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Organic and inorganic halogen compounds 

Organic halogenated compounds, organohalogens, contain one or more carbon-

halogen (e.g. fluorine, chlorine, bromine, iodine) bond in their structures. Organohalogens are 

remarkably diverse, ranging from singly halogenated alkanes, alkenes, alkanoates and 

aromatics to more complex (poly)halogenated (poly)aromatic hydrocarbons (Kennish 2017). 

In contrast, inorganic halogen compounds are much less diverse. The commonly known 

inorganic halogen compounds include chlorine dioxide, hypochlorite, chlorite and (per)chlorate 

(Prince 1964). The organic and inorganic halogen compounds studied in this thesis include 

haloalkanoates (Fig. 1.1A), haloaromatics (Fig. 1.1B), chloroalkanes (Fig. 1.1C), 

chloroethenes (Fig. 1.1D), and inorganic chlorate (Fig. 1.1E).  
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Fig. 1.1 Structure of the haloalkanoates (A), haloaromatics (B), chloroalkanes (C), chloroethenes (D), 

and inorganic chlorate (E) studied in this thesis. Hydrogen atoms were omitted for structural clarity. 

 

Occurrence of organic and inorganic halogen compounds 

Organic and inorganic halogen compounds are usually manufactured in large volumes 

for a broad range of industrial and agricultural applications due to their extensive structural, 

chemical-physical varieties, and desirable properties. For example, carbon tetrachloride is 

manufactured as fire extinguishant (Langford 2005), chloroethenes as solvents (Stringer and 

Johnston 2001), chlorofluorocarbon as refrigerant (Watanabe and Tsuru 2008), 

chloropropionates and chlorate as pesticides (Kettlitz et al. 2016, Lin et al. 2011), and 

chloramphenicol and vancomycin as drugs (Eliopoulos and Wennersten 2002, Piontek et al. 
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2018). As a result of the massive anthropogenic production of organohalogens and inorganic 

halogen compounds, each year large quantities of these compounds are accidentally and/or 

deliberately released into the environment. This has caused great environmental concerns 

because of the adverse effects of these compounds on human, animal and environmental 

health (Ni et al. 2010, Safe 1990, Weisburger 1977). 

Besides their anthropogenic origin, organohalogens and inorganic halogen compounds 

can also be formed naturally. A comprehensive review of naturally produced organohalogens 

in 2010 listed more than 5000 compounds (Gribble 2010). These organohalogens are 

produced through abiotic and biotic halogenation processes. The known abiotic halogenation 

mechanisms include Fenton-like reactions (Leri et al. 2015), photochemical reactions, and 

combustion events such as forest fire and volcanic activities (Méndez-Díaz et al. 2014). Biotic 

halogenation is performed by a broad range of (micro)organisms, plants and animals (Agarwal 

et al. 2017, Atashgahi et al. 2018b, Gribble 2015). The organohalogens produced by these 

organisms were proposed to play a role in chemical defense against predators or as regulatory 

hormones (Gribble 1998, Weiss et al. 1996). Inorganic chlorine compounds such as 

(per)chlorate can also be naturally produced through atmospheric processes e.g. by ozone 

oxidation of chloride (Kang et al. 2008), and large natural deposits of (per)chlorate have been 

found in the hyper-arid regions e.g. in the Atacama desert of Chile (Orris et al. 2003).  

 

Microbial transformation of organic and inorganic halogen compounds 

Naturally produced organic and inorganic halogen compounds have a long history on 

earth (Atashgahi et al. 2018a, Gribble 1998, Rao et al. 2007). The natural and ancient origin 

of these compounds has been proposed to have primed the development of biochemical 

pathways for their transformations (Atashgahi et al. 2018a, Harper 2000, Smidt and de Vos 

2004). Accordingly, various microbes from contaminated as well as pristine environments have 

been reported capable of metabolic or co-metabolic transformation of organohalogens and 

inorganic chlorine compounds. Such microbes play an important role in the 

transformation/detoxification of these compounds, and thereby contribute to i) the natural 

attenuation or engineered bioremediation of contaminated sites, ii) the halogen cycling in 

nature.    

 

Organohalogen dehalogenation   

The first step for microbial transformation of organohalogens is often dehalogenation. 

During this process, the halogen substituents that are usually responsible for toxicity of the 

compounds are removed (Janssen et al. 2001). The dehalogenation products are usually more 

readily accessible for mineralization due to e.g. reduced toxicity, electronegativity and/or 

spatial hindrance (Janssen et al. 2001, Kunze et al. 2017, Mohn and Tiedje 1992). Different 
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dehalogenation mechanisms including hydrolytic dehalogenation, reductive as well as 

oxidative dehalogenation have been reported in various aerobic and anaerobic 

microorganisms (Agarwal et al. 2017, Atashgahi et al. 2016, Janssen et al. 2001, Takagi et al. 

2009). 

 

Hydrolytic dehalogenation    

Hydrolytic dehalogenation, often observed during microbial transformation of 

haloalkanoates as carbon source, cleaves the carbon-halogen bonds of an organohalogen 

through nucleophilic substitution by a water molecule, yielding hydroxyl alkanoates (Van der 

Ploeg et al. 1991). Halopropionates and haloacetates are water soluble molecules and are 

degradable by various aerobic microbes. Known strains that can use haloalkanoates as carbon 

and energy sources belong to bacterial genera of Pseudomonas (Hasan et al. 1994, Jones et 

al. 1992, Mesri et al. 2009, Motosugi et al. 1982a, Motosugi et al. 1982b, Peng et al. 2017, 

Senior et al. 1976), Xanthobacter (Janssen et al. 1985), Methylobacterium (Omi et al. 2007), 

Arthrobacter (Bagherbaigi et al. 2013) and Bacillus (Lin et al. 2011).  

The responsible enzymes for the dehalogenation of haloalkanoates are haloacid 

dehalogenases. One of the most well-characterized haloacid dehalogenases is 2-haloacid 

dehalogenase, which specifically acts on haloalkanoates with a halogen substitute at the α-

carbon, and produces the corresponding hydroxyl alkanoates (Kurihara et al. 2000). Based on 

their substrate and stereochemical specificities, three groups of 2-haloacid dehalogenase have 

been identified: L- and D-2-haloacid dehalogenases (L-, D-DEX) that catalyse dehalogenation 

of L-2-haloalkanoates and D-2-haloalkanoates, respectively, and the D,L-2-haloacid 

dehalogenases (D,L-DEX) that act on both enantiomers (Kurihara et al. 2000). The reaction 

mechanisms of D-DEX and DL-DEX are similar and include a nucleophilic attack of the α-

carbon of the haloalkanoate substrate by an activated water molecule produced by the 

carboxyl group of the catalytic base (Asp) of the enzyme, resulting in production of hydroxyl 

alkanoate (Fig. 1.2A) (Nardi-Dei et al. 1999). The catalytic amino acid residues (Asn and Asp) 

of the active site of D-DEX and D,L-DEX are conserved (Schmidberger et al. 2008). In 

comparison, in L-DEX, the carboxyl group of the catalytic residue (aspartate) directly attacks 

the α-carbon of the haloalkanoate, producing an ester intermediate, which is subsequently 

hydrolyzed using a water molecule to hydroxyl alkanoate (Fig. 1.2B) (Hisano et al. 1996b, Li 

et al. 1998b). The amino acid sequences of L-DEX and D/D,L-DEX enzymes share no similarity, 

and phylogenetic studies have shown that they are evolutionarily unrelated (Hill et al. 1999, 

Kurihara et al. 2000, Nardi-Dei et al. 1999). 
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Fig. 1.2 Reaction mechanisms of D- and D,L-2-haloacid dehalogenases (A) and L-2-haloacid 

dehalogenase (B). 

 

2-haloacid dehalogenase is encoded by 2-haloacid dehalogenase gene, the 

expression of which is either constitutive or regulated. For example, expression of the D-

haloacid dehalogenase gene of Xanthobacter autotrophicus GJ10 (van der Ploeg and Janssen 

1995) and Pseudomonas chloritidismutans AW-1T (Chapter 6 of this thesis) are likely controlled 

by a sigma factor 54 dependent transcriptional activator. In contrast, the L-haloacid 

dehalogenase gene of P. chloritidismutans AW-1T is constitutively expressed (Peng et al. 

2017).  

 

Reductive dehalogenation 

Polyhalogenated organohalogens usually have low solubility in water and persistent 

under oxic conditions (Field and Sierra-Alvarez 2008, Nikel et al. 2013). Reductive 

dehalogenation is the only documented microbial process for dehalogenation of these 

organohalogens that has been observed in suboxic and anoxic environments such as 

subsurface soil, groundwater and marine environments (Atashgahi et al. 2016). In reductive 

dehalogenation, the halogen substituent of an organohalogen is removed with concurrent 

addition of hydrogen and electrons to the molecule (Mohn and Tiedje 1992). Reductive 

dehalogenation is mainly mediated by organohalide-respiring bacteria (OHRB) that can use 

the organohalogens as the terminal electron acceptors and couple dehalogenation of 

organohalogens to growth, a process known as organohalide respiration (OHR) (Atashgahi et 

al. 2016, DeWeerd et al. 1990, Fincker and Spormann 2017, Schubert et al. 2018). The known 

OHRB isolates are divided into two groups, obligate and facultative OHRB, based on whether 

OHR is their only energy-gaining metabolism (Atashgahi et al. 2016, Fincker and Spormann 

2017). The first isolated organohalide-respiring bacterium was Desulfomonile tiedjei DCB1 that 

was shown to use 3-chlorobenzoate as the electron acceptor for growth (DeWeerd et al. 1990). 

Since then, numerous OHRB have been isolated and characterized. OHRB are spread among 

several bacterial phyla including Chloroflexi, Firmicutes and Proteobacteria, and have been 
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shown to use various organohalogens for growth, such as tetra- and trichloromethanes, 

chloroethanes, chloroethenes, chlorinated/brominated aromatics, polychlorinated biphenyls, 

dibenzo-p-dioxin and polybrominated diphenyl ethers (Atashgahi et al. 2016). 

The responsible enzymes for reductive dehalogenation are reductive dehalogenases 

(RDases) that are membrane-associated and corrinoid-dependent proteins. In most cases, 

vitamin B12 (cob(I)alamin) serves as the corrinoid-cofactor. Amino acid sequence comparison 

of RDases from phylogenetically distinct bacteria has revealed several conserved motifs, 

including two iron-sulfur (Fe-S) binding motifs and one twin arginine (TAT) motif that is likely 

involved in maturation and transport of RDases to the outer side of the membrane (Smidt and 

de Vos 2004). Due to difficulties in cultivation of OHRB and obtaining functional RDases in 

model host microbes such as Escherichia coli, enzymology of RDases such as the reaction 

mechanism is not as well-understood as for the well-characterized 2-haloacid dehalogenases. 

Based on structural and biochemical analyses of the tetrachloroethene (PCE) RDase (PceA) 

in Sulfurospirillum multivorans (Bommer et al. 2014) and ortho-dibromophenol RDase 

(NpRdhA) in Nitratireductor pacificus pht-3B (Payne et al. 2015), three different reactions and 

electron transfer mechanisms have been proposed (Fincker and Spormann 2017). The first 

one is proposed to start with nucleophilic attack of Co(I) to the halogenated carbon of the 

organohalogen substrate, producing an organocobalt adduct (substrate-Co(III) corrinoid) with 

elimination of the halogen (Fig. 1.3A). This step is similar to the L-2-haloacid dehalogenase 

mechanism shown in Fig. 1.2B. Then the organocobalt adduct accepts two electrons delivered 

from the Fe-S clusters to generate the dehalogenation product and to regenerate Co(I) (Fig. 

1.3A). The second mechanism is proposed to be initiated by the transfer of a single electron 

from Co(I) to the substrate, producing a transient substrate radical anion intermediate. The 

radical anion intermediate then accepts two electrons delivered from the Fe-S clusters to 

generate the dehalogenation product and to regenerate Co(I) (Fig. 1.3B) (Fincker and 

Spormann 2017). The third mechanism is proposed to be initiated by the attack of Co(I) to the 

halogen substitute of the substrate, resulting in the formation of an intermediate containing a 

cobalt-halogen bond. The carbon-halogen bond of the intermediate is then cleaved yielding a 

transient Co(III)-halogen adduct and the dehalogenation product. The transient Co(III)-halogen 

adduct subsequently accepts two electrons from the Fe-S clusters to eliminate the halogen 

and to regenerate Co(I) (Fig. 1.3C) (Fincker and Spormann 2017, Payne et al. 2015). 
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Fig. 1.3 Reaction mechanisms of RDases. 

 

The catabolic subunit of the RDases is encoded by reductive dehalogenase genes 

known as rdhA. The published genomes of OHRB usually contain one or more rdhA genes 

(Kruse et al. 2016, Lu et al. 2015) that are commonly found next to a small gene (rdhB) 

encoding a putative membrane anchor protein for the RdhA (Neumann et al. 1998). The rdhAB 

gene clusters are frequently accompanied by a variable set of accessory genes, and some of 

the genes have been shown to encode proteins that regulate rdhAB gene expression (Pop et 

al. 2004). Three types of regulation systems have been proposed to regulate the expression 

of rdhAB. The first one is the antibiotic resistance regulator MarR-type or two-component (TCS) 

regulatory systems that are frequently observed in strains of Dehalococcoides mccartyi (Fig. 

1.4A) (Wagner et al. 2013). The second type includes cAMP receptor protein/fumarate and 

nitrate reduction (CRP/FNR) regulators. An example of such a regulator is CprK in 

Desulfitobacterium hafniense DCB-2T that induces the expression of the chlorophenol rdh gene 

(cprA) in the presence of its substrate 3-chloro-4-hydroxyphenylacetate (Cl-OHPA) (Fig. 1.4B) 

(Gábor et al. 2006, Kemp et al. 2013). The third system is a post-translational regulation system 

which has been described for regulating the rdh gene responsible for PCE dechlorination (pceA) 

in Desulfitobacterium hafniense strains Y51 and TCE-1 (Reinhold et al. 2012) (Fig. 1.4C). The 

pceA of strains Y51 and TCE-1 is constitutively expressed, and the gene product, PceA, was 

only found to be translocated across the cell membrane when PCE was present in the growth 

medium (Reinhold et al. 2012). Besides, the NosR/NirI like protein (RdhC) encoded by rdhC 

was also speculated as a transcriptional regulatory protein for cprBA in the chlorophenol 

dehalogenating Desulfitobacterium dehalogenans (Smidt et al. 2000). In turn, recent studies 

using Dehalobacter restrictus have proposed that RdhC may play a role in electron transfer 

during OHR (Buttet et al. 2018). 
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Fig. 1.4 Genetic organization of rdh gene clusters from Dehalococcoides mccartyi CBDB1 (A), 

Desulfitobacterium hafniense DCB-2T (B), and Desulfitobacterium hafniense Y51 (C). Numbers indicate 

the locus tags of the respective genes in the genomes of the respective OHRB. 

 

Electron transport chain for OHR  

The electron transport chain for OHR has been classified into quinone-dependent and 

quinone-independent categories (Fincker and Spormann 2017). The former one needs 

quinone as an electron shuttle to carry electrons from the electron donor (e.g. hydrogen) to the 

catalytic domain of the RDase (RdhA) (Fig. 1.5A) and has been found in many facultative 

OHRB that are not restricted to OHR as the sole metabolism (Schubert et al. 2018). The 

electron transport pathway in quinone-dependent electron transport chains has not been fully 

characterized. The redox potential of menaquinone (Eo’ (MK/MK2) = -74 mV) is much higher 

than that of the Co(II)/Co(I) redox couple (Eo’ = ~ -370 mV) of the RdhA-bound corrinoid 

cofactor (Fig. 1.5A) and hence, electron transport from quinone to RdhA is thermodynamically 

unfavorable (Schubert et al. 2018). The proteins or processes involved to overcome this energy 

barrier have not been determined.   

In quinone-independent electron transport chains, electrons are transferred from the 

electron donor (hydrogen) to RdhA via a protein complex containing Hup hydrogenases 

(encoded by hupL, hupS, hupX), and OmeAB, an iron–sulfur molybdoenzyme complex that 

interacts with Hup hydrogenase and RdhA to facilitate electron transport from Hup 

hydrogenases to RdhA (Fig. 1.5B) (Kublik et al. 2016, Schubert et al. 2018). The quinone-

independent electron transport chain has only been found in obligate organohalide-respiring 

strains of D. mccartyi, which use OHR as the sole metabolism for energy conservation (Kublik 

et al. 2016).  
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Fig. 1.5 Quinone-dependent (A) and quinone-independent (B) electron transport chains during OHR. 

Probable electron flow path is shown by red arrows.  

 

Co-metabolic reductive dehalogenation 

Anaerobic reductive dehalogenation of organohalogens can also be achieved through 

fortuitous transformations known as co-metabolic processes that have been reported in 

acetogens and methanogens. For example, acetogenic bacteria Clostridium sp. (Gälli and 

McCARTY 1989) and Acetobacterium woodii (Egli et al. 1988), and methanogenic 

Methanosarcina spp. (Bagley and Gossett 1995, Mikesell and Boyd 1990) are able to co-

metabolically transform chloroform (CF) to dichloromethane (DCM) and CO2 likely using 

enzymes involved in acetogenesis and methanogenesis (Egli et al. 1988, Holliger et al. 1992). 

Moreover, transition-metal co-factors, e.g. cob(I)/cob(II)alamins and F430 (nickel(I)-porphinoid), 

that facilitate key enzymes of acetogenesis (5-methyltetrahydrofolate corrinoid/iron-sulfur 

protein methyltransferase) and methanogenesis (methyl-coenzyme M reductase) can act as 

reductants and nucleophilic reagents catalyzing nonspecific reductive dechlorination (Gantzer 

and Wackett 1991, Krone et al. 1989a, Krone et al. 1989b). The reaction kinetics and 

mechanisms for transition-metal cofactor catalyzed reductive dehalogenation are complicated, 

and are influenced by type and concentration of the cofactors, redox condition, and the pH of 

the reaction system (Assaf-Anid et al. 1994, Chiu and Reinhard 1995, Krone et al. 1989a, 

Lewis et al. 1995). In general, transition-metal cofactor-catalyzed dehalogenation follows first 

order kinetics with higher dehalogenation rate for polyhalogenated organohalogens. For 

example, in the sequential reductive dechlorination of PCE to ethene through trichloroethene 

(TCE), dichloroethene (DCE) and vinyl chloride (VC), each step was first-order, and each 

succeeding reaction was over 10-fold slower than the preceding reaction (Tandoi et al. 1994). 
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Hence, the dechlorination rate of VC to ethene was 10,000-fold slower than that of PCE to 

TCE at equivalent concentrations using either corrinoid or F430 cofactors as a catalyst (Tandoi 

et al. 1994). Similar kinetics were also observed in carbon tetrachloride dechlorination to 

methane by corrinoid or F430 cofactors (Krone et al. 1989a). 

 

Oxidative dehalogenation 

Organohalogen dehalogenation can also be catalyzed by oxygenases under oxic 

conditions. Oxidative dehalogenation involves replacement of a halogen substitute with a 

hydroxyl group derived from molecular oxygen (Agarwal et al. 2017). Unlike hydrolytic 

dehalogenation that involves redox neutral substitution of a halogen by a hydroxyl derived from 

a water molecule, the oxygenase-catalyzed dehalogenation needs NAD(P)H as the source of 

electron and hydrogen to reduce oxygen. Examples of monooxygenases mediating 

dehalogenation are the pentachlorophenol 4-monooxygenase from Sphingobium 

chlorophenolicum converting pentachlorophenol to tetrachloroquinone (Crawford et al. 2007, 

Orser et al. 1993), and the monooxygenase from Pseudomonas sp. strain DCA1 that converts 

1,2-dichloroethane (1,2-DCA) to 1,2-dichloroethanol (Hage and Hartmans 1999). Besides 

monooxygenases, dioxygenases, such as the 2-halobenzoate 1,2-dioxygenase from 

Pseudomonas cepacia 2CBS, can catalyze dechlorination of 2-chlorobenzoate to catechol 

(Fetzner et al. 1992). A remarkable difference between oxidative dehalogenation and hydrolytic 

and reductive dehalogenation is that most oxidative dehalogenases (including the 

monooxygenases and dioxygenase described above) are unspecific enzymes that can also 

convert substrates with substituents (other than halogen) at the same position of the halogen. 

It is not clear whether these enzymes have a specific interaction with the halogen substitute 

for catalysis and dehalogenation (Janssen et al. 1994).    

 

Microbial reduction of (per)chlorate 

(Per)chlorate reduction to chloride and oxygen has been found in (per)chlorate-

reducing bacterial genera belong to Firmicutes and Proteobacteria isolated from both pristine 

and contaminated environments. Examples include members of Moorella (Balk et al. 2008), 

Magnetospirillum (Thrash et al. 2010), Dechloromonas (Achenbach et al. 2001), Pseudomonas 

(Wolterink et al. 2002) and Arcobacter (Carlström et al. 2013). The responsible enzymes for 

perchlorate and chlorate reduction are perchlorate and chlorate reductases, respectively. 

Perchlorate reductase catalyzes perchlorate reduction to chlorate, which can be further 

reduced to chlorite by chlorate reductase. Chlorite dismutase catalyzes chlorite dismutation to 

chloride and oxygen (Fig. 1.6) (Van Ginkel et al. 1996). The genes encoding (per)chlorate 

reductase are clrABDC, which encode the corresponding α, β, γ and δ subunits of (per)chlorate 

reductase. The cld gene encodes chlorite dismutase. Regulation of clrABDC and cld 
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expression is not well-understood due to lack of the regulatory genes in many chlorate-

reducing bacteria such as P. chloritidismutans AW-1T. Previous studies showed that regulation 

of clrABDC and cld might be absent, or regulated chromosomally like the nutrient cation and 

anion uptake systems in many bacteria (Clark et al. 2013, Silver and Walderhaug 1992). 

 

 

Fig. 1.6 (Per)chlorate reduction pathway. 

 

Thesis outline 

Microbes capable of detoxification and/or complete degradation of organohalogens and 

inorganic chlorine compounds are important for bioremediation. However, efficient 

bioremediation is often hampered by a lack of knowledge of the responsible microbes and 

metabolic processes. On the other hand, most of the microbes capable of transformation of 

organohalogens and inorganic chlorine compounds have been derived from contaminated 

environments. Accordingly, there is lack of knowledge of such microbes from pristine habitats 

where natural production of organohalogens and inorganic chlorine compounds has been 

documented (Atashgahi et al. 2018a, Orris et al. 2003). This thesis describes microbial 

transformation of organohalogens and inorganic chlorate by microbes ranging from pure 

cultures to complex consortia obtained from different environments such as contaminated 

wetland, pristine marine environments and hypersaline lakes. The responsible microbes, their 

ecophysiology and genetics were studied using a wide range of complementary approaches 

including (enrichment) cultivation, physiological, biochemical and stable isotope-based 

analyses, molecular biology, (meta)genomics and proteomics.  

Chapter 2 reports microbial transformation of haloalkanoates with chlorate as the 

electron acceptor mediated by P. chloritidismutans AW-1T, a facultative anaerobic chlorate-

reducing bacterium isolated from a bioreactor inoculated with chlorate and bromate polluted 

wastewater (Wolterink et al. 2002). Genomic analysis of strain AW-1T showed co-existence of 

chlorate reduction genes (clrABDC, cld) and D/L-2-haloacid dehalogenase genes (dehI and L-

DEX gene). This chapter, for the first time, verified concurrent transformation of haloalkanoates 

and chlorate by a single bacterium. 

Chapter 3 reports isolation and characterization of a new sulfate-reducing 

organohalide-respiring bacterium, Desulfoluna spongiiphila strain DBB, from pristine marine 

intertidal sediment samples. This chapter describes comparative physiology and genomics of 

strain DBB and two previous reported Desulfoluna species isolated from marine environments. 

Genomic analysis revealed similar potential for OHR, corrinoid biosynthesis, and resistance to 
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oxygen among the three strains, and physiological experiments showed their specific 

preference for brominated/iodinated compounds rather than chlorinated compounds, and 

stimulation of OHR during concurrent sulfate reduction.  

Chapter 4 reports CF microbial transformation in sediment samples obtained from 

hypersaline lake Strawbridge in Western Australia, where biotic formation of CF was previously 

reported (Ruecker et al. 2014). CF in the sediment- and sediment-free enrichment cultures 

was transformed to DCM and CO2. Known OHRB and rdhA genes were not present in the 

sediment free enrichment cultures. Rather, acetogenic Clostridium and genes involved in 

acetogenesis were enriched and likely mediated fortuitous (co-metabolic) transformation of CF 

to DCM and CO2. This study for the first time shows transformation of CF in pristine hypersaline 

environment that is a natural source of CF, indicating that microbiota may act as a filter to 

reduce CF emission from hypersaline lakes to the atmosphere. 

Chapter 5 investigates OHRB and kinetics of 1,2-DCA reductive dechlorination in the 

presence of chloroethenes and 1,2-dichloropropane (1,2-DCP) as co-contaminants. 

Dechlorination rates of 1,2-DCA were strongly decreased in the presence of a single 

chlorinated co-contaminant in enrichment cultures obtained from a contaminated wetland. This 

study contributes to better understand the underlying mechanisms of 1,2-DCA persistence in 

environments in relation to specific 1,2-DCA dechlorinating microbial populations.     

Finally, Chapter 6 provides a general discussion of the findings described in this thesis 

and future perspectives.   
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Abstract 

Haloalkanoates are environmental pollutants that can be degraded aerobically by 

microorganisms producing hydrolytic dehalogenases. However, there is lack of information 

about anaerobic degradation of haloalkanoates. Genome analysis of Pseudomonas 

chloritidismutans AW-1T, a facultative anaerobic chlorate-reducing bacterium, showed 

presence of two putative haloacid dehalogenase genes, the L-DEX gene and dehI, encoding 

an L-2-haloacid dehalogenase (L-DEX) and a halocarboxylic acid dehydrogenase (DehI). 

Hence, we studied concurrent degradation of haloalkanoates and chlorate as a yet unexplored 

trait of strain AW-1T. The deduced amino acid sequences of L-DEX and DehI revealed 33−37% 

and 26−86% similarities with biochemically/structurally characterized L-DEX and D-, DL-2-

haloacid dehalogenase enzymes, respectively. Physiological experiments confirmed that 

strain AW-1T can grow on chloroacetate, bromoacetate and both L- and D- α-halogenated 

propionates with chlorate as an electron acceptor. Interestingly, growth and haloalkanoates 

degradation were generally faster with chlorate as an electron acceptor than with oxygen. In 

line with this, analyses of L-DEX and DehI dehalogenase activities using cell free extract (CFE) 

of strain AW-1T grown on DL-2-chloropropionate under chlorate-reducing condition showed up 

to 3.5-fold higher dehalogenase activity than the CFE obtained from cells grown on DL-2-

chloropropionate under aerobic condition. Reverse transcription quantitative PCR showed that 

the L-DEX gene was expressed constitutively independent of the electron donor 

(haloalkanoates or acetate) or acceptor (chlorate or oxygen), whereas expression of dehI was 

induced by haloalkanoates. Concurrent degradation of organic and inorganic halogenated 

compounds by strain AW-1T represents a unique metabolic capacity in a single bacterium, 

providing a new piece in the puzzle of the microbial halogen cycle.  
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Introduction 

Haloalkanoates are widely used as intermediates and raw materials for production of 

pesticides, pharmaceuticals and other organic compounds (Lin et al. 2011). Each year large 

amounts of these compounds are introduced into the environment causing serious concerns 

due to their environmental toxicity as well as their carcinogenic and genotoxic effects on 

animals and humans (Plewa et al. 2010). Microbial degradation plays an important role in 

detoxification and mineralization of haloalkanoates. Dehalogenation is often one of the first 

reactions during the degradation process, through which the halogen substituents, usually 

responsible for toxicity of these compounds, are removed (Janssen et al. 2001). Bacterial 

strains capable of using haloalkanoates as the sole source of carbon and energy have been 

isolated and characterized from different genera, including Pseudomonas (Hasan et al. 1994, 

Jones et al. 1992, Motosugi et al. 1982a, Motosugi et al. 1982b, Senior et al. 1976), 

Xanthobacter (Janssen et al. 1985) and Methylobacterium (Omi et al. 2007). 

Enzymes involved in dehalogenation of haloalkanoates are known as haloacid 

dehalogenases, which catalyze the hydrolytic dehalogenation of haloalkanoates and produce 

the corresponding hydroxyl alkanoates. Bacterial 2-haloacid dehalogenases that specifically 

act on α-substituted haloalkanoates are classified into three groups based on their substrate 

and stereochemical specificities. L-2-haloacid dehalogenase (L-DEX) catalyzes the 

dehalogenation of L-2-haloacids, D-2-haloacid dehalogenase (D-DEX) acts on D-2-haloacids 

and DL-2-haloacid dehalogenase (DL-DEX) acts on both enantiomers (Kurihara et al. 2000). 

For example, 2-haloacid dehalogenases catalyze dehalogenation of D or L-2-chloropropionate 

(D- or L-2CP) to L- or D-lactate, respectively, which is channeled to the TCA cycle by further 

degradation to pyruvate and acetyl CoA. The known haloalkanoate dehalogenating bacteria 

degrade D- and L-2CP with molecular oxygen as a terminal electron acceptor. To our 

knowledge, no other terminal electron acceptors such as chlorate, nitrate, Fe(III) or sulfate 

have been reported to be used for bacterial growth on haloalkanoates, however, oxidation of 

L-2CP as a model compound coupled to reduction of these electron acceptors is 

thermodynamically feasible, with chlorate being the most favorable electron acceptor (Table 

2.1). Oxidation of haloalkanoates coupled to chlorate reduction is of particular interest due to 

concurrent removal of these two environmentally problematic compounds that could potentially 

co-occur in environments as herbicides (Ali et al. 2016, Bodnár et al. 1990) or as disinfection 

by-products (Righi et al. 2014). Chlorate-reducing bacteria generally reduce chlorate first to 

chlorite by chlorate reductase (encoded by the clr gene), and chlorite is then split into chloride 

and oxygen by chlorite dismutase (encoded by cld) (Rikken et al. 1996, Wolterink et al. 2002, 

Youngblut et al. 2016). The molecular oxygen released from chlorite dismutation can be utilized 

as terminal electron acceptor for final mineralization of haloalkanoates.   
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In this study, Pseudomonas chloritidismutans AW-1T was selected as a potential 

degrader of haloalkanoates coupled to chlorate reduction. This bacterium was previously 

isolated from an anoxic bioreactor (Wolterink et al. 2002) and is able to degrade a wide variety 

of electron donors including n-alkanes with chlorate as electron acceptor (Mehboob et al. 

2009a, Mehboob et al. 2015). Genome analysis of strain AW-1T showed the presence of two 

putative haloacid dehalogenase genes e.g. the L-DEX gene and dehI predicted to encode L-

DEX and halocarboxylic acid dehydrogenase (DehI), respectively. Hence, growth on 

haloalkanoates with chlorate as an alternative electron acceptor might represent a unique 

metabolic capacity in this bacterium. To test this hypothesis, different haloalkanoates were 

tested as electron donor and carbon source with either chlorate or oxygen as electron acceptor. 

Functionality of the two putative 2-haloacid dehalogenases was determined by gene 

expression studies using reverse transcription quantitative PCR (RT-qPCR) and in vitro 

dehalogenase activity measurements.  
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Materials and Methods 

Chemicals 

Chloroacetate, bromoacetic acid, 2-chloropropionic acid, L-2-chloropropionic acid, L-2-

bromopropionic acid, D-2-chloropropionic acid, D-2-bromopropionic acid, 3-chloropropionic 

acid, 3-bromopropionic acid, 3-iodopropionic acid, 2,3-dichloropropionic acid, 2-chlorobutyric 

acid and 4-chlorobutyric acid were all purchased from Sigma-Aldrich. All inorganic salts used 

in this study were of analytical grade. 

