10].
A Gaussian blurred (30pix) version of the raw image is subtracted and the re-
sult is treated with a bandpass filter to make it suitable for particle tracking
[Fig. 3.3(b)]. Kilfoil particle tracking routines are used to track particles[12].
The results are shown in figure 3.3(c). Particle tracking can be executed real-
time by streaming the images to worker CPUs as is described in the previous
section. The frame rate that can be achieved depends mainly on the photo-
stability of the fluorescent dye applied in the particles and the available pro-
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Figure 3.3: (a) Cropped epifluorescence image of a colloidal depletion gel consisting
of a=1.55µm core-shell particles.(b) Image after proccesing with Gaussian blur and
bandpass filters.(c) Results of particle tracking, located particles are indicated with a
red +.

cessing power. Force measurements are carried out using back-focal-plane
inferometry [5]. Figure 3.4 shows a force curve of a trapped particle that ex-
periences a drag force induced by moving the microscope stage. The force
fluctuations beforemoving the stage are caused by Brownianmotionwhereas
the fluctuations after the particle escaped resemble electronic noise.

AOD intensity field calibration

We correct for inhomogeneities in the AOD intensity field by calibrating the
acoustic amplitude for a desired intensity. The intensity field is flattened
by locally decreasing the acoustic amplitude such that the intensity of the
diffracted beam is the same for every angle. The intensity of the diffracted
laser beam is measured with a NIR camera (Basler, acA1300-60gmNIR) that
is placed after lens L1 [Fig. 3.1]. L1 focusses the beam to make sure all possi-
ble paths of the diffracted beam end up at the sensor of the camera. The laser
power is set at 1450 mW in order to maximize stability. The laser power
is attenuated with both λ

2 /PBS constructions such that no pixel on the NIR
camera is saturated [Fig. 3.5]. Intensities are measured from the 8-bit im-
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Figure 3.4: Example of force measurements on a 2µm trapped silica bead with a
QPD. The stage starts moving at t = 0.8s. This causes a drag force on the particle
and at t = 1.1s the particle escapes the optical trap.

ages by taking a time-averaged pixel intensity. To suppress camera noise and
to increase the dynamic range, pixels with a intensity value <8 are excluded
from the average.

According to equation 3.4 the relation between the acoustic amplitude
and the diffracted beam intensity is non-linear and depends on material con-
stants. Therefore the amplitude-intensity relation is calibrated by measur-
ing the diffracted beam intensity along the amplitude range in the center of
the intensity field [Figure 3.6]. The resulting data is fitted with a third-order
polynomial. The coefficients are stored and used to calculate the required
amplitude for a desired decrease in intensity. At lower amplitudes the in-
tensity levels off due to the exclusion of pixels with an intensity lower than
8; however, as such small amplitudes are not used in practice this does not
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Figure 3.5: Typical image of laser spot as detected by the camera. Pixels with inten-
sity lower than 8 are indicated with blue whereas pixels with an intensity of 255 are
colored red

present an issue.

Heterogeneities in the intensity field are recorded by dividing the AOD
frequency range in a user-specified number of steps. The software scans these
steps and measures the diffracted beam intensity at each position with max-
imum acoustic amplitude. This results in a two-dimensional array with in-
tensity values before calibration [Figure 3.7(a)]. The array is stored on the
computers harddrive and used to calculate corrected amplitude values for
each AOD with the following equation

Aac = c3(

√
Ibl
Irpb

)3 + c2(

√
Ibl
Irpb

)2 + c1

√
Ibl
Irpb

+ c0 (3.8)

Where Ibl is the lowest intensity in the array, Irpb is the intensity value in
the array nearest to the requested point and cn are the coefficients obtained
from the fit in figure 3.6. Because both AODs together have to reduce the
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Figure 3.6: Normalized intensities (circles) for 128 points along the entire 8 bit am-
plitude range. A third-order polynomial (solid) is fitted through the data as an ap-
proximation.

intensity by a factor of Ibl
Irpb

and the AODs are placed after each other, each

separate AODhas to reduce the intensity by
√

Ibl
Irpb

. After calibration, the het-
erogeneities in intensity are substantially reduced [Fig. 3.7(b)]. Histograms of
the intensity values before and after calibration[Fig. 3.7(c) and Fig. 3.7(d)] in-
dicate that the spread in intensity values decreases strongly, with the intensity
variance reduced by a factor 27.3. The distribution of intensities after cali-
bration exhibits a Gaussian shape, which suggests that the remaining variance
is due to measurement inaccuracies and the fact that the acoustic amplitude
can only be varied in discrete steps. To test the effect of the calibration on
the force constant of the optical trap a 2µm silica bead was dragged from the
lower left corner to the upper right corner of the field of view, in a 10 w/w%
glycerol/H2O solution. The position of the particle is monitored with real-
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Figure 3.7: Comparison between the intensity field before (a) and after (b) calibra-
tion. (c,d) Histograms of intensity values measured with an IR camera. The variance
changes dramatically after calibration.

time particle tracking at 164 fps. Position fluctuations perpendicular to the
drag direction are obtained by rotation with a rotation matrix such that all
dragmotion is exerted along one axis. The data is subsequently binned in 100
bins. The standard deviation of each bin σ⊥(d) is plotted in figure 3.8 as a
function of the traveled distance d. For the uncalibrated field the positional
fluctuations at the edges are clearly larger than in the center. Larger fluc-
tuations mean that the optical trap is weaker, which indicates that the force
constant is smaller at the edges than in the center. This agrees with the field
in figure 3.7(a) since higher intensity corresponds to a higher force constant.
The data for the calibrated field showsmuchmore constant positional fluctu-
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Figure 3.8: Standard deviations of the positional fluctuations before (blue) and af-
ter (green) calibration. Before calibration the fluctuations at the edges increase with
respect to the fluctuations in the center. After calibration fluctuations are more con-
stant with position.

ations with trap position. This suggests that the calibration indeed improved
force constant consistency across the whole AOD range.

Conclusions

Wehave developed a procedure tomeasure and correct intensity variations in
AODs. The correction dramatically improves intensity variance with a factor
of 27.3. This allows for better control over the optical forces that are exerted
on trapped beads across the AOD range. This is demonstrated experimentally
bymonitoring Brownian fluctuations of a bead dragged across the AOD field.
The improved force constant consistency is particularly important for quan-
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titative applications of AOD-based optical tweezers. When combined with
speed of digitally controlled AODs and an high-speed camera this calibration
allows to explore a new area of high-speed mechanics with optical tweezers.
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CHAPTER 4

Criticality andmechanical enhancement in
composite fiber networks

Many biological materials consist of sparse networks of disordered
fibers, embedded in a soft elastic matrix. The interplay between
rigid and soft elements in such composite networks leads to me-
chanical properties that can go far beyond the sum of those of the
constituents. In this chapter we present lattice-based simulations
to unravel the microscopic origins of this mechanical synergy. We
show that the competition between fiber stretching and bending
and elastic deformations of the matrix gives rise to distinct me-
chanical regimes, with phase transitions between each regime that
are characterized by critical behavior and diverging strain fluctu-
ations and with different mechanisms leading to mechanical en-
hancement.

This chapter was published as:
J.M. van Doorn, L. Lageschaar, J. Sprakel and J. van der Gucht: Criticality and
mechanical enhancement in composite fiber networks, Phys. Rev. E 95, (2017),
042503
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Introduction

Many materials, ranging from textiles and paper to connec- tive tissue and
the cytoskeleton of living cells, have a micro-scopic structure that consists
of crosslinked fibers. Theoretical progress in the last decades has led to a
detailed understanding of the physics of such fiber networks[1]. Because
stiff fibers resist not only stretching, but also bending, the mechanical behav-
ior of fiber networks differs significantly from that of networks of flexible
polymers. Different mechanical regimes can be observed: at high densities
fiber networks deform affinely and the elasticity is governed by fiber stretch-
ing, while at lower densities there is a crossover to a nonaffine, bending-
dominated regime[2, 3, 4, 5, 6].

Although experiments on model networks give support to the existence
of different mechanical regimes[7, 8, 9], the current theories fall short in de-
scribing real biomaterials. An important reason for this is that naturalmateri-
als are almost without exception composite materials that consist of mixtures
of elements of different rigidity: the cytoskeleton is a complex network of
(partially bundled) actin filaments, intermediate filaments, and microtubules
[10]; the extracellular matrix consists of stiff collagen fibers in a matrix of
more flexible polymers[11]; and also many synthetic high-performance ma-
terials are composites of soft and rigid fibers[12, 13, 14, 15, 16]. Recent exper-
imental work has shown that networks of stiff fibers embedded in an elastic
matrix can have an elastic modulus that significantly exceeds the sum of the
moduli of the two individual networks[17, 18]. It was hypothesized that this
mechanical enhancement was caused by a suppression of nonaffine defor-
mation modes in the rigid fiber network due to the reaction forces in the
softer network. However, a theoretical underpinning of this hypothesis was
missing. Previous models considered the effect of sparse rigid inclusions in a
softer base network[19, 20, 21, 22, 23, 24]. These models indeed showed that
the interplay between stiff and soft components can strongly affect the defor-
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mationmodes and stiffness of a composite network. However, there has been
no systematic investigation of how the mechanical response of a composite
network depends on the connectivity of the fiber network and on the stiffness
of the individual constituents. Here, we present a model that allows us to ex-
plore the mechanics of composite networks over a large range of parameters
and compositions, both for sparse fiber networks and for highly connected
fibers.

Model

We use numerical simulations to study the mechanics of disordered compos-
ite networks, consisting of crosslinked fibers embedded in a soft elastic ma-
trix. Both the fibers and the polymers that constitute the background matrix
are arranged on a two-dimensional (2D) triangular lattice with lattice spacing
l0, as shown in Fig. 4.1. The effects of connectivity are explored by randomly
removing segments of the fiber network with a probability 1− p, so that the
average connectivity equals z = 6p. Sequences of contiguous colinear fiber
segments are treated as elastic rods, characterized by a stretch modulus µ1

and a bending modulus κ1. Since fibers in biomaterials are typically much
softer with respect to bending than to stretching[1], we will only consider the
case that κ1 � µ1l

2
0 . Intersecting fibers are assumed to be crosslinked with

permanent but freely hinged bonds. The background matrix is modelled as a
homogeneous network of undiluted central force springs with stretch mod-
ulus µ2. The two networks are linked to each other at each vertex of the
lattice. To investigate the mechanical response of the composite network, we
calculate the linear shear modulusG by applying a shear strain γ = 10−2 to
the network by translating the horizontal boundaries to which the fibers and
springs are attached. The network is then relaxed by minimizing the total

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

91
91



CHAPTER 4: Criticality and mechanical enhancement in composite fiber
networks
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mechanical energy

E = 1
2
µ1

l0

∑
<ij> g

(1)
ij (∆lij)

2 + 1
2
κ1

l30

∑
<ijk> g

(1)
ij g

(1)
jk (∆θijk)

2

+1
2
µ2

l0

∑
<ij>(∆lij)

2 (4.1)

where l0 is the lattice spacing, ∆lij the extension of the segment between
vertices i and j, ∆θijk the angle between neighboring bonds i-j and j-k,
and g

(1)
ij = 1 if there is a fiber segment between vertices i and j, while

g
(1)
ij = 0 otherwise. The first term represents the stretch energy of the fibers,
the second term the bending energy, and the third term the elastic energy
of the matrix. The first and third summations extend over all bonds i-j,
while the second summation extends only over colinear neighboring bonds.
This energy can be expressed in terms of the node displacements[6] using
∆lij = (uj − ui) · r̂ij with r̂ij the unit vector along the i-j bond, and
∆θijk = (uk+ui−2uj)× r̂ij . The energy is minimized using lower upper
(LU) decomposition, giving the equilibrium nodal displacements. The shear
modulus is calculated as G = (2/A)(E/γ2) where A is the area of the net-
work. In our simulations we have used A = 4 × 104l20 . Results for other
system sizes are shown in Fig. 4.7 in Appendix B.

Results

Mechanical regimes

In Fig. 4.2, we show the shear modulus as a function of the connectivity p

for various values of the matrix stiffness µ2. For µ2 = 0, G vanishes when
the connectivity is lower than a critical rigidity threshold. For fibers with no
bending rigidity (κ1 = 0, dashed line), this threshold is pcf ≈ 0.651, as given
byMaxwell’s criterion for isostatic networks of central force springs[25]. For
nonzero κ1, however, the rigidity threshold shifts discontinuously to a lower
value, pb ≈ 0.442, which is independent of κ1 for κ1 > 0 (black line). The
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Figure 4.1: Composite networks on a triangular lattice. A small section of a de-
formed network of fibers in a soft matrix, with κ1/(µ2l

2
0) = 10−6 and µ2/µ1 =

10−12 for (a) p = 0.65 and (b) p = 0.45. Thick segments represent fiber segments,
color-coded for their bending energy (yellow: strongly bent, blue: weakly bent), and
thin segments represent the background matrix, color-coded for stretching energy
(yellow: strongly stretched; blue: weakly stretched). Inset in (b) shows an example of
a rigid rotation of a fiber cluster.

results for different values of the bending rigidity are shown in Fig. 4.6 in Ap-
pendix A. In the presence of an elastic matrix with nonzero stretch modulus
µ2, the network is mechanically stable for any value of p. However, features
of the mechanical transitions at pcf and pb can still be seen, as the shear mod-
ulus decreases very steeply with decreasing p around these points [Fig. 4.2].
This suggests that both points mark a transition between distinct mechanical
regimes in the composite network. To investigate the nature of these dif-
ferent regimes, we examine both crossover regions in more detail. For low
values ofµ2, themechanical response of the composite network is dominated
by the fiber network for p sufficiently above pb. We therefore expect that the
crossover region at pcf is similar to the one observed in single-component
fiber networks. As shown previously[6], in such networks the central force
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Figure 4.2: Elasticity of composite networks. Shear modulusG (in units µ1/l0) as a
function of the bond probability p for κ1/µ1l

2
0 = 10−6 and for a range of stiffnesses

of the backgroundmatrix. The black line corresponds to µ2 = 0 and the dashed line
to µ2 = 0 and κ1 = 0.

threshold coincides with a transition from a stretching-dominated regime for
p > pcf to a bending-dominated regime for p < pcf. The presence of an elas-
tic matrix as embedding medium is expected to affect this transition, because
fiber bending is a nonaffine deformation mode, which inevitably leads to ad-
ditional strain in the medium. The elastic energy stored in the matrix due
to the bending of an embedded fiber increases proportionally to the matrix
stiffness µ2[27]. We therefore expect the resistance to bending to increase
linearly with µ2. Indeed, we find that we can collapse our data by introduc-
ing an effective bending rigidity, which is the sum of the intrinsic bending
rigidity and a matrix-induced bending resistance [see Appendix C]:

κeff = κ1 + µ2l
2
0 (4.2)
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This is shown in Fig. 4.3(a), where we plot the scaling form

G =
µ1

l0
|∆pcf|βGcf

±

(
κeff
µ1l20

|∆pcf|−α

)
(4.3)

with ∆pcf = p − pcf and with scaling exponents α = 3.0 and β = 1.4, in
agreement with previous findings[6]. The universal scaling function Gcf

±(x)

consists of three branches that characterize three different mechanical reg-
imes. For x � 1, Gcf

+(x) ∼ const and Gcf
−(x) ∼ x. This implies a stretching-

dominated regime withG ∼ µ1|∆pcf|β above the transition (∆pcf > 0), and
a bending-dominated regime with G ∼ κeff|∆pcf|β−α below the transition
(∆pcf < 0). In the bending-dominated regime, the shear modulus is gov-
erned by the effective bending resistance of the fibers [equation 4.2]: for very
soft matrices (µ2 < κ1l

−2
0 ) the response is dominated by the intrinsic bend-

ing rigidity of the fibers, G ∼ κ1, while for stiffer matrices (µ2 > κ1l
−2
0 )

the shear modulus is determined by the induced bending rigidity due to the
matrix: G ∼ µ2. Very close to the critical threshold, we find a crossover
regime with anomalous scaling[6]G ∼ κ

β/α
eff µ

1−β/α
1 independent of∆pcf, as

observed from the critical branch in Fig. 4.3(a).

At p = pb there is a second transition, now from a bending-dominated
regime to a matrix-dominated regime. Again, we can capture the different
regimes around this transition by a scaling form

G =
κ1
l30
|∆pb|δGb

±

(
µ2l

2
0

κ1
|∆pb|−γ

)
(4.4)

with∆pb = p− pb and Gb
±(x) another universal scaling function. The data

is found to collapse with critical exponents γ = 4.5 and δ = 3.0. Again,
we see three branches, corresponding to three different mechanical regimes.
Above the transition for x � 1 we find Gb

+(x) ∼ const andG ∼ κ1|∆pb|δ ,
which corresponds to the rigidity percolation scaling of a bending-dominated
network[6]. Below the transition, for x � 1 we find Gb

−(x) ∼ x and G ∼
µ2|∆pb|δ−γ . In this regime the fiber network is below its rigidity threshold,
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and the composite network consists of an elasticmatrixwith embedded, non-
percolating fiber clusters. Indeed, the scaling that we find is very similar to
the one found for a central force network with rigid inclusions[28, 29]. Very
close to the transition we again find an anomalous scaling regime in which
the modulus becomes independent of∆pb and is governed by both bending
and matrix contributions, with G ∼ κ

1−δ/γ
1 µ

δ/γ
2 . The different mechanical

regimes that we find for our composite network are summarized in the phase
diagram in Fig. 4.3(c), which clearly highlights the rich behavior of composite
networks.

It is well-established that the mechanics of weakly-connected disordered
networks are governed by nonaffine deformation modes[1, 2, 3, 4, 5, 6]. This
raises the question whether the different mechanical regimes that we observe
originate from a transition between different nonaffine modes. We examine
the the nonaffine fluctuations by calculating the mean-square deviation from
a uniform, affine strain field[30]:

Γ =
1

γ2l20

〈(
u− u(aff)

)2
〉

(4.5)

Here u and u(aff) are the actual displacement and the affine displacement of a
node, respectively. We find a strong, cusp-like increase of the nonaffine fluc-
tuations in the vicinity of both pcf and pb, highlighting the critical state of the
fiber network at these points [Fig. 4.4(a)]. From Fig. 4.1 it is clear, however,
that the nature of the nonaffine modes is very different in these two regimes.
For p ≈ pcf, the deformation field is characterized by large and heteroge-
neous bending fluctuations [Figs.4.1(a) and 4.4(b)]. This is in agreement with
earlier work[2, 3, 4, 5, 6], where the central force threshold was shown to
mark a transition from an affine, stretching-dominated regime for p > pcf

to a nonaffine, bending-dominated regime for p < pcf. By contrast, the in-
crease in Γ at p ≈ pb is not associated with bending fluctuations [Fig. 4.1(b)],
but can be ascribed to rigid body motions of fibers or fiber clusters [inset Fig.
4.1(b) and Fig. 4.4(c)] that become more and more prominent as the connec-
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Figure 4.3: Mechanical regimes in composite networks. Scaling analysis of the
shear modulus in the vicinity of (a) the central force isostatic point pcf and (b) the
rigidity threshold pb, for a wide variety of values of κ1 and µ2. Values of the crit-
ical exponents: α = 3.0, β = 1.4, γ = 4.5, δ = 3.0. (c) Mechanical phase
diagram of composite networks: S: stretching-dominated (G ∼ µ1), B: bending-
dominated (G ∼ κ1), M: matrix-dominatd (G ∼ µ2), SB: stretch-bend coupled
(G ∼ µ1−x

1 κx
1 ), SM: stretch-matrix coupled (G ∼ µ1−x

1 µx
2 ), BM: bend-matrix cou-

pled (G ∼ κ1−y
1 µy

2 ).

tivity of the network decreases. At the rigidity threshold pb, the fiber network
becomes floppy and all the strain can be accommodated by such rigid body
motions without elastic energy cost in the fiber network[6, 26, 31]. However,
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Figure 4.4: Nonaffine deformations in composite networks. (a) Non-affinity as a
function of connectivity p for several values of µ2 (same color coding as in Fig. 4.2).
(b) Bending energy per unit area and unit strain, Eb/Aγ

2, as a function of p and
µ2. (c) Rigid body rotations: mean-squared rotation angle of the end-to-end vector
of fibers, averaged over all fibers in the network 〈∆φ2〉, compared to that for the
affinely deformed network as a function of p andµ2. (d) Relative deformation energy
of the background matrix, compared to the affinely deformed network,E2/E

(aff)
2 , as

a function of p and µ2. The bending rigidity κ1 = 10−6µ2l
2
0 in all cases.

while the nonaffine modes are soft modes for the fiber network, they lead to
additional deformations in the background matrix, so that the elastic energy
of thematrix is strongly increased in regionswhere the nonaffine fluctuations
are large [Fig. 4.4(d)]. This means that the final deformation field in a com-
posite network is a compromise between energy stored in the fiber network
(which can be reduced by nonaffine modes) and energy stored in the matrix
(which is enhanced by nonaffine deformations). As thematrix becomes stiffer,
the nonaffine fluctuations are increasingly suppressed [Fig. 4.4]. The scaling
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Figure 4.5: Mechanical enhancement in composites. (a) Enhancement of the shear
modulus with respect to the summed moduli of the individual networks,G/(G1 +

G2) as a function of p and µ2 for κ1 = 10−6µ2l
2
0 . (b,c) Different energy contribu-

tions to the shear modulus (Eb (blue): fiber bending; Es (red): fiber stretching; Em

(green): matrix deformation) as a function of µ2 for (b) p = 0.65 and (c) p = 0.45.
The black line gives the total elastic energy and the dashed line the sum of the ener-
gies of the separate networks, so that the difference between the solid and the dashed
line represents the mechanical enhancement.

of the nonaffine fluctuations with µ2 and κ1 is discussed in Appendix B [Fig.
4.7].
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Mechanical enhancement

The main reason for the interest in composite materials is that the interplay
between the different components can lead to highly synergistic properties,
such as enhanced strength and rigidity[12, 13, 14, 15, 16, 17, 18]. We therefore
consider the enhancement of the modulus of the composite network in com-
parison with the sum of the moduli of the individual networks [Fig. 4.5(a)].
The highest enhancement, with a modulus that exceeds those of the individ-
ual networks by up to a factor 102, is observed in the two crossover regions
labeled SM and BM in Fig. 4.3(c). We can understand the origin of the en-
hancement in these regimes, by considering the different contributions to the
modulus. At p ≈ pcf [Fig.4.5(b)], the modulus is dominated by bending con-
tributions for small µ2. These bending modes are suppressed by the elastic
matrix when µ2 increases [Fig. 4.4(b)], leading to a more affine deformation.
However, this goes at the cost of increased fiber stretching, and this increase
in stretching energy stiffens the network. As discussed above, at p ≈ pb, the
deformation of the fiber network is characterized by floppy modes, in which
large clusters of fibers undergo rigid bodymotionswithout being strained. As
thematrix becomes stiffer, these rigid bodymotions are suppressed at the cost
of increased fiber bending [Figs. 4.4(b) and 4.4(c)]. Thus, while the enhance-
ment around pcf is caused by the suppression of bendingmodes, the enhance-
ment around pb is associated with an increase in fiber bending [Fig.4.5(c)].

