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INTERPRETIVE SUMMARY

The present study aimed to identify QTL whose effects change during lactation using four
different GWAS approaches. Twenty chromosomal regions were detected with effects on milk
protein content, however, there was no evidence that their effects changed during lactation. Five
chromosomal regions were detected whose effects on milk protein content changed during
lactation, from which three were only identified based on GWAS for genotype by lactation
stage interaction. ldentification of QTL whose effects change during lactation are expected to
help elucidate the genetic and biological background of milk production.

Genome-wide association studies for genetic effects that change during lactation in dairy cattle
Haibo Lu and Henk Bovenhuis!
Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700
AH, Wageningen, the Netherlands.
Corresponding author: henk.bovenhuis@wur.nl

ABSTRACT

Genetic effects on milk production traits in dairy cattle might change during lactation.
However, most genome-wide association studies (GWAS) for milk production traits assume
that genetic effects are constant during lactation. This assumption might lead to missing these
QTL whose effects change during lactation. This study aimed to screen the whole genome
specifically for QTL whose effects change during lactation. For this purpose, four different
GWAS approaches were performed using test-day milk protein content records: 1) separate
GWAS for specific lactation stages; 2) GWAS for estimated Wilmink lactation curve
parameters; 3) a GWAS using a repeatability model where SNP effects are assumed constant
during lactation; and 4) a GWAS for genotype by lactation stage interaction using a
repeatability model and accounting for changing genetic effects during lactation. Separate

GWAS for specific lactation stages suggested that the detection power greatly differs between
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lactation stages and that genetic effects of some QTL change during lactation. GWAS for
estimated Wilmink lactation curve parameters detected many chromosomal regions for
Wilmink parameter a (protein content level), whereas two regions for Wilmink parameter b
(decrease in protein content towards nadir) and no regions for Wilmink parameter ¢ (increase
in protein content after nadir). Twenty chromosomal regions were detected with effects on milk
protein content, however, there was no evidence that their effects changed during lactation. For
five chromosomal regions located on chromosomes 3, 9, 10, 14, and 27 there was significant
evidence for genotype by lactation stage interaction and thus that their effects on milk protein
content changed during lactation. Three of these five regions were only identified using a
GWAS for genotype by lactation stage interaction. Our study demonstrated that GWAS for
genotype by lactation stage interaction offers new possibilities to identify QTL involved in milk
protein content. The performed approaches can be applied to other milk production traits.
Identification of QTL whose genetic effects change during lactation will help elucidate the
genetic and biological background of milk production.

Key words: GWAS, genetic effect, longitudinal trait, genotype by lactation stage interaction

INTRODUCTION

Quantitative genetic studies have shown that the additive genetic variance for milk
production traits changes during lactation (e.g. Jakobsen et al., 2002, Druet et al., 2005) and
genetic correlations between milk production traits in early and late lactation differ from unity
(e.g. Druet et al.,, 2003, Bastin et al., 2011). Furthermore, for the diacylglycerol O-
acyltransferase 1 (DGAT1) K232A polymorphism it has been shown that its effect on milk
production traits is not constant during lactation (e.g. Strucken et al., 2011, Szyda et al., 2014,
Bovenhuis et al., 2015). In addition, results from gene expression studies show that the
expression of several genes involved in milk production changes during lactation (e.g. Bionaz

and Loor, 2011, Wickramasinghe et al., 2012). Therefore, genetic effects on milk production



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

traits might change during lactation. However, genome-wide association studies (GWAS) for
milk production traits are mainly based on 305-day lactation records, which are summed or
average test-day milk production records (e.g. Jiang et al., 2010, Cole et al., 2011). These
studies detect QTL based on their average genetic effects during the whole lactation and assume
that genetic effects of QTL related to milk production traits are constant. In a GWAS using
models assuming constant genetic effects during lactation, QTL whose genetic effects change
during lactation might not be detected (Lund et al., 2008, Ning et al., 2018).

Only a few studies specifically performed genome-wide screens for QTL whose genetic
effects change during lactation (Strucken et al., 2012a, Macciotta et al., 2015). These GWAS
were performed based on estimated lactation curve parameters or principal components and
used relatively small data sets (less than 400 cows). Alternatively, screening the whole genome
specifically for regions showing genotype by lactation stage interaction has not previously been
carried out.

The objective of this study was to screen the whole genome for genetic effects that change
during lactation. For this purpose we performed four GWAS approaches using test-day milk
protein content in Dutch first parity Holstein cows: 1) separate GWAS for specific lactation
stages; 2) GWAS for estimated Wilmink lactation curve parameters; 3) a GWAS using a
repeatability model where SNP effects are assumed constant during lactation; and 4) a GWAS
for genotype by lactation stage interaction using a repeatability model and accounting for
changing genetic effects during lactation. This study will provide insight in differences between
the four approaches and might lead to the detection of new QTL that would not have been
detected when using models assuming genetic effects are constant. The results of this study are

expected to further elucidate the genetic and biological background of milk protein content.
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MATERIALS AND METHODS

Phenotypes and Genotypes

For this study, data on 1,829 Dutch Holstein first-parity cows were available. These cows
are housed on 398 commercial herds in the Netherlands with at least three cows per herd. All
cows were at least 87.5% Holstein-Friesian and descended from 5 proven bulls (98 to 196
daughters per sire), 50 test bulls (8 to 23 daughters per sire), and 15 other proven bulls (1 to 25
daughters per sire). Cows were milked twice daily and milk protein content was determined as
part of routine milk recording using infrared spectroscopy (MilkoScan FT 6000, Foss Electric,
Hillerad, Denmark) at the milk control station (Qlip, Zutphen, the Netherlands). The lactation
was truncated at 390 days, each cow on average had 10.7 test-day records and the total number
of test-day records was 19,593. Average milk protein content was 3.50% and the standard
deviation was 0.31%.

