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SUMMARY 

Hydrological data and information on the availability of water are essential to support water 

allocation decisions, especially under increasingly water scarce conditions. However, water 

allocation decisions are often taken based on uncertain hydrological information, which may 

lead to agricultural production loss and possibly impact on local livelihoods. This study aims 

to evaluate the availability of hydrological data and information at different scales, and assess 

the value of using additional hydrological data and information in enhancing water allocation 

decisions, especially in irrigated agriculture. 

An index tool was developed thatmeasures the quality of hydrological information in irrigated 

agriculture. The index is calculated based on a compound that considers the period of record, 

temporal and spatial resolution of the data available used in planning and operation of large 

irrigation districts. In these irrigation schemes, the observed discharge in water extraction sites, 

supply in the main canals, and irrigation demand estimates were evaluated to determine the rate 

of occurrence of sub-optimal water allocation decisions. Through this method, excellent index 

results were found for an irrigation district in Australia (Murrumbidgee district), while 

irrigation districts in Colombia (Coello district) and Costa Rica (DRAT district) showed fair to 

poor information quality, which correspond to a higher rate of occurrence of sub-optimal water 

allocation decisions. The results imply that the use of additional hydrological information is 

beneficial in reducing the rate of occurrence of sub-optimal water allocation decisions, 

ultimately contributing to reduce agricultural production loss. 

The challenge is to improve water resources management in irrigated agriculture using 

additional hydrological information from global and local datasets, including satellite, 

hydrological models and reanalysis datasets. For this matter, a hydro-economic framework was 

developed to value the use of these hydrological datasets in river discharge estimates for 

irrigation area planning. The risky outcomes in terms of annual agricultural production due to 

the actual frequency of occurrence of water scarcity were generated for a reference and planned 

irrigation areas, resulting in a Relative Utility Value (𝑅𝑈𝑉) that expresses the utility of the 

information used. Based on this framework, results showed that using an ensemble of global 

hydrological models in Australia provides more robust estimates in surface water availability 

compared to when using any of the single global models that constitutes the ensemble. A 

comparison of the information content in the ensemble shows that an ensemble with a period 

of record of fifteen years has an information content equivalent to a single model of thirty years. 

Moreover, in Colombia, a reference area that can be irrigated is established using thirty years 

of observed river discharge data. Areas are then obtained using simulated river discharges from 

six local hydrological models forced with global precipitation datasets (CHIRPS and MSWEP), 

each calibrated independently with a sample of five years extracted from the full thirty year 

record. The utility of establishing the irrigated area based on simulated river discharge 

simulations is compared against the reference area through a pooled Relative Utility Value 

(𝑃𝑅𝑈𝑉). Results show that for all river discharge simulations the benefit of choosing the 
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irrigated area based on the thirty years simulated data is higher compared to using only five 

years observed discharge data, as the uncertainty of 𝑃𝑅𝑈𝑉 using thirty years is smaller. Hence, 

it is more beneficial to calibrate a hydrological model using five years of observed river 

discharge and then extending it with global precipitation data of thirty years as this weighs up 

against the model uncertainty of the model calibration. 

Conservative estimates of the available resource in rivers and reservoirs may lead to allocated 

water to be underestimated due to conservative estimates of future (in) flows. Water allocations 

may be revised as the season progresses, though inconsistency in allocation is undesirable to 

farmers and may lead to an opportunity cost in agricultural production. We assess the benefit 

of using reservoir inflow estimates derived from seasonal forecast datasets to improve water 

allocation decisions. A feedback loop between simulated reservoir storage and emulated water 

allocations for General Security (allocated to irrigating) was developed to evaluate two 

reservoir inflow datasets (Poama and ESP) derived from the Forecast Guided Stochastic 

Scenarios (FoGSS), a 12 month seasonal ensemble forecast in Australia. We evaluate the 

approach in the Murrumbidgee basin, comparing water allocations obtained with an expected 

reservoir inflow from FoGSS against the allocations obtained with an expected reservoir inflow 

from a conservative climatological estimate (as currently used by the basin authority), as well 

as against those obtained using observed inflows (perfect information). The inconsistency in 

allocated water is evaluated by determining the total changes in allocated water made every 15 

days from the initial allocation at the start of the water year to the end of the irrigation season, 

including both downward and upward revisions of allocations. Results show that the 

inconsistency due to upward revisions in allocated water is lower when using the forecast 

datasets (Poama and ESP) compared to the conservative inflow estimates (reference) which is 

beneficial to the planning of cropping areas by farmers. Over confidence can, however, lead to 

an increase in undesirable downward revisions. This is more evident for dry years than for wet 

years. Even though biases are found in inflow predictions, the accuracy of the available water 

estimates using the forecast ensemble improves progressively during the water year, especially 

one and a half months before the start of the cropping season in November. 
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1.1 WATER SCARCITY AND IRRIGATED AGRICULTURE 

Water scarcity occurs when available water cannot satisfy water demands for drinking, 

sanitation and food production. With increasing global population and a changing climate water 

scarcity situations are occurring more often (Rijsberman, 2006). Locally, either at country or 

basin level, water can be physically scarce due to low precipitation and high temperatures from 

climate variability, exacerbated by droughts and climate change (Van Loon and Lanen, 2013; 

Van Loon et al., 2016). However, the impact of climate extremes depends on local economic 

and social conditions, which vary considerably among countries (Naumann et al., 2014). Water 

scarcity situations occur not only due climate conditions, but also due the lack of investments 

in infrastructure and water management strategies at planning and operational stages (FAO, 

2013; Loon and Lanen, 2013; Seckler et al., 1998). Understanding the balance between water 

availability and demand is crucial to safely manage the water resource and avoid economic, 

environmental and social losses. In the water balance, irrigated agriculture accounts for 70% of 

the world’s total freshwater withdrawals (FAO, 2013). Since the Green Revolution during the 

1960s, the use of water for irrigation has been justified to increase crop yields and satisfy 

growing food and fibre demands for a growing population (FAO, 2016). Thanks to the 

development of irrigation infrastructure combined with the use of agrochemicals, and high 

yielding crop varieties, irrigated agriculture using only 18% of world’s arable land is 

responsible for 40% of the total food production (Schultz et al., 2009). 

Due to irrigation, farmers use less land while producing more food. However, water for 

irrigation has significantly altered the hydrological and environmental characteristic of many 

basins (Kirby et al., 2014a; Restrepo and Kettner, 2012). Irrigation managers must often justify 

the use, efficiency and productivity of water in competition and comparison with other uses and 

users. The environmental impact on water quality, land degradation and salinization due to 

unsustainable agricultural development and the contribution of agriculture to climate change 

(e.g. greenhouse gas, fertilizers, fossil fuel) is reason for concern, both for the environment and 

the agricultural sector. In addition, climate change itself poses a challenge in mitigating impacts 

and finding adaption measures in land and water development. In the post-Green Revolution 

era the challenge is to find new methods and strategies in the agricultural sector. Research and 

investments have focused in using information technology, precision agriculture, and 

environmental friendly techniques to pursue sustainable water use and agricultural development 

(Baumüller, 2018; Chuchra, 2016; Far and Rezaei-Moghaddam, 2018; King, 2017; Nikouei et 

al., 2012; Pareeth et al., 2019). Such a trend has been supported by several interlinked goals in 

the 2030 Agenda for Sustainable Development, in particular Sustainable Development Goal 

(SDG) 6: “Ensure availability and sustainable water management”; SDG 2: “End hunger, 

achieve food security, improve nutrition and promote sustainable agriculture” and SDG 13: 

“Take action to combat climate change and its impacts”. 
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1.2 WATER ALLOCATION DECISIONS IN IRRIGATION 

Irrigation infrastructure supply water to the crop fields (Malano and Hofwegen, 1999) through 

main, secondary and/or tertiary canals or conduits. Typically, the canal system is operated by a 

user’s association, public or private entity. Many of these schemes were built in the 1960s, with 

the intention to boost local agricultural production and secure food security (FAO, 2016). Today, 

large irrigation systems provide key food and fibre production for local economies and trade.  

In many irrigation schemes the performance of service delivery is low to mediocre (FAO, 2007). 

There is a critical need for improvement in irrigation management, particularly in those areas 

where water scarcity affects agricultural productivity (Richter, 2014; Rijsberman, 2006). Arid 

and semi-arid zones regularly face water scarcity in agriculture (e.g. Spain and Ethiopia) but 

also more humid tropical regions (e.g. Costa Rica and Colombia) are affected due to inter-

annual variability (Córdoba-Machado et al., 2015) and climate change, causing unexpected 

production loss. Agricultural livelihoods depend on proper water allocation decisions to 

overcome service deficits and water scarcity. 

Allocating water is the process of sharing the available water among users (Hellegers and 

Leflaive, 2015; Le Quesne et al., 2007). Social, economic and political dimensions influence 

the way that water is allocated, which may influence the distribution of wealth among water 

users (Hellegers and Leflaive, 2015). Established rules, regulations and water policies support 

the water allocation process between competing water users. In countries such as Australia and 

United States, the water allocation process is supported by clear water policy and regulations 

designed to minimize economic losses due to water scarcity. However, major agricultural 

production losses and unbalances in the environment occurred due to extended drought periods 

(Richter, 2014). Water allocation rules had to be changed several times during the last years, 

due to incompatibility in water scarce situations. For every water allocation reform, water 

volumes for irrigation remain high and often controversial due to environmental demands (Bark 

et al., 2014). 

In an increasingly water scarce world reliable information on available water is key to allocate 

suitable amounts and avoid undesired socio-economic impacts, conflicts and reforms. Reliable 

information and adequate tools are required to support water allocation decisions (Hellegers 

and Leflaive, 2015). Frameworks have been developed to assess and predict water allocation 

decisions at basin and irrigation district scale. For example, at basin scale Dai and Li (2013) 

developed an allocation model for planning agricultural water management focused on 

optimizing water and land use. At irrigation system scale, integrated allocation models have 

been developed to consider economic variables (crop prices and yields) for water allocation 

strategies (Kim and Kaluarachchi, 2016). Also, coupled agronomic-economic models have 

been applied in irrigation systems to assess water use in upstream and downstream farming 

plots (Ben-Gal et al., 2013). Even artificial intelligence techniques are used for a systematic 

water allocation scheme to mitigate drought threats (Chang and Wang, 2013). 
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1.3 THE NEED FOR GOOD QUALITY AND ACCESIBLE HYDRO-
METEOROLOGICAL DATA 

Hydrological data provide a quantifiably form of information that can be stored, processed and 

made available for the general public, water professionals, and specific decision makers in basin 

authorities and irrigation systems. Ideally, hydrological data are collected from measurements 

based on an optimal station network design (Chacon-Hurtado et al., 2017), with specific 

temporal and spatial requirements to support water allocation decisions. These measurements 

provide data with a standardized quality (WMO, 2008), depending on the method of 

measurement, measurement uncertainty, station density, frequency of measurement and length 

of records. Interpolation methods may be applied to obtain gridded hydro-meteorological 

datasets from these station measurements and simulate the surface water availability (Raimonet 

et al., 2017). Sometimes, hydro-meteorological data are available from measurements 

conducted as part of ad hoc local studies. However, the lack of standardized procedures reduces 

the full potential in its use for water resources assessments. 

Where measuring networks are not available, governments are faced with the dilemma of 

investing in hydro-meteorological data and information systems. For example, in the 

Netherlands, back in the 1950s, the government was struggling to take the decision of 

developing a large hydraulic project (Delta Works), which would include a measurement and 

monitoring systems to protect and inform citizens from storm surges and floods. At the time, 

the economic cost of this project was high, and the government did not invest in it, which finally 

led to the known catastrophic flood event in 1953 (Gerritsen, 2005). The aftermath of the event 

sparkled decision makers to finally implement the project. Today, a complete hydro-

meteorological data and information platform is available that records data of hydro-

meteorological variables which are used to support decision making in the water sector 

(Gerritsen, 2005; Rijkswaterstaat, 2018). Similarly, in other countries the development or 

improvement of hydro-meteorological data and information systems may require large 

economic investments. In Costa Rica, for example, 1.5 million US dollars are required to 

maintain preserve and modernise the hydro-meteorological network (MINAE, 2008). 

The existence of well-functioning measuring networks does not guarantee information will be 

used for better decision making. Sometimes data are not easily accessible because they are 

scattered over different departments and local politics prevent enabling environment for data 

sharing. In other cases practical issues such as the lack of online platforms or standardized 

formats for sharing hamper easy access. Even where good quality data and information tools 

are available and easily accessible, policies and regulations may render its use in water 

allocation decision sub-optimal. For example, from 2001 to 2009 one of the worst droughts 

occurred in Australian modern history (Millennium Drought), reducing the water availability 

for human, environmental and agricultural consumption (Richter, 2014). Agricultural crops 

were lost and farmers struggled to maintain their investments due to water scarcity. At the time, 

complete hydro-meteorological datasets and information about water resources were available 

from the Bureau of Meteorology (BoM) and other regional institutions. However, inadequate 

water policies and regulations failed to prevent the socio-economic and environmental impacts 

and led to unexpected losses in agricultural production (van Dijk et al., 2013b). 



 

 

 

5 

1.4 THE VALUE OF USING HYDRO-METEOROLOGICAL INFORMATION 

Investing in information can be valuable if that information leads to a benefit or a reduction in 

costs or losses as a result of better decisions (Hirshleifer and Riley, 1979). Three factors are 

considered in order to determine the value of information: 1) decision maker’s beliefs; 2) the 

costs linked with decisions; and, 3) the response in taking actions based on new or additional 

information. If current available information is derived from uncertain estimates, then 

additional information can provide a benefit and enhance decision making (Bouma et al., 2009; 

Macauley, 2006). With perfect available information no added value is expected in the decision 

process because the existing information already provides a clear choice of alternatives. 

Additional information could have a high marginal value depending on the existing availability 

and quality of information. 

Several studies have assessed the value of additional hydro-meteorological information from 

monitoring networks (Alfonso and Price, 2012; Malings and Pozzi, 2016), from drought and 

flood predictions (Quiroga et al., 2011; Verkade and Werner, 2011) and space derived weather 

and water quality monitoring (Bouma et al., 2009; Macauley, 2006). The typical study for 

evaluating the value of weather information in agriculture compares expected production gains 

using climatological information against gains using forecasted rainfall (Cerdá and Quiroga, 

2011; Luseno et al., 2003). 

The longer the record of hydro-meteorological measurments the more the data are reliable for 

assessing water availability and supporting water allocation decisions. However, in practical 

terms stakeholders cannot wait for thirty years to obtain a complete period of record. In addition, 

investments in data networks are costly. A possible cost-effective solution is combining 

(incomplete) local data with a complete time period (over 30 years) from global earth 

observations and models (Beck et al., 2017a, 2017b; Funk et al., 2015; Schellekens et al., 2017). 

Additional hydrological information from earth observations and hydrological models may be 

a useful source to complement the local datasets and improve water management at basin and 

irrigation district scale. These global datasets are available as a grid format for the entire planet 

with a combination of local, reanalysis and satellite observation datasets. The resolution and 

estimations of these products have been enhanced under continuous research and testing (Beck 

et al., 2017a, 2017b, 2018; Schellekens et al., 2017), and its application in local conditions has 

been applied by researchers and water professionals to overcome local data scarcity (López 

López et al., 2016, 2017; Rodriguez et al., 2017). 
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1.5 PROBLEM STATEMENT 

Available local hydrological data may be limited, not provided at the adequate time period and 

resolution. Hence, available hydrological data may be of low quality for water allocation 

decisions. In addition, depending on country policies and regulations, the access to hydrological 

data may be restricted. The lack of quality and accessibility of hydrological data can lead to 

inaccurate estimates in climate variability, poor water availability assessments, and sub-optimal 

decisions regarding the supply and allocation of the water in irrigated agriculture. In countries 

facing the combined challenges of water scarcity and pressure to provide for rural farming 

livelihoods, better information may lead to better outcomes. While studies on the value of 

information for water allocation decisions are available, none of them is specifically geared 

towards water allocation decisions in irrigated agriculture. In irrigated agriculture, different 

types of water allocation decisions are made. For example, water authorities or irrigation 

developers need to decide the size of new irrigation areas, taking into account possible 

investments in pressurized systems, canals, and hydraulic structures. At the start of each 

cropping season decisions about which crop to grow are relevant. At the short term operational 

stage, daily decisions related to opening and closing control gates and supplying water are key. 

Water policy and regulations include specifications about the use of hydrological data and 

information. However, in some countries or regions, these specifications lack guidelines and 

methods to evaluate the quality of the available hydrological datasets and its adequate 

application at different scales. In addition, the use of earth observations is limited and its 

potential value has not been evaluated. Regions with reduced in-situ measurements may benefit 

from global datasets as the water availability can be better determined for planning purposes in 

agriculture, urban areas and the environment.  

This PhD research contributes to the science available about the value of data and information 

and aims to assess the benefit of using hydrological datasets in supporting water allocation 

decisions (especially in irrigated agriculture), implementing state of the art in hydro-economic 

modelling, and adopting and adapting available methods to establish water availability and 

demand. This research assesses the benefit of combining locally available - but often incomplete 

datasets - with global earth observation products. 

1.6 RESEARCH OBJECTIVES 

The main objective of this research is to contribute to the development of new tools and methods 

in valuing hydrological data and information and assess if additional data can enhance water 

allocation decisions in irrigated agriculture. 

The following are the specific research objectives 

1. Develop a tool for assessing the availability of hydrological information in large 

irrigation districts and evaluate water allocation decisions being taken (Chapter 2). 

2. Assesses the benefit of using an ensemble of global hydrological models to improve 

surface water availability estimates in irrigation area planning (Chapter 3). 
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3. Assesses the benefit of using global precipitation datasets to improve surface water 

availability estimates in irrigation area planning (Chapter 4). 

4. Assesses the benefit of using seasonal streamflow forecasts for water allocation 

decisions (Chapter 5). 

This research was carried out in the framework of the EartH2Observe project (Global Earth 

Observation for Integrated Water Resource Assessment, http://www.earth2observe.eu/). 

EartH2Observe was funded under the DG Research FP7 programme of the European Union 

with a total duration of 4 years, from January 2014 until the end of 2017. The EartH2Observe 

consortium was composed of 27 partners and 4 associate partners, 23 from the EU and 8 from 

non-EU. The main aim of the project was to contribute to the assessment of global water 

resources through the development and application of state-of-the-art earth observations, 

reanalysis datasets and hydrological models. Hence, allowing improved estimates of the 

available water in order to support water management decisions at global and local scale. Tests 

were conducted in key basins within a variety of countries with different water policies, data 

availability and climate conditions such as: Colombia (Magdalena-Cauca basin), Australia 

(Murray-Darling basin), Spain (Ebro basin), Ethiopia (Blue-Nile basin), Morocco (Oum Er 

Rbia basin) and Bangladesh (Brahmaputra basin). This dissertation focuses on three case 

studies within the EartH2Observe project where irrigated agriculture plays a major role: In 

Australia, the Murrumbidgee Irrigation Area has been called the food bowl of New South Wales 

and extends over an area of 150,000 hectares with multiple crops including grapes and rice (MI, 

2015b). In Colombia, the Coello Irrigation district located three hours from the major city of 

the country, provides land and water for rice, maize and cotton production (Garces-Restrepo et 

al., 2007; Urrutia-Cobo, 2006). In addition, in Costa Rica, the DRAT irrigation district provides 

key rice and sugar cane production for satisfying major rice consumption and contributing to 

derived food products (CONARROZ, 2015; SENARA, 2014). 

1.7 OUTLINE OF THE THESIS 

This thesis is structured in seven chapters. Chapter 1 contains the general introduction and 

Chapter 6 contains the synthesis, and recommendations for future work. Chapters 2 to 5 have 

been published or are in the process of publication. The sequence of chapters is based on the 

development of frameworks. 

Chapter 2: A tool to assess available hydrological information and water allocation decisions 

Chapter 3: The benefit of using an ensemble of global hydrological models in surface water 

availability 

Chapter 4: Can global precipitation datasets benefit the estimation of the area to be cropped? 

Chapter 5: The benefit of using an ensemble of seasonal streamflow forecasts for water 

allocation decisions 

 

 

http://www.earth2observe.eu/
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2 A TOOL TO ASSESS AVAILABLE 

HYDROLOGICAL INFORMATION AND 

WATER ALLOCATION DECISIONS  

Based on: Kaune, A., Werner, M., Rodríguez, E., Karimi P., de Fraiture C., 2017. A novel tool 

to assess available hydrological information and the occurrence of sub-optimal water 

allocation decisions in large irrigation districts. Agric. Water Manag. 191, 229-238. 

https://doi.org/10.1016/j.agwat.2017.06.013. 

 

Abstract 

Hydrological information on water availability and demand is vital for sound water allocation 

decisions in irrigation districts, particularly in times of water scarcity. However, water 

allocation decisions are often taken based on uncertain hydrological information, which may 

lead to sub-optimal decisions and agricultural production loss. This study aims to assess the 

availability of hydrological information in large irrigated areas (>250 km²) and evaluate water 

allocation decisions being taken. An index tool that measures the level of availability of 

hydrological information in irrigation districts that is used in planning and operation was 

developed. The index is calculated based on a compound that considers the period of record, 

temporal and spatial resolution of the data. Contingency tables that compare the observed 

discharge in water extraction sites, supply in the main canals, and irrigation demand estimates, 

were generated allowing the rate of occurrence of sub-optimal water allocation decisions to be 

determined. Through this method, excellent index results were found for an irrigation district 

in Australia (Murrumbidgee district), while irrigation districts in Colombia (Coello district) and 

Costa Rica (DRAT district) showed fair to poor information availability, which correspond to 

a higher rate of occurrence of sub-optimal water allocation decisions. The results imply that the 

use of additional hydrological information is beneficial in reducing the rate of occurrence of 

sub-optimal water allocation decisions, ultimately contributing to higher crop yields.  

https://doi.org/10.1016/j.agwat.2017.06.013
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2.1 INTRODUCTION 

Irrigated agriculture accounts for nearly 70% of the world’s total freshwater withdrawals (FAO, 

2011) and over the years has significantly altered hydrological conditions in streams (Al-Faraj 

and Scholz, 2014; Jiang et al., 2015; Kirby et al., 2014b). Even though management strategies 

have been developed to overcome water limitations and provide reliable and stable water supply 

for agricultural production, droughts have in cases led to high impacts on production and 

livelihoods (Connor et al., 2014; Richter, 2014). Given the pressing water scarcity issue in 

agricultural development (de Fraiture and Wichelns, 2010; Rijsberman, 2006), it is crucial to 

take informed water allocation decisions, especially in irrigation districts with high water 

consumption, such as large surface canal systems, where users rely on the water supply system 

for agricultural production to guarantee economic welfare and food security (Malano and 

Hofwegen, 1999). 

