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INTERPRETIVE SUMMARY 1 

The present study aimed to identify QTL whose effects change during lactation using four 2 

different GWAS approaches. Twenty chromosomal regions were detected with effects on milk 3 

protein content, however, there was no evidence that their effects changed during lactation. Five 4 

chromosomal regions were detected whose effects on milk protein content changed during 5 

lactation, from which three were only identified based on GWAS for genotype by lactation 6 

stage interaction. Identification of QTL whose effects change during lactation are expected to 7 

help elucidate the genetic and biological background of milk production. 8 

Genome-wide association studies for genetic effects that change during lactation in dairy cattle 9 

Haibo Lu and Henk Bovenhuis1 10 

Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 11 

AH, Wageningen, the Netherlands. 12 

1Corresponding author: henk.bovenhuis@wur.nl 13 

ABSTRACT 14 

Genetic effects on milk production traits in dairy cattle might change during lactation. 15 

However, most genome-wide association studies (GWAS) for milk production traits assume 16 

that genetic effects are constant during lactation. This assumption might lead to missing these 17 

QTL whose effects change during lactation. This study aimed to screen the whole genome 18 

specifically for QTL whose effects change during lactation. For this purpose, four different 19 

GWAS approaches were performed using test-day milk protein content records: 1) separate 20 

GWAS for specific lactation stages; 2) GWAS for estimated Wilmink lactation curve 21 

parameters; 3) a GWAS using a repeatability model where SNP effects are assumed constant 22 

during lactation; and 4) a GWAS for genotype by lactation stage interaction using a 23 

repeatability model and accounting for changing genetic effects during lactation. Separate 24 

GWAS for specific lactation stages suggested that the detection power greatly differs between 25 
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lactation stages and that genetic effects of some QTL change during lactation. GWAS for 26 

estimated Wilmink lactation curve parameters detected many chromosomal regions for 27 

Wilmink parameter a (protein content level), whereas two regions for Wilmink parameter b 28 

(decrease in protein content towards nadir) and no regions for Wilmink parameter c (increase 29 

in protein content after nadir). Twenty chromosomal regions were detected with effects on milk 30 

protein content, however, there was no evidence that their effects changed during lactation. For 31 

five chromosomal regions located on chromosomes 3, 9, 10, 14, and 27 there was significant 32 

evidence for genotype by lactation stage interaction and thus that their effects on milk protein 33 

content changed during lactation. Three of these five regions were only identified using a 34 

GWAS for genotype by lactation stage interaction. Our study demonstrated that GWAS for 35 

genotype by lactation stage interaction offers new possibilities to identify QTL involved in milk 36 

protein content. The performed approaches can be applied to other milk production traits. 37 

Identification of QTL whose genetic effects change during lactation will help elucidate the 38 

genetic and biological background of milk production.  39 

Key words: GWAS, genetic effect, longitudinal trait, genotype by lactation stage interaction 40 

INTRODUCTION 41 

Quantitative genetic studies have shown that the additive genetic variance for milk 42 

production traits changes during lactation (e.g. Jakobsen et al., 2002, Druet et al., 2005) and 43 

genetic correlations between milk production traits in early and late lactation differ from unity 44 

(e.g. Druet et al., 2003, Bastin et al., 2011). Furthermore, for the diacylglycerol O-45 

acyltransferase 1 (DGAT1) K232A polymorphism it has been shown that its effect on milk 46 

production traits is not constant during lactation (e.g. Strucken et al., 2011, Szyda et al., 2014, 47 

Bovenhuis et al., 2015). In addition, results from gene expression studies show that the 48 

expression of several genes involved in milk production changes during lactation (e.g. Bionaz 49 

and Loor, 2011, Wickramasinghe et al., 2012). Therefore, genetic effects on milk production 50 



traits might change during lactation. However, genome-wide association studies (GWAS) for 51 

milk production traits are mainly based on 305-day lactation records, which are summed or 52 

average test-day milk production records (e.g. Jiang et al., 2010, Cole et al., 2011). These 53 

studies detect QTL based on their average genetic effects during the whole lactation and assume 54 

that genetic effects of QTL related to milk production traits are constant. In a GWAS using 55 

models assuming constant genetic effects during lactation, QTL whose genetic effects change 56 

during lactation might not be detected (Lund et al., 2008, Ning et al., 2018). 57 

Only a few studies specifically performed genome-wide screens for QTL whose genetic 58 

effects change during lactation (Strucken et al., 2012a, Macciotta et al., 2015). These GWAS 59 

were performed based on estimated lactation curve parameters or principal components and 60 

used relatively small data sets (less than 400 cows). Alternatively, screening the whole genome 61 

specifically for regions showing genotype by lactation stage interaction has not previously been 62 

carried out. 63 

The objective of this study was to screen the whole genome for genetic effects that change 64 

during lactation. For this purpose we performed four GWAS approaches using test-day milk 65 

protein content in Dutch first parity Holstein cows: 1) separate GWAS for specific lactation 66 

stages; 2) GWAS for estimated Wilmink lactation curve parameters; 3) a GWAS using a 67 

repeatability model where SNP effects are assumed constant during lactation; and 4) a GWAS 68 

for genotype by lactation stage interaction using a repeatability model and accounting for 69 

changing genetic effects during lactation. This study will provide insight in differences between 70 

the four approaches and might lead to the detection of new QTL that would not have been 71 

detected when using models assuming genetic effects are constant. The results of this study are 72 

expected to further elucidate the genetic and biological background of milk protein content. 73 



MATERIALS AND METHODS 74 

Phenotypes and Genotypes 75 

For this study, data on 1,829 Dutch Holstein first-parity cows were available. These cows 76 

are housed on 398 commercial herds in the Netherlands with at least three cows per herd. All 77 

cows were at least 87.5% Holstein-Friesian and descended from 5 proven bulls (98 to 196 78 

daughters per sire), 50 test bulls (8 to 23 daughters per sire), and 15 other proven bulls (1 to 25 79 

daughters per sire). Cows were milked twice daily and milk protein content was determined as 80 

part of routine milk recording using infrared spectroscopy (MilkoScan FT 6000, Foss Electric, 81 