 

Bacterial strain and growth conditions 

P. chloritidismutans AW-1T was cultivated in 120 ml bottles containing 50 ml of anoxic 

medium as previously described (Wolterink et al. 2002) with nitrogen or air (140 kPa) as the 

headspace and incubated statically in the dark at 30°C. Vitamins and trace elements were 

added as described by Holliger et al. (Holliger et al. 1993) except that the trace elements were 

supplemented with (per liter of trace elements solution) Na2SeO3, 0.06 g; NaWO4·2H2O, 

0.0184 g. To obtain a pre-culture, 10 mM acetate and 10 mM chlorate were used as the 

electron donor and acceptor, respectively. When all acetate was consumed and the optical 

density at 600 nm (OD600) reached ~0.5, the pre-culture was transferred (5%, v/v) into fresh 

media with different haloalkanoates as electron donor instead of acetate and either chlorate or 

oxygen as electron acceptor. Haloalkanoic acids were neutralized with an equimolar amount 

of NaOH to produce the corresponding haloalkanoates and filter-sterilized through a 0.2 μm 

filter (Advanced Microdevices, Ambala, India) before adding to the medium at 3−10 mM final 

concentration. For transcription analysis, degradation of D-2CP, L-2CP and chloroacetate with 

chlorate, acetate with chlorate, and acetate with oxygen were tested. To ensure sufficient 

biomass for transcription analysis, 10 replicate microcosms were prepared for each condition, 

and for each sampling occasion, two microcosms were randomly selected and sacrificed for 

RNA extraction after taking samples for HPLC analysis of metabolites and OD600 

measurements. Specific growth rate was calculated according to the equation:  

ln(OD600(t2) /OD600(t1)) = k(t2 - t1)  

Where k is the specific growth rate; OD600(t1) and OD600(t2) are the optical densities of liquid 

cultures measured at 600nm at the start and end of exponential growth phase, respectively; t1 

and t2 are the start and end points (h) of exponential growth phases, respectively. 

        

RNA extraction and cDNA synthesis 

RNA was extracted from strain AW-1T at different time points during growth on L-2CP 

(0, 12, 18, 24, 36 h), D-2CP (0, 48, 96, 144, 168 h), chloroacetate (0, 24, 30, 36, 48 h), acetate 

(0, 4.5, 9, 14, 24 h) with chlorate, and acetate (0, 9, 24, 39, 48 h) with oxygen. RNA extraction 



Concurrent haloalkanoate degradation and chlorate reduction by Pseudomonas chloritidismutans AW-1T 

21 
 

was performed with a bead-beating procedure as described earlier (Egert et al. 2007). RNA 

was purified using RNeasy columns (Qiagen, Venlo, The Netherlands) with DNase I (Roche, 

Almere, The Netherlands) treatment according to the manufacturers’ protocols. cDNA was 

synthesized from 500 ng total RNA using the Maxima H Minus First Strand cDNA Synthesis 

Kit (Thermo Scientific, Vilnius, Lithuania) according to the manufacturer’s protocols. Absence 

of genomic DNA was confirmed by 16S rRNA gene targeted PCR with extracted RNA samples 

as templates. 

 

qPCR assays  

Primers for amplification of cld, the L-DEX gene, and dehI genes were designed using 

the primer 3 online program (http://primer3.ut.ee/software) or the NCBI online primer design 

tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 2.2). Primers were tested in silico 

using OligoAnalyzer 3.1 (http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/). The cld, 

L-DEX, and dehI genes were PCR amplified using the following program: 95°C for 3 min, 

followed by 30 cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 30 s, followed by a final 

extension at 72°C for 10 min. The PCR products were purified using the GeneJET PCR 

Purification Kit (Thermo Scientific, Vilnius, Lithuania) and cloned into pGEM®-T Easy Vector 

(Promega, WI, USA). The plasmid was introduced into E. coli JM109 competent cells (Promega, 

WI, USA). Primer specificity and efficiency of amplification were tested by temperature-gradient 

PCRs on the iQ5 iCycler (Bio-Rad, Veenendaal, the Netherlands) using plasmid or PCR 

product amplified with T7/SP6 primers from the plasmid containing target gene inserts. The 

same T7/SP6 PCR products were subsequently used to obtain qPCR calibration curves. 

qPCRs were performed using the iQ SYBR Green supermix (Bio-Rad, CA, USA) as described 

earlier (Atashgahi et al. 2013). The program for qPCR assays of cld, L-DEX and dehI genes 

was: 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 30 s. 

Melting curves were measured from 65°C to 95°C with increments of 0.5°C and 10 s at each 

step. Transcript levels of the cld, L-DEX and dehI genes were calculated by relative 

quantification using the 2-ΔΔCq method (Pfaffl 2001). The 16S rRNA gene was used as the 

reference gene (Kirk et al. 2014) and quantified as described previously (Atashgahi et al. 2013). 

Gene expression over time was calibrated to the 0 hour time point (Kirk et al. 2014). A relative 

expression higher than 10 was arbitrarily set as representing significant induction (Bisaillon et 

al. 2011). 

  

http://primer3.ut.ee/software
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/
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Table 2.2 Overview of qPCR primers used in this study. 

Gene name Primer name and sequence (5′−3′) 

cld 
CldF (ACACGACACCTACCTTAGCC) 
CldR (CCCCAACGAACGTGGAATTT) 

L-DEX gene 
L-DEXF (CTTTATCGGCGTGGTGAGTG) 
L-DEXR (CCCACGGATCGAATAATGCC) 

dehI 
DehIF (CTACCGGCCTTTCTTTGTCG) 
DehIR (CTGATCAATCTCACGCACCG) 

  

Preparation of cell-free extract (CFE) and dehalogenase assay  

CFEs were prepared from 50 ml cultures of strain AW-1T at early stationary phase 

grown with DL-2CP under either chlorate-reducing or aerobic condition. Cells were harvested 

by centrifugation at 4,700 × g for 15 min at 4°C. The cell pellets were washed twice with 100 

mM Tris-sulfate buffer (pH 7.5) and re-suspended in 1 ml of the same buffer supplied with 10% 

glycerol. Cells were lysed by sonication using a Branson sonifier (Branson, CT, USA) equipped 

with a 3 mm tip by six pulses of 30 s with 30 s rest in between of each pulse. Intact cells and 

cell debris were removed by centrifugation at 15,000 × g for 15 min at 4°C. Protein 

concentration of the supernatant was determined with the Qubit protein assay kit (Invitrogen, 

OR, USA) following the manufacturer’s instructions. Dehalogenase activity of the freshly 

prepared CFEs was measured by determining the release of halide ions under aerobic 

condition without chlorate. The optimum pH and temperature for the dehalogenase activity 

were determined using two buffer types with distinct, yet overlapping pH ranges (100 mM Tris-

sulfate, pH 7.5, 8.0, 8.5, 9.0; 100 mM glycine-NaOH, pH 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0) 

and different temperatures (20, 25, 30, 35, 40°C). A control reaction lacking CFEs was included 

in each set of assays to detect any spontaneous release of halide ions. The dehalogenase 

assay system contained 400 μl of the buffer solutions, 20 mM haloalkanoates and 50 µl of CFE. 

All reaction components except the CFE were combined and allowed to equilibrate for 5 min 

at a given temperature, after which the reaction was initiated by adding 50 µl CFE. The reaction 

was performed under aerobic conditions and terminated after 10 min by adding 75 µl of 2 N 

H2SO4. The release of halide ions was measured by ion chromatography. One unit of 

dehalogenase activity was defined as the amount of protein that catalyzes the dehalogenation 

of 1 µmol of a substrate per minute of the reaction time.  

 

Analytical methods 

Chlorate and halide ions were analyzed using the ThermoFisher Scientific Dionex™ 

ICS-2100 Ion Chromatography System and a Dionex Ionpac analytical column (AS19, 2 × 250 

mm) equipped with a suppressed conductivity detector. The ions were analyzed under a three 

step gradient profile consisting of 10 mM KOH for 4 min, 10−40 mM KOH for 16 min, followed 
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by 40−10 mM KOH for 1.5 min. Haloalkanoates were analyzed on a ThermoFisher Scientific 

SpectraSYSTEM™ HPLC equipped with an Agilent column (Metacarb 67H, 300 × 6.5 mm) 

and an RI detector. The mobile phase was 0.01 N H2SO4. Oxygen was measured by taking 

0.5 ml headspace samples and analyzed using a gas chromatograph equipped with thermal 

conductivity detector (GC-TCD, Shimadzu 2014) and a Restek column (Molsieve 13X, 200 × 

3 mm). The column temperature was 60°C and held for 2.75 min. Cell growth was determined 

by measuring OD600 using a WPA CO8000 cell density meter (Biochrom, Cambridge, UK). 

 

Genome annotation  

Bacterial genomes with a high quality genome sequence available in the European 

Nucleotide Archive (ENA) version 121 were scanned for co-occurrence of L-DEX and chlorite 

dismutase (Cld) using protein domains (IPR006439, IPR006328, IPR023214, IPR010644). 

The DehI in AW-1T genome was found using the conserved regions of D- and DL-DEX from 

Pseudomonas putida PP3 (Weightman et al. 2002), Pseudomonas sp. 113 (Nardi-Dei et al. 

1997), Methylobacterium sp. CPA1 (Omi et al. 2007) and Pseudomonas putida AJ1(Barth et 

al. 1992). To avoid potential miss-annotations, the selected genomes were de novo re-

annotated using the SAPP framework (Koehorst et al. 2016a, Koehorst et al. 2016b). Genes 

were identified using Prodigal (2.6.3) (Hyatt et al. 2010a), and protein annotation was 

performed though protein domains using InterProscan (5.19−58.0) (Mitchell et al. 2014). 

 

Results and discussion 

Bioinformatic analysis  

The genome of strain AW-1T (Mehboob et al. 2015) (GenBank accession no. 

AOFQ01000000) harbors two haloacid dehalogenase genes (L-DEX gene and dehI) predicted 

to encode L-DEX and DehI with 228 and 301 amino acid residues, respectively (Fig. 2.1). The 

amino acid sequence of L-DEX of strain AW-1T shares 33%, 34%, 34% and 37% identities with 

the L-DEX of Pseudomonas putida 109 (Kawasaki et al. 1994), Pseudomonas putida AJ1 

(Jones et al. 1992), Pseudomonas sp. YL (Nardi-Dei et al. 1994) and of Xanthobacter 

autotrophicus GJ10 (Van der Ploeg et al. 1991), respectively. The amino acid sequence of 

DehI of strain AW-1T shares 86%, 29%, 28% and 26% identities with the D-DEX of 

Pseudomonas putida AJ1(Barth et al. 1992), DL-DEX of Pseudomonas putida PP3 

(Weightman et al. 2002), DL-DEX of Pseudomonas sp. 113 (Nardi-Dei et al. 1997) and DL-

DEX of Methylobacterium sp. CPA1 (Omi et al. 2007), respectively.  

The proposed substrate binding and catalytic residues of the active site of the 

structurally characterized L-DEX of Pseudomonas sp. YL (Hisano et al. 1996a, Li et al. 1998a) 

are identical in the L-DEX of strain AW-1T (Fig. 2.1A), indicating dehalogenation of L-2-
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halopropionates and haloacetates by this enzyme. In contrast, only the catalytic residues of 

the active site of the structurally characterized DL-DEX of Pseudomonas putida PP3 

(Schmidberger et al. 2008) are identical in the DehI of strain AW-1T and D-DEX of 

Pseudomonas putida AJ1 (Barth et al. 1992) (Fig. 2.1B). The halide-binding residues for L- 

and D-form halopropionates are only identical in the DL-DEX of Pseudomonas sp. 113 (Nardi-

Dei et al. 1997) and Methylobacterium sp. CPA1 (Omi et al. 2007), but not in the DehI of strain 

AW-1T and D-DEX of Pseudomonas putida AJ1 (Barth et al. 1992). Moreover, the key residue 

for dictating stereoselectivity, Ala 207, in the DL-DEX (Schmidberger et al. 2008) is replaced 

by Asn in the D-DEX and DehI (Fig. 2.1B). These indicate that the DehI of strain AW-1T is a D-

DEX and mediates dehalogenation of D-2-halopropionates and haloacetates. The DehI and L-

DEX of strain AW-1T share no sequence identity with each other. This is in agreement with 

previous studies showing that D-DEX (and DL-DEX) and L-DEX are evolutionarily unrelated 

and have different reaction mechanisms (Hill et al. 1999, Nardi-Dei et al. 1999).  
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Fig. 2.1 Multiple sequence alignments of (A) L-DEX and (B) D-, DL-DEX and DehI. White letters on a 

black background indicate amino acids that are identical in all sequences. Active site residues are 

indicated with triangles. The D-and L-form halide binding residues are indicated with squares and circles, 

 

10 20 30 40 50 60 70
....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 L-DEX --MAITLAFDVYGTLINTHGVIVALEKHVGDKASEFSRTWREKQLEYSFRRGLMQNYENFSVCTSNALDY 68

109 L-DEX MQPIEGIVFDLYGTLYDVHSVVQACESAYPGQGEAISRLWRQKQLEYTWLSSLMGRYASFEQRTEEALRY 70

AJ1 L-DEX MKNIQGIVFDLYGTLYDVHSVVQACEEVYPGQGDAISRLWRQKQLEYTWLRSLMGRYVNFEKATEDALRF 70

YL L-DEX MDYIKGIAFDLYGTLFDVHSVVGRCDEAFPGRGREISALWRQKQLEYTWLRSLMNRYVNFQQATEDALRF 70

GJ10 L-DEX --MIKAVVFDAYGTLFDVQSVADATERAYPGRGEYITQVWRQKQLEYSWLRALMGRYADFWSVTREALAY 68

80 90 100 110 120 130 140
....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 L-DEX ASSYFKVPLGLKEKEELLGAYKVLPAFDDVEDGLARAKKAGFRMFAFSNGSADAVEILLKNAGIRDHFIG 138

109 L-DEX TCKHLGLATDETTLRQLGQAYLHLAPHPDTTAALRRLKASGLPMAIASNGSHHSIEQVVSHSDMGWAFDH 140

AJ1 L-DEX TCTHLGLSLDDETHQRLSDAYLHLTPYADTADAVRRLKAAGLPLGIISNGSHCSIEQVVTNSEMNWAFDQ 140

YL L-DEX TCRHLGLDLDARTRSTLCDAYLRLAPFSEVPDSLRELKRRGLKLAILSNGSPQSIDAVVSHAGLRDGFDH 140

GJ10 L-DEX TLGTLGLEPDESFLADMAQAYNRLTPYPDAAQCLAELAP--LKRAILSNGAPDMLQALVANAGLTDSFDA 136

150 160 170 180 190 200 210

....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 L-DEX VVSVDEMKSYKPNPGVYSHFLRRAGALGADAWLVSSNPFDVIGAISSGMRAAWIKRSPE----------- 197

109 L-DEX LISVETVKVFKPDNRVYSLAEQTMAIPRDRLLFVSSNSWDATGARHFGFPVCWVNRQG------------ 198

AJ1 L-DEX LISVEDVQVFKPDSRVYSLAEKRMGFPKENILFVSSNAWDASAASNFGFPVCWINRQN------------ 198

YL L-DEX LLSVDPVQVYKPDNRVYELAEQALGLDRSAILFVSSNAWDATGARYFGFPTCWINRTG------------ 198

GJ10 L-DEX VISVDAKRVFKPHPDSYALVEEVLGVTPAEVLFVSSNGFDVGGAKNFGFSVARVARLSQEALARELVSGT 206

220 230 240 250

....|....|....|....|....|....|....|....|....|..

AW-1 L-DEX ----ALFDPW-------GIEPTLTVNGLSTLAEQIGQECRYA----- 228

109 L-DEX ----AVFDEL-------GATPTREVRDLGEMSDWLLD---------- 224

AJ1 L-DEX ----GAFDEL-------DAKPTHVVRNLAEMSNWLVNSLD------- 227

YL L-DEX ----NVFEEM-------GQTPDWEVTSLRAVVELFETAAGKAEKG-- 232

GJ10 L-DEX IAPLTMFKALRMREETYAEAPDFVVPALGDLPRLVRGMAGAHLAPAV 253

A

B

ESR00716  

Q59728

AAA25832

Q53464

AAA27590

10 20 30 40 50 60 70
....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 DehI MNPSDNCTHLLLPRPICEATILPVAEHRADQELSEVYRDLKATFGVPWVGVITQAVAHYRPFFVEAWRRF 70

AJ1 D-DEX MNLPDNSIHLQLPRPVCEAIIRPVPEHRADQELSEIYRDLKATFGVPWVGVITQAVAYYRPFFAEAWRRF 70

PP3 DehI -----------MTN---PAYFPQLSQLDVSGEMESTYEDIRLTLRVPWVAFGCRVLATFPGYLPLAWRRS 56

113 DL-DEX -----------MSHRPILKNFPQVDHHQASGKLGDLYNDIHDTLRVPWVAFGIRVMSQFEHFVPAAWEAL 59

CPA1 DL-DEX -----------MAHRSVLGSFPQVDHHQAKGQLAEVYDDIHNTMRVPWVAFGIRVMSQFPHFIPDAWAAL 59

80 90 100 110 120 130 140
....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 DehI APSAKTHFFERASDDIRIRSWELIAQSFVIEGQTGRLQEMGYSVREIDQIRAVLDIFDYGNPKYLIFATA 140

AJ1 D-DEX APSAKTHFFERASDDIRIRSWELMGQSFVIEGQTDRLREMGYSVREIGQIRAVLDIFDYGNPKYLIFATA 140

PP3 DehI AEALITRYAEQAADELRER---SLLNIGPLPNLKERLYAAGFDDGEIEKVRRVLYAFNYGNPKYLLLITA 123

113 DL-DEX KPQISTRYAEEGADKVREA---AIIPGSAPANPTPALLANGWSEEEIAKLKATLDGLNYGNPKYLILISA 126

CPA1 DL-DEX KPNIETRYAEDGADLIRLN---SIVPGPVMPNPTPKLLRLGWTESKIEELKTALDLLNYGNPKYLILITA 126

150 160 170 180 190 200 210
....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 DehI IKEGLLSGRTYG----GVAGDARCSFPRAPICQIEPIPAMIEEHHAGETLSQVYADIKQTLQLPFINSDY 206

AJ1 D-DEX IKEGLLSGRTFG----GAAGDARCHFPRSPICQIDPIPVMVEEHHAGGTLSQVYADIKQTLQLPFINSDY 206

PP3 DehI LSESMQMRPVGG---AEVSSELRASIPKGHPKGMDPLLPLVDATKASTEVQGLLKRVADLHYHHGPASDF 190

113 DL-DEX WNEAWHGRDAGGGAGKRLDSVQSERLPYGLPQGVEKFH-LIDPEAADDQVQCLLRDIRDAFLHHGPASDY 195

CPA1 DL-DEX FNEAWHERDTGGRAPQKLRGRDAERIPYGLPNSVEKFN-LLDIEKASDRTQTVLRDIRDAFLHHGPASDY 195

220 230 240 250 260 270 280
....|....|....|....|....|....|....|....|....|....|....|....|....|....|

AW-1 DehI KAMARWPSYLDLAWD-ALKPCIDTPAYLADRSEINAQALATLDALPIAYRMSRADALLAGLSEIQLDELI 275

AJ1 D-DEX KAMARWPSYLEQAWG-ALKPCIDTPAYQAGRFDINARALAALDALPTAYRMSRDDALQAGLSEAQTDELI 275

PP3 DehI QALANWPKVLQIVTDEVLAPVARTEQYDAKSRELVTRAPELVRGLPGSAGVQR-SELMSMLTPNELAGLT 259

113 DL-DEX RVLAAWPDYLEIAFRDTLKPVALTTEFELTTSRIRKIAREHVRGFDGAGGVAW-RDMADRMTPEEIAGLT 264

CPA1 DL-DEX RVLGVWPDYLEIALRDSLAPVALSAEYDETARRIRKIAREHVKGFDKPAGVAW-RDMTEKLSAEQIAGLT 264

290 300 310 320

....|....|....|....|....|....|....|....|...

AW-1 DehI QVISLFQWLLSGLVLNITHFKQQALK----------------- 301

AJ1 D-DEX QVISLFQWMLSGLVLNVTHFKQQALKK---------------- 302

PP3 DehI GVLFMYQRFIADITISIIHITECLDGAEAASKSPFPI------ 296

113 DL-DEX GVLFMYNRFIADITVAIIRLKQAFGSAEDATENKFRVWPTEKG 307

CPA1 DL-DEX GLLFMYNRFIADITIAIIRLKQAFSGPEDATANKYTN------ 301

ESQ97319

Q52086

AAN60470

AAB62819

BAF64754
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respectively. The catalytic residues are indicated with stars. The source bacterial abbreviations are: AW-

1, Pseudomonas chloritidismutans AW-1T; 109, Pseudomonas putida 109; AJ1, Pseudomonas putida 

AJ1; YL, Pseudomonas sp. YL; GJ10, Xanthobacter autotrophicus GJ10; PP3, Pseudomonas putida 

PP3; 113, Pseudomonas sp. 113; CPA1, Methylobacterium sp. CPA1. GenBank accession numbers 

are indicated at the C-terminal end. ClustalW multiple sequence alignment was conducted using BioEdit 

version 7.2.5 (http://bioedit.software.informer.com/).  

  

http://bioedit.software.informer.com/
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Degradation of haloalkanoates by strain AW-1T with either chlorate or oxygen as 

electron acceptor 

Strain AW-1T can utilize DL-2CP, L-2CP, D-2CP, L-2-bromopropionate (L-2BP), D-2-

bromopropionate (D-2BP), chloroacetate and bromoacetate as sole carbon and energy 

sources with chlorate or oxygen as electron acceptor (Fig. 2.2 and 2.3, Fig. S2.1). Under 

chlorate-reducing conditions, the fastest degradation of haloalkanoates by strain AW-1T was 

observed with L-2CP (Fig. 2.2A), DL-2CP (Fig. S2.1A), L-2BP (Fig. 2.3A) and D-2BP (Fig. 2.3B) 

with specific growth rates of 0.17, 0.12, 0.081, and 0.10 h-1, respectively. Chloroacetate (Fig. 

2.2E), bromoacetate (Fig. 2.3C), were less favorable substrates resulting in specific growth 

rates of 0.047 and 0.052 h-1, respectively. D-2CP was the least favorable substrate, with the 

lowest specific growth rate (0.025 h-1) among all substrates tested in this study (Fig. 2.2C). The 

chemical instability of D(L)-2BP in aqueous solution that could be spontaneously hydrolyzed 

to L(D)-lactate (Kurihara et al. 2000), might facilitate the dehalogenation of D-2BP to L-lactate 

and contribute to the higher specific growth rate of the strain AW-1T with D-2BP (Fig. 2.3B) as 

compared to D-2CP (Fig. 2.2C). However, the uninoculated control experiment did not show 

any concentration decrease of D- and L-2BP within 36 h, indicating lack of abiotic D- and L-

2BP dehalogenation (data not shown). Oxygen concentration in the cultures of strain AW-1T 

grown on chlorate with either DL-2CP or chloroacetate did not surpass 0.009 mM dissolved 

oxygen (Fig. S2.2) indicating that oxygen produced from chlorate reduction was continuously 

consumed for mineralization of the haloalkanoates by strain AW-1T. Interestingly, degradation 

of some haloalkanoates was faster with chlorate as an electron acceptor than with oxygen. For 

example, the specific growth rates of DL-2CP (Fig. S2.1B), L-2CP (Fig. S2.1D) and 

chloroacetate (Fig. S2.1H) by strain AW-1T under aerobic conditions were 6.5, 5.8 and 3.9-fold 

lower, respectively, than the corresponding specific growth rates of these substrates under 

chlorate-reducing conditions. No growth was observed using β-substituted haloalkanoates 

such as 3-chloropropionate, 3-bromopropionate, 3-iodopropionate and 4-chlorobutyrate, nor 

with 2,3-dichloropropionate or 2-chlorobutyrate as substrates with chlorate as electron 

acceptor (data not shown). Therefore, degradation of these substrates with oxygen as electron 

acceptor was not tested in this study. Compared to the common degradation of α-substituted 

haloalkanoates, degradation of β-substituted haloalkanoates was reported less frequently and 

the responsible dehalogenase genes and enzymes have not been verified experimentally 

(Bagherbaigi et al. 2013, Lin et al. 2011, Mesri et al. 2009). 
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Fig. 2.2 Growth of P. chloritidismutans AW-1T on L-2CP (A), D-2CP (C), chloroacetate (E) and acetate 

(G) with chlorate and on acetate (I) with oxygen as electron acceptor, and relative expression of the L-

2-haloacid dehalogenase gene (L-DEX gene), halocarboxylic acid dehydrogenase gene (dehI) and 

chlorate dismutase gene (cld) during growth on L-2CP (B), D-2CP (D), chloroacetate (F) and acetate (H) 

with chlorate and on acetate with oxygen (J) as an electron acceptor. Two random cultures out of 10 

replicates for each growth condition were sacrificed at each sampling point for growth, HPLC and RT-

qPCR analyses. Triplicate qPCRs were performed on samples withdrawn from two random replicate 

microcosms (n = 2×3). 

 

 

 

Fig. 2.3 Growth of P. chloritidismutans AW-1T on L-2BP (A), D-2BP (B) and bromoacetate (C) with 

chlorate as electron acceptor. Points and error bars represent the average and standard deviation of 

samples taken from duplicate cultures. 
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Dehalogenase activity assays 

The dehalogenase activity was determined in cell free extracts (CFEs) of strain AW-1T. The 

optimal pH for dehalogenase activity of the CFE from AW-1T cells grown on DL-2CP and 

chlorate at 30°C for 24 hours was 10.5 (Fig. 2.4). The optimal growth temperature of 30°C 

(Wolterink et al. 2002) was selected for further dehalogenase activity assays. Although higher 

dehalogenase activities were observed at higher temperatures, spontaneous release of 

bromide was detected in dehalogenase activity assays with D- and L-2BP as substrates. This 

also confirmed the chemical instability of D(L)-2BP in aqueous solution, which might lead to 

the faster apparent degradation of D-2BP than D-2CP by strain AW-1T.  

 

 

Fig. 2.4 Effect of pH (A) and temperature (B) on dehalogenase activity of the CFE prepared from P. 

chloritidismutans AW-1T cells grown on DL-2CP and chlorate at 30°C for 24 hours. The pH (A) and 

temperature (B) yielding the highest dehalogenase activity was set as 100% and activities were shown 

as percentage against the highest activity. The points are average of two technical replicates and the 

error bars represent the standard deviations.  

 

The CFEs prepared from both chlorate- and oxygen-grown cultures of strain AW-1T 

showed dehalogenase activities with all the growth-supporting haloalkanoates tested in this 

study (Table 2.3). In addition, enzyme activity was also noted with 2-chlorobutyrate while it was 

not used as growth substrate. No activity was observed with 4-chlorobutyrate, 3-

chloropropionate, 3-bromopropionate, 3-iodopropionate or 2,3-dichloropropionate (Table 2.3). 

The dehalogenase activity of the CFE from AW-1T cells grown in presence of chlorate was up 

to 3.5-fold higher than the CFE obtained from AW-1T cells grown in the presence of oxygen 

(Table 2.3). This is in line with the growth experiments that showed faster growth when chlorate 

was used as an electron acceptor as compared to aerobic cultures (Fig. S2.1). Chlorite 

dismutase is a periplasmic enzyme (Carlström et al. 2015, Mehboob et al. 2015, Mehboob et 

al. 2009b, Stenklo et al. 2001) and hence utilization of the molecular oxygen derived from 

chlorite dismutation by oxygenases involved in the further oxidation of the dehalogenated 

 

0

20

40

60

80

100

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

R
el

at
iv

e 
ac

ti
vi

ty
 (%

)

pH

A

Tris-sulfate buffer Glycine-NaOH buffer

60

70

80

90

100

110

20 25 30 35 40

R
el

at
iv

e 
ac

ti
vi

ty
 (%

)

Temperature (oC)

B



Concurrent haloalkanoate degradation and chlorate reduction by Pseudomonas chloritidismutans AW-1T 

31 
 

haloalkanoates could be more efficient than using the oxygen from the extra-cellular 

environment. To this end, it should be noted that the solubility of chlorate in water (9.93 M at 

25°C) is much higher than that of oxygen (0.000269 M at 25°C, under air), suggesting that 

exponentially growing cells of strain AW-1T might be oxygen-diffusion limited in case of aerobic 

cultivation. Finally, thermodynamic analysis shows that chlorate is a more favorable electron 

acceptor than oxygen for complete oxidation of L-2CP (Table 2.1).  

 

Table 2.3 Dehalogenase activity of the CFEs of P. chloritidismutans AW-1T on various 
haloalkanoate substrates.  

Substrate 

Dehalogenase activity (U/mg of protein) a 

DL-2CP + Chlorate b DL-2CP + Oxygen c 

L-2-Chloropropionate 1.58 ± 0.19 0.46 ± 0.05 

D-2-Chloropropionate 0.09 ± 0.021 0.11 ± 0.35 

DL-2-Chloropropionate 1.50 ± 0.04 0.59 ± 0.01 

L-2-Bromopropionate 1.54 ± 0.02 0.89 ± 0.26 

D-2-Bromopropionate 1.48 ± 0.26 0.42 ± 0.10 

Chloroacetate 1.43 ± 0.09 1.33 ± 0.01 

Bromoacetate 2.10 ± 0.03 1.71 ± 0.26 

2-Chlorobutyrate 0.39 ± 0.13 0.09 ± 0.03 

4-Chlorobutyrate ND c  ND 

3-Chloropropionate ND ND 

3-Bromopropionate ND ND 

3-Iodopropionate ND ND 

2,3-Dichloropropionate ND ND 
a Values of dehalogenase activity are the mean ± standard error of technical duplicate 

analysis. ND: Not detected 
b CFE was prepared from cells grown on DL-2CP and chlorate for 24 hours 
c CFE was prepared from cells grown on DL-2CP and oxygen for 90 hours 
 

 

Transcription analysis 

Under all tested conditions, the time 0 expression of cld, the L-DEX gene and dehI was 

comparable for all cultures, and the 16S rRNA gene was stably expressed throughout growth 

phases of strain AW-1T (Fig. S2.3). Among the three analyzed genes, dehI showed the highest 

induction under chlorate-reducing conditions with L-2CP, D-2CP and chloroacetate as electron 

donors, which was significant in early- and mid-exponential growth phases (Fig. 2.2B, D and 

F). Upregulation of dehI reached its highest level (~14,000-fold) in L-2CP fed cultures within 

24 hours and then decreased (Fig. 2.2B). In contrast, the expression of L-DEX gene was 

relative stable and the highest upregulation (~22-fold) was observed in the cultures amended 
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with L-2CP after 18 hours and then decreased (Fig. 2.2B, D and F). Similar to the L-DEX gene, 

cld also showed no significant upregulation in the cultures amended with the chloroalkanoates 

and chlorate (Fig. 2.2B, D and F). In cultures grown on non-chlorinated substrate (acetate) with 

either chlorate or oxygen, upregulations of dehI, the L-DEX gene, and cld did not surpass 18-, 

26-, and 49-fold, respectively (Fig. 2.2H and J). These results collectively show the inductive 

expression of dehI by haloalkanoates and high constitutive expression of the L-DEX gene and 

cld independent of electron donor and acceptor (Fig. S2.2). In line with the expression pattern 

of cld, a previous proteomic study showed abundance of chlorite dismutase in strain AW-1T 

even when chlorate was replaced by oxygen (Mehboob et al. 2015).  