DNA was isolated from blood samples and cows were genotyped using a customized 50k
SNP chip (CRV, cooperative cattle improvement organization, Arnhem, the Netherlands) with
the Infinium assay (Illumina, San Diego, CA). The SNP sequence were mapped using BLAST

(http://www.ncbi.nlm.nih.gov/blast) and bovine genome assembly Btau 4.0 (Liu et al., 2009).

In total, 1,868 cows were genotyped and 1,800 cows have both genotypes and test-day milk
protein content records.
GWAS Approaches

If QTL effects change during lactation, separate GWAS for specific lactation stages might
give different results. The GWAS signals might be strong during some parts of the lactation
and weak or absent during other lactation stages. Therefore, in the first GWAS approach
separate genome-wide associations were performed for specific lactation stages. For this
purpose the lactation was divided in 26 lactation stages of 15 days each. Average number of

test-day records for each lactation stage was 754. GWAS were performed based on data from
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two consecutive lactation stage classes, e.g. lactation stages 1 & 2, 3 & 4 and so on. In this way
most of the cows had at least one test-day record in each of the separate GWAS. Because the
number of records per lactation stage decreased towards the end of lactation, data from lactation
stages 21 to 26 were combined for the last GWAS. Combining lactation stage classes might in
some cases result in multiple test day records per cow in a GWAS data set. In that case the first
test day record of a cow was removed. The number of records in each lactation stage and each
separate GWAS data set are shown in supplementary Table 1. The GWAS for specific lactation

stages were performed using model [1]:

Yjkimno = W + b1*afCjkimno + season; + scodex + lacti + SNPm + HTDy + animalo + €jkimno, [1]

where yjkimno 1S test-day milk protein content;  is the overall mean; afcjkimno iS a covariate
describing the effect of age at first calving; season; is the fixed effect of calving season (June—
August 2004, September—November 2004, and December 2004—February 2005); scodex is the
fixed effect accounting for possible differences in genetic level between daughters of proven
bulls, test bulls, and other proven bulls; lact; is the fixed effect of lactation stage (26 classes of
15 days each); SNP» was the fixed effect of SNP genotype, modeled as a class variable; HTDx
was the random effect of herd-test-day, which was assumed to be distributed as N (0, Io37p);
animal, was the random additive genetic effect of the individual and was assumed to be
distributed as N (0, Ac2) and ejiimno Was the random residual and was assumed to be distributed
as N(0,Ic2). A is the additive genetic relationships matrix constructed based on 14,062
animals and I is the identity matrix. Pedigree of the animals was traced back to five generations
and provided by the Dutch herdbook (CRV, Arnhem, The Netherlands). Model [1] accounts for
a lactation stage effect (lacti) because each separate GWAS analyzed test-day records from at

least two different lactation stage classes.
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GWAS based on estimated lactation curve parameters were performed (Strucken et al.,
2012a). In order to be able to compare our results with these GWAS, we performed the second
GWAS approach. In these analyses, we first fitted a Wilmink lactation curve (Wilmink, 1987)

to the test-day records of each cow using following model:

yi=a+b*exp 00 PMi ¢ * DIM; + g, [2]

where yi is test-day milk protein content; DIM; is days in milk; parameter a represents the
milk protein content level; parameter b represents the decrease in protein content towards nadir;
and parameter ¢ represents the increase in protein content after nadir. Lactation curve
parameters were estimated using the Procedure NLIN in SAS (SAS Inc., 1999). Subsequently
GWAS for estimated lactation curve parameters, as proposed by Strucken et al. (2012a), were

performed using the following model:

Yikmno = L + b1*afCjkmno + Season; + scodex + SNPm + HTDy + animalo + €jkmno, [3]

where yjkmno are estimated lactation curve parameters a, b or ¢ and the other model terms are
as described for model [1].

A GWAS using a model that assumes that genetic effects are constant during lactation might
not be able detect QTL whose genetic effects change during lactation (Lund et al., 2008, Ning
et al., 2018). To investigate this hypothesis we performed a third GWAS approach using all
test-day records and the following repeatability model that assumes that SNP effects are

constant throughout the lactation:
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Yikimnop = [ + b1*afCjumnop + Season; + scodex + lacti + SNPm + HTDy + animal, + pep +

€jkimnop, [4]

where pep is the permanent environmental effect that was assumed to be distributed as
N (0, Ia,?e). Other model terms are as described for model [1] and lactation stage (lacti) has 26
classes in this analysis.