Hillerød, Denmark) at the milk control station (Qlip, Zutphen, the Netherlands). The lactation 82 

was truncated at 390 days, each cow on average had 10.7 test-day records and the total number 83 

of test-day records was 19,593. Average milk protein content was 3.50% and the standard 84 

deviation was 0.31%.  85 

DNA was isolated from blood samples and cows were genotyped using a customized 50k 86 

SNP chip (CRV, cooperative cattle improvement organization, Arnhem, the Netherlands) with 87 

the Infinium assay (Illumina, San Diego, CA). The SNP sequence were mapped using BLAST 88 

(http://www.ncbi.nlm.nih.gov/blast) and bovine genome assembly Btau 4.0 (Liu et al., 2009). 89 

In total, 1,868 cows were genotyped and 1,800 cows have both genotypes and test-day milk 90 

protein content records. 91 

GWAS Approaches 92 

If QTL effects change during lactation, separate GWAS for specific lactation stages might 93 

give different results. The GWAS signals might be strong during some parts of the lactation 94 

and weak or absent during other lactation stages. Therefore, in the first GWAS approach 95 

separate genome-wide associations were performed for specific lactation stages. For this 96 

purpose the lactation was divided in 26 lactation stages of 15 days each. Average number of 97 

test-day records for each lactation stage was 754. GWAS were performed based on data from 98 
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two consecutive lactation stage classes, e.g. lactation stages 1 & 2, 3 & 4 and so on. In this way 99 

most of the cows had at least one test-day record in each of the separate GWAS. Because the 100 

number of records per lactation stage decreased towards the end of lactation, data from lactation 101 

stages 21 to 26 were combined for the last GWAS. Combining lactation stage classes might in 102 

some cases result in multiple test day records per cow in a GWAS data set. In that case the first 103 

test day record of a cow was removed. The number of records in each lactation stage and each 104 

separate GWAS data set are shown in supplementary Table 1. The GWAS for specific lactation 105 

stages were performed using model [1]:  106 

 107 

yjklmno = μ + b1*afcjklmno + seasonj  + scodek + lactl + SNPm + HTDn + animalo + ejklmno, [1] 108 

 109 

where yjklmno is test-day milk protein content; μ is the overall mean; afcjklmno is a covariate 110 

describing the effect of age at first calving; seasonj is the fixed effect of calving season (June–111 

August 2004, September–November 2004, and December 2004–February 2005); scodek is the 112 

fixed effect accounting for possible differences in genetic level between daughters of proven 113 

bulls, test bulls, and other proven bulls; lactl is the fixed effect of lactation stage (26 classes of 114 

15 days each); SNPm was the fixed effect of SNP genotype, modeled as a class variable; HTDn 115 

was the random effect of herd-test-day, which was assumed to be distributed as 𝑁(0, 𝑰𝜎𝐻𝑇𝐷
2 ); 116 

animalo was the random additive genetic effect of the individual and was assumed to be 117 

distributed as 𝑁(0, 𝑨𝜎𝑎
2) and ejklmno was the random residual and was assumed to be distributed 118 

as 𝑁(0, 𝑰𝜎𝑒
2) . A is the additive genetic relationships matrix constructed based on 14,062 119 

animals and I is the identity matrix. Pedigree of the animals was traced back to five generations 120 

and provided by the Dutch herdbook (CRV, Arnhem, The Netherlands). Model [1] accounts for 121 

a lactation stage effect (lactl) because each separate GWAS analyzed test-day records from at 122 

least two different lactation stage classes.  123 



GWAS based on estimated lactation curve parameters were performed (Strucken et al., 124 

2012a). In order to be able to compare our results with these GWAS, we performed the second 125 

GWAS approach. In these analyses, we first fitted a Wilmink lactation curve (Wilmink, 1987) 126 

to the test-day records of each cow using following model: 127 

 128 

yi = a + b * exp –0.05*DIMi +c * DIMi + ei, [2] 129 

 130 

where yi is test-day milk protein content; DIMi is days in milk; parameter a represents the 131 

milk protein content level; parameter b represents the decrease in protein content towards nadir; 132 

and parameter c represents the increase in protein content after nadir. Lactation curve 133 

parameters were estimated using the Procedure NLIN in SAS (SAS Inc., 1999). Subsequently 134 

GWAS for estimated lactation curve parameters, as proposed by Strucken et al. (2012a), were 135 

performed using the following model: 136 

 137 

yjkmno = μ + b1*afcjkmno + seasonj  + scodek + SNPm + HTDn + animalo + ejkmno, [3] 138 

 139 

where yjkmno are estimated lactation curve parameters a, b or c and the other model terms are 140 

as described for model [1].  141 

A GWAS using a model that assumes that genetic effects are constant during lactation might 142 

not be able detect QTL whose genetic effects change during lactation (Lund et al., 2008, Ning 143 

et al., 2018). To investigate this hypothesis we performed a third GWAS approach using all 144 

test-day records and the following repeatability model that assumes that SNP effects are 145 

constant throughout the lactation: 146 

 147 



yjklmnop = μ + b1*afcjklmnop + seasonj  + scodek + lactl + SNPm + HTDn + animalo  + pep + 148 

ejklmnop, [4] 149 

 150 

where pep is the permanent environmental effect that was assumed to be distributed as 151 

