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Abstract — Incomplete marker data prevent application of marker-assisted breeding
value estimation using animal model BLUP. We describe a Gibbs sampling approach
for Bayesian estimation of breeding values, allowing incomplete information on a single
marker that is linked to a quantitative trait locus. Derivation of sampling densities for
marker genotypes is emphasized, because reconsideration of the gametic relationship
matrix structure for a marked quantitative trait locus leads to simple conditional densities.
A small numerical example is used to validate estimates obtained from Gibbs sampling.
Extension and application of the presented approach in livestock populations is discussed.
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Résumé — Estimation des valeurs génétiques avec information incompléte sur les
marqueurs. Un typage incomplet pour les marqueurs empéche l'estimation des valeurs
génétiques de type BLUP utilisant I'information sur les marqueurs. On dé)cr’it' une
procédure d’échantillonnage de Gibbs pour I’estimation bayésienne des valeurs genet.lqu'es
permettant une information incompléte pour un marqueur un,ique 1ié & un locus quantitatif.
On développe le calcul des densités de probabilités des génotypes au marqueur parce
que la reconsidération de la structure de la matrice des (;qrrelatlons gamethues pour
un locus quantitatif marqué conduit 3 des densités conditionnelles §1mp1§s. Un petit
exemple numérique est donné pour valider les estimées 9btenues par (?chantlllonpage Ele
Gibbs. L’application de ’approche aux populations d’animaux domestiques est discutée.
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1. INTRODUCTION

Identification of a genetic marker closely linked to gene (or a cluster of genes)
affecting a quantitative trait, allows more accurate selection for that brait 5].
The possible advantages of marker-assisted genetic evaluation have been described
extensively (e.g. [13, 16, 17)). -

Fernando and Grossman [1] demonstrated how best linear unbiased prediction
(BLUP) can be performed when data, are available on a single marker linked to
quantitative trait locus (QTL). The method of Fernando and Grossman has been
modified for including multiple unlinked marked QTL [23], a different method of
assigning QTL effects withip animals [26]; and marker brackets [5]. These methods
are efficient when marker data are complete. However, in practice, incompleteness
of marker data is very likely because it is expensive and often impossible (when
no DNA is available) to obtain marker genotypes for ajl animals in a pedigree.
For every unmarked animal, several marker genotypes can be fitted, each resulting
in a different marker genotype configuration. When the proportion or number of

Gibbs sampling [3] is a numerica] integration methoq which provides opportuni-
ties to solve analytically intractable problems. Applications of this technique have
recently been published i statistics (e.g. [2, 3]) as well as anima] breeding (e.g. [18,
25]). Janss et al. [10] Successfully applied Gibbs sampling to sample genotypes for a
bi-allelic major gene, in the absence of markers. Sampling genotypes for multiallelic
loci, e.g. genetic markers, may lead t reducible Gibbg chains [15, 20]. Thompson
[21] summarizes approaches to resolve thig potential reducibility and concludes that

Der is to describe the Gibbs sampler for marker-assisted
S where genotypes for g, single marker locus
i i of the conditional,

2. METHODOLOGY

2.1. Mode] and priors

where y and e are n-

D-vector of ‘fixed effects’ U and v are q ang 9 -vect; f ic and
QTL effects, respectively: X is ; A i of fulp o e an

and W are known n
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coilsider three random genetic effects, i.e. two additive effects at a marked QTL
(vl and v?, see figure 1) and a residual polygenic effect (u;). Here e is assumed to
have the distribution Ny (0,X02), independently of 8, u and v. Also u is taken to
be N4(0, Ao2), where A is the well-known numerator relationship matrix.

M == 1M M, 1 M

$ s

|
S

+ Qo

M;! M.?

i

Q' Q?

Figure 1. Linkage between marker and quantitative trait locus (QTL) alleles. Assignment
of QTL alleles is based on marker alleles. Given a known recombination rate, r, the
probability that the first QTL allele of animal i is identical to the second QTL allele
of its sire is given as P(Q} = Q2) =(1—1) X% P(M} = M2) + (r) X P(M} = M3), where
M = marker allele; Q = allele; i = individual, s = sire; and d = dam.

