A SUMMARY OF

RAINFALL, PAN EVAPORATION and TEMPERATURE DATA

 at PAN EVAPORATION STATIONS in MALAWI

A SUMIMARY OF
RAINFALI, PAN EVAPORATION and THRPTRATURE DATA at PAN EVAPORATION STATIONS in MALANI。

by: J. van der Velden

MINISTRY OF AGRICULIURE AND NATURAL RESOURCES.

August 1979.
Lilongwe.

Water Resources Department
Dept. of Agricultural Development.

Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the originators. For questions please contact soil.isric@wur.nl indicating the item reference number concerned.
TABLE OF CONTHNTS Page
Introduction 1
Evaporation stations 3
Rainfall 4
Pan evaporation 6
Temperature 8
Bibliography 9
Table I List of evaporation stations (closed and pen) situated in the Northern Region.
Table II List of evaporation stations (closed and open) situated in the Central Region.
Table III List of evaporation stations (closed and open) situated in the Southern Region.
Table IV Rainfall and pan evaporation at the eveporation stions in the Northern Region. Average total for 10-day periods (mm).
Table V Rainfall and pan evaporation at the evaporation stations in the Central Region. Average total for 10 -day periods (mm).
Table VI Rainfall and pan evaporation at the evaporation stations in the Souther Region. Average total for 10-day period (mm).
Map 1 Location Map, Evaporation pan stations as at 1st January, 1979.
Map 2 Rainfall, mean annual (mm) and mean length rainy season(days).
Map 3 Pan evaporation, mean annual and yearly maximum (20% E.P.) of average 10-day values (ma).
Map 4 Temperatures, absolute maximum (20% E.P.) and absolute minimum (80% E.P.) expressed in ${ }^{\circ} \mathrm{C}$.
Annex I Graphs and tables of rainfall, pan evaporation and temperature data in the Northern Region.
Annex II Graphs and Tables of rainfall, pan evaporation and temperature in the Central Region.
Annex III Graphs and Tables of rainfall, pan evaporation and temperature in the Southern Region.

IMTODUC 10 T

Tho oxanination of climatic observations, nomely rainfall, pan evaporation and temperature, was originally initiated to determine design criteria for existing and future irrigation schemes in Malawi and to assist in the selection of the crops to be grown. Before the observations could be examined the bulk of climatic data had to be processed so that the data woul be more easily accessible. Since computer processing was not a likely possibility in the near future, the data were processed by hand. In order to eliminate calculation errons most of the calculations were done twice. All the meteorological observations were expressed in units from the imperia system and had to be converted into units of the metric system for this report.

In order to limit the volume of data it was decided to process only the data from those evaporation stations at which both an open evaporation pan and a raingauge are installed. Unfortunately the evaporation stations with long perioda of records are not well distributed over the country. In recent years an effort has been made to relocate and to increase the number of evaporation stations resulting in a better network of ooservation points. In 1970 about 70% of the stations were situated in the Southern Region while in 1978 this was about 50%.

This report consists of a series of tables and graphs presenting the basic information from the evaporation stations which can be used for further analysis. The tables present the 10-day values of rainfall and pan evaporation for each year of data recording. The graphs are designed by arranging the data accoraing to different levels of probability of occurrence

Because of the importance of the rainfall distribution, not only is the total rainfall for 10 -day periods calculated and processed, but also the dry spell durations, the number of raindays and the depth duration frequency of daily rainfall. These are presented graphically at different levels of probability of occurence. The temperatures, which are measured at about 30 evaporations stations are also processed and the absolute and the mean maximum and minimum monthly temperatures are presented in graphs at different probability levels.

An accurate probability can theorically only be determined from a very large set of data, but this of course is not available and therefore an estimate of probability must be made from a sample. The accurancy of this estimate of probability will depend on the length of records and the variability of the phenomenon concerned. The longer the record the closer will the observed relative frequency of occurence approach the theoretical one. With a short record certain rare events may even not occur during the period of observation. Therefore one must be carefull in determining probabilities from a short period of record, particularly of events which occur infrequently.