𝑁(0, 𝑰𝜎𝑝𝑒
2 ). Other model terms are as described for model [1] and lactation stage (lactl) has 26 152 

classes in this analysis. 153 

Finally, we performed a fourth GWAS approach to specifically search for QTL whose 154 

effects change throughout lactation, i.e., SNP that show significant genotype by lactation stage 155 

interaction. For this purpose model [4] was extended with a SNP by lactation stage interaction 156 

term (SNP*lact)lm: 157 

 158 

yjklmnop = μ + b1*afcjklmnop + seasonj  + scodek + lactl + SNPm + (SNP*lact)lm + HTDn + 159 

animalo  + pep + ejklmnop, [5] 160 

 161 

where model terms are as described for model [1] and lactation stage (lactl) has 26 classes 162 

in this analysis. For SNP that showed significant SNP by lactation stage interaction, the effects 163 

during the course of lactation were estimated using a model including the SNP by lactation 164 

stage interaction but without the main effects of SNP and lactation stage:  165 

 166 

yjklmnop = μ + b1*afcjklmnop + seasonj  + scodek + (SNP*lact)lm + HTDn + animalo  + pep + 167 

ejklmnop, [6] 168 

 169 

where model terms are as described for model [1] and lactation stage class (lactl) has 26 170 

classes. A t-test was used to test the significance of the difference between any of two SNP 171 

genotypes within each lactation stage. If the P-value for the possible comparisons between any 172 



of two SNP genotypes was smaller than 0.001, the SNP effect within that lactation stage was 173 

considered significant. 174 

To test SNP by lactation stage interaction, any SNP genotype class in each lactation stage 175 

class needs to have a sufficiently large number of test-day records. SNP were not included in 176 

the GWAS if a genotype class contained less than 10 test-day records in any of the lactation 177 

stage classes. After this restriction, 30,348 SNP remained and the same SNP were used in the 178 

different GWAS approaches. All GWAS were performed in ASReml 4 (Gilmour et al., 2006). 179 

Significance Threshold 180 

The significance of SNP effects in GWAS approach 1 (separate lactation stages), GWAS 181 

approach 2 (Wilmink lactation curve parameters), GWAS approach 3 (repeatability model) and 182 

the SNP by lactation stage interaction effect in GWAS approach 4 were tested using the Wald 183 

F test statistic. Possible inflation of the test statistic was inspected based on quantile-quantile 184 

(QQ) plots where the observed -log10(P-value) was plotted against the expected -log10(P-value). 185 

The genome-wide significance threshold for the SNP effects was based on false discovery rate 186 

(FDR). FDR was calculated using the R package “qvalue” (Storey and Tibshirani, 2003) and 187 

FDR < 0.01 was considered significant. Previous GWAS for SNP by environment interaction 188 

observed a strong inflation of the test statistic for the interaction term (e.g. Voorman et al., 2011, 189 

Marigorta and Gibson, 2014). When the distribution of the test statistic under null hypothesis 190 

is unambiguous, permutation is a powerful strategy to estimate significance threshold 191 

(Churchill and Doerge, 1994, Doerge and Churchill, 1996). Therefore, the genome-wide 192 

significance threshold for the SNP by lactation stage interaction effect was not based on FDR 193 

but determined using permutation. In each permutation, all 30,348 SNPs of an animal were 194 

simultaneously assigned to a randomly selected other animal. Subsequently a GWAS was 195 

performed using the permuted genotypes. For each permutation the smallest genome-wide P-196 



value of the SNP by lactation stage interaction term was stored. Permutation was repeated 100 197 

times to determine the 1% significance threshold for the interaction term.  198 

RESULTS 199 

The SNP with the highest -log10(P-value) for significant chromosomal regions (lead SNP) 200 

identified in the different GWAS approaches are in Table 1. Different chromosomal regions on 201 

the same chromosome are differentiated by letters.  202 

Separate GWAS for Specific Lactation Stages  203 

Manhattan plots of separate GWAS for specific lactation stages are shown in Figure 1. 204 

Results are presented for early lactation (lactation stages 1 & 2, Figure 1A), mid lactation 205 

(lactation stages 13 & 14, Figure 1B) and late lactation (lactation stages 21 to 26, Figure 1C). 206 

Manhattan plots of separate GWAS for other lactation stages are shown in supplementary 207 

Figure 1. Figure 1 and Table 1 demonstrate that there were large differences between lactation 208 

stages in number of detected chromosomal regions. In early lactation only one region on Bos 209 

taurus autosome (BTA) 6 significantly affected milk protein content. In mid lactation 210 

significant associations were detected on BTA 4, 5, 6, 10a, 10c, 14a, 15a, 20, 24, and 26. In late 211 

lactation significant associations were detected on BTA 6, 10b, 14a, and 16a. The region on 212 

BTA 6, which contains the casein gene cluster, was the only region that showed significant 213 

associations in all separate GWAS for specific lactation stages. The region on BTA 14a, which 214 

contains the DGAT1, did not show significant associations in early lactation and the significance 215 

of the GWAS signal showed large changes as lactation progressed (Table 1). Except BTA 6 216 

and 14a, regions on BTA 4, 5, 10a, 10c, 15a, 20, 24, and 26 showed significant effects in mid 217 

lactation but no significant effects in early and late lactation. The region on BTA 10b and 16a 218 

showed significant associations in late lactation but no associations were detected in early and 219 

mid-lactation. These differences between lactation stages in number of detected chromosomal 220 



regions and in their significance suggest that genetic effects of some QTL change during 221 

lactation. 222 

GWAS for Wilmink Lactation Curve Parameters 223 

Manhattan plots of GWAS for the three Wilmink lactation curve parameters are shown in 224 

Figure 2. For parameter a, representing the milk protein content level during lactation, 225 

significant SNPs were detected on BTA 1, 6, 8b, 9a, 14a, 15b, 16b, 20, 23, and 26 (Figure 2A). 226 

The strongest GWAS signals for parameter a were detected on BTA 6, 14a, and 20. For 227 

parameter b, which represents the decrease in protein content towards nadir, significant effects 228 

were detected on BTA 14a and 18 (Figure 2B). For parameter c, which represents the increase 229 

in protein content after nadir, no significant QTL were detected (Figure 2C).  230 

