
 REPUBLIC OF KENYA
 MINISTRY OF AGRICULTURE-NATIONAL AGRICULTURAL LABORATORIES KENYA SOIL SURVEY

The soils of Norther Province
by
C.D.Ollier 1959

Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact soll.isric@wur.ni indicating the item reference number concerned.

KENYA SOIL SURVEY
LIBRARY AND DATA STORAGE
P. O. BOX 14733, NAIROBI

KS S Library

UGAMDA PROTECTORATE


```
            50nts 1: 50ins
Number 3
```


A Reconnaissance Survey by
C. D. Ollier, M.Sc: (Brist.), F.G.S. Soil Survey Officer

THE SOILS OF WORTHRRE PROVINCE, UGANDA

(EXCLUDING KARAMOJA DISTRICT)

A Reconnaissance Survey
by C.D. Ollier, M.Sc., F.G.S.
Soil Survey Officer, Department of Agriculture
general.
Information regarding Northern Province (excluding Karamoja) on Extent, climate, ethnography, history, communications, vegetation, crops and farming systems will be recorded in the memoirs on vegetation and farming systems. It is more relevant here to concentrate on geology and geomorphology as a background, to the soils of the area. Field, cartographic and laboratory methods used in this survey are the same as those described in the memoir on Eastern Province soils. Similarly, the definitions of terms apply here. The uncoloured map acompanying this memoir is draw on the $1: 500,000$ scale. The final editions of both the map and memoir will be printed in the format of the publications of the Soil Surrey of the United Kingdom; the coloured maps being on the new standard $1: 250,000$ grid sheets.

GHOLOGY AND GEOMORPHOLOGY.

With the exception of the Rift Valley deposits, of probable Pleistocene age, the whole of Northern Province is underlain by granitic and metamorphic rocis of the Basement Complex (Pre-Cambrian). A wide range of rock types is represented, including quartzites, schists, amphibolites, charnockites, phyllites, mylonites and others. Rock type is of conside able importance in some areas - in detailed soil mapping it is oftur of prime importance - but in reconnaissance mapping the influence of petrology of ten has to be overlooked. Hicwever, some mapping units, such as Zeu, are largely correlated with rock type.

Over wide areas of Northern Province the original rocks have been very deeply pre-weathered (Ollier, 1959) and it is the regolith not fresh rock - which is the parent material of soils. In many areas, therefore, a straigntforward geological map would give little indication of soil type.

Wost of the Rift Valley sediments occur in West Nile District Where they are represented by red coarse sands and very subordinate amounts of clay, gravel and diatomite. Similar sediments occur in Acholi, but gravel and clay are more common.

The natural features of Northern Province are best seen by a journey from east Acholi to the west of West Nile. The first part of such a journey is very monotonous for Acholi is a vast plain, with only occasional hills rising abruptly from it. At the Nile the first of the Rift Valley faults is seen, but although it has a throw of probably several thousand feet, the resulting topography is not very spectacular. Rift Valley deposits occur mostly in west Nile and there is only a very narrow strip in Acholi, except for the south west part of the Murchison Game Park. In West Nile they are backed by a series of fault scarps arranged en echelon which separate the Ririt Valley plain from the Liadi plain. This plain is, in turn, stopped by another large scarp to the west, above which is the West Nile Plateau. These physiographic forms are depicted on the geomorphology map. This succession of plains is largely due to rift valley movement acting on one, or in places possibly two erosion surfaces.

The Acholi plain is part of the African or en W-Tertiary surface, and there are no certain traces of the older Gondwana surface in Northern Province. A very small area at Lendu near Zeu is possibly a remnant of the Condwana surface. The relationship between
the two principal erosion surfaces of Uganda has been established by a study of the topographic features in Eastern Province and Mengo. The lower of these, the African surface, has been found, in the present survey, to be continuous with the main suriace of Northern Province.

As mentioned above, the African surface is largely cut across rotted or pre-weathered rock, and such areas are shown on the geomorphic map. The so-called "Acholi" surface (McConnell, 1955) is cut across fresh rock. The two surfaces are not separated by any fundamental change in base level, and there is no erosion scarp between them, and it is probable that they are parts of one and the same erosion surface; the Acholi being part of the African surface where all the regolith has been stripped off by erosion. As the presence or absence of a regolith is of fundamental importance to soil formation the term Acholi surface has been retained as a useful name for the lowest parts of the African surface.

The West Tile escarpment has been mapped by Hepworth (1955) as a warp, rather than a true fault, which has been emphasized by later erosion. But the Rift Valley escarpments are all true fault scarps. They are highest in the south, and smaller "hinge zone" faults appear in the northern part according to Nacdonald (1958). An ancient Acholi fault is responsible for the remarkably straight course of the Aswa river, although it does not produce any outstanding features of relief.
\therefore These opinions on the ages and correlations of erosion surfaces and faulting are in agreement with Ruhe's findings in the Belgian Congc and are supported by Hepworth's. findings in West Nile District. They are, however, opposed to the ideas of many other writers, such as Lepersonne (1956), Dixey (1956) and McConne11 (1955). Perhaps it is becauce Ruhe partly based his correlations of surfaces on soil studies, and not simply on altitucies and attitudes, that his, results are similar to those of the present survey.

Most of the hilis in the Province are of inselberg type, and rise abruptly from the plains as steep, bare masses of fresh, solid rock, usually with no soil cover at all. Their formation has been described by Cllier (1960). The Madi hilis, of West Nile appear to be remnants of a dissected, uptilted fault biock, with a fault scarp parallel to the Nile near Dufile. The Agoro Hills in Acholi are also possibly the result of faulting. There is an undulating plateau on the top of the hills, but the south facing scarp separating this from the lower Acholi plain is very steep, and valleys carrying water from the high surface "hang" above the lower surface - that is they are not graded to the lower surface.

In Eastern Province there is evidence to show the existence of a fomer great lake on the site of present Lake Kyoga but very much more extensive. This extended into Northern Province, but here it was really a systen of wide, shallow rivers rather than a true lake. A veneer of alluvium was deposited which is now the parent material of some soils. This part of the African surface might be regardea as a "panplain" rather than a pediplain. Barth movement also contrclled the form of river valleys; some are smail and "normal" but others, as in Lango, are wide and swamp filled. The area of swamps around Pakelle may also be due to earth tilting, possibly associated with faulting near Dufile and the Kadi Hills.

All major valleys are aggraded, but alluvial and swamp deposits have not been extensively studied. In some places, auch as over the Pager mapping unit, alluvial soil profiles ara fairly well differentiated, indicating maturity, and therefore a considerable age to the alluvium. In most places, however, the layers in allurial or swamp profiles are due to original alluvial deposition and not to soil forming processes, indicating imaturity and therefore a comparative recent origin of the sediments. The aggradation has an origin wioh is partly goomorphic, but is also associated with the dense growth of papyrus and other plants which blocke streams and causes doposition of

PRODUCTIVITY
um?pow of प9TH
 High to low
Mediura to low

客

CASH CROPS

Arabica Coffee
Tobacco
Cotton
Cotton
Cotton
Cotton
Cotton
Cotton
Cotton

KEY TO TORTHBRN PROVITCB SOTLS

(sxcluding Karamoja District)
DOMTNANT SOIL TYPES

PARENT ROCK

Soils of the Upwarped African Surface B.C. Amphibolite and
B.C. Gneiss
B.C. Greiss and Granite
B.C. Schist, Gneiss,
B.C. Schist, gneiss,
B.C. Schist, gneiss
L.C. Schist,
and granite
Soils of the African Surface

and granite
B.C. Schist, gneiss
and granite
B.C. Sohist
laterite may be present. a amil granite
Soils of the Degraded African Surface loans over laterite -
usually several feet deep. od
Grey to grey brown sandy laterite - usually shallow Brown loams on rotted rock,
laterite may be present. a amil granite

itised.
Reddish brown clay loams
developed on gneiss.
Deep grey sandy topsoils
over brown heavier sub-
soils on laterite.
Shallow grey sands with
murram on weathered rock.
Shallow dark sandy soils
over laterite.
Red brown clay loams formed
in pre-weathered rock. . and granite
loams over laterite - σ and granite
Grey to grey brown sandy
Brown looms on rotted rook © Be Sohist geiss

0
0
0
0
0
0
0
0
0
0

Acholi
LOCALITY
S.W. West Nile
S.W. West Nile
West central
N.W. West vile
Madi Plateau, West Nile
Madi Plateau, West Nile
Lango and
South Acholi
Northern Acholi
North Bast Acholi

9. Kiten Catena
10. Anaka Complex
\qquad

-4- -4-		
11. Amuria Series	Lango and soutis Acholi	Grey brown sand over brown sandy loam on laterite 0I.d Lake Deposits
12. Dokolo Series	Lango District	Deep, sandy, grey brown top- Old Lake Deposit soils over thick reddish..... brown clay loam subsoils. sometimes lateritised. \qquad
		Soils of the Acholi Surface
13. Okollo Complex	Madi Plateau, West Nile	Grey brown sands over veathered rock. B.G. Gneiss and quartzite
14. Palabek Complex	Northern and western Acholi	Shallow, brown loams developed on old alluvium B.C. Gneiss and alluvium Soils of old Rift Valley Sodiments
15. Rogem Type	Alone the Nile in West Nile	Deep, red sands Kaiso Red Sand
16. Paraa Series	South West Acholi (and Bunyoro)	Deep, reddish brown on grey sands. Alluvial Soils Kaiso sand on clay
17. Pager Series	N. Lango \&c Acholi	Grey clays mottled brown Recent alluvium
18. Pakelle Complex	The Pakelle area of Acholi	Brown sandy clay swanp soils and sandy loaus Swamp, alluvium and rock
19. Ora Series	Major valley in eastern Wlest Nile	Dark grey calcareous clays Recent alluvial clay
20. Panyimur Series	S.E. West Nile	Dark erey on brown sand : ${ }^{\text {a }}$ Recont alluvial sand
21. Laropi Serios	Along banks of River Nile	```Grey brown sandy loams *.... Recent alluvial sand```
22. Undifferentiated alluvium	South Lango	Clays Alluvial clay Rocky Soils.
23. Aswa Complex	Along River Aswa and tributaries, Acholi	Bare rock, with patches of coarse sand and alluvium Alluvium and rock
24. Metu Complox	All steep slopes	Brown sands on steep rocky B.C. Rock

sediments. Asgradation may also result from farly recent soil erosion Sheet erosion is common in most areas, and gully erosion is becoming more serious in one or two places.