Finally, we performed a fourth GWAS approach to specifically search for QTL whose
effects change throughout lactation, i.e., SNP that show significant genotype by lactation stage
interaction. For this purpose model [4] was extended with a SNP by lactation stage interaction

term (SNP*lact)im:

Yikimnop = W + b1*afCjkimnop + Season; + scodex + lacti + SNPm + (SNP*lact)im + HTDn +

animalo + pep+ €jkimnop, [5]

where model terms are as described for model [1] and lactation stage (lact:) has 26 classes
in this analysis. For SNP that showed significant SNP by lactation stage interaction, the effects
during the course of lactation were estimated using a model including the SNP by lactation

stage interaction but without the main effects of SNP and lactation stage:

Yikimnop = W + b1*afCjkimnop + S€ason; + scodex + (SNP*lact)im + HTD, + animal, + pep +

€jkimnop, [6]

where model terms are as described for model [1] and lactation stage class (lact)) has 26
classes. A t-test was used to test the significance of the difference between any of two SNP

genotypes within each lactation stage. If the P-value for the possible comparisons between any
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of two SNP genotypes was smaller than 0.001, the SNP effect within that lactation stage was
considered significant.

To test SNP by lactation stage interaction, any SNP genotype class in each lactation stage
class needs to have a sufficiently large number of test-day records. SNP were not included in
the GWAS if a genotype class contained less than 10 test-day records in any of the lactation
stage classes. After this restriction, 30,348 SNP remained and the same SNP were used in the
different GWAS approaches. All GWAS were performed in ASReml 4 (Gilmour et al., 2006).
Significance Threshold

The significance of SNP effects in GWAS approach 1 (separate lactation stages), GWAS
approach 2 (Wilmink lactation curve parameters), GWAS approach 3 (repeatability model) and
the SNP by lactation stage interaction effect in GWAS approach 4 were tested using the Wald
F test statistic. Possible inflation of the test statistic was inspected based on quantile-quantile
(QQ) plots where the observed -logio(P-value) was plotted against the expected -logio(P-value).
The genome-wide significance threshold for the SNP effects was based on false discovery rate
(FDR). FDR was calculated using the R package “qvalue” (Storey and Tibshirani, 2003) and
FDR < 0.01 was considered significant. Previous GWAS for SNP by environment interaction
observed a strong inflation of the test statistic for the interaction term (e.g. Voorman et al., 2011,
Marigorta and Gibson, 2014). When the distribution of the test statistic under null hypothesis
is unambiguous, permutation is a powerful strategy to estimate significance threshold
(Churchill and Doerge, 1994, Doerge and Churchill, 1996). Therefore, the genome-wide
significance threshold for the SNP by lactation stage interaction effect was not based on FDR
but determined using permutation. In each permutation, all 30,348 SNPs of an animal were
simultaneously assigned to a randomly selected other animal. Subsequently a GWAS was

performed using the permuted genotypes. For each permutation the smallest genome-wide P-
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value of the SNP by lactation stage interaction term was stored. Permutation was repeated 100

times to determine the 1% significance threshold for the interaction term.
RESULTS

The SNP with the highest -logio(P-value) for significant chromosomal regions (lead SNP)
identified in the different GWAS approaches are in Table 1. Different chromosomal regions on
the same chromosome are differentiated by letters.

Separate GWAS for Specific Lactation Stages

Manhattan plots of separate GWAS for specific lactation stages are shown in Figure 1.
Results are presented for early lactation (lactation stages 1 & 2, Figure 1A), mid lactation
(lactation stages 13 & 14, Figure 1B) and late lactation (lactation stages 21 to 26, Figure 1C).
Manhattan plots of separate GWAS for other lactation stages are shown in supplementary
Figure 1. Figure 1 and Table 1 demonstrate that there were large differences between lactation
stages in number of detected chromosomal regions. In early lactation only one region on Bos
taurus autosome (BTA) 6 significantly affected milk protein content. In mid lactation
significant associations were detected on BTA 4, 5, 6, 10a, 10c, 14a, 15a, 20, 24, and 26. In late
lactation significant associations were detected on BTA 6, 10b, 14a, and 16a. The region on
BTA 6, which contains the casein gene cluster, was the only region that showed significant
associations in all separate GWAS for specific lactation stages. The region on BTA 14a, which
contains the DGAT1, did not show significant associations in early lactation and the significance
of the GWAS signal showed large changes as lactation progressed (Table 1). Except BTA 6
and 14a, regions on BTA 4, 5, 10a, 10c, 15a, 20, 24, and 26 showed significant effects in mid
lactation but no significant effects in early and late lactation. The region on BTA 10b and 16a
showed significant associations in late lactation but no associations were detected in early and

mid-lactation. These differences between lactation stages in number of detected chromosomal
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regions and in their significance suggest that genetic effects of some QTL change during
lactation.
GWAS for Wilmink Lactation Curve Parameters

Manhattan plots of GWAS for the three Wilmink lactation curve parameters are shown in
Figure 2. For parameter a, representing the milk protein content level during lactation,
significant SNPs were detected on BTA 1, 6, 8b, 9a, 14a, 15b, 16b, 20, 23, and 26 (Figure 2A).
The strongest GWAS signals for parameter a were detected on BTA 6, 14a, and 20. For
parameter b, which represents the decrease in protein content towards nadir, significant effects
were detected on BTA 14a and 18 (Figure 2B). For parameter ¢, which represents the increase
in protein content after nadir, no significant QTL were detected (Figure 2C).
GWAS Based on the Repeatability Model

The Manhattan plot for the GWAS using a repeatability model and assuming SNP effects
are constant during lactation is shown in Figure 3. Significant chromosomal regions were
detected on BTA 4, 6, 7, 8a, 10c, 11, 14a, 14b, 15a, 15b, 16a, 20 and 26. Strong GWAS signals
were found on BTA 6, 14a, 15a, 15b, and 20; as 90% of the SNPs that passed the significance
threshold were clustered in these chromosomal regions.
GWAS for SNP by Lactation Stage Interaction

The Wald F statistic for the SNP by lactation stage interaction effect showed a strong
inflation, which is illustrated in the QQ plot (Supplementary Figure 2). To determine the
appropriate threshold for the SNP by lactation stage interaction term permutation was
performed. Based on 100 permutations the 1% genome-wide significance threshold was
estimated to be —logio(P-value) = 18.6.