GWAS Based on the Repeatability Model  231 

The Manhattan plot for the GWAS using a repeatability model and assuming SNP effects 232 

are constant during lactation is shown in Figure 3. Significant chromosomal regions were 233 

detected on BTA 4, 6, 7, 8a, 10c, 11, 14a, 14b, 15a, 15b, 16a, 20 and 26. Strong GWAS signals 234 

were found on BTA 6, 14a, 15a, 15b, and 20; as 90% of the SNPs that passed the significance 235 

threshold were clustered in these chromosomal regions.  236 

GWAS for SNP by Lactation Stage Interaction 237 

The Wald F statistic for the SNP by lactation stage interaction effect showed a strong 238 

inflation, which is illustrated in the QQ plot (Supplementary Figure 2). To determine the 239 

appropriate threshold for the SNP by lactation stage interaction term permutation was 240 

performed. Based on 100 permutations the 1% genome-wide significance threshold was 241 

estimated to be –log10(P-value) = 18.6.  242 

The Manhattan plot for the SNP by lactation stage interaction effect is shown in Figure 4. 243 

Significant SNP were detected on BTA 3, 9b, 10b, 14a, and 27. Estimated effects for the 244 

(SNP*lact) interaction term for the lead SNP in these chromosomal regions were obtained from 245 



model [6]. Figure 5 shows the estimated effects of the lead SNP for the five regions that show 246 

significant SNP by lactation stage interaction. The lead SNP on BTA 14a showed a different 247 

pattern as compared to the lead SNP from the other significant regions. The lead SNP on BTA 248 

3, 9b, 10b and 27 in general showed no significant effects in early and mid-lactation but SNP 249 

effects became significant towards late lactation whereas the lead SNP on BTA14a showed 250 

significant effects throughout the whole lactation except for early lactation (Figure 5). 251 

Comparing Different GWAS Approaches  252 

On BTA 8, 9, 10, 14, 15, 16, and 26, different GWAS approaches identified different lead 253 

SNP. A two-SNP analysis revealed that the lead SNP in region BTA 10b (at 46.6 Mbp and 48.7 254 

Mbp, Table 1) were in strong linkage disequilibrium and they detected the same QTL. 255 

Similarly, the two lead SNP on BTA 26 were in strong linkage disequilibrium and represented 256 

the same QTL.  257 

Some regions only showed significant effects in one of the GWAS approaches; BTA 5, 10a, 258 

and 24 only showed significant effects in the separate GWAS for specific lactation stages, BTA 259 

9a and 16b were only significant for Wilmink parameter a, BTA 18 only showed significant 260 

effects for Wilmink parameter b, BTA 7, 8a, and 11 were only significant in the repeatability 261 

model [4] and BTA 3, 9b, and 27 only showed a significant SNP by lactation stage interaction 262 

effect. The region on BTA 14a showed highly significant effects in all GWAS approaches: all 263 

lactation stages except for lactation stages 1 & 2, Wilmink parameters a and b, the repeatability 264 

model and a highly significant SNP by lactation stage interaction.   265 

Twenty chromosomal regions on BTA 1, 4, 5, 6, 7, 8a, 8b, 9a, 10a, 10c, 11, 14b, 15a, 15b, 266 

16a, 16b, 20, 23, 24, and 26 did not show evidence for changing effect sizes during lactation: 267 

no clear pattern in the significance for different lactation stages, no significant effects for 268 

Wilmink parameters b and c, and no significant SNP by lactation stage interaction were detected. 269 

Five chromosomal regions on BTA 3, 9b, 10b, 14a and 27 showed significant SNP by lactation 270 



stage interaction (model [5]), indicating that effects of these regions changed during lactation. 271 

BTA 10b was significant in the GWAS based on data from lactation stages 21 to 26 and also 272 

showed a strong but non-significant GWAS signal for Wilmink parameter c (Table 1, –log10(P-273 

value) = 4.0). BTA 14a affected both the milk protein content level (Wilmink parameter a) and 274 

the shape of the lactation curve (Wilmink parameter b). BTA 3, 9b, and 27 showed significant 275 

SNP by lactation stage interaction but did not show significant effects in any of the other GWAS 276 

analyses we performed. These three chromosomal regions showed a clear increase in –log10(P-277 

value) towards later lactation stages (Table 1, e.g. GWAS based on data from lactation stages 278 

21 to 26, model [1]), although not significant. Furthermore, for Wilmink parameter c, the lead 279 

SNP on BTA 3 showed –log10(P-value) of 5.5, which is not significant at the applied threshold 280 

of FDR < 0.01 but significant at threshold of FDR < 0.05. BTA 9b showed a strong but non-281 

significant GWAS signal for Wilmink parameter c (Table 1, –log10(P-value) = 5.1). 282 

DISCUSSION 283 

In this study we performed different GWAS using test-day milk protein content records. The 284 

objective was to specifically screen the genome for SNPs whose effects change during lactation. 285 

For this purpose four different approaches were performed: 1) separate GWAS for specific 286 

lactation stages; 2) GWAS for estimated Wilmink lactation curve parameters; 3) a GWAS using 287 

a repeatability model where SNP effects are assumed constant during lactation; and 4) a GWAS 288 

for genotype by lactation stage interaction using a repeatability model and accounting for 289 

genetic effects that change during lactation. Separate GWAS for specific lactation stages 290 

suggested that the detection power greatly differs between lactation stages and that effects of 291 

some QTL change during lactation. Many regions were detected for Wilmink parameter a 292 

whereas two regions were detected for Wilmink parameter b and no regions were detected for 293 

Wilmink parameter c. Twenty chromosomal regions were detected with effects on milk protein 294 

content, however, there was no evidence that their effects changed during lactation. A GWAS 295 



specifically for SNP by lactation stage interaction identified five regions, from which three were 296 

not identified based on the other GWAS approaches we performed. To determine the 297 

appropriate significance threshold for the SNP by lactation stage interaction term permutation 298 

was used. 299 

QTL for Milk Protein Content 300 

In the current study regions on BTA 4, 6, 7, 8a, 10c, 11, 14a, 14b, 15a, 15b, 16a, 20 and 26 301 

were identified using a repeatability model (model [4]) where SNP effects are assumed constant 302 

during lactation. Except for BTA 14a, we did not find evidence that effects of these regions 303 

changed during lactation, e.g. these regions were not significant for Wilmink parameters b or c 304 

and did not show significant SNP by lactation stage interaction. The region on BTA 6 contains 305 

the casein gene cluster (e.g. Ferretti et al., 1990, Threadgill and Womack, 1990) and the region 306 

on BTA 20 (35.9 Mbp, Table 1) is closed to the Growth Hormone Receptor (33.9 Mbp, Btau 307 