TH2 SOILS

Twenty four mappinğ units are distinsuished in Northern Province (except Karamoja district) and of these only three occur in other provinces. The mapping units ares, in the main, delineated by Eeomorpic or landscape peatures but ten, at least, conform to the accepted delinition of a soil series and one to that of soil type. In the descriptions that follow, only bilef mention is made of landlise and agricultumal potential because these subjects will be dealt with in the vegetation and farming systems memcirs. A table is given $\mathrm{b} \in l \mathrm{ow}$ of the salient points of the respective soil units arranged in natural physiographic groups with emphasis on erosion surface. At this stage no pedological classification is offered as this is being intentionally deferred until the whole Protectorate has been surveyed.

SOIL DSSCRIPTIONS

Soils of the Upwarved African Surface

1. Zeu Complex of Catonas

- This mapping unit, whicn is a complex of catenas, is restricted to the south-west part of west Nile District, on the upper plateau. The altitude is from 4,000 to 6,000 feet. The parent rocks are Basement Complex metamorphics containing a good deal of amphibolit:
The slopes in the Zeu area are not simple, but have been shown by Hep-worth to consist of a great may minor facets. This pattern of topography is probably a useful feature of the area, fol it will naturaliy help to prestent erosion. The valleys are narrow and inciseu, arranged in a close drainase system. Along the floor of each is a strip of deep, humose alluviur. Quartz bands are íairly common and the larger ones give rise to riages or hills. Other rock outcrops are rarely seen. The rocks appear to have undergone intensive pre-weathering and rotted rock of various kinds is the parent material of the suils. Resorting of the upper layers gives rise to the topsoils, and stone line profiles are not infrequent. Laterite and murram have s. patchy diatribution and are not.extensive. Around Lendu Hill there iz a very peculiar, slag-like laterite possibly a remnant of the Gondiani erosion surface. The soils are deep and merse imperceptioly into ratted rock in situ. Drainaee is free, and structure i: generally weak or absent except for very weak crumbs. The actual profile described belc. has better structure than most, probably because it is iron a forest site. The area has a high rainfall and a good vegotative cover, so there is a reasonale depth of topsoil rich in orsanic matter. These amphibolite soils are among the best in Northern Province, and are comparable in profile morphology, if not in mutrient status, with the Nakabanco soils of fastern Province.

Profile 1 is typical for soils developed on mphibolite. Profile 1. (18374-79)
Lendu Forest, Nest Nile.
$0-2^{\prime \prime}$ Dark reddish broon (5YR:3/4), sandy clay loam; fine
subeneviar blocky to cloday.
0-5" Similar, mersing to
5 - I2" Slishtly palen revaish brom (2.5YR: 3/4)
12-22" similar but "ith crumb siructure
22-44"Redder (IOR:3/4) crumb structure
44-72" Similar.

Gneiss in the zeu area gives rise to red soils of roubhLy the same type as those on amribolite, but these are not so red, they are gritty with quartz framents, and are less fertile.

Drainage is free, and structure is generally weak, specially under crops rather than forest. Profile 2 is an exanple. ,

Profile 2. (18369-73)
Lendu Forest, West Nile.

$$
\begin{array}{cl}
0-6^{\prime \prime} & \text { Dark reddish brown (5YR:3/2), sandy loam, subangular } \\
\text { blocky structure } \\
6-14^{\prime i} & \text { Reddish brown (5YR:4/3), sandy clay loam, weak subangul } \\
14-24^{\prime \prime} & \text { Reddish brown (5YR:4/4), sandy clay, structure } \\
\text { blockj/crumb structured sular }
\end{array}
$$

24-44" Reddish brown (2.5YR:4/4), sandy clay, crumb structured 44-50" Sandy clay loam. Rotted rock with many stones. Soils in the incised valleys are usually littlo altored alluvium. The valley bottome havo gentlo slopes and it-is an eass. matter to arrange simple irrigation systems, and the soil is then very productive, though it is of rather limited extent. It is id for seed beds or for growing crops which are not wanted in large quantities.

To the north the Zeu complex gives way to the War mappin unit which is roughly similar but dous not contain any amphiboliti soils. To the east is the dest Nile escarpment, and in the zone close to the escarprient the soils tend to bo thinner than inland. In areas of the Belfian Congo, bordering the Zeu soil unit, there very deep soils with humose topsoils of great thickness, far bette soils than those in Uganda. This is probebly due, in part, to: original differences in soil formation, but a lot of the comparati poverty dof the soile on the Uganda side of the border must bo put to poor management and the effects of widespread sheet erosion. Analytical data are presentod in the appendix. Mechani analysis shows that soils on both amphibolite and gneiss are fine sandy clay loams, merging dowm into sandy clay. Organic matter is A high on account of the altitude. The soils are acid, but the ver: marked acidity of profile 1 may bo due to its situation in the for It is noteworthy that in this profile the acidity decreases vith depth. All bases are very low, and so is the phosphate content. The profile developed on gneiss was not under forest and is conseqi rather richer in bases.
2. War Complex of Catenas.
ithe War mapping unit is a complox of catenas, occupying the southern part of the West ivile Plateau, oxcluding the Zeu area in the south wost, at an altitude of about 4,000 feet.

The underlying rocks are mostly metamorphic gnoisses, schists and quartzites, which have been vory deoply weathered. Weathered rock is the parent matorial of the soils, which are usua resorted at the surface, and stoneline types are frequent. Najor rivers, such as the Ora, occupy fairly deep valleys so that thero a high surface reliof. Soils change fairly rapialy with tho natu
of the underlying weathered rock, but various kinds of red loam constitute the dominant types.

A soil on a quartz-gneiss outcrop showed a few inches of grey brown (10YR:5/3) loamy sand over rock rubble and stones. Nore commonly, even when rubble is within a foot of the surface the soil is reddish brown ($5 \mathrm{YR}: 4 / 3$) sandy loam. Deep cuttings on lower slopes frequently show well developed subsoils, and it is often difficult to determine how much of this is rotted rock in situ. Such a profile near War showed

$$
\begin{aligned}
& 0-6 " \text { Reddish brown (5YR:4/4) fine sandy clay loam } \\
& 6-72^{\prime \prime} \text { Reddish brown (2.5YR:4/4) clay loam. } \\
& \text { A more typical profile is described below. }
\end{aligned}
$$

Profile 3.

Paidha rest house. Altitude $4,800 \mathrm{ft} .$, flat site.
0 - 6" Dark reddish brown (5YR:3/2), sandy clay loam
6-12 Reddish brown (5YR:4/4), fine sandy clay loam
12-18" Yellowish red ($5 \mathrm{YR}: 4 / 6$), clay
18-24" Yellowish red (5YR:4/6), clay
24-36" Red (2.5YR:4/6), clay
Laterite is not common, but there are covasional patches. Quartzite ridges and hills are present and usually carry poor soils. On the steeper hills there is a marked catenary distribution of soils in which tongues of fairly deep and sorted drift are separated by strips of skeletal soil on bare, fresh rock. Trees seem to grow equally well on both types (most of the large hills are forest reserves.)

The War area has a fairly high rainfall:(0'j55), good vegetative cover and a comparatively intensive agriculture. Humose topsoils, however, are generaliy shallow, which may be due to some extent to sheet erosion, for many slopes are steep, and there are one or two places where gully erosion is active, notably in the area. west of Kango. The valleys are incised, and there are narow strips of deep, humose alluvial soils, as in the Zeu area to the south. Towards the scarp in the east thin dark soils appear. At Use forest reserve for instance a profile shows

O-12" dark grey (IOYR:4/1) lom sand
Stoneline
Gritty orange coloured rotted rock.
To the north the War soils are replaced by the Arua mapping unit. To the west is the watershed region, and soils there tond to be shallower than usual.

Analytical data for War soils are very like those obtained from Zeu soils. Mechanical analysis shows the dominant toxture is
fine sandy clay loam, with sometimes a lighter textured topsoil or heavier textured subsoil. Organic matter is less high, and base content is low. Phosphate is often low, though in the example given in the appendix it is quite high. Soils aro acid, usually with a pH between 5 and 6 .

3. Arua Series

The Arua mapping unit approximates to a single soil series and occupies the central part of the west Nile platesu at an altitude of about 4,000 feet, in an area of good rainfall. It is underlain by metamorphics of the Basement Complex, but the profiles do not appear to be directly derived from the underlying rock. Nuch of the rock is deeply preweathered, but thero aro several outcrops of fresh rock, as at Arua hill itself.

A complete profile is shown below.

Profilo 4. (81394-7)

Mbaraka

--
0-6" Greyish brown (IOYR:5/2) sandy clay loam
6-30" Brown (10YR\&5/3), sandy clay loam
30-48" Pale brovm (10YR:6/6), loam
48-601 strong brow ($7.5 \mathrm{YR}: 5 / 8$), sandy cla-r lam
The most notable feature of the Arua soils is the deep sandy laycr at the surfaco which merges into heavier textures below. In many places (Arua goly course, for example) the soil on all parts of the slopes appears to be groy sand, though pits show that it grades down into reddish brown subsoils of heavier texture and eventually into rotted rock. The origin of the sands is not yet known. Many valleys are narrov and there is little alluvium. Upper reaches or valleys often display soil profiles similar to those of the slopes.