Previous research on degradation of organic and inorganic halogenated compounds 

has mainly focused on their degradation either as electron donor or electron acceptor, but not 

on concurrent degradation. This study showed for the first time concurrent degradation of 

halogenated compounds as electron donor and acceptor in a single bacterium, representing a 

unique and untapped metabolic potential. A survey of available bacterial genomes showed 

similar co-occurrence of genes involved in degradation of haloalkanoates and chlorate in other 

bacterial strains belonging to various genera including, but not limited to, Bacillus, 

Exiguobacterium, Mycobacterium, Staphylococcus and Roseiflexus (Table S2.1). Although 

none of these bacteria were experimentally tested for chlorate reduction and (or) 

haloalkanoates degradation, and thus further experimental verification is needed, this suggests 

that the potential catabolic machineries to degrade both halogenated organic and inorganic 

compounds by a single bacterium are widespread. Besides bioremediation prospects, such 

degradation of different halogenated compounds is of interest for the natural halogen cycle in 

different aquatic and terrestrial ecosystems where ample natural production of halogenated 

compounds has been documented (Gribble 2000, Gribble 2003, Rajagopalan et al. 2008, Rao 

et al. 2010). 
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Supplementary Information 

 

 

Fig. S2.1 Growth of P. chloritidismutans AW-1T on DL-2-chloropropionate (DL-2CP, A, B), L-2-

chloropropionate (L-2CP, C, D), D-2-chloropropionate (D-2CP, E, F), chloroacetate (G, H) with chlorate 

(left panels) and oxygen (right panels) as terminal electron acceptor. Note that panel C, E and G are the 

same as panel A, C and E in Fig 2.2 and presented here to facilitate comparison with aerobic conditions. 

Points and error bars in the remaining panels represent the average and standard deviation of samples 

taken from duplicate cultures.  
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Fig. S2.2 Oxygen formation during growth of P. chloritidismutans AW-1T on DL-2CP (A) and 

chloroacetate (B) under chlorate-reducing condition. Points and error bars represent the average and 

standard deviation of samples taken from duplicate cultures. 
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Fig. S2.3 Expression profiles of the L-2-haloacid dehalogenase gene (L-DEX gene), halocarboxylic acid 

dehydrogenase gene (dehI), chlorate dismutase gene (cld) and 16S rRNA gene of P. chloritidismutans 

AW-1T during growth on L-2CP (A), D-2CP (B), chloroacetate (C) and acetate (D) with chlorate and on 

acetate (E) with oxygen as terminal electron acceptor.  
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Table S2.1 Co-occurrence of 2-haloacid dehalogenase and chlorite dismutase genes in available bacterial 
genomes. 

Strain Protein Protein ID 

Bacillus megaterium DSM 319 2-haloacid dehalogenase WP_013082018.1  

chlorite dismutase (heme-binding protein) WP_013085502.1 
 
Bacillus megaterium QM B1551 

 
2-haloacid dehalogenase 

 
WP_013055715.1 

chlorite dismutase (heme-binding protein) WP_013059854.1 
 
Bacillus megaterium WSH-002 

 
2-haloacid dehalogenase 

 
WP_014461303.1 

chlorite dismutase (heme-binding protein) WP_014457727.1 
 
Bradyrhizobium sp. S23321 

 
2-haloacid dehalogenase 

 
WP_015688637.1 

chlorite dismutase WP_015688409.1 
 
Exiguobacterium antarcticum B7 

 
2-haloacid dehalogenase 

 
WP_014971509.1 

chlorite dismutase (heme-binding protein) WP_014969243.1 
 
Exiguobacterium sp. AT1b 

 
2-haloacid dehalogenase 

 
WP_012727283.1 

chlorite dismutase (heme-binding protein) WP_012727491.1 
 
Exiguobacterium sp. MH3 

 
2-haloacid dehalogenase 

 
WP_023469611.1 

chlorite dismutase (heme-binding protein) WP_023466755.1 
 
Exiguobacterium sibiricum 255-15 

 
2-haloacid dehalogenase 

 
WP_012371658.1 

chlorite dismutase (heme-binding protein) WP_012369128.1 
 
Halobacillus halophilus DSM 2266 

 
2-haloacid dehalogenase 

 
WP_014642685.1 

chlorite dismutase (heme-binding protein) WP_014644882.1 
 
Marinithermus hydrothermalis DSM 
14884 

 
2-haloacid dehalogenase 

 
WP_013703677.1 

chlorite dismutase WP_013703158.1 
 
Mycobacterium indicus pranii MTCC 
9506 

 
2-haloalkanoic acid dehalogenase 

 
WP_014941252.1 

chlorite dismutase WP_008258510.1 
 
Mycobacterium intracellulare ATCC 
13950 

 
2-haloalkanoic acid dehalogenase 

 
WP_014379092.1 

chlorite dismutase WP_008258510.1 
 
Mycobacterium intracellulare MOTT 02 

 
2-haloalkanoic acid dehalogenase 

 
WP_009951930.1 

chlorite dismutase WP_014382908.1 
 
Mycobacterium intracellulare MOTT 64 

 
2-haloalkanoic acid dehalogenase 

 
WP_014383798.1 

chlorite dismutase WP_008258510.1 
 
Mycobacterium sp. MOTT 36Y 

 
chlorite dismutase 

 
WP_008258510.1 

2-haloalkanoic acid dehalogenase WP_009951930.1 
 
Mycobacterium yongonense 05-1390 

 
2-haloacid dehalogenase 

 
WP_008263884.1 

chlorite dismutase WP_008258510.1 
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Pseudonocardia dioxanivorans CB1190 2-haloacid dehalogenase AEA24138.1 

chlorite dismutase AEA25096.1 
 
Rhodanobacter denitrificans 2APBS1 

 
2-haloalkanoic acid dehalogenase 

 
WP_015449095.1 

chlorite dismutase WP_015448156.1 
 
Rhodopirellula baltica SH1 

 
2-haloalkanoic acid dehalogenase 

 
NP_866175.1 

chlorite dismutase (heme peroxidase) NP_869234.2 
 
Roseiflexus castenholzii DSM 13941 

 
2-haloalkanoic acid dehalogenase 

 
WP_012119159.1 

chlorite dismutase WP_012120539.1 
 
Roseiflexus sp. RS1 

 
2-haloalkanoic acid dehalogenase 

 
WP_011958215.1 

chlorite dismutase WP_011956484.1 
 
Rubrobacter xylanophilus DSM 9941 

 
2-haloalkanoic acid dehalogenase 

 
WP_011564651.1 

chlorite dismutase WP_011563733.1 
 
Sphaerobacter thermophilus DSM 
20745 

 
2-haloalkanoic acid dehalogenase 

 
WP_012873678.1 

chlorite dismutase WP_012873220.1 
 
Staphylococcus carnosus TM300 

 
2-haloalkanoic acid dehalogenase 

 
WP_015901332.1 

chlorite dismutase (heme-binding protein) WP_012664269.1 
 
Thermomicrobium roseum DSM 5159 

 
2-haloalkanoic acid dehalogenase 

 
WP_012643089.1 

chlorite dismutase WP_012643117.1 
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Abstract 

The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T 

and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide 

respiration (OHR). Here we isolated a third member of this genus from marine intertidal sediment, 

designated D. spongiiphila strain DBB. Each of the three Desulfoluna strains harbours three 

reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their 

genomes. Brominated but not chlorinated aromatic compounds were dehalogenated by all three 

strains. The Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM 

sulfide, which often negatively affect OHR. Strain DBB sustained OHR with 2% oxygen in the gas 

phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse 

transcription-quantitative PCR (RT-qPCR) revealed differential induction of rdhA genes in strain 

DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed 

differential expression of rdhA1 with 1,4-dibromobenzene, and revealed a possible electron 

transport chain from lactate dehydrogenases and pyruvate oxidoreductase to RdhA1 via 

menaquinones and either RdhC, or Fix complex (electron transfer flavoproteins), or Qrc complex 

(Type-1 cytochrome c3:menaquinone oxidoreductase). This study indicates an important role of 

marine organohalide-respiring Deltaproteobacteria in halogen, sulfur and carbon cycling.  
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Introduction 

More than 5,000 naturally produced organohalides have been identified, some of which 

have already been present in a variety of environments for millions of years (Gribble 2010). In 

particular, marine environments are a rich source of chlorinated, brominated and iodinated 

organohalides produced by marine algae, seaweeds, sponges, and bacteria (Gribble 2015), 

Fenton-like (Leri et al. 2015) and photochemical reactions, as well as volcanic activities (Lavric et 

al. 2004, Méndez-Díaz et al. 2014). Such a natural and ancient presence of organohalogens in 

marine environments may have primed development of various microbial dehalogenation 

metabolisms (Atashgahi et al. 2018a). Furthermore, marine environments and coastal regions in 

particular are also commonly reported to be contaminated with organohalogens from 

anthropogenic sources (Lu et al. 2017).  

During organohalide respiration (OHR) organohalogens are used as electron acceptors, 

and their reductive dehalogenation is coupled to energy conservation (Fincker and Spormann 

2017, Mohn and Tiedje 1992, Schubert et al. 2018). This process is mediated by reductive 

dehalogenases (RDases), which are membrane-associated, corrinoid-dependent, and oxygen 

sensitive proteins (Fincker and Spormann 2017, Gadkari et al. 2018, Schubert et al. 2018). The 

corresponding rdh gene clusters usually consists of rdhA encoding the catalytic subunit, rdhB 

encoding a putative membrane anchor protein (Schubert et al. 2018), and a variable set of 

accessory genes encoding RdhC and other proteins likely involved in regulation, maturation and/or 

electron transport (Kruse et al. 2016, Türkowsky et al. 2018). The electron transport chain from 

electron donors to RDases has been classified into quinone-dependent (that rely on menaquinones 

as electron shuttles between electron donors and RDases) and quinone-independent pathways 

(Fincker and Spormann 2017, Kublik et al. 2016, Schubert et al. 2018). Recent studies suggested 

that RdhC may serve as electron carrier during OHR in Firmicutes (Buttet et al. 2018, Futagami et 

al. 2014).  

OHR is mediated by organohalide-respiring bacteria (OHRB), which belong to a broad 

range of phylogenetically distinct bacterial genera. OHRB belonging to Chloroflexi and the genus 

Dehalobacter (Firmicutes, e.g. Dehalobacter restrictus) are specialists restricted to OHR, whereas 

proteobacterial OHRB and members of the genus Desulfitobacterium (Firmicutes, e.g. 

Desulfitobacterium hafniense) are generalists with a versatile metabolism (Atashgahi et al. 2016, 

Hug et al. 2013). Numerous studies have reported OHR activity and occurrence of OHRB and rdhA 

genes in marine environments (Ahn et al. 2009, Atashgahi et al. 2018a, Futagami et al. 2009, Liu 

et al. 2017). Recent genomic (Atashgahi 2019, Liu and Häggblom 2018, Sanford et al. 2016) and 

single-cell genomic (Jochum et al. 2018) analyses revealed widespread occurrence of rdh gene 

clusters in marine Deltaproteobacteria, indicting untapped potential for OHR. Accordingly, OHR 

metabolism was experimentally verified in three Deltaproteobacteria strains, not previously known 

as OHRB (Liu and Häggblom 2018). 
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OHRB, and in particular members of the Chloroflexi, are fastidious microbes, and are 

susceptible to inhibition by oxygen (Adrian et al. 2007), sulfate (May et al. 2008) or sulfide (He et 

al. 2005, Mao et al. 2017). In the presence of both 3-chlorobenzoate and either sulfate, sulfite or 

thiosulfate, Desulfomonile tiedjei isolated from sewage sludge preferentially performed sulfur 

oxyanion reduction (Townsend and Suflita 1997), and OHR inhibition was suggested to be caused 

by downregulation of rdh gene expression (Townsend and Suflita 1997). In contrast, concurrent 

sulfate reduction and OHR was observed in Desulfoluna spongiiphila AA1T isolated from the marine 

sponge Aplysina aerophoba (Ahn et al. 2009), and three newly characterized organohalide-

respiring marine deltaproteobacterial strains (Liu and Häggblom 2018). Sulfate- and sulfide-rich 

marine environments may have exerted a selective pressure resulting in development of sulfate- 

and sulfide-tolerant OHRB.  

The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila 

AA1T isolated from the bromophenol-producing marine sponge Aplysina aerophoba (Ahn et al. 

2009, Ahn et al. 2003), and D. butyratoxydans MSL71T isolated from estuarine sediments (Suzuki 

et al. 2008). Strain AA1T can reductively dehalogenate various bromophenols but not 

chlorophenols. The genome of strain AA1T harbours three rdhA genes, one of which was shown to 

be induced by 2,6-dibromophenol (Liu et al. 2017). The OHR potential and the genome of strain 

MSL71T have not been studied before. In this study, a third member of the genus Desulfoluna, 

designated D. spongiiphila strain DBB, was isolated from a marine intertidal sediment. The OHR 

metabolism of strain DBB and of strain MSL71T was verified in this study. In line with former reports 

(Atashgahi 2019, Jochum et al. 2018, Liu and Häggblom 2018, Sanford et al. 2016), this study 

further reinforces an important role of marine organohalide-respiring Deltaproteobacteria in 

halogen, sulfur and carbon cycling.  

 

Materials and Methods 

Chemicals 

Brominated, iodinated and chlorinated benzenes and phenols were purchased from Sigma-

Aldrich. Other organic and inorganic chemicals used in this study were of analytical grade. 

 

Bacterial strains 

D. spongiiphila AA1T (DSM 17682T) and D. butyratoxydans MSL71T (DSM 19427T) were 

obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, 

Germany), and were cultivated as described previously (Ahn et al. 2009, Suzuki et al. 2008). 

 

Enrichment, isolation and cultivation of strain DBB 

Surface sediment of an intertidal zone, predominantly composed of shore sediment, was 

collected at the shore in L’Escala, Spain (42°7'35.27"N, 3°8'6.99"E). Five grams of sediment were 
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transferred into 120-ml bottles containing 50 ml of anoxic medium (Monserrate and Häggblom 

1997) with lactate and 1,4-dibromobenzene (1,4-DBB) as the electron donor and acceptor, 

respectively. Sediment-free cultures were obtained by transferring the suspensions of the 

enrichment culture to fresh medium. A pure culture of a 1,4-DBB debrominating strain, designated 

as D. spongiiphila strain DBB, was obtained from a dilution series on solid medium with 0.8% low-

melting point agarose (Sigma-Aldrich). A detailed description of enrichment, isolation and 

physiological characterization of strain DBB is provided in the Supplementary Information.  

 

Cell morphology and cellular fatty acids analyses  

Cell morphology and motility were observed using a LEICA DM 2000 Microscope and a 

JEOL-6480LV Scanning Electron Microscope (SEM). Actively growing cells were directly observed 

under the 100x magnification objective of the LEICA DM 2000 Microscope. Sample fixation and 

dehydration for SEM were performed as described previously (Bui et al. 2014). The cellular fatty 

acid composition was analysed from 500 ml cultures of AA1T, DBB and MSL71T, which were grown 

with 20 mM lactate and 10 mM sulfate. Fatty acids in the cell were analysed by acid hydrolysis of 

total cell material following a method previously described (Damsté et al. 2011).  

 

DNA extraction and bacterial community analysis 

DNA of the intertidal sediment (5 g) and the 1,4-DBB-respiring enrichment culture (10 ml) 

was extracted using the DNeasy PowerSoil Kit (MO-BIO, CA, USA). A 2-step PCR strategy was 

applied to generate barcoded amplicons from the V1–V2 region of bacterial 16S rRNA genes as 

described previously (Atashgahi et al. 2017). Primers for PCR amplification of the 16S rRNA genes 

were listed in Table S3.1. Sequence analysis was performed using NG-Tax (Ramiro-Garcia et al. 

2016). Operational taxonomic units (OTUs) were assigned taxonomy using uclust (Edgar 2010) in 

an open reference approach against the SILVA 16S rRNA gene reference database 

(LTPs128_SSU) (Quast et al. 2012). Finally, a biological observation matrix (biom) file was 

generated and sequence data were further analyzed using Quantitative Insights Into Microbial 

Ecology (QIIME) v1.2 (Caporaso et al. 2010).  

 

Genome sequencing and annotation 

DNA of DBB and MSL71T cells was extracted using the MasterPure™ Gram Positive DNA 

Purification Kit (Epicentre, WI, USA). The genomes were sequenced using the Illumina HiSeq2000 

paired-end sequencing platform (GATC Biotech, Konstanz, Germany). The genome of strain DBB 

was further sequenced by PacBio sequencing (PacBio RS) to obtain longer read lengths. Optimal 

assembly kmer size for strain DBB was detected using kmergenie (v.1.7039) (Chikhi and 

Medvedev 2013). A de novo assembly with Illumina HiSeq2000 paired-reads was made with 

assembler Ray (v2.3.1) (Chikhi and Medvedev 2013) using a kmer size of 81. A hybrid assembly 
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for strain DBB with both the PacBio and the Illumina HiSeq reads was performed with SPAdes 

(v3.7.1, kmer size: 81) (Bankevich et al. 2012). The two assemblies were merged using the tool 

QuickMerge (v1) (Chakraborty et al. 2016). Duplicated scaffolds were identified with BLASTN 

(Camacho et al. 2009) and removed from the assembly. Assembly polishing was performed with 

Pilon (v1.21) (Walker et al. 2014) using the Illumina HiSeq reads. Optimal assembly kmer size for 

strain MSL71T was also identified using kmergenie (v.1.7039), and a de novo assembly with 

Illumina HiSeq2000 paired-end reads was performed with SPAdes (v3.11.1) with a kmer-size 

setting of 79,101,117. FastQC and Trimmomatic (v0.36) (Bolger et al. 2014) was used for read 

inspection and trimming using the trimmomatic parameters: TRAILING:20 LEADING:20 

SLIDINGWINDOW:4:20 MINLEN:50. Trimmed reads were mapped with Bowtie2 v2.3.3.1 

(Langmead and Salzberg 2012). Samtools (v1.3.1) (Li et al. 2009) was used for converting the 

bowtie output to a sorted and indexed bam file. The assembly was polished with Pilon (v1.21).  

 

Transcriptional analysis of the rdhA genes of D. spongiiphila DBB  

Transcriptional analysis was performed using DBB cells grown with lactate (20 mM), sulfate 

(10 mM) and either 1,4-DBB (1 mM) or 2,6-DBP (0.2 mM). DBB cells grown with lactate and sulfate 

but without any organohalogens were used as control. Ten replicate microcosms were prepared 

for each experimental condition, and at each sampling time point, two microcosms were randomly 

selected and sacrificed for RNA isolation as described previously (Peng et al. 2017). RNA was 

purified using RNeasy columns (Qiagen, Venlo, The Netherlands) followed by DNase I (Roche, 

Almere, The Netherlands) treatment. cDNA was synthesized from 200 ng total RNA using 

SuperScript™ III Reverse Transcriptase (Invitrogen, CA, USA) following manufacturer’s 

instructions. Primers for RT-qPCR assays were listed in Table S3.1. RT-qPCR assays were 

performed as outlined in Supplementary Information.  

 

Protein extraction and proteomic analysis 

Triplicate cultures of strain DBB grown with lactate/sulfate (LS condition) or 

lactate/sulfate/1,4-DBB (LSD condition) were used for proteomic analysis. Preparation of cell-free 

extracts (CFE), determination of protein concentration, SDS-PAGE purification of total proteins in 

CFE and of proteins in membrane fragments, and the peptide fingerprinting-mass spectrometry 

(PF-MS) analysis, were performed as outlined in Supplementary Information. Statistical analysis 

was performed using prostar proteomics (Wieczorek et al. 2017). Top three peptide area values 

were normalized against all columns. The values of proteins detected in at least two of the three 

replicates were differentially compared and tested for statistical significance. Missing values were 

imputed using the SLSA function of prostar, and hypothesis testing with a student’s t-test was 

performed for LSD vs LS growth conditions. The p-values were Benjamini-Hochberg corrected and 
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proteins with p-values below 0.05 and a log2 value of 1 or larger were considered statistically 

significantly up- or downregulated.  

  

Analytical methods 

Halogenated benzenes and benzene were analyzed on a GC equipped with an Rxi-5Sil 

capillary column (Retek, PA, USA) and a flame ionization detector (GC-FID, Shimadzu 2010). 

Halogenated phenols and phenol were analyzed on a Thermo Scientific Accela HPLC System 

equipped with an Agilent Poroshell 120 EC-C18 column and a UV/Vis detector. Organic acids and 

sugars were analyzed using a ThermoFisher Scientific SpectraSYSTEM™ HPLC equipped with an 

Agilent Metacarb 67H column and RI/UV detectors. Sulfate, sulfite and thiosulfate were analyzed 

using a ThermoFisher Scientific Dionex™ ICS-2100 Ion Chromatography System equipped with a 

Dionex Ionpac analytical column and a suppressed conductivity detector. Cell growth was 

determined by measuring OD600 using a WPA CO8000 cell density meter (Biochrom, Cambridge, 

UK). Sulfide was measured by a photometric method using methylene blue as described previously 

(Cline 1969).  

 

Strain and data availability 

D. spongiiphila strain DBB was deposited in DSMZ under accession number DSM 104433. 

The 16S rRNA gene sequences of strain DBB were deposited in GenBank (accession numbers: 

MK881098–MK881099). The genome sequences of strains DBB and MSL71 were deposited in the 

European Bioinformatics Institute (EBI, Project ID: PRJEB31368). A list of proteins detected from 

strain DBB under LS and LSD growth conditions is available in Supplementary Datasets S3.1 

(Soluble fraction) and S3.2 (Membrane fraction). 

 

Results and discussion 

Enrichment of 1,4-DBB debrominating cultures and isolation of strain DBB 

Reductive debromination of 1,4-DBB to bromobenzene (BB) and benzene was observed in 

the original cultures containing intertidal sediment (Fig. 3.1A, B). Debromination of 1,4-DBB was 

maintained in the subsequent sediment-free transfer cultures (Fig. 3.1C). However, benzene was 

no longer detected and BB was the only debromination product, indicating loss of the BB-

debrominating population. Up to date, the only known OHRB that can debrominate BB to benzene 

is Dehalococcoides mccartyi strain CBDB1 (Wagner et al. 2012). 1,4-DBB debromination to BB 

was stably maintained during subsequent transfers (data not shown) and after serial dilution (Fig. 

3.1D). Bacterial community analysis showed an increase in the relative abundance of 

Deltaproteobacteria from ~2% in the intertidal sediment at time zero to ~13% after 104 days of 

enrichment (Fig. 3.1E). The genus Desulfoluna was highly enriched and comprised more than 80% 

relative abundance in the most diluted culture (107 dilution) (Fig. 3.1E). 
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Single colonies were observed in roll tubes with 0.8% low-melting agarose after 15 days of 

incubation. Among the six single colonies randomly selected and transferred to liquid media, one 

showed 1,4-DBB debromination (Fig. 3.1F) which was again subjected to the roll tube isolation 

procedure to ensure purity. The final isolated strain was designated DBB. 

 

 

Fig. 3.1 Enrichment and isolation of D. spongiiphila DBB. Intertidal sediment mainly composed of shore 

sediment used for isolation (A). Reductive debromination of 1,4-DBB by: the original microcosms containing 

intertidal sediment (B), the sediment-free enrichment cultures (C), the most diluted culture (107) in the dilution 

series (D). Phylogenetic analysis of bacterial communities in the microcosms from the shore sediment at 

time zero (left), the original 1,4-DBB debrominating enrichment culture after 104 days incubation (middle) 

and the 107 dilution series culture (right) (E). Reductive debromination of 1,4-DBB by the isolated pure culture 

(F). Sediment enrichment culture and sediment-free transfer cultures (B–D) were prepared in single bottles. 

Pure cultures (F) were prepared in duplicate bottles. Points and error bars represent the average and 

standard deviation of samples taken from the duplicate cultures. Phylogenetic data are shown at phylum 

level, except Deltaproteobacteria shown at class level and Desulfoluna at genus level. Taxa comprising less 

than 1% of the total bacterial community are categorized as ‘Others’. 
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Characterization of the Desulfoluna strains 

Cells of strain DBB were slightly curved rods with a length of 1.5 to 3 µm and a diameter of 

0.5 µm as revealed by SEM (Fig. S3.1A, B), which was similar to strain AA1T (Fig. S3.1C) and 

MSL71T (Fig. S3.1D). In contrast to strain AA1T (Ahn et al. 2009), but similar to strain MSL71T 

(Suzuki et al. 2008), strain DBB was motile when observed by light microscopy, with evident flagella 

being observed by SEM (Fig. S3.1A, B).  

The cellular fatty acid profiles of the three strains consisted mainly of even-numbered 

saturated and mono-unsaturated fatty acids (Table S3.2).  

Strain DBB used lactate, pyruvate, formate, malate and butyrate as electron donors for 

sulfate reduction (Table 3.1). Lactate was degraded to acetate, which accumulated without further 

degradation, and sulfate was reduced to sulfide (Fig. S3.2A). In addition, sulfite and thiosulfate 

were utilized as electron acceptors with lactate as the electron donor (Table 3.1). Sulfate and 1,4-

DBB could be concurrently utilized as electron acceptors by strain DBB (Fig. S3.2). Independent 

of the presence of sulfate in the medium, strain DBB stoichiometrically debrominated 1,4-DBB to 

bromobenzene (BB), and 2-bromophenol (2-BP), 4-bromophenol (4-BP), 2,4-bromophenol (2,4-

DBP), 2,6-DBP, 2,4,6-tribromophenol (2,4,6-TBP), 2-iodophenol (2-IP) and 4-iodophenol (4-IP) to 

phenol (Table 3.1) using lactate as the electron donor. Hydrogen was not used as an electron donor 

for 1,4-DBB debromination (data not shown). Strain DBB was unable to dehalogenate the tested 

chlorinated aromatic compounds and several other bromobenzenes listed in Table 3.1. This is in 

accordance with the dehalogenating activity reported for strain AA1T that was unable to use 

chlorinated aromatic compounds as electron acceptors (Ahn et al. 2009). The majority of the known 

organohalogens from marine environments are brominated (Gribble 2010) and hence marine 

OHRB may be less exposed to organochlorine compounds in their natural habitats. For instance, 

strain AA1T was isolated from the sponge Aplysina aerophoba (Ahn et al. 2009) in which 

organobromine metabolites can account for over 10% of the sponge dry weight (Turon et al. 2000). 
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Table 3.1 Physiological and genomic properties of Desulfoluna strains 

Strain DBB AA1T a MSL71T b 

Isolation source Marine intertidal 
sediment Marine sponge 

Estuarine 
sediment 

Cell morphology Curved rods Curved rods Curved rods 

Optimum NaCl concentration (%) 2.0 2.5 2.0 

Temperature optimum/range (°C) 30/10–30 28/10–36 30/ND c 

Utilization of electron donors    

Lactate + + + 

Butyrate + - + 

Formate + + + 

Acetate - - - 

Fumarate - - - 

Citrate - + - 

Glucose - + - 

Malate + + + 

Pyruvate + + + 

Hydrogen - d ND + 

Propionate - - - 

Succinate - - - 

Utilization of electron acceptors    

Sulfate  + + + 

Sulfite + + + 

Thiosulfate + + + 

1,4-Dibromobenzene + + e - e 

1,2-Dibromobenzene - ND ND 

1,3-Dibromobenzene - ND ND 

1,2,4-Tribromobenzene - ND ND 

Bromobenzene - ND ND 

1,2-Dichlorobenzene - ND ND 

1,3-Dichlorobenzene - ND ND 

1,4-Dichlorobenzene - ND ND 

1,2,4-Trichlorobenzene - ND ND 

2-Bromophenol + + + e 

4-Bromophenol + + - e 

2,4-Dibromophenol + + + e, f 

2,6-Dibromophenol + + + e 

2,4,6-Tribromophenol + + + e, f 

2-Iodophenol + + e - e 

4-Iodophenol + + e - e 

2,4-Dichlorophenol - - - e 
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2,6-Dichlorophenol - - - e 

2,4,6-Trichlorophenol - - - e 

Genomic information     

Genome size (Mb) 6.68 6.53 g 6.05 h 

G+C content (%) 57.1 57.9 g 57.2 h 

Total genes 5497 5356 g 4894 h 

Total proteins 5301 5203 g 4186 h 
a Data from Ahn et al. (Ahn et al. 2009) 
b Data from Suzuki et al. (Suzuki et al. 2008) 

c ND, not determined 
d Tested with 1,4-dibromobenzene as the electron acceptor 
e Data from this study 
f 4-Bromophenol rather than phenol was the debromination product 
g Data from GenBank (accession number: NZ_FMUX01000001.1) 
h Predicted based on draft genome  

 

Genomic and phylogenetic characterization of the Desulfoluna strains  

The genome of strain DBB is closed and consists of a single chromosome with a size of 

6.68 Mbp (Fig. S3.3). The genome of strain AA1T (GenBank accession number: 

NZ_FMUX01000001.1) and strain MSL71T (sequenced in this study) are draft genomes with 

similar G+C content (Table 3.1). The average nucleotide identity (ANI) of the DBB genome to AA1T 

and MSL71T genomes was 98.5% and 85.9%, respectively. This indicates that DBB and AA1T 

strains belong to the same species of D. spongiiphila (Richter and Rosselló-Móra 2009). 16S rRNA 

gene and protein domain-based phylogenetic analyses with other genera of the 

Desulfobacteraceae placed Desulfoluna strains in a separate branch of the corresponding 

phylogenetic trees (Fig. 3.2). Whole genome alignment of strains DBB, AA1T and MSL71T revealed 

the presence of 11 locally colinear blocks (LCBs) with several small regions of inversion and 

rearrangement (Fig. S3.4). A site-specific recombinase gene (DBB_14420) was found in one of the 

LCBs. The same gene was also found in the corresponding inversed and rearranged LCBs in AA1T 

(AA1_11599) and MSL71T (MSL71_ 48620), suggesting a role of the encoded recombinase in 

genomic rearrangement in the Desulfoluna strains. 
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Fig. 3.2 Phylogenetic tree based on 16S rRNA gene sequence and protein domain analyses. A comparison 

is included as horizontal lines between the two trees, showing the position of strain DBB relative to other 

strains belonging to the family Desulfobacteraceae as well as several Desulfovibrio strains. The “unique” 

nodes between the 16S rRNA gene- and domain-based tree are indicated with dashed lines. Genomes 

(Table S3.3) were selected based on the phylogenetic tree of the family Desulfobacteraceae (Kuever 2014). 

 

Comparison of the rdh gene region of the Desulfoluna strains  

Similar to strain AA1T (Liu et al. 2017), the genomes of strains DBB and MSL71T also harbor 

three rdhA genes. The amino acid sequences of the RdhA homologs in DBB share >99% identity 

to the corresponding RdhAs in AA1T, and 80–97% identity with the corresponding RdhAs in 

MSL71T (Fig. 3.3). However, the three distinct RdhA homologs in the Desulfoluna strains share low 

identity (20–30%) with each other and form three distant branches in the phylogenetic tree of 

RdhAs (Hug et al. 2013), and cannot be grouped with any of the currently known RdhA groups 

(Fig. S3.5). Therefore, we propose three new RdhA homolog groups, RdhA1 including DBB_38400, 

AA1_07176 and MSL71_22580; RdhA2 including DBB_36010, AA1_02299 and MSL71_20560; 

RdhA3 including DBB_45880, AA1_11632 and MSL71_30900 (Fig. 3.3, Fig. S3.5). 

The rdh gene clusters in DBB and MSL71T show a similar gene order to the corresponding 

rdh gene clusters in AA1T (Fig. 3.3), except that the rdhA1 gene cluster of MSL71T lacks rdhB and 

rdhC. Genes encoding sigma-54-dependent transcriptional regulators in the rdhA1 and rdhA3 gene 
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clusters of AA1T (Liu et al. 2017), were also present in the corresponding gene clusters of DBB and 

MSL71T (Fig. 3.3). Likewise, genes encoding the LuxR and MarR-type regulators are present up- 

and downstream of the rdhA2 gene clusters of DBB and MSL71T, in line with the organization of 

the rdhA2 gene cluster of AA1T (Fig. 3.3). This may indicate similar regulation systems of the rdh 

genes in the Desulfoluna strains studied here. The conserved motifs from known RDases (RR, 

C1−C5, FeS1, and FeS2) (Lu et al. 2015, Smidt and de Vos 2004) are also conserved among all 

the RdhAs of the Desulfoluna strains, except for RdhA1 of MSL71T which lacks the RR motif (Fig. 