4.0) gene (e.g. Arranz et al., 1998, Blott et al., 2003). These two QTL have been shown to have 308 

large effects on milk protein content. The region on BTA 10c (51.6 Mbp, Btau 4.0) was identical 309 

to the region detected by Schopen et al. (2011) in a GWAS for milk protein composition, which 310 

was based on largely the same animals and genotypes as used in the current study. On BTA 10 311 

(46.6 Mbp, UMD 3.1) Nayeri et al. (2016) and Pausch et al. (2017) reported significant effects 312 

on milk protein content. Significant associations for chromosomal regions on BTA 4, 14b, 15a, 313 

15b, and 16a are also in agreement with results from other GWAS (e.g. Buitenhuis et al., 2016, 314 

Pausch et al., 2017, Teissier et al., 2018). GWAS performed by Nayeri et al. (2016) and Pausch 315 

et al. (2017), which were based on large data sets, detected a number of chromosomal regions 316 

with effects on milk protein content that were not detected in the current study: regions on BTA 317 

5, 29, and a second region on BTA 6. The reason we did not detect some of these regions might 318 

be related to power.  319 



Regions on BTA 3, 9b, 10b, 14a, and 27 showed significant SNP by lactation stage 320 

interaction effects. The region on BTA 14a contains DGAT1, which has a major effect on 321 

several milk production traits (e.g. Grisart et al., 2002, Grisart et al., 2004, Bovenhuis et al., 322 

2016). Effects of DGAT1 on milk production traits change during lactation (Strucken et al., 323 

2011, Szyda et al., 2014). Based on largely the same data as current study, Bovenhuis et al. 324 

(2015) described large DGAT1 by lactation stage interaction on milk yield, fat content and 325 

protein content. Except for BTA 10b and 14a, the rest three regions were not significant in any 326 

of the other GWAS approaches we performed. However, these regions have been associated 327 

with milk production traits in other studies. Jiang et al. (2010) reported a QTL on BTA 3 (92.8 328 

Mbp, Btau 4.0) with effects on milk and protein yield. Strucken et al. (2012a) reported 329 

significant effects for Wilmink parameters on BTA 3 (86.6, 115.9, and 116.9 Mbp) for milk 330 

protein yield. These GWAS signals are close to the region on BTA 3 (93.2 Mbp, Table 1) with 331 

significant SNP by lactation stage interaction. The region on BTA 27 (37.9 Mbp, Table 1) with 332 

a significant SNP by lactation stage interaction is closed to the 1-acylglycerol-3-phosphate O-333 

acyltransferase 6 (AGPAT6) gene (38.9 Mbp, Btau 4.0). AGPAT6 is involved in milk fat 334 

synthesis and has pleiotropic effects on other milk components (Littlejohn et al., 2014) and has 335 

been shown to affect milk fat yield and fat content over the first 60 days of lactation (Strucken 336 

et al., 2012b). Furthermore it has been shown that the expression of AGPAT6 in the mammary 337 

gland increases over the first 60 days in lactation and decreases afterwards (Beigneux et al., 338 

2006, Bionaz and Loor, 2008).  339 

Approaches to Detect QTL whose Effects Change During Lactation 340 

A simple approach to find indications for genetic effects that change during lactation is to 341 

split up the data and perform separate GWAS for different parts of the lactation. However, 342 

splitting up the data does not make optimal use of all available information and it does not 343 

provide a framework for significance testing of SNP whose genetic effect change during 344 



lactation. Results from separate GWAS for different parts of the lactation show large 345 

differences in number of detected chromosomal regions: in early lactation only one region 346 

significantly affected milk protein content whereas in mid lactation up to ten different regions 347 

were detected. This shows that the power to detect QTL greatly differs between lactation stages. 348 

The difference in the number of QTL detected in the lactation stage and the change in additive 349 

genetic variance during lactation (Supplementary Table 1) also suggests that the effects of QTL 350 

change during lactation.  351 

The low QTL detection power in early lactation as compared to later lactation stages can be 352 

explained by both a lower additive genetic variance and a higher residual variance: the 353 

heritability estimate for lactation stages 1 & 2 was 0.07 whereas for lactation stages 13 & 14 it 354 

was 0.63 (Supplementary Table 1). Separate GWAS for specific lactation stages is expected to 355 

be less powerful than GWAS based on the repeatability model as it uses approximately a ten 356 

times smaller number of records than the repeatability model. Counterintuitively, the results 357 

obtained from the GWAS based on the smaller data set from specific lactation stages (Model 358 

[1]) and based on the repeatability model using all test-day records (Model [4]) suggest that 359 

excluding test-day records from early lactation might be a means to increase the QTL detection 360 

power. For example, the –log10(P-value) for the region on BTA14a containing DGAT1 based 361 

on the repeatability model [4] using all available test-day records was 33.1 whereas the GWAS 362 

for lactation stage 13 & 14 based on only 10% of the records, the –log10(P-value) for DGAT1 363 

reached 47.0 (Table 1). To check if excluding records can result in a stronger GWAS signal we 364 

performed an additional analysis using the repeatability model [4] but excluding data from 365 

lactation stages 1 to 4. This indeed increased significance of DGAT1 from 33.1, based on all 366 

test day records, to 54.4 when analyzed based on a smaller data set consisting of test day records 367 

only from lactation stages 5 to 26. Difference between both homozygous DGAT1 genotypes in 368 

lactation stage 1 &2 is -0.01 and in lactation stage 13 & 14 this is 0.26. In the repeatability 369 



model [4] genotypic effects are averaged over the lactation and the difference between 370 

homozygous DGAT1 genotypes is 0.18. As QTL detection power is directly related to QTL 371 

effect size these differences between DGAT1 genotypes are part of the explanation why 372 

excluding test-day records from early lactation is a means to increase the QTL detection power. 373 

