Land Information Systems

Developments for planning the sustainable use of land resources

by H.J. Heineke, W. Eckelmann, A.J. Thomasson, R.J.A. Jones, L. Montanarella, B. Buckley (eds.)

Land Information Systems

Developments for planning the sustainable use of land resources

by

H.J. Heineke, W. Eckelmann, A.J. Thomasson, R.J.A. Jones, L. Montanarella, B. Buckley (eds.)

EUR 17729 EN

1998

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the data contained in these proceedings if these are used without its express knowledge and consent.

ÓThe European Soil Bureau, Joint Research Centre I-21020 ISPRA – ITALY 1998 EUR 17729 EN

In: Land Information Systems: Developments for planning the sustainable use of land resources. H.J. Heineke, W. Eckelmann, A.J. Thomasson, R.J.A. Jones, L. Montanarella and B. Buckley (eds). European Soil Bureau Research Report No.4, EUR 17729 EN, (1998), 546pp. Office for Official Publications of the European Communities, Luxembourg.

Published by

The European Soil Bureau, Joint Research Centre I-21020 ISPRA – ITALY

COVER MAPS: EXTRACTS FROM THE EUROPEAN SOIL DATABASE

Foreword

With an increasingly affluent population demanding more from our environment to support everyday life, it is becoming more and more urgent to plan and introduce sustainable practices of land use. The expanded European Union now constitutes the third most populous political grouping in the world and, in economic terms, is comparable with the United States of America and Japan. This level of development has only been achieved through the high intensity of agricultural and industrial activity, which, in global terms, is taking place in a relatively small area. Many of the resulting environmental problems, traditionally confined to Europe, are now beginning to appear in less populated areas of the world, as similar activities there intensify. In this respect we can look upon Europe as a laboratory for seeking solutions to the problems of production, pollution, and protection of land resources.

This background together with the explosive developments in Information Technology during the past decade stimulated the newly-constituted European Soil Bureau – ESB – based at the Joint Research Centre, Ispra (I), to propose this international workshop on land information systems and the part these play in planning the sustainable use of land. It was held from $20-22^{nd}$ November 1996, at the Bundesanstalt für Geowissenschaften und Rohstoffe – BGR – (Federal Institute for Geosciences and Natural Resources), Hannover, Lower Saxony (D).

The meeting was organised by a team drawn from the BGR, the Niedersächsisches Landesamt für Bodenforschung – NLfB (Geological Survey of Lower Saxony), and the Soil Survey and Land Research Centre – SSLRC – Cranfield University, Silsoe (UK). The ESB provided EU funds to support the running of the meeting.

The Proceedings are divided into 8 sections covering: *The European Perspective* on the compilation, management, distribution and application of soil- and land-related databases; *Summary and Recommendations; The National Perspective* in Europe, with contributions from all over the continent; *Techniques and Technologies* on the application of new methodologies; *Environmental Applications* using information systems for solving practical problems in the management of land; *Land Evaluation* on traditional uses of soil and land data for land suitability; *Poster presentations*; and a *Database Dictionary* for the Soil Geographical Database of Europe.

This volume – *Research Report No.4* – constitutes the fourth in a series produced by the European Soil Bureau and its predecessor, the Soils Information Focal Point. It makes a significant contribution to the development of a Soil and Land Information System for Europe, which is urgently required for the protection of the continent's environment and for the sustainable development of its land resources.

R.J.A. Jones

EDITORS' NOTE

We would like to thank all the contributors for their ready responses to our queries and their tolerance of our idiosyncrasies. Their friendly co-operation has made an otherwise onerous task a pleasure.

We would also like to thank all those people in NLfB and BGR who contributed to making the meeting in Hannover so productive and fruitful.