Discussion

We have revealed a very rich mechanical behavior of composite networks.
Small variations in composition can lead to large differences in mechanical
response. This may be an important reason why composite structures are so
abundant in biology, where adaptiveness is often crucial. Indeed, it has been
argued that many biological networks have a connectivity in the vicinity of
a critical regime[9], where they are most susceptible to small changes. Our
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results show that these are also the regions where mechanical synergy is to
be expected. As Fig. 4.5(a) shows, a non-trivial crosstalk between the two
networks occurs only for specific compositions and stiffness ratios between
the two networks. For densely cross-linked fiber networks (p > pcf), where
the mechanics of the fiber network is dominated by affine stretching modes
even in the absence of an elastic matrix, there is no enhancement. However,
for bending-dominated fiber networks (pb < p < pcf), there is a significant
range of matrix stiffnesses where strong enhancement is expected to occur.
Recent experiments report themodulus of amixture of two protein fiber net-
works with varying composition[17]. The network of the stiffest fibers was
kept constant, while the stiffness of the soft background matrix was varied
over a large range. A significant mechanical enhancement was found over
approximately six decades in modulus of the soft network, with a maximum
enhancement factor of approximately 3 with respect to the sum of themoduli
of the separate networks. These experiments correspond to a vertical cross-
section in Fig. 4.5(a), i.e. a variation in µ1 at constant connectivity of the
stiff network p. Even though the precise value of p is not known for the ex-
perimental system, it presumably lies between pb and pcf, since the network
was argued to be in the bending-dominated regime. As shown in Fig. 4.5(a),
our model also predicts a modulus enhancement in this regime over a range
spanning approximately 6 decades in µ1. The maximum enhancement of 3
found in the experiment suggests that the network is significantly below pcf,
and that an even stronger enhancement may be obtained for p values closer
to the central force threshold.

While our focus has been on linear elasticity, we expect that also the
non-linear response of composite networks will differ greatly from that of
single-component networks. Fiber networks are known to become stiffer as
the strain increases[7] due a transition from bending to stretching-dominated
elasticity[32]. Recent experiments have shown that this strain stiffening can
be suppressed completely when the fibers are embedded in a soft elastic ma-
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trix [17]. Our results suggest that this may be the result of a suppression of
bending modes already in the linear regime. Finally, the suppression of non-
affine fluctuations by the background matrix leads to a more homogeneous
stress distribution in the network. This should have large consequences for
the nucleation and propagation of cracks in the material, and may thus con-
tribute to the large increase in fracture strength found in double network
hydrogels[15, 16].

Appendix A: The effect of the fiber bending rigidity

To investigate the effect of the fiber bending rigidity on the shear modulus of
composite networks, we repeat the calculations of Fig. 4.2 for different values
of κ1. Results are shown in Fig. 4.6. For κ1 = 0, the single fiber network
becomes unstable at the central force isostatic threshold pcf = 0.651 [Fig.
4.6(a)]. For this case, our simulations of composite networks are identical
to previous findings for the so-called superelastic problem[29], consisting of
central force spring networks, where a fraction p of the bonds have a stretch
modulus µ1 + µ2 and a fraction 1 − p of the bonds have a stretch modulus
µ2. For all κ1 > 0, the rigidity threshold is at pb ≈ 0.442 [Figs. 4.6(b-f)]. We
see evidence for a bending to stretching transition at pcf when the bending
modulus is small, as a strong decrease of the shear modulus when p drops
below pcf. However, for κ1/µ1l

2
0 ≤ 10−2, bending becomes too costly so

that this transition vanishes and the shear modulus is stretching-dominated
for all p > pb. The results of Fig. 4.6 have been used, together with those
in Fig. 4.2, to characterize the different mechanical regimes of composite
networks as a function of p, κ1, and µ2, as shown in Fig. 4.3.

Appendix B: The magnitude of the nonaffine fluctuations

As shown in Fig. 4.4(a), the nonaffine fluctuations show cusp-like peaks a
both p = pcf and p = pb. The peak in Γ at the central force isostatic point,
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Figure 4.6: Elasticity of composite networks for different bending rigidity. Shear
modulus G (in units µ1/l0) as a function of the bond probability p for a range of
stiffnesses of the background matrix for different values of κ1/µ1l

2
0 : (a) 0, (b) 10−8,

(c) 10−4, (d) 10−2, (e) 1, (f) 102 . The black line corresponds to µ2 = 0 and the
dashed line to µ2 = 0 and κ1 = 0. In each figure, the values of µ2/µ1 are (from top
to bottom): 10−2, 10−4, 10−6, 10−8, 10−10, 10−12.

Γcf, is due to nonaffine bending fluctuations [Figs. 4.1(a) and 4.4(b)]. These
fluctuations are reduced as the effective bending rigidity, κeff = κ1 + µ2l

2
0

increases. We find that Γcf ∼ (µ1/κeff)
x with x = 0.53 ≈ 1 − β/α [Fig.
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4.7(a)].

Figure 4.7: Nonaffine fluctuations in the two critical regions. (a) Peak inΓ at p = pcf

as a function of κeff/µ1, and (b) peak in Γ at p = pb as a function of µ2/κeff, both for
various lattice sizes.

The shear modulus at this point is determined by the bending energy, so that
Gcf ∼ κeffΓcf ∼ κ

β/α
eff µ

1−β/α
1 . Note that a deviation from the scaling ofΓcf is

observed for small values of κeff, which we attribute to a finite-size effect: the
finite size of the lattice limits the maximum size of the collective nonaffine
modes. Indeed, we find that Γcf decreases as the lattice size decreases [Fig.
4.7(a)]. The peak in Γ at the bending rigidity threshold, Γb is determined by
rigid rotations of fiber clusters [Fig. 4.1(b) and 4.4(c)]. An increase of the ma-
trix stiffness suppresses thesemodes, so thatΓb decreases asµ2 increases [Fig.
4.7(b)]. However, this suppression goes at the cost of increased bending, so
that the nonaffine fluctuations at this point are determined by a compromise
between matrix stretching and fiber bending. We find that Γb ∼ (κeff/µ2)

y

with y = 0.33 ≈ 1 − δ/γ, highlighting the critical state of the network for
µ2 → 0. The shear modulus at this point is mainly determined by the elastic
energy of the matrix, so that Gb ∼ µ2Γb ∼ µ

δ/γ
2 κ

1−δ/γ
1 . Again, we observe

deviations from the scaling of Γb for small lattice sizes and small µ2.
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Appendix C: Effective bending rigidity of a fiber in an elastic medium

We consider an elastic rod of length L embedded in an infinite 2D elastic
medium. Here, we treat the matrix as a continuous medium with shear mod-
ulus G2. A bending deformation of the rod increases the total energy of the
system[27]:

E =
κ1
2

∫ L

0

(
d2u
dx2

)2

dx+
α2

2

∫ L

0
u2dx (4.6)

where u(x) is the transversal displacement of the rod as a function of the
axial coordinate along the rod, and where the parameter α2 represents the
effective spring constant of the matrix, which is proportional to the shear
modulus G2 as discussed below. The first term represents the bending en-
ergy of the rod and the second term represents the elastic energy due to the
deformation of the matrix. We have assumed that the length of the rod does
not change upon bending so that we can neglect the stretching energy. We
assume a deformation of the form

u(x) = u0 sin
(nπx

L

)
with n = 1, 2, . . . (4.7)

Substitution in equation 4.6 then gives

E =
n4π4u20
4L3

[
κ1 + α2(L/nπ)

4
]

(4.8)

This can be interpreted as a the energy of a bent rodwith an effective bending
rigidity κeff = κ1 + α2(L/nπ)

4.
While for a 3D medium, the effective spring constant is related to the

shear modulus of the medium as α2 ≈ 4πG2/ ln(L/d) with a the diameter
of the rod[27], for a 2D medium we can derive [33] α2 ≈ 4πG2/L. Since the
shear modulus of a triangular spring network is equal to G2 = 1

4

√
3µ2/l0,

we finally find
κeff = κ1 +Aµ2l

2
0 (4.9)

with A =
√
3

n4π3 (L/l0)
3. The prefactor A depends on the rod length L and

on the mode number n. Around the central force isostatic point, the average
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fiber length is L = l0/(1− pcf) ≈ 2.8l0. Assuming that the dominant bend-
ing mode is the lowest energy mode, n = 1, we find A ≈ 1.3, close to the
value of unity used to collapse the data in Fig. 4.3.
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CHAPTER 5

Synthesis of azide functionalized polymer
colloids

Surface properties dictate interactions between colloids. Tuning
these properties to assemble large structures of multiple colloids
is a central theme in colloidal synthesis. To bring the flexibility
of click chemistry to the surface of polymeric colloids we propose
one-step synthesis of azide-functionalized colloids. For thiswe syn-
thesize an azide-functionalized monomer that is co-polymerized
duringparticle synthesis. By varying the amount of azidemonomer
we are able to tune the surface concentration of azide groups. This
is particularly useful when working with supra molecular inter-
actions as binding dynamics are exponentially dependent on the
number of supramolecular bonds. Our results suggest a two order
of magnitude increase of surface concentration compared to previ-
ously reported methods.

Manuscript in preparation as:
J.M. van Doorn, P.Hage, T. van de Laar, I.Voets and J. Sprakel: Simple one-step
synthesis of azide functionalized polymer colloids
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Introduction

Colloidal materials are defined by their inter-particle interactions. Repul-
sive interactions often lead to colloidal crystals or, if polydispersity is suffi-
ciently high, to colloidal glasses. Conversely, attractive interactions lead to
the formation of aggregates or at sufficiently high volume fraction colloidal
gels. Making more complex structures would require more complex poten-
tials which are more difficult to realize experimentally[14, 13]. The surface
properties of colloidal particles are the key factor that determine the shape
of the inter-particle potential. Controlling this surface chemistry gives much
control over eventual potentials and opens up the way for engineered poten-
tials. Many strategies exist to control surface chemistry such as surface intial-
ized RAFT or ATRP, co-polymerization of charged monomers, silane chem-
istry and click chemistry[9, 4, 6, 3]. Click chemistry offers great versatility
and efficiency in modifying any surface with a vast number of molecules[11].
However either an azide or an alkyne group has to be present on the surface.
For inorganic particles this is readily achieved however the particle bulk ma-
terial properties such as density and refractive index are much more difficult
to control for inorganic particles[7, 10]. These properties are easily tunable
in polymeric particles by changing the ratio of monomers. Functionalizing
polymeric surfaces, however, requires either swelling of the polymeric parti-
cles or a solvent that dissolves the particles during modification[1, 8, 2]. Fur-
thermore in many cases the strength of the interaction between particles de-
pends greatly on the concentration of functional surface groups control of
which is difficult to achieve with current methods.

In this chapterwe present a simple one-step synthesis of polymeric azide-
functionalized particles. By co-polymerizing azide-monomers in different
quantities we have excellent control of the amount of azide groups on the
surface. Our chemistry is compatible with previously reported methods that
allow for refractive index and density matching, which greatly enhances the
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Figure 5.1: Schematic drawing of our synthesis.

versatility and applicability this modification.

Results and Discussion

Inspired by surface initiated polymerization methods we design an azide-
functionalized co-monomer that can deliver azide groups to the surface of
the polymeric particles[Fig. 5.1][5, 12]. Within this monomer a polymerizable
methaclate group and a functional azide group are separated by a ≈20 unit
PEG linker. This approach ensuresmaximal flexibility and accessibility of the
azide goups once attached to the particle surface. To synthesize thismonomer
we first prepare,2-(2-bromoisobutyryloxy)-PEG-methacrylate . For this we
perform a nucleophilic substitution reaction between Poly(ethylene glycol)
methacrylate (PEG-MA) and α-Bromoisobutyryl bromide. Next we substi-
tute the terminal bromine with an azide group by reacting with sodium azide
to obtain our functionalized azide monomer[Fig. 5.1].

We synthesize our polymeric particles using a dispersion polymeriza-
tion with Polyvinylpyrrolidone (PVP) as adsorbing polymer that will act as a
steric stabilizer. Similar to previously reported syntheses we use a mixture of
monomers that can be tuned for a desired refractive index and density. This
will reduce excessive scattering and improve image quality when studying
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Figure 5.2: SEM image of colloids with (a) 0.1% and (b)3.0% azide monomer. Scale-
bars repressent 5µm.

these particles with fluorescence microscopy. Density tuning of these parti-
cles reduces sedimentation which is particularly important when the modi-
fied surface induces attractive interactions that lead to the formation of large
particle clusters. Our newly synthesized azide monomer that will provide
the azide groups on the surface will act as a third monomer in this particle
synthesis. Adding the azide monomer does not affect the quality of the parti-
cles. This is confirmed by Scanning Electron Microscopy (SEM) images that
reveal low particle polydispersity and a consistent size throughout different
reactions [Fig 5.2].

As surface properties largely define the inter particle potential, precise
control over the surface concentration of azide groups is essential. We ach-
ieve this by varying the amount of azide monomer during the particle syn-
thesis. To check whether we indeed have control over the surface concen-
tration we attach a fluorescent Fluor 488-Alkyne dye to our particles via
click-chemistry[Fig. 5.3]. After reacting with the dye we wash the particles
5 times with demineralized water to exclude any non-covalently bound dye
molecules so that only dye molecules that are linked with the click reaction
remain. We hypothesize that whenmore azide groups are present on the sur-
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Figure 5.3: Schematic drawing click functionalization with a fluor 488 dye

face more dye molecules will attach and give a brighter fluorescence signal.

To test this hypothesis we synthesize five batches of particles, each with a
different concentration of azide monomer and perform a click reaction with
the Fluor 488 dye. For particles with a high concentration of azide mononer
(3.0 % of the monomer) we expect that many dye molecule have attached to
the surface. Indeed when we study particles with confocal microscopy, even
though the molecules are much smaller than the diffraction limit, we see a
bright fluorescent layer around the particles confirming that large amounts
of dye are present on the surface[Fig. 5.4(b)]. However when we decrease
the concentration of azide monomer to 0.1% of the monomer we expect a
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Figure 5.4: Confocal image of fluor-488 modified colloids with (a) 0.1% and (b)3.0%
azide monomer. Intensity in (a) is enhanced 8 times.(c) Intensity versus azide
monomer concentration. Intensity increases proportional with concentration un-
til a plateau value is reached.

weak to no fluorescent signal and we indeed find a rather weak signal even
after increasing the acquisition by a factor of 8 [Fig. 5.4(a)]. We quantify and
compare the amount of fluorescence for the different azide monomer con-
centrations in figure 5.4(c) and find the fluorescence signal increases propor-
tional to the azide monomer concentration until a plateau is reached around
3.0%. At this point saturation occurs either because the surface is saturated
with azide groups or because previously attached dyemolecules are hindering
the attachment of additional dye molecules. We estimate the number of dye
molecules on the surface by calculating the ratio of the available particle sur-
face to the surface that onemonomer occupies d = Aa

Am
while assuming a ho-

mogeneous distribution of the azide monomer throughout the particle. For
our sample with highest fluorescence and thus highest surface coverage we
find 0.03·4π·10−6

10−18 = 3.7 ·107 dye molecules per particle as an upper limit. For
the lower limit we use the 1.0% inimer point and find 0.01·4π·10−6

10−18 = 1.2 ·107
dye molecules per particle. Although crude estimates, these values suggests a
two order of magnitude increase over previously reported densities for par-
ticles of similar size[8].
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Conclusion

We have shown a simple one step method to functionalize polymeric col-
loidal particles. Our method combines the versatility of polymeric particles
with easy surface modification previously only possible for inorganic parti-
cles. Furthermore our excellent control over surface concentration pushes
the maximum surface coverage and paves the way for studying the complex
assembly of particles via supra-molecular interactions.

Materials and methods

Preparation of 2-(2-bromoisobutyryloxy)-PEG-methacrylate

We add a mixture of 18.6 mL of α-iso-bromo-butyrylbromide in 60 mL di-
cholomethane (DCM) dropwise to a mixture of 50g poly(ethylene glycol)-
methacrylate (PEG-MA), 15.2g triethylamine in 500mL DCM on ice in about
60 minutes under refluxing conditions. Once fully added we let the mixture
react overnight. We filter the reaction mixture using a whatman filter and
concentrate by rotary evaporation. We add clean DCM and wash four times
against brine (saturated NaCl in H2O) to remove impurities. We add MgSO4

as a drying salt and filter before concentrating with rotary evaporation.

Azide modification

We add 26.19g of previously prepared 2-(2-bromoisobutyryloxy)-PEG-meth-
acrylate to 5.24 g of sodium azide in 125 mL dimethylFormamide (DMF) and
stir overnight at room temperature. We add 100 mL of demineralized wa-
ter and 100mL chloroform and collect the organic layer. After washing the
organic layer three times with demineralized water, we add MgSO4 as a dry-
ing salt and filter before concentrating with rotary evaporation obtaining a
viscous pale yellow liquid.
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Cam [%] Vam [µl] Rh [nm]

0.1 10 549

0.3 30 521

1.0 100 457

3.0 300 512

10.0 1000 595

Table 5.1: Amounts of azide monomer used in particle synthesis to obtain vari-
ous surface concentrations and resulting hydrodynamic radii obtainedwith dynamic
light scattering (DLS).

Particle synthesis

To a 250mL round bottom flask we add 85 mL methanol, 15 mL demineral-
ized water, 2.8mL 2,2,2-Trifluoroethyl methacrylate (TFEMA), 7.2 mL tert-
Butyl methacrylate (tBMA), a volume of azide monomer according to table
5.1, 4g polyvinylpyrrolidone (PVP) and 200mg azobisisobutyronitril (AIBN).
We buble the mixture with N2 for 15minutes and react overnight while tum-
bling at 65◦ C. After reacting, we filter the reaction mixture over a coffee
filter and wash against water three times using centrifugation. This results
in 100mL of particle suspension with an approximate volume fraction of
φ =0.1.

Click reaction

In a 1.5mL eppendorf reaction vessel we add 400µl 1mM tris(3-hydroxy-
propyltriazolylmethyl)amine (THPTA) solution, 28.5µl 4mMCu(II)SO4, 50µl
particle suspension, 200µl dye solution (excess) and 400µl 6.25mM sodium
ascorbate. We let the mixture react for 2h in an incubator shaker at 25◦ C.
After reacting we wash the modified particles five times with demineralized
water to remove dye that has not bound to the particles.
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Scanning Electron Microscopy

To conduct Scanning electron microscpy (SEM) on the polymer particles, a
small amount ofwashed particleswas transferred onto an SEMgrid and dried
at room temperature. The samples were sputter coated with a layer of gold
for 1 min at 25mA prior to analysis (Emitech K550). Particles were analyzed
using a FEI Quanta 3D FEG instrument (SEM/FIB). The voltage and spot size
were set at 3kV and 4.5 respectively.

Confocal Microscopy and analysis

Confocal experiments are carried out with a Nikon C2 confocal microscope
with a 60x immersion objective. All surface concentration were imaged with
identical settings. For samples with low fluorescence signal multiple images
are taken and summed into a resulting 16 bit image. The images are subse-
quently analyzed by taking the average intensity while excluding pixels with
a value lower than 50 and higher than 65535 to exclude noise and saturated
pixels respectively. Finally all average intensities are normalized to the high-
est intensity found in all samples (3% azide monomer).
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CHAPTER 6

Linking particle dynamics to local connec-
tivity in colloidal gels

Colloidal gels are a prototypical example of a heterogeneous net-
work solid whose complex properties are governed by thermally-
activated dynamics. In this chapterwe experimentally establish the
connection between the intermittent dynamics of individual par-
ticles and their local connectivity. We interpret our experiments
with amodel that describes single-particle dynamics basedonhighly
cooperative thermal debonding. The model, in quantitative agree-
mentwith experiments, provides amicroscopic picture for the struc-
tural origin of dynamical heterogeneity in colloidal gels and sheds
new light on the link between structure and the complexmechanics
of these heterogeneous solids.