For the processing of the climatic data it is assumed that a period of 10 years is the minimum length required for the determination of probabilities. The maximum number of record years for any station in Malawi is 27 years.

Probability may be expressed as a percentage of the total number of occurrence with 100% for all occurrence. If an event occurs with a probability of 20% it is also true that the probability that it will not occur is 80%. The probability may also be expressed in terms of a return period of the probable number of times an event will recur in a given length of period.

The spatial distribution of the evaporation stations with long periods of records was found inadequate for the design of climatic maps for the different climatological characteristics. The 4 maps included in this report show for a number of evaporation stations some of their main climatic characteristics.

Summary of the data presented in this report

climatic parameter	description of the presentation	levels of exceedance probability of occurrence	$\begin{gathered} \text { presented } \\ \text { at } \\ \hline \end{gathered}$
Rainfall	10 days totals	- recorded values	Tables A
		- 20, 50 \& 80\%	Graphs C
	Onset \& end of rains	10, $20,50,30890 \%$	Graphs C
	Length of rainy season	10, 20, 50, 80 \& 90%	Graphs C
	Nov.-Apr rainfall	$10,20,50,80 \& 90 \%$	Graphs C
	Nov.-April No. raindays	$20,50 \& 80 \%$	Graphs D/E
	Dry spell duration*)	20,50 \& 80%	Graphs D/E
	Number of raindays *)	20, 50 \& 80%	Graphs D/E
	Depth duration frequency of daily rainfall	return periods of 2, 10 \& 20 years.	Graphs D/E
Pan evaporation	10-day averages	- recorded values	Tables B
		- 20\% \& 80\%	Graphs C
Temperature	Abs. monthly Max. \& Min.	20% and 80% respectively	Graphs E
	Mean monthly Max. \& Min	50\%	Graphs E

*) for half month periods

For each of the three Regions the graphs and tables are presented in a seperated annex. In each annex the stations are arranged in alphabetical order and the available data for one station are put together. On the lists of the evaporation stations (tables I, II and III) is indicated which information is available from each station. The letters indicated under report number in these tables correspond with the letters mentioned after tables and graphs in the sumnary above.

Evaporation stations

Details of location, altitude, lencth of record and the meteorological office number of each of the evaporation stations is given in Tables I, II and III. These tables list all stations opened between 1950 and 1978. The total number of stations is 76 but 19 of these stations had been closed by the end of 1978. The location of the 76 stations is indicated on Map 1. The distribution of the stations is not very uniform, since half of the stations are located in the Southern most of the three regions of Malawi. Only 24 of the present stations have records from before 1960.

The first evaporation stations were established by the Water Development Branch of the Ministry of Works. At present these stations are run and supervised by the Water Resources Department of the Ministry of Agriculture and Natural Resources. The standard equipment at the evaporation stations is an evaporation pan arid a raingauge.

A limited number of the evaporation stations are equipped for the measurement of other meteoroligical variables temperature, humidity, windrun, radiation and sunshine). These synoptic stations are in most cases equipped and supervised by the Meteorological Services since they are usually the stations at the airports. However the observers at these stations send copies of the pan evaporation and rainfall data to the Water Resources Department.

The daily observations at the evaporation stations are done by local people who receive a compensation for their work. The data sheets are sent to the district offices where the data are checked before the data are sent to the Water Resources Division where the data are stored. The stations are regularly visited by the district officers for inspection.

Rainfall

Because of the variability of rainfall, monthly figures are of limited value for agricultural practice, particularly for irrigated agriculture. In this paper the rainfall is therefore expressed as total rain during a 10-day period. The amount of rainfall for the same corresponding period of 10 -days over several years is calculated. For each period of 10-days the rainfall is ranked in either ascending or descending order and a serial rank number is attached to each value, the highest value being P_{-}, the lowest P_{n}. Then the rank number (x) is divided by the total number of observations pius 1 in order to obtain the frequency of exceedance as $F\left(P P_{r}\right)=r /(n+1)$ in the case of descending data ranking. A normal frequency distribution has been assumed of all the observations presented in this paper. The rainfall estimates were abstracted at three different levels of probability (20%, 50% and 80%).