Hans J. Heineke – Wolf Eckelmann – Arthur Thomasson – Bob Jones Luca Montanarella – Barbara Buckley

2credit2_u4

Table of Contents

Section 1: The European Perspective	1_0	3-68
The European Soil Bureau J. Meyer-Roux, L. Montanarella	1_1	3-10
A proposed European soil information policy D. King, J. Meyer-Roux, A.J. Thomasson, P. Vossen	1_2	11-18
European Soil Database: information access and data distribution procedures <i>R.J.A. Jones, B. Buckley, M.G. Jarvis</i>	1_3	19-32
The European Soil Information System C. le Bas, D. King, M. Jamagne, J. Daroussin	1_4	33-42
Towards a European Soil Profile Analytical Database H.B. Madsen, R.J.A. Jones	1_5	43-50
Elaboration of a European forest soil database for monitoring atmospheric pollution <i>E. Van Ranst, L. Vanmechelen, R. Groenemans</i>	1_6	51-68
Section 2: Progress and Recommendations	2_0	69-74
Welcome speech from Dr. Fischer, Minister of Economics, Technology and Transport of Lower Saxony	2_0	70-71
Summary of Progress and Recommendations R.J.A Jones, A.J. Thomasson	2_0	72-74
Section 3: The National Perspective	3_0	75-234
Development of the soil information system BORIS in Austria N. Arzl, A. Dvorak, A. Riss, Ingrid Schreier, Sigrid Schwarz	3_1	77-90
From Soil Survey to quantitative land evaluation in Belgium L. Hubrechts, K. Vander Poorten, M. Vanclooster	3_2	91-100
Capture, updating and evaluation of field and analytical data for Bulgarian soils <i>I. Kolchakov, B. Georgiev, D. Stoichev</i>	3_3	101-106
Development of the Soil Information System for the Czech Republic J. Kozak, J. Nimeèek, O. Vacek	3_4	107-114
Second-generation soil maps of Denmark – a case study from Western Zealand <i>Ege Lau Frandsen, H. Breuning-Madsen</i>	3_5	115-124
Development of soil information systems in the Federal Republic of Germany - status report <i>H.J. Heineke, W. Eckelmann</i>	3_6	125-132

The FISBo BGR Soil Information System: State of the Art G. Adler, W. Eckelmann, R. Hartwich, V. Hennings, F. Krone, W. Stolz, J. Utermann	3_7	133-140
Land information systems in Greece: past, present and future T. Lelentjis, J. Alatas, L. Toulios, S. Floras, G. Kapetanak	3_8	141-150
A database for sustainable agriculture and environmental protection in Hungary G. Várallyay, J. Szabó, L. Pásztor, E. Michéli	3_9	151-164
LOSIS – Lombardy soil information system for sustainable land management L. Andreoli, S. Brenna, M. Brigatti, D. Fasolini, R. Rasio, A.Rudini, U. Zecca	3_10	165-170
The Lithuanian Soil Database for sustainable Land Use: developments and planning <i>Vanda V. Buivydaite</i>	3_11	171-176
Using a soil information system to combat soil erosion from agricultural lands in Norway Åge A. Nyborg, O. Klakegg	3_12	177-180
Creating an FAO-compatible soil map of Poland S. Bialousz	3_13	181-186
Romanian Soil & Land Information System – an overview C. Råujå, V. Vlad, I. Munteanu, S. Cârstea, M. Dumitru, R. Låcåtusu, C. Simota, Ruxandra Vin D.M. Motelicå	3_14 ntilå,	187-196
ROMSOTER-200: a Digital Soils and Terrain Database for Romania I. Munteanu, C. Grigoras, Sorina Dumitru, C. Simota, Elena Dobrin, Victoria Mocanu, C. Iord	3_15 lachescu	197-214
The Soil Information System of Slovakia and its utilization in land evaluation <i>J. Hraško, J. Kobza, V. Linkeš</i>	3_16	215-218
Land information systems for sustainable development in the UK M.E. Proctor, P.A. Siddons, R.J.A. Jones, P.H. Bellamy, C.A. Keay	3_17	219-234
Section 4: Techniques and Technologies	4_0	235-334
An integrated agrometeorological forecasting system for Bulgaria G. Georgiev	4_1	237-242
Three-dimensional Soil Prediction: Fuzzy Rules and a GIS <i>M. Ameskamp, J. Lamp</i>	4_2	243-250
Architecture of the NIBIS Soil Information System of Lower Saxony, Germany <i>HU. Bartsch</i>	4_3	251-258
Multivariate distance methods for geomorphographic relief classification <i>K. Friedrich</i>	4_4	259-266
Baden-Württemberg pedological information system – principal aspects of system conception <i>C. Fritz, F. Waldmann</i>	4_5	267-272
Preparation of MMK documentary Form A for practical applications <i>KJ. Hartmann, G. Günther, D. Bothmer</i>	4_6	273-278