S3.6). This may indicate a cytoplasmic localization and a non-respiratory role of the RdhA1 in strain 

MSL71T (Atashgahi et al. 2018a).  

 

 

Fig. 3.3 Comparison of the rdh gene clusters in D. spongiiphila DBB, D. spongiiphila AA1T and D. 

butyratoxydans MSL71T. Numbers indicate the locus tags of the respective genes.  

 

OHR metabolism of D. butyratoxydans MSL71T 

Guided by the genomic potential of strain MSL71T for OHR, physiological experiments in 

this study indeed confirmed that strain MSL71T is capable of using 2-BP, 2,4-DBP, 2,6-DBP and 

2,4,6-TBP as electron acceptors with lactate as the electron donor. Similar to DBB and AA1T, 

chlorophenols such as 2,4-DCP, 2,6-DCP and 2,4,6-TCP were not dehalogenated by strain 

MSL71T (Table 3.1). In contrast to strains DBB and AA1T, strain MSL71T was unable to debrominate 

1,4-DBB and 4-BP. Hence, debromination of 2,4-DBP and 2,4,6-TBP was incomplete with 4-BP as 

the final product rather than phenol (Table 3.1). Moreover, strain MSL71T was unable to deiodinate 

2-IP and 4-IP, again in contrast to strains DBB and AA1T (Fig. S3.7, Table 3.1).  
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Induction of rdhA genes during OHR by strain DBB 

When strain DBB was grown with sulfate and 1,4-DBB with concomitant production of BB 

(Fig. 3.4A), its rdhA1 gene showed significant up-regulation (60-fold) at 24 h, reached its highest 

level (120-fold) at 48 to 72 h, and then decreased (Fig. 3.4B). In contrast, no significant up-

regulation of rdhA2 or rdhA3 was noted, suggesting that RdhA1 mediates 1,4-DBB debromination. 

Accordingly, RdhA1 was found in the proteome of the LSD growth condition but not in that of the 

LS condition (Table S3.4, Dataset S3.1 and S3.2). When strain DBB was grown with sulfate and 

2,6-DBP, both rdhA1 and rdhA3 were significantly up-regulated and reached their highest level at 

4 h (65- and 2000-fold, respectively, Fig. 3.4D). However, rdhA3 was the dominant gene at 8 h 

(Fig. 3.4D), after which 2-BP was debrominated to phenol (Fig. 3.4C) indicating a role of RdhA3 in 

2,6-DBP and 2-BP debromination by strain DBB. A previous transcriptional study of the rdhA genes 

in strain AA1T during 2,6-DBP debromination also showed a similar induction of its rdhA3 (Liu et 

al. 2017).  

 

 

Fig. 3.4 Debromination of 1,4-DBB (A) and 2,6-DBP (C) by D. spongiiphila DBB and relative induction of its 

three rdhA genes during debromination of 1,4-DBB (B) and 2,6-DBP (D). Error bars in panels A and C indicate 

the standard deviation of two random cultures analyzed out of 10 replicates. The concentration of 1,4-DBB 

(> 0.1 mM) could not be accurately measured due to large amount of undissolved compound and hence was 

not plotted. Error bars in panels B and D indicate standard deviation of triplicate RT-qPCRs performed on 

samples withdrawn from duplicate cultures at each time point (n = 2 × 3). 
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Corrinoid biosynthesis in Desulfoluna strains 

Most known RDases depend on corrinoid cofactors such as cyanocobalamin for 

dehalogenation activity (Schubert et al. 2018). Both strains DBB (this study) and AA1T (Liu et al. 

2017) were capable of OHR in the absence of externally added cobalamin. With one exception 

(cbiJ), the genomes of the Desulfoluna strains studied here harbor all genes necessary for de novo 

anaerobic corrinoid biosynthesis starting from glutamate (Table S3.5). The genes for cobalamin 

biosynthesis from precorrin-2 are arranged in one cluster (DBB_3730–3920, AA1_12810–12829, 

MSL71_49290–49480) including an ABC transporter (btuCDF) for cobalamin import (Fig. 3.5). 

Another small cobalamin-related gene cluster was detected in the Desulfoluna genomes 

(DBB_52170–52260, AA1_10815–10826, MSL71_44540–44630), which includes genes coding for 

the outer membrane corrinoid receptor BtuB and a second copy of the corrinoid-transporter 

BtuCDF plus another BtuF. Additionally, cobaltochelatase CbiK as well as a putative 

cobaltochelatase CobN are encoded in this gene cluster. The latter is usually involved only in the 

aerobic cobalamin biosynthesis pathway, and its function in Desulfoluna strains is unknown. Three 

of the proteins encoded by DBB_3730–3920 (Cbik: 3730, CbiL: 3790, CbiH: 3850) were detected 

in the proteome of cells grown under both the LS and LSD conditions (Table S3.4, Dataset S3.1). 

The abundance of the cobalamin biosynthesis proteins was not significantly different between LS 

and LSD conditions (Table S3.4, Dataset S3.1 and S3.2), except for the tetrapyrrole methylase 

CbiH encoded by DBB_3850 that was significantly more abundant in LSD cells (Table S3.4, 

Dataset S3.1). The detection of cobalamin biosynthesis proteins in the absence of 1,4-DBB in LS 

condition could be due to the synthesis of corrinoid-dependent enzymes in the absence of an 

organohalogen. Accordingly, three corrinoid-dependent methyltransferase genes (encoded by 

DBB_7090, 43520, 16050) were detected in the proteomes, which might be involved in methionine, 

methylamine or o-demethylation metabolism. This might also indicate a constitutive expression of 

the corresponding genes, in contrast to the organohalide-induced cobalamin biosynthesis in 

Sulfurospirillum multivorans (Goris et al. 2015). 
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Fig. 3.5 Corrinoid biosynthesis and transporter gene clusters of Desulfoluna strains. Numbers indicate the 

locus tags of the respective genes. The corresponding enzymes encoded by the genes and their functions 

in corrinoid biosynthesis are indicated in Table S3.4.  

 

Sulfur metabolism and impact of sulfate and sulfide on debromination by Desulfoluna 

strains 

All three strains were capable of using sulfate, sulfite, and thiosulfate as the terminal 

electron acceptors (Table 3.1). Four sulfate permease genes are present in the genomes of the 

Desulfoluna strains (Table S3.6), and one of the sulfate permeases (DBB_22290) was detected in 

DBB cells grown under LS and LSD conditions (Table S3.4, Dataset S3.2). The genes involved in 

sulfate reduction, including those encoding sulfate adenylyltransferase (Sat), APS reductase 

(AprBA) and dissimilatory sulfite reductase (DsrAB), were identified in the genomes of all three 

strains (Table S3.6). The corresponding proteins were detected in DBB cells grown under both LS 

and LSD conditions (Fig. 3.6, Table S3.4) with AprBA, disulfite reductase (DsrMKJOP) and Sat 

among the most abundant proteins in both, soluble and membrane fractions (Dataset S3.1 and 

S3.2). Tetrathionate reductase encoding genes (ttrA) were found only in the genomes of strains 

DBB and AA1T. Interestingly, thiosulfate reductase genes were not found in any of the three 

genomes, whereas all strains can use thiosulfate as the electron acceptor (Table 3.1). 

Desulfitobacterium metallireducens was also reported to reduce thiosulfate despite lacking a known 

thiosulfate reductase gene (Finneran et al. 2002, Kruse et al. 2017), suggesting the existence of a 

not-yet-identified gene encoding a thiosulfate reductase (Kruse et al. 2017). Possible alternatives 

are genes encoding rhodanese-like protein (RdlA) (Table S3.6) (Ravot et al. 2005) or the three-

subunit, periplasmic molybdopterin oxidoreductase (Table S3.6), as a putative polysulfide 

reductase (Psr) (Burns and DiChristina 2009).  

Sulfate and sulfide are known inhibitors of many OHRB (Townsend and Suflita 1997, 

Weatherill et al. 2018, Zanaroli et al. 2015). However, debromination of 2,6-DBP was not affected 

in Desulfoluna strains in the presence of up to 20 mM sulfate (Fig. S3.8B, D, F), and sulfate and 

2,6-DBP were reduced concurrently (Fig. S3.8). This is similar to some other Deltaproteobacteria 
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(Liu and Häggblom 2018), but in contrast to D. tiedjei which preferentially performs sulfate reduction 

over OHR with concomitant down-regulation of rdh gene expression (Townsend and Suflita 1997). 

Moreover, sulfide, an RDase inhibitor in D. tiedjei (DeWeerd and Suflita 1990) and 

Dehalococcoides mccartyi strains (He et al. 2005, Mao et al. 2017), did not impact 2,6-DBP 

debromination by Desulfoluna strains at a concentration of 10 mM (Fig. S3.9A–F). However, 

debromination was delayed in the presence of 20 mM sulfide, and no debromination was noted in 

the presence of 30 mM sulfide (Fig. S3.9G–L). This high resistance to sulfide was not reported 

before for the known OHRB, and is also rare among sulfate-reducing bacteria (Caffrey and 

Voordouw 2010), and may confer an ecological advantage to these sulfate-reducing OHRB. 

Although hydrogen sulfide can be oxidized abiotically or serve as electron donor for sulfide-

oxidizing microorganisms (Wasmund et al. 2017), naturally sustained and high concentrations of 

hydrogen sulfide are found in some marine environments (Tobler et al. 2016). 

 

Electron transport chains of strain DBB 

Two lactate dehydrogenases (LdhA-1/2, DBB_24880/24970) with HdrD-like putative iron-

sulfur subunits (LdhB-1/2, DBB_24870/24960) were found in the proteome of DBB cells grown 

under LS and LSD conditions. Similar Ldhs were reported to be essential for the growth of 

Desulfovibrio alaskensis G20 with lactate and sulfate (Meyer et al. 2013). Similar to D. alaskensis 

G20 and D. vulgaris strain Hildenborough (Meyer et al. 2013, Vita et al. 2015), the two Ldhs were 

encoded by an organic acid oxidation gene cluster (DBB_24870–24970) including genes encoding 

lactate permease (DBB_24890), the Ldhs and pyruvate oxidoreductase (Por, DBB_24940). Based 

on previous studies with D. vulgaris Hildenborough (Keller and Wall 2011), the electron transport 

pathway in strain DBB with lactate and sulfate could take one of the following routes: the Ldh’s 

either reduce menaquinone directly (Keller and Wall 2011), or transfer electrons via the HdrD-like 

subunit (Pereira et al. 2011) and DsrC (DBB_370, a high redox potential electron carrier with 

disulfide/dithiol (RSS/R(SH)2)) to QmoA (Flowers et al. 2018). The pyruvate produced by lactate 

oxidation is further oxidized by Por (DBB_310/24940), and the released electrons are 

carried/transferred by a flavodoxin (DBB_37290). From there, the electrons from the low-potential 

ferredoxin and the electrons from the high-potential (disulfide bond) DsrC could be confurcated to 

QmoABC, which reduces menaquinone (Fig. 3.6A, B). The electrons are then transferred from 

menaquinol to the APS reductase (AprBA, DBB_23880–890) which is, together with three other 

enzyme complexes (Sat, encoded by DBB_23930, DsrABD, DBB_25620–640, and DsrMKJOP, 

DBB_27290–330), responsible for the sulfate reduction cascade (Santos et al. 2015). 

The electron transport chain from Ldh to menaquinones or QmoABC during OHR is likely 

shared with sulfate reduction. Electron transport from menaquinol (E0’ = -75 mV) to the RDase (E0’ 

(CoII/CoI) ≈ -360 mV) is thermodynamically unfavorable (Schubert et al. 2018), and the proteins 

involved to overcome this barrier have not been identified and most likely are not the same in 
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different organohalide-respiring bacterial genera. Based on the genomic and proteomic analyses 

of strain DBB, we identified several possible electron transfer proteins connecting the menaquinone 

pool and RdhA1. The first is the membrane-integral protein RdhC1 (encoded by DBB_38380, Fig. 

3.3), a homolog of proteins previously proposed to function as transcriptional regulator for rdhAB 

gene expression in Desulfitobacterium dehalogenans (Smidt et al. 2000). However, a recent study 

on PceC from Dehalobacter restrictus proposed a possible role for RdhC in electron transfer from 

menaquinones to PceA via its exocytoplasmically-facing flavin mononucleotide (FMN) co-factor 

(Buttet et al. 2018). RdhC in Desulfoluna strains also showed the conserved FMN binding motif (in 

particular the fully conserved threonine residue) and two CX3CP motifs predicted to have a role in 

electron transfer (Buttet et al. 2018) (Fig. S3.10). Moreover, the five transmembrane helices of 

RdhC in DBB were also conserved (Fig. S3.11), indicating a possible function of RdhC1 in electron 

transfer from menaquinones to RdhA1 (Fig. 3.6A). However, RdhC1 was not found in our proteomic 

analysis, probably due to tight interaction with the membrane.  

A second link between menaquinol/QmoABC and RdhA1 could be the Fix complex 

homolog, an electron transfer flavoprotein complex found in nitrogen-fixing microorganisms such 

as Azotobacter vinelandii and Rhodospirillum rubrum (Edgren and Nordlund 2004, Ledbetter et al. 

2017). The Fix complex is capable of using electron bifurcation to generate low-potential reducing 

equivalents for nitrogenase (Ledbetter et al. 2017). Strain DBB does not encode the minimum 

genes necessary for nitrogen fixation (Dos Santos et al. 2012). Hence, the Fix complex in DBB 

cells is likely linked to other cellular processes. Induction of the fix genes under OHR conditions 

was reported in other OHRB such as Desulfitobacterium hafniense TCE1 (Prat et al. 2011), and 

the corresponding Fix complex was suggested to provide low-redox-potential electrons for OHR. 

However, the obligate organohalide-respiring Dehalobacter spp., which are phylogenetically 

related to Desulfitobacterium spp., do not encode FixABC, questioning a general role of Fix 

complex in OHR (Türkowsky et al. 2018). In strain DBB, the abundance of FixABC (encoded by 

DBB_25970–990) was not higher in the cells grown under LSD as opposed to LS condition, but 

FixAB were among the most abundant 10% proteins in the soluble fraction (Dataset S3.1), 

indicating a potential role in electron transfer in both sulfate reduction and OHR. In this scenario, 

FixABC accepts two electrons from menaquinol, subsequently bifurcating them to unidentified high- 

and low-potential electron acceptors (Fig. 3.6B). The low-potential electron acceptor may also 

serve as an electron carrier that transfers electrons from cytoplasm-facing FixABC to the exoplasm-

facing RdhA1 via an as-yet-unidentified electron carrier across the membrane (Kruse et al. 2015) 

(Fig. 3.6B). 

A third scenario is the involvement of QmoABC- and QrcABCD-mediated reverse electron 

transport (Fig. 3.6C), similar to the electron transport system of D. alaskensis G20 cultivated in 

syntrophic interaction with Methanococcus maripaludis (Meyer et al. 2013). The electron transport 

from menaquinol to the periplasmic hydrogenase or formate dehydrogenase in strain G20 also 
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needs to overcome an energy barrier similar to that of OHR (redox potential of H2/H+ and 

formate/CO2 are −414 mV and −432 mV, respectively) (Meyer et al. 2013). In this scenario, lactate 

is oxidized to pyruvate as described above, transferring electrons to a thiol-disulfide redox pair. 

Pyruvate is oxidized by Por and the electrons are accepted by the flavodoxin. QmoABC then 

confurcates electrons from the low-potential ferredoxin and the high-potential thiol-disulfide redox 

pair to drive reduction of menaquinones. Electrons are transferred from menaquinol to RdhA1 via 

QrcABCD by reverse electron transport (Fig. 3.6C). The energy required for reverse electron 

transport is likely derived from the proton motive force mediated by QrcABCD (Duarte et al. 2018). 

In this scenario, QmoABC plays a key role in the metabolism of strain DBB as a link between sulfate 

reduction and OHR. This electron transport pathway provides a possible explanation for the 

increased 1,4-DBB debromination rate by DBB when sulfate is concurrently present (Fig. 3.1E, Fig. 

S3.1B). Hence, sulfate reduction may stimulate the electron confurcation process that is also used 

for OHR. Moreover, sulfate reduction can generate the proton motive force required for the reverse 

electron transport from QmoABC to RdhA1. Qmo and Qrc complexes are frequently found in 

sulfate-reducing Deltaproteobacteria and were proposed to be involved in energy conservation 

(Pereira et al. 2011, Venceslau et al. 2010, Zane et al. 2010). However, biochemical studies with 

sulfate-reducing OHRB are necessary to further corroborate such a reverse electron flow and the 

intricate relationship of electron transfer in sulfate reduction and OHR. 
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Fig. 3.6 Proposed electron transport pathways with OHR mediated by RdhC (A), Fix complex (B), Qmo/Qrc 

complexes (C) in D. spongiiphila DBB grown on lactate and sulfate (LS) and lactate, sulfate and 1,4-DBB 

(LSD). Corresponding gene locus tags are given for each protein. Log protein abundance ratios between 

LSD and LS grown cells are indicated next to the gene locus tag. Proteins shown in dashed line square were 

not detected under the tested conditions. Probable electron flow path is shown in red arrows, and the dashed 

red arrows indicate reverse electron transport. 
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Potential oxygen defense in Desulfoluna strains 

Sulfate reducers, which have been assumed to be strictly anaerobic bacteria, not only 

survive oxygen exposure but also can utilize it as an electron acceptor (Dolla et al. 2006, Fournier 

et al. 2003). However, the response of organohalide-respiring sulfate reducers to oxygen exposure 

is not known. Most of the described OHRB are strict anaerobes isolated from anoxic and usually 

organic matter-rich subsurface environments (Atashgahi et al. 2016). In contrast, strain DBB was 

isolated from marine intertidal sediment mainly composed of shore sand (Fig. 3.1A), where regular 

exposure to oxic seawater or air can be envisaged. The genomes of the Desulfoluna strains studied 

here harbor genes encoding enzymes for oxygen reduction and reactive oxygen species (ROS) 

detoxification (Table S3.7). Particularly, the presence of a cytochrome c oxidase is intriguing and 

may indicate the potential for oxygen respiration. Accordingly, in the presence of 2% oxygen in the 

headspace of DBB cultures, the redox indicator resazurin in the medium turned from pink to 

colorless within two hours, indicating consumption/reduction of oxygen by strain DBB. Growth of 

strain DBB on lactate and sulfate was retarded in the presence of 2% oxygen (Fig. S3.12C). 

However, in both the presence (Fig. S3.12C) and absence of sulfate (Fig. S3.12D), slower but 

complete debromination of 2,6-DBP to phenol was achieved with 2% oxygen in the headspace. 

Neither growth nor 2,6-DBP debromination was observed with an initial oxygen concentration of 

5% in the headspace (Fig. S3.12E, F). Such resistance of marine OHRB to oxygen may enable 

them to occupy niches close to halogenating organisms/enzymes that nearly all use oxygen or 

peroxides as reactants (Field 2016). For instance, the marine sponge A. aerophoba from which D. 

spongiiphila AA1T was isolated (Ahn et al. 2009) harbors bacteria with a variety of FADH2-

dependent halogenases (Bayer et al. 2013), and produces a variety of brominated secondary 

metabolites (Turon et al. 2000). Testing survival and OHR of Desulfoluna strains under continuous 

oxygen exposure and studying the mechanisms of oxygen defense as studied in Sulfurospirillum 

multivorans (Gadkari et al. 2018) are necessary to further unravel oxygen resistance/metabolism 

mechanisms in Desulfoluna strains. 

 

Conclusions 

Widespread environmental contamination with organohalogen compounds and their 

harmful impacts to human and environmental health has been the driver of chasing OHRB since 

the 1970s. In addition, the environment itself is an ample and ancient source of natural 

organohalogens, and accumulating evidence shows widespread occurrence of rdhA in marine 

environments (Atashgahi et al. 2018a). The previous isolation and description of strain AA1T from 

a marine sponge, the isolation of strain DBB from intertidal sediment samples, and verification of 

the OHR potential of strain MSL71T in this study indicate niche specialization of the members of 

the genus Desulfoluna as chemoorganotrophic facultative OHRB in marine environments rich in 

sulfate and organohalogens. As such, de novo corrinoid biosynthesis, resistance to sulfate, sulfide 
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and oxygen, versatility in using electron donors, and the capacity for concurrent sulfate and 

organohalogen respiration confer an advantage to Desulfoluna strains in marine environments. 

Interestingly, approximately 10% of the sequenced deltaproteobacterial genomes, that have mostly 

been obtained from marine environments, contain one or multiple rdh genes (Liu and Häggblom 

2018, Sanford et al. 2016), and OHR metabolism was experimentally verified in three strains not 

previously known as OHRB (Liu and Häggblom 2018). These findings reinforce an important 

ecological role of sulfate-reducing organohalide-respiring Deltaproteobacteria in sulfur, halogen 

and carbon cycling in a range of marine environments.  

 

Acknowledgements 

We thank Johanna Gutleben and Maryam Chaib de Mares for sediment sampling, W. Irene 

C. Rijpstra for fatty acid analysis, and Andreas Marquardt (Proteomics Centre of the University of 

Konstanz) for proteomic analyses. We acknowledge the China Scholarship Council (CSC) for the 

support to PP and YL. The authors thank BE-BASIC funds (grants F07.001.05 and F08.004.01) 

from the Dutch Ministry of Economic Affairs, ERC grant (project 323009), the Gravitation grant 

(project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the 

Netherlands Science Foundation (NWO), and National Natural Science Foundation of China 

(project No.51709100) for funding.  

  



Organohalide-respiring Desulfoluna species isolated from marine environments 

61 
 

Supplementary Information 

 

Enrichment, isolation and cultivation of strain DBB 

The sediment sampling bottles were filled with seawater to leave no headspace. For 

preparation of microcosms, sediment (5 g) was transferred into 120 ml bottles containing 50 ml of 

anoxic medium (Monserrate and Häggblom 1997) and N2/CO2 (80 : 20%, 140 kPa) as the 

headspace. Vitamins and trace elements were added as described previously (Stams et al. 1993) 

except that cyanocobalamin was omitted. Lactate (5 mM) and 1,4-dibromobenzene (1,4-DBB, 50 

μM) were used as the electron donor and acceptor, respectively. 1,4-DBB was added from a 10 

mM stock solution dissolved in acetone. The bottles were sealed with viton stoppers and aluminium 

crimp caps and incubated statically in the dark at 25°C. After debromination of three spikes of 1,4-

DBB, sediment-free cultures were obtained by transferring the suspensions of the enrichment 

culture (10% v/v) to fresh medium using the same growth condition as described above. After ten 

successive transfers of the sediment-free cultures, a dilution series from 101 to 107-fold was 

performed. The most diluted culture showing 1,4-DBB debromination (107-fold) was then serially 

diluted from 101- to 103-fold in 25 ml roll tubes containing 10 ml medium and 0.8% low-melting point 

agarose (Sigma-Aldrich) and incubated in the dark at 25°C. Individual colonies were randomly 

picked and transferred into liquid medium to check for 1,4-DBB debromination. A culture showing 

debromination activity was re-isolated in roll tubes as described above to ensure the purity. 

The optimum NaCl concentration for growth of strain DBB was determined in the range from 

10 to 30 g/L. Using the optimal NaCl concentration (20 g/L), the following halogenated aromatic 

compounds were tested as electron acceptors for strain DBB with lactate (5 mM) as the electron 

donor and carbon source: 1,2-dibromobenzene (1,2-DBB), 1,3-dibromobenzene (1,3-DBB), 1,2,4-

tribromobenzene (1,2,4-TBB), 2-bromophenol (2-BP), 4-bromophenol (4-BP), 2,4-dibromophenol 

(2,4-DBP), 2,6-dibromophenol (2,6-DBP), 2,4,6-tribromophenol (2,4,6-TBP), 2-iodophenol (2-IP), 

4-iodophenol (4-IP), 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), 1,4-

dichlorobenzene (1,4-DCB), 1,2,4-trichlorobenzene (1,2,4-TCB), 2,4-dichlorophenol (2,4-DCP), 

2,6-dichlorophenol (2,6-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). Brominated and chlorinated 

benzenes, 2,4,6-TBP and 2,4,6-TCP were added from 10 mM stock solutions dissolved in acetone 

to nominal concentrations of 100 μM in the medium. The remaining di- and mono-brominated 

phenols were added from 10 mM stock solutions in 0.1 N NaOH to nominal concentrations of 

50−100 μM. Sulfate, sulfite and thiosulfate (5 mM) were tested as electron acceptors with 10 mM 

lactate as the electron donor. To test the utilization of electron donors, acetate, propionate, 

fumarate, malate, butyrate, lactate, pyruvate, succinate, glucose and citrate were added separately 

at 10 mM to the medium containing 10 mM sulfate. Utilization of hydrogen (5 mM) and formate (5 

mM) as the electron donors for debromination of 1,4-DBB (100 µM) was tested in presence of 

acetate (5 mM) as the carbon source. To study the effect of sulfate and sulfide on debromination, 
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sulfate (10−20 mM) or sulfide (1−30 mM) together with lactate (20−40 mM) were added to the 

medium containing 100 μM of 1,4-DBB or 2,6-DBP. To test the impact of oxygen on debromination, 

strain DBB was grown in medium without Na2S as the reducing agent, in presence or absence of 

sulfate (10 mM). The medium contained 20 mM lactate, 100 µM 2,6-DBP and 0%, 2% or 5% oxygen 

in the headspace. 

 

Cellular fatty acids analysis  

The cultures were harvested at the early stationary growth phase by centrifugation at 4700 

× g for 15 min at 4°C. Cellular fatty acids were analysed by acid hydrolysis of total cell material 

following a method previously described (Damsté et al. 2011). The fatty acids were identified by 

analysis with gas chromatography-mass spectrometry before and after derivatisation of double 

bonds with dimethyl disulphide to enable localization of the double bond position (Damsté et al. 

2011). 

 

RT-qPCR assays 

Primers for amplification of the three rdhA genes in strain DBB were designed using the 

NCBI online primer design tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table S3.1). In 

order to prepare standards for the qPCR assays, the rdhA genes were PCR amplified using the 

following program: 95°C for 5 min, followed by 30 cycles of 95°C for 30 s, 55°C for 30 s and 72°C 

for 30 s, followed by a final extension at 72°C for 10 min. The rdhA genes were then cloned into 

pGEM®-T Easy Vector (Promega, WI, USA) and introduced into E. coli JM109 competent cells 

(Promega, WI, USA). Plasmid purification and preparation of the dilution series of the RT-qPCR 

standards (from 101 to 108 copies/µl) were done as described earlier (Peng et al. 2017). RT-qPCRs 

were performed using the iQ SYBR Green supermix (Bio-Rad, CA, USA). The RT-qPCR program 

was: 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 60°C for 30 s and 72°C for 30 s. 

Melting curves were measured from 65°C to 95°C with increments of 0.5°C and 10 s at each step. 

Transcription of the rdhA genes was determined using cDNA as the template. The transcript levels 

were calculated by relative quantification using the 2-ΔΔCq method with the 16S rRNA gene as the 

reference gene (Kirk et al. 2014, Pfaffl 2001). Gene expression data was normalized to values 

observed at the 0 h time point, at which 1,4-DBB or 2,6-DBP were initially amended (Kirk et al. 

2014). A relative expression difference higher than 10-fold was arbitrarily set as representing 

significant induction (Bisaillon et al. 2011). 

 

Protein extraction and proteomic analysis 

Protein was extracted from 100 ml culture of strain DBB grown with lactate (20 mM)/sulfate 

(10 mM) and lactate (20 mM)/sulfate (10 mM)/1,4-DBB (100 µM); triplicate samples were prepared 

for each condition. Cells were collected by centrifugation at 4500 × g for 20 min at 4°C. The cells 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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were then re-suspended in 1 ml 100 mM Tris-HCl buffer (pH 7.5) containing 10 µl protease inhibitor 

(Halt Protease Inhibitor Cocktail; Thermo Fisher Scientific, Rockford, USA). Cells were lysed by 

sonication using a Branson sonifier (Branson, CT, USA) equipped with a 3 mm tip by six pulses of 

30 s with 30 s rest in between of each pulse. Cell debris was removed by centrifugation at 10,000 

g for 10 min at 4°C. The protein concentration of the cell-free extracts (CFE) was determined using 

the Bradford assay (Bradford 1976). The total-proteomics samples were prepared and the analyses 

were done as described by Burrichter et al. (Burrichter et al. 2018). Total protein (200 µg) in CFE 

was purified through SDS-PAGE until the proteins had entered the stacking gel (without any 

separation); the Coomassie-stained total-protein bands were excised and then subjected to peptide 

fingerprinting-mass spectrometry (see below). For analysis of proteins associated to the membrane, 

the membrane fragments in the CFE were separated by ultracentrifugation at 104,000 × g for 35 

min at 4°C; the membrane pellet was solubilized in SDS-PAGE loading dye and the proteins were 

also purified by SDS-PAGE and the Coomassie-stained total-protein bands were excised, as 

described above. The total-protein bands excised from SDS-PAGE gels were subjected to peptide 

fingerprinting-mass spectrometry at the Proteomics Facility of the University of Konstanz 

(www.proteomics-facility.uni-konstanz.de) (Burrichter et al. 2018). Each sample was analyzed 

twice on a Orbitrap Fusion with EASY-nLC 1200 (Thermo Fisher Scientific) and tandem mass 

spectra were searched against an appropriate protein database of strain DBB using Mascot (Matrix 

Science) and Proteome Discoverer V1.3 (Thermo Fisher Scientific) with “Trypsin” enzyme cleavage, 

static cysteine alkylation by chloroacetamide, and variable methionine oxidation (Burrichter et al. 

2018).  

 

Analytical methods 

The column temperature program of the GC-FID was: 40°C hold for 2 min, followed by an 

increase of 6°C min−1 to 100°C and hold for 2 min, followed by further increase at 10°C min−1 to 

225°C and hold for 2 min. The program for benzene measurement was as described earlier (Lu et 

al. 2017). The wavelength of the UV detector of the HPLCs was 210 nm. The mobile phases for 

the Thermo Scientific Accela HPLC System were 0.1% formic acid in water (eluent A) and 0.1% 

formic acid in acetonitrile (eluent B). The mobile phase for the ThermoFisher Scientific 

SpectraSYSTEM™ HPLC was 0.01 N H2SO4. Halogenated phenols and phenol were analyzed 

using a three-step gradient profile consisting of: i) 90% eluent A and 10% eluent B for 2 min, ii) 

90−20% eluent A and 10−80% eluent B for 14 min and hold at 20% eluent A and 80% eluent B for 

3 min, iii) followed by 20−90% eluent A and 80−10% eluent B for 1 min. The ions were analyzed 

using a three-step gradient profile consisting of 1 mM KOH for 1 min, 1−40 mM KOH for 14 min 

and hold at 40 mM KOH for 4 min, followed by 40−1 mM KOH for 4.5 min.  

http://www.proteomics-facility.uni-konstanz.de/
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Fig. S3.1 Scanning electron micrograph of D. spongiiphila DBB (A and B), D. spongiiphila AA1T (C) and D. 

butyratoxydans MSL71T (D). 
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Fig. S3.2 Concurrent 1,4-DBB debromination and sulfate reduction by strain DBB with lactate as the electron 

donor. Points and error bars represent the average and standard deviation of samples taken from duplicate 

cultures. 
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Fig. S3.3 Circular representation of the genome sequence of D. spongiiphila DBB in comparison with the 

genomes of D. spongiiphila AA1T and D. butyratoxydans MSL71T. 
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Fig. S3.4 Whole genome alignment of D. spongiiphila DBB (Top), D. spongiiphila AA1T (middle) and D. 

butyratoxydans MSL71T (bottom). The genome of strain DBB was used as reference for global alignment 

using progressive MAUVE (Darling et al. 2010). The locally collinear blocks (LCBs) that were identified in the 

genomes were outlined in frame. Conserved and highly related regions are coloured, and low-identity unique 

regions are in white (colorless). LCBs below the mid-line in D. spongiiphila AA1T and D. butyratoxydans 

MSL71T are inverted relative to D. spongiiphila DBB. 
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Fig. S3.5 Phylogenetic analysis of the RdhAs of Desulfoluna strains and 548 RdhAs reported previously 

(Hug et al. 2013). The RdhA sequences were obtained from the public link: 

https://drive.google.com/drive/folders/0BwCzK8wzlz8ON1o2Z3FTbHFPYXc. The multiple sequence 

alignment was processed using Geneious software with the MAFFT algorithm, and the phylogenetic tree 

was constructed using the same software with default settings. Further polishing of the phylogenetic tree 

was performed on the Interactive Tree of Life web browser (http://itol.embl.de/) (Letunic and Bork 2011). 