This chapter was published as:
J.M. van Doorn, J. Bronkhorst, R. Higler, T. van de Laar and J. Sprakel: Link-
ing Particle Dynamics to Local Connectivity in Colloidal Gels, Physical Review
Letters, 118, (2017), 188001
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Introduction

Attractive interactions can drive a dilute colloidal suspension towards a solid
state formed by a sample-spanning and mechanically rigid particle network
[28, 26]. These colloidal gels are nonequilibrium solids, kinetically arrested en
route to their equilibrium state of solid-liquid coexistence [19]. Particle gels
are characterized by strong heterogeneity in local connectivity, mesoscopic
structure and their dynamics and mechanics [8, 5, 10, 6]. The microstructure
and internal dynamics of colloidal gels can be directly observed with optical
microscopy at the single-particle level. As a consequence, gels form a test-
ing ground to explore the complex and length-scale dependent mechanics
of heterogeneous solids. Colloidal gels derive their rigidity from physically
bonded gel strands and nodes that form a percolating elastic network. The
linear elasticity of gels is governed by the network architecture and its ther-
mal fluctuations [15, 23]. By contrast, the gradual aging of gels to a denser
state [3, 28] and their nonlinear response to applied stresses [25, 13], is gov-
erned by events occuring at the much smaller length scale of individual par-
ticles. Since the bonds between the particles are typically weak, single parti-
cles can debond from strands in the gel by thermally activated bond breaking
[17]. On longer time scales, this results in the restructuration of the gel net-
work, causing it to coarsen, age and relax internal stresses built up during
gelation [20]. Moreover, thermal activation at the single-particle level plays
a crucial role in processes of fatigue that preempt stress-induced failure of
the gel [25]. To date, quantitative descriptions of these thermally activated
phenomena have relied on mean-field approximations [17]. Yet, the inhomo-
geneity in local coordination that is intrinsic to gels, must play a large role in
the intermittent debonding dynamics that are at the origin of this complex
nonlinear behavior. As a result, linking the structure of colloidal gels to their
nonlinear mechanics has remained challenging, in particular as the relation-
ship between local connectivity and thermally activated dynamics of single
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particles is not clearly established.
In this chapter we explore the connection between the local connectivity

and intermittent bonding-debonding dynamics of individual particles in col-
loidal gels. We use quantitative three-dimensional microscopy to experimen-
tally probe this relationship in colloidal gels formed from colloids that inter-
act bymeans of short-ranged attractions. We showhow the experimental data
can be quantitatively described with a microscopic model that describes par-
ticle debonding as a strongly cooperative thermally-activated event depend-
ing on the local bonding structure. This allows us to explain how the complex
ensemble-averagedmean-squared displacement results from the convolution
of different particle species within a single gel. Our results illustrate how the
heterogeneous dynamics characteristics of strongly disordered solids emerge
from their complex and inhomogeneous local network structure.
We study gels formed frompoly(methylmethacrylate) (PMMA) particles, syn-
thesized as detailed in Ref. [1]. The particles have a radius a = 709 nm and
a polydispersity of ∼ 5%, as determined from static light scattering. The
particles are suspended at a volume fraction φ = 0.20 in an index- and
density-matching solvent mixture. The solvent is saturated with tetrabuty-
lammoniumbromide (TBAB) to screen charge interactions; we note that even
at saturation, weak electrostatic interactions remain [22]. Attractive forces
are induced by the addition of polystyrene (Mw = 105 kg/mol, Mw/Mn =

1.06, c∗ = 41.6 mg/ml) as a depletant, which has a radius of gyration Rg ≈
10 nm, resulting in a short-range depletion attraction with Rg/a = 0.014.
Three-dimensional image stacks are acquired with confocal fluorescence mi-
croscopy, fromwhich particle positions and trajectories are determined with
a resolution drres,xy = 10 nm and drres,z = 40 nm [11]. We benchmarked
this locating approach with state-of-the-art iterative methods [14], yielding
identical results (see Appendix).
Upon increasing the polymer concentration cp, calculated in the free (liquid)
volume, the structure of the sample transitions from a fluid of isolated parti-
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Figure 6.1: (a) Computer-generated rendering of a gel (cp = 37.1mg/ml); particles
color codedwith their value ofZ (from dark blueZ ≥ 6 to yellowZ = 1). (b) 〈Z〉 as
a function of cp; dotted lines to guide the eye. (c) P (Z) for a liquid cp = 21.0mg/ml
(squares) and a gel cp = 37.1 mg/ml (circles). (d) Distribution width σ (circles) and
kurtosis γ′

2 (squares) of the distribution P (Z) as a function of cp; dotted lines to
guide the eye.

cles, into a fluid of small and dynamic clusters [18]. At a threshold depletant
concentration a sample-spanning gel forms [Fig. 6.1(a)]. The phase behavior
of this experimental system was studied in detail previously [19, 21]. To eval-
uate the sample microstructure, we first calculate the ensemble-averaged and
static coordination number 〈Z〉 from snapshots of the three-dimensional gel
structure, whereZ is determined based on proximity, with a cutoff at the first
minimum in the pair correlation function. We note that the excact choice of
this criterion varies between different studies [16, 19, 24], but has no substan-
tial influence on the result (see appendix). We confirm that the large majority
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of neighbors identified in this way are mechanically bonded, by considering
their debonding kinetics (see appendix). As the attraction strength increases
we see a transition from a low, but finite, value of 〈Z〉 in the liquid state, and
a rapid growth in the coordination number as the sample transforms into an
aggregated colloidal gel [Fig. 6.1(c)] [5]. However, the average coordination
number does not provide insight into the strong intrinsic heterogeneity in
the microstructure of colloidal gels, which becomes visible in a computer-
generated representation of our experimental system in which the particles
are color coded according to their instantaneous value of Z [Fig. 6.1(a)]. In-
deed, calculation of the probability P (Z) reveals a relatively wide distribu-
tion; the local structure becomes noticeably more heterogeneous, evidenced
from the increase in width σ and decrease of the kurtosis γ′2, which is 3 for a
pure Gaussian, above the gel point [Figs. 6.1(c) and 6.1(d)].

The microscopic dynamics of colloidal systems are conventionally prob-
ed by the time- and ensemble-averaged mean-squared displacements (MSD)
〈∆r2〉 [Fig. 6.2(a)]. At low attraction strengths a diffusive 〈∆r2〉 ∝ t is found
[Fig. 6.2(a)]. Increasing cp leads to an increase in the depletion attraction,
which is partially countered by electrostatic repulsion; this leads to a gel tran-
sition at cp ∼ 33 mg/ml, where the depletion attraction U becomes large
enough to result in percolation. This can also be seen by plotting the value of
the MSD at t = 498s as a proxy for the low-frequency particle mobility [Fig.
6.2(b)]. As a consequence, the material behaves as a solid and 〈∆r2〉 exhibits
a time-independent localization plateau at short t which turns into diffusive
behavior at larger t.
The self-part of the MSD is a measure for the local dynamics of single

particles. To illustrate the fact that the internal gel dynamics are strongly
length-scale dependent, we compare these data to the distinct part of the
MSD 〈∆r2〉D [Figs. 6.2(c) and 6.2(d)]. The distinct, or two-point, mean-
squared displacement, computed as described elsewhere [4], probes the cor-
relatedmotion of particles transmitted through themedium. As such they are
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Figure 6.2: (a) 〈∆r2〉 for (top to bottom) cp =0, 21.0, 30.9, 31.1, 33.3, 34.1, 34.6,
37.1, 38.3, 40.6 mg/ml. (b) 〈∆r2(t = 498s)〉 versus cp. (c),(d) self (closed symbols)
and distinct part (open symbols) of the MSD for a liquid (c)(cp = 21.0 mg/ml) and
gel (d)(cp = 37.1mg/ml).

a measure for the global, rather than local, properties of the gel. For samples
in the fluid, just prior to the liquid-solid transition, the self- and distinct-parts
of theMSDoverlapwithin experimental error [Fig. 6.2(c)]. This indicates that
there are no appreciable differences between local and global dynamics. By
contrast, just above the gel threshold the distinct 〈∆r2〉D is almost an order
of magnitude lower than the self-part of the MSD [Fig. 6.2(d)]. The gel is
more rigid at the macroscopic scale, than that what is experienced by indi-
vidual particles locally. Apparently, the dynamics of single particles in the gel
are strongly affected by local structures; insight into these effects cannot be
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obtained by ensemble averaging.

We hypothesize that single-particle dynamics, as measured by the self-
part of the MSD, can be described by a specific sequence of events. Particles
are first bonded to their neighbors in the gel network by bonds of strength
U/kBT . Under the action of thermal fluctuations, particles spontaneously
debond from the gel with a characteristic rate kd,Z ; after debonding a par-
ticle will diffuse through the viscous medium with a rate D. This motion
persists, until the particle collides with the gel network and re-attaches by
forming new bonds. Thus, particles can exist in two states, bound and free,
each characterized by different dynamics.

We can experimentally evidence the existence of these two populations
by determining the probability distribution P (∆r2(t)) of MSD values for
individual particles at a particular lag time t = 498 s. A sample in the fluid
states exhibits a distribution with a single population of freely diffusing par-
ticles [Fig. 6.3(a)], also illustrated by the linear dependence of the ensemble-
averaged MSD with time [Fig. 6.2(a)]. By contrast, a sample in the gel state
reveals two populations; a major fraction of the particles is bonded and ex-
hibits a low mobility, whereas a secondary peak signals the particles which
have debonded and diffuse through the solution [Fig. 6.3(b)]. Note that this
diffusive population has a lower effective diffusion coefficient than particles
in the repulsive liquid, probably due to the fact that not only singlets, but also
small clusters debond and diffuse. These two populations are clearly visible,
except for the shortest correlation times, where their∆r2 values overlap, so
that a single peak remains [Figs. 6.3(c) and 6.3(d)].
Assuming no significant contribution by small diffusing clusters, the self-
part of the MSD of a single particle ∆r2(t) can be split into two contribu-
tions. (i) In the first, free diffusion occurs during a characteristic time τf , dur-
ing which∆r2(t) = 6Dt. (ii) In the second thermal fluctuations of a particle
in its bonded state, during a time τb, can be decomposed into two contribu-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129
129



CHAPTER 6: Linking particle dynamics to local connectivity in colloidal
gels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.3: Probability distributions P of single-particle MSD at t = 498s for cp =

21.0 (a) and 37.1 mg/ml at t = 498s (b), t = 248s (c) and t = 1s (d).)

tions: (a) bonded particle pairs will exhibit bond-length fluctuations in the
attractive potential well, with a characteristic amplitude, from dimensional
analysis, δBL ∼ (kBTR

2
g/U)1/2. (b) the gel network as a whole will exhibit

collective fluctuations, which displaces particles within the same strand in
sync. These collective fluctuations are mechanical excitations of the solid as
a whole and their amplitude scales as δC ∼ (kBT/G)1/3, with G ∼ U/a3

the shear modulus of the gel. If we define αb = τb/(τb + τf ) as the fraction
of time a particle resides in a bonded configuration, the time-averaged MSD
of a single particle can be approximated as

∆r2(t) = (1− αb)6Dt+ αb(δBL
2 + δC

2). (6.1)

Based on realistic estimates for Rg ≈ 10 nm, U of order kBT and a = 709

nm, we find that δBL � δC , such that (δBL
2+ δC

2) ≈ δC
2. We note that, in

our experiments, only vibrations that exceed the spatial resolution drres of
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the particle locating algorithm can be detected. Smaller vibrations will result
in a observed MSD plateau of δC2 ≈ dr2res.

For the sake of simplicity, we presume that the diffusion of debonded
species occurs at a rateD =kBT /6πηa, where η = 2mPa·s is the viscosity of
the suspendingmedium. The time a debonded particle remains free τf is gov-
erned by the diffusion-limited collisions of free colloids with the gel strands.
The characteristic time a particle resides in a bound state is governed by ther-
mally activated dynamics. In an Eyring approach, the rate of dissociation of
a single bond is described as kd,1 = ω0 exp [−U/kBT ], where ω0 is the at-
tempt frequency [9]. For a particle to detach from the gel network, allZ bonds
that connect it to its neighbors must be ruptured. Breaking one bond, while
the particle stays in place due to the remaining Z − 1 bonds, leads to rapid
restoration of the broken bond with a rate ka. Assuming that ka � kd,1,
particle detachment from the network will only occur if all Z bonds break
simultaneously [17]. Thus particle detachment is strongly cooperative with
a rate kd,Z = (kd,1)

Z . The typical time a particle remains bonded becomes
τb =

1
ω0

[exp (ZU/kBT )− 1],where the term −1 ensures that the bonding
time vanishes as Z → 0. Substituting these results in Eq.6.1 gives a micro-
scopic expression for the single-particle mean-squared displacement as

∆r2(Z, t) = 6Dt+
eZU/kBT − 1

eZU/kBT − 1 + ω0τf

(
δC

2 − 6Dt
)
. (6.2)

This expression predicts a distinct dependence of the single-particle dynam-
ics on its local coordination number Z . From our experimental data, we de-
termine the value of∆r2(Z, t) at a fixed lag time t = 498s, and plot these as
a function of the average Z for the particle during the length of our experi-
mental observations [symbols in Fig. 6.4(a)]. To avoidmathematical complex-
ity we use the time-average coordination number as a proxy for the single-
particle connectivity. We note that this is an approximation; a comprehensive
theory would require taking into account the entire time path of connectivity
for each particle Z(t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

131
131



CHAPTER 6: Linking particle dynamics to local connectivity in colloidal
gels
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We fit these experimental data to the theoretical model [Eq. 6.2]; we de-
termine δC from the plateau in the MSD at high values of Z , and fit the pa-
rameters U and ω0τf , the ratio of the frequency of debonding attempts and
reassociations. The predictions from the microscopic theory are in excellent
agreement with the experimental data [symbols in Fig. 6.4(a), see appendix
for the fitting values]. Both data sets, for different polymer concentrations,
can be fitted with ωoτf � 1, thus confirming the validity of the assumption
that ka � kd,1. Moreover, we find that the weaker the gel, i.e. at lower cp,
the larger the amplitude of collective fluctuations; δC = 0.33 µm for gels at
cp = 30.9mg/ml and δC = 0.12 µm for 34.1mg/ml. This is consistent with
the qualitative trend predicted by the scaling relation above.

The effective bonding energies we need to fit the data in proximity to the
gel point are of the order of∼ 1-2 kBT . This is of the correct order of mag-
nitude, but a factor of 2 smaller than the value reported previously for gels
of the same particles at similar φ but for a slightly longer-ranged attraction
withRg/a = 0.059[19], while for our gelsRg/a = 0.014. We also note that
this is almost an order of magnitude lower than the depth of the depletion at-
traction calculated with the Asakura-Oosawa model [2], which assumes only
hard sphere repulsions. We attribute this to the still significant electrostatic
repulsion known to act between PMMA particles in apolar solvents even in
presence of the TBAB electrolyte [22]. In particular for small depletants, the
presence of residual charges can lead to drastic weakening of the effective
attractions.

These data illustrate the intimate link between single-particle dynamics
and local connectivity. To further substantiate these findings we probe the
evolution of the coordination number for a single particle as a function of
time. For a weakly connected particle, strongly intermittent fluctuations oc-
cur between bonded Z > 0 and unbonded Z = 0 states [Fig. 6.5(a)]; the
continuous debonding and diffusion allows the particle to travel significant
distances over the course of several minutes before it exits the field of view
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Figure 6.4: (a) Single-particle MSD at t = 498 s versus Z from experiments (sym-
bols) and model described in the text (solid lines) for cp = 30.9 mg/ml(diamonds),
34.1 mg/ml (circles) and 34.6 mg/ml (squares). (b) Experimental ensemble-averaged
〈∆r2〉 (symbols, cp = 34.6 mg/ml) and prediction by Eq. 6.3 (solid black line). The
gray lines are the contributions to 〈∆r2〉 for different (top to bottom) Z = 0, 1, 2, 3,
4, 5, 6.

[Fig. 6.5(c)]. By contrast, a strongly coordinated particle shows fluctuations
in coordination number of ±1 [Fig. 6.5(b)], but remains connected over the
entire length of the experiment of 5000s, and as a consequence only exhibits
strongly localized positional fluctuations [Fig. 6.5(d)].

Finally, with a quantitative microscopic description for the effect of con-
nectivity on single-particle dynamics [Eq.6.2], we attempt to reconstruct the
ensemble-averaged mean-squared displacement. To do so, we must weight
the ensemble-average using the distribution of coordination numbers P (Z)

as a weighting function:

〈∆r2(t)〉 =
∑
Z

P (Z)∆r2(Z, t). (6.3)

With the values of U and ω0τf determined from our experimental data [Fig.
6.4(a)] and P (Z) obtained directly from the static structure of the gel, we can
now predict the ensemble-averagedMSD. Indeed, without adjustable param-
eters, we find that the reconstructed 〈∆r2(t)〉 based on our model for single
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particle dynamics is in reasonable quantitative agreement with the ensemble-
averagedMSD determined directly from experiments [Fig. 6.4(b)]. This high-
lights the self-consistency of our description. Moreover, it enables us to de-
convolve the ensemble-average into the different populations of particleswith
different local coordination numbersZ [solid gray lines, Fig. 6.4(b)]. This pro-
vides a direct and quantitative explanation for the distinct dynamical hetero-
geneities characteristic of colloidal gels. We have presented experimental

Figure 6.5: Thermal fluctuations inZ of a single particle (a),(b) and its corresponding
displacement ∆r (c),(d) for a weakly connected (a),(c) and highly connected (b),(d)
particle in the same gel at cp = 37.1mg/ml.

data and theoretical analysis that explains how the heterogeneous dynamics
of colloidal gels derives from the large inhomogeneities in local connectivity.
The quantitative description of single-particle dynamics based on the local
structure could form a stepping stone to develop microscopic descriptions of
processes, such as aging, syneresis or stress-induced fatigue, in which the lo-
cal microstructure evolves over time under the action of thermally activated
particle rearrangements. Here, we have only considered particle rearrange-
ments to occur through debonding and reassociation onto the gel network.
Even though this provides a reasonable approximation, given the agreement
between our experiments and the model, other thermally-activated modes
of particle motion, such as the sliding of a particle along a gel strand with-
out debonding entirely, also exist and must be accounted for, to arrive at a
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complete description of gel dynamics.

Appendix

Experimental system

PMMA-PHSA particles of 700 nm radius are synthesized using dispersion
polymerisation of methyl-methacrylate (MMA, Sigma) in hexane and dode-
cane (80 degrees celsius, 2 hours) using AIBN as a radical initiator [27]. The
particles are stabilized by a comb polymer of polyhydroxy stearic acid (PHSA)
grafted onto a PMMA backbone. The PHSA-comb is covalently linked to the
particle surface using an epoxide-carboxylic coupling in a second step after
the dispersion polymerization. Nile red is incorporated into the particles to
enable excitation by a 534 nm laser and subsequent detection of light in a flu-
orescent microscope.
PMMA-PHSA particles are dried by rotary evaporation to remove solvents
from the particle suspension, creating a PMMA-PHSA particle powder. The
depletant is a polystyrene polymer bought at Polymer Source Inc, which was
Mn = 99, 000g/mol, Mw = 105, 500g/mol and PDI = 1.06 as deter-
mined by the supplier using gel permeation chromatography. The overlap
concentration c∗p is calculated using c∗p = 3Mw/4πR3

gNA withRg = 10nm
andMw = 105, 500g/mol, resulting in c∗p = 42g/l. We determine the radius
of our PMMA particles using Static Light Scattering (SLS) using a custom-
built instrument. A dilute suspension was prepared in cis-decalin in a quartz
cuvette, and the scattering intensity was measured in a range of θ = 20◦ to
120◦ . The scattering intensity as a function of angle (I(θ)) was fitted to the
form factor for polydisperse hard spheres, yielding a radius of gyration of
709nm and a polydispersity of∼ 5%.
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Refractive index and density matching

The particle suspension was refractive-index and density matched by repeat-
edly adding small amounts of eitherCXBor tetralin to a suspension of PMMA-
PHSA particles in a w/w 80% CXB, 16% cis-decalin and 4% tetralin solu-
tion. A final mixture of w/w 70.5% CXB, 19.8% tetralin and 9.6% cis-decalin
(ρ = 1.26, nr = 1.504) was prepared that did not have any observable sedi-
mentation after 60 minutes of centrifugation at 2000g.

Sample preparation

Samples are prepared by weighing the required amount of particles to create
a φ = 0.2 suspension with a certain amount of added depletant. Index and
density matching solution is added (CXB, Tetralin, Decalin mixture) and the
sample is left to tumble on a rotating wheel overnight.
Sample chambers are built by glueing (Norland 61) two cover slips (rectangle,
21x26mm) to a microscope slide with a few mm 2D channel in between,
which are cured by exposure to a strongUV lamp. A third circularmicroscope
slide (� = 50mm) is placed on top after application of more glue to create
a 3D channel. Sample chambers are left overnight in a 50 ◦C oven to make
sure all glue is cured. Approximately 100 µl of sample is transferred into the
chamber, which is then sealed using a two component epoxy glue.