The Manhattan plot for the SNP by lactation stage interaction effect is shown in Figure 4.
Significant SNP were detected on BTA 3, 9b, 10b, 14a, and 27. Estimated effects for the

(SNP*lact) interaction term for the lead SNP in these chromosomal regions were obtained from
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model [6]. Figure 5 shows the estimated effects of the lead SNP for the five regions that show
significant SNP by lactation stage interaction. The lead SNP on BTA 14a showed a different
pattern as compared to the lead SNP from the other significant regions. The lead SNP on BTA
3, 9b, 10b and 27 in general showed no significant effects in early and mid-lactation but SNP
effects became significant towards late lactation whereas the lead SNP on BTA14a showed
significant effects throughout the whole lactation except for early lactation (Figure 5).
Comparing Different GWAS Approaches

On BTA 8, 9, 10, 14, 15, 16, and 26, different GWAS approaches identified different lead
SNP. A two-SNP analysis revealed that the lead SNP in region BTA 10b (at 46.6 Mbp and 48.7
Mbp, Table 1) were in strong linkage disequilibrium and they detected the same QTL.
Similarly, the two lead SNP on BTA 26 were in strong linkage disequilibrium and represented
the same QTL.

Some regions only showed significant effects in one of the GWAS approaches; BTA 5, 10a,
and 24 only showed significant effects in the separate GWAS for specific lactation stages, BTA
9a and 16b were only significant for Wilmink parameter a, BTA 18 only showed significant
effects for Wilmink parameter b, BTA 7, 8a, and 11 were only significant in the repeatability
model [4] and BTA 3, 9b, and 27 only showed a significant SNP by lactation stage interaction
effect. The region on BTA 14a showed highly significant effects in all GWAS approaches: all
lactation stages except for lactation stages 1 & 2, Wilmink parameters a and b, the repeatability
model and a highly significant SNP by lactation stage interaction.

Twenty chromosomal regions on BTA 1, 4, 5, 6, 7, 8a, 8b, 9a, 10a, 10c, 11, 14b, 15a, 15b,
16a, 16b, 20, 23, 24, and 26 did not show evidence for changing effect sizes during lactation:
no clear pattern in the significance for different lactation stages, no significant effects for
Wilmink parameters b and ¢, and no significant SNP by lactation stage interaction were detected.

Five chromosomal regions on BTA 3, 9b, 10b, 14a and 27 showed significant SNP by lactation
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stage interaction (model [5]), indicating that effects of these regions changed during lactation.
BTA 10b was significant in the GWAS based on data from lactation stages 21 to 26 and also
showed a strong but non-significant GWAS signal for Wilmink parameter ¢ (Table 1, —logio(P-
value) = 4.0). BTA 14a affected both the milk protein content level (Wilmink parameter a) and
the shape of the lactation curve (Wilmink parameter b). BTA 3, 9b, and 27 showed significant
SNP by lactation stage interaction but did not show significant effects in any of the other GWAS
analyses we performed. These three chromosomal regions showed a clear increase in —logio(P-
value) towards later lactation stages (Table 1, e.g. GWAS based on data from lactation stages
21 to 26, model [1]), although not significant. Furthermore, for Wilmink parameter c, the lead
SNP on BTA 3 showed —logio(P-value) of 5.5, which is not significant at the applied threshold
of FDR < 0.01 but significant at threshold of FDR < 0.05. BTA 9b showed a strong but non-
significant GWAS signal for Wilmink parameter ¢ (Table 1, —logio(P-value) = 5.1).

DISCUSSION

In this study we performed different GWAS using test-day milk protein content records. The
objective was to specifically screen the genome for SNPs whose effects change during lactation.
For this purpose four different approaches were performed: 1) separate GWAS for specific
lactation stages; 2) GWAS for estimated Wilmink lactation curve parameters; 3) a GWAS using
a repeatability model where SNP effects are assumed constant during lactation; and 4) a GWAS
for genotype by lactation stage interaction using a repeatability model and accounting for
genetic effects that change during lactation. Separate GWAS for specific lactation stages
suggested that the detection power greatly differs between lactation stages and that effects of
some QTL change during lactation. Many regions were detected for Wilmink parameter a
whereas two regions were detected for Wilmink parameter b and no regions were detected for
Wilmink parameter c. Twenty chromosomal regions were detected with effects on milk protein

content, however, there was no evidence that their effects changed during lactation. A GWAS
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specifically for SNP by lactation stage interaction identified five regions, from which three were
not identified based on the other GWAS approaches we performed. To determine the
appropriate significance threshold for the SNP by lactation stage interaction term permutation
was used.
QTL for Milk Protein Content