As water becomes scarce, efficient decision-making based on solid information becomes 

increasingly important. In reality, water allocation decisions are often based on incomplete or 

uncertain hydrological information (Svendsen, 2005). Poorly informed water allocation 

decisions can lead to agricultural production loss and possibly impact on local livelihoods. 

Assessing the available hydrological information and the potential improvement due to 

additional information can be of considerable value to irrigation districts. 

The value of information theory, developed in the field of economics (Hirshleifer and Riley, 

1979), considers three factors in order to determine to what extent additional information has, 

or does not have a value; the beliefs of decision makers; the costs associated with decisions; 

and, the response in taking actions in light of new information. Additional information can add 

value and improve decision making, but only if currently available information is uncertain 

(Bouma et al., 2009; Macauley, 2006). This implies that, if the available information is perfect, 

then no value is foreseen in the decision process because the current information already leads 

to a clear choice of alternatives. If there is no or little information available, then the additional 

information would have a high marginal value. 

Previous studies that determined the marginal value of additional information (Alfonso and 

Price, 2012; Cerdá and Quiroga, 2011; Macauley, 2006; Quiroga et al., 2011) focused on 

monitoring networks, irrigation frequency and weather information for agricultural production 

and management (including damage and loss). Even though several authors have established 

the marginal value of additional information for agricultural purposes, a gap exists in 

determining how hydrological information can be evaluated for a particular user within a river 

basin, such as in irrigation districts. 

This research hypothesizes that if decision makers in the irrigation sector have the right tools 

to assess the available hydrological information, they will invest more in hydrological 

information when it makes economic sense. The aim of this chapter is to develop a tool for 

assessing the availability of hydrological information in large irrigation districts and evaluate 

water allocation decisions being taken. 
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2.2 METHODS 

2.2.1 Establishing hydrological information requirements for water 
allocation 

The allocation of water resources requires different types of decisions. In the long term planning 

phase, these include determining the viability of developing new irrigation districts or extending 

existing districts, which may entail the construction of canals and hydraulic structures for 

supplying additional demand (FAO, 2007). In the medium term, these include the types and 

extent of crops to be planted given the expected available water. In the short term, these include 

daily decisions related to opening and closing control gates and supplying water to sectors and 

tertiary units (FAO, 2007). These decisions are supported by available data and information 

and governed by water policies, regulations and guidelines (Australian government, 2008; MI, 

2013a; MINAE, 2009; MINAGRICULTURA and INAT, 1997; MinAmbiente, 2014; 

SENARA, 2014). 

Even though the water allocation processes can vary between irrigation districts, the end goal 

is similar, namely providing a service of water supply (Malano and Hofwegen, 1999). 

Determining the water availability and demand for irrigation is key information for providing 

this service. In this study, the hydrological information requirements are defined as the priority 

ground measurements and data required for determining the water availability and irrigation 

demand in the long term, medium term and short term phases. 

For the long term planning phase, variables such as precipitation, temperature (for 

evapotranspiration estimates), river discharge (runoff), water storage (including groundwater 

and surface water reservoirs), cropping patterns and soil characteristics (including texture and 

effective depth) were established as hydrological information requirements (Figure 2.1). For 

the medium term planning and short term operation the required hydrological information was 

established in discharge control locations, including discharge information at water extraction 

sites, water supply at intakes (main, secondary, tertiary canals and user intakes) and irrigation 

demand in the fields (Figure 2.1). 

 

 

 

 



2. A tool to assess available hydrological information and water allocation decisions 

 

 

12 

 

Figure 2.1. Hydrological information requirements for water allocation in planning and 

operational phases in irrigation districts. 

2.2.2 Developing the hydrological information availability index 

The hydrological information availability index is a novel approach that tries to establish the 

available hydrological information in large irrigation districts through a scoring method. 

The availability of hydrological and meteorological data was evaluated according to the spatial 

and temporal resolution and the period of record, through scoring each aspect on an ordinary 

scale between 5 and 1 where 5=excellent; 4=good; 3=fair; 2=limited; 1=poor. If a measurement 

is not available the score was set to zero. 

For the long term planning phase, the information availability of river discharge and storage in 

the basins from which the irrigation water is extracted was evaluated, while the remaining 

variables are evaluated within the limits of the irrigation district. The spatial resolution of river 

discharge, precipitation, and temperature were determined based on the station inverse density 

(Table 1). The spatial resolution of crop patterns and soil characteristics are defined as the 

percentage of area in the district with available information. For the spatial resolution of river 

discharge, the lowest score (1) is assigned to a spatial representativeness of 1000 km²/station, a 

rate set by WMO for mountainous basins (WMO, 2008). The highest score (5) was assigned to 

a spatial representativeness lower or equal than 400 km²/station, assuming at least five river 

discharge stations in a basin of close to 2000 km². For the spatial resolution of precipitation and 

temperature stations, the lowest score (1) is assigned to districts with only one station in the 

entire command area. Spatial representativeness lower or equal to 30 km²/station were assigned 

the highest score (5) for enhanced water demand estimation for irrigation districts larger than 

250 km² (Table 2.1). 
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Table 2.1.  Scoring method for hydro-meteorological variable i required for long term 

planning phase in irrigation districts. Precipitation, temperature, crop patterns, soil texture 

and depth evaluation in the limits of the irrigation district. River discharge and storage 

evaluation in the basins from which the irrigation water is extracted. 

Independent 

score  

ir
a , 

it
a , 

isa  

Period of record, 

ir (years) 

 

Temporal 

resolution, it  

(month) 

 

Spatial resolution, is  

(km²/station) 

Spatial 

resolution, 

is  (%) 

Precipitation, 

temperature, river 

discharge and 

storage 

Precipitation, 

temperature, river 

discharge and 

storage 

Precipitation 

and 

temperature  

River discharge  

Soil texture 

depth, crop 

patterns 

5 (Excellent) 
ir ≥30 it <1 is ≤30 is ≤400 is =100 

4 (Good) 20≤ ir <30 it =1 30< is ≤65 400< is ≤600 80≤ is <100 

3 (Fair) 10 ≤ ir <20 1< it < 12 65< is ≤125 600< is ≤800 50≤ is <80 

2 (Limited) 5 ≤ ir <10 it =12 125< is ≤250 800< is ≤1000 30≤ is <50 

1 (Poor) 
ir < 5 it >12 is >250 is >1000 is <30 

Table 2.2. Scoring method for discharge information in established control locations j in 

irrigation districts (medium term planning phase). Evaluation in water extraction sites; 

hydraulic intakes (main, secondary, tertiary canals and user intakes) and irrigation demand 

in the fields. 

Independent score 

jra , 
jta , 

jsa  

Period of record, 
jr  

(years) 

Temporal resolution, 

jt  (day) 

Spatial resolution, 
js  

(%) 

5 (Excellent) jr ≥30 
jt <1 

js =100 

4 (Good) 20≤
jr <30 

jt =1 80≤
js <100 

3 (Fair) 10≤
jr <20 1<

jt < 1month 50≤
js <80 

2 (Limited) 5≤
jr <10 

jt =1month 30≤
js <50 

1 (Poor) jr < 5 
jt >1month 

js <30 
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Table 2.3. Scoring method for discharge information in established control locations j in 

irrigation districts (short term operational phase). Evaluation in water extraction sites; 

hydraulic intakes (main, secondary, tertiary canals and user intakes) and irrigation demand 

in the fields. 

Independent score 

jta , 
jsa  

Temporal resolution, 
jt  (hour) Spatial resolution, 

js  (%) 

5 (Excellent) jt <1 
js =100 

4 (Good) jt =1 80≤
js <100 

3 (Fair) 1<
jt <24 50≤

js <80 

2 (Limited) jt =24 30≤
js <50 

1 (Poor) jt >24 
js <30 

For the medium term planning and short term operational phase, the score for the spatial 

resolution was established considering the percentage of control locations (e.g. intakes of 

secondary canals) in the district with available discharge information (Table 2.2, Table 2.3). 

For the medium term, the period of record of that information is crucial for adequate planning, 

as past discharge measurements can be used to establish statistics and trends, and recommend 

water allocation for the next season. 

For the short term, operational phase temporal resolution ranges from one hour to 24 hours 

(Table 2.3). A coarser temporal resolution (between one day and one month) was established 

for the medium term planning phase (Table 2.2) because decisions on planning the next crop 

season are to be taken, and from one month to one year for the long term planning phase (Table 

1). Information on the period of record was included in both the medium term and longer term 

phases, where 30 years of historic data was assigned as excellent information availability (score 

5), due to its usefulness in assessing climate variability. For the short term operational phase, 

the period of record was not included as this is less relevant for making day-to-day decisions. 

In addition, a weighting factor, w  was introduced for each variable, using an ordinary scale 

from 2 to 1 (2=higher priority, 1=lower priority) based on the experience. Precipitation, 

temperature, river discharge, and discharge in extraction sites, main canals, water user intakes 

and irrigation demand in water user fields were established as higher priority variables. Soil 

texture and depth, crop patterns, storage, and discharge in secondary and tertiary canals are 

considered as lower priority variables.  

A hydrological information availability index, f  which is an average of the assigned scores 

and weighting factors, was determined for the short, medium and long term decisions in 

irrigation districts according to equation 2.1: 
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 (2.1) 

Where, f  is the hydrological information availability index; ra is the score assigned for the 

available period of record; ta is the assigned score for the available temporal resolution; sa is 

the assigned score for the available spatial resolution of hydro-meteorological variable i  or 

discharge information in an established control location j ; w  is the weighting factor of the 

hydro-meteorological variable i  or discharge information in an established control location j ; 

n is the number of hydro-meteorological variables or control locations evaluated per phase. The 

value of m depends on the number of variables considered with m =3 in the long term planning 

phase (soil texture and depth, and crop patterns are considered separately) as well as in the 

medium term planning phase; m =2, when evaluating information in the short term operational 

phase; and m =1, when evaluating soil texture and depth, and crop patterns in the long term 

planning phase. 

2.2.3 Selection of irrigation districts 

To evaluate the developed index tool, one high-tech irrigation district, the Murrumbidgee 

district in Australia, and two low-tech irrigation districts, the Coello district in Colombia and 

the Arenal-Tempisque district (DRAT) in Costa Rica were selected. 

The selected irrigation districts are large schemes over 250 km² in size, operating an open canal 

system with hydraulic structures and gates to regulate the water discharge from the water source 

(Figure 2.2). Gravity irrigation is predominant, mainly for rice production. In all three irrigation 

districts, the socio-economic or environmental impacts of making poor water allocation 

decisions are significant. Operational water management details of each irrigation district are 

presented in the next section and are summarized in Table 2.4. 

 

Figure 2.2. Typical open canal system with hydraulic structures and gates to regulate the 

water discharge (DRAT irrigation district). 
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Table 2.4. Selected irrigation districts for hydrological information assessment. 

 High-tech Low-tech 

 Murrumbidgee 

Irrigation district 

(MI) 

Coello irrigation 

district (Coello) 

Arenal-Tempisque 

irrigation district (DRAT) 

Country Australia Colombia Costa Rica 

Irrigated area (km²) 1566 250 270 

Main crops Rice, citrus, grapes Rice, maize, sorghum Rice, sugar cane, pasture 

Main source of water 
Murrumbidgee 

River 

Coello River Cucuana 

River 

Arenal reservoir 

(hydropower operation) 

Current type of 

management 

Private agency 

(Murrumbidgee 

Irrigation Ltd) 

Water users 

association 

(USOCOELLO) 

Government institution 

(SENARA) 
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Arenal-Tempisque irrigation district (DRAT) 

In Costa Rica, the Arenal-Tempisque irrigation district (DRAT) is the largest irrigated 

production area in the country, located in the Guanacaste province with approximately 270 km² 

of irrigated land (SENARA, 2014). The district is managed by the National Service of 

Groundwater, Irrigation and Drainage (SENARA), a government institution. The water supply 

is a low-tech system consisting of two main canals, the South and West Canal, with intakes 

located upstream of a diversion dam. Short term decisions on opening or closing the gates in 

these intakes are taken based on the discharge information manually measured at the diversion 

dam. In water abundant conditions, a minimum discharge is set for supplying the South Canal 

(16 m³/s), due to aquaculture activities. This flow is returned to the canal system in its entirety, 

and can be used for satisfying the irrigation demand. In water scarce conditions, 30% of the 

available water is allocated to the South Canal, and 70% of the available water is allocated to 

the West Canal. Currently, the South Canal is being extended to satisfy irrigation demand in an 

additional production area in the district (SENARA, 2014), and there are long term plans to 

build a reservoir that can alleviate water shortages. 

The water availability in the district is constrained by the releases from an upstream reservoir, 

which is operated by the Costa Rican Institute of Electricity (ICE). Normally, there is sufficient 

water available to satisfy irrigation demand. However, when storage is prioritized for 

hydroelectric energy production, a reduced release discharge is made available for DRAT. 

Releases from the reservoir can instantly change, due to water storage priorities in the upstream 

reservoir, leading to water scarcity at the diversion dam. Currently, the monthly irrigation 

demand is determined using climatological precipitation data, crop evapotranspiration 

estimates and the estimated total system efficiency. Irrigation demand estimates are updated 

per semester according to the change in crop patterns. Rice is often grown in rotation with 

sugarcane and pasture. The ability of the soil to pond water without excessive contribution to 

the groundwater or environmental effects to surrounding lands are factors in approving areas 

suitable for rice production (SENARA, 2014). 

Coello irrigation district (Coello) 

The Coello irrigation district is located in the upper Magdalena macro-basin in Colombia, in 

the Tolima Department, a region vulnerable to droughts and climate variability including the 

ENSO climate phenomena (IDEAM, 2015). 

The district is managed by a water user association (USOCOELLO) and the river diversion 

system serves an irrigated area of approximately 250 km², comprising mainly of irrigated rice 

(Urrutia-Cobo, 2006). The water availability for the irrigation district depends on the runoff of 

two rivers (Cucuana and Coello Rivers), supplying two main canals. The water supply in these 

canals is a low-tech system, with the opening and closing of control gates as well as measuring 

of flows in the canals carried out manually. 
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Short and medium term water allocation decisions are taken based on the measured discharge 

in the main canal intakes, with the average irrigation module estimated at 0.2 m³/s/km² for rice 

production. Drought warnings issued by the national meteorological institute (IDEAM) may be 

considered. Irrigation requests are approved to the extent that the predicted water availability 

meets the demand. Currently, irrigation demand is based on the irrigation module estimate. 

Water is allocated to farmers on the basis of area, and crop type (e.g. rice, maize, sorghum or 

cotton), but it may be constrained in water scarce situations. When the water availability is 

insufficient for planting rice over the entire system, the association introduces a rice rotation 

and zoning plan to enable all farmers to plant rice at least once per year (Urrutia-Cobo, 2006; 

Vermillion and Garcés-Restrepo, 1996). 

Murrumbidgee irrigation district (MI) 

The Murrumbidgee irrigation district is located in the Murray-Darling basin in Australia. In this 

region, climate variability is one of the greatest sources of risk to agriculture (Richter, 2014). 

Currently, there is a high-tech decision support system in place with real-time discharge 

measurements in canals and an online water ordering system to avoid agricultural production 

loss due to water shortage. The Murrumbidgee Irrigation Ltd is the company responsible for 

supplying water to satisfy irrigation demand in the district. It manages the water supply service 

through the use of a system of modelling tools and remote monitoring, and the control of critical 

infrastructure to allow coordination in operating the supply system. 

The company provides water entitlement contracts and water delivery contracts to the users of 

an irrigated area close to 1566 km² (MI, 2013a). The company determines the level of service 

that can be provided for the medium term planning phase according to water availability, the 

priority of water orders among pricing groups, the availability of the company’s works for the 

delivery of water allocation on different dates throughout the year and access to the company’s 

drainage works. For the short term operational phase, the time of day for starting and stopping 

of delivery of allocated water are set in accordance with water orders. These water orders are 

established by the users in an online order system with specific information requirements, 

including water demand and use; the requested start and finish time, and date for delivery. The 

online system allows monthly updated information to be obtained on the amount of water 

delivered to the user according to ground measurements (MI, 2013a). 

Rice is the most dominant water user, alongside other agricultural products like grapes and 

citrus (Khan et al., 2006). Rice is often grown in rotation with leguminous pastures and dryland 

crops, due to limited water availability for irrigation. The company has developed special rules 

for authorizing irrigated rice production (MI, 2013b), considering a soil assessment of the field. 

The volume of water available for the irrigation district is determined by considering the water 

levels in two reservoirs (Blowering and Burrinjuck) in the upper Murrumbidgee basin. Based 

on a forecast system, decisions on releasing water from the reservoirs are taken, and the amount 

of water available for irrigation is set by the New South Wales (NSW) Government. The 

available water is diverted from the main offtake (Berembed Weir) to the Bundidgerry storage 

and regulator, the start of the irrigation canal system (MI, 2015b). 
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2.2.4 Determining the rate of occurrence of sub-optimal water 
allocation decisions 

The rate of occurrence of sub-optimal water allocation decisions was defined as the percentage 

of time in a year where water was available to satisfy irrigation demand, but not supplied 

accordingly, thus generating water shortage in the main supply system. This implies that the 

water shortage occurred due to the decision to not supply the full demand, even though the 

water was available. 

In contrast, an optimal decision is made if the water supply is curtailed when there are water 

scarce conditions (optimal decisions Y in Table 2.5), as well as in the case where the supply is 

set to meet the demand under non-water scarce conditions (optimal decisions N in Table 2.5). 

The condition of taking the decision to meet the demand under conditions of water scarcity 

cannot exist due to lack of water. Contingency tables were generated to evaluate the decisions 

made on water allocation in water scarce and water abundant conditions (Table 2.5). Available 

ground data and information of discharge at the extraction sites (Q ), water supply in the main 

canals ( S ), and irrigation demand estimates ( D ) were used for this purpose (Table 2.5). 

Table 2.5.  Contingency table: A decision framework for water allocation at main canal 

level in irrigation districts. 

 

Action 1: 

Generating water shortage due 

to decision  

  0DS  

Action 2: 

Generating no water shortage due to 

decision 

  0DS  

State 1: Water scarcity  

  0DQ  

Optimal decisions Y  

(Scarcity/Shortage) 
Not applicable 

State 2: No water scarcity 

  0DQ  

Sub-optimal decisions 

(No scarcity/Shortage) 

Optimal decisions N  

(No scarcity/No shortage) 

 

During operation of the Arenal-Tempisque irrigation district (DRAT), decisions concerning 

opening and closing the main gates of the independent canal systems (South Canal and West 

Canal) are taken at one extraction site (Figure 2.3). Water shortage was defined as a water 

deficit in either one of the two main canals, where the measured supply is lower than the 

estimated irrigation demand in the command area of that canal. Water scarcity in the DRAT 

district was defined as the water deficit at the extraction site, where the availability of water is 

lower than the estimated irrigation demand in the command area of both canal systems. 
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Figure 2.3. System configuration at main canal level: Discharge availability Q , supply S and 

demand D  in irrigation districts DRAT, Coello and Murrumbidgee. 

 

Observed daily water availability at the extraction site (Q ), daily supply in the two main canals 

( sS  and wS ), and monthly irrigation demand for each main canal sector ( sD  and wD ) are 

available from SENARA and were used to establish the contingency table for five years (2008-

2012). 

Currently, monthly irrigation demand is established using precipitation and evapotranspiration 

estimates, as well as information on crop patterns and estimated efficiency (SENARA, 2014). 

However, irrigation demand can vary due to dry or wet conditions. The assumption was made, 

that the irrigation demand could be 25% higher or lower, depending on the precipitation deficit 

or surplus respectively. Precipitation anomalies were obtained from the meteorological reports 

of the Instituto Meteorológico Nacional (IMN), Costa Rica (IMN, 2014). 

In the Coello irrigation district, decisions on the opening and closing of the main gates are taken 

at the two extraction sites in the Cucuana and Coello Rivers. Even though these extraction sites 

are independent, the available water is supplied to the same command area (Figure 3). Therefore, 

in the Coello district, water shortage was defined as the water deficit in the main canal, when 

the total supply from the two extraction sites is lower than the estimated irrigation demand in 

the command area. Water scarcity was defined as the deficit of available water in the rivers at 

the combined extraction sites as compared to the total irrigation demand. 
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Water supply measurements in the main canals ( cS  and 
gS ) and estimates of irrigation demand 

( D ) were obtained based on data and information provided by USOCOELLO. Water 

availability in the rivers at the two extraction sites ( cQ  and 
gQ ) were estimated based on 

discharge data provided by the Instituto de Hidrología, Meteorología y Estudios Ambientales 

(IDEAM), Colombia. Contingency tables were established for three years (2010-2012). As in 

the DRAT irrigation district, the irrigation demand was adjusted as a function of reported 

precipitation anomalies. These were obtained from the meteorological reports of IDEAM 

(IDEAM, 2015). 

In the Murrumbidgee irrigation district, decisions on the opening and closing of the main gates 

are taken at the two extraction sites in the Murrumbidgee River. The available water is supplied 

to one command area (Figure 3), thus water shortage and water scarcity were defined similarly 

as for the Coello irrigation district. 

Observed daily water availability ( mQ ) and daily supply in the two main canals ( mS and tS ) 

were obtained based on data provided by the New South Wales (NSW) Government, 

Department of Primary Industries Office of Water. Daily irrigation demand was estimated 

based on the water announcements made by the NSW Government between the years 2004 and 

2008. Contingency tables were established for those five years. 
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2.3 RESULTS 

2.3.1 Information availability of hydro-meteorological variables for 
the long term planning phase 

An average score per hydro-meteorological variable (precipitation, temperature, runoff, storage, 

soil texture and depth, and crop patterns) was determined according to the temporal and spatial 

availability of data for the long term planning phase (Figure 2.4). The irrigation districts of 

Coello and DRAT (Colombia and Costa Rica) have similar results. For both of these irrigation 

districts, the average score obtained for the availability of precipitation data is 3.7 (Figure 2.4). 