Finally, v is taken to be N2q(0Go2), where G is the gametic relationship matrix
(29 x 2q) computed from pedigrees, & full set of marker genotypes and the known
map distance between marker and QTL [26]. In case of incomplete marker data,
we augment genotypes for ungenotyped individuals. We then denote myy) and
Gy as the marker genotype configuration k and as the corresponding gametic
relationship matrix. Further, 8, u, v, and missing marker genotypes are assumed
to be independent, a priori. We assume complete knowledge on variance components

. and map distance between marker and QTL.

2.2. Joint posterior density and full conditional distributions for location

parameters

u, and v for the model given in equation

The conditional density of y given B,
X3 — Zu— Wv) (y — X — Zu— Wv},

(1) is proportional to exp{—1/20¢ 2(y —
so the joint posterior density is given by
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p(ﬂ) U,V|03,03a0§amobs,r, Y)
o exp{~1/20(y — X — Zu - Wv)(y — X8 — Zu — Wv)}
x exp{~1/20;%(u’ A1 u)}

X Z [lG(_l-s0\72,1/26XP{_1/20'\,—2(V/G(—1$V)} X p(m(k)lmobs)] (2)
k=1

The joint posterior density includes a summation (nc) over all consistent marker
genotype configurations (mgy). In the derivation of the sampling densities for
marked QTL effects, however, one particular marker genotype configuration, my),
is fixed. The summation needs to be considered only when the sampling of marker
genotypes is concerned.

'Io implement the Gibbs sampling algorithm, we requi
distributions of each of B, u, and v given the remaini
full conditional distributions, which are as follows

re the conditiona] posterior
g parameters, the so-called

(B16-1,u, v, y) ~ N [(xdx:) ! (y = X_f_; — Zus Wv), (xix;) 202 3)

(wlu-;, 8,v,y) ~ N[(Zilzi +alg,)~! <z{(y —XB-Z_ju_; - Wv) — i a.ijOéuUij),

oy
(z{z; + aiiau)‘lagJ " (4)
(vilv_i, B, u, m,y)
~ N((wi'wi + gi(ik)av)“l (wi’(y ~XB8~Zu-— W_iv) - i avgi(jk)Vj),
o
(i + gfyon) 102) R

oo . . _ _
where, axl,g(k) s the (i,j)th element of A~1 and G(kﬁ, respectively, oy, = 02/02,
a 2
oy = 02/02 and Zauauuij’ and
d " 7] i
and gametic covariances in the pedigree, reg ectively. Note that th h
distributions (3), (4) and (5) correspond + P y e means of the

. to the updates obtained i 1
equations are solved by Gauss-Seide] it 5 ined when mixed mode

AU ALIONS eration. Meth i
distributions are well known (e.g. (24, 25)). ethods for sampling from these

Ofvgi({()vj are the corrections for polygenic
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a particular genotype for the marker locus. Then the posterior distribution of
genotype g is the product of two factors

p(m; = gm|m_j, 8,1, V, Mebs, T, y) o p(mi = gm|m—;) X p(v|mi = gm, m_;,02,1)
6
with,
p(V|m; = gm, m_;,02,1) = IG(}];U;zll/zeXP{—l/%';z(V/G(_k%V)} (7)

where G("ls corresponds to marker genotype set {m_;,m; = gn). Thus, equation

(7) shows that phenotypic information needed for sampling new genotypes for the
marker is present in the vector of QTL effects (v).

Now, it suffices to compute equation (6) for all possible values of gm, and then
randomly select one from that multinomial distribution [20]. In practice consid-
ering only those gy, that are consistent with m_; and Mendelian inheritance can
minimize the computations. Furthermore, computations can be simplified because
“transmission of genes from parents to offspring are conditionally independent given
the genotypes of the parents” [15]. Adapting notation from Sheehan and Thomas
[15], let S; denote the set of mates (spouses) of individual i and O;; be the set of
offspring of the pair i and j. Furthermore, the parents of individual i are denoted
by s (sire) and d (dam). Then, equation (6) can be more specifically written as

p(m; = gm, M|V, 07, Mobs, ¥)
o¢ (s = gm|ms, M) X P(Vi[Vs, Va, Wi = g, Ws, 1, 05, T)

< [T TI {p(milmi = gm,ms) X p(valvi, vsmi = gm,mj,m1,0%,1)}  (8)
JES; 10y ;

When parents of individual i are not known, then the first two terms on the
right-hand side of equation (8) are replaced by 7(m;), which represents frequen-
cies of marker genotypes in a population. The probability p(m; = gm|ms, Mq) cor-
responds to Mendelian inheritance rules for obtaining marker genotype g; given
parental genotypes ms and mg, similar for p(m;|mi = gm,m;)- The computation of
p{Vvi|vq, m;, ms, mq, 1} (and p{vil|vi, vj, mi, m, mj,r}) can efficiently be performed
by utilizing special characteristics of the matrix G~ .