Measurements & analysis

Confocal images of each sample are taken by a Visitech VT-infinity3 with
a Hamamatsu ORCA Flash 4.0 camera. 60 minutes of equilibration time is
given to each sample glued to themicroscope stage, after which 5000 z-stacks
of 41x41x20.7 µm are taken at 1 Hz. Imaging is performed at least 10 µm
from the glass sample interface to avoid wall effects.
We have taken experimental precautions to avoid drift occurring in our sam-
ples that include clamping down the sample tightly onto the microscope, me-
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chanical equilibration after placing the sample of at least 1h, having the mi-
croscope on an actively-damped optical table and having the entire set-up in
a climate control room in which temperature and humidity are controlled to
an accuracy of 0.1 ◦C and 1-3% humidity.
Particle locating and tracking is performed using established routines [12],
determining centroids of each particle and creating single particle trajecto-
ries. Z was determined by doing a range search over the centroid location
data over a distance of 2.1µm. Z(τ)/Z0 is determined by analyzing all neigh-
bor’s identities during each individual trajectory. MSD of particle trajectories
were determined by analyzing the locations data, of which we assume that
τmax = 0.2 ∗ 5000s. Increasing τ to more than 20% of measurement time
was assumed not to be statistically viable.
After particle tracking we compute the ensemble-averaged affine drift mag-
nitude and direction. Particle positions are then updated by removing this
drift, and we re-run the tracking algorithm for a refinement of the trajec-
tories. This process is iterated 30x which leads to a complete minimization
of any coherent motion, as was shown extensively for suspensions even in
strong flows in a recent paper by Duits et al.[7]. The typical drift velocities
we determine in our experiments never exceed 0.1 µm/s.

Dynamical nearest neighbor analysis

To check whether bonds determined with our analysis are persistent and can
be regarded as mechanically bonded, we calculate the decay of the number
of original bonds. For different lag times we calculate the number of original
bonds with a cutoff of 3a, where a is the radius of the particles. We ensemble
and time-average all decays to yield adequate statistics, which results in the
decays shown in Fig. 6.6. For a colloidal liquid none of the original bonds
are present after 5s [Fig. 6.6 (a)], which indicates that none of the bonds are
long-lived and cannot be regarded asmechanically bonded. For a colloidal gel
however most of the original bonds are still present after 5s which indicates
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that these bonds have a much higher persistence than the bonds in the liquid
sample and can therefore be regarded as mechanically bonded [Fig. 6.6 (b)].
Furthermore, we confirm that these data are independent of the exact choice

Figure 6.6: Decay curves for the fraction original bonds Z(τ)
Z(0) at lagtime τ for a

colloidal liquid (cp = 0 mg/ml) (a) and a colloidal gel (cp = 37.1 mg/ml)(b).

for the cutoff distance [Fig. 6.7]. Previous studies have used different values
for this cutoff([16, 19, 24]); here we choose to proceed our analysis with a
cutoff of approximately 1.5 times the particle diameter such that the entire
first peak in the pair correlation function is counted as the nearest neighbor
shell. This results in a good signal-to-noise ratio for the nearest-neighbor data
and accounts for the fact that (i) residual electrostatic interactions between
the particles result in a broadening of the bonding distance and (ii) there is a
finite resolution of determining the particle centroid in our experiment.

Parameters Fig. 6.4(a)

Table 6.1 shows the parameters for the fits shown in figure 6.4(a) in the main
text. Fitting is carried out using the trust-region algorithm in the MATLAB®

Curve Fitting ToolboxTM. U
kBT and ω0τf are fitting parameters and δC is

determined from experimental data.
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Figure 6.7: Decay curves for the fraction original bonds Z(τ)
Z(0) at lagtime τ for a sticky

liquid (cp = 21.0 mg/ml) for cutoff distances 2.8 µm, 3.5 µm and 4.2 µm (squares,
circles and triangles respectively).

Table 6.1: Parameters used for curves in Fig. 6.5 (a). U
kBT and ω0τf are fitting pa-

rameters and δC is determined from experimental data.

cp [mg/mL] U
kBT ω0τf δC [µm]

30.9 0.8 0.06 0.33
34.1 2.0 0.07 0.12
34.6 1.9 0.09 0.08

Comparison of particle locating to iterative particle locating

To demonstrate the validity of our located particles we compare the locat-
ing method that was used for all analysis in this paper with a state-of-the-art
iterative locating method[14] for two representative samples. Directly after
locating we exclude all particles with an integrated intensity over Iint=40000
to make sure all found particles are real particles [Fig.6.8]. After filtering
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Figure 6.8: Histogram of the integrated intensities of particles found with an itera-
tive particle locating algorithm for cp=37.1mg/mL.

and tracking we find 8984 trajectories for both the iterative algorithm and
the original locating algorithm for the cp=37.1mg/mL sample. For the cp =
21.0mg/mL sample we also find 1173 trajectories for both algorithms.
To fully appreciate the impact of the iterative algorithm on our measured
single particle dynamics we compare the single particle mean-squared dis-
placement probability distributions obtained with the different algorithms
[Fig. 6.9]. Besides one slightly shifted point on the right in Fig. 6.9f all dis-
tributions are identical. This indicates that results obtained with the locating
method we used for all analysis are nearly-identical to the results obtained
with current the state-of-the-art locating algorithms.
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CHAPTER 7

Strand plasticity governs fatigue in colloidal
gels

The repeated loading of a solid leads to microstructural damagecsc
that ultimately results in catastrophic material failure. While pos-
ing a major threat to the stability of virtually all materials, the mi-
croscopic origins of fatigue, especially for soft solids, remain elu-
sive. Here we explore fatigue in colloidal gels as prototypical in-
homogeneous soft solids by combining experiments and computer
simulations. Our results reveal howmechanical loading leads to ir-
reversible strand stretching, which builds slack into the network
that softens the solid at small strains and causes strain hardening at
larger deformations. We thus find that microscopic plasticity gov-
erns fatigue atmuch larger scales. This gives rise to a newpicture of
fatigue in soft thermal solids and calls for new theoretical descrip-
tions of soft gel mechanics in which local plasticity is taken into
account.

This chapter was published as:
J.M. van Doorn, J.E. Verweij, J. Sprakel and J. van der Gucht: Strand plasticity
governs fatigue in colloidal gels, Physical Review Letters, 120, (2018), 208005
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Introduction

The application of repeated load to a solid material can lead to the erosion
of its microstructure, in a process that is known as fatigue. While the ini-
tial stages of this process often go unnoticed, the gradual accumulation of
damage that can ultimately lead to the sudden and catastrophic failure of the
material. Understanding the microscopic origins of fatigue is therefore cru-
cial for the reliable prediction of amaterial’s lifetime and for the development
of strategies to improve mechanical stability. In materials such as steel and
concrete, fatigue is characterized by the accumulation and growth of small
microcracks [15, 10]. However, the mechanisms of fatigue in disordered soft
materials are much less understood. A prototypical class of soft heteroge-
neous solids is comprised of colloidal gels. These are nonequilibrium struc-
tures consisting of aggregated colloidal particles that form a sample-spanning
network [28].
The arrested dynamics of the aggregated particles lead to solidlike behaviour,
with elastic properties that are determined by the structure and connectivity
of the network [12, 25]. When subjected to a large enough stress, colloidal
gels will eventually fluidize or fracture, often after a latent period of appar-
ent stability [8, 3, 2, 7, 9, 27, 16]. The microstructural changes responsible
for this delayed failure have been attributed to the brittlelike rupture of net-
work strands due to force-activated breaking of interparticle bonds [17, 5, 26].
Such models assume that no restructuring of the network due to plastic par-
ticle rearrangements takes place. Yet, it is known that such rearrangements
do occur [13, 23], even for colloidal gels at rest [29], where they lead to ag-
ing, coarsening, and slow relaxation of internal stresses [4, 21, 6]. While it
is known that under a large deformation aggregates break into smaller clus-
ters [30], the response of aggregated structures to repeated small deforma-
tions remains unclear. To establish a link between the stability of colloidal
gels and their microstructure, it is therefore needed to understand the role of
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plasticity in gel failure and fatigue.

In this Letter, we report fatigue measurements on model colloidal gels
subjected to cyclic loading. By combining experiments and computer simu-
lations, we show that the gradual weakening that occurs in these gels is due to
plastic deformations within individual gel strands. Our results thus shed new
light on the mechanism of damage accumulation in colloidal gels and suggest
that the current models for colloidal gel failure must be revised to take this
plastic softening into account.
We investigate colloidal gels consisting of monodisperse polystyrene parti-
cles synthesized as described in Ref. [1], with a volume fraction φ =0.18.
The particles have a diameter a = 90 nm as determined by dynamic light
scattering. Attraction is induced by coating the particles with a thermore-
sponsive surfactant layer of approximately 8 nm thickness, as synthesized
in Ref. [11]. To screen electrostatic repulsion between the particles, 100 mM
NaCl is added to all samples. Rheologicalmeasurements are performedwith a
stress-controlled rheometer (MCR-501, Anton Paar) with a concentric cylin-
der geometry (CC10/Ti). The gels are formed in situ by heating the samples
to 45◦C, above the critical aggregation temperature of the surfactant, which
results in gels with thick strands, each composed ofmany particles in its cross
section, in which it is established that significant rearrangements occur [11].
To minimize initial transient effects, samples are equilibrated for 1 h before
initiatingmeasurements. Fatigue in the gels is studied by cyclically deforming
the samples with a sawtooth strain profile [inset in Fig. 7.1]. After 14 cycles at
the same strain amplitude γmax, we allow the sample to rest for 120 s, before
starting a new set of deformation cycles at a higher strain amplitude, with
increment∆γmax = 0.005.

For the smallest amplitude the stress-strain curve exhibits a linear elas-
tic response [Fig. 7.1]. For larger strain amplitudes, however, the stress in-
creases nonlinearly with increasing strain and shows a hysteresis loop, which
indicates dissipative losses during the deformation cycle [14] [see also ap-
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pendix F, Fig. 7.15(a)]. The first cycle for every strain amplitude differs qual-
itatively from the subsequent cycles: With increasing strain, the stress in-
creases strongly, until a threshold value of approximately 470 Pa is reached,
after which it levels off, indicating that the material undergoes plastic flow at
this stress level. For every subsequent cycle, the observed stress is lower than
that in the first cycle, signalling a progressive, irreversible weakening of the
material. The stress-strain curve then gradually approaches a limit cycle, with
an enclosed area that reflects the viscoelastic dissipation in the network due
to solvent flow or reversible particle rearrangements. Note that the viscous
contribution to the stress is negative in the unloading branch of the cycle,
leading to a negative overall stress as the strain returns to zero.
Because the timescale at which plastic rearrangements take place can be rel-
atively long for these strongly aggregated particles, we expect the amount of
plasticity to depend on the loading rate. Indeed, when we increase γ̇ by a
factor of 10, to 10−1 s−1, we observe a much more elastic response, with
the onset of nonlinear plastic behaviour shifted to much larger strains and
stresses [Fig. 7.2(a)].
To analyze the nature of the observed plasticity in colloidal gels in more

detail, we first disentangle the elastic and viscous contributions to the me-
chanical response, by averaging the loading and unloading curve for each cy-
cle [20]. This averages out the viscous contribution to the stress, so that only
the elastic stress σel remains [Fig. 7.2(b)]. For the smallest strain amplitude,
the stress-strain response is linear; however, at higher strains, when the gels
have undergone plastic deformation, the curves become strongly nonlinear.
The shapes of the non-linear response of all cycles are very similar. After an
initial linear response, characterized by a linear modulus G0, the gels show
pronounced strain hardening: At a characteristic strain amplitude γ∗, there is
a sharp upturn of the stress. The linear modulus that characterizes the initial
slope of the stress-strain curves decreases with increasing strain amplitude
[Fig. 7.2(c)], signaling the progressive weakening of the gels resulting from
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Figure 7.1: Stress-strain curves as a result of sawtooth strain cycles shown in the
inset (only the first two sets are shown) with γ̇=10−2 s−1. From blue to yellow:
γmax = 0.005, 0.02, 0.035, 0.05, 0.065, 0.08, 0.095 (note that only a selection of the
sets is shown).

the gradual erosion of the network structure during the fatigue cycles. We
obtain γ∗ by superimposing the different stress-strain curves for both strain
rates by plotting the normalized stress σel/σ∗, where σ∗ = G0γ

∗, as a func-
tion of the rescaled strain γ/γ∗ [Fig. 7.2(d) and appendix F, Fig. 7.15(b)]. The
excellent collapse indicates that the physical mechanism that underlies the
mechanical response of the gels remains the same during the fatigue cycles.
We find a linear increase of γ∗ with increasing maximum strain amplitude
[inset in Fig. 7.2(c)], indicating that the strain hardening response is delayed
by the fatigue process.
While our data demonstrate the importance of plasticity for fatigue in col-
loidal gels, the microscopic nature of this plastic deformation remains to be
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Figure 7.2: (a) Stress-strain curves for γ̇=10−1 s−1, from blue to yellow: γmax =

0.005, 0.02, 0.035, 0.05, 0.065, 0.08, 0.095. (b) Elastic midlines for curves in Fig.7.1.
c) The initial modulus as function of γmax for γ̇=10−1 s−1 (squares) and γ̇=10−2 s−1

(circles). The inset shows the same data on a double-logarithmic scale. (d) Collapse
of every second elastic midline for both strain rates. The inset shows the dependence
of γ∗ on γmax for γ̇=10−1 s−1 (squares) and γ̇=10−2 s−1 (circles).

uncovered. Given that colloidal gels are networks of connected strands con-
sisting of aggregated particles, the observed weakening must be caused either
by the rupture of gel strands, leading to a decrease in network connectivity,
or by softening of the gel strands, leading to a lower effective spring constant
of the strands. To identify which of these scenarios is the dominant one, we
need detailed information at the single strand level. Since this is extremely
difficult to obtain experimentally for our system, we perform Brownian Dy-
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namics (BD) computer simulations on single gel strands [Fig. 7.3]. The strands
are composed of 256 particles of diameter a interacting through aMorse po-
tential [24], with an interaction strength ε = 10kBT and interaction range
parameter ρ0 = 33, which corresponds to a well width of approximately
∆ = 0.09a, similar to the experimental system [appendix A, Fig. 7.5]. Follow-
ing the experimental protocol, the gel strands are deformed cyclically with a
sawtooth strain profile (see appendix A for further details about the simula-
tionmethod). To connect our simulation results to the experimental findings,
we calculate the force needed to deform the strand as a function of the strain 1.
The force-strain curves for non-fractured gel strands show features that are
very similar to the macroscopic curves measured experimentally [Fig. 7.4(a)].
Like in the experimental curves, we find that the first force-strain curve for
each strain amplitude differs qualitatively from the subsequent cycles, show-
ing a plateau above a critical force that indicates plastic deformation within
the gel strand.
We use a similar procedure to rescale the force-strain curves as in Fig. 7.2(d).
Again, we average the force in the loading and unloading curve and plot the
rescaled elastic force fel/f∗, with f∗ = kγ∗ the scaled stiffness of the strand
in the linear regime as a function of the rescaled strain γ/γ∗. This yields a
curve that shows similar features to the experimental one [Fig. 7.4(b)], with
a linear response regime, followed by a strain-hardening response at higher
strains. The linear spring constant of the gel strands k decreases in a simi-
lar fashion with the strain amplitude γmax as the elastic modulus in the ex-
periments [Fig. 7.4(c)]. Furthermore, the onset of strain hardening shifts to
higher strains with increasing strain amplitude [Fig. 7.4(d)], also in agree-
ment with experiments [inset in Fig. 7.2(c)]. Since broken strands have been
excluded from the analysis, the observed weakening in the simulated force-
strain curves can be attributed completely to plastic rearrangements within

1The force f on the simulation walls is related to the stress measured in the experiment as
σ ≈ f

ξ2
, with ξ the mesh size of the network.
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the strands. This suggests that also the weakening observed at the macro-
scopic scale in our fatigue experiments can be explained by plastic deforma-
tion and softening in individual gel strands, without the need to invoke a
rupture of strands.
To verify that this finding is not specific to the geometry of the simulated
gel strands, we have carried out simulations for strands of different lengths
andwidths and for larger gel networks consisting ofmany interconnected gel
strands. In all cases, the force-strain loops show similar features to the curves
in Fig. 7.4(a) and Figs. 7.11 -7.13, which affirms that gel strand plasticity is
a mechanism for fatigue in a wide class of colloidal gels, irrespective of the
precise structure of the gel strands.
To unravel the microscopic mechanism that underlies the plastic deforma-

Figure 7.3: (a) Visual representation of the noncumulative average plastic deforma-
tion per particle in oscillation cycles 1,2,4,6,10, and 14 of a single gel strand (γmax =

0.04, data in supplemental Fig 2.). The color bar indicates the non-cumulative plas-
tic deformationmi per particle in each cycle from low (purple) to high (yellow). The
cumulative plastic deformation of this gel strand is shown in appendix F Fig. 7.14(b)
Plastic deformation in a gel strand after the first cycle (F1), before fracture (F11) and
after fracture (F12).
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Figure 7.4: (a) Force-strain curves for BD simulations of 24 (8 × 3) oscillations of
a single gel strand at strain amplitudes (purple to orange) γmax = 0.02, 0.04 and
0.06. (b) Collapse of the average force-strain curves (positive parts of the loading and
unloading curve) of the fourth oscillation cycle scaled by γ∗ on the x-axis and k · γ∗

on the y-axis. Data are obtained from appendix A, Fig. 7.8(c) Spring constant k (in
units kBTa−1) as a function of γmax. (d) γ∗ as a function of γmax.

tion of the gel strands, we analyze the rearrangements of individual particles
and quantify the average plastic strain for each particle in an oscillation cn as

mi(cn) =
1

Nia2

Ni∑
j=1

〈(rij(0)− rij(t))
2〉 (7.1)

where rij(0) and rij(t) denote the separation vector between particle i and
neighboring particles j at the start of the cycle and after a time t, respectively,
Ni is the number of nearest neighbors of particle i, and the average is taken
over the entire oscillation.
During the strain cycles, the amount of plastic strain gradually increases, with
most of the plastic rearrangements occurring during the first cycle. For larger
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strain amplitudes, the amount of plastic strain is also larger [Fig. appendix B,
7.7(b)]. These irreversible particle rearrangements and the associated rupture
of inter-particle bonds are responsible for the large energy dissipation in the
first strain cycles. As the gel strands are several particle diameters wide [Fig.
7.3], the breaking of a single bond does not immediately lead to rupture of the
whole strand [17]. The overall integrity of the strand is maintained by adja-
cent bonds and due to thermal fluctuations, new bonds can form [20, 6, 27].
This provides a mechanism for the plastic deformation of the gel strands.
Visual inspection of computer-rendered images of the simulated strands sug-
gest that the plastic rearrangements of particles result in the irreversible length-
ening of the strands after deformation, leading to the build-up of slack in the
strands and buckling during unloading [Fig. 7.3(a)]. The linear increase of γ∗

with increasing γmax [inset in Fig. 7.2(a) and Fig. 7.4(d)] furthermore suggests
that this slack is proportional to the applied extension. During the next cy-
cle the slack induced by previous cycles is pulled out first, which results in
little resistance and explains the initial soft linear elastic response of the gels.
When the strands are pulled taut, the resistance to further stretching increases
strongly as the strand entropy vanishes and the physical bonds between the
particles become perturbed. This results in the observed strain hardening in
our colloidal gels. We note that these phenomena are reminiscent of obser-
vations made for networks of biopolymer bundles [20].
Interestingly, the plastic rearrangements do not occur homogeneously in the
gel strand but are strongly localized to specific regions [Fig. 7.3]. This leads
to the formation of thicker and thinner regions in the gel strand, reminiscent
of the Rayleigh-Plateau instability in liquid jets, which highlights the arrested
liquid state of colloidal gels [18]. This is further corroborated by looking at
the average number of bonds per particle, which gradually increases during
the oscillations [Appendix B, Fig. 7.7(d)], suggesting that fatigue in colloidal
gels is reminiscent of activated aging, in which the nonequilibrium gel struc-
ture tends to coarsen by increasing the number of bonds [19].
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At high strains, the localization of plastic deformation ultimately leads to a
rupture of the gel strand at the weakest spot, i.e. at a local necking region [Fig.
7.3(b)]. The percentage of broken strands increaseswith increasing strain am-
plitude and reaches about 65 % for a strain of 0.06 [appendix B, Fig.7.9]. As the
strands become longer and thinner, a rupture occurs more frequently, but in
all cases it is preceded by a significant plastic deformation within the strands
[appendix D, Fig. 7.12 and appendix E, Fig. 7.13. Since our analysis focuses
on the microscopic plastic events within strands, preceding their rupture, the
role of strand rupturing for the mechanical stability of the gel as a whole re-
mains to be understood.
To investigate the effect of the deformation rate, we also deform the gel strands
at higher strain rates. Increasing the strain rate by a factor of 100 leads to
a considerably higher number of ruptured strands [appendix B, Fig. 7.9(c)].
From the average plastic deformation per oscillation cycle [appendix B, Fig.
7.10 as a function of increasing strain rate we observe a clear decline in the
plasticity of the gel strands. These data suggest that colloidal gels with hardly
any options to deform plastically will rupture in a brittle fashion. Macro-
scopically, the extended linear regime in Figure 7.2(a) signals the onset of a
transition to brittle failure. This is supported by the fact that G0 decreases
very rapidly at high γ∗ for γ̇=10−1 s−1 , suggesting that a larger part of the
damage is caused by brittle fracture [inset in Fig. 7.2(c)].
Our results highlight how fatigue in colloidal gels results from plasticity at
much smaller scales. This feature results from the strongly hierarchical and
multiscale structure of networks of colloidal particles. To date, strand plas-
ticity has been overlooked in describing the mechanics of colloidal gels but
has also received little attention as a possible mechanism of fatigue in a wider
variety of heterogeneous solids, while our data clearly indicate its pivotal role
in deciding the material’s fate under repeated loading. Strand stretching and
the buildup of slack has also been identified as a mechanism for strain soft-
ening in networks of biological fibers [20]. This raises the question whether
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localized plasticity, which remains obscured in macroscopic mechanical test-
ing, may have amore universal role in the fatiguemechanisms of awider class
of inhomogeneous soft solids with a hierarchical microstructure. If so, a uni-
versal description of these effects could have pronounced implications for the
predictability of the nonlinear mechanical response of soft materials, which
remains an open challenge in the field. Finally, while our work has focused
on fatigue induced by external loading, other failure mechanisms driven by
internal stresses are known to exist for these inhomogeneous thermal solids,
such as aging and syneresis [4, 21, 6]. The plasticity we describe here results
from the rearrangement of particles by thermally activated debonding [29],
in which the mechanical stress imposes a directional bias that leads to irre-
versible strand stretching. Based on our observations here, we hypothesize
that internal stress can give rise to similar effects, where e.g. contractile in-
ternal stresses could bias rearrangements that lead to isotropic condensation
of the structure, ultimately resulting in syneresis. While this remains unex-
plored to date, it could open the way to a universal description of the failure
of these nonequilibrium solids.