This score accounts for the availability of precipitation data being fair to good, with similar 

temporal, spatial and period of record availability for the two districts. For temperature and 

runoff variables, the availability of information is fair, with an average score close to 3 (Figure 

2.4). Reasonable spatial information was found for cropping patterns (scores between 4 and 5), 

but information on soil texture and depth is limited (Figure 4). In both districts there is no 

significant storage that can be used to satisfy irrigation demand, thus a score of zero was 

assigned to the storage variable. In the DRAT district, there is a storage reservoir in the river 

upstream of the district, but its operation does not prioritize irrigation. 

 

Figure 2.4. Scores per hydro-meteorological variable for long term planning phase in the 

selected irrigation districts. 

In the Murrumbidgee irrigation district, one key storage reservoir is located at the beginning of 

the main canal. Good (4) temporal resolution and period of record were found for storage 

information. For all other hydro-meteorological variables the availability of information is 

considered excellent (Table 2.3). 
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2.3.2 Information availability of discharge in control locations for 
medium term planning and short term operational phase 

An average score for discharge information in water extraction sites, canals and water user's 

intakes, and irrigation demand in fields, was determined according to the temporal and spatial 

evaluation (Figure 2.5, Figure 2.6). The findings show that availability of information is similar 

for the Coello and DRAT systems, except that river discharge information is available for the 

DRAT. However, the period of record of the river discharge in the DRAT district is limited 

(score of 2), which reduces the average score for the medium term to 3.7, although the spatial 

resolution is good (score 4) and the temporal resolution is excellent (Figure 2.5). The evaluation 

of the same information for short term operational phase shows good spatial and temporal 

resolution, which results in an average score of 4.0 (Figure 2.6). 

 

Figure 2.5. Scores for discharge information per control location, for the medium term 

planning phase in the selected irrigation districts. 

 

Figure 2.6. Score for discharge information per control location, for the short term 

operational phase in the selected irrigation districts. 

Both irrigation districts have reasonable temporal and spatial discharge information in the main 

canal intakes, but Coello has a longer period of record, with over 30 years of monthly data 

available. Therefore, the average information availability score for the medium term planning 

phase in Coello is higher in the main canal intakes (Figure 2.5). Discharge information in the 

secondary canal intakes is also better, due to a longer period of record. Both irrigation districts 

show poor discharge information availability in the tertiary canals and at the water users intakes. 

In addition, the spatial and temporal resolution of hydro-meteorological variables is not 

adequate to determine reliable irrigation demand at field level. Hence, information availability 
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for estimating the irrigation demand is considered limited for both districts. The information 

availability for the short term operational phase is considered poor, based on the results obtained 

in the secondary and tertiary canals and at the water user’s intakes (Figure 2.6). Better 

information availability is found in the main canal intakes (scores 4 to 5). 

For the Murrumbidgee irrigation district, the information availability scores range between fair 

(3) to excellent (5). For the long term planning phase, all hydro-meteorological variables have 

excellent information availability. For the medium and short term phase, the availability of 

information is the highest at the main intakes and water extraction sites (Figure 2.5 and Figure 

2.6), followed by the information at the secondary, tertiary and water user intakes with an 

average score of 4.5.The score for discharge information from user’s fields is fair (score of 3). 

2.3.3 Hydrological information availability index 

The hydrological information availability index, f  was established with the assigned scores 

using equation 1. The highest index was obtained for the irrigation district in Australia with an 

average index score of 4.5 across all three phases (Table 2.6). 

Table 2.6.  Hydrological information availability index scores in selected irrigation 

districts (5=excellent, 4=good, 3=fair, 2=limited, 1=poor). 

Hydrological information availability 

index,  f  

Irrigation districts 

Coello  

(Colombia) 

DRAT 

(Costa Rica) 

Murrumbidgee 

(Australia) 

sof short term operation 1.4 2.2 4.4 

mpf medium term planning 1.5 2.0 4.3 

lpf long term planning 3.3 3.6 4.9 

f  average 2.1 2.6 4.5 
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An average information index of 2.1 and 2.6 was established for the Coello and DRAT systems, 

respectively, implying a poor (1) to fair (3) information availability for all phases (Table 2.6). 

However, differences between the two low-tech irrigation districts are interesting. The Coello 

district has less hydrological information for the short-medium phase, but has similar 

information availability for the long term planning phase. The index scores for the short and for 

the medium term for Coello are 1.4 and 1.5, respectively, and 2.2 and 2.0, respectively for 

DRAT (Table 2.6). For these phases, measurements in secondary, tertiary and field intakes have 

to be improved both spatially and temporally. For the long term planning phase, the index 

results are relatively better (3.3 for Coello and 3.6 for DRAT), due to the availability of key 

variables, such as precipitation and temperature. Even though the score for the availability of 

precipitation and temperature data is fair to good, only one climate station is currently being 

used in the DRAT district to estimate irrigation demand. Irrigation demand estimates at the sub-

district or field level can therefore be misleading, affecting both planning and operational water 

allocation decisions. Efforts should be made to improve the climate station density and the use 

of this data for the estimation of irrigation demand. 

2.3.4 The rate of occurrence of sub-optimal water allocation 
decisions 

After establishing the information index for the selected irrigation districts the rate of 

occurrence of sub-optimal and optimal water allocation decisions was evaluated as explained 

in section 2.4.  

Similar results were found for the sub-optimal and optimal water allocation decisions taken in 

Coello and DRAT irrigation districts. In the DRAT irrigation district, results show that the rate 

of occurrence of sub-optimal water allocation decisions was between 10% and 24% of the time 

per year (Figure 7). The rate of occurrence of optimal water allocation decisions (Y), under true 

water scarcity conditions, was between 2% and 19% of the time and the optimal water allocation 

decisions (N), under no water scarcity conditions between 63% and 85% of the time. In the 

Coello irrigation district, the rate of occurrence of sub-optimal water allocation decisions was 

between 16% and 36% of the time per year with corresponding rates of optimal water allocation 

decisions being taken as shown in Figure 2.7. 
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Figure 2.7. The rate of occurrence of sub-optimal and optimal water allocation decisions in 

irrigation districts: Coello (2010-2012), DRAT (2008-2012) and Murrumbidgee (2004-2008). 

In the Murrumbidgee irrigation district, in the year 2004, a rate of 0% of occurrence of sub-

optimal water allocation decisions was obtained (Figure 7). In the year 2007 and 2008, the rate 

of occurrence of optimal water allocation decisions Y, under true water scarcity conditions was 

3% and 13% of the time. For those years, sub-optimal water allocation decisions were taken 

7% of the time, a lower rate compared to Coello and DRAT irrigation districts. 

These results, imply that there is more room to improve water allocation decisions in DRAT 

and Coello irrigation districts given the current hydrological information availability. 

2.4 DISCUSSION 

2.4.1 Linking the hydrological information index and sub-optimal 
water allocation decisions 

For the selected irrigation districts, a link was found between hydrological information index 

results and the rate at which sub-optimal water allocation decisions are being taken. The 

proposed relationship between the information index scores, the rate of occurrence of sub-

optimal water allocation decisions, and the marginal value of additional information is 

presented in Figure 2.8 and Figure 2.9. 
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Figure 2.8. The rate of occurrence of sub-optimal water allocation decisions against the 

score of the hydrological information availability index in the selected irrigation districts 

(Coello, DRAT, and MI). 

 

Figure 2.9. The relationship between the score of the hydrological information index, the rate 

of occurrence of sub-optimal water allocation decisions, and the marginal value of additional 

hydrological information. 

When the information index score is high, such as a value of 4.5 in the Murrumbidgee irrigation 

district (abbreviated to MI), the rate of occurrence of sub-optimal water allocation decisions is 

found to be low. When the information index score is low, (e.g. 2.1 or 2.6 in the Coello and 

DRAT irrigation districts, respectively), the rate of occurrence of sub-optimal water allocation 

decisions is found to be high.  
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This suggests that, having better hydrological information in the irrigation district leads to a 

lower rate of sub-optimal water allocation decisions being taken. Reducing the rate of 

occurrence of sub-optimal water allocation decisions makes economic sense, as lower water 

deficit due to better decisions contributes to higher crop yields. 

If the available hydrological information is excellent (e.g. high index score 4.5), then the 

marginal value of additional hydrological information is low, as more information cannot have 

a major effect in reducing the, already low rate of occurrence of sub-optimal water allocation 

decisions. If the available hydrological information is poor or intermediate, then the marginal 

value of additional hydrological information is high, as more information can have an effect in 

reducing the rate of occurrence of sub-optimal water allocation decisions. 

2.4.2 Limitations and assumptions 

The information index presented in this chapter was developed for irrigation districts with areas 

larger than 250 km² and with operational periods of longer than 30 years. In addition, the index 

tool considers a minimum spatial representativeness for river discharge stations in mountainous 

basins as proposed in WMO (2008). For other types of basins with different characteristic, the 

ranges used in scoring can be adjusted. 

As it is applied here, the limits for precipitation and temperature data have also been taken as 

the same, assuming that climate stations will include both of these variables. The approach 

could, however, be easily extended to differentiate between these, as normally the greater 

spatial correlation of temperature data would imply a lower spatial representativeness of 

stations would be sufficient. Other variables may also be taken into account, including for 

example water quality indicators such as salinity, depending on the relevance of these 

parameters in water allocation decisions. 

Additionally, sub-optimal water allocation decisions were assessed as those where water was 

not allocated (extracted) despite it being available. Maintenance (e.g. repair of hydraulic 

structures) or other constraints could have been the cause of the closing of the main gates of the 

supply system. This information is, however, not available in the irrigation districts assessed, 

and the assumption was taken that the sub-optimal decisions do occurr as a result of the scarcity 

of hydrological information in determining water availability and irrigation demand. Obviously, 

maintenance has to be done during the operation of the irrigation districts, but the additional 

hydrological information would also serve to better plan maintenance if it were available, 

avoiding the occurrence of shortfalls of meeting the demand. 

2.4.3 Usefulness for irrigation districts and further work 

The proposed index tool provides irrigation managers a measure as to the resolution and period 

of record at which information should ideally be available. Ensuring information of sufficient 

quality is available will promote improved decisions for water allocation in agricultural 

production. 



 

 

 

29 

Better water allocation decisions in irrigation districts would require additional hydrological 

information. Additional hydrological information can be obtained by expanding networks of 

gauging and climatological stations, but may also be based on remote sensing, hydrological and 

meteorological models (Karimi and Bastiaanssen, 2015; Peña-Arancibia et al., 2014, 2016). 

Peña-Arancibia et al. (2016) suggest that surface water use estimates can be improved using 

these datasets when compared to traditional crop modelling. Combining remote sensing and 

hydrological models may help improve the index scores and enhance water allocation decisions. 

However, it is crucial to establish an adequate spatial and temporal resolution according to the 

operational and planning phases in the district, and then explore how that data can be best 

provided. Further research can also help establish the marginal value of this improved 

information in a quantitative manner by estimating the change in crop yield in irrigation districts 

due to reducing sub-optimal decisions. 

2.5 CONCLUSION 

Large irrigation districts are the largest water consumers in the planet. A tool to assess the 

availability of hydrological information and the rate of occurrence of sub-optimal water 

allocation decisions was developed for these water supply systems. 

Sub-optimal water allocation decisions are considered as those where the supply to meet the 

demand was curtailed, despite sufficient water being available. It was found that in the selected 

irrigation districts in Colombia, Costa Rica and Australia (Coello, DRAT, and Murrumbidgee 

irrigation district), sub-optimal water allocation decisions do occur. 

An index tool was applied to assess the availability of hydrological information for different 

decision phases; long term planning, medium term planning and short term operational phases. 

The quality of that information was evaluated by scoring the period of record; and the temporal 

and spatial resolution of the available data (e.g. precipitation, temperature, and discharge). Of 

the three irrigation districts considered, the one in Australia (Murrumbidgee irrigation district) 

was found to have excellent hydrological information availability, while the selected irrigation 

districts in Costa Rica (DRAT irrigation district) and Colombia (Coello irrigation district) have 

fair to poor availability of information. 

In the DRAT and the Coello irrigation districts, the rate of occurrence of sub-optimal allocation 

decisions was found to be higher (10% to 36% of the time in one year) compared to the 

Murrumbidgee irrigation district (0% to 7% of the time in one year) as a consequence of lower 

availability of hydrological information. The rate of occurrence of sub-optimal water allocation 

decisions increases as the score of the hydrological information index decreases. The index 

score can potentially be used as a proxy of the rate of occurrence of sub-optimal water allocation 

decisions. This tool provides irrigation managers a measure as to the resolution and period of 

record at which information should ideally be available. Ensuring information of sufficient 

quality is available will promote improved decisions for water allocation in agricultural 

production. Though its application would need to be validated in other irrigation districts.  
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The results imply that the use of additional hydrological information is beneficial in reducing 

the rate of occurrence of sub-optimal water allocation decisions, which ultimately contribute to 

higher crop yields. The marginal value of this additional information can be determined by 

evaluating the change in the rate of occurrence of sub-optimal water allocation decisions and 

the change in available hydrological information. 

The challenge is to incorporate additional hydrological information through additional ground 

stations, remote sensing, hydrological models and global models. The contribution of such 

additional data is currently being addressed as part of this ongoing research. 
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3 THE BENEFIT OF USING AN 

ENSEMBLE OF GLOBAL 

HYDROLOGICAL MODELS IN SURFACE 

WATER AVAILABILITY ESTIMATES 

Based on: Kaune A., López-López P., Gevaert A., Veldkamp T., Werner M., de Fraiture C.: The 

benefit of using an ensemble of global hydrological models in surface water availability for 

irrigation area planning. Water Resour. Manag. Rev., 2018. (In review). 

 

Abstract 

Hydrological data and information on the availability of water are essential to support water 

allocation decisions in irrigated agriculture, especially under increasingly water scarce 

conditions. However, in many agricultural regions around the world hydrological information 

is scarce, leading to sub-optimal water allocation decisions and potential agricultural production 

loss. In this study we assess the influence of hydrological variability on water availability, and 

evaluate the benefit of using an ensemble of global hydrological models for designing the 

irrigation area, where this is determined based on agreed operational targets of water supply 

reliability. Surface water availability estimates are established using an ensemble of global 

hydrological models. The risky outcomes in terms of annual agricultural production due to the 

actual frequency of occurrence of water scarcity were generated for a reference and alternative 

irrigation areas, resulting in a Relative Utility Value (RUV) that expresses the utility of the 

information used. Results show that using an ensemble of global hydrological models provides 

more robust estimates of the planned area compared to when using any of the single global 

models that constitutes the ensemble. A comparison of the information content in the ensemble 

shows that an ensemble with a period of record of fifteen years has an information content 

equivalent to a single model of thirty years. The results provide insight into how a hydro-

economic framework can be applied in irrigation area planning, given uncertain surface water 

availability estimates. 
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3.1 INTRODUCTION 

The debate on water scarcity at the global level centres on population growth and per capita 

income increases (FAO, 2013; Rijsberman, 2006; Wada et al., 2016), exacerbated by the 

uncertain availability of water due to climate variability and climate change (Eslamian, 2014; 

Gosling et al., 2017; Lutz et al., 2014). Adequate prediction tools for water resources 

assessment are key to provide a better understanding of present and future water scarcity, and 

its impacts on human livelihoods, the environment and agricultural development; especially in 

regions where hydrological data is scarce (Bloschl et al., 2014; Masafu et al., 2016; Tegegne et 

al., 2017). In these regions the potential of using additional hydrological information from 

global hydrological models is high as these can help enhance water resource availability 

assessments, and decrease the number of sub-optimal water allocation decisions (Kaune et al., 

2017). 

Several global hydrological models have been developed (Bierkens, 2015; Kauffeldt et al., 2016; 

Sood and Smakhtin, 2015) and have been widely applied to climate change and water scarcity 

impact assessment, and improved river discharge estimations (van Beek et al., 2011; Gosling 

et al., 2017; Hanasaki et al., 2013; Lopez Lopez, 2018; Veldkamp et al., 2015a; Zhao et al., 

2017). Global hydrological models such as LISFLOOD (Knijff et al., 2010), WATERGAP3 

(Döll et al., 2009; Flörke et al., 2013), PCR-GLOBWB (van Beek et al., 2011; Wada et al., 

2014), SURFEX-TRIP (Decharme et al., 2010, 2013) and HTESSEL (Balsamo et al., 2009) 

provide surface water availability estimates for large regions and basins. These models are 

typically forced using meteorological re-analysis data such as ERA-Interim (Dee et al., 2011), 

or the more recently developed MSWEP (Beck et al., 2017b), that integrates in-situ 

meteorological data, global earth observations and the ERA-Interim reanalysis. Obviously 

locally calibrated hydrological models may be more suitable at river basin scale (López López 

et al., 2016; Zhang et al., 2016), but these depend on the availability of observed data from in-

situ stations with sufficient quality and period of record, which in many areas of the world may 

be an issue. Although large-scale hydrological models provide consistent data with a long 

period of record, there are large differences between outputs of the different models 

(Gudmundsson et al., 2012; van Huijgevoort et al., 2013; Stahl et al., 2012). Studies have found 

that using a model ensemble can be used to increase the accuracy of predicting hydrological 

variables (Gudmundsson et al., 2011; van Huijgevoort et al., 2013), resulting in more reliable 

surface water availability estimates. These studies explore the use of ensembles of global 

models for water resources assessment, the focus is on the gain in selected statistical 

performance metrics. Other studies have evaluated the gain or benefit of the use of ensemble 

information from an economic aspect. Verkade and Werner (2011) estimate the economic 

benefit of using forecasts for flood warning, while (Quiroga et al., 2011) evaluate the economic 

benefit of using drought information for water allocation decisions; both applying the theory of 

Relative Economic Value (Murphy, 1985). Other studies that propose hydro-economic 

frameworks to support decisions in water resources systems include Alfonso and Price (2012), 

Bouma et al. (2009) and Macauley (2006), who apply the expected utility theory (Neumann and 
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Morgenstern, 1966) for estimating the value of information through a Bayesian setting 

(Hirshleifer and Riley, 1979). 

While hydro-economic frameworks have been applied to estimate the benefit of using 

hydrological information for several applications, a gap exists in supporting decisions in 

agriculture, especially in large irrigation districts (Kaune et al. 2007). Irrigation districts are 

hydro-productive schemes designed to provide a water service for agricultural production. 

Operators in the scheme decide when and where to supply water to secure crop yields in the 

irrigated area. If the available water is not sufficient to satisfy crop water requirements, then the 

operational system would have failed in providing the necessary service, leading to potential 

agricultural losses due to water scarcity. Planning the adequate irrigation area based on solid 

information about the water availability is crucial since the initial design phase of the irrigation 

district. Data on river discharge, groundwater, soil types, and desired cropping patterns is 

required for the water balance assessment. Investors would like to receive the best irrigation 

area advice If water resources are overestimated the higher frequencies of water scarcity may 

occur than planned for. Alternatively if the water resources are underestimated, then the 

irrigation area may be too small, leading to an opportunity cost. We apply a risk based approach 

to designing irrigation areas using a hydro-economic Expected Annual Utility framework based 

on the economic principles of Neumann and Morgenstern (1966), assuming risky outcomes that 

consider the occurrence and non-occurrence of water scarcity. 

We hypothesise that the use of an ensemble of global hydrological models provides more 

reliable estimates of surface water availability for irrigation area planning compared to 

individual models. This is evaluated through the hydro-economic framework in a selected basin 

that determines the value of using the model ensemble in determining the areas that can be 

irrigated as a function of the estimated water availability. 

3.2 MEHTODS 

The Relative Utility Value 𝑅𝑈𝑉 used in this study is defined as the risky annual crop production 

given monthly probabilities of (non-)water scarcity compared between the reference and the 

planned irrigation areas. This value includes the irrigation areas for river discharge simulations 

derived using different global hydrological models, the monthly probability of water scarcity 

using these areas, and the potential yield reduction due to water deficit for rice. The framework 

was tested in a basin in Southeast Australia. 

 

3.2.1 Murrumbidgee River basin 

We apply our analysis to the Murrumbidgee River basin in Australia (Figure 3.1). This basin 

was selected because it has a dense network of in-situ stations, which can be used to compare 

model results. 
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Figure 3.1. Map of the Murrumbidgee River basin in the Murray Darling System, Australia. 

Location of the Murrumbidgee Irrigation Area (MIA), weather and discharge stations. 
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The Murrumbidgee basin is a highly regulated system located in southeast Australia (State of 

New South Wales) and supplies water for agriculture production, safe drinking water, industry 

and the environment. The basin is part of the Murray-Darling system, which was heavily 

impacted by the Millennium drought between 2001 to 2009 (van Dijk et al., 2013b). In 2012, 

The Murray-Darling Basin Authority released a new Basin Plan for the integrated management 

of water resources to prevent future major impacts due to extreme climatological events. Water 

allocation decisions are made by the New South Wales government throughout the season, 

considering water availability primarily based on water levels in two major reservoirs 

(Burrinjuck and Blowering) in the upper part of the basin with a combined volume capacity of 

2.654𝑥109 m³. The river flows from east to west from approximately 1960 m to 40 m elevation, 

with a high hydroclimate variability with a mean annual discharge of 125 m³/s (Green, 2011). 

At the Wagga Wagga weather station (middle of the basin) the precipitation varies between 35 

mm/month and 55 mm/month. Months between November and February are the driest (summer 

season). In the mountainous higher part of the basin the precipitation is two times higher than 

the precipitation in the middle of the basin (Burrell, 2017 and Green 2011). The hottest months 

in the basin are January and February when temperature vary from 33⁰C in the west and 16⁰C 

at higher altitudes in the east. Winter temperature vary from 3⁰C to 5⁰C in the west to 0⁰C to -

2⁰C in the east (MWRP, 2017). The evaporation is higher at lower elevation with 1800mm/year 

in the west and 1000 mm/year in the east. At Wagga Wagga weather station, in the winter period 

during July evaporation may be as low as 1 mm/day, while in summer during January it reaches 

9 mm/day (Green, 2011). 

Major irrigation districts have been developed in the middle of the basin (west) with a total 

command area estimated at 4182 km² (reference green). The largest district is the 

Murrumbidgee Irrigation Area (MIA) with approximately 3624 km² (Green, 2011). Irrigated 

agriculture in the basin provide 25% of the state’s fruit and vegetable production and half of 

Australia's rice production. Rice is the dominant water user (MI, 2015a), with a growth period 

from November to February. In this research, we focus only on rice production with 

corresponding four months of total growth length and crop yield factors for each growth stage 

representing the sensitivity due to water deficit. 