Let Q; denote a gametic contribution matbrix rela’?mg tl}e QTL effects of
individual i to the QTL effects of its parents. The matrix Q; is 2(i—1) x 2. Fff
founder animals, matrix Q; is simply zero. The recursive algorithm to compute G

of Wang et al. (1995, equation [18] ) can be rewritten as

-Q;
q
G;'= }: I, | DY -Qf Iy 04 (9)
i=1 Oi

- ~1 (whi ~1 — (C; - Q[Gi—1 Qi)™
where D! = (C; — Q|G;_1Q;)~" (which reduces to D; ™" (Ci — QiGi-1Q;

with no ihbreedfiné;), 0; is a 2(q—1) x 2 null matrix. The off-diagonals in G; equal the
inbreeding coefficient at the marked QTL [26]. Equation (8) shows the similarity to
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Henderson’s rules for A~! [6]. The nonzero elements of G~1 pertaining to an animal
arise from its own contribution plus those of its offspring. So, when sampling the
ith animal’s marker genotype, only those contribution matrices need be considered
that contain elements pertaining to animal i. These are the individual’s own
contributions and those of its progeny when i appears as a parent.

-Q; —Q;
(VGTv)i=v'| I, |D{-Q!1, Oilv+ > VL D' -Q) I, O5)v
0; JES; I€0; Oj
= [vi = Qivs - QI VD [vi — Qfv, — QEVy]
+>0) M- Qivi— QLviIDT v, — Qlv; — Qlvy) (10)
JES I€0;

where vy is the vector of animal k’s two marked QTL effects, and QE denotes the
rows of Qy pertaining to P, one of k’s parents. Again, we recognize each term in

the sum is the kernel of g (bivariate) normal which is p{vi|vs, vq, m;, mg, mgq,r} or
p{v1|vi, vj, my, mj, my, ).

2.4. Running the Gibbs sampling

cha‘,ined data augmentation algorithm [19]. So,
one augments data (y and Mobs) with parameters 0) to obtain, for example,

p{616s,. .. ,04,¥). For the burpose of breeding value estimation, Gibbs sampling
works as follows: ’

' mark » W€ augment a genotype that is consistent with
pedigree, Mendelian inheritance, and observed marker data;

2) sample O/ from,
8], i=1,2, + P; for fixed effects,
[4], i=p+ Lp+2,..,p+ q; for polygenic effects,
(5], i=p+q+ Lp+q+2,.,p+ 9+ 2q; for marked QTL effects, or
(6], i=p+3q+1,p+3q+2
and replace 61" with gir+ul,
3) repeat 2) N (length of chain) times,

or any individual paramete % i .
simulated sample fr l?;h b the collection of n values can be viewed as a

1€ appropriate margina] distribution. Thig sample can be
g.sed.go qalculate & marginal posterior mean or to estimate the marginaf)posterior
1stribution. For sma] pedigrees with only a few a;

> nimals missin
genotypes, posterior means can be evaluated directly using & observed marker

1+ P+ 3q + t; for marker genotypes,

E(6*|02, 2, 52 =
( |Uua Ovs0¢, Moy, T, y)= éY: E(G*IG(k), 0‘121, 0'3, 0'5, y) Xp(G(k)ImObS7 r, y) (11)
(k)
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where §* is a fixed, polygenic or marked QTL effect. This provides a criterion to
compare the estimates obtained from Gibbs sampling.