The profiles show some variations, mainly in the dopth and thickness of the horizons. The grey sandy topsoils are thickest in the vicinity of Arua itselfs and become thinner in all directions away from Arua. Stonelines may be present. The laterite layer is often thick, but is usually at some depth; on the Congo border, however $z_{\text {i }}$ it is very thick indeed and occurs either close to or at the actual surface: Laterite is froquently absent altogether, as is show in profilo 5.

Profile 5: (18416-8)
$4 \mathrm{ml}_{\mathrm{s}} \mathrm{S}$. Arua
 crumb structurod
10 - $24^{\prime \prime}$ Dark brown (10YR:4/1) gravol, single grain - small crumb structured
24-72" Rotted rock.

Most of the soils are very frecly drained and there is rarely a deep accurnulation of humose topsoil. Considering the sandy nature of the soils they are quite rich in bases and have no marked

- deficiencies. It is noteble that this soil supports the densest population in West Nile, but this may be due to factors other than soil type. It also supports a flourishing flue-cured tobacco industry. To the east, towards the escarpment, soils become very thin and laterite has only a patchy distribution, though it is fairly continuous in most of the rest of the area. To the north the deep sandy upper part of the scil profile gradually disappears, and the Arua series gives way to shailow, sedentary profiles of the Koboko unit. The junction with the War unit to the south is comparatively abmipt.

Mechanical analysis of soils of Arua series shows that they possess loamy sand texture in topsoils, and sandy clay loam textures below. Organic matter is usually high, but the available base and phosphate content is satisfactory for a sandy soil.

4. Koboko Catena.

Soils of the Koboko mapping unit are a catena occupying the northernmost part of the West Nile plateau, at an altitude of a little over 4,000 feet.

The parent rocks are again metamorphics of the Basement Complex, consisting largely of schist and gneisses, with some quartzites and small areas of granite. The rocks are often deeply pre-weathered. On valleysides the basal surface of weathering is reached and both fresh and rotted rock outcrop to form the parent materials of the soils. Shallow, sedentary soils are usual, due to re-sorting of the weathered rock at the surface.

A typical Koboko profile is shown below.
Profile 6. (18398-9)
Near Oraba
0-6" Greyish brown (10YR:5/2), sand to sandy loam
6-12" Brown (7.5YR:5/3) sandy clay loam
12-24" Murram
$24^{\prime \prime}+\quad$ Rotted rock (schist)
Slopes are orten stecp and there is definite evidence of colluviation afforded by the presence of derived murram in the stonelines on lower slopes. Some stonelines contain fragments of unweathered rock other than quartzite, and there may also be some original laterite. There is much skeletal soil on both fresh and pre-weathered rock which has not even reached the stoneline stage of developmont. Quartzite gives rise to ridges and grenite forms small hills, and these are often viriually sail-less. Laterite
has a very patchy distribution, depencing on very local conditions of drainage.

The better patches of soil are used for agriculture, and food crops do reasonably well. The Koboko soils are regarded favourably by peasant farmers, but their potential is considerably less than those of Zeu, War or Arua.

To the east the soils thin out tovards the escarpment, which is not such a marked topographic feature here as in the south of West Nile, and skeletal soils on rotted rock are froquent. On plateau remnants in the southern part of the Koboko unit, soils may be two to three feet doep, whero they merge into the Arua series. To the west is the watershed between the Nile and Congo drainage systems and soils again tend to be thin. There is more laterite here than elsewhere with local patches of very massive sheet laterite.

The Koboko soils differ from the Arua soils in being shallower and more leached. They are acid with a pH of between 5 and 6 , and contents of available bases and phosphate are low.
5. Yumbe Catena.
$\therefore \quad$ The Yumbe mapping unit which approximates to a catena, occurs on the líadi plateau at about 3,200 feet, especially in the northern part of the district, where relief is fairly low. The area is underlain by rocks of the Basement Complex, but they do not have much effect on soil type.

- The soils were probably once like those of the Arua series, and may have been their equivalent at a lower level. Now, however, due to surface erosion they are considerably truncated. A typical profile is shown below.

Profile 7.

Otrem.
0 - 6" Dark brown (7.5YR:3/2), fine sandy loam
6-18" Brown (T.5YR:4/2), fine sandy clay loam
$18^{\prime \prime}+\quad$ Laterite
The main distinguishing features of the profile are the ubiquity of laterite and a topsoil of shallow sand or sandy loam, usually of a grey brow colour. The topsoil can be thicker but is seldom more than about 12". The laterite is usually massive and vesicular, but only about $12^{\prime \prime}$ in thickness. Fuch thicker laterite is sometimes present, however, and there may be pisolitic murram instead of massive laterite. Below the laterite is rock. which may or may not be rotted. This is frequently exposed on valley sides. Due to rapid drainage the soils are well leached and they are frequently very poor in nutrients. Deeper phases of the Yumbe soils are found just below the escarpment, where the sandy topsoil may be up to three or
four feet thick. A profile from this area is shown below. Profile $8 . \quad(7516-9)$: :
Omugo. Mid slope.
0 - $6^{\prime \prime}$ Black (IOYR:4/I) clay loam, veak crumb structure
6-24" Very dark grey (7.5YR:3/0) clay loam, slightly mottled strong brow, cloddy dry, massive wet.
24-80" Brown (7.5YR:4/4) gritty clay with mica and murram
These soils are probably enriched by solutions draining from higher ground which enhances their fertility. For this reason they are highly regarded for tobacco cultivation.

The depth of the soil is very variable and even within one small pit it may change from 6 " to 36 "! around the sides. In the Wolo area the soils are very shallow on massive laterite, with usually only a fev inches of very dark grey brown (loyfi:3/2) gritty loamy sand topsoil. Many valleys in the area heve wide expanses of thin sandy alluvium over rock, or sometimes.laterite, and the soils are very like those of the Yumbe unit elsewhere. Deep, humose alluvial sand is sometimes present, as in the valley north of Yunve itself, and these are usually the most fertile soils in the area. \therefore : The Yumbe unit eventually gives rise to the Okollo after more extensive erosion. Where the underlying rock is highly weathered, erosion of the topsoil and laterite will give rise to deep Parombo red loam. This being so, the southern part of the Madi plain has apparently suffered more erosion than the northern, where the Yumbe soils still exist. Towards the scarps of the rift valley the Yumbe soils become thin and finally disappear, giving way to Angal soils.

Apart from sandy bottom lands the heavier types of upland Yumbe soils seem to be the most fertile. The Omugo profile shown in the appendix is a sandy clay loam, fairly rich in orgenic matter and base content. In the other profiles organic matter is not high and the base content is lower. Phosphate is deficient in most Yumbe soils. The soils are acid, with a pH usually below 6 .

6. Parombo Series

The Parombo mapping unit, which approximates to a soil series, occupies irregular patches on the Madi Plain at an altitude of about 3,200 feet.

The soils are developed on deeply weathered metamorphic and granitic rocks of the Basement Complex most. of the rocks are schists, which are easily weatherable. The areas of Parombo soils have abrupt junctions with the Okollo unit where there are skeletal
\square
soils formed on fresh rock.
The profiles themselves are mostly of the red loam typo, and very similar in many ways to the soils of the War unit on the West Nile Plateau. A typical profile is cited below.

Profile 9. (18421-3)
Uleppi.
0-6" Dark reddish brown (5YR:3/3), gritty fino sandy clay, crumb structure
6 - 12" Yellow red (5YR:5/6), gritty fine sandy clay, subangular blocky structure
12-72" Yellow red (5YR:5/6), finc sandy rottod rock with quartzite basis

Despite the similarity of soils betweer Parombo and War units, the climate above and below the escarpment is very different, which profoundly affects the utilisation of the land in the two localities. For example coffec, one of the main crops on the platcau, is not grown in the Parombo area.

Laterite is not frequent on the Parombo soils, but doos occur, as at Parombo itself, where rotted rock is lateritised in situ, and there are also large fragments of derived latorite often measuring up to one foot in diameter. At Bondo thers are cifeper red colours which suggest the presence of amphibolitic rocks, but the area also contains many stony soils derived from gneiss. Here the unit is a soil complex which appears to be a lowland equivalent of the Zeu unit above the scarp. Rock outcrops, ospecially of quartzite, are common. Valleys are mostly fairly wide and shallow, and the soils on valley sides are much the same as those on the upper slopes and ridge crests: Relief is gonerally moderate.

At the foot of the escarpment, there is fraquently a wedece of detritus which gives rise to fertile red loams. This kind of soil has not been mapped separately because of the small size of the units, and the general similarity, for practical purposes, to the Parombo soils. A particularly good example of this soil is seon at the scarp-foot behind Nebbi, on the site of the cotton variaty trial centre.
\therefore The soils of this unit display many differences in their chemical and physical constitution. Tho wide range is due to variations of site, drainage and parent matcrial.

Soils at sites near the foot of the scarp are usually the most fertile. They contain drift or hillwash from the scarp, incorporated in the parent material, which includos an abundance of weatherable minerals. They also reccive the run-off from the scarp, which besides improving their moisture contont results in a cortain amount of basc enrichmont by domslopo illuviation. In these sites vegetation grows well, and the organic mattor contont is thoreforo
保
usually high. Two other varients are show in the appendix. The north Oraka topsoil is particularly rich in phosphate, is neutral and bas a good base content. The Uleppi/is deficient in phosphate but the base content and the pH , especially in the topsoil, are quite satisfactory. Both topsoils show a high oreanic matter figure.

Away from the escarpment there is no additional supply of bases or water, and the soils are highly leached red loams, similar in many ways to Puruli soils but not usually lateritised. These poorer soils show some variation among themselves depending on the nature of the underlying rock. The better ones are derived from amphibolite or mica schists, and the rest from more quartzose greisses and similar rocks.