The RdhAs of Desulfoluna strains are shown in red font.  

  

https://drive.google.com/drive/folders/0BwCzK8wzlz8ON1o2Z3FTbHFPYXc
http://itol.embl.de/
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Fig. S3.6 Multiple-sequence alignment of the RdhAs from D. spongiiphila DBB, D. spongiiphila AA1T and D. 

butyratoxydans MSL71T and two functionally characterized RdhAs from Desulfitobacterium hafniense Y51, 

and Dehalococcoides mccartyi strain 195. The conserved sequence motifs (RR, C1−C5, FeS1, and FeS2) 

are enclosed within orange boxes. The selected RdhAs (GenBank accession number or locus number) and 

corresponding bacteria are: Dsb_Y51_PceA: D. hafniense Y51, BAC00915. Dhc_195_PceA: D. mccartyi 195, 

Q3Z9N3. DBB_3755: D. spongiiphila DBB. DBB_3984: D. spongiiphila DBB. DBB_4749: D. spongiiphila 

DBB. AA1_02299: D. spongiiphila AA1T. AA1_07176: D. spongiiphila AA1T. DBB_11632: D. spongiiphila 

AA1T. MSL71_1800: D. butyratoxydans MSL71T. MSL71_2003: D. butyratoxydans MSL71T. MSL71_4258: 

D. butyratoxydans MSL71T  

 

10 20 30 40 50 60 70 80 90 100 110
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dsb_Y51_PceA ---------------------------------------------MGEINRRNFLKVSILGAAAAAVASASAVKGMVSPLVADAADIVAPITETSEFPYK---VDAK-YQ 61

Dhc_195_PceA -----------------------------------------MLNFHSTLTRKDFLKG------IGMAGAGLGAASAVAPMFHDLDELVASTPSTRNLPWFVKEREHGDPT 63

DBB_RdhA1 ------------------------------------MDSGEGSKKEVDLKRRNFVKL----GAASAVAGGALMAGLPAQAADKATKGATNIKELPDLPVT---IDETVYK 67

DBB_RdhA2 ----------------------------------MSGSGSRKSTYHSTVGRRDFMKMLGIGAGAVGAG-AVGLGSTAAPAFADLDEMMASPYAERNLPWWVKEVDEPTVE 75

DBB_RdhA3 MPNEKDALEIINNPNNFTATPEYLEPEETEAAAPAPKSNEPSKKEPGGFSRRGFLKVGGLTAAVASVG-GAGAAGFAIGRSDDAYTGYNRTYQGGDMFFNREPFRTDLPT 109

AA1_RdhA1 ------------------------------------MDSGEGSKKEVDLKRRNFVKL----GAASAVAGGALMAGLPAQAADKATKGATNIKELPDLPVT---IDETVYK 67

AA1_RdhA2 ----------------------------------MSGSGSRKSTYHSTVGRRDFMKMLGIGAGAVGAG-AVGLGSTAAPAFADLDEMMASPYAERNLPWWVKEVDEPTVE 75

AA1_RdhA3 MPNEKDALEIINDPANFTATPEYLEPEETEAAAPAPKSNEPSKKEPGGFSRRGFLKVGGLTAAVASVG-GAGAAGFAIGRSDDAYTGYNRTYQGGDMFFNREPFRTDLPT 109

MSL71_RdhA1 -----------------------------------------------------------------------------MRCHSRPQKKGANKKERLELPVT---IDAMAYK 30

MSL71_RdhA2 ----------------------------------MSGSGSRKSTYHSTVGRRDFMKMLGIGAGAVGAG-AVGLGSTATPAFADLDEMMASPYAERNLPWWVKEVDEPTVE 75

MSL71_RdhA3 MPNEKDALEIINDPANFTAKPDYLEPEETEEAAPPPKGKEPSEKEPGGFSRRGFLKIGGLTAAVASVG-GAGAAGFAIGRSDDAYTGYNRTYQGGDMFFNREPFRTDLPT 109

120 130 140 150 160 170 180 190 200 210 220

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dsb_Y51_PceA RYNSLKNFFEKTFDPEANKTPIKFHYDDVSKITGKKDTGKDLPTLNAERLGIKGRPATHTETSILFHTQHLGAMLTQRHNETGWTGLDEALNAGAWAVEFDYSGFNATGG 171

Dhc_195_PceA TPIDWDMIQRRPYTWVRMDPTLPVYDN-LKSIGAPVSRWLDWEDKKAEDEILYAKAREDFPGWEPGLDG--FGDIRTTALTHASEMFSFGNFPTRMNLGGNMVDLVAAVR 170

DBB_RdhA1 RFHQKNTAFCQAIS-------------------------GDFP---------QGRQALG--------------LLGSTSPELGQRVLDKAISDAGWYID------SLIAD 123

DBB_RdhA2 IDWDHMEIFPGVHKTLFN------------------------PGGWDNKKEYKAIHARN---------------IASTTEKVKKNVPGYSIRDRALGDANCWGWGALSSI 146

DBB_RdhA3 FFKPVGKVERPDWTEYLFQRKAVIMGYIKEGTWTPDKGLKALPG--PVGNYYRSRPKEEFETMMKALENSVIRAEAWKAGKHKRYAIADAYNASFRDTGMYNRYGSTVPE 217

AA1_RdhA1 RFHQKNTAFCQAIS-------------------------GDFP---------QGRQALG--------------LLGSTSPELGQRVLDKAISDAGWYID------SLIAD 123

AA1_RdhA2 IDWDHMEIFPGVHKTLFN------------------------PGGWDNKKEYKAIHARN---------------IASTTEKVKKNVPGYSIRDRALGDANCWGWGALSSI 146

AA1_RdhA3 FFKPVGKVERPDWTEYLFQRKAVIMGYIKEGTWTPDKGLKALPG--PVGNYYRSRPKEEFETMMKALENSVIRAEAWKAGKHKRYAIADAYNASFRDTGMYNRYGSTVPE 217

MSL71_RdhA1 RFHQKDTAFCQAIS-------------------------EAFP---------EGRQALE--------------LLGSSSADLGQRVMDKAISDAGWYMD------SLIAG 86

MSL71_RdhA2 IDWEHMEIFPGVHKTLFN------------------------PEAWDNKKEYKAIHARN---------------IASTTEKVKKNVPGYSIRDRALGDANCWGWGALSSI 146

MSL71_RdhA3 FFKPVGKVERPDWTEYLFQRKAVIMGYIKEGTWTPDKGLKALPG--PVGDYYRSRPKEEFETMMKALENSVIRAEAWKAGKHKRYAIADAYNASFRDTGMYNRYGSTVPE 217

230 240 250 260 270 280 290 300 310 320 330

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dsb_Y51_PceA GPGSVIPLYPINPMTNEIANEPVMVPGLYNWDNIDVESVRQQGQQWKFESKEEASKIVKKATRLLGADLVGIAPYDERWTYSTWGRKIYKPCKMPNGRTKYLPWDLPKML 281

Dhc_195_PceA AAGGYLGSTDSYAGPKMVHTPEEMGG------------------TKYQGTPEDNLRTLKAGIRYFGGEDVGALELDDKLKKLIFTVDQYGKALEFGDVEECIETPKQVTI 262

DBB_RdhA1 GASTASPDTVAYARDNEVSPD-----------------------RYDFASPDEASLYIKKAARFLGADLVGITPYDERWTYASF----YNPQKQKN-----LPPDLP--- 198

DBB_RdhA2 APSWTGPEVASFNGWEHPTMFYTPDQFG---------------VPRFEGTPEENSRMLRVAGRIFGAADMGFVKLTDKTKKLLYGNIRFEKVDKGYDAG-NGTVVLP--- 237

DBB_RdhA3 DPAEKYEQTGVPVPPEEWDYRHIWRK-----------------EPLKFKSPKHATKLIKRMAHMYGMSLVGITKFDPRFMFKGLMRG--MPNQGHDT----WGDKVP--- 301

AA1_RdhA1 GASTASPDTVAYARDNEVSPD-----------------------RYDFASPDEASLYIKKAARFLGADLVGITPYDERWTYASF----YNPQKQKN-----LPPDLP--- 198

AA1_RdhA2 APSWTGPEVASFNGWEHPTMFYTPDQFG---------------VPRFEGTPEENSRMLRVAGRIFGAADMGFVKLTDKTKKLLYGNIRFEKVDKGYDAG-NGTVVLP--- 237

AA1_RdhA3 DPAEKYEQTGVPVPPEEWDYRHIWRK-----------------EPLKFKSPKHATKLIKRMAHMYGMSLVGITKFDPRFMFKGLMRG--MPNQGHDT----WGDKVP--- 301

MSL71_RdhA1 GAPTTSPDIVAEVRNNEVSSS-----------------------PYDFSSAEEASLYIKKTARFLGADLVGITPYDERWTYASF----YNPQKGTS-----LPPDLP--- 161

MSL71_RdhA2 APSWTGPEVASYNGWEHPTMFYTPDQFG---------------VPRYEGTPEENSRMLRVAGRIFGAADMGFVKLTKKTKKFLYGNIRFEKVDKGYDAG-NGTVVLP--- 237

MSL71_RdhA3 DPAEKYEQTGVPVPPEEWDYRHIWRK-----------------EPLKFKSPKHATKLIKRMAHMYGMSLVGITRFDPRFMFKGLMRG--MPNQGHDS----WGDKVP--- 301

340 350 360 370 380 390 400 410 420 430 440
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dsb_Y51_PceA SGGGVEVFGHAKFEPDWEKYAGFKPKSVIVFVLEEDYEAIRTSPSVISSATVGKSYSNMAEVAYKIAVFLRKLGYYA---APCGNDTGISVPMAVQAGLGEAGRNGLLIT 388

Dhc_195_PceA P---------------------NKCKYIFLWTMRQPYEWTRRQSGRFEGAATETSYERAYNTKAHFQDFVRGLGYQMIS--AGNNSLSPAGAWAVLGGLGELSRASYVNH 349

DBB_RdhA1 ----------------------FTPKSVIVMAFEMDYGAMTTAPSGVSGGAVGKGYSQMAITGASLRRFITNIGYKA---FAAGNDVALSVPYGMAAGLGEAARNGILVT 283

DBB_RdhA2 ----------------------DKDLWVICAVIPQSLWMAQYTDRMSWASANTAAYSRANIYSNRINVFLRGLGYQHYG--GDTSAIGRSVGFGIMSGMGEYGRAGILVS 323

DBB_RdhA3 ----------------------EHWKSIIVFGVPMYWDSTYS---AVGYSTSFDAYFRSRCASGLLERFIQELGYPARAQFPGHHYEVMMSPYVQLAGLGEYSRAGVVMV 386

AA1_RdhA1 ----------------------FTPKSVIVMAFEMDYGAMTTAPSGVSGGAVGKGYSQMAITGASLRRFITNIGYKA---FAAGNDVALSVPYGMAAGLGEAARNGILVT 283

AA1_RdhA2 ----------------------DKDLWVICAVIPQSLWMAQYTDRMSWASANTAAYSRANIYSNRINVFLRGLGYQHYG--GDTGAVGRSVGFGIMSGMGEYGRAGILVS 323

AA1_RdhA3 ----------------------EHWKSIIVFGVPMYWDSTYS---AVGYSTSFDAYFRSRCASGLLERFIQELGYPARAQFPGHHYEVMMSPYVQLAGLGEYSRAGVVMV 386

MSL71_RdhA1 ----------------------FTPKSVIVMAFEVNFGAI-----------VGKGYSQMAITGASLRRFITNIGYRA---FAAVNDVALSVPYGIAAGLGEVARNGLLVT 235

MSL71_RdhA2 ----------------------DKDLWVICAVIPQSLWMAQYTDRMSWASSNTAAYSRANIYSNRINVFLHGLGYQHYG--GDTTAVGRSVGFGIMSGMGEYGRAGILVS 323

MSL71_RdhA3 ----------------------GHWKSIIVFGVPMYWDSTYS---AVGYSTSFDAYFRSRCASGLLERFIQELGYPARAQFPGHHYEVMMSPFVQLAGLGEYSRAGVVMV 386

450 460 470 480 490 500 510 520 530 540 550

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dsb_Y51_PceA QKFGPRHR-IAKVYTDLELAPDKPRKFGVREFCRLCKKCADACPAQAISHEKDPKVLQPEDCEVAENPYTEKWHLDSNRCGSFWAYNGS----PCSNCVAVCSWNKVETW 493

Dhc_195_PceA PLYGITVRVTWGFLTDMPLPPSRPIDFGARKFCETCGICAENCPFGAIN-PGEPTWKDDNAFG---NPGFLGWRCDYTKCP------------HCPICQGTCPFNSHPGS 443

DBB_RdhA1 YEYGPRVR-IGKVFTELDLAHDKPVSFGVRHFCETCMRCADACPGNAISTEKEPSFAVHNECN---NPGVAKWAIDAKKCLLAWGKTKS----DCATCITSCPYNKPDFW 385

DBB_RdhA2 PQWGTNFRTVMLTVTDLPLAETKPIDAGIVTFCRVCKKCAEMCPSGAIPKTDEPFWGGDKSWQ---AKGIKGWYQDAKKCFAYMLGGDP----DCSRCQAVCPFTKFDEA 426

DBB_RdhA3 PELGANFR-PAAVITDIEFEYDKPISVRMADFCMKCKICADACPSGAISKSDRPETVIR---------GFKRWRLDEEKCHLQWCSGPTSDGLGCRVCIGLCPYSRKNTW 486

AA1_RdhA1 YEYGPRVR-IGKVFTELDLAHDKPVSFGVRHFCETCMRCADACPGNAISTEKEPSFAVHNECN---NPGVAKWAIDAKKCLLAWGKTKS----DCATCITSCPYNKPDFW 385

AA1_RdhA2 PQWGTNFRTVMLTVTDLPLAETKPIDAGIVTFCRVCKKCAEMCPSGAIPKTDEPFWGGDKSWQ---AKGIKGWYQDAKKCFAYMLGGDP----DCSRCQAVCPFTKFDEA 426

AA1_RdhA3 PELGANFR-PAAVITDIEFEYDKPISVRMADFCMKCKICADACPSGAISKSDRPETVIR---------GFKRWRLDEEKCHLQWCSGPTSDGLGCRVCIGLCPYSRKNTW 486

MSL71_RdhA1 YEYGPRVR-IGKVFTELDLACDKPMSFGVRHFCETCMRCADACPGNAISTEKKPSFDVHNECN---NPGVAKWAIDAKKCLLAWGKAKS----DCATCITSCPLQQNRFL 337

MSL71_RdhA2 PQWGTNFRTVMLTVTDLPLAETKPIDAGIVNFCRVCKKCAEMCPSGAIPKTDEPFWGGDKSWQ---AKGIKGWYQDAKKCFAYMLGGDP----DCSRCQAVCPFTKFDEA 426

MSL71_RdhA3 PELGANFR-PAAVITDIEFEYDKPISVRMADFCMKCKICADACPSGAISKSDRPETVIR---------GFKRWRLDEEKCHLQWCSGPTSDGLGCRVCIGLCPYSRKNTW 486

560 570 580 590 600 610 620

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

Dsb_Y51_PceA NHDVARVAT--QIP--LLQDAARKFDEWFGYNGPVNPDERLESGYVQNMVKDFWNNPESIKQ------------ 551

Dhc_195_PceA FIHDVVKGT--VSTTPIFNSFFKNMEKTFKYGRKNP--------------ATWWDEVDDYPYGVDTSY------ 495

DBB_RdhA1 HHRLVDKIN--HLMPGPAHSMMREMDKLFGYGNSFD----------KKAVSNFWKS------------------ 429

DBB_RdhA2 VMHDLVRMS--IAKAPALNAAIRKMDDVFGYGQEPP------------LEKSPWEVDPMDIPLFGLDKSRS--- 483

DBB_RdhA3 IHTISRELEPRDPTHLVSKGLLAMQTNFFKYPEAEEFKSDWDGGKEANYHKAPWWMRSDDFFEIERTWQYHGME 560

AA1_RdhA1 HHRLVDKIN--HLMPGPAHSMMREMDKLFGYGNSFD----------KKAVSNFWKS------------------ 429

AA1_RdhA2 VMHDLVRMS--IAKAPALNAAIRKMDDVFGYGQEPP------------LEKSPWEVDPMDIPLFGLDKSRS--- 483

AA1_RdhA3 IHTISRELEPRDPTHLVSKGLLAMQTNFFKYPEAEEFKSDWDGGKEANYHKAPWWMRSDDFFEIERTWQYHGME 560

MSL71_RdhA1 VPSFERQGQ--PPHDRTAPRHDAENGQAFRVRQLLR----------QKSRDQLLEIITEP-------------- 385

MSL71_RdhA2 VMHDLVRMS--IAKAPALNAAIRKMDDVFGYGQEPP------------LEKSPWEVDPMDIPLFGLDKSRS--- 483

MSL71_RdhA3 IHTISRELEPRDPTHLVSKGLLAMQTNFFKYPEAEEFKSDWDGGKEANYHKAPWWMRSDDFFEIERTWQYHGME 560
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Fig. S3.7 Deiodination of 2-IP and 4-IP by D. spongiiphila DBB (A, B), D. spongiiphila AA1T (C, D) and D. 

butyratoxydans MSL71T (E, F) with lactate (5 mM) as the electron donor. Points and error bars represent the 

average and standard deviation of samples taken from duplicate cultures. 
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Fig. S3.8 Concurrent debromination of 2,6-DBP (100 µM) and sulfate (20 mM) reduction by D. spongiiphila 

DBB (A, B), D. spongiiphila AA1T (C, D) and D. butyratoxydans MSL71T (E, F) with lactate (40 mM) as the 

electron donor. Points and error bars represent the average and standard deviation of samples taken from 

duplicate cultures.  
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Fig. S3.10 Multiple-sequence alignment of the RdhCs of Desulfoluna spongiiphila DBB and Dehalobacter 

restrictus (Dre) (GenBank accession number: CAG70347.1). The conserved FMN binding motifs and two 

CX3CP motifs are enclosed within orange boxes. The conserved threonine residue predicted to covalently 

bind to FMN is indicated with an orange triangle.  

 

10 20 30 40 50 60 70 80
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dre_PceC -------------------------------------------------------------------------------- 1

DBB_RdhC1 ------------------------------------------MNLKKTLTILGVLALAGALAYGRVSRENKTIRYLSDHF 38

DBB_RdhC2 MHTDGPRTRTNRLGGRKGPRVKKMSSESMIEKKKPACSHHSSRKRERVLAVGTMLLIMAAWAVGFTLEHADTEPYLYQAM 80

DBB_RdhC3 ---------------------------------------MRKQHMERAAAILSLLVLILAWAGGRARLQESATAHIQNIS 41

90 100 110 120 130 140 150 160
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dre_PceC -------MMGNQHAYKIDT---AQGRFYAVCDSAIGYQSKVEAMTIVNEKGLIEKVIITKQGETPVFFERLTDQKYFDGF 70

DBB_RdhC1 APAAVEKTGSSPEAYRVVD--GGETQYLIYPGRTTGWGGPMTVAPVLTPKLVLKEVLVPEHRETPLFFEYLLANGFFEQF 116

DBB_RdhC2 P-GADRIEKTPQGSYAAYG--TDQLIGYISVGEGNGYGGPMSVAVATDLDGKITGLAVIRHRETPEWFKRVQESDYFSCF 157

DBB_RdhC3 N-SLTNISQVSEHLYRADQRNAPDAPLHIALASRPSYGGPLKVALAADGEGTIRHVAIISSTDTATYLAKVVENGILDPF 120

170 180 190 200 210 220 230 240

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dre_PceC QGLAIKEPIYLGGAYGYSGYLGSIKTNNYIDRVTGSTVSSHAVAEAVNKGNSYLSGQFFNTQWAN-----PYDLFQLSWK 145

DBB_RdhC1 AGKTPRDALCVG---------------KTIDAVSGATISSKAITRAVDSGMALAAEDVLGVKRPA-----LEIRWHAGKE 176

DBB_RdhC2 IGKKYSDPFGLG---------------DDIDGISGATYTSRAVARASLEGSRFVAENNLDLPVPAR----KPAQVAFGPP 218

DBB_RdhC3 PGNTLDKLP-------------------DADAVSGATISSTAILGGLKEAAARIAAARKGEPMPAQGAPGPVNRKEIMKS 181

250 260 270 280 290 300 310 320
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dre_PceC DMAMIAMFLIAFASAF--IKKLVKIRLAFLLVSVVVLGFLVNQFVTGSLLLSAITLQIPRITN-LKWYVLMAGSLGFIIL 222

DBB_RdhC1 ELLLLALFAAALACTR---FKLTKAKMPLLILGFLFLGLMMSRPVSVSNIAALFMGHAPFIGDDLFWWLLVPGSLALVAL 253

DBB_RdhC2 EGVLLVLFALGFLGRRKSFRHKKKVRWLSMLTGMIILGFMYTNPLTLSLVNKMLLGFWPDWHTHLYWYVLLGGILFCLIS 298

DBB_RdhC3 MAIVLLFGCALFVAGRRFPWSRKKGRAALLTVSTLLLGILYSTQFSLATVHLLISGGWTQGLASYAALVCFILAVAVFFL 261

330 340 350 360 370 380 390 400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Dre_PceC LGKNLYCAWICPFGAVQEILNKAAGFKSLNISQKTIKILRLVAPTILWVALLLGTLLGDYGTLDYQPFGALFLFKSVWLM 302

DBB_RdhC1 SGKNIYCTRLCPFGALQELIARTGGLR-VSVQKKIQAVLRAGALGLTWLALMVAFATGNAAHAAIEPFATLFGLKGTTVQ 332

DBB_RdhC2 SGKNPYCEWFCPFGAAQECLGTIGGSK-AHAVPRYKFVLMWLQRGLALAAILIAMVYRNPGISSYEIFGTLFDLKGSILQ 377

DBB_RdhC3 TRKNLYCATLCPFGAVQEGLGRITG----CSPPKRTPWMTWSARLVALAALCAALFFRNPSQASFEPFGMAFNFTGSDAL 337

410 420 430 440 450 460

....|....|....|....|....|....|....|....|....|....|....|....|....|

Dre_PceC WLMLPIFLFMSLFISRFYCKFFCPVGFIYNLLNRWRNEEVRIWKQRVDRLKRKKKEEQETWSSHS 367

DBB_RdhC1 WYLVSLALGGSFFIPRFWCRFFCPAGVCFRKAAGLRRSVTKGITIQPHMGKARHETPTD------ 391

DBB_RdhC2 FFLLGLVVLASLFVRRPWCRYLCPIKPIESLIRFLRKWVKS-------NGSAKIQFP-------- 427

DBB_RdhC3 FAMTLAVVMGSLMVKRPWCRLFCPVTALFDYIGFVRNQWRR----RAIKDIRPKEAP-------- 390

FMN

CX3CP1

CX3CP2
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Fig. S3.11 Topology analysis and comparison of the RdhCs in D. spongiiphila DBB and PceC of 

Dehalobacter restrictus. The topology was predicted using CCTOP (Dobson et al. 2015). Blue lines indicate 

outside/extra-cytosolic regions. Red lines indicate inside/cytosolic regions. Gray lines indicate regions where 

topology is not predicted. Yellow rectangles indicate transmembrane regions. 
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Fig. S3.12 2,6-DBP debromination by D. spongiiphila DBB grown in presence (A, C, E) or absence (B, D, F) 

of sulfate (20 mM) and initial oxygen concentration of 0% (A, B), 2% (C, D), 5% (E, F). Points and error bars 

represent the average and standard deviation of samples taken from duplicate cultures. 
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Table S3.2 Cellular fatty acid composition (%) of different Desulfoluna strains 

Fatty acid D. spongiiphila DBB D. spongiiphila AA1T D. butyratoxydans MSL71T 

C12:0 0.3 0.3 0.8 

C14:1ω7 0.9 0.3 1.1 

C14:1ω5 0.2 0.1 0.2 

C14:0 9.9 6.6 11.5 

C16:1ω9 1.4 1.1 1.5 

C16:1ω7c 19.4 18.9 22.4 

C16:1ω7tr 0.3 0.3 0.3 

C16:1ω5 0.6 0.8 0.7 

C16:0 28.1 28.4 21.7 

C18:1ω9 11.6 11.8 11.3 

C18:1ω7 18.6 22.9 19.7 

C18:0 2.2 1.1 1.7 

β-OH-C12 0.4 0.5 0.4 

β-OH-C14 6.2 7.0 6.7 
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Table S3.3 Selected genomes and their general features that were used for 16S rRNA gene and protein 
domain based phylogenetic analyses 

Strain a 
Genome 
size (Mb) GC (%) Proteins 

GenBank accession 
number 

Desulfoluna spongiiphila DBB 6.68 57.1 5301 PRJEB31368 b 

Desulfoluna butyratoxydans MSL71T 6.05 57.9 4186 PRJEB31368 b 

Desulfoluna spongiiphila AA1T 6.53 57.2 5203 NZ_FMUX01000001.1 

Desulfatibacillum aliphaticivorans CV2803 6.47 54.4 5264 NZ_AUCT00000000.1 

Desulfovibrio fructosivorans JJ 4.67 63.9 4046 NZ_AECZ01000001.1 

Desulfatibacillum alkenivorans AK-01 6.49 54.7 5277 NC_011768.1 

Desulfatirhabdium butyrativorans HB1 4.48 54.9 3852 NZ_KE386985.1 

Desulfatitalea tepidiphila S28bF 5.61 56.7 4858 NZ_BCAG01000003.1 

Desulfobacter postgatei 2ac9 3.97 47.2 3845 NZ_CM001488.1 

Desulfobacterium autotrophicum HRM2 5.65 48.7 4835 NC_012108.1 

Desulfobacterium vacuolatum DSM 3385 5.03 46.5 4050 NZ_FWXY01000001.1 

Desulfobacula phenolica DSM 3384 4.87 41.4 4181 NZ_FNLL01000001.1 

Desulfobacula toluolica Tol2 5.19 41.4 4545 NC_018645.1 

Desulfococcus multivorans DSM 2059 4.42 56.8 3783 NZ_CP015381.1 

Desulfococcus oleovorans Hxd3 3.94 56.2 3325 NC_009943.1 

Desulfomicrobium baculatum DSM 4028 3.94 58.6 3395 NC_013173.1 

Desulfosarcina cetonica JCM 12296 7.09 55.7 5582 NZ_BBCC01000001.1 

Desulfotignum phosphitoxidans DSM 13687 4.99 51.3 4556 NZ_APJX01000001.1 

Desulfovibrio aespoeensis Aspo 2 3.62 62.6 3257 NC_014844.1 

Desulfovibrio alaskensis G20 3.64 57.9 3270 NC_007519.1 

Desulfovibrio desulfuricans ND132 3.85 65.2 3423 NC_016803.1 
a Genome information were obtained from GenBank under their respective accession numbers, except D. 

spongiiphila DBB and D. butyratoxydans MSL71T 

b Project ID of genome sequences deposited in the European Bioinformatics Institute (EBI) 
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Table S3.4 Abundance of the proteins involved in lactate, sulfate and 1,4-DBB metabolism in cells of D. 
spongiiphila DBB grown in LS and LSD conditions 

 

Locus 
tag 

LS1 
Area 

LS2 
Area 

LS3 
Area 

LSD1 
Area 

LSD2 
Area 

LSD3 
Area 

log2 
fold-

change 
p-

value 

Proteins involved in lactate metabolism 

Lactate 
permease 24890 23.64 23.48 24.38 22.96 23.17 24.12 0.42 0.40 

LdhA-1 24880 28.72 28.66 29.09 29.09 29.01 28.59 0.08 0.73 

LdhA-2 24970 28.03 28.08 28.37 27.89 27.85 27.88 -0.28 0.05 

LdhB-1 24870 25.39 25.97 26.61 26.50 25.84 25.93 0.10 0.81 

LdhB-2 24960 26.35 26.69 29.20 26.84 25.89 26.12 -1.13 0.29 

Por-1 310 31.58 31.55 31.62 30.70 30.64 30.79 -0.87 0.00 

Por-2 24940 32.20 32.22 32.18 31.20 31.05 31.25 -1.03 0.00 

Pta 9370 27.45 27.31 27.91 27.97 27.56 27.57 0.15 0.55 

Ack 9360 28.26 28.72 28.92 29.10 28.35 28.27 -0.06 0.86 

Proteins involved in sulfate metabolism 

Sulfate 
permease 22290 22.35 22.14 22.49 21.25 21.21 22.95 0.52 0.42 

Sat 23930 30.04 30.03 29.50 29.71 30.25 29.73 -0.04 0.88 

ApsBA 
23880 26.33 26.34 25.92 26.22 25.94 26.11 0.11 0.54 

23890 29.22 28.85 28.57 29.21 28.63 29.02 -0.08 0.78 

QmoABC 

23900 24.36 23.64 24.40 23.92 23.45 24.16 0.29 0.42 

23910 24.88 24.32 24.36 24.18 23.44 24.48 0.48 0.25 

23920 26.22 26.24 26.34 26.10 26.30 26.72 -0.11 0.59 

DsrC 370 31.27 31.08 31.57 31.58 30.91 31.38 -0.02 0.95 

DsrABD 

25620 32.60 32.22 32.75 32.50 32.82 32.47 0.08 0.71 

25630 32.66 32.45 32.50 32.32 32.18 32.31 -0.26 0.03 

25640 29.06 28.67 29.24 29.11 29.04 28.98 0.06 0.77 

DsrMKJOP 

27290 22.46 21.95 23.37 22.84 22.29 22.87 -0.08 0.87 

27300 24.46 23.24 22.96 22.72 23.43 24.32 0.07 0.92 

27310 ND ND ND ND ND ND - - 

27320 22.28 19.51 22.20 22.90 22.59 22.90 -1.46 0.18 

27330 22.72 23.09 23.97 22.80 22.52 23.81 0.22 0.70 

Electron transport proteins 

FixABC 

25970  30.04 29.82 30.06 30.29 30.65 30.11 0.37 0.09 

25980  29.59 29.14 29.98 29.82 30.32 29.85 0.42 0.22 

25990  23.32 22.36 23.48 21.62 20.86 23.02 1.22 0.17 

Flavodoxin 37290 33.29 33.59 31.86 32.73 33.16 33.91 0.35 0.61 

QrcABCD 

34140 ND ND ND ND ND ND - - 

34150 20.66 21.51 21.22 22.42 21.33 22.31 -0.89 0.11 

34160 22.10 22.60 22.56 22.18 22.28 22.82 -0.01 0.97 

34170 ND ND ND ND ND ND - - 

Reductive dehalogenase 

RdhA1 38400 ND ND ND 26.62 25.99 25.39 - - 
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Corrinoid biosynthesis proteins  

GltX 24080 25.00 24.89 24.99 24.83 24.45 24.66 -0.31 0.05 

HemL 7500 26.66 27.12 26.78 26.39 26.04 24.88 -1.08 0.08 

HemB 44050 26.25 26.89 26.29 25.94 25.78 26.45 -0.42 0.22 

HemC 18940 27.66 27.70 27.57 27.16 27.31 27.64 -0.27 0.14 

HemD 18950 27.94 27.84 27.70 27.71 27.83 26.97 -0.32 0.31 

CysG 26600 24.85 25.24 25.21 25.04 25.02 25.05 -0.06 0.63 

CbiK 3730 22.33 23.47 22.80 21.70 22.66 22.96 -0.43 0.44 

CbiL 3790 24.06 24.62 23.45 24.55 23.59 24.36 0.12 0.79 

CbiH 3850 23.81 24.54 24.96 25.56 25.70 26.10 1.35 0.02 

The full name of each protein can be found in Fig. 3.6 and Table S3.5 
ND: not detected 
  