In the current study regions on BTA 4, 6, 7, 8a, 10c, 11, 14a, 14b, 15a, 15b, 16a, 20 and 26
were identified using a repeatability model (model [4]) where SNP effects are assumed constant
during lactation. Except for BTA 14a, we did not find evidence that effects of these regions
changed during lactation, e.g. these regions were not significant for Wilmink parameters b or ¢
and did not show significant SNP by lactation stage interaction. The region on BTA 6 contains
the casein gene cluster (e.g. Ferretti et al., 1990, Threadgill and Womack, 1990) and the region
on BTA 20 (35.9 Mbp, Table 1) is closed to the Growth Hormone Receptor (33.9 Mbp, Btau
4.0) gene (e.g. Arranz et al., 1998, Blott et al., 2003). These two QTL have been shown to have
large effects on milk protein content. The region on BTA 10c (51.6 Mbp, Btau 4.0) was identical
to the region detected by Schopen et al. (2011) in a GWAS for milk protein composition, which
was based on largely the same animals and genotypes as used in the current study. On BTA 10
(46.6 Mbp, UMD 3.1) Nayeri et al. (2016) and Pausch et al. (2017) reported significant effects
on milk protein content. Significant associations for chromosomal regions on BTA 4, 14b, 15a,
15b, and 16a are also in agreement with results from other GWAS (e.g. Buitenhuis et al., 2016,
Pausch et al., 2017, Teissier et al., 2018). GWAS performed by Nayeri et al. (2016) and Pausch
et al. (2017), which were based on large data sets, detected a number of chromosomal regions
with effects on milk protein content that were not detected in the current study: regions on BTA
5, 29, and a second region on BTA 6. The reason we did not detect some of these regions might

be related to power.
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Regions on BTA 3, 9b, 10b, 14a, and 27 showed significant SNP by lactation stage
interaction effects. The region on BTA 14a contains DGAT1, which has a major effect on
several milk production traits (e.g. Grisart et al., 2002, Grisart et al., 2004, Bovenhuis et al.,
2016). Effects of DGATL1 on milk production traits change during lactation (Strucken et al.,
2011, Szyda et al., 2014). Based on largely the same data as current study, Bovenhuis et al.
(2015) described large DGAT1 by lactation stage interaction on milk yield, fat content and
protein content. Except for BTA 10b and 14a, the rest three regions were not significant in any
of the other GWAS approaches we performed. However, these regions have been associated
with milk production traits in other studies. Jiang et al. (2010) reported a QTL on BTA 3 (92.8
Mbp, Btau 4.0) with effects on milk and protein yield. Strucken et al. (2012a) reported
significant effects for Wilmink parameters on BTA 3 (86.6, 115.9, and 116.9 Mbp) for milk
protein yield. These GWAS signals are close to the region on BTA 3 (93.2 Mbp, Table 1) with
significant SNP by lactation stage interaction. The region on BTA 27 (37.9 Mbp, Table 1) with
a significant SNP by lactation stage interaction is closed to the 1-acylglycerol-3-phosphate O-
acyltransferase 6 (AGPAT6) gene (38.9 Mbp, Btau 4.0). AGPAT®6 is involved in milk fat
synthesis and has pleiotropic effects on other milk components (Littlejohn et al., 2014) and has
been shown to affect milk fat yield and fat content over the first 60 days of lactation (Strucken
et al., 2012b). Furthermore it has been shown that the expression of AGPAT6 in the mammary
gland increases over the first 60 days in lactation and decreases afterwards (Beigneux et al.,
2006, Bionaz and Loor, 2008).

Approaches to Detect QTL whose Effects Change During Lactation

A simple approach to find indications for genetic effects that change during lactation is to
split up the data and perform separate GWAS for different parts of the lactation. However,
splitting up the data does not make optimal use of all available information and it does not

provide a framework for significance testing of SNP whose genetic effect change during



345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

lactation. Results from separate GWAS for different parts of the lactation show large
differences in number of detected chromosomal regions: in early lactation only one region
significantly affected milk protein content whereas in mid lactation up to ten different regions
were detected. This shows that the power to detect QTL greatly differs between lactation stages.
The difference in the number of QTL detected in the lactation stage and the change in additive
genetic variance during lactation (Supplementary Table 1) also suggests that the effects of QTL
change during lactation.

The low QTL detection power in early lactation as compared to later lactation stages can be
explained by both a lower additive genetic variance and a higher residual variance: the
heritability estimate for lactation stages 1 & 2 was 0.07 whereas for lactation stages 13 & 14 it
was 0.63 (Supplementary Table 1). Separate GWAS for specific lactation stages is expected to
be less powerful than GWAS based on the repeatability model as it uses approximately a ten
times smaller number of records than the repeatability model. Counterintuitively, the results
obtained from the GWAS based on the smaller data set from specific lactation stages (Model
[1]) and based on the repeatability model using all test-day records (Model [4]) suggest that
excluding test-day records from early lactation might be a means to increase the QTL detection
power. For example, the —logio(P-value) for the region on BTA14a containing DGAT1 based
on the repeatability model [4] using all available test-day records was 33.1 whereas the GWAS
for lactation stage 13 & 14 based on only 10% of the records, the —logio(P-value) for DGAT1
reached 47.0 (Table 1). To check if excluding records can result in a stronger GWAS signal we
performed an additional analysis using the repeatability model [4] but excluding data from
lactation stages 1 to 4. This indeed increased significance of DGAT1 from 33.1, based on all
test day records, to 54.4 when analyzed based on a smaller data set consisting of test day records
only from lactation stages 5 to 26. Difference between both homozygous DGAT1 genotypes in

lactation stage 1 &2 is -0.01 and in lactation stage 13 & 14 this is 0.26. In the repeatability
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model [4] genotypic effects are averaged over the lactation and the difference between
homozygous DGAT1 genotypes is 0.18. As QTL detection power is directly related to QTL
effect size these differences between DGAT1 genotypes are part of the explanation why
excluding test-day records from early lactation is a means to increase the QTL detection power.