Soils of the African Surface

7. Buruli Catena.

The Buruli mapping unit consists mainly of the lateritic red loams associated with remnants of the African orosion surface. It is the same unit, virtually a catena, that occurs widely in many other parts of UEanda, but there are minor differences when compared with other Provinces. From south to north there is a gradual deterioration of the red loams, and generally the Buruli soils of Ficrthern Province are poorer than those of Jastern Frovince or. Buganda, but there is no clear boundary. The red loams of northern tcholi have been mapod under a separate name, the Pajule unit, because here the differences are fairly well marked.

Typical profiles of Buruli soil are show below.
Profile 10 . (17220-4)
Minakulu.
0-7" Dark brown (7.5YR:3/2), sandy loam
:7-18" Reddish brown (5YR:4/4), fine sandy clay loam
18 - 30" Yellowish red (5YR: 4/6), fine sandy clay loam
30-44" Red (2.5YR:4/6), clay loam
44-68" Red (2.5YR:4/6), clay loam
68" + Murram
Frofile 11. (15937-41)
Aduku.
0-6" Dark brown (7.5YR:3/2), finc sandy clay loam
6-14" Dark reddish brown (5YR:3/4), fine sandy clay loam
14-22" Reddish brown (5in:4/3); clay loam
22-33" Yellowish red (5YR; $4 / 6$), clay loam
33 - 40" Yollowish red (5YR:4/6), clay loam
$40^{\prime \prime}+$ Murram

\qquad

\qquad

Profile 12. (13461-6)
Labor Farm, Gulu.
0- $3^{\prime \prime}$ Dark brown (7.5YR:3/2), fine sandy clay loam, weak subangular blocky structure
3-: 9" Reddish brow (5YR:4/3), fine sandy clay loam, crumb structure
9-22" Reddish brown (5YR:4/4), fine sandy clay loam, crumb structure
22-30" Reddish brown (5YF:4/3), fine sandy clay loam, weak crumb structure
30-381 Reddish brown (5YR;4/3), fine sandy clay loam, weak crumb structure
$38-60^{\prime \prime}+\operatorname{Red}(2.5 Y R: 4 / 8)$, fine sandy clay loam, weak crumb structure.

Variations in the profile can arise as follows:-
The humose topsoil may or may not be present, but there is usually a small thickness. Complete absence of a humose topsoil indicates a truncated profile, and this is not uncommon. In the Maruzi area of Lingo, for instance, there are many areas of very shallow, bright red soils over laterite where the vegetation cover is thicket, and there is a lot of bare soil exposed to sheet erosion.

- The best soils of the Buruli unit occur along the SorotiLira - Gulu ridge. Laterite is almost always present, below which is rotted rock. Stone lines may or may not be present. These soils are probably the most productive in Acholi, but in django they are often rather poor.

The analytical data in the appendix are of typical Buruli soils. Most textures on analysis, show a good deal of sand, and most samples fall into the fine sandy clay loam type. In the field the soils give the impression of being heavier and often feel like loams or clay loams. The increase in sand on analysis may be due to aggregation of smaller particles by iron oxides. It is usual for the clay content to increase dow the profile, but the amount of silt shows no regular variations.

The content of organic carbon depends on several factors, chief of which are the climate, vegetation cover and history of land use. In wetter areas, such as the Gulu area, which usually have the best vegetative cover, the carbon tends to be fairly high, and is low in drier areas with sparse vegetation, such as the Minakulu area. Heavy cultivation of grazing tends to reduce the organic matter content. Such soils are merging into the Pajule series, which might be regarded as degraded Buruli. Phosphate content is generally low, and a topsoil figure of 20 or more is considered high for these soils. The soils are always acid; figures over pH are found in the better soils and are associated with wetter areas and high organic matter content. In drier areas and those with little organic matter the

pH is lowest but Buruli soils rarely fall below 5.0 in any horizon. Acidity usually increaeswith depth. Bases are generally low, and there may well be deficiencies of major elements. The same trends are shown as before, arid the soils which are poorest in . phosphorus and organic matter will also tend to have low base status.

Mineralogical analysis of Buruli soils indicates a high degree of weathering and most of the soils appear to be formed on pre-woathered parent material. Dominating the heavy minerals are ilmenite and secondary limonite, with a total of about 10% of zircon, tourmaline and rutile. Other minerals such as kyanite, staurolite, and hornblende are present as occasional grains. The light minerals are nearly all quartz. Thus there are fow primary minorals prosent which might releaso nutrient bases to the soil on weathering.

8. Pajule Series.

Soils of tho Fajule mapping unit are similar to the Buruli \therefore soils in many ways, but occur in dryer areas. In parent material and original mode of formation the two are the same, and the Pajule may be regarded as a truncated Buruli soil. They have mach shallower topsoils, and the reddish brow (5YR) hues always appear within $6^{\prime \prime}$ of the surface. Eroded profiles which have been stripped of topsoil are common. In this stata the surface tends to become baked hard in dry weather which increases their erodibility. Sheet erosion is also encouraged by the sparseness vegetative cover; which is due in part to poor surface conditions and severity of droughts and high rainfall intensity. At their best the Pajule resomble the Buruli soils of the Gulu area; at their worst they present a laterite pavement with a thin veneer of bakod rod clay loam. The latter supports mainly stands of bamboo (Oxytenathira abyssinica).

Typical proriles are show below.
Profile 13. (10433-8)
North West of Patiko. Top cetena.
0 - 6" Dark grey brom (10YR:4/2), sandy loam
6-18" Dark roddish brown (5YR:3/2), sandy clay
18 - 30" Dark rod (2.5YR:3/6), clay

$30-42^{\prime \prime}$	$"$	$"$	$"$	$"$
$42-54^{\prime \prime}$	$"$	$"$	$"$	$"$
$54-70^{\prime \prime}$	$"$	$"$	$"$	$"$

-16-
 Profile 14. (10427-32)

North West of Patiko. Mid catena.
0 -. 6": Dark grey (10YR:4/1), fine sandy loam
6-18". Dark reddish orown (5YR:3/2), sandy clay

18 - 30" Yellowish red (5YR:4/6), with grey mottles, sandy clay

Pajule red loams often occur around large inselbergs, which act as watcr collecting areas and the soils around their bases may be enriched by illuviation. An unusually red version occurs in the Adilang area. Topsoils are 5YR dark reddish browns, of almost any texture, and subsoils are 5 to 2.5 YR reddish brown clay loams and laterite occurs at various depths. These, soils are very sirilar to soils in the Wiawer area of Karamoja.

The exaiples for which analytical data are given in the appendix are of the best in the Pajule unit, and it can be seen that they are very like Buruli soils in chemical characteristics. At Patiko they are very rich in phosphate, but this is not a usual feature. Many other profiles are both phosphate and base deficient.
9. Kiten Catena.

The Kiten mapping unit is a catenary association of northeast Acholi consisting of red loam soils and alluvial black calcareous soil. They occupy the headwator areas of the River Moruto and its tributaries.

The area is extromely arid ($30-35^{\prime \prime}$ rain p.a.) and the soils differ from similar soils elsewhere in characters which are probably associated witn the aridity of their location. The soils are derived from rotted rock, but there is little profile development, other than a small amount of resorting of the upper layers. A typical profile is shown below.

Profile 15. (19446-9)

Madi Opei.
0 - 6" Dark.grey brown (10YR:4/2) loamy sand
6-15" Brow (10YR:4/3) sandy loam
15-28" Brown (10YR;4/3) sandy clay loam
28-38" Brow (7.5YR:4/3) sandy clay + murram
38" + Laterite
It will be seen that the soil colours are brow and not so red as those of wetter areas. Calcareous concretions sometimes occur in what are obviously profiles of weathered rock in situ. Close to hills, on upper pedinents, the soils are darker and heavier, and seem to have iJluviated clay, together with some base enrichmont.
\qquad

 02020

Laterite occasionally occurs, and small patches of murram gravel, especially to the east of Kiten itself.

- A typical profile is show below.

Profile 16 . (18439-43)
North of Madi Opei
0-: 5" Brown (10YR:5/3) loamy sand
5-18" Grey brown (IOYR:4/2) gritty clay loam

$18-25^{\prime \prime}$	$"$	$" 1$	\ldots	\ddots
$25-36^{\prime \prime}$	$"$	$"$	\ddots	$"$
$36^{\prime \prime}+$	$"$	$"$	$"$	

At first sight this is rather like an alluvial profile, but gravel and quartz grit through the profile show that it is much modified rotted rock in situ.

The alluvial soils, when seen in the dry season, are grey cracking calcareous clays similar to those of other areas, and the complete drying that they undergo in the long dry season has no obvious effect on the soil profiles, other than self mulching.

The chemical.data in the appendix show several unusual features. In the first the sodium, phosphate and to some extent the other bases increase down the profile. This soil was taken from a site where illuviation was possible from higher ground nearby. In the topsoil, bases and phosphate are deficient. This peculiar trend occurs in Karamoja (Chenery 1955, Wilson 1960) and indicates the beginnings of semi-desert conditions of soil formation. The organic carbon figures are higher than would be expected from the general appearance of the soils. The second profile shows a normal profile distribution of bases and phosphate.

Soils of the Degraded African Surface

10. Anaka Complex

The Anaka soil unit is one of the most complex and ill defined of the Province. It comprises a number of different soil associations which display such complicated inter-relationships that they could not be mapped separately. The simplest way of regarding these soils is that they mark a transitional zone between the Buruli red loams and the largely skeletal soils of the Palabek unit. They generally show a topsoil of sandy loan, dark grey brown in colour (7.5YR, or more rarely loYR.) This frequently, but not invariably, overlies laterite, one to three feet below. On slopes especially, the sandy loam topsoil may extend down without laterite, to a dark subsoil of brown (5YR) colours. Such profiles are comparable with the Dokolo profiles in morphology, but they are less fertile. At the other extreme the Anaka soils can approach those of the Palabek, and there the profiles consist of grey brown sandy topsoil overlying
fresh rock, with sometimes a thin layer of laterite between.
Two of the Anaka profiles are given below as examples of the range that can occur, often within a very restricted area.