To detect QTL whose effects change during lactation a two-step approach might be used 374 

where in a first analysis lactation curves are fitted to the test-day records and in a second 375 

analysis GWAS are performed based on estimated parameters. This approach has been used in 376 

other studies (e.g. Strucken et al., 2012a, Macciotta et al., 2015) and allows detection of QTL 377 

that affect the shape of the lactation curve. In our study these analyses mainly resulted in the 378 

detection of chromosomal regions that affected the milk protein content level (Wilmink 379 

parameter a) and only two chromosomal regions that affected the shape of the lactation curve 380 

(Wilmink parameters b) were detected. More subtle changes in the lactation curve, which were 381 

identified based on testing for SNP by lactation stage interaction, apparently are not picked up 382 

based on GWAS for Wilmink parameters. Using models that give a more accurate description 383 

of the lactation curve might be an alternative, however, these also require estimation of more 384 

parameters (e.g. Grossman and Koops, 2003).  385 

The GWAS for Wilmink parameters detected several chromosomal regions affecting milk 386 

protein level (Wilmink parameter a), which were not detected in the repeatability model or in 387 

most of the lactation stage specific GWAS (regions on BTA 1, 8b, 9a, 16b, and 23). Therefore 388 

we concluded that these regions are likely false positives that might be a consequence of the 389 

two-step approach where differences in accuracies of estimated lactation curve parameters 390 

between cows are not taken into account in the GWAS. Consequently the obtained significance 391 

of SNP effects using this two-step approach are not correct and should be interpreted with 392 

caution.  393 



A GWAS based on the repeatability model [4] assumes homogenous residual variance, 394 

which is an assumption that is violated in this study, especially in early lactation. To test the 395 

sensitivity of our results to heterogeneous residual variance we also performed a GWAS using 396 

phenotypes that were standardized based on the variance within each lactation stage class. This 397 

analysis did not result in the detection of other chromosomal regions than the ones reported in 398 

Table 1 (results not shown). The repeatability model assumes that SNP effects are constant 399 

throughout lactation and SNPs on BTA 4, 6, 7, 8a, 10c, 11, 14b, 15a, 15b, 16a, 20 and 26 seem 400 

to follow this assumption. The assumption of constant SNP effects might lead to missing time-401 

dependent QTL effect (Lund et al., 2008, Ning et al., 2018). The effect of region on BTA 14a 402 

clearly changed during lactation but its effect still was detected due to its large average effect. 403 

SNPs on BTA 3, 9b, 10b, and 27, however, were not detected based on analyses using the 404 

repeatability model [4]. 405 

Testing for SNP by lactation stage interaction is an alternative approach to detect 406 

chromosomal regions whose effects change during lactation. A GWAS for SNP by lactation 407 

stage interaction identified three novel regions (BTA 3, 9b, and 27) that were not detected in 408 

other analyses. However, this model was not able to detect a region on BTA 16a, which showed 409 

a clear association in lactation stage 21 to 26 (-log10(P-value) = 7.0, Table 1). This illustrates 410 

that this approach is limited by the statistical power to detect interactions. In addition, 411 

determining the significance threshold for the interaction term needs permutation (test statistic 412 

inflation shown in supplementary Figure 2). To estimate significant threshold, we performed 413 

100 permutations, which is computationally demanding.  414 

Ning et al. (2018) used random regression to model changes in additive genetic, permanent 415 

environmental and SNP effects on test-day milk production records. Ning et al. (2018) 416 

concluded that the proposed model can control type I errors for QTL detection and has higher 417 

power as compared to a repeatability model. Theoretically random regression modeling also 418 



would be suited for detecting QTL whose effects change during lactation. This would imply 419 

testing for the best polynomial fit of SNP effects might be computationally demanding. 420 

Biological Interpretation  421 

GWAS for SNP by lactation stage interaction identify regions whose genetic effects on milk 422 

protein content change during lactation. Effects on milk protein content can be due to effects 423 

on protein yield and milk yield. Change in genetic effects are in agreement with quantitative 424 

genetic studies that show that genetic variance and genetic correlations for milk production 425 

traits change, especially during the beginning and the end of lactation. Change of genetic effects 426 

are also confirmed based on gene expression studies (e.g. Bionaz and Loor, 2011, 427 

Wickramasinghe et al., 2012). Genetic effects of DGAT1 on BTA 14a showed significant SNP 428 

by lactation stage interaction, which is mainly due to the lack of a DGAT1 effect in early 429 

lactation (lactation stage 1 & 2, Figure 5D). The exact mechanism behind effects of DGAT1 on 430 

milk protein synthesis remains unclear. Bovenhuis et al. (2015) indicated that most of the effects 431 

of DGAT1 on milk production traits, like milk protein content, originated from the effect on 432 

water excretion (or dilution effect) and de novo FA synthesis. However, the DGAT1 433 

polymorphism also has significant effects on the yield of different milk proteins (Bovenhuis et 434 

al., 2016). In early lactation, dairy cows might suffer a negative energy balance. During this 435 

period after calving, dairy cows mobilize body reserves to balance the energy deficit due to the 436 

dramatic increase in milk yield and the restricted feed intake(e.g. Collard et al., 2000, Macciotta 437 

et al., 2015). Bovenhuis et al. (2015) suggested that in early lactation another DGAT enzyme, 438 

DGAT2 (Cases et al., 2001) might play a more important role than DGAT1 and this could be 439 

an explanation for the observed changes in DGAT1 effects which also might affect milk protein 440 

content. 441 

Chromosomal regions on BTA 3, 9b, 10b, and 27 did not show significant effects on milk 442 

protein content in early and mid-lactation but only in late lactation (Figure 5). In late lactation, 443 



most of the cows in our data were lactating and they were pregnant. However, because of 444 

different insemination and conception dates, dairy cows were in different pregnancy stages. 445 