The Murrumbidgee basin is a highly regulated basin with two large reservoirs and a well-

established water allocation decision process. It is a complex system which requires the 

calibration of several model parameters for accurate river discharge simulations. However, in 

this chapter, we want to assess the information content of the ensemble of the global 

hydrological models. The observed river discharge in the Murrumbidgee basin has been 

naturalized to avoid the influence of the reservoir operation. Hence, allowing the use of the 

global hydrological models in the non-reservoir operation model. 
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3.2.2 Hydro-meteorological data 

Precipitation data was obtained from the Multi-Source Weighted-Ensemble Precipitation, 

MSWEP (Beck et al., 2017b). Air temperature data were based on the WATCH Forcing Data 

methodology applied to ERA-Interim reanalysis, WFDEI (Weedon et al., 2014) corrected with 

the CRU data (Harris et al., 2014). Precipitation and air temperature datasets were available for 

1980-2009 period at 0.25ᴼ x 0.25ᴼ spatial resolution and daily temporal scale. 

Monthly river discharge data was obtained from the Australian Bureau of Meterology (BoM) 

at the Wagga Wagga station (410001) for the 1980-2009 period, which is upstream of the 

intakes to the main irrigation areas in the basin (Figure 1). As the basin is highly regulated, the 

river discharge at Wagga Wagga station was naturalised using the upstream hydrological 

reference stations (Turner, 2012; Zhang et al., 2014), which are in unregulated headwater 

catchments. The stations used to naturalise the streamflow are: Cotter River at Gingera 

(410730), Adelong Creek at Batlow Road (410061), Goobarragandra River at Lacmalac 

(410057), Gudgenby River at Tennent (410731), Molonglo River at Burbong (410705) and 

Murrumbidgee River below Lobbs Hole Creek (410761). The naturalised flow was obtained 

with the monthly discharge of the hydrological reference stations adjusted with the quotient of 

the mean discharge at the Wagga Wagga station and the mean discharge of the hydrological 

reference stations. The naturalised flow is used as the reference surface water availability for 

irrigation, though an environmental flow of 25% of the river discharge was considered. 

3.2.3 Global hydrological models 

Eight different global hydrological and land surface models were used: HTESSEL (Balsamo et 

al., 2009), SURFEX-TRIP (Decharme et al., 2010, 2013), PCR-GLOBWB (van Beek et al., 

2011; Wada et al., 2014), WATERGAP3 (Döll et al., 2009; Flörke et al., 2013), LISFLOOD 

(Knijff et al., 2010), ORCHIDEE (Krinner et al., 2005), JULES (Best et al., 2011), and W3RA 

(van Dijk et al., 2013a). For each model the total runoff was obtained on a 0.25⁰ x 0.25⁰ spatial 

resolution, and all models were forced with a consistent meteorological forcing dataset (see 

section 2.2). Monthly runoff simulations for each model were obtained over the 30-year study 

period from 1980 through 2009 for the basin to the station at Wagga Wagga and compared with 

the naturalized observations at monthly time scale for the 1980-2009 period. Several 

performance metrics were established to evaluate the hydrological performance of the models, 

including Kling-Gupta efficiency (KGE, Gupta et al., 2009); Pearson’s correlation coefficient 

(r), Root Mean Square Error (RMSE) and percent bias. 

For each global hydrological model the monthly surface water availability for irrigation was 

derived from the simulated runoff for the 1980-2009 period. The model ensemble was made by 

combining the monthly surface water availability from all eight models. This means that the 

ensemble contains eight surface water availability values for each month to explicitly include 

the model uncertainty. To explore the influence of the period of record in determining the 

surface water availability, the samples with a different number of years are extracted from the 

thirty year dataset. This resulted in independent groups of data for 5 years (1980-1984, 1985-
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1989, 1990-1994, 1995-1999, 2000-2004, 2005-2009); 10 years (1980-1989, 1990-1999, 2000-

2009); 15 years (1980-1994, 1995-2009) and the full 30 years (1980-2009) (Figure 3.2). 

 

Figure 3.2. Obtaining simulations of single global hydrological models for 30 years and an 

ensemble of global hydrological models for 5, 10, 15 and 30 years. 

3.2.4 Determining the irrigation areas 

The irrigation area is determined based on an operational target of water supply reliability (75%) 

using a bootstrap resample of the multi-annual monthly river discharge datasets to constrain the 

statistical uncertainty. The reference irrigation area is established using the observed 

(naturalised) surface water availability for 30 years (1980-2009), while the planned irrigation 

areas sare determined using each simulation of surface water availability for the selected 

periods (mentioned in section 3.2.3. 

Water supply reliability, or probability of non-occurrence of water scarcity  NWSpr  is defined 

as the relative frequency p  of the multi-annual monthly surface water availability aQ  being 

able to satisfy the irrigation demand D  (Equation 3.1a and 3.1b). 

  %75NWSpr     (3.1a) 

    
montha DQpNWSpr 0   (3.1b) 

The irrigation demand D  (equation 3.2) varies depending on the size of the irrigation area A , 

which is the variable to be obtained, and a fixed monthly irrigation demand rate r . The 

monthly irrigation demand rate (Table 3.1) was established using average precipitation and 

potential evapotranspiration data from a local weather station (MI, 2015a), and a total irrigation 

efficiency of 77% (Khan et al., 2006). 
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rAD        (3.2) 

 

For each irrigation area size that is obtained using the simulated data, the real probability of 

water scarcity  WSpr  is determined using the observed surface water availability 
aQ̂  

(equation 3.3). 

    
montha DQpWSpr 0ˆ     (3.3) 

These probabilities are then used for evaluating the benefit of using the ensemble of global 

hydrological models. 

Table 3.1. Irrigation demand rate, r determined with the precipitation, P and potential 

evapotranspiration, ETP data from weather station Griffith (CSIRO) and using a total 

irrigation efficiency of 77%. Units are in mm/month. 

 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 

ETP 42 66 100 153 194 238 250 194 162 91 53 36 

P 34 35 35 40 32 30 33 32 36 31 37 35 

r 10.4 40.3 84.4 147 210 270 282 210 164 77.9 20.8 1.30 

 

3.2.5 Evaluating the benefit of using the ensemble of global 
hydrological models 

The benefit of using the ensemble of global hydrological models was evaluated with the 

Relative Utility Value ( RUV ) an index composed of Expected Annual Utility (U ) estimates. 

According to economic theory (Neumann and Morgenstern, 1966), the Expected Annual Utility 

U  is defined as the sum of Risky Outcomes R  for the occurrence and the non-occurrence of 

an event (equation 3.4). 

NWSWS RRU      (3.4) 

In this study, the Risky Outcomes WSR  and NWSR  are determined as the annual agricultural 

production due to occurrence and non-occurrence of water scarcity using the real probabilities 

of water scarcity  WSpr , the potential annual agricultural production that can be achieved 

under non water scarcity conditions NWSP , and the annual agricultural production loss WSL  due 

to water deficit happening in a given month (Equation 3.5 and Equation 3.6). 

   WSNWSWS LPWSprR      (3.5) 

   NWSNWS PWSprR  1     (3.6) 
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The annual agricultural production loss is determined with Equation 3.7, assuming water deficit 

happens independently in each month. A simplified approach is used where each month 

corresponds to one growth stage of the crop. The expected crop yield without water deficit is 

established according to local agricultural information, while the final crop yield is obtained 

using yield reduction values based on known yield response factors per growth stage (FAO, 

2012) and the actual occurrence of water deficits. For larger or smaller irrigation areas than the 

reference area, the evapotranspiration reduction changes proportionally as the available water 

is uniformly distributed in the new irrigation area. 

  
month

foplannedWS yyAcL     (3.7) 

where 
plannedA  is the planned irrigation area, oy (t/ha) is the expected crop yield without water 

deficit, 
fy  (t/ha) is the final crop yield due to water deficit, and c ($/t) is the price of the crop 

per ton. 

The risky annual rice production given monthly probabilities of (non-)water scarcity are then 

compared between the reference and the planned irrigation areas (Table 3.2) resulting in the 

Relative Utility Value, with the Relative Utility Value ( RUV ) defined as (Equation 3.8): 

 

r

ri

U

UU
RUV




     (3.8) 

where, rU  is the expected annual utility (revenue) obtained with the reference irrigation area 

from observed river discharge, iU  is the expected annual utility obtained with the planned 

irrigation area from a single global hydrological model or the ensemble of the global 

hydrological models (Equation 3.4). 

If RUV  is equal to zero then iU  and rU  are the same and the simulated surface water 

availability is equal to the observed. 

In this study, we base irrigation area planning on rice production. We use an average price of 

298 $/t and an expected rice yield of 10.8 t/ha based on regional statistics (NSW DPI, 2016) to 

estimate the annual agricultural production. The growing season of rice is from November to 

February (NSW DPI, 2016). 
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Table 3.2. Contingence table: Evaluating the expected annual utility of planned irrigation 

areas relative to the reference irrigation area. 

 

3.3 RESULTS 

3.3.1 Discharge simulations of global hydrological models 

The monthly observed (naturalised) and simulated discharges from the eight global 

hydrological models are shown in Figure 3.3. In general, discharge simulations show an overall 

agreement with observations, considering that they have not been locally calibrated for this 

particular basin. In terms of the KGE, the highest values were obtained with JULES and 

WATERGAP3 (0.704 and 0.732 respectively) the lowest with HTESSEL (0.195). All models, 

with the exception of LISFLOOD, underestimated the discharge (negative values of percent 

bias). Correlation values varies from 0.456 for ORCHIDEE to 0.864 obtained for JULES. 

 
 

Using reference irrigation area r  

 

Using planned irrigation area i  

Probability of water scarcity Risky annual production 
rWSR  

Higher or lower risky annual 

production 
iWSR  

Probability of no water 

scarcity 

Risky annual production 
rNWSR  

Higher or lower risky annual 

production 
iNWSR  

 

Expected annual utility  

rU  

Higher or lower expected annual 

utility iU
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Figure 3.3. Monthly observed (naturalised) and simulated discharge at Wagga Wagga station 

for 30 years (1980-2009). 

The performance metrics for each month are shown in Figure 3.4. As the growth period of rice 

is between November and February, we evaluate the performance metrics for those months. In 

terms of the KGE, in November the highest value is obtained with JULES and SURFEX-TRIP 

with equal values of 0.7. In December, January and February the highest values are obtained 

with JULES, WATERGAP3 and W3RA, respectively. SURFEX-TRIP, HTESSEL and PCR-

GLOBWB underestimate the discharge between November and February with negative values 

of percent bias. While LISFLOOD and ORCHIDEE overestimate the discharge for those 

months with the highest PBIAS in February for ORCHIDEE (175%). WATERGAP3 and 

JULES overestimated the discharge in January and February, and W3RA only in February. 
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Figure 3.4. Performance metrics KGE, PBIAS, and correlation r for simulated river 

discharge with single global hydrological models in the Murrumbidgee basin 

The correlation values vary among models and each month. JULES and W3RA show 

correlation values consistently higher than 0.8 between November and February. For 

LISFLOOD, HTESSEL and WATERGAP3 the correlation per month is close to 0.8 or higher. 

SURFEX-TRIP showed a low correlation in February (0.61) as well as PCR-GLOBWB (0.45). 

The lowest correlation value is obtained for ORCHIDEE in the months of November (0.3), 

December (0.6) and February (0.35), but in the month of January it is as high as 0.81. Overall 

these results provide reasonable simulation of the evolution of monthly discharges, the 

performance in individual months may differ significantly and may be quite poor. Figure 4 

shows that there is a seasonality in the model performance, with performance being lower for 

the austral summer (and low flow season), and higher for the austral winter (high flow season) 

for most models. The figure also shows that there is not a particular ranking that can be 

identified between the eight models. 
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3.3.2 Establishing irrigation area estimates 

The irrigation area estimates using the simulated water resource availability is established by 

assessing the water resource availability for the growth period of rice between November and 

February using a water supply reliability target for each month of 75%. The area is established 

for the reference discharge, for each of the single global models using the 30-year period, as 

well as using the ensemble for the six 5-year periods; three 10-year periods, two 15 year periods 

and the full 30 year period. Results are provided in Table 3. The irrigation areas obtained for 

all simulations with each single global hydrological model, as well as with the model ensemble 

are found to be variable larger or smaller than the reference irrigation area (138 km²), with 

underestimations ranging from 1% to 54% and overestimations ranging from 12% to 306% of 

the irrigation area (Table 3.3). For the single simulations the closest irrigation area to the 

reference is obtained with JULES, which agrees with the model performance of JULES in terms 

of discharge simulation, as the KGE and PBIAS values are among the best results of the single 

models (see Figure 3.3, Figure 3.4). 

The overestimation of the irrigation area represents a higher potential loss in agricultural 

production, as the probability of water scarcity occurring is higher, while if the irrigation area 

is underestimated then this represents an opportunity cost in agricultural production, as the 

irrigation area could have been planned larger, and thus higher agricultural production. 
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Table 3.3. Irrigation areas obtained using observed river discharge, single and ensemble 

simulations from global hydrological models. 

 

Irrigation area (km²) using ensemble of global hydrological models for 5, 10, 15 and 30 years 

1980-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 

90 180 289 137 98 79 

1980-1989 1990-1999 2000-2009 

138 193 87 

1980-1994 1995-2009 

183 101 

1980-2009 

155 

  

  

  Irrigation area (km²) using 

single global hydrological 

models for 1980-2009  

(30 years)   

    

Observed 138   
LISFLOOD 562   

PCR-GLOBWB 64 
  

HTESSEL 100 
  

SURFEX-TRIP 81 
  

WATERGAP3 281 
  

ORCHIDEE 170 
  

JULES 156 
  

W3RA 184     

Irrigation area (km²) using ensemble of global hydrological models for 5, 10, 15 and 30 years 

1980-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 

90 180 289 137 98 79 

1980-1989 1990-1999 2000-2009 

138 193 87 

1980-1994 1995-2009 

183 101 

1980-2009 

155 

Irrigation area (km²) using single global hydrological models for 1980-2009 (30 years) 

Observed 138   

LISFLOOD 562   
PCR-GLOBWB 64 

  

HTESSEL 100 
  

SURFEX-TRIP 81 
  

WATERGAP3 281 
  

ORCHIDEE 170 
  

JULES 156 
  

W3RA 184     
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3.3.3 Probability of water scarcity 

The probability of water scarcity using the irrigation area obtained for each single global 

hydrological model and observed are presented in Figure 3.5 and Figure 3.6. As expected, the 

probability of water scarcity in February, which is the most critical month, using the irrigation 

area obtained with the observed river discharge shows a median value equal to 25% and 

probabilities lower than 25% for the other months. 

 

 

Figure 3.5. Probability of water scarcity using the irrigation area obtained for observed. 

 

Figure 3.6. Probability of water scarcity using the irrigation area obtained for each single 

global hydrological model. 

The probability of water scarcity shows median values lower than 25% for November and 

December for all the irrigation areas obtained with the global hydrological models, with 
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exception of LISFLOOD (28% and 53%). For LISFLOOD, the highest probability of water 

scarcity occurs in January (75%). For HTESSEL, SURFEX-TRIP and PCR-GLOBWB the 

probability of water scarcity in November is equal to zero and the probability of water scarcity 

in December, January and February is lower than 25%. This is due to the overestimation of the 

models during these months. The probability of water scarcity showed median values higher 

than 25% in January and February for LISFLOOD (75% and 70%), WATERGAP3 (55% and 

54%), W3RA (29% and 42%), ORCHIDEE (25% and 40%), with exception of JULES that 

showed a median value higher than 25% only in February (29%). 

The probability of water scarcity using the irrigation areas obtained for the ensembles of global 

hydrological model are presented in Figure 3.7. The number of box plots per month varies 

depending on the number of time periods considered, with six 5-year periods in for ensembles 

with a period of record of 5 years, three for 10 years, two for 15 and only one when using the 

full 30 years ensemble. The probability of water scarcity shows median values lower than 25% 

for November and December for all the irrigation areas, and even zero in some cases. This 

indicates that despite the variability in model simulation this does not affect the decision on the 

irrigation area. 

 

Figure 3.7. Probability of water scarcity using the irrigation area obtained for the ensembles 

of global hydrological model with 5, 10, 15 and 30 years. 
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For the ensembles with a length of five years, median values of the probability of water scarcity 

in January and February vary, with the values above 25% for the second and third of the periods 

(1985-1989 and 1990-1994), and below 25% for the remaining periods. This reflects that these 

ten years were relatively wet, resulting in larger irrigation area being selected, though still not 

as large as in the case of some of the single models. When using ensembles of increasing length, 

such as for ten years, fifteen, and finally thirty years, the patterns converge to the pattern found 

using the reference (observed) discharge (Figure 3.5), albeit slightly higher due to the 

overestimation of the ensemble mean. 

3.3.4 Relative Utility Value 

The Relative Utility Value using the single global hydrological models against the observed are 

presented in Figure 3.8 and Figure 3.9. Relative Utility Values (RUVs) show median estimates 

between -0.52 and 2.4 for the single global hydrological models. The Relative Utility Value 

closest to zero is found for JULES in December (0.12) and the highest value is found for 

LISFLOOD in February (2.4), followed by WATERGAP3 (0.93). JULES, ORCHIDEE, 

W3RA, WATERGAP3 and LISFLOOD resulted in positive RUVs. Similar values are found in 

each month for JULES (0.12), ORCHIDEE (0.2) and W3RA (0.3), but for WATERGAP3 and 

LISFLOOD the RUV shows significantly smaller values in December when compared to the 

other months (results are shown in detail for LISFLOOD in Figure 3.9). 

 

Figure 3.8. Relative Utility Value using seven single global hydrological models against 

Observed. LISFLOOD is presented in Figure 3.9. 
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Figure 3.9. Relative Utility Value using LISFLOOD with rice Ky values for each 

month/growth stage and changed Ky values to 1.0. 

LISFLOOD shows the largest statistical spread in RUV compared to the other models (Figure 

3.8, left panel) with significant value ranges in November (1.3-2.8) and December (0.1-2.0). 

This occurs because in those months the probability of water scarcity is larger than 25% (which 

does not occur in the other models, except for WATERGAP), and the yield response factor is 

higher than 1 (Ky=1.2 in November and Ky=2.4 in December), entailing that the agricultural 

loss incurred depends not only on the increased occurrence of water scarcity, but also on the 

sensitivity of the crop to water scarcity occurring. Changing Ky values from 0.3 to 1.0 for 

January and February results in the RUV being closer to zero, but with a larger spread (Figure 

3.8, right panel). For WATERGAP3 the largest value range are found between 0.52 and 0.92 

in December. Negative values are found for HTESSEL (-0.26), SURFEX-TRIP (-0.4) and 

PCR-GLOBWB (-0.52), with similar values between months. For the evaluated models, the 

statistical spread in RUVs shows a reduction when obtaining values closer to zero. The largest 

spread in RUVs among the monthly results of every model is found in December, again due to 

the crop then being more sensitive to water scarcity as defined by the yield response factor. 

The Relative Utility Value using the ensembles of global hydrological models against the 

observed are presented in Figure 3.10. For the ensemble with a period of record of five years, 

the patterns reflect those found for the probability of water scarcity, though there again the RUV 

is most sensitive to when water scarcity occurs in November and in particular December due to 

the sensitivity of the crop at this early stage in the growing period. The results show, however, 

that as the period of record of the ensemble increases, that there is more consistency in RUV 

estimates and the values tend to be closer to zero, which would be the value when using perfect 

(reference) information. 
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Figure 3.10. Relative Utility Value using ensembles of global hydrological models against 

Observed with 5, 10, 15 and 30 years. 

3.4 DISCUSSION 

Results of the Relative Utility Value, which include the irrigation area for different surface 

water availability estimates from global hydrological models, the monthly probability of water 

scarcity using these areas, and the potential yield reduction due to water deficit per growth stage 

of rice, show that using the ensemble of global hydrological models is more beneficial than 

using single global hydrological models. 

In the Murrumbidgee basin we have the good fortune to have a good quality hydrological data 

to use as reference, but in many areas of the world where expanding irrigated areas is crucial to 

support food self-sufficiency such in Sub-Saharan Africa (Ittersum et al., 2016) this may not be 

the case. Water resources estimation may then need to be done with the little information that 

is available. Given the ubiquitous availability of global model simulations such as provide 

through re-analysis datasets (Schellekens et al., 2017), we assume that an irrigation area planner 

without prior hydrological information on surface water availability can choose between any 

single global hydrological models or an ensemble of models. Additionally the period of record 

that is used to estimate water resources availability and variability can differ. When using any 

of the single models considered in this study, the results are shown to be very sensitive to the 

selection of the model. The possible range of the RUV (found here to be -0.52 to 2.4) either a 
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significant opportunity cost (negative RUV) due to the planning of too small an irrigation area, 

or agricultural loss due (positive RUV) due to the area being planned large than can be supported 

by water availability and water scarcity thus occurring more frequently than expected. 

Interestingly, the largest losses are incurred for two of the better performing models 

(LISFLOOD and WATERGAP) when considering common model performance statistics such 

as Kling-Gupta Efficiency (KGE) and the correlation coefficient. Indeed in this case the 

WATERGAP model outperforms all other models for the full simulation period, but would 

result in the second highest agricultural loss due to the overestimation of the available water, 

and thus of the irrigation area. Using the ensemble of 30 years, the overestimation of the 

irrigation area is minor when compared to the area estimated using the reference observed water 

availability. Additionally, the uncertainty of the relative utility value is small, thus providing a 

much more robust estimate of the irrigation area that the available water resource can support. 

If only a shorter period of record is available (or is considered), then results depend largely how 

representative that period is for the climate variability, which the irrigation area planner may 

not know a-priori. Particularly for the ensembles with a length of only five years, results depend 

largely in the period selected being largely normal, with high losses possibly being incurred if 

an anonymously wet period is chosen. However, selecting a period of record of 10, or 15 years 

already results in a significant reduction of the uncertainty, converging on the estimate made 

using the thirty years of data. 