To detect QTL whose effects change during lactation a two-step approach might be used
where in a first analysis lactation curves are fitted to the test-day records and in a second
analysis GWAS are performed based on estimated parameters. This approach has been used in
other studies (e.g. Strucken et al., 2012a, Macciotta et al., 2015) and allows detection of QTL
that affect the shape of the lactation curve. In our study these analyses mainly resulted in the
detection of chromosomal regions that affected the milk protein content level (Wilmink
parameter a) and only two chromosomal regions that affected the shape of the lactation curve
(Wilmink parameters b) were detected. More subtle changes in the lactation curve, which were
identified based on testing for SNP by lactation stage interaction, apparently are not picked up
based on GWAS for Wilmink parameters. Using models that give a more accurate description
of the lactation curve might be an alternative, however, these also require estimation of more
parameters (e.g. Grossman and Koops, 2003).

The GWAS for Wilmink parameters detected several chromosomal regions affecting milk
protein level (Wilmink parameter a), which were not detected in the repeatability model or in
most of the lactation stage specific GWAS (regions on BTA 1, 8b, 9a, 16b, and 23). Therefore
we concluded that these regions are likely false positives that might be a consequence of the
two-step approach where differences in accuracies of estimated lactation curve parameters
between cows are not taken into account in the GWAS. Consequently the obtained significance
of SNP effects using this two-step approach are not correct and should be interpreted with

caution.
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A GWAS based on the repeatability model [4] assumes homogenous residual variance,
which is an assumption that is violated in this study, especially in early lactation. To test the
sensitivity of our results to heterogeneous residual variance we also performed a GWAS using
phenotypes that were standardized based on the variance within each lactation stage class. This
analysis did not result in the detection of other chromosomal regions than the ones reported in
Table 1 (results not shown). The repeatability model assumes that SNP effects are constant
throughout lactation and SNPs on BTA 4, 6, 7, 8a, 10c, 11, 14b, 15a, 15b, 16a, 20 and 26 seem
to follow this assumption. The assumption of constant SNP effects might lead to missing time-
dependent QTL effect (Lund et al., 2008, Ning et al., 2018). The effect of region on BTA 14a
clearly changed during lactation but its effect still was detected due to its large average effect.
SNPs on BTA 3, 9b, 10b, and 27, however, were not detected based on analyses using the
repeatability model [4].

Testing for SNP by lactation stage interaction is an alternative approach to detect
chromosomal regions whose effects change during lactation. A GWAS for SNP by lactation
stage interaction identified three novel regions (BTA 3, 9b, and 27) that were not detected in
other analyses. However, this model was not able to detect a region on BTA 16a, which showed
a clear association in lactation stage 21 to 26 (-logio(P-value) = 7.0, Table 1). This illustrates
that this approach is limited by the statistical power to detect interactions. In addition,
determining the significance threshold for the interaction term needs permutation (test statistic
inflation shown in supplementary Figure 2). To estimate significant threshold, we performed
100 permutations, which is computationally demanding.

Ning et al. (2018) used random regression to model changes in additive genetic, permanent
environmental and SNP effects on test-day milk production records. Ning et al. (2018)
concluded that the proposed model can control type | errors for QTL detection and has higher

power as compared to a repeatability model. Theoretically random regression modeling also
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would be suited for detecting QTL whose effects change during lactation. This would imply
testing for the best polynomial fit of SNP effects might be computationally demanding.
Biological Interpretation

GWAS for SNP by lactation stage interaction identify regions whose genetic effects on milk
protein content change during lactation. Effects on milk protein content can be due to effects
on protein yield and milk yield. Change in genetic effects are in agreement with quantitative
genetic studies that show that genetic variance and genetic correlations for milk production
traits change, especially during the beginning and the end of lactation. Change of genetic effects
are also confirmed based on gene expression studies (e.g. Bionaz and Loor, 2011,
Wickramasinghe et al., 2012). Genetic effects of DGAT1 on BTA 14a showed significant SNP
by lactation stage interaction, which is mainly due to the lack of a DGAT1 effect in early
lactation (lactation stage 1 & 2, Figure 5D). The exact mechanism behind effects of DGAT1 on
milk protein synthesis remains unclear. Bovenhuis et al. (2015) indicated that most of the effects
of DGATL1 on milk production traits, like milk protein content, originated from the effect on
water excretion (or dilution effect) and de novo FA synthesis. However, the DGAT1
polymorphism also has significant effects on the yield of different milk proteins (Bovenhuis et
al., 2016). In early lactation, dairy cows might suffer a negative energy balance. During this
period after calving, dairy cows mobilize body reserves to balance the energy deficit due to the
dramatic increase in milk yield and the restricted feed intake(e.g. Collard et al., 2000, Macciotta
et al., 2015). Bovenhuis et al. (2015) suggested that in early lactation another DGAT enzyme,
DGAT2 (Cases et al., 2001) might play a more important role than DGAT1 and this could be
an explanation for the observed changes in DGAT1 effects which also might affect milk protein
content.