3. NUMERICAL EXAMPLE

A sma]l numerical example is used to verify the use of the Gibbs sampler to
obtain posterior mean estimates and illustrate the effect of the data on the estimates
obtained from two different estimators, i.e. a posterior mean and the well-known
BLUP estimator (by solving the MME given in the Appendix). Pedigree and
data of the example are in figure 2. Both sire (01) and dam (02) have observed
marker genotypes, AB and CD, respectively, but do not have phenotypes observed.
Three full sibs have a marker genotype BC and a phenotype 420 (denoted FS 03,
04, 05); three other full sibs have a marker genotype AD and a phenotype —20
(denoted FS 06, 07, 08). Both animals 09 and 10 have no marker genotypes but
have a phenotype +20 and —20, respectively. Complete knowledge was assumed on
variance components and recombination rate between marker and MQTL (table I).
The thinning factor in Gibbs sampling chain was 50 cycles and the burn in period
was twice the thinning factor, and 20 000 thinned samples were used for analysis.

Table 1. Population genetic parameters, used in numerical example.

Parameter Value
Phenotypic variance 1000
300

Polygenic variance '
Marked quantitative trait locus variance 50

Recombination rate 0.05

3.1. Estimates for genetic effects

ed from Gibbs sampling were similar to the TRUE
II. The posterior estimates of MQTL effects of
Jess divergent than those of their full sibs that

had their marker genotypes observed (+2.48). These less divergent values reflect
the uncertainty ongmarki’er genotypes of animals 09 and 10. The TRUE and GIBBS
posterior densities for an MQTL effect of animal 09 were also very sn'mlar ( ﬁgure 3).
The posterior variance was 52.3, which was larger than the prior variance (02 = 50)
and reveals that the data are not decreasing the prior uncertainty on MQTL effects
for animals 09 and 10 in this situation. For the other full sibs, the post.erlor variance
was 47.02, which was lower than the prior variance because segregation of MQTL

i i inty. i.e. marker genotypes were known. The
effects was known with higher certainty, g 6 o the

: . 1
BLUP estimates for MQTL effects of animal 09 and 10 were equa.
polygenic effects of these animals, which equaled the variance ratio of the MQTL

and the polygenes.

The posterior estimates obtain
posterior estimates, as shown in table
animals 09 and 10 (&0.70) were much
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Pedigree of Numerical Example

Sire (01) Dam (02)
y=... y=...
gu=ADB 8, =CD
| l
IS (03,04,05) 'S (06,07,08)
y= 20 y~-20
g,=BC ga=AD
Animal 09 Animal 10
y =420 y=-20
gm: e 8“,=

Figure 2. Pedigree of numerical example. Two parents, sire 01 and dam 02, have .eight
offspring. The sire and dam have observed marker genotypes, AB and CD, respectively,
but do not have phenotypes observed. Three full sibs (F'S 03, 04, 05) have marker genotype
BC and phenotype +20; three other full sibs (FS 06, 07, 08) have marker genotype AD
and phenotype —20. Animals 09 and 10 have no marker genotypes but have phenotypes
+20 and —20, respectively.

“\..
\
\

l TRUE
O Y 2 e U GIBBS
E]
c
]
o

\
W
-25 -20 -15 -10 5 0 5 10 15 20 25

MarL effect

of animal 09.

Figure 3. Posterior density of the first marked quantitative trait locus effect O30,

TRUE: direct computation (pp = 0.697; o = 7.234: indirect approximation
oq = 7.234).
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3.2. Marker genotype probabilities

In the following marker genotype AB represents both AB and BA. In the latter
case, alleles for both marker and MQTL are reordered, maintaining linkage between
marker and MQTL alleles within an animal. So, four marker genotypes were possible
for animals 09 and 10 (table III). Based on pedigree and marker data solely, each of
these four genotypes was equally likely (prior probability = 0.25). After including
Phenotypic data, (posterior) probabilities changed: marker genotype BC and AD

marker alleles A and D negative values. Note that probabilities (TRUE) for marker
genotypes AC and BD also (slightly) changed after considering the phenotypic data.

Table III. Prior and posterior marker genotype probabilities for animals 09 and animal 10.

Marker genotypes

AC AD BC BD
Animal 09
Prior 0.2500 0.2500 0.2500 0.2500
TRUEab 0.2504 0.2196 0.2796 0.2504
GIBBS 0.2470 0.2203 0.2801 0.2527
Animal 10
Prior 0.2500 0.2500

: - 0.2500 0.2500
ggg%ESab 0.2504 0.2796 0.2196 0.2504

0.2477 0.2815 0.2191 0.2518

% TRUE: directly computed; P GIBBS: approximated by Gibbg sampling.