Profile 17. (17207-11) ...
Karlo. Mid slope, nr. Lamogi.
$0-3^{\prime \prime}$ Dark grey (IOYR:4/1), rine sandy clay loam, waak crumb structure
3 - $9^{\prime \prime}$ Dark greyish brown (10YR:4/2), fine sandy clay loam, weak crumb structure
9-18" Dark brown (10YR:4/3), fine sandy clay loam, weak crumb structure
18-33" Yellowish brow (10Yp:5/4), fine sandy clay, subangular blocky structure
33 - 48" Palor yellowish brow (10YF:5/6), mottlod strong brow, (7.5YR:5/6) fine sandy clay.

Drofile 18. (17216-9)
Paichc, Gombololo H.Q. Plateau.
0-3" Dark brown (7.5YR:4/2), fine sandy clay loam, clods
3 - $9^{\prime \prime}$. Paler dark brow (10YR:4/3) fine sandy clay loam, small clods
9-19" Brow (7.5YR:5/4): fine sandy clay loam, small clods
19-33"+ Yellow red (5YR:5/6), fine sandy clay loam, subangular blocky structure.

The combinations of soil types do not occur in any
particular topographic order, consequently therc is no typical catena.

Genernlly the Anaka soils are deeper whon they adjoin Buruli soils and become more skeletal and shallow towards the Palabek soil area. Lower and mid slopes are usually the best for agricultural purposes. Analytical data from two fairly good soils are given in the appendix. It is seen that in the topsoils, the base and organic matter contonts are quite satisfactory, but the phosphate content is deficient. Many fnaka soils are poorer than these examplez.

Soils of Anciert Iake Deposits on the African Surface
11. Amuria Sories
\because
As was explained in the section on geonorphology, there was formerly a lako oxtonding beyond the prosent Lako Kyoga, which laid dow sandy loam sediments, and it is on these that the Amuria soil type is formed. These soils are continuous with the present valley slope soils, but cover ridges and hill tops as well as lower slopes. For practical purposes this unit may be regarded as a soil series. Sandy loam toyturos are the rulc, and the commonest colours are in the brown ($7,5 \mathrm{YR}$) range, although reddish brown (5YR) colours are sometimes present in the subsoil. They are generally shallower than the Amuria soils of Eastern Province, especially in the vicinity
of the Lango - Acholi border, where soils are often less than 12" deep over laterite. In the better soils, laterite is absent or at a great depths.

The Amuria soils have no very abrupt boundary vith the Buruli soils, but merge through a transition zone with topsoil characteristics like the Amuria and subsoils like the Buruli. They are well delineated from the swamps but this is an elaborate and convolutod form line, consequently the line draw on the map has been smoothed out in parts.

Two typical profiles are given below.
Profile 12. (17232-5)
Omoro. Flateau.
0-6" Dark brow (10YP:4/2); sand
6-18" Brown (10YM:4/3), sand.
18-48" Brown (7.5YR:5/5), Ioany sand
48-72" Brown (7.5YR:5/4), fine sandy laann
Profile 20. (17228-3i)
Apigikwe. Plateau.
0 - 5" Very dark grey brown (10YR:3/2), sand
5-12" Brom (7.5YR:4/2); loamy sand
12 - 20" Brown (7.5YR:4/2), sandy loam
20-48" Brom (7.5YR:5/4), sandy loam witic murram pellets $48^{\prime \prime}+\quad$ Laterite

Analytical data for several soil types of the Amuria unit are given in the appendix. The Cmoro profile may be regarded as typical of the shallow soils of the Lango - Acholi border area. They are acid and the base contents are very low in spite of a moderate organic matter content. This may be due to a grass cover for a long time, as the sample is from an uncultivated site. Typical of the soil generally, phosphate is very deficient.

The Patonge profile is much deeper, and is rather like a Dokolo soil. The pH is exceptionally high for Amurie soils and the base content better than average. The phosphate figure is very high but organic matter content is moderate. This soil is as good as Anuria soils can be, but such soils occur in very amall and widely scettered areas.

The Apigikwe profile is from a fairly average Amuria soil, though the absence of all bases but calcium (which is itself very low) represents a worce state of afrairs than is usual.
12. Dokolo Series.

This soil series occurs only in Lango and they are regarded as the best soils in the district. From their general appearance
thoy soem to represent an Anuria topsoil, often quite thick, over a Buruli subsoil.

Three typical profiles are shown below.
Profile 21. (19284-90)
4 ml . E. Lira.
0 - 6" Jarik gray (IOYR:4/1), loamy sand, crumb structure
6 - 12" " " " " " "
12-24" Dark brown (7.5YR:3/2), sandy loam, sloddy structure
24-40:" Brow (7.5YR:4/4), fine sandy clay loam, weak crumb structure
40-64" Yellowish red (5YR:4/6); fine sandy clay loam, structureless
64-88" Yellowish red (5YR:5/6), clay lom, structureless
88-120" " " ". " "
Profile 22. (15968-73)
Dokolo, Prison Farri. Lower slope.
0-4" Very dark brown (IOYR:2/2), sandy loam
4-14" Dark brow (7.5YR:3/2), sandy loam
14-28" " " fine sandy clay loam
28 - 36" Brow (7.5YR $5 / 3$), fine sandy clay loam
36-52" Yellowish red (5YPs.5/6); clay loam
52-72"+
Profile 23. (15962-7)
Dokolo Gombolola. Flat site.
0 - 2装" Dark brown (7.5YR:3/2), fino sandy clay loam
$2 \frac{1}{2}-\ddot{5}^{\prime \prime}$ " " " " " $"$
5-10" Dark reddish brown (51R:3/3), fine sandy clay loam
$\begin{array}{cccccccc}10-18 " & " & " & " & " & " & " & " \\ 18-25^{\prime \prime} & " & " & " & " & " & " & \text { " }\end{array}$
25-36" Reddish brown (5YR:4/4), clay loam
36" + Siveram
Characteristic of these soils are their doep humose topsoils which extend down to two feet in some cases. The organic matter contont though not high is higher than avorage for Northern Province soils and appears to be present in sufficient amount to produce a moderately stable crumb structure and improved wator holding capacity. Colours are dark brown (7.5YR:4/3) ard the commonest toxture is finc sandy clay loam. The subsoils are in the 5YR hue and the textures heavier, 口sually clay loam. Laterite may or may not be present.

The soils ocour larecly in Dokolo county, honce the namer but also extord as far as Lira where semo of the best examples are found. They merge into Buruli unit by the thinning out or.
disappearance of the thick topsoil, and they merge into Amuria when the red subsoil disappears and the whole profile becomes shallower. The Dokolo series can be found on any part of the plateau or slope and there seems to be little influence of the topography on the soil pattern within the mapped areas.

Analytical data from several profiles are given in the appendix, and in general bear out the field impression that these soils are amongst the most fertile of the Province. There is, however, a clear deficiency of phosphate, and the potassium content too, is very deficient. It is rather surprising that of the two samples from Dokolo itself the plateau site is more fertile than the lower slope, for this is the reverse of the usual arrangement in most soils of Northern Province. It is not known whether this is a regular feature of Dokolo soils or not.

Soils of the Acholi Surface

13. Okollo Complex

The Okollo soil complex occupies considerable areas on the Madi plateau, at about 3,200 feet, in ilest Nile. Much of the Madi Plain is part of the Acholi ercsion surface cut across fresh, solid rock, and this is the parent material of the soils on it. These soils are in marked contrast to those formed on pre-weathered rock, and are generally very shallow.

Some of the shallowest of all are seen close to the top of the Rift Valley escarpment above Panyimur. Here amphibolites, gneisses and quartzites outcrop as extensive rock pavements which are partially covered by gravel. Even here there is a sparse vegetation cover, mostly of thorn bushes and some grass. There are several patches of massive laterite near the escarpment, especially east of Angal.

Elsewhore there is some slight accumulation of weathered rock formed in the present cycle of weathering, but these yield onily shallow, skeletal soils. In some places, as at Okollo, the farmers remove the large stones from the plots they are cultivating and thus improve the depth. of the soil. A typical soil profile shows only 6 inches of grey brown (10YR:5/2) sand, with many small stones. There are, fortunately, small patches of weathered rock (originally micaceous) scattered throughout the Okollo soil unit, and these produce soils of the series. They are quite suitable for cultivation and settlements make use of such patches wherever possible but they cannot be mapped on the present scale. Narrow strips of: alluvial soil are also used for cultivation wherever possible.

The boundaries of the Okollo compley vary as follows. To the west is the West Nile escarpment, which carries skeletal soils, but at the base there is frequently a wedge of detritus which forms

$-22-$

soils of moderately good depth. The Parombo soils have an irregular distribution within the Angal complex, but become more widespread to the west. The junction between the two is often romarkably sharp, following a rock junction, but the boundary as mapped is necossarily somewhat gencralised because many of the patchos of Parombo soil are too srall to be indicated as individual areas. Tho junction of the Okollo with the Yumbe unit is less well defined but the presence of fairly large spreads of laterita in the latter has been used to fix the boundary. Typical soils of the Orollo are laterit. free but small scattered patches of läterite do occur in the mapped areas which are too small to separate out on the present scale. To the east the Okcllo area is bounded by the many scarps of widely differont sizes which soparate it from Rogem sand.

The analytical resuits obtained from a number of soils of Ckollo type are given in the appendix. It must be remembered that it is not always possible, within the okollo maping unit, to find even a six inch depth of soil. There is low phosphato conton't, and a very small amount of organic matter. The figures for base content are low, indicating a general deficiency, though it must be admitted that they are no worse than many soils which are deeper and possess better physical conditions. Presumably there are weatherable minerals available which, on decomposition, are able to provide some bases.