Chromosomal regions on BTA 3, 9b, 10b, and 27 did not show significant effects on milk

protein content in early and mid-lactation but only in late lactation (Figure 5). In late lactation,



444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

most of the cows in our data were lactating and they were pregnant. However, because of
different insemination and conception dates, dairy cows were in different pregnancy stages.
Pregnancy has a negative effect on milk yield as a considerable amount of the nutrients are
needed for the growth and maintenance of the developing fetus (e.g. Olori et al., 1997).
Gestation stage also affects fat- and protein content of milk that increase as pregnancy advances
(e.g. Olori et al., 1997). The mechanisms by which gestation affects milk yield and composition
are mainly related to hormone-mediated partitioning of nutrients from milk production to
pregnancy requirements. Furthermore, it is well established that the regulation of protein
synthesis in the mammary gland is under control of hormones (Bionaz and Loor, 2011).
Therefore, pregnancy might be a reason why genetic effects on milk protein content change
during lactation, although the physiological mechanisms are still unknown. Associations
between milk protein content and reproductive performance in dairy cows have been reported
in several studies (e.g. Madouasse et al., 2010). It has been suggested that the association
between milk protein content and reproductive performance is partly due to the negative energy
balance in early lactation. Morton et al. (2016) indicated that factors determining milk protein
content during the first 30 d of lactation are not identical to factors determining milk protein
content in late lactation. Furthermore, Morton et al. (2016) suggested that milk protein content
in late lactation is more important than milk protein content in early lactation for the milk
protein content-reproductive performance relationship. This is in agreement with the hypothesis
that pregnancy might be a reason why genetic effects on milk protein content change during

lactation.
CONCLUSIONS
The current study aimed to detect genetic effects that change during lactation. For this

purpose, four different GWAS approaches were performed for milk protein content. Separate

GWAS for specific lactation stages suggested that the detection power greatly differs between
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lactation stages and that genetic effects of some QTL change during lactation. GWAS for
estimated Wilmink lactation curve parameters detected many QTL but these results should be
interpreted with caution as they were based on a two-step approach. Twenty chromosomal
regions were detected with effects on milk protein content, however, there was no evidence that
their effects changed during lactation. Five chromosomal regions were detected whose effect
on milk protein content change during lactation on BTA 3, 9b, 10b, 14a, and 27 , from which
BTA 3, 9b, and 27 were only detected in GWAS for SNP by lactation stage interaction. The
performed approaches can be used to other milk production traits. Exploring QTL whose effects
change during lactation are expected to elucidate the genetic and biological background of milk

production.
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Figure 1. Manhattan plot for milk protein content in specific different lactation stages. A:
lactation stages 1 & 2 (day 0-30), B: lactation stages 13 & 14 (day 180-210) and C: lactation
stages 21 to 26 (day 300-390). The cut-off value for the y-axis is set at a —logio(P-value) of 30.

The horizontal line indicates a false discovery rate < 0.01.
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Figure 2. Manhattan plot for Wilmink lactation curve parameters fitted to milk protein test-
day records: A: Wilmink parameter a. B: Wilmink parameter b. C: Wilmink parameter c. The
cut-off value for the y-axis is set at a —logio(P-value) of 30. The horizontal line indicates a false
discovery rate < 0.01. In Figure 2C no threshold is indicated as none of the SNP effects were

significant.
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Figure 3. Manhattan plot for milk protein content based on test-day milk protein content
records. The cut-off value for the y-axis is set at a —logio(P-value) of 30. The horizontal line

indicates a false discovery rate < 0.01.
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genome-wide significance threshold based on permutation (-logio(P-value) = 18.6).
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Figure 5. Effects of lead SNP genotypes that show significant SNP by lactation stage
interaction during different lactation stages. A: ULGR_rs29011303 on Chromosome 3. B:
BTB-02093517 on Chromosome 9. C: ULGR_BTA-68217 on Chromosome 10. D:
ULGR_SNP_AJ318490 1b on Chromosome 14. E: ARS-BFGL-NGS-30207 on Chromosome

27. * indicates a significant (P < 0.001) difference between any two SNP genotype classes in

that specific lactation stage based on a t-test.



667

668

Table 1. The —logio(P-value) of the lead SNP from different Genome-wide association (GWAS) approaches: Separate GWAS for specific lactation

stages, GWAS for Wilmink lactation curve parameters, GWAS based on a repeatability model, and GWAS for SNP by lactation stage interaction