4. DISCUSSION
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phenotypes of animals in the pedigree are used. Jansen et al. [9] indicate that, as
a result of the use of phenotypic information, unbiased estimates of effects at the
QTL can be obtained in situations where animals have been selectively genotyped.

In this paper we have concentrated on the use of information from a single
marker locus. Using information from multiple linked markers can increase accuracy
of predicting genetic effects at the QTL. The principles applied here have been
extended to situations where genotypes for all the linked markers are known for all
individuals |5, 22]. In order to incorporate individuals with unknown genotypes, the
method presented in this paper needs to be extended to a multiple marker situation.
In extending the method to multiple markers, the problem of reducibility deserves
special attention.

Reducibility of Gibbs chains can arise when sampling genotypes for a polymor-
phic locus with more than two alleles [20]. The reducibility problems will become
more severe when sampling genotypes for multiple linked markers. Thompson [21]
suggested several, workable, approaches to guarantee irreducibility of the Gibbs
chain. These approaches make use of Metropolis-coupled samplers [11], importance
sampling, with 0/1 weights [15], and ‘heating’ in the Metropolis-Hastings steps [12].
Alternatively, Jansen et al. [9] sampled IBD values for all marker loci indicating
parental origin of alleles instead of actual alleles to avoid the reducibility problem.
In extending the method to multiple linked markers, attention also needs to be paid
to an efficient scheme for haplotypes or genotypes at the linked loci. Updating of
genotypes at closely linked loci will be more efficient when genotypes at the linked
loci are updated together (‘in blocks’) in order to reduce auto-correlation in the
Gibbs sampler [10].

For posterior inferences on the breeding value of an animal a minimum of
100 effective samples is needed. In the numerical example this minimum would
correspond to a chain of 5000 cycles which required 8 s of CPU at a HP9000
K260 server. It has been found that computing requirements increase more Or
less linearly with the number of animals [10]. The presented method can be
applied to data originating from nucleus herds which comprise the relatively gmall
number of genetically superior animals from the population. In a marker—assm’qed
selection scheme marker genotypes will be collected largely on these.ammals, W%th
sufficient animals having marker genotypes observed to improve selection of superior
individuals.

Straightforward applicat
of marker genotypes missing,
requirements of Markov chain Mo
sampling. Hybrid schemes will nee

from the commercial population into t ;
values of nucleus animals. Similar schemes have been implement

foreign information into national evaluations in dairy cattle.

Our Bayesian approach can also be considered as a first s‘gep towards a MCMC
algorithm, not necessarily Gibbs sampling, that can also estimate hyper parame-
ters, which were held constant in this study. The next step, there:fore? comprises
estimation of variance components, both marked QTL anfl polygenic, given 2 fixed
map position of the QTL. And, eventually, one could estimate the most likely lpo-
sition of the QTL within a linkage map containing multiple markers. The complete

ion in large commercial populations with thousands
is not a valid option because of computational
nte Carlo (MCMC) algorithms such as Gibbs
d to be developed to incorporate information
he marker-assisted prediction of breeding
ed to incorporate
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MCMC algorithm can then be used for the analysis in QTL mapping experiments

with complex pedigree structures, such as (grand-) daughter designs, in outbred
populations.
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Al. APPENDIX

Al.1. Computation of average G with incomplete marker data

Wang et al. [26] suggested computing an average G, here denoted G, as

a = Z G(k) X p(m(k)lmobs)

my) -1

where Gy is the gametic relationship matrix given a particular n{larker genotypg
configuration myy); and p(m(k)lmobs) is.tl}e probal:.)ﬂlty of myy) given Mops. This
equation is not conditioned on phenotypic information.

A1.2. Marker-assisted best linear unbiased prediction of breeding values

Mixed model equations (MME) to obtain BLUE for fixed effects and BLUP for
random effects are

X'X X'Z XI'W B X'y
7'X  ZL Aoy Z'W il =12y
W'X W'Z WW + G lay | |9 W'y
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where oy = 02 /02, oy = 02 /02 and G are all known. Solutions can be obtained by
Iteration on the data [14]. These equations can be used in three situations. First, G
is unique (complete marker data). Second, with missing markers, a linear estimator
is obtained by taking G = G. Third, with G = G(ry, they are used to compute
E(elG(k)a 01217 03) Ug: Y)'