Organohalide-respiring Desulfoluna species isolated from marine environments 

81 
 

Table S3.5 Corrinoid biosynthesis pathways and corresponding genes and functions in Desulfoluna 
strains 

Biosynthetic pathway Gene a DBB b AA1T c MSL71T b 
Function in corrinoid 
biosynthesis 

Glutamate      

↓ gltX 24080 11166 15970 
Glutaminyl-trna 
synthetase 

↓ hemA 26620 12922 13190 Glutamyl-trna reductase 

↓ hemL 7500 10673 46530 

Glutamate-1-
semialdehyde 2,1-
aminomutase 

↓ hemB 44050 13043 37790 Porphobilinogen synthase 

↓ hemC 18940 103136 7120 
Hydroxymethylbilane 
synthase 

↓ hemD 18950 103137 7130 
Uroporphyrinogen-III 
synthase 

Uroporpyhrinogen III      

↓ cysG 26600 12920 13210 
Uroporphyrin-III C-
methyltransferase 

Precorrin-2      

↓ cbiK 3730 12810 49290 
Sirohydrochlorin 
cobaltochelatase 

Co(II)- precorrin-2      

↓ cbiL 3790 12816 49350 
Precorrin-2/cobalt-factor-2 
C20-methyltransferase 

Co(II)- precorrin-3      

↓ cbiH 3850 12822 49410 
Precorrin-3B C17-
methyltransferase 

Co(II)-precorrin-4      

↓ cbiF 3830 12820 49390 

Precorrin-4/cobalt-
precorrin-4 C11-
methyltransferase 

Co(II)-precorrin-5A      

↓ cbiG 3840 12821 49400 
Cobalt-precorrin 5A 
hydrolase 

Co(II)-precorrin-5B      

↓ cbiD 3810 12818 49370 
Cobalt-precorrin-5B (C1)-
methyltransferase 

Co(II)-precorrin-6A      

↓ cbiJ d    

Precorrin-6A/cobalt-
precorrin-6A reductase 

Co(II)-precorrin-6B      

↓ cbiET 3820 12819 49380 
Cobalt-precorrin-6B 
(C15)-methyltransferase 

Co(II)-precorrin-7,8      

↓ cbiC 3780 12815 49340 
Precorrin-8X/cobalt-
precorrin-8 methylmutase 

Cobyrinic acid      

↓ cbiA 3770 12814 49330 
Cobyrinic acid a,c-
diamide synthase 

Cob(II)yrinic acid a,c-
diamide      

↓      
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Cob(I)yrinic acid a,c-
diamide      

↓ cobA 3860 12823 49420 
Cob(I)alamin 
adenosyltransferase 

Ado-cob(I)yrinic acid 
a,c-diamide      

↓ cbiP 3870 12824 49430 
Adenosylcobyric acid 
synthase 

Adenosyl cobyrinate 
a,c-hexaamide      

↓ cbiB 3920 12829 49480 
Adenosylcobinamide-
phosphate synthase 

Ado-cobinamide      

↓ cobU 3880 12825 49440 

Adenosylcobinamide-
phosphate 
guanylyltransferase 

Ado-cobinamide-
GDP      

↓ cobS 3890 12826 49450 Cobalamin synthase 

Cobalamin      
a Gene nomenclature for the anaerobic corrinoid biosynthesis pathway was as previously published 

(Moore and Warren 2012) 
b Gene Locus numbers are according the genome sequences of D. spongiiphila DBB and D. 

butyratoxydans MSL71T sequenced in this study. The numbers shown in bold are proteins detected 
in the proteome of strain DBB 

c Gene Locus numbers are according the genome sequence of D. spongiiphila AA1T in GenBank 
d Genes that were not found in the Desulfoluna genomes 
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Table S3.7 Enzymes involved in oxygen reduction and ROS detoxification in Desulfoluna strains 

Enzyme DBB a AA1T b MSL71T a 

Rubredoxin–oxygen oxidoreductase 16300 101503 5010 

Cytochrome c oxidase 43200–43500 11283–11286 36840–36870 

Cytochrome bd oxygen reductase 15890–15900 101463–101464 4610–4620 

Superoxide dismutase 15650 101439 4380 

Superoxide reductase 40040 1079 24220 

Rubrerythrin  34920 102199 19140 

Thiol peroxidase 30870 114122 33350 
a Locus tag numbers are according to the genomes of D. spongiiphila DBB and D. butyratoxydans 
MSL71T sequenced in this study 
b Locus tag numbers are according to the genome of D. spongiiphila stain AA1T 
(NZ_FMUX01000001.1) 
 

Datasets S3.1 and S3.2 are available online at https://www.biorxiv.org/content/10.1101/630186v1 
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Abstract 

Chloroform (CF) is an environmental contaminant that can be naturally formed in various 

environments ranging from forest soils to salt lakes. Here, we investigated CF removal 

potential in sediments obtained from hypersaline lakes in Western Australia. Reductive 

dechlorination of CF to dichloromethane (DCM) was observed in enrichment cultures derived 

from sediments of Lake Strawbridge which has been reported as a natural source of CF. The 

lack of CF removal in the abiotic control cultures without artificial electron donors indicated that 

the observed CF removal is a biotic process. Experiments with 13C labelled CF in the sediment-

free enrichment cultures (pH 8.5, salinity 5%) showed that increasing the vitamin B12 

concentration from 0.04 to 4 µM enhanced CF removal, reduced DCM formation, and 

increased 13CO2 production which is likely a product of CF oxidation. Known organohalide-

respiring bacteria were not detected using 16S rRNA gene-based quantitative PCR or bacterial 

community analysis. Rather, members of the genus Clostridium known to include acetogenic 

species capable of co-metabolic transformation of CF to DCM and CO2 were detected in the 

enrichment cultures, and the genes encoding enzymes involved in acetogenesis were 

identified by metagenome analysis of the enrichment cultures. This study indicates that 

microbiota may act as a filter to reduce CF emission from hypersaline lakes to the atmosphere. 
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Introduction 

Until the 1970s, halogenated organic compounds, organohalogens, were believed to 

originate exclusively from anthropogenic sources (Cicerone et al. 1974). This long-held view 

was changed following the discovery of diverse organohalogens from natural environments 

and (micro)organisms. To date, over 5000 naturally occurring organohalogens have been 

identified (Gribble 2010). A remarkable example is chloroform (trichloromethane, CF) which is 

a known environmental contaminant and a potential carcinogen that is accumulative and 

harmful for living organisms (Rosenthal 1987). CF is synthetically produced in chemical 

industries as an anesthetic, as an intermediate for the production of refrigerants, and as a 

degreasing agent and fumigant (ATSDR 1997). However, anthropogenic sources were 

estimated to contribute to less than 10% of the annual 700,000–820,000 tons global CF 

production (Field 2016). Natural CF emissions have been reported from numerous terrestrial 

and aquatic environments such as forest soils (Albers et al. 2010, Breider et al. 2013, 

Haselmann et al. 2002, Osswald et al. 2016), rice fields (Khalil et al. 1998), groundwater 

(Hunkeler et al. 2012), oceans (Nightingale 1991), and hypersaline lakes (Ruecker et al. 2014, 

Weissflog et al. 2005). Biotic and abiotic processes like burning of vegetation, chemical 

production by reactive Fe species, and enzymatic halogenation can lead to natural production 

of CF (Laturnus et al. 2002). Similar to other low molecular weight volatile organohalogens 

(VOX), CF release into the atmosphere can cause ozone depletion and impact climate change 

(Read et al. 2008).  

CF is persistent in the environment and is hardly degraded under oxic conditions due 

to the three chlorine substitutes (Cappelletti et al. 2012, Janssen et al. 2005). In contrast, CF 

transformation is often observed using anaerobic microbial consortia under anoxic conditions 

(Grostern et al. 2010, Guerrero-Barajas and Field 2005, Justicia-Leon et al. 2014, Rodríguez-

Fernández et al. 2018b, Shan et al. 2010). Anaerobic CF transformation has been reported to 

be mediated by acetogens like Acetobacterium woodii (Egli et al. 1988) and Clostridium sp. 

strain TCAIIB (Gälli and McCARTY 1989), and methanogenic Methanosarcina spp. 

(Baeseman and Novak 2001, Bagley and Gossett 1995, Mikesell and Boyd 1990), producing 

dichloromethane (DCM), carbon monoxide (CO) and/or carbon dioxide (CO2). This is a co-

metabolic process likely mediated by enzymes involved in acetogenesis (acetyl-CoA pathway) 

and methanogenesis (Egli et al. 1988, Holliger et al. 1992). Moreover, transition-metal co-

factors, e.g. cob(I)/cob(II)alamins and F430 (nickel(I)-porphinoid), that facilitate key enzymes of 

acetogenesis (5-methyltetrahydrofolate corrinoid/iron-sulfur protein methyltransferase) and 

methanogenesis (methyl-coenzyme M reductase) can act as reductants and nucleophilic 

reagents catalyzing nonspecific reductive dechlorination of chloromethanes (Gantzer and 

Wackett 1991, Krone et al. 1989a, Krone et al. 1989b). 
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Another group of anaerobes known as organohalide-respiring bacteria (OHRB) can use 

CF as a terminal electron acceptor, and couple CF reductive dechlorination to energy 

conservation (Fincker and Spormann 2017, Schubert et al. 2018). For instance, CF respiration 

to DCM has been reported using Desulfitobacterium sp. strain PR (Ding et al. 2014), 

Desulfitobacterium hafniense TCE1 (Gerritse et al. 1999), Dehalobacter sp. strain UNSWDHB 

(Lee et al. 2012, Wong et al. 2016) and a mixed culture containing Dehalobacter (Justicia-Leon 

et al. 2014). The enzymes responsible for reductive dehalogenation in OHRB are corrinoid 

cofactor dependent reductive dehalogenases (RDases) such as a CF RDase (CfrA) identified 

from Dehalobacter-containing microbial consortia (Tang and Edwards 2013). CF can also be 

abiotically dechlorinated under anoxic conditions via hydrogenolysis to DCM, or reductive 

elimination to CH4 (He et al. 2015, Rodríguez-Fernández et al. 2018a, Torrentó et al. 2017).  

Previous studies have shown the presence of organohalogen-metabolizing microbes 

in environments where natural organohalogens have been shown or suspected to be present 

(Atashgahi et al. 2018a, Krzmarzick et al. 2012). Hypersaline lakes and marshes are natural 

sources of VOX emissions to the atmosphere (Rhew et al. 2000, Ruecker et al. 2014, 

Weissflog et al. 2005) where NaCl might promote high rates of organic matter halogenation 

(Oren 2001). However, knowledge about the microbial metabolism of VOX in such extreme 

environments is lacking. This information is necessary to understand whether microbes can 

act as a filter for VOX in hypersaline environments that at least partly prevent their emission to 

the atmosphere. In this study, we prepared microcosms from the sediments of hypersaline 

Lake Strawbridge and Lake Whurr in Western Australia. Lake Strawbridge has been reported 

as a natural source of chloromethane (CM) and CF (Ruecker et al. 2014). The CF 

transformation process and responsible microbes were studied by a combination of anaerobic 

cultivation, stable isotope labelling, and chemical and molecular analyses. 

 

Materials and Methods 

Sampling site 

Duplicate sediment cores of approximately 24 cm length and 4 cm internal diameter 

were collected from Lake Strawbridge (LS, 32.84°S, 119.40°E) and Lake Whurr (LW, 33.04°S, 

119.01°E) in Western Australia (Fig. S4.1). Sediment cores were taken by pushing a 

polypropylene tube into the sediment. The top and the bottom of the tube were immediately 

closed with rubber stoppers after pulling the core from the sediment. The sediment samples 

were transported at 8°C to the Laboratory of Microbiology, Wageningen University & Research, 

The Netherlands.  
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Physical-chemical analysis 

The sediment cores were cut into a top (0–12 cm) and a bottom (12–24 cm) layer in an 

anoxic chamber filled with an atmosphere of N2/H2 (96 : 4%). Subsamples from each sediment 

layer were homogenized and subsequently used for physical-chemical analysis and as inocula 

for enrichment set up. The remaining sediments were kept in -80°C for molecular analysis. 

Water content was determined by the percentage of weight loss observed after drying the 

samples in a desiccator at 105°C overnight with a subsequent cooling down to room 

temperature. pH was measured immediately and again after two hours using a pH meter 

(ProLine B210, Oosterhout, The Netherlands) with air-dried sediments suspended in 0.01 M 

CaCl2 solution. Sediment total organic carbon (TOC) was measured using the Kurmies method 

(Mebius 1960). Low crystalline “bioavailable” iron was extracted from 0.5 g wet sediment for 

one hour in the dark using 25 ml of 0.5 M anoxic HCl (Amstaetter et al. 2012), and 

concentrations of dissolved Fe(II) and Fe(III) were quantified using the spectrophotometric 

Ferrozine assay (Stookey 1970). Major anions including Cl-, SO4
2-, NO3

- and ClO3
- were 

analysed using a Thermo Scientific Dionex™ ICS-2100 Ion Chromatography System (Dionex 

ICS-2100). Major cations including Ca2+, K+, Mg2+ and Na+ were measured using inductively 

coupled plasma-optical emission spectroscopy (ICP-OES, Varian, The Netherlands). Salinity 

was calculated based on the NaCl concentration (weight/volume) as described before 

(Weigold et al. 2016). 

 

Microcosm preparation 

 Due to dominant presence of halophilic microbes in hypersaline environments 

(Amoozegar et al. 2017), and in an attempt to find halophilic microbes capable of CF 

metabolism, two media were used for halophilic bacteria and archaea enrichment: modified 

growth medium (MGM) and DBCM2 medium (DBC) (Dyall-Smith 2008). The media were boiled 

and flushed with nitrogen to remove oxygen. Na2S·9H2O (0.48 g/L) was added as the reducing 

reagent and resazurin (0.005 g/L) was added as redox indicator. Tris-base (10 mM) and acetic 

acid (10 mM) were used as the buffer for MGM and DBC media, respectively. The salinity (5–

20%) and pH (4.6–8.5) of the media were adjusted to the corresponding values measured in 

the sediments used as inocula (Table 4.1, Table S4.1). 

Initial sediment enrichment cultures were prepared in 50 ml serum bottles with 2.5 g 

wet sediment of either the top or bottom layer of lake sediments and 25 ml of either MGM or 

DBCM2 medium. The bottles were sealed with Teflon lined butyl rubber stoppers, and the 

headspace was exchanged with N2 gas (140 kPa). CF was added to each bottle at a nominal 

concentration of 1.25 µmol/bottle. All cultures were set up in duplicate and incubated stationary 

in the dark at 37°C. Of all cultures, the sediment enrichments containing the bottom layer 

sediment of Lake Strawbridge in MGM medium with 5% salinity showed better CF 
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dechlorination, and were therefore used for all subsequent experiments. Sediment-free 

cultures were obtained by sequential transfers of this culture (10% (v/v)) in duplicate in 120 ml 

bottles containing 50 ml MGM medium except that peptone was decreased from 5 to 0.5 g/L 

and yeast extract was decreased from 1 to 0.5 g/L, and glycerol (10 mM) and CF (2.5 

µmol/bottle) was added as a carbon source. The sediment-free cultures were used to test the 

influence of vitamin B12 (0.04, 0.4, 0.8, 1.6 and 4 µM) on CF (5 µmol/bottle) dechlorination. 

Abiotic controls for CF transformation were performed in the modified MGM medium with 

decreased amount of peptone (0.5 g/L) and yeast extract (0.5 g/L) and glycerol (10 mM), and 

amended with 4 µM vitamin B12 and 5 µmol/bottle CF, and the same inoculum that was 

autoclaved at 121°C for 30 min. In a subset of abiotic controls, titanium(III) citrate (Ti(III), 5 

mM) or dithiothreitol (DTT, 100 mM) were used as artificial electron donors (Assaf-Anid et al. 

1994, Chiu and Reinhard 1995). To test CO2 production from CF, 13C-labelled CF (99%, 

Cambridge Isotope Laboratories, Inc., Massachusetts, USA) was used for detecting production 

of 13CO2. 13CO2 formation in the cultures was monitored as outlined below. Cultures without 

13C-labelled CF were prepared in parallel by supplying 100% non-labelled CF and were used 

for measuring natural abundance of 13CO2. The CF dechlorination rate was determined as the 

disappearance of CF (µmol) per day per liter enrichment culture (µmol/day/L) during the 

incubation period when dechlorination was stably observed. 

 

GC analysis 

Chloromethanes were quantified from 0.2 ml headspace samples using a gas 

chromatograph equipped with a flame ionization detector (GC-FID, Shimadzu 2010) and a 

Stabilwax column (Cat. 10655-126, Restek Corporation, USA). The column was operated 

isothermally at 35°C. Nitrogen was used as the carrier gas at a flow rate of 1 ml/min. Carbon 

monoxide (CO), Carbon dioxide (CO2) and methane were analysed using a Compact GC 4.0 

(Global Analyzer Solutions, Breda, The Netherlands) with a thermal conductivity detector (GC-

TCD). CO and methane were measured using a molsieve 5A column operated at 100°C 

coupled to a Carboxen 1010 precolumn, and CO2 was measured using a Rt-Q-BOND column 

operated at 80°C. 

 

Isotope analysis 

13CO2 was measured in sediment-free cultures contained 1.25 µmol/bollte 13C-labelled 

CF, 3.75 µM non-labelled CF and 0.04/4 µM vitamin B12, and control cultures contained 100 

µM non-labelled CF and 0.04/4 µM vitamin B12. The carbon isotope composition of CO2 was 

determined using gas chromatography combustion isotope ratio mass spectrometry (GC/C-

IRMS) consisting of a gas chromatograph (7890A Series, Agilent Technology, USA) coupled 

via Conflo IV interface (ThermoFinnigan, Germany) to a MAT 253 mass spectrometer 
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(ThermoFinnigan, Germany). Sample separation was done with a CP-PoraBOND Q column 

(50 m × 0.32 mm ID, 5 um film thickness; Agilent Technology, Netherlands) operated 

isothermally at 40°C using helium as a carrier gas at a flow rate of 2.0 ml/min. Sample aliquots 

of 0.1–0.5 ml were injected at split ratios ranging from 1:10 to 1:20. The carbon isotope 

signatures are reported in δ notation (per mill) relative to the Vienna Pee Dee Belemnite 

standard.   

The amount of 13CO2 produced from the 13C-labelled CF was expressed according to:  

δ13C = (Rsample/Rstandard - 1) × 1000  

Where δ13C is the 13C isotopic composition (per mil, ‰), Rsample is the 13C to 12C ratio of the CO2 

in the sample, Rstandard is the international Vienna Pee Dee Belemnite standard (VPDB, 13C/12C 

= 0.0112372).  

 

DNA extraction 

The sediment aliquots collected during start-up of the microcosms were thawed and 

washed three times with 1.5 ml of 10 mM TE buffer (pH 7.0) to avoid interference of the high 

salinity with the DNA extraction. For each sample, wet sediment (0.5 g) and the washing buffer 

collected by filtration through a 0.22 µm membrane filter (Millipore, MP, USA) were used for 

DNA extraction. DNA loss during washing was anticipated, but washing was necessary to be 

able to extract enough DNA for further analysis (Weigold et al. 2016). DNA was extracted 

separately from the washed sediment and the biomass collected on the membrane filter using 

the PowerSoil DNA isolation kit (MO-BIO, USA) following the manufacturer’s instructions. DNA 

extracts from the sediment and filters were combined for each sample and used for molecular 

analysis. DNA of the sediment-free enrichment cultures was extracted from 2 ml culture 

samples using the PowerSoil DNA isolation kit. For metagenome sequencing of the sediment-

free cultures, 50 ml of culture was used for DNA extraction using the MasterPure™ Gram 

Positive DNA Purification Kit (Epicentre, WI, USA). 

 

Quantitative PCR (qPCR) 

The abundance of 16S rRNA genes of total bacteria and archaea, and OHRB including 

Desulfitobacterium, Dehalobacter, Dehalococcoides, Sulfurospirillum and Geobacter in 

sediments (Lake Strawbridge) and the sediment derived enrichment cultures were determined 

by qPCR. Assays were performed in triplicates on a CFX384 Real-Time system in C1000 

Thermal Cycler (Bio-Rad Laboratories, USA) with iQTM SYBR Green Supermix (Bio-Rad 

Laboratories, USA) as previously outlined (Atashgahi et al. 2013). The primers and qPCR 

programs used in this study are listed in Table S4.2.  
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Bacterial community analysis 

16S rRNA gene based bacterial community analysis was performed on sediments of 

Lake Strawbridge and the sediment derived enrichment cultures. Sediments from Lake Whurr 

were not proceeded for bacterial community analysis because no CF dichlorination was 

observed in the enrichment cultures derived from the sediments of Lake Whurr. Bacterial 

community performed as following: a 2-step PCR was applied to generate barcoded amplicons 

from the V1–V2 region of the bacterial 16S rRNA genes, and the PCR products were purified 

and sequenced on an Illumina MiSeq platform (GATC-Biotech, Konstanz, Germany) as 

described previously (Atashgahi et al. 2017). Primers for PCR amplification of the 16S rRNA 

genes are listed in Table S4.2. Sequence analysis was performed using NG-Tax (Ramiro-

Garcia et al. 2016). Operational taxonomic units (OTUs) were assigned using uclust (Edgar 

2010) in an open reference approach against the SILVA 16S rRNA gene reference database 

(LTPs128_SSU, version 111) (Quast et al. 2012). Subsequently, a biological observation 

matrix (biom) file was generated and sequence data was further analyzed using Quantitative 

Insights Into Microbial Ecology (QIIME) v1.2 (Caporaso et al. 2010).  

 

Metagenome 

Metagenome sequencing of duplicate sediment-free cultures with and without 4 µM 

vitamin B12 was performed on an Illumina HiSeq platform (PE 150 mode). The reads were first 

filtered with Trimmomatic (v0.36) with parameters: PE-phred33\ ILUMINACLIP:TruSeq3-PE-

2.fa:2:30:10 LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15 MINLEN:36 (Bolger et al. 

2014). The filtered reads were assembled with MEGAHIT (v1.1.2) with default parameters (Li 

et al. 2016). Gene prediction was performed on each assembly with Prodigal (v2.6.3) with 

parameters -meta, -c11 (Hyatt et al. 2010b).  

 

Sequence deposition 

Nucleotide sequences of 16S rRNA genes of bacteria were deposited in the European 

Nucleotide Archive (ENA) with accession number ERS1165096-ERS1165117 under study 

PRJEB14107. Raw metagenome sequences were deposited at ENA under study 

PRJEB32090. 
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Results 

Physical-chemical characteristics of sediments  

The top and bottom layer sediments of Lake Strawbridge were slightly alkaline with a 

pH ranging from 8.2 to 8.5 whereas those of Lake Whurr were acidic with a pH of 4.6–5.4 

(Table 4.1). The salinity of the sediments, water content and total organic carbon (TOC) in both 

lakes Strawbridge and Whurr were higher in the top layer compared to the bottom layer (Table 

4.1). Sodium (17.5–71.1 mg/g) and chloride (31.9–123.5 mg/g) were dominant among the 

cations and anions, respectively. Neither nitrate nor chlorate were detected in the top and 

bottom layer sediments of the lakes (Table 4.1). 
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CF dechlorination in enrichment cultures 

No CF dechlorination was observed in the sediment enrichment cultures of Lake Whurr 

after 70 days of incubation (data not shown), whereas CF was reductively dechlorinated to 

DCM in the sediment enrichment cultures of Lake Strawbridge (Fig. 4.1A–D). CM and methane 

as the potential products of CF transformation were not detected (data not shown), despite 

evident lack of mass balance between CF disappearance and DCM production in sediment 

cultures and some transfer cultures (Fig. 4.1A–F). The lack of methane production also 

indicated supressed/absent methanogenesis. The fastest CF dechlorination rate (1.82 

µmol/day/L) to DCM was observed in the enrichment cultures with the bottom layer sediments 

in the MGM medium (Fig. 4.1B). Therefore, these cultures were selected to obtain sediment-

free cultures in subsequent transfers (Fig. 4.1E–G). 

 

 

Fig. 4.1 CF transformation in the sediment enrichment cultures and subsequent transfer cultures. 

Dechlorination of CF in MGM medium with top layer (LS-TOP, A) and bottom layer sediments (LS-BOT, 

B) from Lake Strawbridge, and dechlorination of CF in DBC medium with top (C) and bottom layer (D) 

sediments from the same lake. Dechlorination of CF in subsequent transfer cultures of the bottom layer 

sediment enrichment cultures with MGM medium (E, F, G). Points and error bars represent the average 

and standard deviation of samples taken from duplicate cultures. 

 

Adding vitamin B12 from 0.04 to 4 μM steadily increased CF dechlorination rates in the 

sediment-free cultures (Fig. 4.2). For instance, in the cultures amended with 4 µM vitamin B12, 

the CF dechlorination rate reached 31.9 µmol/day/L (Fig. 4.2E), ~30 times higher than the 

dechlorination rate in the cultures without extra vitamin B12 supplementation (~0.9 µmol/day/L) 
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(Fig. 4.1E–G). In turn, increasing vitamin B12 concentration led to concurrent decrease of DCM 

accumulation. Accordingly, less than 30% of the CF was converted to DCM in the cultures 

amended with 4 µM vitamin B12 (Fig. 4.2E). No CF dechlorination was observed in the abiotic 

controls even in the presence of 4 µM vitamin B12 (data not shown). In contrast, CF 

dechlorination to DCM and (or) CM was observed in abiotic controls when either Ti(III) or DTT 

were used as an artificial electron donor together with 4 µM vitamin B12 (Fig. S4.2).  

 

 

Fig. 4.2 CF transformation in sediment-free cultures amended with 0.04 (A), 0.4 (B), 0.8 (C), 1.6 (D), 

and 4 µM (E) vitamin B12. Points and error bars represent the average and standard deviation of samples 

taken from duplicate cultures. 

 

Analysis of 13CO2 production from 13CF  

13CO2 production was detected in the cultures containing 1.25 µmol/bottle 13C-labelled 

CF, 3.75 µmol/bottle non-labelled CF and 4 µM vitamin B12 during the incubation (Fig. 4.3A). 

At day 5, 0.84 µmol/bottle 13CO2 and 1.7 µmol/bottle DCM were detected (Fig. 4.3A). Assuming 

that 25% of the DCM (0.43 µmol/bottle) originated from 13C-labelled CF, the 13C mass balance 
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would be: 13C-labelled CF (1.25 µmol/bottle) = 13C-DCM (0.43 µmol/bottle) + 13CO2 (0.84 

µmol/bottle). This will indicate a ca. 100% 13C recovery and conversion of CF to CO2 and DCM 

as the main products. The δ13C value of 13CO2 increased from -23.42‰ to 263.46‰ during the 

first four days of incubation whereas no significant change of the δ13C value of CO2 was 

observed in the cultures without 13C-labelled CF (Fig. 4.3B).  

 

 

Fig. 4.3 13CO2 production from CF (A) and δ13C values (B) in the sediment-free cultures amended with 

1.25 µmol/bottle 13C-labelled CF, 3.75 µmol/bottle non-labelled CF and 4 µM vitamin B12. Control 

cultures contained the same concentrations of non-labelled CF and vitamin B12. Points and error bars 

represent the average and standard deviation of samples taken from duplicate cultures. 

 

qPCR and bacterial community analysis 

Bacterial and archaeal 16S rRNA gene copies in the top sediment layers of Lake Whurr 

and Lake Strawbridge were at least one order of magnitude higher compared to the 16S rRNA 

gene copies in bottom layers of the same lakes (Fig. 4.4A). The top layer sediment from Lake 

Strawbridge had the highest number of 16S rRNA gene copies of bacteria (3.3 × 108 copies/g 

dry sediment) and archaea (8.6 × 107 copies/g dry sediment) among all the sediments from the 

two lakes (Fig. 4.4A). Sediment enrichment cultures and subsequent transfer cultures prepared 

from the bottom layer sediment of Lake Strawbridge, contained 106–107 bacterial 16S rRNA 

gene copies/ml culture (Fig. 4.4B). However, archaeal 16S rRNA gene copies decreased 

dramatically to 104 copies/ml in the sediment enrichment cultures, and to below 102 copies/ml 
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culture in the transfer cultures (Fig. 4.4B). OHRB including Desulfitobacterium, Dehalobacter, 

Dehalococcoides, Geobacter and Sulfurospirillum were not detected in the enrichment cultures 

(data not shown). 

 

 

Fig. 4.4 Quantitative PCR (qPCR) targeting total bacterial and archaeal 16S rRNA genes in the top and 

bottom layer sediment of Lake Strawbridge and Lake Whurr (A), and sediment enrichment culture and 

subsequent transfer cultures derived from the bottom layer sediment microcosms of Lake Strawbridge 

(B). Abbreviation: LS, Lake Strawbridge; LW, Lake Whurr; TOP, top layer (0–12 cm depth); BOT, bottom 

layer (12–24 cm depth). Error bars represent standard deviations of two (for enrichment samples) or 

four (for sediment samples) independent DNA extractions, and triplicate qPCR reactions were 

conducted for each DNA sample (n = 2 (4) × 3). 

 

Bacterial community analysis based on Illumina sequencing of barcoded 16S rRNA 

gene V1–V2 region amplicons showed that Cyanobacteria, Chloroflexi, Proteobacteria and 

Firmicutes were the most abundant phyla (cumulative relative abundance > 70%) in top and 

bottom layer sediments of Lake Strawbridge (Fig. 4.5). The relative abundance of Firmicutes 

increased from 25–34% in the bottom layer sediments to ~90% in the initial as well as the 

sediment-free enrichment cultures (Fig. 4.5). The relative abundance of Clostridium and 

Desulfovibrio in phyla Firmicutes and Proteobacteria, respectively, increased from less than 

0.1% to 9–20% (Clostridium) and from less than 0.1% to 0.3–8% (Desulfovibrio) in the initial 

as well as the sediment-free enrichment cultures.  
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Preliminary metagenomic analysis  

The overall assembly features of the four metagenomes were similar to each other 

(Table S4.3). As bacterial community analysis suggested the enrichment of potentially 

acetogenic Clostridium spp., the preliminary analysis of metagenomes presented here focused 

on a screening for genes encoding enzymes involved in the acetyl-CoA pathway (Drake et al. 

2008), which possibly mediated CF transformation. Preliminary metagenome analysis showed 

presence of these genes in the sediment-free cultures with (4 µM) and without extra vitamin 

B12 amendment (Fig. 4.6). 

 

Discussion  

The present study showed CF dechlorination to DCM and CO2 in microcosms prepared 

from the sediments of the hypersaline Lake Strawbridge in Western Australia which has 

previously been shown to be a natural source of CF and CM (Ruecker et al. 2014). The lack 

of CF removal in the abiotic control cultures without artificial electron donors (Ti(III) or DTT) 

indicated that the CF removal in the sediment and sediment-free enrichment cultures is a biotic 

process and at least needs cellular metabolism for electron donor generation. However, known 

CF-respiring bacteria such as Desulfitobacterium (Ding et al. 2014, Gerritse et al. 1999) and 

Dehalobacter (Wong et al. 2016) were neither detected in the sediment microcosms nor in the 

sediment-free cultures by qPCR (data not shown) or 16S rRNA gene-targeted bacterial 

community analysis (Fig. 4.4–4.5). In contrast, Desulfovibrio was found in the enrichment 

cultures (Fig. 6). Desulfovibrio sp. TBP-1 (Boyle et al. 1999) and D. dechloracetivorans SF3 

(Sun et al. 2000), are known OHRB, but their ability for CF dechlorination has not been 

reported. Moreover, preliminary metagenome analysis showed no presence of known 

reductive dehalogenase genes (rdhA) in the sediment-free enrichment cultures (data not 

shown). Therefore, Desulfovibrio was likely not responsible for the observed CF dechlorination. 