34. Palabek Complex.

In north and west Acholi a new erosion surface has been formed at 3,000 feet, know as the Acholi surface, largely cut across fresh rock - not across the pre-weathered and rotted rock of the African surface. On the Acholi surface fresh rock is the soil parent material and it appears that very little soil formation has occurred in the present cycle. Not all pre-weathered rock has beer removed, however, and therc are patches of rod soils scattered throughout the Palabek soil unit which is thus a soil complex. The situation is comparable to that in West Nile whore patches of Parombo soil are scattered within the Okollomapping unit. The differencos correspond to changes in the underlying rock type. There are also outcrops of laterito, always on riage tops or plateaux, which aro romnents of the latoritised African surface on these are small patches of Anaka or Buruli soil, but thoy are of such limited extent that they cannot be mapped separately. On low sites alluvial deposits are spread over the rocks, and these probably represent the better soils in the area.

Examples of Palabek profiles are given below.
Profile 24.
Near Ogibi. (Palabuk Atiak track)
0 - 6" Dark brown (7.5YR:3/2), loam
6-12" Brown (7.5YR:4/2), sandy clay loam
12-18" Browm (7.5YR:4/3), clay Ioam
This merges into a layer with the same material and rock fragments.

Profile 25.
Lolim.
0-6" Very dark grey brow (10YR:3/2), Ioamy sand:
6 - 12" Dark brow (10YR:3/3), sandy loam
12 - 18" Dark yellowish brow (10YR:3/4), sandy loam
18-24" Brown (7.5YR:4/4), sandy clay loam
Profile 26. (18556-8)
Ridge north of River Anaka
0-4" Greyish brown (10YR:5/2), fine sandy clay loam crumb 4 - $9^{\prime \prime}$ Brown (10YR:5/3), fine sandy clay loam, weak crumb 9-24 Yellowish brown (10Yk: 5/4), sardy clay cloddy

Theso are some of the better soils types, but it must bo remembered that thore are also large areas of very.shallow and poor soils, and even barc rock. The chemical data in the appendix arc from such soils. They show the usual low contents of organic matter, available bases and phosphate but these tend to increase with dopth as a result of severe dry seasons, like the Kiten soils.

Soils of Old Rift Valley Sediments
15. Rogem Type.

The most extensive of the soil types formed on rift valloy deposits is Rogem sand in West Nile.

This is a deep, sandy, red soil which often shows little variation over many square miles; it is one of the few mappable soil types (soil type used in its defined sense) in the Protectorate. Topographically it occurs on a plateau varying in height from a few feet to about two nundred feet above the River Nile, which is dissected by several very broad valleys which cross the plateau to enter Lake Albert or the Nile. The parent material is a Pleistocene lacustrine deposit known as the Kaiso beds (although probably yourgex than those of the type locality, Kaiso, in Bunyoro). There are occasional bands of diatomite, and clay but the soils are almost always sandy.

A typical profile is shown below.
Profile 27
Pakwach. Terrace.

0-3"	Grey brown (7.5YR:4/2), coarse sand
3-15	Redaish brow ($5 \mathrm{YR}: 5 / 6$); " "
15-36"	" (5YR:4/4),
$36-48^{\prime \prime}$	Loamy coarse sand

These soils are considered rather poor, and are used mostly for cassava growing, although one cotton crop can be taken when the land is freshly opened. On tho lower slopes, just above the swamps, narrow strips of what is a transition between Ora clay and Rogem send, are found. It is dark, sandy clay or similar texture, and yet does not suffer flooding in the wet seascn. Here various food crops other than cassava are grovn.

Some unusual soils at Pakwach may be described here as they do not cover sufficient area to warrant a eeparate mapping unit but are located adjacent to the Rogem sand. A spit of shinglo and shells has been built out from the shore at Pakwach, and within this are lake-laid sands which are verj saline. In fact, in former days this soil was used as a source of salt. The spit at Pakvach is tho only one along the Nile, though there are others in Bunyoro along the baniss of the Lake ilbert.

These deep sands have a low inherent fertility, falling off rapidly from the topsoil downarads. Two typical topsoils are given in the appendix and it is seen that even topsoils have low organic matter and very low base contents. The phosphate content is quite good in these samples, but is usually deficient. The pHis over six, not indicating the presence of bases but approaching the storility of pure sand. This is due to the very low clay and organic matter contents. Lower slopes near scarp margins, as was explained above, are better ther. the upper slopes, and an example from Inde is given. This has ample phosphate, and the base content is not too bad, though calcium is deficient.
16. Paraa Serigs.

These soils are formed on Kiiso sediments in Acholi, like the Rogem sand of West Nile, but thore are several differences in character. Generally the soils are of a browner colour than the Rogem which are very red. Whercas the Rogem soils, aro almost all coarso sands, the Faraa, although usually sanay, do show a greater variety of textures. Some of the profiles rapidly bccome aandy elays with depth, and in the neighbourhood of Paraa itself there are large pebble beds.

Two typical profiles are shown below.
Profile 28.

```
-Te Okoto (in. 33)
    0-: 6" Dark greyish browm (IOYR:4/2), sand
    6. - 12" Brown (7.5YR:4/4), sandy loam
    12 - 18" Redaish brown (5YP:4/4), sandy clay loam
    18-36" Dark rod (2.5YR:3/6), sandy loam
```

Profile 29.
Pak ba
0-6" Brown (7.5YR:4/3), sand
6-12" " (7.jYR:4/4), sand
12-18" Yellowish red (5YR:5/6), loamy sand
18-36" " "* (5Ye5/6), sandy loam
Most of the valleys in the arga are narrow and there is no eqivalent to Ora clay of Fiest Nile, and consequently there are no swamp edge soils equivalent to the nost fertile soils of the rift valley lowlands. All the rivers have short courses and the area: is more officiently drained than the Nest Nile areas, and the problem of water suoply :rould make agriculture difficult. Fortinately the entire area is in the National Game Park, which is perhaps the best use to which it could be put. There are several expanses of severe gully erosion, especially araund Paraa, which are due to overgrazing by the very large numbers of animals, especially hippo.

Analyses of Paraa soils skow ther to be very sandy, acid, and with a low contont of bases. Phosphate, in somo samples, is remarkably high possibly from the manure of the natural fauna.

Alluvial Soils

17. Pager Series

Although the lower valley of the iswa river consists
largely of bare rock, the upper valley (the river is called the Noroto in Lango) and its branchos, have deposits of alluvium along their coursos. The soils developod on this alluvium occur in broad spreads several milos acress, and dospitu the erround being very flat, tho soils are not usually swampy. The soils appear to havo attainod somo degree of maturity as indicated by, textural profil. which shows an increasing heaviness with dopth, and not the random viriation that occurs in recent alluvial soilss they may.thus be regarded as a mappable soil series.

Hlost profiles hive dark coloured top soils, generally in the lOYR hue, dark groy or dark brow beine the sommonost colours. Some soils in the Pader Palwo area are exceptionally yollow. Although the textural profile is graded and topsoils are lighter than subsoils,
the majority of profiles are clays but cocasionally sandy profiles do occur, as in the Kitgum. area.

In many sites murrem is present at between one and three feet from the surface, indicating a shallow fluctuatirg water table within the alluvium. The shallowest soils are little used for cultivation, which may be due to their poverty, or simply to the preference on the part of the local people to use them for grazing.

Two typical Pager profiles are shown below.
Profile 30. (10709-15)

Pager River

0 - 6" Very dark grey (10YR:3/1), claj, granular structure

$6-12 "$	$"$	$"$	$"$	$"$	argular blocky structure		
$12-24 "$	$"$	$"$	$"$	$"$	$"$	$"$	$"$
$24-36 "$	$"$	$"$	$"$	$"$	$"$	$"$	$"$
$36-48 "$	Dark grey (IOYR:4/I)	$"$	$"$	$"$	$"$		
$48-56 "$	$"$	$"$	$"$	$"$	$"$	$"$	$"$
$56-65 "$	Very dark Erey (IOYR:3/1)	$"$	$"$	$"$	$"$		

Pager soils merge into the wide expanses of Sebei clay along the Karamoja - Lango border. Nlsewhere they merge into the dark sandy soils of the imuria and Anaka units: but in the north tiey have fairly abrupt boundaries with adjacent soil units. Genuina swamp soils occur close to the rivers, but these are not usually extensive, and have not been mapper separately.

Analyticel data for two typical pager profiles are given in the appendix. They seem reasonably fertile, but the phosphate content is low in the profile from Pager and sodium is high in the subsoils of the igago site.
18. Pakelle Complex.

The Pakelle soil complex occupies a roughly triengular patch in the northern part of East Madi, insiãe an area of Palabek soils.

This mapping unit is really a geomorphic rather than a soil unit, and delimits an area where minor earth wovements have caused. back-damming of rivers and the creation of swamps. Tho swamp soils are bleck clays, but they are better for agricultural purposes than wuch of the surrounding country... This is especially true of the swamp edges. The area has a fairly high rainfall despite its usual arid appearance, and is quite productive of coiton. Hot springs indicative of soil selinity, occur afew miles south of Pakelle, but generally the soils are not, saline. The different soil types have a patchy distribution within the area mapped as Fakelle, and between the swamps there are areas of skeletal soil over fresh rock and some smaller patches of red loam. The mapping unit can be regarded as a complex mixture of swamp (Ora) soils and upland soils of the Pa? abek unit. The profile below is a typical sandy scil from a swamp edge.

Profile 32. (5444-8)

$\begin{aligned} & 0-6 \prime \prime \\ & 6-14^{\prime \prime} \end{aligned}$	Greyish brown (2.5Y:5/2), loamy sand " " " sandy loam
14	lowish brown (10Yp:5/4), sandy clay 1
24	cllowish brown (10YR:6/4), sandy
36-48!	