Appendix A: Simulation details

Multiple strain amplitudes

Brownian Dynamics (BD) simulations were performed to study the effect of
repeated deformation on themicroscopic scale only. We consider a gel strand
with 256 particles which interact through the Morse potential [24]:

βU(r) = βε exp(ρ0[a− r]) (exp[ρ0(a− r)]− 2) (7.2)

with β = 1/kBT , ρ0 = 33, energy scale βε = 10 and particle diameter
a = 2ra [Fig. 7.5]. The parameter ρ0 determines the width of the potential,
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which becomes approximately ∆ = 0.09 a for ρ0 = 33 2. In this way it
matches the experimental interaction range, which is known to be around 8
nm for the thermo-responsive surfactant that coats the particles (rp = 45

nm) [11].
The motion of a particle i with position ri is obtained by solving the

overdamped Langevin equation:

ṙi(t) = βD0[−∇iU(t)] +
√
2D0ξi(t) (7.3)

where ξi(t) is random white noise, sampled with zero mean and unit vari-
ance, to model the thermal fluctuations of the particles. D0 = kBT/ζf is the
short-time diffusion coefficient with ζf the friction coefficient, set to unity.
The time step δt for the numerical integration is set to δt = 1 × 10−6 τB .
We express the unit of time in terms of the short-time self-diffusion τB =

a2/D0.
Individual strands are formedbetween two attractivewalls, with a particle-

wall interaction given also by Eq. 7.2 (with ρ0 = 33, βε = 10). We use peri-
odic boundary conditions in the y and z direction. We place particles initially
in a face centered cubic (fcc) lattice in a 4 x 4 (height x width) arrangement (N
= 256). The system is then equilibrated for 568 τB , which leads to aggrega-
tion of the particles and the formation of a gel strand between the twowalls 3.
During equilibration, the particle positions are randomized, leading to a dif-
ferent internal strand structure for each simulation. Note that the distances
between the particles in the initial configuration are larger than the range of

2Here, ∆ is determined by taking the end of the well at 10% of the original well-depth
(1 kBT ). To determine the fraction of broken inter-particle bonds χn, the number of bonds
per particle Nb and the irreversible displacements of particles m, the cut-off between the
particles’ center-to-center distance is set to 1.16 (1% of the original well-depth). The visual
representations in Figure 7.3 and appendix F, Figure 7.14 are made with a cut-off of 1.5

3Varying the equilibration time doesn’t influence the obtained force-strain curves. How-
ever, for too short equilibration times the average number of bonds is still substantially in-
creasing in the zero measurement; see appendix A, Figures 7.6 and 7.7 for the zero measure-
ment (blue curve, γ = 0) of these simulations.
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the potential.
Similarly to the experiment, the single gel strand in the BD simulations

Figure 7.5: Morse potential with interaction range parameter ρ0 = 33 and interac-
tion strength βε = 10. The cutoff of the potential is set to 1.5.

is cyclically deformed with a sawtooth strain profile [inset in Fig. 7.1(a)]. One
of the walls is moved outward, leading to an expansion at a fixed strain rate
γ̇ = 0.00284 τ−1

B . Note that this strain rate is comparable to a strain rate
of γ̇ = 1.7 s−1 in the experiment. After 8 successive oscillations the strain
amplitude is increased from γ = 0.02 to γ = 0.04 and γ = 0.06 respectively.
More than 65 % of the gel strands break after 24 oscillatory expansions at
successive strain amplitudes of γ = 0.02, 0.04 and 0.06.

We note that the fracture of individual strands is highly ductile and occurs
by strong necking. Moreover, fracture only occurs when a single bond con-
nects the two halves. In all simulations a percentage of the strands is fractured
(either by detaching from the wall or by breaking into clusters, see appendix
B, Fig. 7.10). To focus on plastic mechanisms, data of broken strands is ex-
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cluded in further analysis. Each strain amplitude contains data of at least 30
statistically different gel strands.

Single strain amplitudes

For single strain amplitudes, simulations are performed exactly as described
above, however, in this case we do not impose a higher strain after a certain
amount of cycles. Data is shown both for expansion [appendix A, Fig. 7.6] and
compression [appendix B, Fig. 7.7] of single gel strands. In the latter case the
distance between the walls is first decreased, leading to compression of the
gel strand, after which the walls are brought back to their original position.
We impose 14 oscillations in total for strain amplitudes γ = 0.02, 0.04 and
0.06. The fourth oscillation for these strain amplitudes (expansion) is used to
re-scale the force-strain curves as shown in Fig. 7.4(b).

At higher strain amplitudes, compression favors the increase in number
of bonds compared to expansion. Both the amount of dissipated energy and
the fraction of inter-particle bonds that break per oscillation cycle is lower
for compression, i.e. compression enhances the reformation of inter-particle
bonds over expansion.
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Figure 7.6: (a) Force-strain curve for BD simulations upon 14 oscillatory expansions
of a single gel strand at strain amplitude γmax = 0.06. The strain profile is shown in
the inset. The loading branch of each cycle is indicated with a solid line. The dotted
line indicates the unloading branch. The different oscillations (1-14) are plotted from
purple to yellow. To highlight the first oscillation cycle this one is plotted in gray.
(b) Dissipated energy in each oscillation number cn for strain amplitudes γmax =

0.02, 0.04 and 0.06 obtained through integration of the force-strain curves. (c) The
fraction of bonds that break per oscillation. The dotted line is drawn to guide the
eye. (d) Average number of bonds in time. The shaded areas indicate the standard
deviation.
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Figure 7.7: Data of BD simulations upon 14 oscillatory compressions. See appendix
A, Fig. 7.6 for the explanation of each subplot.

Appendix B: Analysis details

Bond rearrangements

To quantify bond rearrangements, we calculate the average fraction of inter-
particle bonds that is broken per oscillation cycle:

χn(cn) =
〈ni(cn)− ni(cn + 1)〉p

Nb(cn)
, (7.4)
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Figure 7.8: (a) Dissipated energy per oscillation for strain amplitudes γmax = 0.02,
0.04 and 0.06, obtained by integration of the force-strain curves [Fig. 7.4(a)]. (b)
Average plastic deformation per oscillation [Eq. 7.1 ]. (c) The fraction of broken
bonds per oscillation. (d) Number of bonds in time. The shaded area indicates the
standard deviation.

where ni(cn) is the number of nearest neighbors of particle i at the start of
a certain oscillation, ni(cn + 1) is the number of these neighbors that re-
main at the end of this oscillation and the average is taken over all particles
p in the strand. The number of broken inter-particle bonds is normalized
by the average number of bonds per particle Nb. We find that the number
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Figure 7.9: Average plastic deformation per oscillation cycle as a function of the
strain rate γ̇.

of broken bonds is highest in the first deformation cycle and decreases grad-
ually [appendix A, Fig. 7.8(c)]. As described earlier, the average number of
bonds per particle in the gel strand Nb increases in time [appendix A, Fig.
7.8(d)] [22]. Repeated oscillatory deformation hence is reminiscent to acti-
vated aging, in which the non-equilibrium gel structure tends to coarsen to
increase the number of bonds in the network.

Broken gel strands

Gel strands that break during the simulation are not included in further anal-
ysis. Statistics of the broken strands [Fig. 7.10] show the percentage of strands
that detach from the wall or break into clusters. The number of gel strands
that break upon expansion is higher compared to compression. Yet, for ex-
pansion the majority of the strands break into clusters whereas for compres-
sion the effect of breaking at the wall or into clusters is more evenly dis-
tributed. Deformation of gel strands at different strain rates γ̇ only shows
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Figure 7.10: Breakage percentage (B%) for (a) expansion and (b) compression of gel
strands at strain amplitudes γ = 0.01 - 0.06. (c) Breakage statistics of gel strands that
are deformedwith strain rates γ̇ = 0.17, 1.7, 17 and 170 s−1 respectively (expansion,
γmax = 0.04).

Figure 7.11: (a) Small slab (N=1880) of a large 3D colloidal gel (N=13500) at volume
fraction φ = 0.2. (b) Force-strain curves upon 14 oscillatory expansions of a large
gel (γmax = 0.04).

different breakage statistics at a strain rate of 170 s−1. Here, the amount of
broken strands increases drastically and strands start to break profoundly at
the wall instead of breaking into clusters. This indicates that the amount of
broken gel strands is not affected by the strain rate used in the simulations
(1.7 s−1).
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AppendixC: Comparing a single gel strandwith anet-

work of strands

Deformation of a large 3D gel (N = 13500, φ = 0.2) is performed in the
same way as described for the single gel strands. The gel is formed between
two attractive walls, starting from a random particle configuration, and equi-
librated for 11 τB . Expansion is performed by moving both walls outward.
To make simulations feasible, the strain rate is increased to γ̇ = 0.0284 τ−1

B .
This is comparable to an experimental strain rate of γ̇ = 17 s−1. The results
are averaged over ten independent runs.

The obtained network structure [Fig. 7.11(a)] is highly heterogeneous. To
get a clear picture we only show a small slab of the total gel. In Fig. 7.11(b) the
force-strain curve of the large gel is shown. Similar to the single gel strands
we see irreversible weakening of the network structure, by plastic rearrange-
ments during the first deformation cycle. This confirms that simulations on
single gel strands are representative for a large colloidal gel network.

Appendix D: Length independence of simulation data

Gel strands of different lengths are deformed using the same method as pre-
sented earlier. The different strands consist ofNshort = 128,Nnormal = 256
andNlong = 384 particles and are named A, B and C respectively [Fig. 7.12(a)].
Recall that the simulation data in figures 7.3 and 7.4 refers to type B only.

From the percentage of gel strands that break [inset in Fig. 7.12(c)] it is
clear that longer gel strands (c) break more often. However, these broken
strands are not included in the analysis. Whenwe plot the force-strain curves
of the oscillatory expansion of these different gel strands, they fall on top of
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Figure 7.12: (a) Visual representation of gel strands of different lengths. (b) Force-
strain curves for 14 oscillatory expansions of gel strands A,B and C (γmax = 0.04).
(c) Average plasticity of the particles per oscillation cycle. The inset shows the per-
centage of broken strands for A,B and C.

each other. Also the average plasticity in each oscillation cycle [Fig. 7.12(c)] is
similar for strands of different lengths. This shows that the plastic deforma-
tion in the simulated gel strands does not depend on the length of the strands.
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Figure 7.13: (a) Visual representation of two gel strands of different thickness. (b)
Force-strain curves for 14 oscillatory expansions of gel strands A and B (γmax =

0.04). (c) Average plasticity of the particles per oscillation cycle. The inset shows the
percentage of broken strands for A and B.

Appendix E: Plasticity increases for thinner strands

With the same simulation method as described before we deform a thinner
gel strand. In this case the initial configuration of this thinner strand is a face
centered cubic lattice in a 2 × 2 arrangement (Nthin = 144). Comparison
with strands of type B (as shown in figures 7.3 and 7.4) shows an increase in
plasticity when strands are thinner [Fig. 7.13(b)]. From the breakage statistics
[inset in Fig. 7.13(b)] we see that, as expected, these thinner strands also break
more frequently. This data shows that upon varying the diameter of the gel
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Figure 7.14: Visual representation of the cumulative average plastic deformation in
cycles 1,2,4,6,10 and 14 of a single gel strand (γmax = 0.04). The color bar indicates
the cumulative irreversible displacements of the particles from low (purple) to high
(yellow).

strands plasticity is still a generic mechanism for fatigue.

Appendix F: Additional data

Figure 7.14 contains the same data as shown in Figure 7.3(a). Yet, here the
plasticity is plotted in a cumulative fashion. After each oscillation the particle
positions are always compared to the configuration at the start of cycle 1.
For the non-cumulative plasticity particle positions at the start of cycle 1 are
compared with the start of cycle 2, the start of cycle 2 with the start of cycle
3 etc. Figure 7.15 contains additional experimental data.
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Figure 7.15: (a)Dissipated energy for every cycle (cn) shown in Fig. 1. The data
points are color coded to their respective γmax value. The dissipated energy is highest
in the first cycle for a given strain amplitude and then gradually decreases to a plateau
value as the stress-strain curve approaches a limit cycle. This limiting dissipated en-
ergy reflects the viscoelastic dissipation in the network due to solvent flow through
the network or to reversible rearrangements, while the additional dissiptaion in the
first cycle reflects the irreversible plastic deformation that occurs during loading of
the gels. (b)Characteristic stress σ∗ (with σ∗ = G0γ

∗) used to rescale experimental
data presented in Fig. 7.2 as function of γmax. Data points are color-coded to their
respective γmax value.
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CHAPTER 8

Synthesis of pNIPAM grafted colloids

Sufficiently strong interparticle attractions can lead to aggregation
of a colloidal suspension and, at high enoughvolume fractions, form
a mechanically rigid percolating network known as a colloidal gel.
We synthesize a model thermo-responsive colloidal system for sys-
tematically studying the effect of surface properties, grafting den-
sity and chain length, on the particle dynamicswithin colloidal gels.
After inducing an attraction between particles by heating, aggre-
gates undergo thermal fluctuation which we observe and analyze
microscopically; themagnitudeof the variance inbondangle is larg-
er for lower grafting densities. Macroscopically, a clear increase
of the linear mechanical behavior of the gels on both the grafting
density and chain length arises, as measured by rheology, which is
inversely proportional to the magnitude of local bond angle fluc-
tuations. This colloidal system will allow for further elucidation
of the microscopic origins to the complex macroscopic mechani-
cal behavior of colloidal gels including bending modes within the
network.

This chapter was published as:
J.M. van Doorn, J. Sprakel and T.E. Kodger: Temperature-triggered colloidal
gelation through well-defined grafted polymeric surfaces, Gels, 3, (2017), 21
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Introduction

Colloidal particles are of significant importance to various fields in science
and engineering and to consumer products, such as foods and paints. Upon
inducing sufficiently strong attraction to a colloidal suspension, colloidal par-
ticles will aggregate and form amechanically rigid percolating network above
a critical volume fraction[26]. These structures, known as colloidal gels, can
be regarded as a model for soft heterogeneous solids. Differing from poly-
meric gels, the bonds between particles in colloidal gels have a non-perman-
ent nature enabling bonds to reform and individual particles to rearrange
due to mechanical deformation or thermal fluctuations[2, 22, 25]. These re-
arrangements mainly govern the mechanical behavior of these soft solids and
are of paramount importance to understanding the mechanics of soft hetero-
geneous solids[9, 5].

Many efforts studying the particle dynamics within colloidal gels focus
on the attraction strength as control parameter. Systematic investigations
on colloidal gels typically employ a depletion attraction [21], where both the
range and depth of interaction may be tuned. However, apart from longitu-
dinal fluctuations such as detaching and attaching, particles can also exhibit
transverse modes of rearrangement such as sliding[22]. Where the first mode
is mainly influenced by the inter-particle potential, the details of the other
modes are difficult to unravel, but thought to be governed by the surface
properties of the particles such as their friction coefficients[8]. The impli-
cations of such parameters on the assembly of colloidal systems may be pro-
found, and are only briefly discussed in the literature; this is partly due to the
fact that there does not yet exist an experimental means to investigate their
effects.

In this chapter, we synthesize a colloidal model system that is suitable
for systematically studying the effect of particle surface properties such as
grafting density and chain length, on the dynamics within colloidal gels. We
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Figure 8.1: Controlled grafting density and chain length using surface initiated
ATRP of pNIPAM.

control the grafting density and chain length by using surface initiated atom
transfer radical polymerization (ATRP): The grafting density is tuned by copoly-
merizing a known volume of an ATRP initiator-monomer during particle
formation and the chain length is tuned by adding a sacrificial initiator to
the bulk solution during the ATRP reaction. We grow a temperature sensi-
tive polymer, poly(N-isopropylacrylamide), from the particle surface to alter
the interparticle potential dynamically. After inducing an attraction between
particles by heating, a clear dependence on the magnitude of local bond an-
gle fluctuations and linear mechanical behavior of the gel arises from both
the grafting density and chain length. Lastly, we disperse these particles in a
refractive indexmatching aqueous solution allowing for 3D confocal imaging
during gelation.
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Results and Discussion

The origin of the interparticle attraction between colloidal particles can be
varied; common examples are depletion[21], electrostatic[24], or van derWaals;
however, these sources of attraction can not be easily triggered. Here, we
induce inter-particle attraction using a temperature sensitive surface grafted
polymer, polyN-isopropylacrylamide (pNIPAM)[18]. This polymer has a Low-
er Critical Solution Temperature (LCST) in water around 32◦C. Above this
temperature the polymers expel water and demixes from the aqueous so-
lution which induces interparticle attraction[20]. When the temperature is
lowered below the LCST, the polymer solubility is enhanced, resulting in
good solvent for T�LCST, and the interparticle potential becomes steri-
cally repulsive. The precise value of the LCST is sensitive to the composition
of the solvent[30] and as a result, we design our system to be stable in wa-
ter. One of the challenges with studying concentrated particle suspensions
is that the refractive index, n, mismatch between the water, n = 1.333, and
the material of which the colloids are formed impedes experimental optical
techniques due to multiple light scattering. To overcome this challenge, we
synthesizemonodispersed particles from poly(2,2,2-trifluoroethylmethacry-
late) (ptFEMA) which has a relatively low refractive index of n =1.42 which
is suitable for refractive index matching. By forming particles with diame-
ters between 0.5µm and 3µm, they are large enough to be easily visualized
by optical microscopy and also small enough to undergo thermal fluctua-
tions; here we synthesize 1.00µm diameter particles. Additionally, these par-
ticles are co-polymerized with 2-(2-bromoisobutyryloxy) ethyl methacrylate
(BIEA)which acts as amonomer during particle synthesis and as a initiator for
Atom Transfer Radical Polymer (ATRP)[15]. Due to its two sided functional-
ity, this molecule is called an inimer [19]. Varying the co-polymerization vol-
ume percentage from 0.1% to 3.0% of inimer during particle synthesis enables
tuning of the grafting density on the particle surface. Additionally, ATRP al-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

180
180

CHAPTER 8: Synthesis of pNIPAM grafted colloids



Results and Discussion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lows for precise control over the length of these grafted polymers[11]; result-
ing in the independent ability to tune both the length and density of polymer
present on the particle surface as depicted in Fig. 8.1.

Figure 8.2: Gel permeation chromatography (GPC) elution profiles for poly-
mers with different degrees of polymerization; with the elution volume of the
polymers being inversely proportional to their respective degree of polymeriza-
tion. DP=10, Mn=2.9× 102 g/mol, Mw=3.1× 102 g/mol, PDI=1.10; DP=30,
Mn=3.1× 103 g/mol, Mw=3.6× 103 g/mol, PDI=1.2; DP=100, Mn=9.3× 103

g/mol, Mw=1.5× 104 g/mol, PDI=1.6.

During a typical ATRP reaction, the degree of polymerization is con-
trolled by the molar ratio of the initiator to monomer. However, the pre-
cise molar value of surface available inimer molecules is difficult to deter-
mine. This leaves choosing the appropriate amount of monomer to establish
a desired ratio challenging. To nevertheless control the length of the grafted
polymers, we add a conventional ATRP initiator with identical ATRP initi-
ation rate to the grafting reaction. This yields free linear polymer with the
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same degree of polymerization (DP) as the polymers which are simultane-
ously grown from the surface[27]. Gel permeation chromatography (GPC)
analysis of the linear polymer results in a clear dependence in the chain length
for the desired DP, while still retaining a fairly monodisperse distribution as
seen in Fig. 8.2.

Figure 8.3: Optical microscopy images for different grafting densities at 32◦C in
30mMNaCl for DP=100. 0.1%(a), 0.3%(b), 1.0% (c), and 3.0%(d).