The results also show that the sensitivity of the RUV of using model information to estimate the 

irrigation area using the global model data can vary depending on in which month water deficit 

occurs. While the spread in the estimates of water scarcity is found to be the largest in the 

months of January and February, the RUV may be most sensitive to uncertainty in the estimate 

of water resources availability in November and particularly December. This is due to different 

yield reduction values per growth stage of rice, which in this case is the selected crop. In the 

Murrumbidgee basin, rice has an average growth period of four months with four growth stages 

starting in November. If water deficit happens in November the yield reduction factor (Ky=1.2) 

under the same degree of water deficit is four times as high as it is in the later growing stages 

(Ky=0.3), while in December it is even higher (Ky=2.4). This is the case only if water scarcity 

occurs in these first months, which happens more frequently for the models that overestimate 

the available resource. This can be seen for the case of the LISFLOOD model where the 

probability of water scarcity is higher than 25% the months of November and December, when 

the Ky is also high, leading to a significant statistical spread in RUV results in those months. 

The overestimation and uncertainty of the water resources availability is higher in the latter 

months, but leads to a lower spread in RUV. This means that the potential rice production is 

closer to the reference, but as now the crop is more sensitive to water deficit and the probability 

of water scarcity is higher than the reference target, the statistical spread of RUV is also larger, 

leading to a higher risk in rice production. 
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The global hydrological models and ensembles are tested in this case in a highly regulated basin. 

To allow comparison to the models a naturalised observed discharge was established, which 

was possible due to the available reference stations. In truly data scarce environments it is 

recommended to use the proposed methodology in non-regulated basins, were the global model 

simulations can provide reasonable surface water estimations. If the ensemble of models was 

severely biased due to for example the operation of reservoirs then these results may change. 

Although the results found apply for the selected case study only, the real potential of the 

Expected Annual Utility tool can be expected in data scarce, non-regulated basins around the 

world to evaluate the benefit of using additional hydrological information (e.g. calibrated 

hydrological models). In those basins the available hydrological information is low and the 

potential of using additional hydrological information is higher (Kaune et al., 2017). 

3.5 CONCLUSIONS 

Global hydrological models are available and can be used globally, but the benefit of using 

these to support water resources management decisions should be measured locally. We 

develop a tool that applies a hydro-economic framework to assess the benefit of using an 

ensemble of global hydrological models for irrigation area planning at the local river basin scale. 

The ensemble of global hydrological models consists of eight global hydrological and land-

surface models; LISFLOOD, WATERGAP3, PCR-GLOBWB, SURFEX-TRIP, HTESSEL, 

ORCHIDEE, JULES and W3RA. The benefit of using either the ensemble over any one of the 

single models is evaluated through the Relative Utility Value. This value is composed of the 

expected annual utility in agricultural production given monthly estimates of the probability of 

water scarcity. Based on the occurrence of water scarcity at the agreed water reliability 

threshold an estimate can be made of the irrigation area to be planned. The real occurrence of 

water scarcity will depend on the true (observed) water resources availability. Additional 

agricultural losses will be incurred if the area planned is too large, as then water scarcity 

conditions will occur more frequently, while too small an area will result in a production loss 

or opportunity cost. 

In the Murrumbidgee basin in Australia where the framework was tested, it was found that the 

performance metrics of the global hydrological models for a time period of 30 years relate to 

the Relative Utility Value, but RUV provides a complete hydro-economic risk assessment for 

agricultural production depending in which month water scarcity occurs in the developing stage 

of a crop. This shows that while the uncertainty of water scarcity may be larger in the latter 

stages of the growing season, the impact of uncertainty is higher in the early stages of the 

growing season due to the yield being much more sensitive during the earlier stage of the 

growing season. Moreover, when using the ensemble of global hydrological models a much 

more robust estimate of the Relative Utility Value, and also for the irrigation area is found. This 

robustness increases when using an ensemble with a longer period of record. Results show that 

the tipping point for using a reduced time period ensemble compared to the full 30 years of a 

single global models in this case is for an ensemble with a period of record of 15 years or longer. 
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The application of the hydro-economic framework using available ensemble of global 

hydrological models is shown here to support irrigation area planning in Australia. However, 

the true application potential of this approach is in other regions where much less in-situ 

hydrological information may be available. 
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4 CAN GLOBAL PRECIPITATION 

DATASETS BENEFIT THE ESTIMATION 

OF THE AREA TO BE CROPPED? 

Based on: Kaune, A., Werner, M., López López, P., Rodríguez, E., Karimi, P., and de Fraiture, 

C.: Can global precipitation datasets benefit the estimation of the area to be cropped in 

irrigated agriculture?, Hydrol. Earth Syst. Sci., 23, 2351-2368, https://doi.org/10.5194/hess-

23-2351-2019, 2019.  

 

Abstract 

The area to be cropped in irrigation districts needs to be planned according to the available 

water resources to avoid agricultural production loss. However, the period of record of local 

hydro-meteorological data may be short, leading to an incomplete understanding of climate 

variability and consequent uncertainty in estimating surface water availability for irrigation area 

planning. In this study we assess the benefit of using global precipitation datasets to improve 

surface water availability estimates. A reference area that can be irrigated is established using 

a complete record of thirty years of observed river discharge data. Areas are then determined 

using simulated river discharges from six local hydrological models forced with in-situ and 

global precipitation datasets (CHIRPS and MSWEP), each calibrated independently with a 

sample of five years extracted from the full thirty year record. The utility of establishing the 

irrigated area based on simulated river discharge simulations is compared against the reference 

area through a pooled Relative Utility Value. Results show that for all river discharge 

simulations the benefit of choosing the irrigated area based on the thirty years simulated data is 

higher compared to using only five years observed discharge data, as the statistical spread of 

𝑃𝑅𝑈𝑉 using thirty years is smaller. Hence, it is more beneficial to calibrate a hydrological 

model using five years of observed river discharge and then extending it with global 

precipitation data of thirty years as this weighs up against the model uncertainty of the model 

calibration. 
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4.1 INTRODUCTION 

As water becomes scarce, efficient decision making based on solid information becomes 

increasingly important (Svendsen, 2005). Solid information on climate variability and climate 

change are key to adequately estimate the availability of water for human livelihoods, the 

environment and agricultural development (Kirby et al., 2014a, 2015), especially for irrigated 

agriculture, which by volume is the largest user of freshwater (de Fraiture and Wichelns, 2010). 

Available climatological records used for estimation of water resources availability in the 

irrigation sector are, however, often short (Kaune et al., 2017), and may not be representative 

of the full distribution of climate variability. This may particularly be so in developing countries, 

where the need to develop irrigation areas is the greatest, and can lead to sub-optimal decisions, 

such as the overestimating or underestimating of the area that can be planted. Local authorities 

deciding on the irrigated area clearly prefer to use the true record of climate variability to 

estimate the adequate irrigation area to be able to justify their decision based on expected 

economic benefits, but these records may often be short. 

Recent studies show that hydrological information from remote sensing datasets can be 

effectively used for estimation of surface water availability (Peña-Arancibia et al., 2016), water 

accounting (Karimi et al., 2013) and to help improve detection of droughts at basin scale (Linés 

et al., 2017). Combined with local data these datasets can potentially provide improved 

information to support decisions in irrigated agriculture. Global hydrological models have been 

used to estimate the river discharge at basin level for the development of irrigated areas and 

assess the risk of water scarcity (Kaune et al., 2018), and although these show promising results 

in large basins, the use of a calibrated local hydrological model may be more suitable in smaller 

basins (López López et al., 2016) as a finer spatial resolution may then be used and local 

hydrological processes better represented. 

Such local models will typically require some level of calibration, and the challenge is to 

calibrate these when the period of record of the observed data from available in-situ stations is 

limited. If the period of record is short, then the data may not provide full representation of the 

true climatic variability, and the water resource estimate will be conditional on whether the 

available data is from a relatively wet, normal or relatively dry period. This is particularly 

relevant in climates that are influenced by phenomena such as the El-Niño Southern Oscillation 

(ENSO). 

Using hydrological models forced by a longer period of record from available precipitation 

datasets may help improve discharge estimates for reliably determining the irrigated area, as 

the climatic variability can be better represented. However, model uncertainty, as well as the 

uncertainty of the representativeness of the model given the data used in model calibration will 

need to be taken into account. Recently, several global precipitation datasets have become 

available, based on remote sensing as well as re-analysis models, with periods of record 

spanning thirty plus years. Examples include the CHIRPS precipitation dataset (Funk et al., 

2015), which integrates in-situ meteorological data and global earth observations, and the 

recently developed MSWEP precipitation dataset (Beck et al., 2017b), which integrates in-situ 

meteorological data, global earth observations and the ERA-Interim re-analysis datasets. Both 
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have been widely used to assess water availability and the risk of water scarcity and drought 

events (López López et al., 2017; Shukla et al., 2014; Toté et al., 2015; Veldkamp et al., 2015b). 

Despite the opportunities these modern datasets offer, they have largely been neglected by the 

irrigation sector for the estimation of water resources availability and variability (Turral et al., 

2010), which relies primarily on in-situ datasets, even when the availability of these datasets is 

often limited. Assessing the potential benefit of combining data from available in-situ stations, 

global earth observations and reanalysis datasets to better estimate surface water availability 

can therefore be of considerable value to irrigation managers. 

We hypothesise that the simulated river discharge for a period of record of thirty years using a 

calibrated local model forced by datasets such as CHIRPS or MSWEP provides more reliable 

estimates of water resources availability and the area to be irrigated, than when considering the 

shorter time series of observed discharge that is used to calibrate the model. This is evaluated 

through an extended version of the hydro-economic Expected Annual Utility framework that 

determines the value of using each of the different datasets in determining the areas that can be 

irrigated as a function of the estimated availability of water. 

4.2 METHODS 

The Pooled Relative Utility Value 𝑃𝑅𝑈𝑉 used in this study is defined as a joined vector of six 

samples of the Relative Utility Value. This value includes the irrigation areas for river discharge 

simulations derived using different precipitation datasets, the monthly probability of water 

scarcity using these areas, and the potential yield reduction due to water deficit for rice. The 

workflow of this study is shown in Figure 4.1. 
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Figure 4.1. Workflow of the study to determine the Pooled Relative Utility Value using 

different irrigation areas obtained from In-Situ, CHIRPS and MSWEP precipitation 

datasets. 

  



 

 

 

57 

4.2.1 Coello Irrigation District, Colombia 

We apply our analysis to the Coello Irrigation District in Colombia. The Coello Irrigation 

District is an existing irrigation district located in the upper Magdalena basin, in the Tolima 

Department, a region subject to considerable climate variability and that is vulnerable to 

droughts (IDEAM, 2015). The average monthly temperature in the Coello District is 28°C, with 

maximum daily temperatures reaching 38°C (station 21215080). The reference 

evapotranspiration is between 137 mm/month in November and 173 mm/month in August with 

a mean annual evapotranspiration of 1824 mm/year. The irrigation district serves an irrigated 

flatland of approximately 250 km², comprising mainly of irrigated rice, which is planted 

continually throughout the year (Urrutia-Cobo, 2006). Rice total growth length is four months 

with high sensitivity to water deficit at the flowering stage. Resulting yields are between 5.5 

and 6.8 t/ha (DANE, 2016; Fedearroz, 2017). The local authority in charge of the water 

management of the irrigation district (USOCOELLO) reports a gross irrigation demand rate of 

0.2 m³/s/km². This is a high demand rate mainly due to low application and conveyance 

efficiencies, and high evapotranspiration demand. 

The water available for irrigation depends on the total discharge of two rivers from 

neighbouring mountainous basins; the Coello and Cucuana Rivers (Figure 4.2). The Coello 

basin has an area of 2000 km², and the Coello River has a length of some 112 km starting at 

5300 m.a.s.l. and flowing into the Magdalena River at 280 m.a.s.l. with an average flow of 23 

m³/s (Vermillion and Garcés-Restrepo, 1996). In the Coello basin the precipitation is bimodal 

with two peak months in May (186 mm/month) and October (127 mm/month) and two low 

months in January (50 mm/month) and August (90 mm/month). The mean annual precipitation 

is 1268 mm/year. The Cucuana basin has similar physical characteristics to the Coello basin. In 

this research, we focus only on the Coello basin to estimate the surface water availability for 

irrigation, as the available discharge data from the Cucuana River (Corea Station) is too short 

for the purpose of our experiment. 
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Figure 4.2. Map of the Coello and Cucuana River basins and the Coello irrigation district, 

and their location in the Magdalena macro-basin in Colombia. The points indicate discharge 

stations and the squares indicate meteorological stations. 

4.2.2 Hydro-meteorological data 

In-situ precipitation and temperature data were obtained from the network of meteorological 

stations operated by the Instituto de Hidrología, Meteorología y Estudios Ambientales 

(IDEAM), the Colombian hydro-meteorological institute, and interpolated to a gridded dataset 

with 0.1° spatial and daily temporal resolution for the whole Magdalena-Cauca basin 

(Rodriguez et al., 2017). The temperature data was used to estimate potential evapotranspiration 

with the Hargreaves method (Hargreaves, 1994). 



 

 

 

59 

Two global precipitation datasets were considered: (i) the Climate Hazards Group InfraRed 

Precipitation with Station data, CHIRPS (Funk et al., 2015) and (ii) the Multi-Source Weighted-

Ensemble Precipitation, MSWEP (Beck et al., 2017b). CHIRPS precipitation is a remotely 

sensed and ground corrected dataset available globally at 0.05° resolution, while MSWEP 

precipitation is a merged gauge, satellite and reanalysis dataset available globally at 0.25° 

resolution. The meteorological stations used in the Coello basin to derive each precipitation 

product are shown in Table 4.1. A total of 14 stations were used for the in-situ product. For 

CHIRPS and MSWEP, 7 stations and 3 stations were used, respectively. 
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Table 4.1. Precipitation stations used for each precipitation product (In-Situ, CHIRPS and 

MSWEP). Positive sign means that the product includes the station. Negative sign means that 

the product does not include the station. 

Station code 

Location Stations used per precipitation product 

Lat Lon In-situ CHIRPS MSWEP 

21210020 4.56 -75.32 + + - 

21210030 4.51 -75.30 + + + 

21210120 4.49 -75.24 + + - 

21210150 4.28 -75.54 + + + 

21210160 4.47 -75.30 + - - 

21210180 4.52 -75.41 + + + 

21215080 4.23 -75.00 + + - 

21215100 4.44 -75.42 + - - 

21215130 4.34 -75.52 + + - 

21215140 4.33 -75.08 + - - 

21215160 4.47 -75.24 + - - 

21215170 4.40 -75.23 + - - 

21215180 4.42 -75.25 + - - 

21215190 4.44 -75.50 + - - 

Total stations 14 7 3 

 

All precipitation, temperature and potential evapotranspiration datasets are available for the 

1983-2012 period. A preliminary evaluation of the global precipitation datasets was done. The 

global precipitation datasets (CHIRPS and MSWEP) were compared against in situ data in the 

selected basin. The performance indicators KGE, percentage of bias (Pbias) and Pearson 

correlation (r) were used. The evaluation was done for multi-annual monthly precipitation for 

the selected 30 year period (Figure 4.3). 
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Figure 4.3. KGE, Pbias and r performance metric for monthly CHIRPS and MSWEP 

precipitation in the Coello basin for 30 years (1983-2012). 

KGE results show that MSWEP performs better than CHIRPS from October to May. Only in 

July, MSWEP performs poorly (KGE=-0.1, Pbias=100%). We cannot discard the use of 

MSWEP neither of CHIRPS. At this stage, we can recommend the use of each dataset for 

specific months. 

Daily river discharge data for the 1983-2012 period was obtained from the stations operated by 

IDEAM at the limnigraphic station Payande (21217070) in the Coello River. 

4.2.3 Hydrological modelling 

The Dynamic Water Balance Model (Zhang et al., 2008), a lumped conceptual hydrological 

model based on the Budyko framework (Budyko, 1974), was selected to simulate the river 

discharge in the Coello basin at monthly time scale. The Dynamic Water Balance Model has 

been applied in several basins around the world (Kaune et al., 2015; Kirby et al., 2014a; Tekleab 

et al., 2011; Zhang et al., 2008), showing reliable river discharge simulations at monthly time 

scale. The model has a simple structure without routing, simulating the basin hydrological 

processes with a reduced number of parameters. There are only four model parameters; basin 

rainfall retention efficiency 1 (-), evapotranspiration efficiency 2 (-), recession constant d

(1/month); and maximum soil moisture storage capacity maxS (mm). Low (high) values of basin 

rainfall retention efficiency or evapotranspiration efficiency implies more (less) direct runoff. 

The recession constant d  characterises baseflow, with parameter values ranging between zero 

and one. The maximum soil moisture storage capacity relates to the root soil depth and soil 

texture of the basin. As the Coello basin is small, routing processes can be ignored when 

estimating monthly water availability, which is calculated as the accumulated runoff in the basin 

upstream of the point of interest. 

In this study, surface water availability for irrigation was established as the discharge in the 

Coello River, considering an environmental flow of 25% from the available water resources. 

An average maximum soil moisture storage capacity maxS  of 176 mm was determined for the 

Coello basin based on the soil texture and the depth of roots in the region. The soil texture and 

the depth of roots were derived from soil and vegetation maps provided by the Instituto 

Geográfico Agustín Codazzi in Colombia at a scale of 1:500,000. Typical values of the available 

water storage capacity of the soil in millimetres per meters of depth were used based on the soil 
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texture (Shukla, 2013). These values were multiplied by the depth of roots to determine the 

maximum soil moisture storage capacity in the basin. 

The hydrological model was forced with the different precipitation datasets (described in detail 

in section 2.2). Although river flow data was available for the full 1982 through 2012 period, 

to explore the influence of limited availability of observed discharge data, six independent 

samples of five years were extracted from the thirty year dataset (1983-1987, 1988-1992, 1993-

1997, 1998-2002, 2003-2007 and 2008-2012). Each sample of five years was used for 

calibration of the model parameters (Figure 4.4). 

 

Figure 4.4. Obtaining hydrological model simulations from the six samples of 5 years of 

observed river discharge. 

These samples were extracted as contiguous samples of five years to represent different 

climatological periods, and were applied to calibrate six sets of models, each using one of the 

observed discharge samples. Preliminary a Monte Carlo simulation was developed to obtain the 

full period of samples and then extracting each sample for calibration. 10000 model parameter 

sets ( 1 , 2 , and d  with values uniformly distributed between 0 and 1) were generated, and 

subsequently forced with the full dataset of thirty years of in-situ precipitation data (1983-2012). 

From this simulation, the five best performing model parameter sets are selected for each of the 

five year samples based on the comparison of the simulated and observed discharges for the 

corresponding period. Model performance is measured using the Kling-Gupta Efficiency (KGE) 

metric (Gupta et al., 2009). This resulted in five calibrated models for six five-year samples, 

which were used to provide simulated discharge data at the Payande Station for the full thirty 

year period, forced by each of the three precipitation datasets. Performance metrics of the mean 

discharge simulation of the five models were calculated separately for each month across the 
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six periods to evaluate the hydrological performance, including KGE, Pearson’s correlation 

coefficient (r), and percent bias (Pbias). 

4.2.4 Determining the irrigated area 

Similar to Kaune et al. (2018), the area that can be irrigated is determined based on an 

operational target monthly water supply reliability (𝑅 =75%), which means that the monthly 

demand is met for on average 75% of the years (Equation 4.1). The target reliability depends 

on local requirements and agreed terms. We selected 75% based on local consultation. The 

monthly irrigation demand varies depending on the irrigation area, which is the variable to be 

obtained. A fixed demand rate of 0.2 m³/s/km² was used in the Coello Irrigation District (Kaune 

et al., 2017). 

𝑅 ≤ 𝑝{(𝑄𝑎 − 𝐴𝑖 ∙ 𝑟) ≥ 0}        (4.1) 

where R is the water supply reliability (or probability of non-occurrence of water scarcity, 

𝑝𝑟{𝑁𝑊𝑆} ), 𝑝  is the relative frequency, 𝑄𝑎  is the multi-annual monthly surface water 

availability (considering an environmental flow of 25% from the available water resources), 𝐴𝑖 

is the planned irrigation area for dataset 𝑖 (simulated or observed), and 𝑟 is the demand rate. 

The water availability distribution for each calendar month is established using the multi-annual 

monthly river discharge, which may be obtained either from the observed or the simulated data. 

Given the small sample size of thirty years, the empirical distribution of water availability is 

obtained by applying a bootstrap resampling with replacement procedure, with the size of the 

bootstrap set at 25,000. The bootstrap resampling is applied for each month for the sample of 

thirty water availability values (multi-annual monthly values). From this sample we randomly 

draw X values, and leave these out of the dataset. These are then replaced with X values drawn 

from the remaining values, thus maintaining the same size of the dataset. This process is 

repeated 25,000 times. The size of the bootstrap is determined iteratively using a progressively 

increasing sample size until a stable estimate of the empirical distribution is achieved. 

A reference irrigated area is established using the empirical distribution derived from the 

observed monthly river discharges of thirty years (1983-2012). The areas that can be irrigated 

for each of the six calibrated models is similarly determined but now using the discharge 

simulations for the full thirty year period. Irrigated areas are additionally obtained for the six 

five-year samples of observed discharge, and for comparison also using the five year period of 

simulated discharges for each of the six calibrated model, where the period is commensurate 

with the period used for calibration. For each irrigation area that is obtained, the real probability 

of water scarcity is determined using the observed surface water availability (which is also a 

multi-annual monthly bootstrap resample), and the demand calculated using the estimated area 

(Equation 4.2). 

𝑝𝑟{𝑊𝑆} = 𝑝{(𝑄𝑎̂ − 𝐴𝑖 ∙ 𝑟) < 0}        (4.2) 
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where 𝑝𝑟{𝑊𝑆} is the probability of occurrence of water scarcity, 𝑝 is the relative frequency, 

𝑄𝑎̂ is the observed surface water availability, 𝐴𝑖 is the planned irrigation area obtained from Eq. 

1, and 𝑟 is the demand rate. These probabilities are then used to determine the expected annual 

utility to evaluate the economic value (Table 4.2). 

Table 4.2. Evaluating the expected annual utility using the planned irrigation area from 

selected river discharge information relative to expected annual utility using the reference 

irrigation area. 

 

4.2.5 Evaluating the cost of choosing the irrigation area 

The cost of choosing the irrigation area was evaluated with an extended version of the hydro-

economic framework developed by Kaune et al. (2018) based on the economic utility theory 

(Neumann and Morgenstern, 1966). The cost is calculated as the opportunity cost when the 

irrigation area is selected to be too small, or the production loss due to water scarcity when the 

irrigation areas is selected to be too large. When the area selected is equal to the reference area, 

then the cost is zero. Similar to Kaune et al. (2018), the Relative Utility Value, 𝑅𝑈𝑉 is used to 

compare the expected annual utility between the reference and the irrigated area derived using 

either the simulated discharge or the shorter five year observed discharge sample (Equation 4.3). 