The graphs presenting the rainfall probability levels connect points of equal probability for each period of 10 -days disregarding the year of recording. It is therefore very unlikely that these graphs are representative of any particularly year. The actual rainfall pattern will be much more variable. In order to quantify the effective rainfall, the total amount of rain between the 1 st Novenber and 30 th April is calculated for each year. The total rainfall during these 6 months is indicated at 5 levels of probability of occurrence.

The onset and the end of the rains are very important parameters for agricultural planning purposes. The date of the "onset of the rains" is defined as the first occasion after the first of October, in which 12 mm or more rain occur in two days or less. The date of the onset is when the 12 mm has accumulated and when the next rain exceeding $5 \mathrm{~mm} /$ day is within 20 days after this date.

The "end of the rains" is defined as the last date on which 10 mm or more falls in a period of 2 days or less, followed by a period of more than 20 days during which the amount of $5 \mathrm{~mm} /$ day does not occur. The probable dates of the onset and the end of the rains are indicated at 5 levels of occurrence.

The "length of the rainy season" is the number of days between the onset and the end of the rains, as defined above. The length of the rainy season is also expressed at 5 levels of probability of occurrence.

Map 2 shows the mean annual rainfall (in mm) and the mean length of the rainy season (in days) for the evaporation stations with more than 10 years of records. It is obvious from this map that the mean annual rainfall is very much related to the topography. The areas with high mean annual rainfall (more than $1500 \mathrm{~mm} /$ year) are on and near the high Plateaux. The lowest mean annual rainfall (less than $700 \mathrm{~mm} /$ year) occurs in the Shire Valley and the upper catchment of the Dwangwa river. In most of the evaporation stations the average length of the rainy season varies between 120 days and 175 days.

The duration of the "dry spell" is defined as the number of consecutive days during which the daily rainfall does not exceed 3 mm . The maximum duration of the dry spell is calculated for each half month period during rainy season. A dry spell commencing in a particular half of a month is allocated to this half of the month regardless of whether it persists into the next half of the month or not. From the sequence of maximum dry spell periods for each half month of every year of record a frequency distribution was drawn up and the maximum dry spell duration estimates were abstracted at 3 probability levels (20%, 50% and 80%). Between mid December and mid March the dry spell duration with a 50% exceedance probability of occurrence is in seneral about 5 days. An exception is the Lower Shire Valley where this duration is about $7-8$ days.

The "number of raindays" is calculated for each half month and gives an impression of the distribution of the rainfall durins the rainy season. A day is considered as a "rainday" if the daily rainiall is more than 3 mm . A frequency distribution was drawn up in a similar fashion as above and then the raindays were abstracted at the 3 probability levels. These levels are presented as a graph.

A depth duration frequency relation of rainfall is worked out for all the evaporation stations. The rainfall data used were daily observation and not the 24 hours rainfall. The frequency distribution of $1,2,3$ and 5 day rainfall is determined according to the Gumbel's probability distribution. From this analysis 1, 2, 3 and 5-day rainfall with return periods of 2, 10 and 20 years were selected and plotted. This relation can, for example, be used for the calculation of the design discharge for a surface drainage system. At only a limited number of evaporation stations was the maximum rainfall intensity for one day more than $150 \mathrm{~mm} /$ day. The stations with high daily rainfall were all situated along the Lakeshore or near the high Plateaux.

Pan Ivaporation

The evapotranspiration is an essential element of the water balance and it is therefore important to quantity this element. The evapotranspiration cannot be measured directly and must be estimated. The evaporation from a free water surface of an open pan is an indicator of the evaporative demand of the atmosphere. Bmpirical correlations are required to convert the evaporation rate measured by the pan into the potential or actual evapo-transpiration. The disadvantage of the pan evaporation is its variable behaviour due to local climatic conditions and to the different dimensions and exposure of the pan.