To obtain a temperature triggerable interaction, a pNIPAM surface mod-
ification is insufficient; electrostatic repulsion between particles must also be
tuned. A controlled concentration of salt, 30mM NaCl, is added to screen
electrostatic repulsions to approximately the length scale of the shortest sur-
face polymers; the calculated Debye screening length is κ−1= 1.7nm. It must
be noted that at higher [NaCl], the LCST of pNIPAM decreases below room
temperature[30] and additionally electrostatic repulsion is insufficient to pre-
vent aggregation by van der Waals forces between particles; the precise salt
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Figure 8.4: Optical microscopy images for different chain lengths at 32◦C in 10mM
NaCl for a grafting density of 3.0%. DP=10 (a), DP=30 (b), and DP=100 (c).

concentration is crucial to obtain a temperature sensitive interaction poten-
tial via the pNIPAM grafted surfaces.

To study the structure and dynamics of aggregated surface modified par-
ticles, we employ bright-field microscopy. A two-dimensional array of col-
loidal particles is formed by simply letting the relatively dense ptFEMA col-
loids sediment onto the capillary wall. To prevent particles adhering to the
capillarywalls, the capillaries are coatedwith a polyeletrolytemultilayerwhich
has been shown to eliminate wall interactions for pNIPAM layers [31, 16].
Once sedimented, the sample is heated to a temperature slightly below the
LCST of pNIPAM in pure water, the particles begin to form two-dimensional
aggregates as seen in Fig.8.3. For the lowest grafting density, only a few ag-
gregates are found at this temperature and volume fraction, φ, while at higher
grafting density, large extended aggregates are visible. Correspondingly, for
particles with a constant grafting density but differing chain length, the ef-
fects are similar: At the short chain lengths, the degree of aggregation is lim-
itedwhile at longer chain lengths, very few individual particles exist as seen in
Fig. 8.4. Aggregates of particles with the highest grafting density seem to be
smaller than aggregates composed of particles with lower grafting densities.
This may be due to particles with lower grafting densities rearranging more
easily. Within each aggregate, the magnitude of the thermal fluctuations be-
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tween particles appears to be directly related to the chain length and grafting
density of the surface polymer. By measuring the angle between neighboring

Figure 8.5: Bond angle fluctuations for samples of DP=100 with 0.3% (a) and 3% (b)
grafting density. The variance of the fluctuations are 6.7 (deg)2 and 19.2 (deg)2 re-
spectively. Inset; schematic representation of bond angle calculation between neigh-
boring particles.

particles over time, we are able to directly quantify the amplitude of the bond
angle fluctuations as a proxy for the friction coefficient. Centers of neigh-
boring particle are first located and tracked over time; after which the angle,
θ(t), is calculated as seen in Fig.8.5 inset. The fluctuations about the mean
angle, Θ(t) = θ(t) − 〈θ(t)〉, are shown for two grafting densities in Fig.
8.5. At lower grafting density, angular fluctuations are large. Conversely, at
a higher grafting density, the angular fluctuations are minimized. A smaller
amplitude inΘ corresponds to more hindrances in thermally activation mo-
tion between particles occurring which points at a higher friction between
the particle surfaces [16]. Polymer brushes, with their high grafting densities,
have repeatably been found to be low friction interfaces seemingly contra-
dictory to the above observations[14, 23, 4]. However, temperature sensitive
polymer brushes tethered to a substrate have been shown to switch from low
to high friction above the LCST of pNIPAM which supports the different
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amplitudes of Θ seen in Fig. 8.5[12, 17]. Therefore, increasing grafting den-
sity, also increases the friction between particles; the consequences of this
increased friction may be profound. We hypothesize that colloidal gels with
lower friction coefficients and therefore more flexible bonds are capable of
relaxing applied stresses and would result in a lower elastic modulus.

Figure 8.6: Storage (a) and loss moduli (b) after heating dispersions at φ = 0.28

with 30mM NaCl to 45◦C for DP=10 (yellow), DP=30 (red) and DP=100 (purple).
All moduli are measured at 1Hz and γ<0.03.

To directly investigate whethermore flexible bonds lead to a lower elastic
modulus, we use bulk rheology. At a higher volume fraction, φ=0.28±0.02,
the particle dispersions form elastic 3D colloidal gels upon heating above the
LCST. We compare the mechanical behavior of colloidal gels with differing
grafting densities and chain length of the surface pNIPAM polymer. Though
the precise volume fraction of the dispersion is not known, the resulting dif-
ferences of linear mechanical response in these gels are larger than the vari-
ance caused by the uncertainty in φ as seen in Fig. 8.6. The elastic modulus
of colloidal gels has been shown to scale as, G′

= (κ0/a)(φ − φc)
p where

κ0 is the two-particle spring constant, a is the particle size, p is a scaling ex-
ponent which depends on the nature of the network deformation, and φc

is the critical volume fraction which is typically φc ≤ 0.08[21, 13]. Here,
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φ = 0.28 >> φc, therefore, the uncertainty inφ cannot account for the large
variation in the elastic moduli seen in Fig.8.6; it must arise from changes in
κ0. For the highest grafting densities, the elastic and viscous responses of the
gels converge for all chain lengths. By contrast, at lower grafting densities
the gels are significantly weaker by nearly to two orders of magnitude for the
longest chain length; this drop in elasticity corresponds well with the larger
magnitude inΘ observed microscopically as seen in Fig. 8.5.

Colloidal networks resist mechanical deformation by stretching inter-
particle bonds and bending particle strands composed of multiple particles.
These bending modes result in angular changes between individual particles,
∆θ, and have been shown to contribute significantly to the elastic response
of colloidal networks[21]. Therefore, hindering these bending modes can di-
rectly increase the elastic response which is seen in Fig.8.6. How precisely
the microscopic changes, grafting density and chain length, manifest as dif-
ferences in the macroscopic rheology including yielding is beyond the scope
of this work and has been the subject of extensive simulation studies[1, 7, 6].

Figure 8.7: Computer-reconstructed visualizations of a samplewith particle coordi-
nates obtained from three dimensional confocal microscopy data. The field of view
is 67x67x75µm. (A) a liquid dispersion of particles, φ ≈ 0.15, at 25◦C in 50wt%
Sucrose with 10mMNaCl. (B) a colloidal gel of the same dispersion at 50◦C. (C) Cal-
culated radial distribution functions normalized for particle size, a, for gel (red, A)
and liquid (blue, B) dispersion.
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Finally, these model ptFEMA particles may be fluorescently labeled and
dispersed in an refractive index matching solution of 50wt% sucrose with
10mM NaCl. By refractive index matching the particles to the suspending
solution, light scattering is minimized and by combining fluorescent labeling,
3D confocal microscopy images may be captured. As the thermo-responsive
nature of the polymer brush is retained in the sucrose solution, the disper-
sion may still be heated from a colloidal liquid into a colloidal gel while being
imaged deep into the sample,≈75µm as shown in Fig. 8.7. From the individ-
ual particle locations, the radial distribution function, g(r/a), was calculated
and shown in Fig.8.7C; the g(r/a) clearly show a transition from a liquid dis-
persion of particles to a colloidal gel by heating. This ability to dynamically
induce gelation by heating this particle dispersion with its controlled pNI-
PAM surface polymer is similar to previous work where the authors quanti-
fied the kinetics and structure of pNIPAMgrafted nanoparticles [29]. In these
dynamic light scattering studies, only the fractal dimension was determined
as individual particle kinetics are not available. From this work, a detailed ki-
netic aggregation frameworkwas proposed to connect the local particle-level
dynamics to the macroscopic rheology effectively describing many experi-
mental rheology results on colloidal gels [28]. The model system proposed
here will allow for a detailed study of this kinetics framework to different
gelation processes and directly observing microscopic sliding dynamics be-
tween particles after gelation in three dimensions using confocal microscopy.

Conclusions

We have developed a thermally responsive colloidal system with controlled
grafting density and chain length of pNIPAM polymer on the particle sur-
face. Upon heating, such dispersions form a colloidal gel. Both the micro-
scopic bond angle fluctuations andmacroscopic elastic moduli exhibit a clear
dependence on both grafting density and chain length. The unique com-
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bination of complete transparency, tunable particle surface properties and
temperature-triggerable interactions paves the way to the study of gelation
kinetics in three-dimensions with high resolution.

Materials and Methods

All materials were purchased from TCI Europe and used as received unless
otherwise noted. N-isopropyl acrylamide (NIPAM) monomer was recrys-
tallized from n-hexane prior to use. Additionally, the inimer monomer, 2-
(2-bromoisobutyryloxy) ethyl methacrylate (BIEA), was synthesized as previ-
ously reported[19, 15].

Particle Synthesis

We synthesize poly(2,2,2-trifluoroethylmethacrylate) (ptFEMA) colloidal par-
ticles co-polymerized with 2-(2-bromoisobutyryloxy) ethyl methacrylate us-
ing free radical dispersion polymerization [15]. To a 500ml round bottom
flask is added 30mlwater, 270mlmethanol, 25ml 2,2,2-trifluoroethylmethacry-
late, 250mg2,2′-azobis(2-methylpropionitrile), 250mg3-sulfopropylmethacry-
late potassium salt (Sigma-Aldrich) and 25µL of BIEA (0.1vol% to monomer).
The flask is placed under reflux conditions in a silicone oil bath preheated
to 80◦C and allowed to polymerize for 4hrs. The resulting particles have a
hydrodynamic diameter, a = 1.00µm with a polydispersity index, PDI =
(σ(a)/〈a〉) = 0.01 as determined by Dynamic Light Scattering. The reac-
tion is repeated with 75µL, 250µL, and 750µL of BIEA to arrive at 0.3vol%,
1.0vol% and 3.0vol% of inimer respective to monomer, with no measurable
change to particle diameter or polydispersity.

Surface Initiated ATRP

Particle dispersions were washed three times by centrifugation at 250g into a
1wt% solution of L23 surfactant (Sigma-Aldrich) to a final volume of 200ml.
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To graft polymers from the particle surface, 50g dimethylformamide, 2g NI-
PAM (1.7× 10−2moles), 0.47ml tris[2-(dimethylamino)ethyl]amine (1.7×10−3

moles), 0.253mL ethyl α-bromoisobutyrate (1.7× 10−3 moles) are added to
a 250ml round bottom flask. The solution is bubbled with nitrogen for 15
minutes, after which 0.168g of Cu(I)Cl (1.7× 10−3 moles) is added to ini-
tiate the polymerization. The above procedure yielded a DP=10 as shown
in Fig. 8.2. For DP=30, 50ml particle dispersion, 50g dimethylformamide,
2g NIPAM (1.7× 10−2 moles), 0.156ml tris[2-(dimethylamino)ethyl]amine
(0.56× 10−3moles), 0.084mLethylα-bromoisobutyrate (0.56× 10−3moles)
are added to a 250ml round bottom flask, bubbled, and initiated with 0.056g
of Cu(I)Cl (0.56× 10−3 moles). For DP=100, 50ml particle dispersion, 50g
dimethylformamide, 2g NIPAM (1.7× 10−2 moles), 0.047ml tris[2-(dimeth-
ylamino)ethyl]amine (1.7× 10−4moles), 0.025mL ethylα-bromoisobutyrate
(1.7× 10−4 moles) are added to a 250ml round bottom flask and initiated
with 0.017g of Cu(I)Cl (1.7× 10−4moles). These procedures are repeated for
each BIEA volume ratio, 0.1%, 0.3vol%, 1.0vol% and 3.0vol%, to yield a total
of 12 different particle dispersions each with a unique grafting density and
chain length. After surface modification, the dispersions were centrifuged
and the supernatant collected and purified before GPC measurements. The
sedimented particles were redispersed in 20ml of demineralized water and
each particle dispersion was dialyzed for 10 days again deionized water to
remove Cu(I)Cl and the surfactant L23. The hydrodynamic diameters of the
particles after surface modification have been characterized by DLS using a
second-order cumulants fit to the correlation functions. The results show an
increasing trend only for the with highest surface grafting density, 3%, from
a = 1020±68nm for the bare particles to DP=10, a = 996±63nm; DP=30,
a = 1044± 31nm; and DP=100, a = 1112± 40nm.

The supernatant was heated to 80◦C overnight to removewater and then
precipitated in diethyl ether, dissolved in chloroform, and precipitated again,
a total three times. The precipitate was dried and dissolved in water and
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mixed bed resins (AG501-X8, Bio-Rad) added to remove copper salts. The
resins were filtered away and the now clean pNIPAM polymer was freeze
dried. GPC measurements were performed in at 5mg/ml in a solution of
tetrahydrofuran with 5 vol % triethylamine at a flow rate of 1ml/min at 35◦C
on an Agilent Technologies 1200, PLgel 5µm Mixed-D column[3]. The col-
umnwas calibrated prior to usewith linear polystyrene dissolved in the above
solvent.

Fluorescent Labeling

A single dispersion, 1vol% BIEA with DP=100, was fluorescently labeled. A
miniemulsion was prepared by tip sonication, containing 0.2ml toluene, 5mg
boron-dipyrromethene 543 dye (Excition, Inc.), and 4ml 1wt% solution of
L23 surfactant. To thisminiemulsion 1.5ml of particle dispersion atφ = 0.30

was added. This dispersionwasmixed for 3 days to allow the particles to swell
and take up the dye. Subsequently dry nitrogen was blown over the top of the
dispersion to remove toluene and kinetically trap the dye inside the particles.
This fluorescently labeled dispersion was dialyzed against deionized water
to remove L23. Sucrose was then added as a powder and dissolved to a final
concentration of 50wt% which resulted in a refractive index matched disper-
sion.

Microscopy

Bright field and confocal microscopy experiments were performed in cap-
illaries of 40x4x0.2mm inner dimensions coated with polyelectrolyte multi-
layers. Capillaries were first plasma treated, then submerged into a 1MNaCl
solutionwith 1wt%poly(diallydimethyl ammonium) chloride (Mw≈ 5× 105

g/mol, Sigma-Aldirch), then washed extensively with deionized water, then
submerged in a 1M NaCl solution with 1wt% poly(styrene sulfonate) (Mw≈
2× 105 g/mol, Sigma-Aldrich) and finally washed extensively with deion-
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ized water. This layer-by-layer treatment was repeated three times for a total
of 6 layers. A dilute suspension of each particle dispersion, φ = 0.001, was
prepared by diluting with either a 10mM or 30mM NaCl solution, loaded
into a coated capillary, allowed to sediment over 1hr and finally heated to the
desired temperature using a home built objective and capillary heater. Sam-
ples were allowed to equilibrate for 10 minutes at each temperature before
imaging. Images were then captured using a Nikon microscopy with a 60X
water immersion objective at 50fps using a Fastec HiSpec1 camera. Con-
focal microscopy 3D images were captured using a Zeiss LSM5 Pascal with
488nm excitation and 100X oil immersion objective. The refractive index
matched dispersion in 50wt% sucrose with 10mM NaCl was first imaged at
room temperature then quickly heated to 50◦C. Particle centers were located
using standard locating software [10] using Matlab.

Rheology

For rheology measurements, each dialyzed dispersion was allowed to sed-
iment over several days and the supernatant removed until the dispersion
obtained a high volume fraction, φ > 0.30. Each dispersion’s volume frac-
tion was measured by drying a known mass of dispersion, ≈ 1.00g, in an
80◦C oven overnight; this method exhibited repeatability within 6% of the
mean. To this measured dispersion, a small volume of water and 2.0M NaCl
was added to obtain φ = 0.28 in 100mM NaCl for each dispersion which
was measured using a Anton Paar MCR501 rheometer with a 50mm diam-
eter cone-plate geometry. A solution of tetradecane was added around the
geometry to minimize evaporation. The dispersion was heated to 45◦C in
10 minutes and allowed to gel further over 1hr then measured at 1Hz with
an applied strain from γ = 0.001 to γ = 1.00 and an average value taken
within the linear regime typically γ < 0.03.
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CHAPTER 9

Learn to Break: Predictingmechanical fail-
ure in dilute fiber networks with machine
learning

Mechanically loading solids too far leads to irreversible fracture.
The critical stress at which fracture occurs is highly stochastic and
difficult to predict. Especially for disordered fiber networks that
are characterized by their non-linearmechanics and large amounts
of non-affine deformation the fracture processes is highly complex.
In this chapter we explore how recently developed methods in ma-
chine learning can aid the prediction of the critical fracture stress to
asses the lifetime of materials. We obtain excellent predictions for
the critical fracture stress of random fiber networks solely based on
structural and topological input parameters. Furthermore we cir-
cumvent the black box behavior of neural networks to shed light
on the physical mechanisms underlying fracture by identifying pa-
rameters that are essential for a good prediction.

Manuscript in preparation as:
J.M. van Doorn, S. Dussi and J van der Gucht: Learn to Break: Predicting me-
chanical failure in dilute fiber networks with machine learning
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Introduction

When a material is loaded beyond its limits it will break[1]. Depending on
the materials properties this failure will be brittle, ductile or a combination
of both[2]. In all cases fracture is driven by a random process and a complex
interplay of mechanical and structural features[3] and a small change in one
of these properties may change the fracture behaviour completely. Typically
a crack is initiated at a weak spot and, if dissipation via plastic deformation
plays a small role, this crack will propagate until the material splits in two or
more parts[4, 5]. The mechanics in the crack tip are extreme and deviating
strongly from the approximations of linear elasticity. They are characterised
by a strong non-affinity, an extreme sensitivity to local features in the mate-
rial nanostructure, making fracture extraordinarily difficult to predict from
averaged material properties using traditional methods[6].

Mechanical failure in fibrous materials is even more complex; yet of cru-
cial importance in a wide variety of biological settings, such as the cytoskele-
ton, muscles and connective tissues, or engineered fibrous materials such as
paper or fibrillar nanocomposites[3]. These materials consist of dilute and
disordered fiber networks. Even without fracture these networks exhibit a
highly non-linear mechanical response[7, 8]. These non-linearities allow na-
ture to tune the mechanics to a specific biological function. Predicting frac-
ture in these networks solely from their structure could lead to a set of design
rules that allow for engineered tissues with a tailored mechanical response.
Recent advances inmachine learning led to the development of artificial neu-
ral networks that are capable to capture highly non-linear processes and that
have been shown to give accurate predictions for greatly different and com-
plex problems[9, 10, 11, 12, 13].

In this chapter we train artificial neural networks to predict fracture and
the mechanics leading up to fracture in highly non-linear dilute networks.
Machine learning cannot only be used as a means to predict features that are
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difficult to predict by other means, but despite it’s ’black box’ nature they can
be utilized as a stepping stone to unveil new physicalmechanisms. By system-
atically varying input parameters we identified three structural and topolog-
ical parameters that are crucial in predicting fracture. Our results open up
the way to a more integral understanding of failure in dilute networks.

Results

Non-linear elasticity

Machine learning requires training through input of a large numbers of sta-
tistically independent target structures. Here we create these by means of
spring-network simulations. We carry out simulations on spring networks
consisting of equidistant springs of length l0 and with identical spring con-
stants µ on a triangular lattice with L × L nodes. To create disorder in the
network structure and topology, we remove a fraction of the bonds (1 −
p) randomly in each fully connected spring network[Fig.9.1(a)]. For each
p and L we generate a dataset of 103 spring networks to train our neural
networks. We subject all networks to uniaxial extension deformation and
after minimizing the energy with an highly optimized structural relaxation
algorithm (the Fast Inertial Relaxation Engine, FIRE), we record the over-
all stress[Fig. 9.1(b)][14, 15]. Networks with dilutions p = 0.5, 0.56, 0.6

are below the rigidity threshold for triangular lattices and do not meet the
Maxwell criterion for rigidity and can therefore not be considered mechan-
ically rigid[16, 7, 17]. As a result of this dilution, networks with a dilution of
bonds around the rigidity percolation threshold exhibit a highly non-linear,
difficult to predict, stress-strain response as has been observed earlier [Fig.
9.1(c)][7, 8, 18, 19]. The goal is to predict fracture based solely on structural
metrics of the material. We thus identify a large number of structural metrics
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Figure 9.1: (a) Example of a spring network without deformation. (b) A uniaxialy
loaded spring network, bonds with a brighter color carry more load than darker
bonds. (c) Stress-strain curves for various network dilutions as a result of uniax-
ial extension. Colors represent from blue to yellow p = 0.5, 0.56, 0.6, 0.7, 0.9. (d)
Neural network architecture used in this work. (e)Scatter plot of predicted vs sim-
ulated stress values for p = 0.9, ε = 1.0 (f)Scatter plot of predicted vs simulated
stress values for p = 0.56, ε = 0.1 and L = 16

to explore. We train fully connected neural networks that consist of an in-
put layer with n input nodes, two hidden layers of 2n nodes and one output
layer with one node[Fig. 9.1(d)][20, 21]. As input we calculate coarse grained
parameters that quantify the structure and topology of our spring networks.
These parameters include the average number of bonds per node, the vari-
ance, kurtosis and skewness of the bond angle and cycle length distributions,
a complete overview is given in table 9.1 allong with an explanantion of most
parameters in appendix A. We use 85% of the spring network configurations
in our dataset for training, 10% for validation and 5% for testing our predic-
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tions.
As the non linear stress strain response depends greatly on the dilution

of bonds we start with prediction for spring networks with p = 0.9 at ε = 1

as relatively linear case[7]. To test how well the neural network predicts the
stress at a given strain we plot for each spring network in the testing set the
predicted stress values σp as a function of the stress values obtained with
simulations σs. For a perfect prediction all points would lie on the line σp =
σs and for this relatively easy case we find that most values are indeed close
to this line[Fig.9.1(e)]. However for a more complex and non-linear case of
p = 0.56 and ε = 0.1 we find many more points deviating from this ideal
line indicating that the neural network hasmuchmore difficulty in predicting
a more non-linear mechanical response[Fig.9.1(f)].