As the soil types are very diverse the chemical data is very variable. The analytical data in the appendixarefrom a swamp edge soil.

Ora Series.

The Ora soil sories occurs in wide seasonally flooded valleys in the rift valley lowlands of West Nile. The soils are heavy black clays commonly roforred to as black cotton soils, with occasional carbonate concretions. A typical profile is shown below.

Profile 33. (10855-61)
R. Koichi, old flood plain

Sandy layers are sometimes found in various parts of the
profile. These are the result of original sedimentary bandins and
not of pedological formation. Such a profile is shown below.
Profile 34. (10754-7)
River Ora, Flood plain, 3,000 ft.
0-6" Very dark grey (loYR:3/2); sandy clay loam, weakly granular
6-12" " "..." "... sandy clay, weak angular blocky
structure
12-24" Dark brown (10YR:3/3), loamy sand, structureless
24-30" " " sandy loan, weak angular blocky
structure
In the Coongi-Kali area there is a pecuiliar arrangement of soil types which is not at present clearly understood. Eere the black clays are not confined to velleys but extend up the slopes and even to the summits of low mounds. Occasionally the Ora soils are saline, (E.G. profile 35), and therefore not utilised. The local people claim to be able to recognise saline soils by the taste. Water conditions control the use of the Ora clays; cotton is the usual crop, and food crops are generally grow on the margins of the swamps, where the soils are the most productive in the area.

Profile 35. (10804-10)
River Acha, swamp.
0-6". Very dark grey (10YR:3/1), clay, angular blocky structure
6-12" " " " ... " sandy clay, " " "
$12-24$ " "
24-36" " " " " " \because " "
$36-48$ " 11 " " ". " " . "
48 - 60" Dark grey (10YR: 4/1), sandy clay loan, angular blocky structur.
60 - $72^{\prime \prime}$ Grey Brom (10YRs5/2), " " " "
Mechanical analyses, show in the appendix, indicate
irrational changes in the texture profile, suggesting that the variation is due to sedimentation and not to soil forming processea. Most textures are heavy and clays throughout form the commonest profile, such as that from the River Koichi.. Organic carbon and phosphate figures are usually high, as are most bases. Sodium is sometimes present, as in profile 33, and it may be excessive. Topsoils are acid, to below pH5, although calcium carbonate may be present in discrete concretions.
20. Panyimur Series.

Panyimur. series occurs along the shores of Lake Albort (2030 ft.) in the south of West Nile district. Its soils are probably derived largely from old lakeside deposits, plus a certain amount of detritus derived from the escarpment. The soils are dark in colour, but remarkably sandy in texturo, though subsoils can bo as heavy as clay loan. They have fairly loose single-grain structure
and are very. Qasy to work. Towards the escarment the slope of the ground increases, but the soils are very much the same and rarely become stony. The actual lake mirgin soils are not used for cultivation, presumably because of excess water conditions.

A typical profile is show below.

Profile $36 . \quad$ (13953-5)

Panyimur. Terrace.
0 - 6" Very dark groy (IOYR:3/1), sand
6-15" Gray (2.5Y:5/0), sand
15-40" Very dark greyish brown (10YR:3/2), loamy sand
Analytical-data indicates that the scils are loamy sand to sands with a moderate organic matter content. The phosphate content is high, and seems to increase towards the lake shore. Dase contents are fairly high, and sodiun is absent, so these soils are satisfactory in all respects, in fact, they are the best soils in the Rift Valley.
21. Laroni Series.

The Laropi soil sories extends along the banks of the Nile in the Northern part of the province; it consists of deep sands, originally laid down by the River Nile. Minor rivers cross the areas mapped as Laropi and form narrow tracts of heavy black clays of the Ora type, but these have not all been shown on the map. Deef, grey brow sends form the whole of the soil profile-in most instances, but there are sometimes horizons of different colour or texture. These are original sedimentary horizons and not soil horizons.

Profile 37. (i0930-4)

grey to grey brown in colour, and although it has little appearance of high productivity it is ciaimed locally to be very good land, beir. much used for cotton (in preference to the Buruli soils of the area). There are some patches of coarse gravels on the terraces, unused for cultivation, and these support dense thorny thickets.

Laropi profiles are very variable. ifechanical analyeis shows that subsoil textures are erratic, due to sedimentary banding and not to soil forming processes. The organic matter content is usually satisfactory, but in the very sandy areas, as in laneo, a low organic matter fisure is normal. Phosphate content is generally hice. in West Nile representatives of this series, but the very sandy soils of Lango are doficient. Base contents follow the same pattern, the West Nila area being the best, though there is occasionally excess sodium.
22. Undifferentiated Alluvium.

Along the southern boundary of Lango district small rivers feed into Lakes Kyogo and Kwania and these are terminated by swamp alluvium. The elluvial doposits are almost invariably-dank grey clays with very infrequent thin lenses of fine sand. Seasonal flooding is a regular feature of these soils and this is reflectea in their yellowish brown mottled subsoils. They differ from the Ora clays on this account and also in that calcium carbonate concretions are absent. Gihese soils support swards of perennial grasses; chiefly Echinochloa pyramidalis with Phoenix paims on anthills. Profile 38 is typical of the Lango swamps.

3
 Profile 38 . (11126-31)

$\begin{aligned} & 0-6^{\prime \prime} \\ & 6-12^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { Dark grey (IOYR:4/1), clay, angular blocky stincture } \\ & \text { " " " mottled yellowish brown, } \\ & \text { angular blocky structure } \end{aligned}$
12-24"	Grey (7.5:R:5/0), mottled yellowish brown, angular blocky structure
24-60"	Grey (7.5YR:5/0), blocky structure

The analytical data show that these clays are fairly acid,
pH 5-6, despite a high base contont, indicating tho presence of mortmoriilonitic ciay mintral. Available sodium approaches the danger level in some profiles. Topsoils are notably low in organic matter despite their dark colours which may be ascribed to the clay mineral and free carbon from grass fires.
scarps are highest in the south and fade off to the north, but there the Madi Hills may represent further faulting on a large scale. abore the escarpments are usually Okollo soils, and below them, apart from small areas of colluvium derived from the scarp, there are soils of the Rogem and Ora units. On the scarps themselves there is only skeletal soil, pale grey, sandy and stony. Due to the slopes there is little retention of water and veatation is represented only by drought and fire resistant species. Such land has no agricultural value. The work of Macdorald (3) indicates that the faulting on the West Mile sides of the rift, in the Obongi area, is a complex hince zone, which results in many minor fault blocks instead of the large clean cuts as occur on the Acholi side and south West Nile. The effect of this is to break the soil distribution into smaller areas, (not mapped on the present scale) which would in turn cause very scattered and patchy agriculture if they should ever bat utilised.

The Fiest Nile escarpment as distinct from the Fift Valley is a north-south feature, parallel to the western boundary of the district. There is no evidence for faulting ; in the area, but Hepworth's (2) work suggests it is a warp which has been emphasised by later erosion. The scarp is highest and nost marked in the south, (behind Parombo), and can be followed to Koboko where it is a fairly minor feature of the landscape. In front of the escarpment proper there is a zone of hills - erosional remnents of the front part of the zone, and these are steep sided and have similar soil to the escarpment proper. The Netu mapping unit covers the whole zone of escarpment and hills. The soils are grey, sandy skeletal soils, and like those of the rift valley facits are excessively drained in many places.

The Madi hills have not been geologically surveyed, but appear to be an uptilted fault block, mainly of quartzites, the dissection of which has given rise to the present rugeod topography. The junction betweon the hills and the alluvium near Dufile appears to be a fault scarp, but in the west the hills mergo into the Madi plain. In the hills proper there are the usual gray to yollowish broin, sandy, stony skeletal soils, but the topography is much more uneven than on the fault scarps but there are occasional flat sites where reasonable depths of soil accumulates. This is still sandy, but in suitable siteas or on the more micaccous rocks loamy soils can occur. In some profiles there is even latexíte. Examples of two profiles in the kadi hills are shown below. '

Profile $41 . \quad(7524-8)$
Metu

$0-5^{\prime \prime}$	k greyish brow (10YR:4/2), loamy sand
5-1011	sandy loam
10-16"	Dark brom ($7.5 Y \mathrm{~F}: 4 / 2$), sandy clay loam
16-24"	Brown (10YR:5/3), sandy clay loan
24-48"	Dark browm (7.5YR: 4/4), sandy loam

23. Aswa Complex.

The river Aswa in Acholi follows for most of its course a thick milonite band, which marks the line of a very ancient fault. The water-course has minor deviations, but it must be one of the longost straight stretches of river in the world. The milonita must have proved fairly easily erodible to control the diraction of the river to such an extent, and this is also shom by tho amount of freshly exposed rock. This bare rock is the basis of the Aswa mapping unit.

In cortrast to the Werote reaches of the river, the Aswa valley is not covered by a thicks sheet of alluvium, but is mostly bare rock, and although there are many patches of alluvial soils on minor meanders and backwaters they are of such small size and of such irregular distribution that they are not used for crops. Thoy are also liable to flooding. The main Aswa valley and the portions of tributary valleys of the same type, such as the Aguga, can be rogarded as virtually useless, and soil-less.

On slightly higner ground, where a reasonable depth of soil replaces the more usual shallow stony soils, there is some cultivaticn, and the profiles given below are of these atypical and better soils.

Profile 39.
Aswa River on Atiak - Palabek track.
0 - 6" Very dark grey brown (1OYR:3/2), sand
6-12". Dark grey brown (10YR:4/2), sand
Hock
Profile 40. (17188-91)
Higher ground, near above. Palulu.
0 - $4^{\prime \prime}$ Very dark grey ($10 Y R: 3 / 1$), loamy sand
4-14" Vexy dark grey brown (10Yno3/2), loany coarse sand
$\therefore 14-24^{\prime \prime}$ Dark grey brown (IOYR:4/2), sandy clay loam
"24-36" Dark grey brown (10YR:4/2), sandy clay loam Merging into broken rock

The exanle from which the analytical data is given is from \qquad ... an area recently cleared by the Tsetse dopartment and not yet settled (1958). Most bases are present in reasonable quantitics, but the complete absence of phosphate is hichly doleterious. This is a fairly lioht soil and possibiy the heavier soils are somewhat better.
24. Hetu Complex.