Lactation stages Wilmink O
SNP name BTAY position (bp)? g S
1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-26 a b c et =
Significance threshold 5.1 4.6 4.4 4.3 4.1 4.2 4.1 4.0 4.2 4.1 4.6 4.2 53 inf 40 18.6°
ULGR_AAFC03118332_11420 1 92,196,881 1.5 4.3 3.5 4.3 2.2 2.2 1.1 13 0.2 1.0 0.2 4.5 0.2 1.8 1.7 0.9
ULGR_rs29011303 3 93,216,176 0.5 0.5 0.1 0.4 0.7 0.1 0.0 0.1 0.6 0.0 23 2.2 0.4 55 0.2 238
ULGR_AAFC03092560_13525 4 119,336,974 1.9 1.4 3.5 3.1 4.3 4.4 4.5 34 2.7 4.1 1.9 2.0 0.2 0.4 4.5 0.4
ULGR_AAFC03047193_69593 5 123,940,964 0.1 0.5 1.5 13 2.2 1.9 4.7 3.9 2.7 4.2 1.0 1.6 1.2 0.7 2.4 1.6
ARS-BFGL-NGS-27958 6 85,640,056 77 152 149 81 115 106 73 89 112 7.7 50 10.2 0.2 0.2 146 0.3
ARS-BFGL-NGS-103385 7 6,936,993 0.6 0.9 2.1 2.0 34 1.7 1.7 25 3.6 14 24 0.3 0.5 1.1 4.2 2.6
ARS-BFGL-NGS-23700 8a°® 31,495,260 0.3 4.4 1.4 3.4 3.6 2.2 2.6 2.4 2.6 3.5 2.5 2.0 0.6 0.2 4.0 6.2
BTB-00348223 8b 54,529,420 0.3 5.5 1.2 0.9 1.8 1.0 1.2 0.9 0.4 0.8 0.3 4.6 13 2.3 13 1.0
ULGR_BTA-85063 9a 15,357,200 0.1 1.0 3.1 4.0 3.0 2.6 2.2 1.7 0.5 1.4 13 4.5 1.8 0.6 2.9 3.1
BTB-02093517 9% 85,934,554 0.3 0.1 0.4 0.0 0.4 0.7 0.5 0.6 1.8 0.7 35 13 0.7 51 04 18.9
ULGR_BTA-67196 10a 45,610,197 0.5 0.8 1.4 1.4 1.2 2.3 4.6 13 2.4 2.8 2.0 0.5 0.1 1.2 2.6 4.8
ARS-BFGL-NGS-31031 10b 46,628,033 0.6 0.7 0.6 0.9 1.0 1.0 1.8 2.6 1.2 1.8 4.6 1.0 0.1 4.0 2.2 155
ULGR_BTA-68217 10b 48,721,829 0.8 0.1 0.6 0.5 0.1 0.2 1.8 0.7 1.2 1.2 2.8 0.8 0.6 4.2 14 273
ULGR_AAFC03042309_74455 10c 51,641,563 0.4 4.5 3.2 2.9 4.0 3.6 4.4 3.9 3.6 4.0 24 2.4 0.3 0.6 5.7 5.9
ARS-BFGL-NGS-74702 11 75,076,326 1.8 2.1 1.3 2.8 3.4 2.4 3.1 1.2 1.2 1.7 29 1.9 0.3 0.4 4.0 1.4
ULGR_SNP_AJ318490_1b 14a 445,087 0.1 81 128 30.2 432 380 470 391 310 420 85 265 123 05 331 744
BTB-00571421 14b 49,132,599 0.2 2.4 3.9 3.5 3.5 2.8 3.9 2.1 2.5 4.6 1.5 2.6 0.1 0.2 4.4 4.5

33



ULGR_AAFC03051145_8303
ULGR_BTA-27068
ULGR_BTA-96933
ULGR_BTA-121054
ARS-BFGL-NGS-84358
ULGR_rs29016098
ULGR_BTC-058392
ULGR_BTA-57368
ARS-BFGL-NGS-39823
ULGR_BTA-40792
ARS-BFGL-NGS-30207

15a
15b
16a
16b
18
20
23
24
26
26
27

53,245,382
61,599,974
6,593,236
29,757,245
39,954,079
35,900,587
51,608,060
11,476,207
23,530,300
28,013,558
37,915,598

0.6
2.3
0.4
0.9
0.5
0.7
0.1
0.3
0.0
0.0
0.1

4.2
2.6
2.7
2.5
0.0
1.8
3.5
0.3
1.9
1.8
0.2

6.1
4.2
1.4
2.6
0.4
4.9
3.9
0.8
4.8
3.2
0.8

5.0
5.1
1.6
2.8
1.2
6.1
3.4
0.6
3.1
2.8
1.0

4.2
4.5
2.1
14
0.7
6.3
4.2
1.5
4.7
3.8
0.5

2.9
4.1
2.9
2.3
1.0
4.9
2.7
2.7
3.1
1.5
1.2

4.4
3.3
1.3
0.9
1.4
4.3
1.6
4.5
4.2
2.9
3.2

7.0
5.7
11
0.5
1.2
2.4
2.6
1.8
4.2
2.0
1.9

3.3
3.8
3.1
0.6
0.7
2.2
0.4
0.9
1.4
0.2
3.0

4.1
3.9
2.4
0.4
1.7
2.8
1.9
2.3
2.8
1.8
1.9

1.3
11
7.0
0.3
0.6
2.8
0.6
0.8
1.9
0.2
2.6

3.4
4.8
0.8
4.9
2.8
6.3
4.4
0.5
4.1
4.9
0.3

1.1
0.9
1.2
2.0
5.3
3.2
1.7
0.0
1.7
1.4
0.1

0.1
0.4
1.2
3.6
1.6
11
14
1.0
0.2
2.1
2.6

5.6
53
4.6
1.5
0.5
4.9
2.8
2.8
4.0
1.8
1.6

2.4
0.7
3.2
3.2
2.7
2.1
6.3
1.0
1.7
6.2
28.6

669 Y BTA: Bos taurus autosome.
670 2 position of SNP based on Btau 4.0. The sequence of the SNP are in supplementary Table 2.

671 ¥ Repeatability model using all test-day observations.
672 ¥ Repeatability model including a SNP by lactation stage interaction term. Based on a permutation test the 1% genome-wide significance level for

673  the interaction term set at —logio(P-value) = 18.6.

674 9 Significance threshold in terms of —logio(P-value). —logio(P-value) in any GWAS approaches were bold if they are greater than corresponding

675  significance threshold.

676  © The different letters for the same chromosome indicate different QTL.
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