Pregnancy has a negative effect on milk yield as a considerable amount of the nutrients are 446 

needed for the growth and maintenance of the developing fetus (e.g. Olori et al., 1997). 447 

Gestation stage also affects fat- and protein content of milk that increase as pregnancy advances 448 

(e.g. Olori et al., 1997). The mechanisms by which gestation affects milk yield and composition 449 

are mainly related to hormone-mediated partitioning of nutrients from milk production to 450 

pregnancy requirements. Furthermore, it is well established that the regulation of protein 451 

synthesis in the mammary gland is under control of hormones (Bionaz and Loor, 2011). 452 

Therefore, pregnancy might be a reason why genetic effects on milk protein content change 453 

during lactation, although the physiological mechanisms are still unknown. Associations 454 

between milk protein content and reproductive performance in dairy cows have been reported 455 

in several studies (e.g. Madouasse et al., 2010). It has been suggested that the association 456 

between milk protein content and reproductive performance is partly due to the negative energy 457 

balance in early lactation. Morton et al. (2016) indicated that factors determining milk protein 458 

content during the first 30 d of lactation are not identical to factors determining milk protein 459 

content in late lactation. Furthermore, Morton et al. (2016) suggested that milk protein content 460 

in late lactation is more important than milk protein content in early lactation for the milk 461 

protein content-reproductive performance relationship. This is in agreement with the hypothesis 462 

that pregnancy might be a reason why genetic effects on milk protein content change during 463 

lactation. 464 

CONCLUSIONS 465 

The current study aimed to detect genetic effects that change during lactation. For this 466 

purpose, four different GWAS approaches were performed for milk protein content. Separate 467 

GWAS for specific lactation stages suggested that the detection power greatly differs between 468 



lactation stages and that genetic effects of some QTL change during lactation. GWAS for 469 

estimated Wilmink lactation curve parameters detected many QTL but these results should be 470 

interpreted with caution as they were based on a two-step approach. Twenty chromosomal 471 

regions were detected with effects on milk protein content, however, there was no evidence that 472 

their effects changed during lactation. Five chromosomal regions were detected whose effect 473 

on milk protein content change during lactation on BTA 3, 9b, 10b, 14a, and 27 , from which 474 

BTA 3, 9b, and 27 were only detected in GWAS for SNP by lactation stage interaction. The 475 

performed approaches can be used to other milk production traits. Exploring QTL whose effects 476 

change during lactation are expected to elucidate the genetic and biological background of milk 477 

production. 478 
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 627 

Figure 1. Manhattan plot for milk protein content in specific different lactation stages. A: 628 

lactation stages 1 & 2 (day 0-30), B: lactation stages 13 & 14 (day 180-210) and C: lactation 629 

stages 21 to 26 (day 300-390). The cut-off value for the y-axis is set at a –log10(P-value) of 30. 630 

The horizontal line indicates a false discovery rate < 0.01.   631 
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 637 

Figure 2. Manhattan plot for Wilmink lactation curve parameters fitted to milk protein test-638 

day records: A: Wilmink parameter a. B: Wilmink parameter b. C: Wilmink parameter c. The 639 

cut-off value for the y-axis is set at a –log10(P-value) of 30. The horizontal line indicates a false 640 

discovery rate < 0.01. In Figure 2C no threshold is indicated as none of the SNP effects were 641 

significant.   642 



 643 

Figure 3. Manhattan plot for milk protein content based on test-day milk protein content 644 

records. The cut-off value for the y-axis is set at a –log10(P-value) of 30. The horizontal line 645 

indicates a false discovery rate < 0.01.   646 



 647 

Figure 4. Manhattan plot for SNP by lactation stage interaction on milk protein content. The 648 

cut-off value for the y-axis is set at a –log10(P-value) of 30. The horizontal line indicates the 649 

genome-wide significance threshold based on permutation (-log10(P-value) = 18.6).   650 
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 660 

Figure 5. Effects of lead SNP genotypes that show significant SNP by lactation stage 661 

interaction during different lactation stages. A: ULGR_rs29011303 on Chromosome 3. B: 662 

BTB-02093517 on Chromosome 9. C: ULGR_BTA-68217 on Chromosome 10. D: 663 

ULGR_SNP_AJ318490_1b on Chromosome 14. E: ARS-BFGL-NGS-30207 on Chromosome 664 

27. * indicates a significant (P < 0.001) difference between any two SNP genotype classes in 665 

that specific lactation stage based on a t-test.   666 



33 

 

Table 1. The –log10(P-value) of the lead SNP from different Genome-wide association (GWAS) approaches: Separate GWAS for specific lactation 667 

stages, GWAS for Wilmink lactation curve parameters, GWAS based on a repeatability model, and GWAS for SNP by lactation stage interaction 668 

SNP name BTA1) position (bp)2) 

Lactation stages Wilmink 

re
p

ea
t3

)  

In
te

ra
ct

4
)  

1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-26 a b c 

Significance threshold 5.1 4.6 4.4 4.3 4.1 4.2 4.1 4.0 4.2 4.1 4.6 4.2 5.3 inf 4.0 18.65) 

ULGR_AAFC03118332_11420 1 92,196,881 1.5 4.3 3.5 4.3 2.2 2.2 1.1 1.3 0.2 1.0 0.2 4.5 0.2 1.8 1.7 0.9 

ULGR_rs29011303 3 93,216,176 0.5 0.5 0.1 0.4 0.7 0.1 0.0 0.1 0.6 0.0 2.3 2.2 0.4 5.5 0.2 23.8 