This name, taken from a village in the Madi Hills, has been given to those areas on the soil map where there is very little soil, but steep rocky scarp slopes. Some of these areas may be characterised further.

The rift valley escarpment consists of severql fault-scarps arranged on echelon, roughly parallol with the Albert Nile. The

Profile 42. (18475-7)

Agoro
\therefore 0-18 Dark grey (IOYR:4/1), loany sand
8-16" Dark greyish brown (10YR:4/2), loamy sand
16-24" Dark brown (10YR:4/3), gritty loamy sand
The Agoro hills are made of granitic rocks and rise abruptly from the north Acholi plains by an escarpment of about 1,000 feet. The escarpment, as would be expected, is covered by skeletal soils with much bare rock. Above the escarpment is a dissected plateau with undulating landscape, which rises gently to the peaks of the Imatong mountains. The upper slopes too, have generally shallow and sandy soils of fairly poor quality, and they are not used for cultivation. From the natural vegetation it seems that the area receives quite a high rainfall, and there are some permanent rivers. These have cut very steep gorges where they cross the elige of the escarpment. At Agoro water from the river has been used from time immenorial for irrigation during the dry season. At present the hills harbour much game and are used more as a huntinc area than anything else. Lack of easy access is likely to prevent any development.

The Maruzi (Mahaluzi) Hills of south Lango are composed of Karagwe-Ankolean rocks, mainly quartzites. These have a skeletal soil and are comparable with the Bugondo hills of Teso in Eastern Province. There are some patches of highly sheared phyllitic rocks such as occur at Serere in Eastern Province, and there may be some small areas of Serere soil series, though none were discovered during the survey. The Maruzi area seems to be drier than the Serere-Bugondo area, and soils are not so well developed, and suffer considerable sheet erosion.

The Acholi hills range from small tors to huge inselbergs
like Rom, All are composed mainly of granitic or gneissic rock and all have bare rock surfaces or, at best, only skeletal soils. Many inselbergs rise from plains of pre-weathered rock but there is little of this material left near the inselbergs and even their podiments are on fresh rock. Around some hills (e.g. Paimol) there is an apron of detritus derived from the hill, spread all around it, so that the surrounding profiles have a topsoil derived from the fresh rock, and containing unweathered minerals, which overlies very woathered rock. Certain hills assume a fantastic shape, of which Amiel is probably the most striking example. Although the soils of the hills themselves are virtually useless they are often the foci of settlements. This is due to the fact that they concentrate rainfall as runoff in the pediment at their bases, producing springs and wells.

Analytical data does not mean much in the case of these soils, which are so patchy and reflect only the nature of the underlying rock and its degree of weathering. The Nebbi samples quoted

-34-

$\because-\cdots \because$
in the appendix are such shellow soils but the differences give scme idea of the variation that. car take place witnin a short distance. The Agoro hills profile fron Lotrtura "is deeper. Here the pH and most bascs are lows but organic mettor is high, probably because they are not cultivated. The Metu profile is even deanox but can harily be regurdec as typical. Nevertheless such pockets do occur mone ite poorer an more skeletal scils. The high potassium ficure and deficiency of other bases must indicate rolationshij vith underlyirs rock and lack of maturity of the profile. In considering the potential value of such small areas of soil within the Metu unit each must be consicered sesarately, for it is not possible to generalise about the chernical data because local variation is too sreat.

References

1. Eiohcp, W. Volcanics, Karamoja." 3iature, 182, 1480.
2. Eepworth, J.J., (1955), "Proliminary account of mapping in the southerr part of the West IVile District." Jvis 10 . Fes $/ 55$. (Urpublished report)

- (1958). Verbal communications

3. Macaonald, R., (1558). Verbal conmunications

APPENDIX
 ANALYMICAL DATA
 Me thods

Kechanical Analysis

Silt and clay were detemmined by the hydrometer metricd ot Bouyoucos (1927) as modified by Tyner (1939) using sodium hexa-nota phosphate as the dispersing acent. The figures in the table are for the International iractions

```
Clay < 2\mu, silt 20-2\mu
Sand 20-2000\mu
```

Exchangeable Bases (Cations)
The exchangeable cations were determined by a rapi! method in neutral normal ammonium acetate leachates (Hughes, 1959). The figures in all cases except for sands and sandy loams are about 80% oi what is actually present. For sands and sandy loams tho more elaborata extraction technique was used and $95 \%-100 \%$ of the exinenceable bases. were extracted.

It should be bormin mind that a zero fisure for any one cation does not mean that it is entirely absent bit that it was not detected by this method.
Exchange ible Hydrogen
This was determined in buffered p-nitrophencl extracts by tre msthod of Schofield (1933).
通
pH was measured in pasios iabout 1:1) by the flass electrode method. Organic Carbon

The wet combustion metrod of Walkley and 3lack (1934) was used but their correction factor of 1.33 was not applica.
Available Fhosphate
The well known method of Truog (1930) was used, usine buisered $N / 500$ sulphuric acid as the extractant.
Iower Limits of Adeauacy for Good Crops

> O Base Ixchance Capacity

Celcium
20 for Kaolinitic soils
50 for Montmorilloniic suils
Ricinnsium
5
\because そtassium

Tis
Organie enibon
Kitugen
Iriog fhuphate
3.5. (tea only)
4.5 (most other crops)

Titrogen 0.1\%
Triog phewphate 15 p.p.m.

References

Bouyoucos, G.J. 1927. Soil Sci., 23, 319 and 343. Hughes, B. W. 1959. To be submitted to J. Sci. Foot Agric. Schepield, R.K. 1933. J. Agric. Sci., 23, 252.
rinug, I. 1930. J. Am. Soc. Aeron., 22, 874. Pyner, E.H. 1939. Proc. Soil Sci. Soc. Am., 4, 106. Waikley, A. and Black, I.A. 1934. Soil Sci., 31, 29.
ANALYTICAL DATA FOR SOIL PROFILES

\square

\square

Depth Ins.	$\begin{aligned} & \text { Mechanical } \\ & \text { Analysis } \end{aligned}$	Exchangeable Bases (Cations) Milli-equivalents per 100 g Soil						Exch.H	$\begin{gathered} \text { Exch. } \\ \text { Capacity } \\ \text { m.e. } \end{gathered}$	Saturation	pH	Organic Carbon \%	Truog $\mathrm{F}_{2} \mathrm{O}_{5}$ p.p.m.	- Remarks
	Sillt Clay	Ca	M\%	K		1 ln	Total							
									PAJULE					
								Profi	23... 10	33-8)				
Patiko,	Acholi.				.						op of	f Catena		
6	$6 \quad 22$	2.8	1.4	0.43	0	V. H	4.63	4.5	9.13	50.7	5.51	2.07	57	Fairly high base content
18	4 - 28	4.0	2.0	0.42	0	0.27	6.69	5.7	12.39	54.0	4.90	- 1.17	41	throughout profile, increase
30	444	4.1	2.3	0.45	0	V. H	6.85	4.7	11.55	59.3	5.10	. 0.62	6	with depth due to dry site.
42	7.45	4.6	3.0	0.40	0	V.H	7.00	4.0	11.00	63.5	5.40	0.41	19	
54	7.47	5.4	2.7	0.46	0	0.28	8.84	3.9	- 12.74	69.4	5.45	0.36	16	¢
70	050	5.3	2.6	0.39	0	0.14	8.43	$\begin{gathered} 3.8 \\ \mathrm{~N} \% \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} 12.23 \\ 44^{-0}-611 \end{gathered}$	63.7	5.40	0.32	20	\cdots
								Profi	1e 14 (10	427-32)				
Patiko,	Acholí.										Iid Ca	atena		
6	$10 \quad 16$	5.7	3.0	'0.34	0	0.11	9.15	5.3	14.45	63.3	5.87	1.47	265	As for profile 13.
18	2: 24	2.6	0.7	0.24	0	0.18	3.72	5.6	9.32	39.9	5.15	0.86	22	
30	434	3.8	1.2	0.22	0	0.26	5.48	4.2	9.68	55.6	5.16	0.54	18	
42	8 - 39	4.6	1.6	0.31	0	0.28	6.79	3.6	10.39	65.4 :	5.12	0.44	8	
54	643	4.6	2.6	0.33	0	0.15	7.68	3.3	-10.98	69.9	5.32	0.32	9	
66	446	5.1	1.7	0.42	0	0.10	7.32	$\begin{array}{r} 3.5 \\ \mathrm{~N} \% \quad 0 . \end{array}$	$\begin{aligned} & 10.82 \\ & 138^{0-611} \end{aligned}$	67.7	5.30	0.36	13	
\because									KITEN					
	\because -				:			Profi	1 l 16 (18	439-43)				
	4.41	0.6	<0.3	0.28	0	0.31	1.19	5.2	6.39	18.6	5.3	1.04	8	Very low N and P.
18	12.45	9.8	4.7	0.49	3.0	0.03	18.02	4.2	22.22	81.0	5.5	0.67	7.	Increase in base content
25	843	10.2	3.0	0.49	3.2	0.02	16.91	1.5	18.41	91.9	6.5	1.01	7	with depth due to dry
36.	10.... 45	14.5	4.2	0.74	4.7	0	20.14	0.5	20.64	- 98.5	7.4	0.71	18	climate.
$36+$	83	23.8	3.2	0.75	4.9	0	. 21.65	0.6	22.25	97.3	7.4	0.60	33	

9\% 0.074 0-6"

\square

GEOMORPHOLOGY OF NORTHERN PROVINCE