Compared to the sediment, the relative abundance of Clostridium was increased in the 

sediment-free enrichment cultures (Fig. 4.5). Acetogens belonging to Clostridium and 

Acetobacterium can mediate fortuitous CF dechlorination (Drake et al. 2008, Egli et al. 1988, 

Gälli and McCARTY 1989). For instance, Clostridium sp. strain TCAIIB was shown to 

dechlorinate CF to DCM and unidentified products (Gälli and McCARTY 1989), although 

underlying mechanisms remain unknown. One plausible explanation can be conversion of 

vitamin B12 (cob(III)alamin) to cob(I)/cob(II)alamins by Clostridium species (Walker et al. 1969, 

Weissbach et al. 1961) that can mediate CF dechlorination.  

Addition of extra vitamin B12 shifted the dominant CF transformation pathway from 

reductive dechlorination to DCM, to oxidation to CO2 (Fig. 4.2, Fig. S4.2) in line with former 

reports using fermentative (Shan et al. 2010) and methanogenic enrichment cultures (Becker 

and Freedman 1994, Guerrero-Barajas and Field 2005, Rodríguez-Fernández et al. 2018b). A 
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previous study suggested CF oxidation likely via net hydrolysis of CF to CO mediated by 

enzyme(s) involved in the acetyl-CoA pathway (Egli et al. 1988). Except for the acetyl-CoA 

synthase gene, we detected all genes encoding enzymes involved in the acetyl-CoA pathway 

in a preliminary metagenome analysis of the sediment-free enrichment cultures (Fig. 4.6). The 

CO produced from CF could be further oxidized to CO2 by CO dehydrogenase (Becker and 

Freedman 1994). We did not detect CO in the enrichment cultures likely due to its rapid 

conversion to CO2.  

 

 

Fig. 4.6 Proposed CF transformation pathway that can be mediated by cob(I)/cob(II)alamins and 

enzymes involved in acetyl-CoA pathway. Genes encoding all enzymes (E1-E10) were detected in the 

metagenome sequences of the sediment-free cultures with and without 4 µM vitamin B12, except for the 

gene encoding acetyl-CoA synthase (E8, enclosed in a square). Enzyme names: E1: formate 

dehydrogenase, E2: formate-tetrahydrofolate ligase, E3: methylenetetrahydrofolate dehydrogenase, E4: 

methenyltetrahydrofolate cyclohydrolase, E5: methylenetetrahydrofolate reductase, E6: 5-

methyltetrahydrofolate corrinoid/iron sulfur protein methyltransferase, E7: carbon-monoxide 

dehydrogenase, E8: acetyl-CoA synthase, E9: phosphate acetyltransferase, E10: acetate kinase.  

 

Hypersaline lakes are among the major sources for VOX emissions on Earth (Read et 

al. 2008). This study showed the potential of sediments from pristine hypersaline Lake 

Strawbridge for CF transformation in cultures with moderate salinity (5%) and alkaline 

condition (pH 8.5). One possibility is fortuitous CF transformation by enzymes and/or 
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cobalamin cofactors of acetogens that have been shown in Acetobacterium woodii (Hashsham 

and Freedman 1999) and Clostridium sp. (not known for its acetogenic potential) (Gälli and 

McCARTY 1989). Besides reducing CF toxicity, CF transformation products (DCM, CO, CO2) 

can be growth substrates for other microbes, e.g. CO/CO2 for acetogens (Drake et al. 2008), 

CO2 for methanogens (Conrad 2007), and DCM for a variety of aerobic and anaerobic 

microbes that can use it as a carbon and energy source (Chen et al. 2018, Hermon et al. 2018, 

Janssen et al. 2005, Kleindienst et al. 2019, Kleindienst et al. 2017, Mägli et al. 1996). 

Therefore, microbial transformations may act as a filter to reduce CF emission from hypersaline 

lakes. 
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Supplementary Information  

 

Fig. S4.1 Location and overview of Lake Strawbridge and Lake Whurr. The coordinates of the sampling 

points and the depth profile are shown in the photos. The photos are a courtesy of Christoph Tubbesing 

from the Department of Geosciences, Universität Heidelberg.  
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Fig. S4.2 CF transformation in the presence of vitamin B12 (4 µM) in MGM medium with dithiothreitol 

(100 mM) (A) or titanium(III) citrate (5 mM) (B) as the electron donor. Points and error bars represent 

the average and standard deviation of samples taken from duplicate cultures. 
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Abstract 

1,2-dichloroethane (1,2-DCA) is one of the most abundant manmade chlorinated organic 

contaminants in the world. Reductive dechlorination of 1,2-DCA by organohalide-respiring 

bacteria (OHRB) can be impacted by other chlorinated contaminants such as chloroethenes 

and chloropropanes that can co-exist with 1,2-DCA at contaminated sites. The aim of this 

study was to evaluate the effect of chloroethenes and 1,2-dichloropropane (1,2-DCP) on 1,2-

DCA dechlorination using sediment cultures enriched with 1,2-DCA as the sole chlorinated 

compound (EA culture) or with 1,2-DCA and tetrachloroethene (PCE) (EB culture), and to 

model dechlorination kinetics. Both cultures contained Dehalococcoides as most 

predominated OHRB, and Dehalogenimonas and Geobacter as other known OHRB. In 

sediment-free enrichments obtained from the EA and EB cultures, dechlorination of 1,2-DCA 

was inhibited in the presence of same concentrations of either PCE, vinyl chloride (VC) or 1,2-

DCP, however, concurrent dechlorination of dual chlorinated compounds was achieved. In 

contrast, 1,2-DCA dechlorination completely ceased in the presence of cis-dichloroethene 

(cDCE) and only occurred after cDCE was fully dechlorinated. In turn, 1,2-DCA did not affect 

dechlorination of PCE, cDCE, VC and 1,2-DCP. In sediment-free enrichments obtained from 

the EA culture, Dehalogenimonas 16S rRNA gene copy numbers decreased 1–3 orders of 

magnitude likely due to an inhibitory effect of chloroethenes. Dechlorination with and without 

competitive inhibition fit Michaelis-Menten kinetics and confirmed the inhibitory effect of 

chloroethenes and 1,2-DCP on 1,2-DCA dechlorination. This study reinforces that the type of 

chlorinated substrate drives the selection of specific OHRB, and indicates that removal of 

chloroethenes and in particular cDCE might be necessary before effective removal of 1,2-DCA 

at sites contaminated with mixed chlorinated solvents.  
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Introduction 

Understanding biodegradation bottlenecks has been a major objective in efforts to 

harness the metabolic potential of microorganisms for bioremediation of sites contaminated 

with organic pollutants (Atashgahi et al. 2018; Meckenstock et al. 2015; Vandermaesen et al. 

2016). An important class of such contaminants comprises chlorinated solvents such as 

chloroethenes, chloroethanes and chloropropanes that have adverse effects on human and 

environmental health (EPA 2018; Weatherill et al. 2018). Organohalide respiration (OHR) is 

an example of a microbial metabolism that has been successfully harnessed for engineered 

remediation of sites contaminated with chlorinated solvents (Atashgahi et al. 2017; Edwards 

2014; Ellis et al. 2000). This process is mediated by organohalide-respiring bacteria (OHRB) 

belonging to distinct genera within the phyla Chloroflexi (e.g. Dehalococcoides and 

Dehalogenimonas), Firmicutes (e.g. Dehalobacter and Desulfitobacterium) and 

Proteobacteria (e.g. Sulfurospirillum and Geobacter) (Atashgahi et al. 2016).  

One of the challenges of bioremediation is the presence of mixtures of organohalogens 

at contaminated sites. During dechlorination of co-mingled organohalogens, bioattenuation of 

specific chlorinated solvents has been shown to be prone to inhibition due to the inhibitory 

effect of dechlorination intermediates on OHRB, their reductive dehalogenase enzymes, and 

their syntrophic partners (Chan et al. 2011; Dillehay et al. 2014; Grostern et al. 2009; Mayer-

Blackwell et al. 2016). For instance, 1,1,1-trichloroethane (1,1,1-TCA) was shown to strongly 

inhibit chloroethene reductive dehalogenases of Dehalococcoides (Chan et al. 2011). 

Moreover, long-term exposure to 1,2-dichloroethane (1,2-DCA) was shown to shift the 

Dehalococcoides community within a microbial consortium from vinyl chloride (VC) reductive 

dehalogenase gene (vcrA)-containing Dehalococcoides to trichloroethene (TCE) reductive 

dehalogenase gene (tceA)-containing Dehalococcoides, leading to diminished VC 

transforming ability (Mayer-Blackwell et al. 2016). In turn, kinetic modelling using the same 

culture revealed that 1,2-DCA dechlorination was strongly inhibited by cis-dichloroethene 

(cDCE), and efficient 1,2-DCA dechlorination occurred only when cDCE was completely 

dechlorinated to VC (Mayer-Blackwell et al. 2016). In another study, presence of 1,1,2-

trichloroethane (1,1,2-TCA) and 1,2-dichloropropane (1,2-DCP) inhibited 1,2-DCA 

dechlorination by Dehalogenimonas lykanthroporepellens BL-DC-9 and D. alkenigignens IP3-

3 (Dillehay et al. 2014). An improved understanding of such inhibitory effects can aid in 

designing bioremediation approaches for sites contaminated with a mixture of chloroethenes, 

chloroethanes and/or chloropropanes (Dillehay et al. 2014; Field and Sierra-Alvarez 2004; 

Mayer-Blackwell et al. 2016).  

Different modelling approaches of varying complexity have been developed to 

understand the reductive dechlorination of chloroethenes with and without competitive 

inhibition (Chambon et al. 2013). The description of the reaction kinetics varies from first-order 
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(Corapcioglu et al. 2004; Da Silva and Alvarez 2008) to the more elaborate Michaelis-Menten 

equations (Garant and Lynd 1998; Haston and McCarty 1999) or Monod kinetics if the 

responsible OHRB can be sufficiently quantified (Yu and Semprini 2004). The latter two kinetic 

modelling approaches have been applied at lab- and field-scales to study competitive inhibition 

(Christ and Abriola 2007; Lai and Becker 2013; Yu et al. 2005), self-inhibition (Haest et al. 

2010a), electron donor limitation (Cupples et al. 2004), dechlorination in the presence of 

multiple bacterial species (Brovelli et al. 2012; Duhamel and Edwards 2006; Haest et al. 

2010b), and dechlorination in conjunction with fermentation, sulfate reduction or 

methanogenesis (Kouznetsova et al. 2010; Malaguerra et al. 2011). The Michaelis-Menten 

and Monod kinetic modelling approaches can also be used to study the dechlorination of 

chloroethanes or chloropropanes, however, examples in literature are rare. Notable 

exceptions are Mayer-Blackwell et al. (2016) who studied concurrent dechlorination of 1,2-

DCA and cDCE, and Colombani et al. (2014) who studied 1,2-DCA degradation under the 

influence of salt water intrusion. 

The aim of this study was to evaluate the impact of chloroethenes and 1,2-DCP on 

1,2-DCA dechlorination using enrichment cultures containing Dehalococcoides, Geobacter 

and Dehalogenimonas as the known OHRB. The prime focus was to obtain an improved 

understanding of 1,2-DCA dechlorination, which is the most abundant chlorinated organic 

contaminant worldwide (Field and Sierra-Alvarez 2004). 1,2-DCA can be dihaloeliminated to 

ethene by diverse OHRB including members of the genera Dehalococcoides (Maymó-Gatell 

et al. 1999; Parthasarathy et al. 2015; Wang and He 2013), Geobacter (Duhamel and Edwards 

2006), Dehalogenimonas (Maness et al. 2012), Desulfitobacterium (Low et al. 2019; Marzorati 

et al. 2007) and Dehalobacter (Grostern and Edwards 2009). 1,2-DCA has been found to co-

exist with chloroethenes and/or chloropropanes at many contaminated sites (Dillehay et al. 

2014; Mayer-Blackwell et al. 2016). Despite some reports on suppression of 1,2-DCA 

dechlorination by co-occurring chloroethenes, chloroethanes and bromoethanes (Dillehay et 

al. 2014; Mayer-Blackwell et al. 2016; Yu et al. 2013), comprehensive studies on the 

interaction between 1,2-DCA, 1,2-DCP and chloroethenes with respect to their dechlorination 

in complex organohalide-respiring microbial consortia are limited.  

In this study, in cultures amended with one or two chlorinated compounds (1,2-DCA 

with either tetrachloroethene (PCE), cDCE, VC or 1,2-DCP), the impact of co-contaminants 

on OHRB was investigated by quantifying 16S ribosomal RNA (rRNA) genes of known OHRB. 

The dechlorination reactions were approximated with Michaelis-Menten kinetics taking into 

account competitive inhibition. Parameter estimation was performed using AMALGAM (Vrugt 

and Robinson 2007), a multi-objective, multi-method (ensemble) evolutionary optimization 

procedure to account for the high correlation among the parameters describing dechlorination 

kinetics and the existence of multiple solutions. Results showed that all applied chlorinated 
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compounds inhibited 1,2-DCA dechlorination whereas 1,2-DCA had no pronounced inhibitory 

effect on the dechlorination of other chlorinated compounds. 

 

Materials and Methods 

Chemicals 

1,2-DCA, chloroethenes, 1,2-DCP, ethene and propene were purchased from Sigma-

Aldrich, and were used directly in the following experiments. Lactate stock solution (1 M) was 

prepared from 60% sodium DL-lactate solution (Sigma-Aldrich). Other organic and inorganic 

chemicals were of analytical grade and were used without further purification. 

 

Sediment collection and enrichment set-up 

Surface sediment samples (down to 15 cm below surface) were collected from a 

wetland in Estarreja, Portugal. This site has a long history of contamination with agrochemical 

and fine chemistry effluents (Carvalho et al. 2005). Sediment enrichment cultures were set up 

in 120 mL serum bottles using 10 g of wet sediment and 50 mL of an anoxic medium as 

described previously (Stams et al. 1993). Resazurin (0.005 g/L) and Na2S·9H2O (0.48 g/L) 

were added as redox indicator and reducing reagent, respectively. The headspace of the 

bottles was exchanged with N2 and CO2 (80:20%, 140 kPa). Lactate (3 mM) was used as the 

carbon source and electron donor. The electron acceptors for the sediment cultures were PCE 

(10 µmol/bottle, designed EA culture) and PCE plus 1,2-DCA (10 µmol/bottle each, designed 

EB culture). The bottles were sealed with Teflon lined butyl rubber stoppers and aluminum 

crimp caps (GRACE, MD, USA) and incubated statically in the dark at 20°C. EA and EB 

cultures were spiked 21 times with their respective chlorinated electron acceptors during 

enrichment. After dechlorination of each spike of the chlorinated substrates to ethene, the 

headspace of the cultures was flushed with N2 and CO2 (80:20%) for three times (3 min for 

each run and 10 min rest in between each flushing cycle) before re-amendment of the 

respective chlorinated substrate(s). In the last three spikes, the concentration of each 

chlorinated substrate was increased stepwise from 10 µmol/bottle to 25 and 40 µmol/bottle. 

To avoid toxicity of the chlorinated compounds, each single chlorinated substrate was added 

at 25 μmol/bottle for all the following experiments unless otherwise stated.  

Sediment-free cultures were obtained by transferring the EA and EB sediment cultures 

as following: a 5% slurry from the EA and EB sediment cultures was transferred into bottles 

containing fresh anoxic medium with lactate (5 mM) and single or double chlorinated substrate 

mixtures of 1,2-DCA with either PCE, cDCE or VC (Fig. 5.1A). Each transfer culture was 

amended with three spikes of the respective chlorinated substrate(s), and then diluted to 

duplicate cultures (50% inoculum, Fig. 5.1B) and amended with another three spikes of the 

respective chlorinated substrate(s). In parallel, 5% slurries from the EA and EB sediment 
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cultures were also transferred into bottles containing 1,2-DCP (10 μmol/bottle). Only the EA 

transfer culture showed 1,2-DCP dechlorination. Therefore only this culture was subsequently 

transferred (5% inoculum) to fresh anoxic medium with either 1,2-DCP, 1,2-DCA or a mixture 

of 1,2-DCP and 1,2-DCA (Fig. 5.1C). After depletion of three spikes of the respective 

chlorinated substrate, these cultures were then diluted to duplicate cultures (50% inoculum, 

Fig. 5.1D) and amended with another three spikes of the respective chlorinated substrate. The 

dechlorination pattern of the last (third) spike of chlorinated substrates(s) (Fig. 5.1B, D) was 

used for kinetic modelling. To study the relief of inhibition by different chlorinated compounds 

on 1,2-DCA dechlorination, the cultures containing mixture substrates were subsequently 

spiked with only 1,2-DCA. 

 

 

Fig. 5.1 Schematic representation of the experimental set up. Cultures in box A received inoculum from 

either EA or EB culture. Cultures in dashed boxes (B, D) were used for the kinetic study. The EB culture 

was not able to dechlorinate 1,2-DCP and hence it was not used for the kinetic study performed using 

cultures in box D.   
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(1) 

DNA extraction and quantitative PCR  

After dechlorination of each spike of the chlorinated compounds (respectively 10, 25, 

and 40 µmol/bottle each compound) in the EA and EB cultures (Fig. 5.1), 2 mL slurry samples 

were taken for DNA extraction. After dechlorination of the third spike of chlorinated compounds 

in the sediment-free transfer cultures that were used for kinetic modelling, 2 mL samples were 

also taken for DNA extraction. DNA was extracted using a DNeasy PowerSoil Kit (QIAGEN, 

Hilden, Germany) following the manufacturer’s instructions. The copy numbers of 16S rRNA 

genes of total bacteria and OHRB including Dehalococcoides, Geobacter, Dehalogenimonas, 

Dehalobacter, Desulfitobacterium and Sulfurospirillum were determined by real-time 

quantitative PCR (qPCR). Assays were performed in triplicates using a CFX384 Real-Time 

system in a C1000 Thermal Cycler (Bio-Rad Laboratories, USA) with iQTM SYBR Green 

Supermix (Bio-Rad Laboratories, USA). The primers and qPCR programs used in this study 

are listed in Table S5.1. 

 

Analytical methods 

Chloroethenes, 1,2-DCA, 1,2-DCP, ethene and propene were analyzed using a gas 

chromatograph-mass spectrometer (GC-MS) composed of a Trace GC Ultra (Thermo Fisher 

Scientific, Waltham, MA, USA) equipped with an Rt®-Q-BOND column (Retek, PA, USA) and 

a DSQ MS (Thermo Fisher Scientific). Helium was used as a carrier gas with a flow rate of 2 

ml min−1. The inlet temperature was 100°C. The split ratio was 30. The temperature program 

of the column was: 40°C hold for 1 min, followed by an increase at 40°C min−1 to 260°C and 

hold for 1.5 min. 

 

Modelling and parameter estimation 

Reductive dechlorination of the chloroethenes in cultures shown in Fig. 5.1B and 5.1D 

was modelled using a Michaelis-Menten model with competitive inhibition following Eq. (1) 

  

Where rn (µM d-1) is the dechlorination rate that depends on the respective chlorinated 

compound, kmax,n (µM d-1) is the compound-specific maximum utilisation rate or degradation 

constant, Ks,n (µM) is the compound-specific half velocity constant, In (µM) is the compound-

specific competitive inhibition rate, and Cn (µM) is the aqueous concentration of the chlorinated 

compounds. The index 𝑖  represents the number of parent compounds considered in the 

dechlorination during competitive inhibition that varied with enrichment set-up.   

Dihaloelimination of 1,2-DCA to ethene and of 1,2-DCP to propene were also modelled 

using Eq. (1). In the enrichment cultures containing both chloroethenes/1,2-DCP and 1,2-DCA, 

 

rn = 
kmax,nCn

Cn + Ks,n 1 + ∑i=1

x Cn+i

In+i
( )
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competitive inhibition between 1,2-DCA and the other compounds was also included in the 

models.  

As the Michaelis-Menten parameters describing dechlorination are highly correlated, 

model calibration was performed using AMALGAM (Vrugt and Robinson 2007), a multi-

objective, multi-method (ensemble) evolutionary optimization procedure executable in 

MATLAB. AMALGAM attempts to find for each culture a set of optimal solutions, i.e. an 

ensemble of optimized kinetics parameters. These solutions have to adhere to the Pareto-

principle, which means that all objectives (here, concentrations of the individual dechlorination 

products) must be met with equal efficiency. The number of Pareto-efficient solutions depends 

on model complexity, the size of the parameter space as well as the number of model runs 

and varies for each culture. As such we chose to provide in the results section ranges based 

on the 50 best parameter combinations of each culture. These were ranked according to their 

Euclidean distance to the zero-objective-point of our n-dimensional space, where n is the 

number of culture-specific objectives. Using a compromise solution (Werisch et al. 2014, 

Wöhling et al. 2008), the parameter set representing the solution with the smallest Euclidean 

distance on the Pareto front to the zero-objective point was then utilized to create graphical 

representations as previously outlined (Schneidewind et al. 2014). 

All cultures were modelled individually, and models were calibrated on the data 

obtained from the third spike, during which steady dechlorination patterns were noted. Initially, 

the cultures with the simplest dechlorination sequences (i.e. VC to ethene or 1,2-DCA to 

ethene) were modelled, and subsequently model complexity was gradually increased by 

including additional dechlorination reactions (i.e. cDCE to VC to ethene, etc.). Following this 

procedure, additional prior information could be used for more complex models to decrease 

the parameter space (defined by user-set upper and lower boundaries) from which AMALGAM 

retrieves optimal solutions. Initial boundary values were based on literature (Garant and Lynd 

1998, Haest et al. 2010a, Haston and McCarty 1999, Mayer-Blackwell et al. 2016, Schaefer 

et al. 2009, Schneidewind et al. 2014, Yu and Semprini 2004) for chloroethenes and 1,2-DCA. 

For 1,2-DCP, boundary conditions were derived from simple Lineweaver-Burk plots 

(Lineweaver and Burk 1934). Dimensionless, species dependent Henry coefficients at 20°C 

were used to account for volatilisation of the chlorinated compounds in the cultures (PCE = 

0.711, trichloroethene (TCE) = 0.419, cDCE = 0.182, VC = 1.075, 1,2-DCA = 0.054, 1,2-DCP 

= 0.123, ethene = 7.108, propene = 8.923) (Mackay and Shiu 1981, Sander 2015, Staudinger 

and Roberts 2001). 
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Results 

Reductive dechlorination and dynamics of OHRB in the original sediment cultures  

1,2-DCA (10–40 µmol/bottle) was stoichiometrically converted to ethene in the original 

EA and EB sediment enrichment cultures without production of any chlorinated intermediates 

indicating 1,2-DCA dihaloelimination (Fig. 5.2A). Besides 1,2-DCA, each spike of PCE (10–

40 µmol/bottle) in the EB culture was concurrently dechlorinated to ethene (Fig. 5.2C). 

Dehalococcoides (107–108 16S rRNA gene copies/mL), Geobacter (~108 16S rRNA gene 

copies/mL), and Dehalogenimonas (106–107 16S rRNA gene copies/mL) were the 

predominant OHRB in the EA culture (Fig. 5.2B). In contrast, Dehalococcoides (108–109 16S 

rRNA gene copies/mL) was the predominant OHRB in the EB culture, and Geobacter and 

Dehalogenimonas numbers were ~107 and 104 16S rRNA gene copies/mL, respectively (Fig. 

5.2D). The 16S rRNA gene numbers of Dehalobacter, Desulfitobacterium and Sulfurospirillum 

in both EA and EB cultures were below 106 copies/mL, representing less than 0.1% of the total 

bacterial 16S rRNA gene number (Fig. 5.2B, D). The 16S rRNA gene copy numbers of OHRB 

were rather stable during the three spikes of chlorinated compound(s) (Fig 5.2B, D). Hence 

for the subsequent sediment-free transfer cultures, qPCR analysis was performed only at the 

end of the last (third) spike of chlorinated compound(s). 

 

 

Fig. 5.2 Reductive dechlorination of 1,2-DCA and PCE by the sediment cultures EA (A) and EB (C), 

and 16S rRNA gene copy numbers of total bacteria, Dehalococcoides, Geobacter, Dehalogenimonas, 

Dehalobacter, Desulfitobacterium, Sulfurospirillum at the end of each spike (B, D). The arrows in panel 

A and C indicate re-spike of the chlorinated substrates. Error bars of the qPCR values indicate standard 

deviations of triplicate qPCRs performed on one sample of each culture.  
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Dechlorination and co-contaminant effect of 1,2-DCA and chloroethenes  

1,2-DCA dechlorination was maintained in the EA and EB sediment-free transfer 

cultures (cultures EA-T1 and EB-T1, Fig. 5.3A, 5.4A). Moreover, PCE, cDCE and VC were 

completely dechlorinated to ethene in both EA and EB transfer cultures (EA-T5–T7, Fig. 5.3E–

G and EB-T5–T7 cultures, Fig. 5.4E–G), although PCE was not amended in the original EA 

culture. In EA and EB transfer cultures amended with the same amounts (25 µmol/bottle each 

spike) of 1,2-DCA and either PCE, cDCE, or VC, dechlorination of 1,2-DCA was delayed 

(decreased dechlorination rate) by the chloroethenes (EA-T2–T4 cultures, Fig. 5.3B–D and 

EB-T2–T4 cultures, Fig. 5.4B–D), especially when cDCE was present as co-contaminant, 

where 1,2-DCA dechlorination did not start until cDCE was depleted (EA-T3 cultures Fig. 5.3C 

and EB-T3 cultures, Fig. 5.4C). During dechlorination of the third spike, the time to complete 

dechlorination of 1,2-DCA increased from around three days (Fig. S5.3–S5.4) to 7–14 days 

(Fig. S5.5–S5.10) in EA transfer cultures in the presence of chloroethenes, and from around 

three (Fig. S5.23–S5.24) days to 6–8 days (Fig. S5.25–S5.30) in EB transfer cultures. After 

the third spike, when the cultures with co-contaminants (Fig. 5.3B–D, Fig. 5.4B–D) were 

amended with only 1,2-DCA, its dechlorination was completed in 2–5 days in both EA and EB 

transfer cultures (Fig. S5.2A–F), whereas the same amount of 1,2-DCA was dechlorinated in 

6–14 days in the presence of chloroethenes. In contrast, no pronounced inhibitory effect of 

1,2-DCA on chloroethene dechlorination was observed. Dechlorination of chloroethenes was 

comparable between cultures where chloroethenes were amended as a single compound 

(EA-T5–T7 cultures, Fig. 5.3E–G, S5.11–S5.16 and EB-T5–T7 cultures, Fig. 5.4E–G, S5.31–

S5.36) and cultures where they were added together with 1,2-DCA (EA-T2–T4 cultures, Fig. 

5.3B–D, S5.5–S5.10 and EB-T2–T4 cultures, Fig. 5.4B–D, S5.25–S5.30).  
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Fig. 5.3 Reductive dechlorination of 1,2-DCA (EA-T1, A), 1,2-DCA plus PCE (EA-T2, B), 1,2-DCA plus 

cDCE (EA-T3, C), 1,2-DCA plus VC (EA-T4, D), PCE (EA-T5, E), cDCE (EA-T6, F), VC (EA-T7, G) in 

the sediment-free enrichment cultures obtained from EA sediment culture, and 16S rRNA gene copy 

numbers of total bacteria, Dehalococcoides, Geobacter, Dehalogenimonas, Dehalobacter, 

Desulfitobacterium, Sulfurospirillum at the end of the third spike in these cultures (H, I, J). Each 

concentration value represents the average measured from duplicate cultures. The arrows in panel A–

G indicate re-spike of the chlorinated substrates. Error bars were not included in panels A–G for clarity. 

Error bars of the qPCR values indicate standard deviations of triplicate qPCRs performed on one 

sample of each of the duplicate cultures (n = 2 × 3). 

 

The 16S rRNA gene copy number of Dehalococcoides in EA transfer cultures (~108 

copies/mL, Fig. 5.3H–J) was about one order of magnitude higher than in the original EA 

sediment culture (Fig. 5.2B), whereas the 16S rRNA gene copy numbers of Dehalococcoides 

in the EB culture (108–109 copies/mL, Fig. 5.2D) and its transfer cultures (Fig. 5.4H–J) were 

similar. In EA transfer cultures, Dehalogenimonas 16S rRNA gene copy numbers were 1–3 

orders of magnitude higher in the cultures fed 1,2-DCA, VC or 1,2-DCA plus chloroethenes 

(PCE, cDCE, VC) than in the cultures fed only PCE or cDCE (Fig. 5.3H–J). The 16S rRNA 

gene copy numbers of Dehalogenimonas were below 103 in the EB transfer cultures (Fig. 
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5.4H–J), in line with the pattern in the EB sediment culture (Fig. 5.2D). The 16S rRNA gene 

copy numbers of Geobacter in the EA and EB transfer cultures were 107–108 copies/mL (Fig. 

5.3H–J, 5.4H–J). 

 

 

Fig. 5.4 Reductive dechlorination of 1,2-DCA (EB-T1, A), 1,2-DCA plus PCE (EB-T2, B), 1,2-DCA plus 

cDCE (EB-T3, C), 1,2-DCA plus VC (EB-T4, D), PCE (EB-T5, E), cDCE (EB-T6, F), VC (EB-T7, G) in 

the sediment-free enrichment cultures obtained from EB sediment culture, and 16S rRNA gene copy 

numbers of total bacteria, Dehalococcoides, Geobacter, Dehalogenimonas, Dehalobacter, 

Desulfitobacterium, Sulfurospirillum at the end of the third spike in these cultures (H, I, J). Each 

concentration value represents the average measured from duplicate cultures. The arrows in panel A–

G indicate re-spike of the chlorinated substrates. Error bars were not included in panels A–G for clarity. 

Error bars of the qPCR values indicate standard deviations of triplicate qPCRs performed on one 

sample of each of the duplicate cultures (n = 2 × 3).  
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days of incubation, more than 90% of the 1,2-DCP in the EA transfer culture was dechlorinated 

to propene (Fig. S5.1), whereas no 1,2-DCP dechlorination was observed in the EB transfer 

culture (data not shown). Therefore, the EA transfer culture fed 1,2-DCP was used to study 

the co-contaminant effect (Fig. 5.1D). In the subsequent transfer cultures, 1,2-DCP 

dechlorination was stably maintained (cultures EA-T10, Fig. 5.5C), while 1,2-DCA was also 

dechlorinated (cultures EA-T8, Fig. 5.5A). Similar to the co-contaminant effect between 1,2-

DCA and chloroethenes, 1,2-DCA dechlorination was inhibited in the transfer cultures 

concurrently amended with 1,2-DCP, whereas no obvious inhibitory effect of 1,2-DCA on 1,2-

DCP dechlorination was observed (cultures EA-T9, Fig. 5.5B). Specifically, the time to 

complete dechlorination of 1,2-DCA was increased from around three days (Fig. S5.17–S5.18) 

to nine days in the presence of 1,2-DCP (Fig. S5.19–S5.20), while 1,2-DCP dechlorination 

was not inhibited (Fig. S19–S22). When these cultures were amended only with 1,2-DCA, its 

dechlorination was completed in two days (Fig. S5.2G), which was strongly enhanced 

compared to its dechlorination in the presence of 1,2-DCP (same amount of 1,2-DCA was 

dechlorinated in nine days) (Fig. 5.5B). Dehalococcoides (~108 16S rRNA gene copies/mL), 

Geobacter (~107 16S rRNA gene copies/mL) and Dehalogenimonas (106–107 16S rRNA gene 

copies/mL) were the predominant known OHRB in these transfer cultures, similar to EA 

transfer cultures amended with 1,2-DCA and chloroethenes (Fig. 5.3H–G, Fig. 5.5D).  
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Fig. 5.5 Reductive dechlorination of 1,2-DCA (EA-T8, A), 1,2-DCA plus 1,2-DCP (EA-T9, B), 1,2-DCP 

(EA-T10, C) in sediment-free cultures derived from the EA transfer culture amended with 1,2-DCP, and 

16S rRNA gene copy numbers of total bacteria, Dehalococcoides, Geobacter, Dehalogenimonas, 

Dehalobacter, Desulfitobacterium, Sulfurospirillum at the end of the third spike in these cultures (D). 