𝑅𝑈𝑉 =
( 𝑈𝑖 −𝑈𝑟)

𝑈𝑟
         (4.3) 

where 𝑈𝑟 is the expected annual utility (revenue) obtained with the reference irrigation area 

from observed river discharge, and 𝑈𝑖 is the expected annual utility obtained with any of the 

irrigation areas obtained from the discharge simulations described in section 2.4. 
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The expected annual utility 𝑈 is defined as the expected annual crop production, given monthly 

probabilities of (non-) water scarcity, and considering a loss in crop production if water scarcity 

does happen in any one month (Equation 4.4). 

𝑈 = 𝑝𝑟{𝑊𝑆} ∙ (𝑃𝑁𝑊𝑆 − 𝐿𝑊𝑆) + (1 − 𝑝𝑟{𝑊𝑆}) ∙ 𝑃𝑁𝑊𝑆     (4.4) 

where 𝑝𝑟{𝑊𝑆} is the monthly probability of water scarcity defined in section 2.4; 𝑃𝑁𝑊𝑆 is the 

expected annual crop production (𝑃𝑁𝑊𝑆 = 𝑐 ∙ 𝐴𝑖 ∙ 𝑦𝑒 ) which includes the irrigation area 𝐴𝑖 

obtained from section 2.4 and converted into hectares, price of the crop per ton ($/t) and the 

expected crop yield 𝑦𝑒 (t/ha); and 𝐿𝑊𝑆 is the annual production loss if water scarcity happens 

in any one month. 

For determining the annual production loss 𝐿𝑊𝑆 an approach is applied where each month 

corresponds to the growth stage distribution of the crop based on information provided by the 

Coello Irrigation District. We assume that only rice is grown in the Coello Irrigation District 

with a growing length of four months sowed over the entire year. The loss in annual rice 

production 𝐿𝑊𝑆 due to water scarcity happening in any one month is determined with Equation 

4.5: 

𝐿𝑊𝑆 = 𝑐 ∙ 𝐴𝑖 ∙ ∑ (𝑦𝑒 − 𝑦𝑎)𝑚𝑜𝑛𝑡ℎ         (4.5) 

where 𝑦𝑒 is the expected harvested crop yield in a month (t/ha) and 𝑦𝑎 is the actual harvested 

crop yield in a month (t/ha) due to water shortage happening in any one month. Water shortage 

happening in any one month of the four month crop period will lead to a yield reduction. The 

actual harvested crop yield 𝑦𝑎 obtained, is determined with the FAO water production function 

in Equation 4.6 (FAO, 2012): 

(1 −
𝑦𝑎

𝑦𝑒
) = 𝐾𝑦 (1 −

𝐸𝑇𝑎

𝐸𝑇𝑝
)        (4.6) 

where 𝐾𝑦 is the weighted average yield reduction value per month calculated from established 

yield reduction factors due to water deficit for each growth stage of rice (FAO, 2012), and the 

distribution of growth stages as reported by the Coello Irrigation District; 𝐸𝑇𝑎  is the actual 

evapotranspiration and 𝐸𝑇𝑝  is the potential evapotranspiration. In our experiment, the actual 

evaporation is unknown, as this will depend on irrigation scheduling and practice as well as 

precipitation. As this detail is beyond the scope of this research, we assume the reduction in 

evapotranspiration (1 −
𝐸𝑇𝑎

𝐸𝑇𝑝
) to be 20% for the reference irrigation area when water shortage 

occurs. 20% is selected as this is the evapotranspiration deficit that rice farmers can easily cope 

with (FAO, 2012). To account for the increased deficit for irrigation areas selected to be larger 

than the reference area, the evapotranspiration reduction is increased proportionally, assuming 

the available water is uniformly distributed in the new irrigation area. For irrigation areas 

selected to be smaller the reduction is decreased proportionally. An average price of 329 $/t and 

an expected rice yield of 6.8 t/ha based on national statistics (DANE, 2016; Fedearroz, 2017) 

are used to estimate the expected annual rice production. 



4. Can global precipitation datasets benefit the estimation of the area to be cropped? 

 

 

66 

If 𝑅𝑈𝑉  is equal to zero, then the expected annual utility obtained with the reference and 

simulated irrigation areas are the same, and there is thus no cost associated to using the 

simulated information. A negative 𝑅𝑈𝑉 entails an opportunity cost due to the planning of too 

small an irrigation area (defined as cost type 1). A positive 𝑅𝑈𝑉 entails an agricultural loss due 

to the area being planned larger than can be supported by water availability and water shortages 

thus occurring more frequently than expected (defined as cost type 2). The statistical spread of 

𝑅𝑈𝑉 is derived from the bootstrap resample. The spread depends on the probability of water 

shortage being larger compared to the reference and on the yield response factor, entailing that 

the production loss incurred depends not only on the increased occurrence of water shortage, 

but also on the sensitivity of the crop to water deficit. 

𝑅𝑈𝑉𝑠 are pooled as to give a Pooled Relative Utility Value (𝑃𝑅𝑈𝑉) to evaluate the cost of 

choosing the irrigation area from the six possible irrigation areas obtained for a river discharge 

simulations. This is done as it is not a-priori clear when only five years of observed data are 

available, from which part of the full climatological record these may be. The Pooled Relative 

Utility Value (𝑃𝑅𝑈𝑉) is a concatenated vector of the Relative Utility Value obtained for each 

calibration sample (Equation 4.7). 

𝑃𝑅𝑈𝑉 = { 𝑅𝑈𝑉1 ∥   𝑅𝑈𝑉2 ∥ ⋯ ∥ 𝑅𝑈𝑉6 }      (4.7) 

where 𝑃𝑅𝑈𝑉 is the Pooled Relative Utility Value and 𝑅𝑈𝑉𝑥 is the Relative Utility Value for 

each calibration sample (in this case six samples). 

Similar to 𝑅𝑈𝑉, the 𝑃𝑅𝑈𝑉 is a hydro-economic indicator that can be larger (cost type 2), equal 

(no cost) or smaller than zero (cost type 1). The statistical spread of 𝑃𝑅𝑈𝑉 encompasses the 

variability of 𝑅𝑈𝑉 among the six calibration samples. If the statistical spread of 𝑃𝑅𝑈𝑉 is large, 

then the variability of planned irrigation areas is large among samples. This means that the cost 

of choosing the irrigation area based on the available information is high. If on the other hand 

the statistical spread of 𝑃𝑅𝑈𝑉 is small, then the variability of planned irrigation areas is also 

small and the cost of choosing the irrigation area based on the available information is low. 

4.3 RESULTS 

4.3.1 Discharge simulations 

The monthly observed and the simulated discharges calculated with the different precipitation 

datasets from the calibration samples are shown in Figure 4.5 (only CHIRPS with the samples 

for the 1993-1997 and 1998-2002 periods are shown), and in Appendix A (all samples and In-

Situ and MSWEP). Discharge simulations change depending on which precipitation dataset is 

used as forcing and which sample is used to calibrate the hydrological model. In general, 

however, the mean discharge simulations show an overall agreement with observations. 
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Figure 4.5. Observed and simulated discharge for the Coello River at Payende with 30 years 

(1983-2012) of CHIRPS precipitation (Sim 30y 𝑃𝐶𝐻𝐼𝑅𝑃𝑆) for calibration samples 1993-1997 

and 1998-2002, with the sample used to calibrate the model indicated in the header. 

The performance metrics for each month are shown in Figure 4.6 and in Appendix A. In all 

months using the discharge simulations with different precipitation datasets, positive KGE 

values are obtained with the exception of simulations with MSWEP in April and November, 

which are both wet season months. In February (dry season) the highest KGE value is obtained 

using the simulations with observed precipitation (0.75). For all samples in February (dry 

season), the KGE value is higher for discharge simulations with observed precipitation and 

CHIRPS than those using MSWEP, with exception of one sample (2008-2012). 

 

Figure 4.6. KGE, Pbias and r performance metric for simulated river discharge for the 

complete time period of 30 years (1983-2012) using three different precipitation datasets (In-

Situ, CHIRPS and MSWEP) in the Coello basin. Two calibration samples are shown (1993-

1997, 1998-2002), with the sample used to calibrate the model indicated in the header. 
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In terms of Pbias, simulations with MSWEP consistently overestimate the discharge between 

October and May for all samples. The largest overestimation occurs in April (wet season) 

(Pbias=75%). For simulations with observed precipitation and CHIRPS, monthly Pbias follows 

a similar trend, overestimating discharge in April for most samples and underestimating 

discharge between January and April for only two samples (1983-1987 and 1998-2002). 

Between May and September underestimated discharges are obtained using simulations with 

In-Situ and CHIRPS for all samples. Simulations with MSWEP in June and July are also 

underestimated with exception of sample 1998-2002 (Pbias positive for all months). 

The correlation values vary among simulations and for each month. The correlation values 

range between 0.25 and 0.85. In February, using In-Situ precipitation, correlation values are 

above 0.6. Simulations with CHIRPS and MSWEP results in correlation values between 0.7 

and 0.8 in February. The largest difference between correlations occurs in March (CHIRPS 

correlation is 0.5, MSWEP correlation is 0.6, and In-Situ correlation is 0.8). 

Simulations with In-Situ precipitation and CHIRPS are found to be behave similarly, which is 

not surprising as CHIRPS uses station corrected data. MSWEP also includes station corrected 

data, but it is derived in part from the ERA-Interim data which in itself is not good at capturing 

convective precipitation (Leeuw et al., 2015). This explains the poor simulation performance 

with MSWEP in April and November as these are wet months in a tropical region with 

predominant convective precipitation. 

As our work is focused on determining the critical irrigation area under monthly water scarcity, 

we are less concerned with the simulation performance in wet months, but focus rather on the 

more critical dry months (e.g. February), which have shown to perform well for the selected 

precipitation datasets. 

4.3.2 Estimating the area that can be irrigated 

The areas that can be irrigated based on the water availability of the Coello river are established 

using the simulated discharges from section 4.3.1., a defined environmental flow, a fixed 

demand rate per unit area cropped, and a water supply reliability target of 75%. Irrigation areas 

are established for the reference discharge (observed thirty years); for each of the thirty year 

discharge simulations using the models derived with each calibration sample; as well as using 

the observed discharges for each of the six five-year samples. Finally, for comparison, irrigated 

areas are derived using only five years of simulated data for each of the six five-year samples, 

where the simulated five years are the same as the five years used in calibration. The areas that 

can be irrigated given the simulated (or observed) discharges are found to vary significantly 

when compared to the reference irrigated area (which was established as 67.45 km²), with areas 

ranging from 2% to 40% smaller, to 1% to 69% larger (Table 4.3). In the case of the thirty year 

simulations, the irrigation areas obtained are found to be always larger than the reference area, 

with the overestimation ranging from 3% to 69% (Table 4.3), with exception of one sample 

where an underestimation of 3% when using the observed precipitation is found. The largest 

estimates of areas that can be irrigated is obtained with MSWEP simulation (69%), which 

agrees with discharge model performance (section 3.1), as KGE and r values are the lowest for 
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this model, while the bias values are the highest of all the simulations. For simulations with 

CHIRPS and observed precipitation, Pbias is positive for sample 1998-2002 in the dry months 

(e.g. February), leading to an overestimation of the irrigation area of 40%. For sample 1993-

1997, Pbias is negative for these simulations (close to -10% in February), resulting in a lower 

estimation of the irrigated area. In this case, an underestimation of 3% in the area is found for 

the simulation with observed precipitation, but an overestimation of 3% in the area is found for 

the simulation with CHIRPS. This is related to the difference in variability as the water 

availability is derived based on the distribution and not on the mean. 

Table 4.3. Irrigation areas obtained using different datasets of river discharge information in 

the Coello basin. The observed river discharge from the complete period of record of 30 years 

(1983-2012) is the reference information. The irrigation areas are obtained for an agreed 

water supply reliability of 75% in any one month. 

Hydrological information used 

Six samples of observed river discharge of 5 years 

1983-

1987 

1988-

1992 

1993-

1997 

1998-

2002 

2003-

2007 

2008-

2012 

Size of the irrigation area (km²) 

Observed river 

discharge 

Q_30 years 

(reference) 
67.45 

Q_5 years 67.93 54.66 65.92 75.18 60.82 65.43 

Simulated river 

discharge 

P_In-Situ_30 years 98.97 85.24 65.48 93.93 79.07 84.77 

P_In-Situ_5 years 51.53 47.68 57.76 79.14 42.70 52.48 

P_CHIRPS_30 years 92.38 81.72 69.37 94.56 78.32 80.97 

P_CHIRPS_5 years 47.84 40.20 61.47 84.13 43.13 45.80 

P_MSWEP_30 years 105.90 99.58 86.94 113.97 94.53 98.47 

P_MSWEP_5 years 58.56 58.40 74.17 109.09 55.61 59.69 
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The areas that can be irrigated that are obtained using the observed discharges for each of the 

six five year periods show relatively small variation when compared to the reference area, 

ranging from 19% smaller to 11% larger. The average area of the six five year samples is 

slightly smaller at 64.99 km2, just 2.5% smaller than the reference. Conversely, the areas 

derived using the simulations for each of the five year periods shows that these vary quite 

considerably, with an overestimation ranging from 10% to 62% and underestimation ranging 

from 9% to 40% across all precipitation sources. This range is comparable for all three 

precipitation forcing datasets, indicating that the variability can be attributed primarily to model 

error, conditional on the five year dataset used in calibration. 

4.3.3 Probability of water scarcity 

The probability of water scarcity using the irrigation areas obtained for each of the simulated 

and observed discharges for the five year periods as well as for the reference are shown in 

Figure 4.7 and Figure 4.8 (samples 1993-1997 and 1998-2002) and in Appendix A (all samples). 

The probability of water scarcity using the irrigation area obtained using the observed 

discharges are shown in Figure 4.7. As expected, the probability of water scarcity in February, 

which is the most critical month, shows a median value equal to 25% and probabilities lower 

than 25% for the other months when using the irrigation area obtained with the reference 

discharge (30 years). The spread of the probability of water scarcity indicated by the box-

whiskers plot, showing the mean, interquartile range and minimum and maximum, is due to the 

distribution of the bootstrap, representing the uncertainty in the estimate due to the 30 year 

period of record. 

 

Figure 4.7. Probability of water scarcity using the reference irrigation area obtained with the 

observed river discharge of 30 years (Obs 30y) and the reference surface water availability. 

Probability of water scarcity using the irrigation area obtained with the observed river 

discharge of 5 years (Obs 5y) and the reference surface water availability. Boxplots show the 

median, interquartile range and minimum-maximum range. 
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Figure 4.7 similarly shows the probability of water scarcity for irrigation areas obtained using 

observed discharges for the five year periods; 1993-1997 and 1998-2002 (results for the other 

four periods included in Appendix A). This shows that for the period 1993-1997, the median 

value is lower than 25% for all months, while for the period 1998-2002 the median value is 

higher than 25% for January and February. This reflects the smaller, respectively larger 

irrigated areas established with each of these datasets. Figure 8 shows the probability of water 

scarcity for irrigation areas obtained using the discharge simulations of thirty years. The 

probability of water scarcity in February shows median values higher than 25%, commensurate 

with the overestimation found in the hydrological model, with the exception of one simulation 

using observed precipitation, calibrated with the 1993-1997 sample of observed discharge data. 

Between April and June and in October/November, using the irrigation areas obtained with the 

discharge simulations, the probability of water scarcity is always found to be lower than 25%, 

as these are the two wet seasons of the bimodal climate. For all samples, the probability of water 

scarcity is the highest for the simulations using MSWEP precipitation. 

Using the irrigation areas obtained from the simulations calibrated with the 1983-1987 and 

1998-2002 samples show higher probabilities of water scarcity for all months when compared 

to the simulations calibrated with the other samples. This reflects that these years were 

relatively wet, influencing discharge simulations and resulting in larger irrigation areas being 

selected. The pattern for sample 1993-1997 is more similar to the pattern found using the 

reference area found with the 30 years observed discharge. 

The probability of water scarcity for irrigated areas obtained with simulated discharges of only 

five years are shown in Figure 4.8 (again results for the 1993-1997 and 1998-2002 samples are 

shown, with the remaining four periods provided in Appendix A). The monthly probabilities of 

water scarcity show large differences between samples. In this case, four out of the six samples 

do not show median probability of water scarcity higher than 25% for any month, meaning that 

the irrigation area is underestimated compared to the reference. For the 1998-2002 sample, the 

probability of water scarcity is the highest with a median probability of water scarcity between 

50% and 75% in February. 
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Figure 4.8. Probability of water scarcity using the irrigation area obtained with simulated 

river discharge information (Sim 30y 𝑃𝐼𝑛−𝑆𝑖𝑡𝑢, Sim 30y 𝑃𝐶𝐻𝐼𝑅𝑃𝑆, Sim 30y 𝑃𝑀𝑆𝑊𝐸𝑃;Sim 5y 

𝑃𝐼𝑛−𝑆𝑖𝑡𝑢, Sim 5y 𝑃𝐶𝐻𝐼𝑅𝑃𝑆, Sim 5y 𝑃𝑀𝑆𝑊𝐸𝑃) and the reference surface water availability. 

Boxplots show the median, interquartile range and minimum-maximum range. 

4.3.4 Relative Utility Value 

The annual expected utility is calculated using the economic return of the rice crop and the 

estimated yield determined using the irrigated areas established with the simulated discharge 

information, and the probability of water scarcity in each month for the 30-year period based 

on the observed discharges. Relative Utility Values are then found through comparing these 

against the annual expected utility calculated using the reference area and discharge information. 

Figure 4.9 shows the Relative Utility Values obtained for areas determined using the five year 

samples of observed discharge for the 1993-1997 and 1998-2002 periods (again the remaining 

four periods are provided in Appendix A), with median estimates of -0.02 and 0.11, respectively. 
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Figure 4.9. Relative Utility Value using observed river discharge of 5 years for water scarcity 

happening independently in any one month. Ky is the sensitivity of the crop to water deficit. 

Boxplots show the median, interquartile range and minimum-maximum range. 

Relative Utility Values obtained for areas determined using discharge simulations of thirty 

years are shown in Figure 4.10 (and in Appendix A), with median estimates between -0.03 and 

0.65. The Relative Utility Values closest to zero are found for simulations using both the 

observed and the CHIRPS precipitation datasets, -0.03 and 0.03, respectively, both when using 

the 1993-1997 sample for model calibration. Of the six samples, this five year period was 

already noted to be most representative of the whole 30-year period. 
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Figure 4.10. Relative Utility Value using simulated river discharge of 30 years and 5 years 

for water scarcity happening independently in any one month. Ky is the sensitivity of the crop 

to water deficit. Boxplots show the median, interquartile range and minimum-maximum 

range. 

For all samples, the Relative Utility Values for simulations using the MSWEP dataset are found 

to be largest, with values between 0.3 and 0.65, indicating a higher production loss due to the 

higher probability of water scarcity. For simulations using the 30-year observed precipitation, 

consistent median values between 0.18 and 0.45 are obtained, with the exception of one sample 

(-0.03). Those obtained with CHIRPS simulations are consistent with those found using the 

observed precipitation. 

The Relative Utility Values obtained using irrigated areas determined with the simulated 

discharges of only five years (Figure 4.10 and Appendix A), show median estimates between -

0.2 and 0.6 (MSWEP), which are larger than the simulations of thirty years. The 𝑅𝑈𝑉 closest 

to zero are found for simulations with CHIRPS (-0.09), while results for simulations using the 

observed precipitation show more consistent values closer to zero. In this case, results show 

more negative 𝑅𝑈𝑉𝑠  for each simulation forcing, and results are less consistent between 

samples compared to the results obtained with the thirty years. 
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For the 1993-1997 period, the 𝑅𝑈𝑉 obtained for the irrigated area determined with observed 

discharge of five years (-0.02) and the 𝑅𝑈𝑉  obtained with for the area determined with 

simulated discharges of 30 years using either the CHIRPS or the observed precipitation (0.03 

and -0.03) are similar and close zero. The extended precipitation period compensates the model 

uncertainty and results in reliable 𝑅𝑈𝑉 estimates. 

A large statistical spread in 𝑅𝑈𝑉 is found in months where the probability of water scarcity is 

higher than the reference. This is clearly shown for MSWEP simulations, which have the largest 

estimates of the irrigated area. For months where the probability of water scarcity is lower than 

the reference, the statistical spread in 𝑅𝑈𝑉 is low. In these cases the statistical spread of 𝑅𝑈𝑉 

is a result only of the spread of the reference annual expected utility, resulting from the 

distribution of the probability of water scarcity. The statistical spread of the 𝑅𝑈𝑉 values is 

lower when the simulated annual expected utility and the reference annual expected utility are 

more similar, which means that the 𝑅𝑈𝑉 is closer to zero as shown when using the 1993-1997 

sample. An absence of statistical spread for the 𝑅𝑈𝑉 values reflects zero probability of water 

scarcity in both the simulated and the reference expected annual utility. 

Even though the probability of water scarcity is not the highest in November, the statistical 

spread of the 𝑅𝑈𝑉 is the largest when water scarcity happens in that month. This is due to the 

high sensitivity of the crop to water deficit (𝐾𝑦=1.4) in November, which then becomes the 

determining factor for obtaining a large statistical spread. On the other hand, the smallest 

statistical spread, or no statistical spread of the 𝑅𝑈𝑉 is found when water scarcity happens in 

February or May. We select February, May and November as the representative months for 

further analysis with the Pooled Relative Utility Value. 