The pan evaporation is measured once a day and nomally at 8 hours in the morning. The observations are recorded for the previous day. The evaporation is measured by counting the number of cups required to fill the pan till the top of a fixed hook of ge. The volume of each cup corresponds with an evaporation of 0.05 inches. In case the pan overflows due to heavy rainfall the average pan evaporation value for that month is calculated and used as observation of the pan evaporation for that day.

For the observation of evaporation from open water two different types of evaporation pans are used: the Kenya type pan and the American Class A pan. Initially only the Kenya type pan was installed but at present mainly Class A pans are used. The main difference between the evaporation pans is the water depth in the pan; the three different standard pans used in Malawi are:

Kenya type pan	diametrr $48^{\prime \prime}$	depth: $17^{\prime \prime}$	freeboard: $3^{\prime \prime}$
Kenya type pan	diameter: $48^{\prime \prime}$	depth: $14^{\prime \prime}$	freeboard: 2"
Class A pan	diameter: $48^{\prime \prime}$	depth: 10	freeboard: 2"

In six station locations pairs of pans have been maintained for a shorter or longer period, in order to compare galvanised with black and Class A with Kenya type. The relation between these two types of pans has not been worked out for this paper. For these six stations the evaporation data from the Class A pan have been used in this report.

The pans are constructed locally and this might be the reason that the freeboard is not always according to the standard design. Other variations have been introduced into the records over the years because of inconsistencies in maintenance. The pans are painted black inside others remain galvanised. Screeming is inconsistent and undocunented changes in locations have also occured.

Evaporation pans at 19 locations in Malawi are operated in association with fully instrumented meteorological stations. Monthly potential evaporation using Penman equation is routinely calculated and pan coefficients could be derived. These data are readily available in published form since 1972.

The pan evaporation data is summed over each perio 10-day period, and expressed as an average daily rate in mm/day for that period. It was found that monthly mean evaporation rates resulted in an underestimation when predicting evaporation demand for the design of irrigation and drainage projects. For each corresponding period of 10 -days for every year of record a frequency distribution was drawn up. From this ranked data the estimates of evaporation was abstracted at two levels of probability (20% and 80%).

Map 3 shows the mean annual and yearly maximum values of the pan evaporation (20% exceedance probability) at the locations where these data have been measured for more than 10 years. The yearly maximum pan evaporation is found from a sequence of the anmual maximun 10-days pan evaporation and from this serie the pan evaporation with a 20% probability of occurrence is estimated. It is obvious from this map that the topography strongly influenced the pan evaporation. The variation in pan evaporation between adjacent and similar stations is difficult to explain, therefore interpolation between the stations should be done very carefully.

Along the lakeshore and in the Shire Valley the mean annal pan evaporation is the highest and varied between 2000 mm and 2200 mm . Mean annual pan evaporation values below 1500 mm . are found in areas of high and prolonged rainfall (Mulanje, Zomba and Mkhata Bay). The pan evaporation values for the Chileka stations are probably strongly influenced by non-climatic circunstances, since this station is adjacent the platform for the aeroplanes and therefore not very reliable.

Temperature

At 32 evaporation stations in Nalawi the daily maximum and minimum temperatures have been observed during a long enough period to justify processing these data. The frequency of occurrence of minimum and maximum temperatures are very important criteria for the selaction of crops; extreme temperatures can result in rowth disturbance. Since the temperature data collected at these stations have never been processed a first attempt has been made and the results are presented in this paper.

For each month the sequence of daily maximum temperatures was taken. The mean of those values is defined as the mean monthly maximum temperature and the highest of these values is defined as the absolute monthly maximum temperature. The minimum temperatures are processed in the same way. The variations in temperature are relatively Iimited and therefore the monthly data are found adequate for processing.

From the sequence of annual mean temperatures a frequency distribution was drawn up and the mean monthly temperatures were estimated at the 50% probability level. Trequency distributions were also drawn up for the absolute monthly minimum and maximum temperatures and from these distribution the 80% and 20% exceedance probability levels respectively were found. A normal distribution of the temperature data was assumed. For each station the monthly estimates were plotted and presented as a graph.