Definition and Use of Functional Soil Horizons as Keys in Spatial Land Information Systems J. Lamp, M. Ameskamp	4_7	279-292
Integrating GIS and process models for land resource planning A.K. Bregt, J. Bulens	4_8	293-304
Linking digital soil maps and databases to simulation models: functional soil map aggregation in The Netherlands 4_9 P.A. Finke, W.J.M. de Groot, MJ.D.Hack-ten Broeke, Y. van Randen, F. de Vries, J.H. Oude Voshaar		305-320
Neural computing approach to soil monitoring systems in Poland T. Stuczyński, J. Pauly, H. Terelak	4_10	321-328
The Romanian PROFISOL Database A. Canarache, V. Vlad, I. Munteanu, N. Florea, Anisoara Rasnoveanu, Daniela Popa	4_11	329-334
Section 5: Environmental Applications	5_0	335-418
Vulnerability of main Bulgarian soils to acidification D.A. Stoichev, I.H. Kolchakov	5_1	337-342
The potential risk of water and wind erosion on the soils of Czech Republic <i>M. Janecek</i>	5_2	342-352
SOPIC: A soil information tool for research and environmental planning <i>K. Friedrich, P. Stock, Th. Vorderbrügge</i>	5_3	353-360
Pedo-regional representativeness of site-specific data from small-scale soil maps J. Utermann, G. Adler, O. Düwel, R. Hartwich, R. Hindel	5_4	361-372
A Land Information System for the application of sewage sludge in Greece S.P. Theocharopoulos, A. Trikatsoula, D.A. Davidson, F. Tsouloucha, E. Vavoulidou	5_5	373-380
Esplan – software for engineering assessment of soils in Italy D. Magaldi, G.L. Ricciardulli	5_6	381-392
Appraising levels of soil contamination and pollution with heavy metals <i>R. Lacatusu</i>	5_7	393-402
Spatial Information Systems for Environmental Impact Assessment in the UK <i>M.J.D. Dufour, S.H. Hallett, R.J.A. Jones, J.W. Gibbons</i>	5_8	403-418
Section 6: Land Evaluation	6_0	419-458
Root zone capacity maps for Denmark based on the EU soil profile analytical database <i>N.H. Jensen, Th. Balstrøm, H. Breuning-Madsen</i>	6_1	421-434
A soil information system as a tool for conservation and sustainable land use <i>A. Hagemeister, P. Meier, TH. Vorderbrügge</i>	6_2	435-454
Using soil data to predict potential native woodland distribution in Scotland <i>W. Towers, D. C. Macmillan, S. Macleay</i>	6_3	455-458

Section 7: Posters	7_0	459-496
A systematic calibration and validation procedure for a soil-crop model S. Ducheyne, M. Vanclooster, J. Feyen	7_1	461-468
A database of measured soil hydraulic properties for Europe (HYPRES) A. Lilly, J.H.M. Wösten	7_2	469-470
Information on agricultural soils in Finland J. Sippola	7_3	471-472
MMK characterisation and classification of site conditions in the new federal states of Germany <i>D. Deumlich, J. Thiere, Monika Frielinghaus, L. Voelker</i>	7_4	473-478
Geoscientific maps of Baden-Württemberg developed by GIS applications C. Fritz, R. Schweizer, J. Schuff, G. Sokol	7_5	479-480
A spatial information database for integrating soil, land use and relief <i>E.D. Spies, S. Broschinski, K. Friedrich, Th. Vorderbrügge</i>	7_6	481-488
Pedotransfer functions for Portuguese soils M. da Conceição Gonçalves	7_7	489-492
Characterizing vulnerability to acidification using the buffering capacity of soils <i>I. Gavriluta, Z. Borlan</i>	7_8	493-496
Section 8: Appendices	8_0	497-552
Attribute coding: Database Dictionary of the Soils Geographical Database of Europe at scale 1:1,000,000 - (Version: 3.21, 30/10/1996)	8_1	499-538
List of participants	8_2	539-546