4.3.5 Pooled Relative Utility Value 

The Pooled Relative Utility Value 𝑃𝑅𝑈𝑉 is obtained from the 𝑅𝑈𝑉 values for each of the six 

samples in section 4.3.4. In Figure 4.11 and Figure 4.12, the 𝑃𝑅𝑈𝑉 results for areas estimated 

using the observed discharges, and for the simulated discharges for five and thirty years are 

shown for November, February and May. These are the representative months identified in 

section 4.3.4, with similar results found for 𝑃𝑅𝑈𝑉𝑠 when water scarcity happens independently 

in each month. 
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Figure 4.11. Pooled Relative Utility Value using observed river discharge of 5 years for water 

scarcity happening independently in February, May or November. Ky is the sensitivity of the 

crop to water deficit. Boxplots show the median, interquartile range and minimum-maximum 

range. 
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Figure 4.12. Pooled Relative Utility Value using simulated river discharge of 5 years and 30 

years for water scarcity happening independently in February, May or November. Ky is the 

sensitivity of the crop to water deficit. Boxplots show the median, interquartile range and 

minimum-maximum range. 
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The statistical spread of 𝑃𝑅𝑈𝑉 represents the risk of randomly choosing one irrigation area out 

of the six possible irrigation areas given by the six calibration samples of five years. Results for 

the five year simulations show a large statistical spread of the 𝑃𝑅𝑈𝑉  values, with the 

distribution positively skewed. This skewness is due to the influence of one high RUV sample 

out of the six RUV samples, resulting in a maximum positive 𝑃𝑅𝑈𝑉 value for each precipitation 

dataset 0.18, 0.25, and 0.6. The statistical spread of 𝑃𝑅𝑈𝑉 for the five year simulations with 

MSWEP precipitation is the largest among the simulations, implying that the cost of choosing 

the irrigation area using this dataset is the highest. Using thirty years of simulated discharges 

does reduce the statistical spread in 𝑃𝑅𝑈𝑉 when compared to the five year simulations. For 

observed precipitation, simulations with five years show the range of 𝑃𝑅𝑈𝑉 to be between -

0.38 and 0.18, with an interquartile range between -0.3 and -0.15; while simulations with thirty 

years show a the range of 𝑃𝑅𝑈𝑉  to be between -0.03 and 0.5, with an interquartile range 

between 0.18 and 0.4. For CHIRPS and MSWEP precipitation, the reduction in the statistical 

spread in 𝑃𝑅𝑈𝑉 with thirty year simulations is more evident. For the thirty year simulations, 

the smallest statistical spread in 𝑃𝑅𝑈𝑉𝑠 is found for CHIRPS precipitation (between 0.03 and 

0.4). This means that the cost of choosing the irrigation area is lower when using simulations 

with CHIRPS compared to simulations with In-Situ and MSWEP precipitation. In addition, 

using CHIRPS leads to median 𝑃𝑅𝑈𝑉 values closer to zero, thus choosing among the irrigation 

area samples results in an irrigation area closer to reference irrigation area. 

The statistical spread in 𝑃𝑅𝑈𝑉 when using observed discharge of five years (-0.20 to 0.12) is 

similar to the statistical spread in 𝑃𝑅𝑈𝑉  when using the best simulation with thirty years 

(CHIRPS, 0.03 to 0.4). Again using the longer precipitation record to provide a longer record 

of simulated discharge results in a reduction in the statistical spread in 𝑃𝑅𝑈𝑉 and compensates 

the model uncertainty. This means that using the thirty year simulation is beneficial, as the cost 

of choosing the irrigation area is similar to the cost when using the five year observed discharge. 

4.4 DISCUSSION 

Results of 𝑃𝑅𝑈𝑉  show that using the CHIRPS global precipitation dataset in discharge 

simulations reduces the risk of choosing the irrigation area compared to discharge simulations 

with In-Situ and MSWEP precipitation. 

In the Coello basin we have the good fortune to have a long period of record of hydrological 

data (1983-2012) to use as reference for establishing the climatological availability and 

variability of the available water resource. This may not be the case in other basins. Water 

resources estimation may then need to be done with the limited information that is available. 

To help understand the risk of estimating the available water resources when only limited 

information is available, we used observed discharge with a shorter period of record (five years) 

to calibrate a local hydrological model and apply this to obtain simulated discharge with a 

longer period of record (30 years) either using a precipitation dataset based on observed data 

(Rodriguez et al., 2017) or a global precipitation dataset, including CHIRPS and MSWEP (Beck 

et al., 2017b; Funk et al., 2015). We establish six samples of five years to calibrate the 

parameters of a hydrological model, and simulate six possible discharges of thirty years to 
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imitate a setting where information about how representative the short record of available 

observed discharge is not known a-priori. For each sample the annual expected utility is 

determined including the monthly probability of (non-) water scarcity using different irrigation 

areas from different discharge simulations and the annual crop production with water scarcity 

(not-) happening in a month. Positive and negative Relative Utility Values were found with 

different discharge simulations. Positive values indicate a crop production loss due to 

unexpected water scarcity for too large an irrigation area being planned. Negative values 

indicates an opportunity cost due to the planning of too small an irrigation area. 

Results show that the 𝑅𝑈𝑉 varies depending on in which month water scarcity happens. While 

the spread in the estimates of probability of water scarcity is found to be the largest in the month 

of February, the spread in 𝑅𝑈𝑉 is larger when water scarcity happens in November. This is due 

to the difference in sensitivity of the crop yield to water deficit, depending on the growing stage 

of the crop. In the Coello basin, rice has an average growing length of four months and is sowed 

during the entire year. This means that if water scarcity does happen in a particular month, four 

different growth stages will be affected each with a different yield reduction factor resulting in 

an average yield reduction value. If water scarcity happens in November the average yield 

reduction value from the four growing stages of rice is 1.4. This means that the average yield 

reduction in November under an equal degree of water deficit is 1.75 times higher than in 

February (𝐾𝑦=0.8). If water scarcity occurs in February, even though the probability of water 

scarcity is higher than the reference 25%, the statistical spread in 𝑅𝑈𝑉 is low due to the low 

average yield reduction value. Using different sources of river discharge information to estimate 

the irrigation area will indeed change the estimates of the monthly probability of water scarcity 

changing the 𝑅𝑈𝑉 values. However, the impact on annual production may be low if water 

scarcity occurs in the month where the sensitivity of the crop to water deficit is low. Reducing 

agricultural production losses depends not only on using adequate river discharge information 

to estimate the irrigation area, but also on adequate planning of the crop stage distribution. 

For an irrigated area selected based on the estimate of water availability using simulated 

discharges, a decision maker takes an additional risk due to not knowing a-priori how 

representative the data used for calibrating the model is of climatic variability. This is why we 

introduce the Pooled Relative Utility Value 𝑃𝑅𝑈𝑉 in order to evaluate the risk of choosing an 

irrigation area derived from different river discharge simulations. If the statistical spread of 

𝑃𝑅𝑈𝑉 is low (high), then the cost incurred by choosing an irrigated area based on the results of 

the simulations is equally low (high). The Pooled Relative Utility Value results using the global 

precipitation CHIRPS showed a lower cost in choosing the irrigation area compared to 𝑃𝑅𝑈𝑉 

results using both a dataset based on observed precipitation, as well as the MSWEP global 

precipitation dataset. This would suggest that the CHIRPS precipitation should be used instead 

of both observed and MSWEP precipitation when determining the surface water availability for 

irrigation area planning to avoid the risk of agricultural production loss due to a poorly chosen 

irrigated area that can be supported based on water availability. This is not a general conclusion, 

as it is closely related to how representative the precipitation dataset used is of the true 

precipitation amount and variability in the basin. The CHIRPS dataset does include observed 

data (Funk et al., 2015), which is similar as that used in our study to establish the In-Situ 
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precipitation dataset. In that sense, it is also an interpolated dataset, but with additional 

information from the satellite. This may well provide additional detail on the variability of 

precipitation in a tropical mountainous basin such as the Coello. 

Important to mention is the fact that CHIRPS and MSWEP are gauge corrected. This would 

mean that they would both be expected to perform quite well. However, the datasets used to 

correct each product may differ. That is way we compare the amount of stations used in the 

Coello basin for each of the precipitation products (In-Situ, CHIRPS and MSWEP). This is 

helpful for discussing the 𝑃𝑅𝑈𝑉 results. Even though the amount of stations used is lower for 

correction in the CHIRPS product (7 stations) compared to the number of stations used in the 

In-Situ product (14), the results indicate that the satellite information included in CHIRPS still 

provides a reasonable representation of the basin precipitation. For the MSWEP product the 

only three stations are used for correction, resulting in a poorer representation of the rainfall in 

the basin. In summary, the basin precipitation dataset derived from CHIRPS for the Coello 

basin is better than the MSWEP. The higher resolution of the CHIRPS dataset when compared 

to that of MSWEP no doubt also contributes in this medium sized, mountainous basin. The 

poorer comparison of the MSWEP data we found not to be immediately obvious when 

evaluating the precipitation data using common indicators (e.g. KGE, bias), but was only found 

when evaluating the hydrological information for determining the irrigated area. 

Interestingly, the performance of the model using the observed precipitation dataset is similar 

to that of the model using the CHIRPS precipitation dataset when considering common model 

performance statistics such as Kling-Gupta Efficiency (KGE), percentage bias (Pbias) and the 

correlation coefficient (r). The MSWEP product includes reanalysis datasets additional to 

observed and satellite datasets, but instead of providing a benefit its local application in this 

small to medium sized basin in Colombia has a negative influence on the representation of the 

climate variability. In that sense, our results match with previous research where the 

performance of reanalysis datasets in regions dominated by tropical warm rain processes is not 

the best (Beck et al., 2017b) attributed in part to the poor prediction of convective precipitation 

(Leeuw et al., 2015). Moreover, the 0.25° resolution might be too coarse to represent the spatial 

variability in the basin which undervalues the potential use of these datasets in such conditions. 

The further development of the MSWEP dataset, including an improved resolution of 0.1 

degrees may increase its value for applications such as that explored in this research (Beck et 

al., 2018). Additionally, the period of record of consistent data for datasets such as MSWEP, 

but also of CHIRPS continues to increase. For now, in Colombia, where the availability of 

observed precipitation is reasonable (IDEAM, 2015; Kaune et al., 2017), the CHIRPS datasets 

appears provide the best estimates of surface water availability in basins larger than 2000 km² 

for determining the irrigation area. The benefit of CHIRPS, MSWEP and other such global 

precipitation dataset can be evaluated in other case studies around the world using the proposed 

framework. Certainly there is a new opportunity for the irrigation sector in using modern hydro-

meteorological data and information to improve water allocation decisions considering the 

economic impacts of uncertainty in those datasets. 
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An irrigation manager may be reluctant to use simulated information instead of the observed 

until it is proven that the additional period of record of precipitation from for example global 

datasets compensates the uncertainty of the use of a hydrological model. In that sense, 𝑃𝑅𝑈𝑉 

results provide evidence that using discharge simulations with thirty year precipitation 

(CHIRPS) is equivalent in using observed discharge of five years as the risk of choosing the 

irrigation area is similar. As the period record of datasets such as CHIRPS increases, this risk 

will be expected to reduce further. 

Using a longer period of record of observed discharges will help make better estimates of the 

irrigated area that can be supported by the available water resources, but when the availability 

or quality of observed discharge is limited, extending the period of record using model based 

discharge simulations provide an alternative to estimate the area to be cropped. The results of 

the model used in the Coello basin also show that the overestimation or underestimation of the 

planned irrigation area depends in part on the model bias, particularly in the ability of the 

calibrated model to provide reliable simulations for low flow periods, which are the most 

critical in this application. In the case presented here, we use a very simple model structure, and 

using a simulated discharges from an enhanced model structure can be explored to obtain more 

accurate results. 

4.5 CONCLUSION 

We apply an extended hydro-economic framework to assess the benefit of using global 

precipitation datasets in surface water availability estimates to reduce the risk of choosing the 

area that can be irrigated with available water resources based on limited available information. 

We estimate irrigation areas using observed river discharge with a period of record of thirty 

years (reference), and simulated river discharges from a hydrological model forced with In-Situ 

and global precipitation datasets (CHIRPS and MSWEP). The hydrological model is calibrated 

using independent observed river discharge samples of five years extracted from the reference 

time period of thirty years to emulate a data scarce environment, as well as the uncertainty of 

the available data with a short period of record being fully representative climate variability. 

The Relative Utility Value of using a particular dataset is determined based on the reference 

and simulated annual expected utility, which includes the monthly probability of (non-) water 

scarcity using the irrigation areas obtained and the annual crop production with water scarcity 

(not-) happening in a month. The monthly probability of water scarcity will depend on the true 

(reference observed) water resources availability. Additional production losses are incurred if 

the irrigation area planned is too large, as then water scarcity conditions will occur more 

frequently (cost type 2), while too small an area will result in an opportunity cost (cost type 1). 

The production loss also depends on how sensitive the crop is to water deficit in a particular 

month. The benefit of using either the In-Situ, CHIRPS or MSWEP datasets in reducing the 

cost of choosing the irrigation area, irrespective of the available sample of observed data used 

in calibrating the model, is evaluated through a Pooled Relative Utility Value, a joined estimate 

of the Relative Utility Value of the samples of five years. 
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In the Coello basin in Colombia where the framework was applied, it was found that while the 

performance metrics of the discharge simulations relate to the Relative Utility Value, the Pooled 

Relative Utility Value provides a complete hydro-economic indicator to assess the risk of 

choosing the irrigation area based on observed or simulated discharge data. We find that for the 

Coello basin, the CHIRPS precipitation dataset is more beneficial than In-Situ or MSWEP 

precipitation, as the risk of choosing the irrigation area is lower due to a better estimate of 

climate variability. For all precipitation datasets evaluated, using a dataset with a length of thirty 

years leads to a lower risk when compared to using a length of only five years. The risk of 

choosing the irrigation area based on discharge simulations with thirty years of CHIRPS 

precipitation is found to be similar to using the observed discharge of five years. Hence, 

extending the period of record using an extended precipitation dataset to provide a longer record 

of discharge simulations (from five to thirty years) compensates the model uncertainty of the 

model calibration. 

In the Coello basin, the global precipitation data CHIRPS is recommended instead of global 

precipitation data from the MSWEP dataset for estimating surface water availability to support 

the planning of irrigation areas. This dataset provides a good representation of the climatic 

variability in this medium sized tropical basin, in part due to the correction of the dataset using 

observed station data. While the performance of the available global precipitation datasets 

would need to be evaluated, the application of the extended hydro-economic framework using 

global precipitation datasets to force a locally calibrated hydrological model is shown here to 

support decisions on adequate selection of irrigated areas in Colombia, and can be applied in 

data scarce basins around the world. Ensuring the use of adequate hydrological information for 

the estimation of surface water availability will promote improved decisions for irrigation area 

planning and prevent economic losses. 
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5 THE BENEFIT OF USING AN 

ENSEMBLE OF SEASONAL 

STREAMFLOW FORECASTS 

Based on: Kaune A., Chowdhury F., Werner M., Bennett J., 2019. The benefit of using an 

ensemble of seasonsal streamflow forecasts in water allocation decisions. Hydrol. Earth Syst. 

Sci. (In review). 

 

Abstract 

The area to be cropped in irrigation districts needs to be planned according to the allocated 

water, which in turn is a function of the available water resource. However, conservative 

estimates of the available resource in rivers and reservoirs may lead to unnecessary curtailments 

in allocated water due to conservative estimates of future (in) flows. Water allocations may be 

revised as the season progresses, though inconsistency in allocation is undesirable to farmers 

as they may then not be able to use that water, thus leading to an opportunity cost in agricultural 

production. In this study we assess the benefit of using reservoir inflow estimates derived from 

seasonal forecast datasets to improve water allocation decisions. A feedback loop between 

simulated reservoir storage and emulated water allocations to General Security (water allocated 

to irrigating) was developed to evaluate two seasonal reservoir inflow forecast datasets 

(POAMA and ESP), derived from the Forecast Guided Stochastic Scenarios (FoGSS), a 12 

month seasonal ensemble forecast in Australia. We evaluate the approach in the Murrumbidgee 

basin, comparing water allocations obtained with an expected reservoir inflow from FoGSS 

against the allocations obtained with an expected reservoir inflow from a conservative estimate 

based on climatology (as currently used by the basin authority), as well as against those obtained 

using observed inflows (perfect information). The inconsistency in allocated water is evaluated 

by determining the total changes in allocated water made every 15 days from the initial 

allocation at the start of the water year to the end of the irrigation season, including both 

downward and upward revisions of allocations. Results show that the inconsistency due to 

upward revisions in allocated water is lower when using the forecast datasets (POAMA and 
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ESP) compared to the conservative inflow estimates (reference) which is beneficial to the 

planning of cropping areas by farmers. Over confidence can, however, lead to an increase in 

undesirable downward revisions. This is more evident for dry years than for wet years. Even 

though biases are found in inflow predictions, the accuracy of the available water estimates 

using the forecast ensemble improves progressively during the water year, especially one and 

a half months before the start of the cropping season in November, providing additional time 

for farmers to make key decision on planting. 

5.1 INTRODUCTION 

Allocating water is the process of sharing the available water among claimants over a period of 

time (Hellegers and Leflaive, 2015; Le Quesne et al., 2007). Basin authorities are responsible 

to allocate water among different users; including agriculture, cities, industry and the 

environment. The available water in rivers and reservoirs, and the demand placed on it, may 

vary over time and space due to climate variability, climate change and population growth. 

Hence, allocating the available water poses a challenge for decision makers, especially in 

increasing drought and water scarcity conditions. 

Basin authorities can allocate water following a demand-based approach. This consists of 

revising or reviewing the expected water demand in the basin at the start of each water year and 

allocating the required volume (Linés et al., 2018). Over the water year the initial allocation 

might decrease depending on the availability of water in reservoirs and from upstream 

catchments. In other basins the water availability is initially reviewed before allocating the 

entitled allocation. Allocation of water to meet the entitlements of the license holders is based 

on the estimate of the available water, which is made using the observed stock in the reservoirs 

at the time of making the decision, as well as the expected inflow. 

In Australia, the water allocation process is governed by clear water policy and regulations at 

basin level, such as defined in the Murray-Darling Basin Plan (Australian government, 2008). 

The Murray-Darling river system is highly regulated, especially in the basins located in New 

South Wales (Ribbons, 2009). Predicting the inflow into the reservoirs is key to adequately 

allocate water, especially for allocation to irrigated agriculture. However, conservatively low 

estimates of the expected inflow based on climatology are currently used at the beginning of 

the water year to estimate the available water for the coming season. As the irrigation season 

progresses, the estimate of available water may be revised. Given the conservative initial 

estimate the revision is typically upwards, with consequent upward revisions in the water 

allocated during the year. For most years the allocated water is set too low at the beginning and 

is then progressively increased until the ‘real’ estimate of available water is reached and the 

‘real’ allocation can be established. Ideally, water users would like to know their ‘real’ water 

allocation at the beginning of the water year. This is especially so for irrigators that depend on 

accurate and timely water allocation to choose which crop to plant and to decide on the area to 

be cropped, allowing them to maximise the benefit of the water that their license entitles them 

to. 
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The use of seasonal forecasts of reservoir inflows may be beneficial to support water allocation 

decisions through providing better and earlier estimates of the available water. The potential 

for farmers to benefit from seasonal forecasts will, however, depend on i) how well the climate 

can be predicted, ii) how much this information helps in the actual decision process and iii) how 

much it contributes to reducing negative impacts (Hansen, 2002). Most studies focus on 

evaluating the benefit of forecasts by determining the skill, often based on forecast results, 

observed data and a benchmark prediction (Pappenberger et al., 2015). Though this provides 

relevant insight to the (relative) quality of forecast, it may say little of the benefit to users 

through improved decisions. The use of seasonal forecasts to support decisions has been 

addressed in several settings. Winsemius et al. (2014) assess the predictability of 

meteorological indicators in a changing climate and show how skilful forecasts can support 

rain-fed agriculture. Shukla et al. (2014) developed and implemented a seasonal agricultural 

drought forecast system for East Africa which shows to perform well in drought years. 

Crochemore et al. (2016) assess the performance of seasonal streamflow forecasts to a reservoir 

with standard indicators of forecast skill such as reliability, sharpness, and accuracy. Anghileri 

et al. (2016) evaluate the performance of Ensemble Streamflow Prediction (ESP) with the 

performance based on climatology and perfect forecasts. Turner et al. (2017), in addition to the 

usual forecast skill assessment, include the performance gain in reservoir operation, 

benchmarking penalty costs when using forecast against using perfect and actual information. 

Boucher et al. (2012) apply an ensemble streamflow forecast for determining its value in 

supporting hydropower generation. However, the potential enhancement to water allocation 

decisions in irrigated agriculture that are informed by seasonal forecasts has been little studied. 

A complete assessment of the added value of seasonal forecasts can allow basin authorities to 

explore the opportunities seasonal forecasts provide to improve their operational decisions, and 

reduce potential losses to agricultural by improving water allocation estimates. 

In this study, we develop and test a water allocation framework to assess the value of using a 

seasonal forecast to predict the inflow into the reservoirs in the regulated Murrumbidgee basin 

in Australia. We hypothesise that water allocation decisions can be improved when informed 

by seasonal forecasts of reservoir inflows. The inconsistency in water allocation decisions 

during the water year is introduced as a measure of the value of using the forecast in the 

allocation process under the premonition that if water allocated to farmers changes little during 

the season that they can then make maximum benefit of their allocation. If the inconsistency in 

water allocation decisions using the forecast is lower than when using the currently used 

conservative estimate of water availability then there is value in using the forecast. In addition 

to the water allocation estimated at the start of the water year, key decision dates for the 

cropping season are evaluated to determine the benefit to the farmers in supporting the decisions 

they need to make. 
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5.2 METHODS 

5.2.1 Water allocation process in the Murrumbidgee basin, Australia 

The regulated Murrumbidgee River basin (84000 km²) was selected to evaluate the benefit of 

using forecasted reservoir inflow (Figure 5.1). In this basin, two major water storages, the 

Burrinjuck and Blowering reservoirs provide the required resource for the water allocation 

process. The New South Wales Office of Water (basin authority) announces the water allocation 

for different users in the basin starting July 1st of each year based on the available water in 

storage, the expected reservoir inflows for the next 12 months, and water requirements 

downstream. The inflow to the Blowering reservoir depends on both the discharge release from 

an upstream hydropower system (Snowy Hydro Scheme) and the natural runoff, while the 

inflow to the Burrinjuck reservoir depends mainly on natural runoff. Currently, a conservative 

estimate of 2.33 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟  (based on climatology) is used to determine the expected 

reservoir inflow for the next 12 months. 