The spetial variations of the absolute monthly maximum and minimum temperatures can be seen from Nap 4. The absolute maximum temperature is apparently very much related to the topographical situation. Absolute maximum temperatures (20% exceedance probability) above $40^{\circ} \mathrm{C}$ are only observed in the Lower Shire Valley, while on the high Plateaux this value is below the $30^{\circ} \mathrm{C}$. As for the absolute minimum temperatures the effect of the proximity of Lake Nalawi to the stations on the lake shore is very pronounced.

Bibliography

This bibliography is far from exhaustive. It includes works referred to in this paper along with other publications with information on the climate in Nalawi.

Agnew. S. and M Stubbs. Malawi in Maps (1972).
Malawi Government and UNDP/WNO. A water resources assessment of Lake Malawi (1976). Malawi Meteorological Services:-

Totals of monthly and annual rainfall, seasons 1969/70-1976/77.
Totals of monthly and annual rainfall for selected stations in Nalawi, a composite publication covering seasons 1957/581966/67.

Totals monthly and annual rainfall for selected stations in Malawi, a composite publication covering seasons 1967/681976/77.

Mpata, S.B. Monthly and annual rainfall probabilities in Malawi. Meteorological Notes. Series A, no 3(1974).

Pape, W.J. Rainfall intensity in Nalawi. mimeographed 1972

Pike, J.G. Evaporation and evapotranspiration in Nyasaland.

Tetley, A.E. Rainfall characteristics in Nyasaland (1959).

Table 1. List of EVAPORATION STATIONS (closed and open) situated in the MORT.IERN REGION.

Table 11. List of EVAPORATION STATIONS (closed and open) situated in the CENTRAL REGION.

Meteo. office $n \mathrm{n}$.	Station name	Lat. (S)	Long. (E)	Grid	ref.	Start year	End year	$\begin{aligned} & \text { Alt. } \\ & (\mathrm{m}) \end{aligned}$	Pan type	Report $n \mathrm{n}$.
742	Chipoka	$13^{0} 59$	$34^{\circ} 111$	XV 641	533	1952		475	A	21 ABCD
75105	Chitedze	$13^{\circ} 591$	$33^{\circ} 38$	WV 692	546	1954		1095	A	22 ABCE
75207	Dedza	$14^{\circ} 22^{\prime}$	$34^{\circ} 201$	XV 44	10	1956	1957	1585	K	23
75204	Dedza - Chongoni	$44^{\circ} 191$	$34^{\circ} 16$ '	XV 362	167	1957		1615	K	23 ABCE
74201	Dwangwa	$12^{\circ} 331$	$34^{\circ} 06$:	XB 23	16	1971		490	A	24 AB
751	Kamuzu Dam	$14^{\circ} 10$	$33^{\circ} 291$	WV 692	334	1975		1095	K	25
73113	Kasungu	$13^{\circ} 02$	$33^{\circ} 291$	XA 526	598	1961		1310	A	26 ABCD
731	Lifupa	$13^{\circ} 03:$	$33^{\circ} 091$	W. 16	58	1978		1010	A	27
751	Lilongwe	$13^{\circ} 59$:	$33^{\circ} 471$	WV 83	53	1951	1961	1035	K	28 AB
75103	Lilongwe Airport	$13^{\circ} 59$:	$33^{\circ} 421$	WV 754	565	1969		1135	A	29 AB
751	Lilongwe - Capital	$13^{\circ} 571$	$33^{\circ} 48$,	WV 854		1974		1105	A	30
741	Ma lomo	$13^{\circ} 09$	$33^{\circ} 50$?	WA 907		1978		1080	A	31
74103	Mchinji	$13^{\circ} 49$	$32^{\circ} 52$	VV 874		1976		1190	A	32
77201	Ntcheu	$14^{\circ} 491$	$34^{\circ} 381$	XU 765		1956		1130	A	33 ABCE
74101	Nkhota Kota	$12^{\circ} 56$	$34^{\circ} 1^{\prime}$,	XA 389	712	195.2		475	A	34. ABCE
74202	Salima	$13^{\circ} 47^{\circ}$	$34^{\circ} 28$?	XV 5	7	1951	1961	500	A	35
74202	Salima Airport	$13^{\circ} 45$:	$34^{\circ} 35^{\prime}$	XV 712		1961		510	A	35 ABCE
77	Tsangano	$15^{\circ} 04{ }^{\prime}$	$34^{\circ} 361$	XU 728		1978		1675	A	36