Each concentration value represents the average measured from duplicate cultures. The arrows in 

panel A–C indicate re-spike of the chlorinated substrates. Error bars were not included in panels A–C 

for clarity. Error bars of the qPCR values indicate standard deviations of triplicate qPCRs performed on 

one sample of each of the duplicate cultures (n = 2 × 3). 
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Dechlorination kinetics 

Table 5.1 provides a summary of parameter ranges for all compounds as compared to 

values from previous studies. Those parameter ranges were obtained by modelling 

dechlorination after the third spike only. Maximum and minimum values of the 50 best 

parameter combinations for individual cultures are shown in Table S5.2. Ks and I values of the 

chloroethenes are in the same range as in the previous studies listed in Table 5.1. A 

comparison of values of kmax is less straight forward as many studies provide kmax in units 

related to the bacterial cell or protein mass. kmax estimates for PCE and TCE obtained here 

are similar to those in Haston and McCarty (1999) and Schneidewind et al. (2014) whereas 

kmax estimates for cDCE and VC in this study were about one order of magnitude higher.  

A comparison of parameter estimates for 1,2-DCP dechlorination was not possible due 

to the lack of kinetic models in literature. Parameter estimates of 1,2-DCA were comparable 

to those found by Mayer-Blackwell et al. (2016). However, in our study they span a rather wide 

range, defined by cultures EA-T9, where concurrent dechlorination of 1,2-DCA and 1,2-DCP 

occurred (see Fig. S5.19 and S5.20 and Table S5.2), as further discussed below. 

In general, modelled and observed results showed a good fit for cultures amended with 

a single chlorinated compound (e.g., EA-T1, EA-T7, Figs. S5.3–S5.4, S5.15–S5.16) indicated 

by low root-mean-square errors (RMSE, data not shown). Model fits decreased (higher RMSE) 

for the cultures with more complex reaction networks (e.g., EB-T2, Fig. S5.25–S5.26). 

Duplicate batches showed comparable parameter ranges, and parameters differed by less 

than one order of magnitude. A notable exception is experiment EA-T9 (Fig. S5.19, S5.20) 

where one of the replicate cultures (culture A) showed relatively narrow parameter ranges for 

1,2-DCA whereas parameter ranges for culture B for 1,2-DCA varied by several orders of 

magnitude. 
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Discussion 

The present study revealed inhibition of 1,2-DCA dechlorination in the presence of 

chloroethenes and 1,2-DCP using organohalide-respiring microbial consortia obtained from a 

wetland contaminated with agrochemical products. Among the tested chlorinated substrates, 

cDCE showed the strongest inhibitory effect on 1,2-DCA dechlorination. Dechlorination of 1,2-

DCA started only when cDCE was completely depleted (culture EA-T3, Fig. 5.3C and culture 

EB-T3, Fig. 5.4C). This is consistent with previous findings showing that cDCE strongly 

inhibited 1,2-DCA dechlorination using a continuous enrichment culture containing 

Dehalococcoides (Mayer-Blackwell et al. 2016). We also noted inhibition of 1,2-DCA 

dechlorination in the presence of PCE, VC and 1,2-DCP, further supported by the decreased 

kmax,DCA and increased Ks,DCA values compared to the cultures amended with 1,2-DCA only. 

Notably, the inhibitory pattern of PCE, VC and 1,2-DCP on 1,2-DCA dechlorination was 

different from that of cDCE. In cultures containing 1,2-DCA with either PCE, VC or 1,2-DCP 

as the co-contaminants, the cultures concurrently dechlorinated both amended chlorinated 

compounds. However, delayed dechlorination of 1,2-DCA due to decreased dechlorination 

rate was observed during concurrent dechlorination of 1,2-DCA and PCE (culture EA-T2, Fig. 

5.3B and culture EB-T2, Fig. 5.4B), probably because of transient cDCE production from PCE.  

The observed inhibitory impact of VC on 1,2-DCA dechlorination is in contrast to what 

was reported by Mayer-Blackwell et al. (2016) using a continuous enrichment culture 

containing Dehalococcoides where VC had a negligible inhibitory effect on 1,2-DCA 

dechlorination. Interestingly, Mayer-Blackwell et al. (2016) found that long-term exposure of 

the continuous culture to 1,2-DCA shifted the Dehalococcoides population, leading to 

diminished VC dechlorinating ability. In contrast, we found no inhibitory effect of 1,2-DCA on 

the dechlorination of chloroethenes and 1,2-DCP in batch cultures. 

Based on the data presented here, it is likely that the original sediments in EA and EB 

cultures contained at least two different Dehalococcoides populations. The 1,2-DCP 

dechlorinating population was maintained during enrichment in the presence of 1,2-DCA (EA 

culture) but likely lost during incubation in the presence of 1,2-DCA plus PCE (EB culture). 

This suggests that 1,2-DCA but not PCE was also a growth substrate for the 1,2-DCP 

dechlorinating Dehalococcoides population, whereas PCE was likely a substrate for the other 

Dehalococcoides population. The EA transfer cultures were also able to dechlorinate PCE 

(Fig. 5.3B, E). This indicates that feeding 1,2-DCA alone in the EA sediment culture also 

maintained the Dehalococcoides population capable of PCE dechlorination, and therefore 1,2-

DCA was also a growth substrate for the PCE-dechlorinating Dehalococcoides population. 

Feeding 1,2-DCA plus PCE likely promoted selective growth of the 1,2-DCA/PCE 

dechlorinating Dehalococcoides over the 1,2-DCA/1,2-DCP dechlorinating Dehalococcoides. 

This is also likely the reason for the loss of Dehalogenimonas in the EB culture, as 
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Dehalogenimonas is known to dechlorinate 1,2-DCA and 1,2-DCP via dihaloelimination but 

does not dechlorinate PCE (Bowman et al. 2013, Moe et al. 2009). Accordingly, 

Dehalogenimonas was only maintained in the EA transfer cultures amended with substrates 

known to support Dehalogenimonas growth (e.g. 1,2-DCA or 1,2-DCA plus VC or 1,2-DCA 

plus 1,2-DCP) (Maness et al. 2012, Martín-González et al. 2015, Moe et al. 2016, Yang et al. 

2017) (Fig. 5.3H–J). Notably, feeding solely PCE or cDCE that are not known growth 

substrates for Dehalogenimonas decreased Dehalogenimonas 16S rRNA gene copy numbers 

by 1–3 orders of magnitude (Fig. 5.3H, I), whereas feeding solely VC or 1,2-DCP that are 

known substrates to support Dehalogenimonas growth (Bowman et al. 2013, Moe et al. 2009, 

Yang et al. 2017) did not strongly reduce its 16S rRNA gene copy numbers (Fig. 5.3J, 5.4D). 

Geobacter, which is known to dechlorinate PCE/TCE (Sung et al. 2006), and 1,2-DCA 

(Duhamel and Edwards 2007), was stably maintained in both EA (Fig. 5.3H–J) and EB (Fig. 

5.4H–J) transfer cultures. Our results indicate that the type of chlorinated substrate drives the 

selection of OHRB. Likewise, a recent study showed that a Dehalococcoides population shift 

was driven by different chlorinated electron acceptors in enrichment cultures containing 

Dehalococcoides and at a contaminated site (Pérez-de-Mora et al. 2018). 

Michaelis-Menten kinetics could be successfully used to model dechlorination after the 

third spike where near steady-state conditions were observed. Parameter estimates obtained 

here compare well with those obtained in previous studies (see Table 5.1). Different kinetic 

models could be better suited to model dechlorination after the first and the second spikes. 

Especially dechlorination after the first spike might be modelled more successfully using 

Monod kinetics (see also Schneidewind et al., 2014) to better account for an apparent lag 

phase before the onset of dechlorination. However, Monod modelling was not used in this 

study due to limited information on microbial interactions (growth and decay patterns). 

An interpretation of competitive inhibition is not straightforward from the obtained 

inhibition constants I (Table S5.2). For example, cDCE seems to have a pronounced effect on 

1,2-DCA dechlorination only at starting concentrations of cDCE (~IcDCE). As soon as cDCE 

concentrations drop by a factor ≥10, inhibition of 1,2-DCA dechlorination by cDCE becomes 

much less important. The calibrated inhibition constants suggest that VC is a stronger inhibitor 

on 1,2-DCA dechlorination than cDCE in all cultures except EB-T2 (Ivc is substantially below 

IcDCE). However, IVC is largest in cultures EA-T4 and EB-T4 where no higher chlorinated 

compounds were present. A higher competitive inhibition constant indicates a smaller 

inhibitive effect. The parameter for VC probably lumps inhibition effects from higher chlorinated 

parent products when present, resulting in a higher simulated inhibition effect of VC in mixed 

compound tests.    

In addition, interpreting parameter estimates (especially inhibition constants) obtained 

from cultures with multiple chlorinated compounds proved challenging, as strong cross-
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correlation exists among the parameters of the Michaelis-Menten kinetics. For example, we 

observed comparable Ks and kmax values for chloroethenes and 1,2-DCP in cultures with and 

without 1,2-DCA. In contrast, kmax,DCA values decreased and Ks,DCA values increased in multi-

compound cultures compared to the cultures amended with 1,2-DCA only. This hints towards 

an effect of the chloroethenes and 1,2-DCP on 1,2-DCA dechlorination. However, the best 

parameter combination did not put this effect in the inhibition constants, but rather in the 

degradation constants of 1,2-DCA itself. Another example is the EA-T9 culture: a small 𝐾𝑠 of 

1,2-DCA is counteracted by a small inhibition constant of 1,2-DCP in the duplicate cultures. In 

other words, the obtained parameters suggest that dechlorination of 1,2-DCA could occur at 

a maximal rate at low substrate concentration, but would then be more inhibited by 1,2-DCP; 

or in contrast, the maximal dechlorination rate of 1,2-DCA is not attained under the current 

experimental conditions but its dechlorination would be less inhibited by 1,2-DCP. However, 

both parameter combinations would yield a proper fit of the experimental observations, proving 

the non-uniqueness of the solution (Beven 2001).   

The use of results from less complex culture set-ups in the refinement of the parameter 

space, from which AMALGAM choses viable solutions for more complex set-ups (e.g., EA-T1, 

EA-T4 and EA-T6 for EA-T2) allowed us to reduce the uncertainty on the parameter estimates. 

However, the problem of non-uniqueness still remains, i.e., the existence of multiple parameter 

combinations producing an equally good fit. Uncertainty on the parameter estimates arises 

due to incomplete or insufficient information on the dechlorination processes in the individual 

cultures (e.g. information on microbial interactions or on necessary micro-nutrients).  

In conclusion, the identified inhibitory effect of chloroethenes and 1,2-DCP on 1,2-DCA 

dechlorination in this study has important implications for understanding the persistence of 

1,2-DCA at contaminated sites. For effective bioremediation of such contaminated sites, it will 

be necessary to first remove potential inhibitors such as cDCE as well as its parent compounds 

PCE and TCE, which can inhibit 1,2-DCA dechlorination and even cause loss of 1,2-DCA/1,2-

DCP dechlorinating Dehalococcoides and Dehalogenimonas populations. Further studies are 

needed to better understand the inhibitory mechanisms. Possible experimental approaches 

include identification of the genes and enzymes involved in 1,2-DCA dichlorination, study the 

transcriptional regulation of these genes, and competitive inhibition of the enzymes. 

Theoretical modelling experiments that more rigorously look into the effect of the size of the 

parameter space or the use of different estimation algorithms could further improve our 

understanding of parameter/model uncertainty.   
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Supplenmentary Information 

 

 

Fig. S5.1 Reductive dechlorination of 1,2-DCP in EA transfer culture. 

 

 

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

C
o

n
ce

n
tr

at
io

n
(µ

m
o

l/
b

o
tt

le
)

Time (days)

1,2-DCP Propene
D



Chapter 5 

130 
 

 
Fig. S5.2 Reductive dechlorination of 1,2-DCA alone in EA and EB transfer cultures previously amended 

with 1,2-DCA plus PCE (cultures EA-T2 and EB-T2) (A, D); 1,2-DCA plus cDCE (cultures EA-T3 and EB-

T3) (B, E); 1,2-DCA plus VC (cultures EA-T4 and EB-T4) (C, F); 1,2-DCA plus 1,2-DCP (cultures EA-T9) 

(G). Each concentration value represents the average measured from duplicate cultures. 
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Fig. S5.3 Modeled (mod) and observed (obs) concentrations in culture EA-T1_A. 

 
 

 
Fig. S5.4 Modeled (mod) and observed (obs) concentrations in culture EA-T1_B.  
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Fig. S5.5 Modeled (mod) and observed (obs) concentrations in culture EA-T2_A. 

 

 
Fig. S5.6 Modeled (mod) and observed (obs) concentrations in culture EA-T2_B.  
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Fig. S5.7 Modeled (mod) and observed (obs) concentrations in culture EA-T3_A. 

 

 
Fig. S5.8 Modeled (mod) and observed (obs) concentrations in culture EA-T3_B.  

 



Chapter 5 

134 
 

 
Fig. S5.9 Modeled (mod) and observed (obs) concentrations in culture EA-T4_A. 

 

 
Fig. S5.10 Modeled (mod) and observed (obs) concentrations in culture EA-T4_B. 
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Fig. S5.11 Modeled (mod) and observed (obs) concentrations in culture EAT5_A.  

 
 

 
Fig. S5.12 Modeled (mod) and observed (obs) concentrations in culture EAT5_B.  
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Fig. S5.13 Modeled (mod) and observed (obs) concentrations in culture EA-T6_A.  

 

 
Fig. S5.14 Modeled (mod) and observed (obs) concentrations in culture EA-T6_B.  
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Fig. S5.15 Modeled (mod) and observed (obs) concentrations in culture EA-T7_A. 

 

 

 
Fig. S5.16 Modeled (mod) and observed (obs) concentrations in culture EA-T7_B.   
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Fig. S5.17 Modeled (mod) and observed (obs) concentrations in culture EA-T8_A.  

 

 
Fig. S5.18 Modeled (mod) and observed (obs) concentrations in culture EA-T8_B. 
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Fig. S5.19 Modeled (mod) and observed (obs) concentrations in culture EA-T9_A.  

 

 
Fig. S5.20 Modeled (mod) and observed (obs) concentrations in culture EA-T9_B. 
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Fig. S5.21 Modeled (mod) and observed (obs) concentrations in culture EA-T10_A. 

 

 
Fig. S5.22 Modeled (mod) and observed (obs) concentrations in culture EA-T10_B.  
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Fig. S5.23 Modeled (mod) and observed (obs) concentrations in culture EB-T1_A.  

 

 
Fig. S5.24 Modeled (mod) and observed (obs) concentrations in culture EB-T1_B. 
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Fig. S5.25 Modeled (mod) and observed (obs) concentrations in culture EB-T2_A. 

 

 
Fig. S5.26 Modeled (mod) and observed (obs) concentrations in culture EB-T2_B.   
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Fig. S5.27 Modeled (mod) and observed (obs) concentrations in culture EB-T3_A.  

 

 
Fig. S5.28 Modeled (mod) and observed (obs) concentrations in culture EB-T3_B. 
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Fig. S5.29 Modeled (mod) and observed (obs) concentrations in culture EB-T4_A. 

 

 
Fig. S5.30 Modeled (mod) and observed (obs) concentrations in culture EB-T4_B.   
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Fig. S5.31 Modeled (mod) and observed (obs) concentrations in culture EB-T5_A. 

 

 
Fig. S5.32 Modeled (mod) and observed (obs) concentrations in culture EB-T5_B. 
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Fig. S5.33 Modeled (mod) and observed (obs) concentrations in culture EB-T6_A. 

 

 
Fig. S5.34 Modeled (mod) and observed (obs) concentrations in culture EB-T6_B.  
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Fig. S5.35 Modeled (mod) and observed (obs) concentrations in culture EB-T7_A. 

 

 

 
Fig. S5.36 Modeled (mod) and observed (obs) concentrations in culture EB-T7_B. 
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Organic and inorganic halogen compounds originating from anthropogenic and natural 

sources are found in a broad range of different environments (Ali et al. 2016, Gribble 2010). 

Microbes capable of transforming these compounds play an important role in bioremediation 

applications as well as in the halogen cycling in a range of polluted and pristine environments. 

Research described in this thesis focused on the physiology, genetics, and ecology of 

microorganisms derived from different contaminated and pristine environments and that were 

able to transform various organic and inorganic halogen compounds. Furthermore, potential 

bottlenecks for their application in bioremediation were addressed (Table 6.1).  

The aim of this thesis was to further expand our knowledge on these microbes 

transforming organic and inorganic halogen compounds, through i) revealing novel metabolic 

features (Chapter 2), ii) enriching and isolating new microbes capable of organohalogen 

transformation from pristine environments (Chapters 3, 4), and iii) understanding 

biodegradation bottlenecks at contaminated sites where mixtures of chlorinated solvents occur, 

providing possible ways for effective bioremediation (Chapter 5).   
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Genome-guided physiology of microbes capable of transforming organic and/or 

inorganic halogen compounds  

Recent advances in genomic and allied technologies have enabled gaining detailed 

insights into the genetics and potential metabolism of previously isolated/characterized 

microbes capable of transforming organic/inorganic halogen compounds. A notable example 

was genomic analysis of the chlorate-reducing bacterium Pseudomonas chloritidismutans AW-

1T that showed presence of two haloacid dehalogenase genes, indicating its potential for 

concurrent haloalkanoates dehalogenation and chlorate reduction (Chapter 2). Likewise, 

genome sequencing of the previously described sulfate-reducing bacterium Desulfoluna 

butyratoxydans MSL71T revealed presence of three reductive dehalogenase genes (rdh) 

(Chapter 3), indicating potential of this bacterium for organohalide respiration (OHR), a trait 

that had not previously been reported. Physiological experiments indeed confirmed the 

potential metabolism of strain AW-1T for concurrent dehalogenation of haloalkanoates and 

chlorate reduction (Chapter 2), and OHR potential for strain MSL71T (Chapter 3). The newly 

found/verified metabolic feature of strain AW-1T is important for bioremediation of sites 

contaminated with multiple halogen compounds such as organic haloalkanoates and inorganic 

chlorate that could co-occur in environments as herbicides and disinfection by-products (Ali et 

al. 2016, Atashgahi et al. 2018d, Bodnár et al. 1990, Righi et al. 2014). Strain AW-1T can also 

use nitrate as another oxo compound for acetate utilization (Mehboob et al. 2015). One avenue 

of future research would be testing degradation of haloalkanoates under denitrifying condition 

and whether oxygen can be produced from denitrification for hydrocarbon degradation as 

previously reported for the denitrifying bacterium Candidatus Methylomirabilis oxyfera (Ettwig 

et al. 2010). Additionally, chapter 2 identified 25 bacterial genomes that harbor genes involved 

in haloalkanoates dehalogenation and chlorate reduction. Another interesting avenue of 

research would be experimental verification of their metabolic potential for concurrent 

haloalkanoates degradation and chlorate reduction. Similar genome-guided physiological 

explorations will continue to identify novel metabolic features that further propel the boundaries 

of science and application. 

 

Dissemination of dehalogenase genes  

The two haloacid dehalogenase genes (halocarboxylic acid dehydrogenase gene (dehI) 

and L-2-haloacid dehalogenase (L-DEX) gene) in strain AW-1T are carried by transposons (Fig. 

6.1), similar to many Pseudomonas degradative genes carried by transmissible plasmids 

and/or transposons, allowing their dissemination to other microorganisms by horizontal gene 

transfer (HGT) (Clark et al. 2013, Ma et al. 2006, Urata et al. 2004). In the dehI gene cluster 

of strain AW-1T, an insertion element (IS) that shares 100% identity to IS30 family transposase 

was found upstream of the dehI (Fig. 6.1A). The genetic organization of dehI is similar to that 
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of dhlB in the mutant strain X. autotrophicus GJ10M50, in which an IS (IS1247) was inserted 

upstream of dhlB. Compared to the wild type X. autotrophicus GJ10, the insertion of IS1247 

caused overexpression of dhlB and enabled transposition of dhlB to transmissible plasmids 

(Van der Ploeg et al. 1995). The L-DEX gene of strain AW-1T is carried by a Tn402/5090 like 

transposon (Fig. 6.1B). Tn402/5090 transposons belong to class I integrons that are frequently 

carry antibiotic resistance genes and are major contributors to spreading antibiotic-resistant 

genes among pathogens (Hall and Collis 1998). Moreover, a genetic study of chlorate-reducing 

Pseudomonas species including strain AW-1T showed their chlorite dismutase gene (cld) and 

chlorate reduction gene (clrABDC) were separated and flanked by different types of ISs, 

resulting in formation of chlorate reduction composite transposons (Clark et al. 2013). These 

genetic characteristics of the halogen compound degradation genes of strain AW-1T suggest 

their acquisition/dissemination by HGT, enabling AW-1T as a single bacterium to concurrently 

transform organic and inorganic halogenated compounds. However, future experiments will be 

needed to confirm this hypothesis.  

 

 

Fig. 6.1 Genetic organization of the halocarboxylic acid dehydrogenase gene (dehI, A) and L-2-haloacid 

dehalogenase (L-DEX, B) gene of P. chloritidismutans AW-1T. The sequence of sigma factor 54 binding 

site in the dehI cluster is indicated with the –24 (GG) and –12 (TGC) promoter elements marked in 

purple. The sequence of left and right inverted repeats (IRL and IRR) of the Tn402/5090 like transposon 

is indicated. Numbers indicate the locus tags of the respective genes in the genome of P. 

chloritidismutans AW-1T. 

 

HGT as well as vertical evolution have also been suggested to play an important role 

in distribution and evolution of rdh genes in OHRB. For example, most rdh genes in 

Dehalococcoides mccartyi are located in high plasticity regions of their genomes containing 

mobile genetic elements and genomic islands (Hug 2016). Active circularization of an 

integrated genomic island containing the vinyl chloride (VC) reductive dehalogenase gene 
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(vcrABC) was observed in D. mccartyi. Prophage-mediated HGT of rdh genes has also been 

suggested for Sulfurospirillum multivorans (Goris et al. 2014). In contrast, no evidence was 

found for a similar HGT of the rdh genes in Desulfoluna strains (Chapter 3). The rdh genes 

were not localized in any genomic islands in the Desulfoluna genomes, or flanked by any 

mobile genetic elements such as transposons. This may suggest vertical inheritance of rdh 

genes in Desulfoluna.  

 

Regulation of dehalogenase genes  

Like most of the known dehalogenase genes, the dehI gene of P. chloritidismutans 

AW-1T (Chapter 2), and the three rdh genes of D. spongiiphila strain DBB (Chapter 3) are 

inductively expressed, indicating existence of functional regulatory systems for these genes. 

The dehI of strain AW-1T is located next to a symporter-encoding gene (locus tag: 21770, Fig. 

6.1A) that was suggested to encode a substrate uptake protein (van der Ploeg and Janssen 

1995). A sigma factor 54 dependent transcriptional activator gene (21755) and a –24/–12 

promoter sequence (sigma factor 54 binding site) are also located upstream of this symporter 

gene and dehI (Fig. 6.1A). This suggests that the expression of the symporter gene and dehI 

might be controlled by the sigma factor 54 dependent transcriptional activator, similar to the 

regulatory system that controls expression of the haloalkanoic acid dehalogenase gene (dhlB) 

in Xanthobacter autotrophicus GJ10 (van der Ploeg and Janssen 1995). Interestingly, such a 

sigma factor 54 dependent regulatory system was also found upstream of the rdh gene clusters 

(rdhA1 and rdhA3) of Desulfoluna strains (Chapter 3), indicating widespread occurrence of 

this type of regulatory systems. In contrast to the dehI and rdh genes of strains AW-1T and 

DBB, respectively, the L-DEX gene (04255) of strain AW-1T that resides on a gene cassette in 

a Tn402/5090 like transposon (Fig. 6.1B) was constitutively expressed (Chapter 2). The 

constitutive expression of the L-DEX gene is likely controlled by an unknown promotor of this 

integron (Bennett 1999). 

 

Future perspectives 

Considering mounting genomic evidence for OHR in marine Deltaproteobacteria (Liu 

and Häggblom 2018), future research is expected to reveal additional diversity of 

organohalide-respiring Deltaproteobacteria and to further provide new insights of their 

metabolism. Apart from environmental samples, a wide range of dehalogenation genes were 

recently identified in the genomes and metagenomes obtained from human and animal 

gastrointestinal tracts (Atashgahi et al. 2018d). Can halogenated compounds be transformed 

by gut microbiota? Can we find novel microbes/biochemistries from gut microbiota? There has 

been lack of cross-disciplinary collaboration between environmental microbiologists, gut 

microbiologists and toxicologists in thinking outside the box and addressing such questions. 
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Chapter 3 left some open questions for future investigations. The proteins proposed to 

play a role in electron transport during OHR and respiratory sulfate reduction await functional 

verification, for example, by genetic construction of Desulfoluna mutant strains that lack genes 

potentially involved in the electron transport chain. Similar genetic approaches were applied in 

the phylogenetically related Desulfovibrio species for functional verification of electron 

transport proteins involved in sulfate reduction (Keller and Wall 2011). Moreover, 

transcriptomic and proteomic analysis of Desulfoluna spp. grown in the presence of oxygen 

can contribute to identifying the enzymes involved in oxygen defence.  

Chapter 5 revealed decreased dechlorination rates or complete disruption of 1,2-

dichloroethane in the presence of structurally similar chloroethenes and 1,2-dichloropropane. 

The subsurface is a complex environment where OHRB can not only be challenged by co-

occurring organohalogen mixtures, but other organic and inorganic co-contaminants such as 

heavy metals (e.g. Pb, Cd, Cr, Zn, Cu, Ni) (Bunge et al. 2007, Costa and Jesus-Rydin 2001, 

Olaniran et al. 2009, Subramanian et al. 2015), (per)chlorate (Wen et al. 2017), nitrous oxide 

(Yin et al. 2019) and BTEX (benzene, toluene, ethylbenzene, xylenes) (Chen et al. 2014b, 

Richmond et al. 2001). Such co-contaminants normally not considered in studies focusing on 

dehalogenation may exert inhibitory/toxic effects on reductive dehalogenase (RDase) 

enzymes (e.g. nitrous oxide) (Yin et al. 2019) and/or growth of OHRB and their syntrophic 

partners (e.g. heavy metals) (Fu and Wang 2011, Paulo et al. 2015). Moreover, additive toxic 

and/or inhibitory effects of a mixture of co-occurring (in)organic compounds on OHRB has not 

been investigated, representing big cavities on the roadmaps towards effective bioremediation 

using OHRB.  

Finally, research on microbes with novel dehalogenating metabolic routes can extend 

our current knowledge on dehalogenation. For example, recent (meta)genomic studies 

identified a novel type of rdh genes in pure cultures and uncultured members of Bacteriodetes 

and Deltaproteobacteria (Atashgahi 2019). Unlike the well-known rdhA genes from OHRB, the 

newly found rdhA genes were not accompanied by a rdhB, but rather encode transmembrane 

helixes at the N-terminus. It is likely that the encoded RDases are a hybrid of RdhA and RdhB 

that can directly connect to the cell membrane with its transmembrane helixes (Atashgahi 

2019). The function and regulation of this novel group of rdh genes remain unknown. 

Additionally, biochemical studies, especially those focusing on enzymology and structure-

function relationships of known RDases is limited. So far only two structures of RDases have 

been resolved (Bommer et al. 2014, Payne et al. 2015). Further structure investigation of 

RDases is needed to better understand the dehalogenation mechanism and provide 

possibilities to create modified enzymes with desired catalytic properties for environmental 

applications. 
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Summary 

Halogenated organic compounds, organohalogens, and inorganic chlorate are largely 

produced and used for a wide range of applications in industry and agriculture. Besides their 

anthropogenic origin, these compounds are also naturally produced in various environments 

including, for example, forest soils, deserts, marine environments and hypersaline lakes. 

Halogen compounds are often toxic and have adverse effects on human, animal and 

environmental health, and hence microbes capable of their transformation are important for 

bioremediation of polluted sites and for natural halogen cycling. Research described in this 

thesis set out to characterize ecophysiology, genetics and potential applications of microbes 

obtained from pristine and polluted environments that can (co)metabolically transform 

organohalogens and chlorate. 

Chapter 1 provides an overview of different microbial pathways for organohalogen 

dehalogenation and chlorate reduction and the responsible microbes, genes and enzymes.   

Many contaminated sites contain mixtures of organic and/or inorganic halogen 

compounds. Microbes that can concurrently degrade different halogen compounds are of 

particular interest. Chapter 2 reported concurrent transformation of haloalkanoates and 

chlorate by P. chloritidismutans AW-1T, a facultative anaerobic chlorate-reducing bacterium 

isolated from an anaerobic chlorate-reducing bioreactor. Analysis of the genome of strain AW-

1T showed co-existence of chlorate reduction genes (clrABDC, cld) and D/L-2-haloacid 

dehalogenase genes (dehI and L-DEX gene). This study, for the first time, verified concurrent 

transformation of haloalkanoates and chlorate by a single bacterium using combined 

physiological, biochemical and molecular techniques. 

Organohalogens have a long history on earth e.g. in marine environments where 

dehalogenating microbes could evolve, most probably triggered by the natural production of 

organohalogens. Chapter 3 described isolation and characterization of a new sulfate-reducing 

organohalide-respiring bacterium, Desulfoluna spongiiphila strain DBB, from pristine marine 

intertidal sediment samples. Furthermore, physiological and genomic properties of strain DBB 

were compared to those of two Desulfoluna species previously isolated from marine 

environments. Genomic analysis revealed similar potential for organohalide respiration, 

corrinoid biosynthesis, and resistance to oxygen among the three strains, and physiological 

experiments showed their specific preference for brominated/iodinated compounds rather than 

chlorinated compounds, and stimulation of OHR during concurrent sulfate reduction. 

Chapter 4 reported microbial chloroform (CF) transformation in sediment samples 

obtained from the hypersaline lake Strawbridge in Western Australia that was previously 

shown to be a natural source of CF. In the sediment- and sediment-free enrichment cultures, 

CF was transformed to dichloromethane and CO2. Known organohalide-respiring bacteria 
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(OHRB) and corresponding reductive dehalogenase encoding rdhA genes were not present in 

the sediment-free enrichment cultures. Rather, Clostridium spp. carrying genes involved in 

acetogenesis were enriched that likely mediated fortuitous transformation of CF to CO2. This 

study indicated that microbiota may act as a filter to reduce CF emission from hypersaline 

lakes to the atmosphere. 

The co-existence of different organohalogens such as multiple chlorinated solvents in 

contaminated sites often hampers reductive dechlorination due to inhibitory effects of one or 

more organohalogens on dehalogenation of another organohalogen. Chapter 5 investigated 

kinetics of 1,2-dichloroethane (1,2-DCA) reductive dechlorination in the presence of 

chloroethenes and 1,2-dichloropropane as co-contaminants as well as the population 

dynamics of known OHRB. Dechlorination rates of 1,2-DCA were strongly decreased in the 

presence of a single chlorinated co-contaminant in enrichment cultures, and the type of 

chlorinated substrate drove the selection of specific OHRB. This study contributed to a better 

understanding of the mechanisms underlying the often observed 1,2-DCA persistence in 

environments in relation to specific 1,2-DCA dechlorinating microbial populations.     

Finally, a discussion of the results described in this thesis, remaining knowledge gaps 

and perspectives for future studies were provided in Chapter 6. In conclusion, this thesis 

contributes to extend our understanding of physiology, genomics and ecology of different 

dehalogenating microbes in contaminated as well as pristine environments.   
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