To appreciate the predictive capabilities of our trained neural networks
more quantitatively we calculate the Pearson correlation coefficient ρ be-
tween the simulated stress values and the predicted stress values. A perfect
prediction corresponds to a perfect correlation and therefore ρ = 1. A more
strict measure is the S-score which quantifies the improvement of the pre-
diction over using the mean of the test data as an estimate for the stress of a
specific spring network[11]:

S = 1− [
∑

i(σs,i − σp,i)
2]

[
∑

i(σs,i − 〈σs,i〉)2]
(9.1)

Here S = 0 would correspond to a prediction that is equally good as using
the mean of the stress values from simulations and S = 1 to a perfect pre-
diction. For the cases in figure 9.1 (e,f) we obtain S = 0.89 and S = 0.48

respectively. This suggests that even in difficult non-linear cases we can pre-
dict mechanical stress much better than using conventional estimates such as
statistical means.

To investigate how predictability evolves along the stress-strain response
we train a series of neural networks, each at a different strain for spring net-
works at increasing dilution[Fig. 9.2]. As spring networks exhibit a more
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Figure 9.2: (a) Prediction quality measured with the S-score for neural networks
trained for spring networks with different dilutions at increasing strain. Colors cor-
respond to: from blue to yellow p =, 0.50, 0.56, 0.6, 0.7, 0.9. (b) Prediction quality
measured with the Pearson correlation coefficient for that same neural networks
shown in (a).

non-linear response with increasing dilution we expect prediction to become
more challenging for a dilute network. Indeed we observe decreasing S and
ρ scores with decreasing p. Strikingly, spring networks with p = 0.6 and
p = 0.56 have a minimum in their predictability. As these networks are
diluted below the rigidity threshold they do not resist deformation at small
strains. However when the networks undergo deformations, segments of the
network are pulled taut, which induced strain-induced rigidity, allowing me-
chanical stress to be stored in the network under sufficient strain[8]. Around
this critical strain non-affine deformations dominate and make prediction
particularly difficult[7, 22, 23, 24, 18]. The minimum in predictability high-
lights this complex non-affine behavior of the critical spring networks.

So far all our spring networks consist of equidistant springs of length l0.
However in realistic materials, fibers have a wide distribution of lengths[25].
To demonstrate the broad applicability of our approach we try to predict
stress-strain responses in more geometrically disordered networks. For this
we move the nodes in the original triangular lattice to a random position
within a circle around the original position of the node with radiusDR · l0.
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Figure 9.3: (a)Prediction quality measured with the S-score for neural networks
trained for spring networks with different bond length distributions at increasing
strain with dilution p = 0.9 (triangles) and p = 0.56 (circles). Colors correspond
to: from blue to yellowDR = 0.1, 0.2, 03, 0.4. (b) Prediction quality measured with
the Pearson correlation coefficient for that same neural networks shown in (a).

HereDR is the degree of distortion. We set the lengths of the resulting bonds
as rest lengths and keep the spring constants identical for all bonds. Similar
to the dilution dependence we quantify the performance of our neural net-
works with ρ and S[Fig. 9.3]. As observed earlier we find spring networks
with a lower dilution more easy to predict than networks with a higher dilu-
tion. Surprisingly the distortion does not have a dramatic effect on the pre-
dictability. This means that despite significant disorder the neural network
is still able to make reasonable predictions for the stress-response. Moreover
the effect of distortion seems to be smaller for a highly diluted network [Fig
9.3(a)]. Apparently for spring networks that already exhibit large connectivity
disorder, extra distortion does not make mechanics more complex.

Fracture

To study fracture, we introduce a critical breaking threshold t to the bonds
in our spring network. When a bond is stretched above this critical strain
value it will be removed from the network. We define the maximal stress as
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Figure 9.4: (a) Scatter plot of predicted vs simulated fracture stresses for spring net-
works with L = 16, t = 0.30 and p = 0.50. (b) Pearson correlation coefficient
(triangles) and S-score (circles) of fracture stresses predictability dependent on sys-
tem dilution p. Colors correspond to from blue to yellow t = 0.03, 0.1, 0.3.

the network’s strength and we aim to predict this quantity. For the fracture
stress prediction, we generate a larger dataset of 104 spring networks per
dilution and we include additional topological information as input parame-
ters for the neural network, an overview can be found in table 9.2 in appendix
A. After training, we quantify the quality of the predictions of the neural net-
works with the Pearson correlation coefficient and the S-score. A scatter plot
reveals a lower slope than the ideal σp = σs line[Fig. 9.4(a)]. This means that
the neural network is conservative in its prediction as the range of the pre-
dicted values is smaller than the range of the fracture stresses from the sim-
ulations; high fracture stresses are underestimated and low fracture stresses
are overestimated. However for networks with high dilution, p = 0.50, we
find similar S-scores as for the stress prediction in figure 9.2. Surprisingly
when we increase the number of bonds in a network, the prediction quality
decreases in contrast to the results obtained for stress prediction[Fig. 9.4(b)].
At p = 0.6 a minimum is observed which corresponds to a dilution close
to the isostatic point. Around this point the spring networks behave highly
non-linear with a large amount of non-affine deformation and have a larger
fraction of broken bonds[14, 3].
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Figure 9.5: (a) Scatter plot of predicted vs simulated fracture stresses for spring net-
works with L = 16 and t = 0.03 and a random dilution. (b) Pearson correlation
coefficient (triangles) and S-score (circles) of fracture stresses predictability depen-
dent on system size. Colors correspond to from blue to yellow t = 0.03, 0.1, 0.3.

For more diluted networks we find an increased predictability when we
increase the fracture threshold. When the breaking threshold is increased
spring networks tend to break more brittle. Because bonds live longer, stress
has a higher probability of being redistributed over the network. This leads to
increased loading on the weakest point in the network, whichmakes the frac-
ture of the whole network easier to predict using only structural and topo-
logical parameters. For networks with a smaller dilution this effect is less
pronounced, probably because in these networks a clear weak spot is hard to
define.

As fracture mechanics are largely dependent on the system size, we study
the prediction quality for sizesL = 16, 32 and 64[6]. To avoid predicting ex-
treme values we do not train our neural networks for spring networks with
a specific dilution but instead create a dataset of 104 spring networks with a
random dilution without using this dilution as an input for our neural net-
work. A scatter plot for the smallest system size and the lowest threshold,
however, reveals excellent predictability[Fig. 9.5 (a)]. Strikingly this is even
better than for the results of the stress-strain prediction shown earlier and
again we find a positive correlation with the breaking threshold of the bonds.
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Surprisingly, predictability increases with increasing system size. As system
size increases, stresses are more easily distributed whichmakes the global be-
haviour less dependent on local heterogeneity’s. Moreover the coarse grained
input parameters we use to train our neural networks will probably represent
the structure and topology better in large networks leading to a better pre-
diction. As simulating large systems is computationally expensive and our
neural networks perform particularly well on large networks, our approach
may offer an opportunity to greatly reduce the cost of assessing the load ca-
pacity of large networks. However, the cost of calculating topological input
parameters might still be significant.

Our results show that neural networks have the excellent capability to
predict the fractures stresses in spring networks. However this does not give
much insight in the physics governing the fracture mechanics as a trained
neural network behaves as a black box. To get around this, we investigate
which input parameters are essential for achieving a good prediction of the
fracture stress. For this we train multiple neural networks for a single dataset
of spring networks that have L = 16, t = 0.30 and p = 0.50 with dif-
ferent sets of input parameters. We start by training a neural network with
all available input parameters as a benchmark for the best prediction possi-
ble with our input data with a resulting S-score of 0.42. Next we search for
combinations of input parameters that give an equally good prediction by
eliminating input parameters from our original set. Strikingly we find a set
of only three input parameters that result in a S-score that is as good as for all
input parameters combined[Fig 9.6(a)]. These parameters are the kurtosis of
the distribution of bond angles in a spring network (S20), the variance of the
distribution of cycle lengths in a spring network(T5) and the variance of the
distribution of the edge betweenness centrality (EBC) of all bonds in a spring
network(T18). A definition and short explanation of these quantities can be
found in appendix A. As a negative control we train a neural network with
three different input parameters and find a S-score of 0.08 indicating that our
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Figure 9.6: (a) Comparison of prediction quality for different input parameters lis-
ten in appendix A. (b) Scatterplot of fracture stress vs the kurtosis of the bond angle
distribution. (c) Scatterplot of fracture stress vs the variance of the cycle length dis-
tribution for cycles greater than 3. (d) Scatterplot of fracture stress vs variance of the
edge betweeness centrality distribution.

three parameters carry most information necessary for predicting fracture
stresses. When we replace the variance of the EBC distribution(T18) with the
kurtosis of the EBC distribution (T19) prediction quality drops dramatically.
However if we replace T18 with the variance of a related quantity, the node
betweenness centrality, the S-score remains the same[Fig 9.6(a)]. This indi-
cates that the variance in an edge betweenness centrality distribution carries
the information about critical fracture stress. Recent work on granular pack-
ings also identified the betweenness centrality as a key parameter for fore-
casting stresses and fracture[25, 26]. As stress in disordered networks usually
takes the shortest path available the EBC contains information which bonds
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carry the most load and are thus are the most likely to break[27]. Also the cy-
cle length distribution plays an important role in rigidity as the cycle length
distribution is found to change dramatically after the jamming transition in
granular materials [28]. This supports that similar mechanisms govern stress
distribution in granular packings and fiber networks [29].

Based on our findings we conclude that three appropriate quantities de-
scribing (i) network orientation e.g. S20, (ii) network bottlenecks e.g. T8, (iii)
network redundancy e.g. T5 are necessary and sufficient to predict network
fracture based exclusively on information when the network is at rest. These
three parameters individually do not show a clear correlation with the ob-
served fracture stress[Fig. 9.6(b-d)]. This highlights that the combination of
these parameters is crucial to making good predictions and that neural net-
works are particularly suitable to screen large datasets and identify which are
the crucial parameters to monitor when studying fracture mechanics.

Conclusion

In this chapter we have shown how neural networks can be employed for
predicting fracture and mechanics leading up to fracture using only struc-
tural and topological information. Fracture becomes more and more non-
linear whenmore disorder is introduced which is highlighted by a decreasing
predictability for networks with higher dilution and higher distortion of the
nodes. By studying the prediction quality depending on the input parame-
ters, neural networks prove an excellent tool for identifying crucial parame-
ters that govern the physical mechanisms of fracture. Combined with state of
the art machine learning techniques our work paves the way for prediction
of often delayed mechanical failure[30, 31].
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Figure 9.7: A random graph with different cycle lengths. Colors highlight a cycle of
length three (blue), four (red), and six (green)

Appendix A: Input parameters

Cycle length distribution

When bonds in a triangular are lattice are removed, loops or cycles larger than
a triangle are introduced. The size of these cycles is quantified with the cycle
length. For our diluted networks we extract a distribution of the lengths of
all cycles present in the spring network using an established algorithm. As we
are interested in the effect of dilution we only consider graphs with a length
larger than 3. We summarize this distribution with common statistical quan-
tities such as mean, median, variance and kurtosis. We use these quantities as
input for our neural networks.

Betweenness centrality

The betweenness centrality is a measure that quantifies the importance of
nodes or bonds in the network to the available shortest paths in the network.
These shortest path are important as stress in mechanical networks usually
travels the shortest path whichmeans that central nodes or bonds carry more
load. If a node or bond has a high value for betweenness centrality it is im-
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portant to many shortest paths in the network. If a node or bond has a low
value it is relatively isolated as little shortest pathswill cross the node or bond.
Mathematically for a node this is defined as

g(v) =
∑

s�=v �=t

σst(v)

σst
(9.2)

where σst is the total number of shortest paths from node s to node t and
σst(v) the number of shortest path that cross node v. In addition to nodes a
similar quantity can also be define for edges or bonds and this is known as the
edge betweenness centrality. We calculate distributions for both quantities in
our spring networks and summarize these with statistical quantities such as
mean, median, variance and kurtosis which we use as input for our neural
networks.

Nematic director

To calculate the nematic director for all bonds in the bead spring network,
nem_ dirx and nem_ diry , we first calculate the nematic tensor[32]

Qαβ =
1

N

∑
i

uiαuiβ − δαβ (9.3)

Here �ui = (ux, uy) is the unit vector describing direction of a bond, δαβ the
Kronecker delta function andN the total number of bonds. From diagonaliz-
ing Qαβ we obtain the largest eigenvalue which corresponds to the nematic
order parameter, nem_ op and the associated eigenvector n̂ = (nx, ny) that
is the nematic director.

Fourier coefficients

To quantify any translational order we calculate the Fourier coefficients of
the bonds

fhk = |
∑
j

ei2π(h·xj+k·yj)| (9.4)
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Where j sums over all bonds or nodes and (xj , yj) is the bond middle posi-
tion of bond or node j.

Table 9.1: Structural parameters considered as input for our neural networks

Parameter ID Parameter

S1 Number of bonds in horizontal direction, Lx

S2 Number of bonds in vertical direction, Ly

S3 Total number of nodes

S4 Total number of bonds

S5 Mean of distribution of nearest neighbors, Zaverage

S6 Variance of distribution of nearest neighbors, Zvariance

S7 Skewness of distribution of nearest neighbors, Zskew

S8 Kurtosis of distribution of nearest neighbors, Zkurtosis

S9 f02bond

S10 f03bond

S11 f04bond

S12 f05bond

S13 f06bond

S14 nem_op

S15 nem_dirx
S16 nem_diry
S17 Mean of distribution of bond angles, θaverage
S18 Variance of distribution of bond angles, θvariance
S19 Skewness of distribution of bond angles, θskew
S20 Kurtosis of distribution of bond angles, θkurtosis
S21 Mean of distribution of bond lengths, l0average
S22 Variance of distribution of bond lengths, l0variance
S23 Skewness of distribution of bond lengths, l0skew
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Continuation of Table 9.1

Parameter ID Parameter
S24 Kurtosis of distribution of bond lengths, l0kurtosis
S25 f01

S26 f02

S27 f03

S28 f04

S29 f05

S30 f10

S31 f11

S32 f12

S33 f13

S34 f14

S35 f15

S36 f20

S37 f21

S38 f22

S39 f23

S40 f24

S41 f25

S42 f30

S43 f31
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Table 9.2: Topological parameters considered as input parameters for our neural
networks. Cycle length parameters are for the distribution of cycle lengths greater
than 3 which excludes the cycles native to the triangular lattice.

Parameter ID Parameter
T1 Number of cliques

T2 Degree of assortativity

T3 Mean of the distribution of cycle lengths

T4 Median of the distribution of cycle lengths

T5 Variance of the distribution of cycle lengths

T6 Kurtosis of the distribution of cycle lengths

T7 Average clustering

T8 Mean of the distribution of node degree centrality

T9 Median of the distribution of node degree centrality

T10 Variance of the distribution of node degree centrality

T11 Kurtosis of the distribution of node degree centrality

T12 Mean of the distribution of node betweeness centrality

T13 Median of the distribution of node betweeness centrality

T14 Variance of the distribution of node betweeness centrality

T15 Kurtosis of the distribution of node betweeness centrality

T16 Mean of the distribution of edge betweeness centrality

T17 Median of the distribution of edge betweeness centrality

T18 Variance of the distribution of edge betweeness centrality

T19 Kurtosis of the distribution of edge betweeness centrality

T20 Global efficiency

T21 Wiener index
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CHAPTER 10

General Discussion

In this thesis we aimed to understand mechanics of systems in the limit of
vanishing strength and stiffness from their underlying structure and dynam-
ics. In particular for hypersoft materials, we studied how dynamics could be
interpreted in terms of mechanics and for hyperweak materials we looked at
how failure mechanics arise from underlying structure and dynamics. More-
over we developed new experimental techniques and systems that allow for
further studying these concepts. In this last chapter we evaluate the steps we
have taken towards the aim of the thesis that is set out in the introduction.
Furthermore we discuss how our results relate to each other and established
research and we discuss how they can be used as stepping stones for future
research.

Reversible mechanics: Stiffness

The main aim of this part of the thesis is to link structure and dynamics to
the mechanics of hypersoft materials. In chapter 2 we present direct mea-
surements of infrasonic elastic waves in ultrasoft solids. We showed how
these waves can be interpreted in terms of linear elastic properties with a
newly developed theoretical framework that directly links the dynamics in
hypersoft materials to their mechanics. We observe these infrasonic waves
in both ordered and disordered solids. This makes these waves especially
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suitable for studying ultrasoft disordered solids such as marginal fiber net-
works and jammed systems. Close to the percolation threshold the mechan-
ics in disordered systems can depend greatly on the local structure as a large
part of the sample may consist of floppy regions that do not contribute to
the overall rigidity[1, 2, 3, 4]. Which parts of marginal disordered solids are
rigid and which are floppy is often not immediately clear from their initial
structure[5, 6]. Making the link between structure andmechanics is therefore
vital for an integral understanding of marginal solids. Electromagnetic waves
and mechanical waves that propagate at high Reynolds numbers are known
to scatter, refract and reflect on structural defects or boundaries within ma-
terials [7, 8, 9]. Observing these events closely has led to enormous insight in
the structure of these materials and is crucial to today’s materials and biolog-
ical sciences[10, 11]. In chapter 2 we observed the first signs of the struc-
ture dependence of wave propagation at low Reynolds numbers as a dis-
torted wave pattern for our disordered samples. Systematically analyzing
these distortions around crystal defects, grain boundaries or in entirely disor-
deredmaterials could lead to insight on how disordered liquid-like structures
lead to rigidity. During the observation of mechanical waves we also moni-
tor the evolution of a materials structure. This offers a unique opportunity
to firmly establish the link between structure and mechanics in disordered
solids. Analogous to elastographic methods that are widely used in medical
imaging, a map of elastic properties such as the floppy and rigid regions could
be constructed with wave propagation measurements[12, 13]. This spatially
resolved mechanical map could then be compared with maps of parameters
quantifying structural parameters such as described in chapters 6 and 9[14].
The main challenge of this approach would be to break the diffraction limit
of our infrasonic waves as, for proper sampling, the wavelengths of our infra-
sonic waves are required to be at least several particle diameters. To circum-
vent this limitation, ourmethodmay be extended by combining thewave pat-
terns for different experiments with different excitation angles or locations.
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Similar techniques are also applied to ultrasonic testing where phased array
excitation’s are employed to generate maps of structural defects in building
materials and metal pipes[15].

While we studied the propagation of infrasonic waves in ultrasoft two
dimensional materials, the much greater realm of three dimensional materi-
als remains unexplored. Directly applying our method in three dimensions
poses technical challenges. For the imaging of three dimensional colloidal
systems the microscope objective has to move along the z axis to scan dif-
ferent imaging planes. As the optical trap is formed in the focal plane of the
objective it also moves along the z axis and would drag trapped particles with
it. To circumvent this problem optical tweezers setups with multiple objec-
tives have been developed to separate the imaging and the trapping functions
of the objective[16, 17]. Such setups however are challenging to align and
rather costly. To go around this problem, we propose a simpler experiment
where a three-dimensional sample is excited in a two-dimensional plane and
the resulting infrasonic wave is detected in the same plane. For three di-
mensional confocal microscopy optically transparent samples are essential
for good image quality. This is even more important when working with op-
tical tweezers as the optical trap may affect out-of-plane particles that are
not properly refractive index matched. This problem can be minimized by
minimizing the intensity of the laser and maximizing the refractive index of
the probe bead that is embedded in the transparent material[18]. Studying
the 2D projection of the propagating waves would allow us to obtain all me-
chanical information as the extra dimension would yield an extra transverse
mode that, in an isotropicmaterial, would be identical to the transversemode
that can be observed in the imaging plane[19]. To interpret these results the
theoretical framework proposed in chapter 2 will have to be generalized for
a three-dimensional material. A two-dimensional projection of the resulting
response functions could then be used to directly interpret the mechanical
waves observed in the imaging plane.
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Hybrid networks

In chapter 4 we presented an in silico model to study the reinforcement of
weak marginal fiber networks with a secondary elastic network. We show
how this leads to new mechanical regimes and synergistic mechanical en-
hancement. Furthermore we elucidate the mechanisms underlying this me-
chanical enhancement. Depending on the mechanical regime, the secondary
elastic network suppresses different non affine deformation modes that are
abundant in dilute fiber networks[1, 5].