Meteo. office nr .	Station name	Lat. (S)	Long. (E)	Grid		Start year	End year	$\begin{aligned} & \text { Alt. } \\ & (\mathrm{m}) \end{aligned}$	Pan type	Report $n \mathrm{n}$.
77414	Alumenda	$16^{\circ} 191$	$34^{\circ} 58{ }^{\prime}$	Y7 06	90	1951	1954	75	-	51
77303	Blantyre	$15^{\circ} 47^{1}$	$35^{\circ} 048$	YT 14	54	1951	1960	1055	K	52 AB
77104	Bvumbwe	$15^{\circ} 551$	$35^{\circ} 031$	YT 216	386	1955		990	A	53 ABCE
79201	Chambe Plateau	$15^{\circ} 54$	$35^{\circ} 311$	YT 722	397	1958		1675	K	54 ABCD
77310	Chichiri	$15^{\circ} 48$:	$35^{\circ} 02$	YT 188	522	1966		1135	K	55 ABCE
77106	Chikwawa	$16^{\circ} \mathrm{O2}$	$34^{\circ} 471$	YT 915		1951	1977	105	K	56 ABCE
77212	Chileka	$15^{\circ} 41^{\prime}$	$34^{\circ} 581$	XT 11.		1954		770	A	57 ABCE
77306	Chingala, noar Nehalo	$16^{\circ} 12^{\prime}$	$34{ }^{\circ} 391$	XT 9	0	1965	1972	100	A	58 AB
79101	Chisombedzi	15° E. ${ }^{\prime}$	$35^{\circ} 12$	YT 37	48	1955	1964	-	-	59 AB
79210	Chitakali	$16^{\circ} 011$	$35^{\circ} 301$	YT 680	281	1959	1976	700	K	60 ABCE
77	Kasinthula	$16^{\circ} 05$	$34^{\circ} 501$	XT 952		. 977		80	A	61
781	K- ongo (near M.posa)	$15^{\circ} 441$	$35^{\circ} 37$	YT 85	65	1978		710	A	62
781	Khanda	$15^{\circ} 211$	$35^{\circ} 30$ '	YU 694		1.30		650	A	63 ABCE
77406	Limbe	$15^{\circ} 49$	$35^{\circ} 041$	YT 22	51	1951	1957	1220	-	64 AB
77109	Makhanga	$15^{\circ} 31:$	$35^{\circ} 09$?	YS 326	726	1953		55	K	65 ABCE
78112	Makoka	$15^{\circ} 32$?	$35^{\circ} 111$	YT 384	832	1968	1977	1035	K	66 ABCE
77205	Mangochi	$14^{\circ} 291$	$35^{\circ} 15$	YU 449	982	1951		480	A	67 ABCE
77209	$1.1 . p e$	$15^{\circ} 23$?	$34{ }^{\circ} 54$:	YT 046	980	1954		465	A	68 ABCD
79111	Mimosa	$16^{\circ} 05$:	$35^{\circ} \mathrm{z8}$:	YT 809	203	1957		655	A	69 ABCE
76:03	Monkey Bay	$14^{\circ} 048$	$34^{\circ} 541$	YV 070		1952		480	A	70 ABCE
77	Mudi Dem	$15^{\circ} 48$:	$35^{\circ} 008$	YT 14	5	1955	1960	1065	-	$714 B$
77211	N.-2\%	$15^{\circ} 371$	$34^{\circ} 311$	XT 629	751	1977		670	A	72
77408	Nankhunda	$15^{\circ} 501$	$35^{\circ} 011$	YT 155	501	1959		1065	A	74 ABCE
79212	Naming'omba	$16^{\circ} 03!$	$35^{\circ} 041$	YT 234		1951		1045	A	73 ABCD
77	Nchalo	$16^{\circ} 16$	$34^{\circ} 551$	YT 01	01	1960		65	A	75 ABCE
77502	Ngabu	$16^{\circ} 281$	$34{ }^{\circ} 54$	YS 019		1972		100	A	76 AB
77401	Njuli (Thyolo)	$16^{\circ} 08$!	$35^{\circ} 08$ '	YT 281		1959		820	A	77 ABCE
761	Nkapa	$14^{\circ} 42$	35 \% ${ }^{\circ}$	YU 769		1977		875	K	78
77	Nkhate	$16^{\circ} 091$	3457	YT 087	137	1965		80	A	75 ABCE