ULGR_AAFC03092560_13525 4 119,336,974 1.9 1.4 3.5 3.1 4.3 4.4 4.5 3.4 2.7 4.1 1.9 2.0 0.2 0.4 4.5 0.4 

ULGR_AAFC03047193_69593 5 123,940,964 0.1 0.5 1.5 1.3 2.2 1.9 4.7 3.9 2.7 4.2 1.0 1.6 1.2 0.7 2.4 1.6 

ARS-BFGL-NGS-27958 6 85,640,056 7.7 15.2 14.9 8.1 11.5 10.6 7.3 8.9 11.2 7.7 5.0 10.2 0.2 0.2 14.6 0.3 

ARS-BFGL-NGS-103385 7 6,936,993 0.6 0.9 2.1 2.0 3.4 1.7 1.7 2.5 3.6 1.4 2.4 0.3 0.5 1.1 4.2 2.6 

ARS-BFGL-NGS-23700 8a6) 31,495,260 0.3 4.4 1.4 3.4 3.6 2.2 2.6 2.4 2.6 3.5 2.5 2.0 0.6 0.2 4.0 6.2 

BTB-00348223 8b 54,529,420 0.3 5.5 1.2 0.9 1.8 1.0 1.2 0.9 0.4 0.8 0.3 4.6 1.3 2.3 1.3 1.0 

ULGR_BTA-85063 9a 15,357,200 0.1 1.0 3.1 4.0 3.0 2.6 2.2 1.7 0.5 1.4 1.3 4.5 1.8 0.6 2.9 3.1 

BTB-02093517 9b 85,934,554 0.3 0.1 0.4 0.0 0.4 0.7 0.5 0.6 1.8 0.7 3.5 1.3 0.7 5.1 0.4 18.9 

ULGR_BTA-67196 10a 45,610,197 0.5 0.8 1.4 1.4 1.2 2.3 4.6 1.3 2.4 2.8 2.0 0.5 0.1 1.2 2.6 4.8 

ARS-BFGL-NGS-31031 10b 46,628,033 0.6 0.7 0.6 0.9 1.0 1.0 1.8 2.6 1.2 1.8 4.6 1.0 0.1 4.0 2.2 15.5 

ULGR_BTA-68217 10b 48,721,829 0.8 0.1 0.6 0.5 0.1 0.2 1.8 0.7 1.2 1.2 2.8 0.8 0.6 4.2 1.4 27.3 

ULGR_AAFC03042309_74455 10c 51,641,563 0.4 4.5 3.2 2.9 4.0 3.6 4.4 3.9 3.6 4.0 2.4 2.4 0.3 0.6 5.7 5.9 

ARS-BFGL-NGS-74702 11 75,076,326 1.8 2.1 1.3 2.8 3.4 2.4 3.1 1.2 1.2 1.7 2.9 1.9 0.3 0.4 4.0 1.4 

ULGR_SNP_AJ318490_1b 14a 445,087 0.1 8.1 12.8 30.2 43.2 38.0 47.0 39.1 31.0 42.0 8.5 26.5 12.3 0.5 33.1 74.4 

BTB-00571421 14b 49,132,599 0.2 2.4 3.9 3.5 3.5 2.8 3.9 2.1 2.5 4.6 1.5 2.6 0.1 0.2 4.4 4.5 
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1) BTA: Bos taurus autosome. 669 
2) position of SNP based on Btau 4.0. The sequence of the SNP are in supplementary Table 2.  670 
3) Repeatability model using all test-day observations. 671 
4) Repeatability model including a SNP by lactation stage interaction term. Based on a permutation test the 1% genome-wide significance level for 672 

the interaction term set at –log10(P-value) = 18.6. 673 
5) Significance threshold in terms of –log10(P-value). –log10(P-value) in any GWAS approaches were bold if they are greater than corresponding 674 

significance threshold. 675 
6) The different letters for the same chromosome indicate different QTL. 676 

ULGR_AAFC03051145_8303 15a 53,245,382 0.6 4.2 6.1 5.0 4.2 2.9 4.4 7.0 3.3 4.1 1.3 3.4 1.1 0.1 5.6 2.4 

ULGR_BTA-27068 15b 61,599,974 2.3 2.6 4.2 5.1 4.5 4.1 3.3 5.7 3.8 3.9 1.1 4.8 0.9 0.4 5.3 0.7 

ULGR_BTA-96933 16a 6,593,236 0.4 2.7 1.4 1.6 2.1 2.9 1.3 1.1 3.1 2.4 7.0 0.8 1.2 1.2 4.6 3.2 

ULGR_BTA-121054 16b 29,757,245 0.9 2.5 2.6 2.8 1.4 2.3 0.9 0.5 0.6 0.4 0.3 4.9 2.0 3.6 1.5 3.2 

ARS-BFGL-NGS-84358 18 39,954,079 0.5 0.0 0.4 1.2 0.7 1.0 1.4 1.2 0.7 1.7 0.6 2.8 5.3 1.6 0.5 2.7 

ULGR_rs29016098 20 35,900,587 0.7 1.8 4.9 6.1 6.3 4.9 4.3 2.4 2.2 2.8 2.8 6.3 3.2 1.1 4.9 2.1 

ULGR_BTC-058392 23 51,608,060 0.1 3.5 3.9 3.4 4.2 2.7 1.6 2.6 0.4 1.9 0.6 4.4 1.7 1.4 2.8 6.3 

ULGR_BTA-57368 24 11,476,207 0.3 0.3 0.8 0.6 1.5 2.7 4.5 1.8 0.9 2.3 0.8 0.5 0.0 1.0 2.8 1.0 

ARS-BFGL-NGS-39823 26 23,530,300 0.0 1.9 4.8 3.1 4.7 3.1 4.2 4.2 1.4 2.8 1.9 4.1 1.7 0.2 4.0 1.7 

ULGR_BTA-40792 26 28,013,558 0.0 1.8 3.2 2.8 3.8 1.5 2.9 2.0 0.2 1.8 0.2 4.9 1.4 2.1 1.8 6.2 

ARS-BFGL-NGS-30207 27 37,915,598 0.1 0.2 0.8 1.0 0.5 1.2 3.2 1.9 3.0 1.9 2.6 0.3 0.1 2.6 1.6 28.6 