Studying these mechanisms experimentally is highly challenging as cur-
rent hybrid networks consist of polymers that are invisible with optical mi-
croscopy. To make hybrid networks that can be studied with optical mi-
croscopy and gain experimental access to the dynamics of these systems we
have to look at hybrid colloidal gels. These systems however require highly
specific interactions as particles belonging to one network may not have an
attractive interaction with the particles from the other network[20]. As a first
step towards these interactions, we developed a simple surface modification
method in chapter 5 based on click chemistry. As click chemistry is widely
used, a large range of possible modification molecules are available such as
DNA oligos with a custom sequence[21]. Surfaces with these DNA sequences
induce complex interaction potentials between colloidal particles that lead to
the formation of hybrid colloidal gels[20, 22]. As we have evidenced in chap-
ter 6 and 7, local structure and dynamics are crucial for the global mechanics
in colloidal gels. Therefore to get a complete picture of three dimensional
hybrid colloidal gels, information on the single particle level is required. This
can be achieved with confocal microscopy for which it is crucial that the col-
loids forming the hybrid network are refractive index matched with the sus-
pending liquid. As these solvents are often non-aqueous and DNA hybridiza-
tion is driven by hydrogen bonds and the hydrophobic effect, this poses chal-
lenges for the attractive interaction between the DNA oligomers on the sur-
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Figure 10.1: (a) Differential scanning calorimetry (DSC) curves of herring sperm
DNA in classic DNA binding buffer (red) and classic binding buffer with 50 wt. %
sucrose (blue). For both conditions we observe a hybridization peak at approxi-
mately 43◦C. (b) Storage moduli monitored over time for a colloidal gel network
embedded in a polymeric polyacrylamide (PAC) gel and various control experiments
(see legend). The red line indicates the point at which the UV light is switched on.
Temperature is held constant for all samples at 45◦C except for the sample with the
non-aggregated colloidal particles (orange) which was held at 5◦C.

face of the particles[23, 24]. In chapter 8 we have shown that even in 50 wt%
sucrose in water solutions pNIPAM retained its LCST behaviour and could
therefore still be used to trigger a temperature dependent interaction. As the
colloids we used in chapter 5 have a similar refractive index as the colloids in
chapter 8, we can match the refractive index of the DNA coated colloids by
suspending them in a 50%wt sucrose in water solution. To test whether DNA
can still hybridize in this environment, we carry out a differential scanning
calorimetry (DSC) experiment[Fig. 10.1 (a)]. Surprisingly we observe simi-
lar hybridization peaks for DNA in a classic binding buffer and in a classic
binding buffer with 50% sucrose. This opens up the way to form transparent
hybrid colloidal gels with our azide modified colloidal particles and to study
synergistic mechanisms experimentally.

A simpler way of studying the effect of a secondary elastic matrix on a
colloidal gel is by embedding the colloidal gel in a polymeric gel. As col-
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loidal particles cannot move in an elastic polymeric matrix, the colloidal gel
must form before the polymeric gel is formed. To implement this we use
the same colloidal system as we use in chapter 7 that provides a tempera-
ture trigger and add acrylamide monomers with a photo-initiator to provide
a photo-activated trigger for the secondary network. This way we can form
the colloidal gel first by increasing temperature and, when the colloidal gel
has sufficiently aged, illuminate with UV light to form the secondary acry-
lamide network. To check whether this system indeed exhibits synergistic
mechanical enhancement, we study our samples with rheology by monitor-
ing the evolution of the storagemodulusG′ over time at γ = 0.01 andω = 1

rad·s−1[Fig. 10.1 (b)]. First the temperature is raised to 45◦C and the col-
loidal gel forms and ages. Remarkably after triggering the formation of the
second network with a UV light source the storage modulus rises rapidly. A
sample where only the acrylamide network is formed shows a much lower
storage modulus which means that the increase seen in the hybrid network is
larger than the sum of the two constituents and therefore synergistic[25]. For
another control experiment we do not heat the sample, which prevents the
colloidal network from forming but we do trigger the formation of the sec-
ond network. This results in slight increase over the storage modulus for the
acrylamide network only because of the filler effect[26]. This highlights that,
for the hybrid network sample, the dramatic increase in stiffness is caused by
reinforcement of the colloidal network, as we had predicted theoretically in
chapter 4.

Strength

The main focus of this part of the thesis is to explain the irreversible me-
chanics of hyperweak materials from their structure and dynamics. In chap-
ter 6 we took the first step by directly linking the dynamics in hyperweak
solids to their heterogeneous structure. In chapter 7 we take this further and
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Figure 10.2: (a) The break up of a liquid column in spherical droplets. This everyday
phenomenon is know as the Rayleigh-Plateau instability and is driven by the surface
tension of the air-liquid interface[28]. (b) Simulation snapshots of clustering galax-
ies driven by gravity as attractive interaction. The resulting structure is formed via
a similar mechanism as the Rayleigh-Plateau instability and reminiscent of that of
colloidal gels. Reprinted by permission from Springer Nature [27], copyright (2003).

show how single particle mobility contributes to fatigue and mechanical fail-
ure in these ultraweak systems, providing the link between failure mechanics
and dynamics. Remarkably the weakening of colloidal gels can be largely ex-
plained by exclusively looking at the weakening of single strands and neglect-
ing the overall topology and structure of the network. In Chapter 8 we pro-
pose a newmodel system for hyperweakmaterials that allows for a controlled
study of the influence of colloidal surface mechanics on the overall mechan-
ics. Finally in chapter 9 we explore how the possibilities of machine learning
can aid in understanding and predicting fracture mechanics in marginal net-
works. This provides the link of network structure and topology to fracture
mechanics.

We have shown in chapters 6 and 7 that kinetically arrested solids are
never at rest but continuously evolve. In contrast to fatigue in biological fiber
networks, these aging dynamics are amplified under external load, which re-
sults in local weak spots that erode the strength of thematerial as a whole[29].
The external force F decreases bond lifetimes as τ ∝ e−F ·δ/kBT with δ as a
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microscopic lengthscale. This increases the probability of particles that have
multiple bonds to detach and explore the material for a more favorable po-
sition as shown in chapter 6. This new position maximizes the number of
bonds and is closer to the equilibrium state of the material. This picture sug-
gests that fatigue and aging in colloidal gels have similarmechanisms and that
fatigue can be regarded as mechanically accelerated aging. Moreover, the re-
structuring of the colloidal strands in thin and thick regions we observe is
remarkably similar to the Rayleigh-Plateau instability of liquid jets[Fig. 10.2
(a)]. Here a cylindrical fluid column breaks up in multiple spherical droplets
driven by the minimization of surface area and thus surface energy[28]. Col-
loidal particles at the interface of strands in a colloidal gel have fewer bonds
than particles within the strands. This gives them a higher amount of free
energy. Minimizing the number of particles on the interface of the strand
would thus minimize overall free energy. This suggests that the aging and
break up of colloidal strands is a manifestation of the Rayleigh-Plateau insta-
bility. A similar mechanism can also be observed on the much larger scale of
galaxy clusters where small clusters of galaxies are formed from the break up
of much larger ones, which results in a structure similar to colloidal gels[Fig.
10.2 (b)][27, 28].

From a commercial point of view fatigue, aging and the resultingweaken-
ing are often undesirable[30]. Yogurt, a prototypical example of a colloidal gel,
is prone to the phenomenon of syneresis[31]. Here, after scooping or wait-
ing for a sufficient period of time, liquid is expelled out of the yogurt leading
to a layer of liquid on top of the yogurt which is often unappetizing. Many
consumers perceive this liquid layer as a defect and a lot of effort is taken to
understand an prevent syneresis[32]. For yogurt and cheese curd syneresis is
linked to internal stresses inside the colloidal gels as a result of their inter-
nal dynamics[30]. Also in low-fat mayonaise syneresis has been observed[33].
Restraining these internal dynamics would stabilize the internal stresses and
prevent syneresis. An approach to accomplish this could be the implemen-
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Figure 10.3: (a) Schematic overview of our echo-DWS setup. The sample is sheared
with a transparent (glass) plat-plate geometry. A linearly polarized laser illuminates
the sample through the top plate. The scattered light is then reflected by a mirror
and fed into the detector. A linear polarizer is placed before the detector to make
sure only multiply scattered photons reach the detector. A pinhole ensures that the
detector measures a single speckle. The applied strain profile is displayed in the
inset. (b) The normalized intensity correlation function as measured by the detec-
tor/correlator combination for a colloidal gel sample. The peaks between 10 and
100 ms are the echos of the recovering structure as a result of the shear deforma-
tion depicted in the inset in (a). The decay of the echo peaks highlights the plastic
deformations inside the colloidal gel.

tation of a secondary elastic matrix. This would make the entire system a
composite network of colloidal particle strands and for example a polymeric
hydrogel. As shown in figure 10.1(b) polymeric hydrogel is an efficient way
of immobilizing colloidal particles and reinforcing a colloidal network. In
addition this would transform a colloidal gel from a ultra soft and ultra weak
material into a strong and stiff material characterized by reversible mechan-
ics as described in chapter 4.

The reversibility of the mechanics in these systems can be studied by
monitoring the integrity of the structure after several deformation cycles.
This can be readily achieved with echo diffusing wave spectroscopy (echo-
DWS)[34, 35][Fig. 10.3(a)]. When measuring a sample of immobilized parti-
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cles with classic DWS the signal will not decorrelate because the sample is
non-ergodic[36]. However when subjecting the sample to oscillatory strain
the signalwill decorrelate and recoverwhen the strain is released [Fig. 10.3(b)].
In the ideal case with full reversibility the signal will be exactly the same as
before deformation. However if internal rearrangements or relaxations oc-
curred during the straining of the sample, the correlation function will not
entirely return to its original value. As DWS relies in interference of light it
can detect small displacements in the order of nanometers, which makes it
an extremely sensitive approach to measuring the slightest irreversible de-
formation. While echo-DWS is highly suitable for studying the changes in
the material as a whole, it does not provide information at the single par-
ticle level, which could give access to microscopic mechanisms. Inspired
by previous work, to study plasticity on the microscopic level, we propose
an echo method that is based on deformation induced with optical tweez-
ers [38]. This method consists of embedding a scattering melamine probe
bead (d ≈ 4.0µm) in an optically transparent colloidal gel of tFEMA/tBMA
core-shell particles(d ≈ 1.5µm) [Fig.10.4 (a)][37]. The probe bead is sub-
sequently driven by an optical trap with an amplitude A = 2.0µm and a
frequency f = 0.5Hz, while the positions of the colloidal particles in the gel
are monitored with epifluorescence microscopy. Analogous to DWS, these
positions are then autocorrelated in time. When the sample is completely
reversible the correlation function will show peaks of equal height as a re-
sult of the oscillatory strain induced by the optical trap. However in case of
irreversible rearrangements the peaks will decay and ultimately completely
decorrelate[Fig.10.4 (b)]. For short lag times the reversible decorrelation is
centered around the probe particle[Figs.10.4 (c),(e)], however for longer lag
times the decorrelation and plasticity spread towards the edges of the field of
view [Fig. 10.4(f)]. Interpreting the resulting dynamics in terms of propagat-
ing waves as described in chapter 2 will be challenging as the irreversible re-
arrangements make the material locally fluid and will greatly attenuate wave
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Figure 10.4: (a) Epifluorescence microscopy image of a optically transparent deple-
tion gel of tFEMA/tBMA core-shell particles. The large bright particle in the center
is a refractive index mismatched melamine sphere that functions as the probe. (b)
Position autocorrelation function averaged for all particles in the field of view as a
function of lagtime τ . (c-f) Contour plots of spatially resolved position auto corre-
lation values for τ = 0.5, 1.0, 1.5, 4.0s respectively. No correlation data is available
for the grey areas because of the lack of particles.

propagation. However for cases with moderate amounts of plasticity, com-
paring the measured wave propagation patterns with the patterns that are
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Figure 10.5: (a) Shear jamming as observed in a simulation of granular frictional
hard spheres for various volume fractions φ, reprinted with permission from [39],
copyright 2013 by the American Physical Society. For high volume fraction a sudden
increase in relative viscosity ηr is observed with increased shear rate Γ̇. (b) Shear
thickening for smooth(black) and frictional colloidal raspberry particles of, from left
to right, decreasing roughness. For the rough particles a sudden increase in viscosity
η is observed with increasing shear rate γ̇[40]. (c-f) Electron microscopy images of
raspberry colloids with decreasing roughness[40]. (g) Schematic representation of a
pull-off experiment with AFM.

expected for a fully linear solid as described by our theory may shed new
light on the floppy and rigid regions in marginal solids.

Friction

In chapter 8 we have found indications that mechanical surface properties
may play a significant role in the overall mechanics of colloidal gels. In the
granular world it is well-known that friction drives a shear rate induced ar-
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rest known as discontinuous shear thickening[41, 42, 43, 44]. Here a sudden
increase in viscosity is observed for dense granular suspensions at a critical
shear rate[39]. Above this critical shear rate, the suspension is in a jammed
state which is similar to dense suspensions that are above the critical jam-
ming volume fraction[Fig. 10.5 (a)]. Also for dense colloidal systems friction
has been linked to a discontinuous shear thickening transition [Fig. 10.5 (b-
f)][40]. While the pronounced effects of friction have been intensively stud-
ied for dense, sheared and repulsive systems, the effects of friction on the
mechanics of attractive systems such as colloidal gels have been largely ig-
nored. Introducing inter particle friction would hinder the sliding and rota-
tional migration of weakly connected particles over the colloidal strands. As
we have seen in chapters 6 and 7 the migration of single particles can have a
large contribution to the overall mechanics of these systems. Hindering these
migrations could have a pronounced effect on the overall mechanics and re-
sistance to fatigue. This could provide another mechanism in preventing fail-
ure and syneresis in commercial products. Additionally, when particles are
hindered in their rational movement, overall bending resistance will be in-
troduced in the colloidal strands. In chapter 4 we have shown how bend-
ing resistance in fiber networks leads to a rich phase diagram of different
mechanical regimes[1]. Harnessing friction in colloidal gels would therefore
open up the way to soft materials with a tailored mechanical response.

The experimental system proposed in chapter 8 provides a good start-
ing point to systematically study the effects of friction in more detail. It is
however challenging to directly translate the grafting density of polymers
on the surface of the colloidal particle to a friction coefficient. Frictional
forces depend on both the friction coefficient and the normal force. While
this normal force is indirectly related to the inter particle attraction en thus
to the amount of polymeric material present on the surface, a direct mea-
surement is preferred. This can be achieved by measuring the pull-off force
of a pNIPAM-grafted colloidal particle from a surface spin-coated with ex-
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actly the samematerialwith atomic forcemicroscopy (AFM)[Fig. 10.5 (g)][45].
Subsequently, when the normal force is known, the particle can be dragged
over the surface to determine the frictional force and the corresponding fric-
tion coefficient with either optical tweezers or AFM[46, 47]. Once the re-
lation between grafting density, polymer length and friction coefficient has
been established its effect on fatigue can be tested with the same experiments
as described in chapter 7.

Predicting the life span of colloidal gels

In the last chapter on the prediction of fracture in dilute fiber networks we
have seen that the newmethods of machine learning can provide an effective
tool in identifying the critical parameters in complex problems. For fiber
networks we found that, with only three structural or topological parame-
ters describing the networks structure, a reasonable prediction of the critical
fracture stress could be obtained. This suggests that network structure is key
in mechanical failure in fiber networks. This contrasts with the results we
obtained for colloidal gels in chapter 7. Here we found that the weakening
of the individual strands or bonds in the network largely explains the global
mechanical failure. This contrast implies that the introduction of bondweak-
ening by internal dynamics completely changes the failure mechanism. To
study this further and to predict the lifespan of a colloidal gel based on its
initial structure, the methods developed in chapter 9 can be applied to col-
loidal gels. As this is a muchmore complex problem than the fracture of fiber
networks, a first step could be taken by simplifying a colloidal gel as a fiber
network with spring constants that are weakened as a function of their max-
imal extension and break when the spring constant has decreased below a
threshold value. To simulate the heterogeneity in strand length and thick-
ness, the initial spring constants can be drawn from a normal distribution.
The mean, variance, kurtosis etc. of this distribution can then be used com-
bined with the structural and topological parameters described in chapter 9
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as input for the neural networks to investigate if they hold predictive power
for the lifetime of the network as a whole.

Conclusion

In the individual chapters in this thesis we established the links that tie to-
gether the complex network of structure, dynamics and mechanics in hyper-
soft and hyperweak materials. In this final chapter we have worked towards
a broader understanding of this complex network by discussing each link
in a broader context and bringing them together. While we advanced our
knowledge about colloidal gels significantly, this is mainly focused on ideal-
ized frictionless particles in single colloidal networks.

However we found that the microscopic surface frictional properties and
an elastic background matrix can have considerable impact on the macro-
scopic mechanics. Immobilizing the particles in the colloidal network with
an elastic background matrix could prevent fatigue and syneresis. Increas-
ing friction between particles reduced the sliding of particles andmay induce
increased bending rigidity in colloidal strands. Studying these mechanisms
will offer many design opportunities for colloidal gels with specifically tuned
mechanical properties. Furthermore we mainly treated hypersoft and hyper-
weak as separate classes of materials. Most hyperweak materials such as col-
loidal gels are often hypersoft as well. Measuring the linear infrasonic elastic
wave measurements with echo measurements could help in clearing up the
transition from reversible to irreversible mechanics in colloidal gels. Finally
we explored howmachine learningmethods could be applied to complexme-
chanical problems. While predictions by these methods are based on black
boxes, the main feature of machine learning is the identification of important
physical parameters in complex phase spaces that can be the subject of further
study.
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Summary

Material mechanics play a crucial role in a wide variety of scenarios and ap-
plications. Here we focused on two central material properties: stiffness and
strength. Whereas stiffness characterizes the resistance to deformation for
small strains, where the response remains linear, strength describes the re-
silience of a material to larger deformations and mechanical damage. For
conventional materials strength and stiffness are readily described by estab-
lished mechanical theories. However, manymaterials in Nature, or engineer-
ingmaterials during processing, live in a state where stiffness and/or strength
becomes so weak that classical mechanical theories no longer apply. This has
been the focal point of this thesis.

The exploration of such ultrasoft and/or ultraweak solids faces many
challenges, some of which have been addressed in this thesis, including their
structure-property relationships and the question howone characterizes these
fragile materials where conventional mechanical methods are no longer vi-
able.

In chapter 2 we address the challenge of characterizing the mechani-
cal response of solids at the verge of a mechanical instability, where classical
approaches fail. We present a newmethod based on the propagation of infra-
sonicwaves. Thesewaves propagate at lowReynolds numbers, where dissipa-
tion is strong. We have not only shown an experimental approach to evaluate
wave propagation properties, but also established a theoretical framework
to interpret these data and extract quantitative mechanical properties with
a unique resolution. In chapter 3 we detail the technical challenges associ-
ated with these measurements, performed with the help of optical tweezers
to create travelling mechanical waves.

When marginal networks are combined with secondary elastic matri-
ces remarkable stiffening is observed. In chapter 4 we present a theoreti-
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cal model to study the effect of bending rigidity to the mechanics in hybrid
materials with simulations. We show how different mechanical regimes arise
depending on the bending stiffness and the stiffness of the secondary net-
work. Each of these regimes have different mechanisms that lead to mechan-
ical enhancement of the composite network. Experimental access to these
mechanisms is extremely challenging. In chapter 5 we take the first steps
to studying these mechanisms experimentally. Here we propose a a simple
click-chemistry based surface modification method that can help to achieve
the complex inter-particle interactions required for establishing hybrid col-
loidal networks.

The second part of this thesis covers hyperweak solids and irreversible
deformation. Chapters 6 to 8 deal with colloidal gels that are prototypical
examples of hyper weak solids. In chapter 6 we address the structure to
dynamics part of the structure-property relation in colloidal gels. We exper-
imentally establish the connection between the intermittent dynamics of in-
dividual particles and their local connectivity. We interpret our experimental
results with a model that describes single-particle dynamics based on highly
cooperative thermal debonding. Ourmodel is in quantitative agreement with
experiments and provides a microscopic picture for the structural origin of
dynamical heterogeneity and provides a new perspective of the link between
structure and the complex mechanics of these heterogeneous solids.

Chapter 7 focuses on the dynamics to mechanics part of the structure-
property relation by studying fatigue in colloidal gels. Here we combine ex-
periments and computer simulations to show how mechanical loading leads
to irreversible strand stretching, which builds slack into the network that
softens the solid at small strains and causes strain hardening at larger defor-
mations. We thus find that microscopic plasticity governs fatigue at much
larger scales. This sheds new light on fatigue in soft thermal solids and calls
for new theoretical descriptions of soft gelmechanics inwhich local plasticity
is taken into account.
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In chapter 8 we take first steps in investigating the overlooked role of
inter-particle friction in colloidal gels. We present a colloidal system with
a thermo-responsive trigger for systematically studying the effect of surface
properties, grafting density and chain length, on the particle dynamics within
colloidal gels. Microscopically, for colloids with a lower grafting density, we
observe an increase in the thermal bond angle fluctuations of aggregated col-
loids. Macroscopically, we observe a clear increase of the linear elastic mod-
ulus for gels with increased grafting density and longer chain lengths. These
effects are inversely proportional to the magnitude of local bond angle fluc-
tuations. Our model system will allow for further study of the microscopic
origins of the complexmacroscopicmechanical behavior of hyperweak solids
that include bending modes within the network.

Fracture and mechanical failure are highly stochastic processes and pre-
dicting fracture is highly challenging with conventional theories but crucial
to assessing the lifetimes of e.g. buildings, bridges and implants. In chapter
9we explore new opportunities for predicting fracture in marginal fiber net-
works. Fracture is the ultimate form of irreversible deformation and, espe-
cially in soft materials, characterized with highly non-linear mechanics pre-
empting themoment of failure. We show howmachine learningmethods can
by employed to predict the critical fracture stress solely based on structural
and topological input parameters. We show that neural networks, despite
their black box behavior, can be used to study the physical mechanisms un-
derlying fracture. By varying the input parameters for our fracture stress
predictions we found three parameters for which we can achieve the same
prediction quality as for all tested input parameters combined.

In the last chapter, the general discussion, we discuss how our results
relate to each other and how they fit in a broader context. Furthermore we
suggest and describe experiments that can help advance our knowledge of
hypersoft and hyperweak materials in the future.
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