Table 111. List of EVAPORATION STATIONS (closed and open) situated in the SOUTHERN REGION (contd.).

RAINFALL and PAN EVAPORATICN at the EVAPCRAT C. STATIONS in the NORTHERN REGION- Average Total for 10 -day period (in mal.

RAINFALL and PAN EVAPORATION at the EVAPORATGN STATIONS ; in the CENTRAL REGION - Avorago TOtal for 10 -day periods (in mm).

Station		January			February			March			April			May			June	July	August	September	October	November			December			Total
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	123	123	123	123	123	1	2	3	1	2	3	
Chipoka	R	77	30	77	65	90	79	76	43	45	39	8	6	1	1	0	200	100	000	000	101	10	10	17	38	60	61	888
1952-1978	E	45	42	44	43	39	37	47	49	55	50	52	52	45	48	52	454446	474756	535565	626571	737890	80	76	70	59	53	54	1939
Chitedze	R	83	55	79	65	69	59	43	37	37	34	16	10	4	4	1	101	000	000	101	122	18	19	42	56	73	76	394
1954-1978	E	39	40	42	37	36	30	36	39	42	40	33	38	41	38	40	$36 \quad 3637$	384245	465659	616673	778387	71	69	59	51	42	44	1754
Dedza	R	75	73	107	54	88	53	50	37	34	28	21	8	4	1	5	114	101	010	001	232	15	14	28	55	72	70	909
1956-1978	E	38	40	41	34	34	29	37	37	41	37	34	33	36	34	35	333334	353742	454356	596273	707585	66	67	58	53	41	43	1650
Kasungu	R	66	61	66	66	65	39	50	31	20	13	3	4	2	2	1	000	100	000	000	102	5	8	24	46	52	55	688
1961-1978	E	32	31	32	33	31	23	35	36	40	37	36	35	39	36	37	343534	363541	424457	565569	737836	71	67	53	45	39	35	1598
Lilongwe Airp.	E	73	63	83	58	32	70	62	22	34	47	7	9	6	8	0	000	300	000	010	171	17	9	32	60	83	63	906
1969-1978	E	44	45	42	43	48	31	43	40	48	39	44	43	43	40	47	423940	434351	545470	717078	859091	35	79	69	55	49	48	1956
Ncheu	R	88	99	98	78	36	63	56	41	39	18	20	6	3	3	2	1112	210	001	120	3157	12	13	40	49	72	76	1008
1956-1978	E	38	35	41	33	32	26	34	40	45	39	33	38	39	39	39	373234	333544	404452	525363	656571	61	59	52	48			
Nknota-Kota	R	117	95	118	93	97	87	128		114	94	73	38	14	14	10	425	413	100	020	115	7	11	30	57	95	109	1537
1952-1978	E	44	45	45	41	44	31	45	44	52	47	48	52	50		57	525050	525462	586371	637381	8690103	89		71		53		2184
Salima	R	104	94	99	87	106	60	93	58	59	38	35	5	3	10	1	200	000	000	010	100	16	5	19	53	87	84	1130
1951-1978	E	43	49	50	43	44	36	48	51	60	57	55	57	56		57	484951	515564	636572	737581	8592107				66			2232

RAINFALL and PAN EVAPORATION at the EVAPORATION STATIONS in the SOUTHERN REGION - Average total for 10 -day periods (in mm) al.

RAINFALL and PAN EVAPORATION at the EVAPORATION STATIONS in the SOUTHERN REGION (contd) - Average Total for 10 -day periods (in mm).