 

Figure 5.1. Map of the Murrumbidgee River basin in Australia. Location of the 

Murrumbidgee Irriagtion Area, subbasins for the Blowering and Burrinjuck reservoirs, 

discharge stations and storage gauges. 
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In the Murrumbidgee basin, the water year runs from July 1st through to June 30th of the next 

calendar year, while the cropping season for annual (irrigated) crops is between November 1st 

and the end of February. Each water user (e.g. irrigation, urban and environment) holds a water 

entitlement (water share), which is a license to extract water from the basin. Depending on the 

available water, the basin authority announces a fraction of the total volume of that entitlement 

that will be met in a year, which is defined as the water allocation (Green, 2011). Water is 

allocated to different water users according to established priorities. In water abundant 

conditions each user gets their agreed full entitlement. When water shortage occurs, the highest 

priority is to satisfy human water consumption and the lowest priority is to satisfy the irrigation 

demand of annual crops. This is reflected in the type of license users pay for, with irrigators 

holding a High Security license having a higher priority to water over irrigators holding a 

General Security license. Normally, irrigators growing annual crops hold a General Security 

license, though it is the annual crops that require the highest volume of water of the system. 

Once the water has been allocated, users can decide how they would like to employ the 

resources available to them. A maximum of 30% of the volume entitlement can be carried over 

from one year to another. This provides certain flexibility to the water users as they can hold a 

certain volume of their allocation in the storages and make it available for the next year. 

During the water year the basin authority may revise the initial water allocation and announce 

a new allocation for each user depending on the then available water storage volume and the 

estimate of the remaining inflow to the end of the water year. . In the currently established 

regulations the water allocation cannot be decreased, but only maintained or increased, unless 

exceptional circumstances dictate. This process generates expectations among the irrigators 

about the amount of water volume they are going to get, especially for the General Security 

(GS) license holders. To illustrate the process, Figure 5.2 shows the recorded water allocation 

decisions made in the 2016-2017 water year. On July 1st 2016, the initial water allocation for 

General Security (GS) license holders was established at 40%. Two weeks later, the water 

allocation was increased from 40% to 52%. Subsequent revisions over the next four months 

resulted in a final water allocation of 100% at the start of the cropping season (November), 

which was subsequently maintained until the end of the season. 
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Figure 5.2. Actual water allocation for General Security, GS in the Murrumbidgee basin for 

the water year 2016. Dotted lines in the water allocation curve are used to show that the 

water allocation is an annual water volume, the estimate of which changes during the water 

year. 

Certainly, irrigators are aware that the allocated water can be higher in the announcements made 

closer to the start of the cropping season. This means that farmers may well act on the 

expectation that the allocation is typically revised upwards, taking the risk of a certain water 

volume finally being allocated. We argue that this risk affects decision making among the 

farmers and their ability of correctly planning the area to be cropped. Farmers more adverse to 

risk may tend towards cropping according to the conservative water allocation, leading to 

potential losses (opportunity cost), while less risk adverse farmers may face losses in yield if 

the final allocation they expect is not met. Ideally, water users would like to be informed about 

the true water allocation as early as possible to better plan their activities. This means that the 

ideal allocation scenario is when the water allocation is set at the start, and then remains 

constant during the water year. 
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5.2.2 Data and information 

Data and information from the Murrumbidgee basin was collected from the online repositories 

of the New South Wales Office of Water and the Australian Bureau of Meteorology (BoM). 

Actual water allocation for the different users (e.g. General Security) and the observed daily 

inflow into the reservoirs were obtained for the period 2011 to 2016 (www.water.nsw.gov.au). 

The current water allocation policy was introduced in 2011, with allocations prior to that date 

following a different policy. For the 1982-2009 period, actual daily inflow into the two 

reservoirs was back-calculated using observed daily outflows and observed storage. Discharge 

data from gauging station 410008 (Murrumbidgee river downstream of Burrinjuck dam) and 

gauging station 410073 (Tumut river at Oddys bridge) were used to obtain the daily outflow 

from Burrinjuck and Blowering reservoirs, respectively. Daily reservoir storage volumes were 

obtained for each reservoir from station 410131 (Murrumbidgee river at Burrinjuck dam – 

storage gauge) and station 410102 (Tumut river at Blowering dam – storage gauge) (see Figure 

5.1). 

The forecasted datasets for determining the expected reservoir inflow were obtained from an 

experimental streamflow forecasting system called Forecast Guided Stochastic Scenarios 

(FoGSS), available for the time period 1982-2009 (Bennett et al., 2017). Two different datasets 

from FoGSS were used. One dataset included precipitation and sea-surface temperature (SST) 

predictions from the POAMA M2.4 seasonal climate forecasting system (Hudson et al., 2013; 

Marshall et al., 2014). Another dataset is based on resampled historical precipitation, referred 

to as Extended Streamflow Prediction (ESP) (Day, 1985). A more detailed description of 

FoGSS is provided in section 5.2.3. 

To determine the reservoir inflow, the 10304 km² upstream basin for the Burrinjuck reservoir 

was considered. The reservoir inflow into the Blowering reservoir is based on the upstream 

discharge release from the Snowy Hydro Scheme and the natural discharge from a downstream 

station in the Goobarragandra river at Lacmalac, with an influence basin area of 668 km² 

(Figure 5.3). Snowy Hydro discharge release was obtained through back-calculating the 

observed outflow and observed storage data of Blowering reservoir (1982-2009). The inflow 

from Snowy Hydro into the Blowering reservoir is taken as observed and not subject to the 

forecast. This means that the forecasts and calculated runoff only applies to the inflow to 

Burrinjuck reservoir and the Goobarragandra River. 

http://www.water.nsw.gov.au/
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Figure 5.3. Inflows and outflows in the Burrinjuck and Blowering reservoirs in the 

Murrumbdigee basin for determining the available water for allocation. 

5.2.3 Forecast Guided Stochastic Scenarios (FoGSS) 

The streamflow forecasting system “Forecast Guided Stochastic Scenarios” (FoGSS) is an 

experimental forecasting system, which has been developed and tested for the Australian 

continent (Bennett et al., 2016, 2017; Turner et al., 2017). FoGSS is an ensemble streamflow 

forecast in the form of monthly time series for a 12-month forecast horizon. As forecast skill 

declines with lead time, FoGSS is designed to nudge forecasts towards climatology. FoGSS 

post-processes climate forecasts, either derived from ESP or POAMA to force a monthly 

hydrological model (Wapaba model). ESP is an ensemble of seasonal precipitation forecasts 

and an ensemble seasonal forecast based on a coupled ocean-atmosphere general circulation 

model (CGCM). Calibration, bridging and merging is used to correct biases and remove noise 

from the CGCM forecasts. The uncertainty in the hydrological model is constrained by an error 

model which includes, residual normalisation and variance homogenisation, conditional bias-

correction and the application of an autoregressive model to improve forecast accuracy and 

propagate uncertainty through the forecast. Full details of FoGSS can be obtained in Bennett et 

al. (2016, 2017). 
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5.2.4 Developing the water allocation decision model 

The water allocation decision making process developed in the Murrumbidgee basin consists 

of a feedback loop between the simulated available water resource and the emulated water 

allocation decision for the different users. Figure 5.4 schematically shows the decision model 

to available water resource to the different users. All time dependent variables are from day t 

to the end of the water season. Users include, in order of priority; Environmental Water 

(EW= 0.60 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 ), Towns (TD= 0.85 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 ), High Security 

(HS=3.60 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), Irrigation Conveyance (IC=3.76 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), and General 

Security (GS=18.9 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟). 

 

Figure 5.4. Water allocation framework used to simulate the daily water availability for the 

rest of the water year and emulate the allocated water for different users based on allocation 

rules in the Murrumbidgee basin. The input variable is the expected inflow into the reservoirs. 

 

The available water is determined at a daily time step and the water allocation decision is 

emulated for selected announcement dates. The available water is determined considering the 
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storage volume in the reservoirs, expected reservoir inflow, storage reserves and water losses. 

The expected inflow into reservoirs is the input variable, which feeds into the established water 

balance to determine the available water for allocation. Water allocation decisions are emulated 

for the different users from which the water allocation for GS is derived. As water is released 

from the reservoirs due to the water allocation process a new water availability estimate is 

determined for the next time step. 

5.2.5 Determining the available water for water allocation 

The available water for allocation on the first day (𝑡 = 1) of the water years is defined as 

(Equation 5.1): 

𝐴𝑊(1) = 𝑆𝑑 + 𝐼𝑎 − 𝐿𝑎 − 𝑅𝑎        (5.1) 

where 𝑆𝑑 is the water storage in the reservoirs using the observed storage for the first day, 𝐼𝑎 is 

the expected annual inflow into the reservoirs, 𝐿𝑎  is the expected annual water loss 

(7.71 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟), 𝑅𝑎  is the annual reserve of water storage with a fixed value of 𝑅𝑎 

=1.52 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 including the storage reserve, dead storage, and unusable inflow). 

The expected annual inflow into the reservoirs is based on a regulated inflow from the Snowy 

Hydro schema, and a natural inflow. In the current operating policy, the natural inflow into both 

reservoirs is established at 2.33 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 , which is a conservative inflow estimate, 

corresponding to the 3% non-exceedance probability of the annual inflow distribution from 

climatological data. In our approach we replace this fixed inflow with the forecasted inflows 

derived from the FoGSS ensemble. The actual inflow volume considered in the allocation 

decision is established using selected non-exceedence percentiles of the summed 12 month 

inflow prediction of FoGSS. 

The available water for allocation, 𝐴𝑊 starting on the second day (𝑡 ≥ 2) includes the water 

used due to allocation 𝑈 (Equation 5.2): 

𝐴𝑊(𝑡) = 𝑆𝑑(𝑡) + 𝐼𝑒(𝑡) − 𝐿𝑒(𝑡) − 𝑅𝑎  + 𝑈𝑐(𝑡)     (5.2) 

where 𝑆𝑑(𝑡) is the simulated storage obtained with 𝑆′ = 𝑆(𝑡 − 1) +△ 𝑆 and the capacity of the 

reservoirs 𝐶. If 𝑆𝑑′ < 𝐶 then 𝑆𝑑(𝑡) = 𝑆𝑑′, but if 𝑆𝑑′ ≥ 𝐶 then 𝑆(𝑡) = 𝐶 with a spill 𝑠𝑝 = 𝑆𝑑′ −

𝐶. The storage change is defined as  △ 𝑆𝑑 = 𝐼𝑜(𝑡 − 1) − 𝑈𝑑(𝑡 − 1) − 𝐿𝑑(𝑡 − 1) where 𝐼𝑜 is 

the observed daily inflow, 𝐿𝑑 is the daily expected loss determined from the expected annual 

loss distributed equally for each day, and 𝑈𝑑 is the daily expected allocation for the different 

water users. The daily expected allocation for General Security, Irrigation Conveyance and 

High Security and Towns is determined with a daily release ratio multiplied by the water 

allocation for each user. For General Security, Irrigation Conveyance and High Security the 

daily release ratio is based on the monthly irrigation requirements (Table 5.1). For Towns the 

water allocation is distributed equally for each day. The water allocation for each user is 

obtained based on the daily available water from the water balance and the allocation rules 

explained in detail in the next paragraph. 𝐼𝑒(𝑡) is the expected inflow for the remaining days of 

the water year defined as 𝐼𝑒(𝑡) = 𝐼𝑒(𝑡 − 1) − 𝐼𝑑(𝑡 − 1), where 𝐼𝑑 is the daily expected inflow 

determined from an established daily inflow fraction of the average annual observed inflow on 



 

 

 

93 

day 𝑡 − 1. 𝐿𝑒(𝑡) is the expected loss for the remaining days of the water year defined as 

𝐿𝑒(𝑡) = 𝐿𝑒(𝑡 − 1) − 𝐿𝑑(𝑡 − 1), where 𝐿𝑑 is the daily expected loss to the previous day. 𝑈𝑐(𝑡) 

is the cumulative water use due to allocation defined as 𝑈𝑐(𝑡) = 𝑈𝑐(𝑡 − 1) + 𝑈𝑑(𝑡 − 1), where 

𝑈𝑑 is the daily expected allocation for the different water users obtained with the daily release 

ratio and the emulated water allocation decision. 

Table 5.1. Monthly irrigation requirements in the Murrumbidgee basin used in the water 

allocation model. Values are based on estimations from S. Khan et al., 2004; Shahbaz Khan, 

Tariq, Yuanlai, & Blackwell, 2006. 

Month 

Average 

Inflow Average irrigation requirements 

Volume (GL) 

Monthly 

ratio (%) 

Daily 

ratio (%) 

 Volume 

(GL)  

Monthly ratio 

(%) 

Daily ratio 

(%) 

July 470 15% 0.50% 3 0.21% 0.01% 

Aug 495 16% 0.52% 26 1.84% 0.06% 

Sep 420 14% 0.46% 81 5.76% 0.19% 

Oct 401 13% 0.42% 210 15.05% 0.49% 

Nov 230 8% 0.25% 245 17.51% 0.58% 

Dec 140 5% 0.15% 246 17.63% 0.57% 

Jan 110 4% 0.12% 289 20.68% 0.67% 

Feb 80 3% 0.09% 219 15.68% 0.56% 

Mar 110 4% 0.12% 40 2.89% 0.09% 

Apr 120 4% 0.13% 19 1.38% 0.05% 

May 170 6% 0.18% 9 0.64% 0.02% 

Jun 315 10% 0.34% 10 0.73% 0.02% 

Annual 3061 100%   1398 100%   

 

The water allocation decision is emulated each day, but the final allocated water is presented 

only for announcement dates starting on July 1st and then for each 15 days to the end of the 

season. In order to emulate the water allocation decision the framework includes the available 

water, the agreed entitlement for each water user and the priority rules. The volume is 

established stepwise for each user following the priority of water use. The allocated water for 

Towns, stock, domestic and basic right (TD) was set at 100% of the entitlement. Only if the 

difference between the available water for allocation and the environmental water is lower than 

0.85 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 (the entitlement of TD), then the allocated water for TD is the difference 

of AW and EW. The procedure for allocating water to High Security (HS) is presented in Figure 

4. It includes the use of the available water AW and the allocated water for TD and EW to 

obtain three possible outcomes for the allocated water for HS. Depending on availability, water 

allocation for HS can be 100% or 95% of the entitlement, or the difference of the AW, TD and 

EW. The allocated water for General Security is determined by using the remaining water 

volume left after the High Security procedure, subtracting the amount lost to Irrigation 
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Conveyance (3.76 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 ). If that difference is lower than the General Security 

entitlement, then the allocated water for GS is lower than 100%. 

The decision model is tested against the recorded allocation decisions for the years from 2011 

to 2016 as the current water allocation policy was introduced in 2004 (Horne, 2016). 

5.2.6 Evaluating water allocation decisions 

To evaluate the water allocation decisions made during the water year a method to quantify the 

inconsistency in allocated water was applied. The inconsistency (𝐼) can occur due to either 

upward or downward revisions of the allocated water volume during the water year. An upward 

revision is when the allocated water at time step 𝑡 (𝑊𝐴𝑡) is larger than the allocated water at 

time step 𝑡 − 1 (𝑊𝐴𝑡−1). Hence, the inconsistency in allocated water due to upward revisions 

(𝐼+) is the sum of the difference between allocated water at time step 𝑡 (𝑊𝐴𝑡) and the allocated 

water at time step 𝑡 − 1 (𝑊𝐴𝑡−1) with that condition: 

∀ 𝑊𝐴𝑡 > 𝑊𝐴𝑡−1 ⇒ 𝐼+ = ∑ 𝑊𝐴𝑡 − 𝑊𝐴𝑡−1
𝑛
𝑡=1      (5.3) 

A downward revision occurs when the allocated water at time step 𝑡 (𝑊𝐴𝑡) is lower than the 

allocated water at time step 𝑡 − 1 (𝑊𝐴𝑡−1). Hence, the inconsistency in allocated water due to 

downward revisions (𝐼−) is the sum of the absolute difference between allocated water at time 

step 𝑡 (𝑊𝐴𝑡) and the allocated water at time step 𝑡 − 1 (𝑊𝐴𝑡−1) with that condition: 

∀ 𝑊𝐴𝑡 < 𝑊𝐴𝑡−1 ⇒ 𝐼− = ∑ |𝑊𝐴𝑡 − 𝑊𝐴𝑡−1|𝑛
𝑡=1      (5.4) 

A constant allocated water from the beginning until the end of the water year implies zero 

inconsistency. This would imply that the expected inflow estimates are perfect, and the total 

water allocation is correctly determined at the start of the season. This water allocation 𝑊𝐴𝑝 

was derived by applying the observed inflows in the decision model.We separate dry and wet 

years according to the allocated water obtained with the observed inflow. The years with 

allocated water equal to 100% of the entitlement considered as wet years, and the years with 

allocated water lower than 100% are dry years. Average water allocation decisions for dry and 

wet years were obtained at each time step. The Root Mean Square Difference(𝑅𝑀𝑆𝐷) was used 

to evaluate the allocated water obtained with the expected inflows 𝑊𝐴𝑖 against the allocated 

water obtained with the observed inflows (perfect information) 𝑊𝐴𝑝 at each time step 𝑡 for 

selected years 𝑦 (dry or wet years) (Equation 5.5). 

𝑅𝑀𝑆𝐷 = √
∑ (𝑊𝐴𝑖−𝑊𝐴𝑝)

𝑦

2𝑚
𝑦=1

𝑚
        (5.5) 

5.3 RESULTS 

5.3.1 Emulating historical water allocation decisions 

A preliminary calibration of the allocation framework was developed for the 2011-2016 water 

years using the conservative inflow estimate ( 2.33 𝑥 108 𝑚3/𝑦𝑒𝑎𝑟 ), and the recorded 
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allocation decisions. The main calibration parameter is the allocation use reduction factor, 

which determines the percentage of the water allocated to them that users decide to use, with 

the remainder being reserved for carry-over to the next year. In reality, this factor varies 

between users as well as between years, and may be influenced by a variety of factors, including 

many that do not depend on water availability. We simplify this by considering a bulk allocation 

use reduction factor across all General Security users and also consider this to be equal across 

years. The allocation use reduction factor derived for the 2011-2016 period is then assumed to 

also hold for evaluating the FoGSS datasets for the 1982-2009 water years, for which recorded 

allocation decisions are not available as a different policy for the allocation of water to the 

different users was then in place. The allocation use reduction factor was established as 78% to 

obtain similar simulated and actual carry over volumes between water years, as well as the 

simulated storage in the reservoirs at the end of each water year (itself a function of the carry-

over volume which remains in the reservoir). Figure 5.5 shows the simulated water storage in 

the reservoirs, as well as the observed and simulated carry-over volumes. For the years 2011 to 

2016, the emulated water allocation decisions for General Security (GS) are shown in Figure 

5.6, and compared to the actual allocation decisions recorded in those years. Two simulations 

are shown. In the first, the initial storage condition of the reservoirs (day 1 of the 2011 water 

year) was set equal to the actual water storage followed by continuous daily simulations as in 

equation 2 for the full six year period. In the second, the water level in the reservoirs is reset to 

be equal to the observed reservoir level at the start of each year (Simulated Nudged). These 

simulations show that across the six years volume differences range from 1% to 30% of the 

actual water storage at the start of each of the water years. Derived emulated water allocation 

decisions for GS show an underestimation of the allocation compared to the actual volume for 

most years, especially for the 2014 water year. These differences occur because a constant 

factor is used (78%) to simulate the carry-over between water years. Results from the Simulated 

Nudged show how the daily water storage simulations and the water allocation for GS would 

behave using the actual water storage information (including the actual carryover volume), by 

nudging the simulated storage levels to the observed at the start of each water year (Figure 5.5). 

The daily water storage simulations (Figure 5.5) and water allocation to GS are now closer to 

the actual values, especially for the 2014 water year. However, for both simulations, the 

emulated decisions show a similar trend when compared to the actual decisions. Upward 

revisions as well as where the water allocation remains constant (no revisions) occur at the 

corresponding announcement dates, and although results are slightly biased in volume, the 

emulation of allocated water decisions does follow the trend of the actual decisions. 
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Figure 5.5. Actual and simulated reservoir storage and carry-over volumes in Blowering and 

Burrinjuck reservoirs (2011-2016) 

 

Figure 5.6. Actual and emulated water allocation GS for each year (2011-2016) using 

conservative inflow. Simulated Nudged is the simulated water allocation GS, but using the 

actual storage on July 1st 
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For the 1982-2009 water years, testing our hypothesis on the carryover is not available. We set 

up the water allocation framework to simulate the water storage continuously over this time 

period, assuming a constant allocation use reduction factor of 0.78 between water years. For 

the purpose of testing our hypothesis, the framework is useful as we simulate the available 

water for allocation and compare results between the use different reservoir inflow information 

to inform water availability, including the seasonal forecast datasets (FoGSS). 

5.3.2 Skill of seasonal predictions of available water 

Prior to applying the FoGSS forecasts to emulating the water allocation decisions, the skill of 

the seasonal predictions of available water is evaluated. In Figure 5.7 and Figure 5.8 rank 

histograms are shown for both the POAMA and ESP datasets for the forecast ensemble of 1000 

members (FoGSS) of the expected inflows into the Burrinjuck reservoir. The expected inflow 

shown is the total inflow from the forecast month through to the end of the water year, which 

is the information on the available water that is required to inform the water allocation decision. 

Rank histograms for expected inflows into the Blowering reservoir show a similar pattern and 

are available in the Appendix B. The rank histogram shows the frequency of the rank of the 

observed in the ensemble, with a well calibrated ensemble showing a uniform distribution 

(Wilks, 2011). For easier interpretation the ensemble is pooled into five classes. The light grey 

bar shows the frequency of the observed rank being higher (or lower) than the highest (lowest) 

forecast value in the ensemble.  

 

Figure 5.7. Rank histogram using ESP datasets from FoGSS (1982-2009) for expected inflow 

in the next n months (Starting July) in the Burrinjuck reservoir. 
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Figure 5.8. Rank histogram using Poama datasets from FoGSS (1982-2009) for expected 

inflow in the next n months (Starting July) in the Burrinjuck reservoir. 

The rank histograms of the expected inflows to end of season for forecasts made in the months 

from July until January show that the ensemble is under-dispersed as the distribution is 

increasingly U-shaped, with the POAMA dataset exhibiting better performance than the ESP 

dataset. The first three of these months (July to to September) are the wetter season. As this 

recedes, the under-dispersion increases until December, after which the performance again 

improves, with the expected inflows in February showing a near uniform distribution. Likely 

the under-dispersion at the end of the wet season is due to uncertainty in the initial state of the 

hydrological model at the end of the wet season. At that point there is little future rainfall, which 

means forecast flows are dominated by the (deterministic) initial state. In later months, 

performance improves as the catchments dry and the influence of uncertainty in the initial states 

established during the wet season recedes and the forecast results show progressively lower 

biases, especially for the POAMA datasets. The reliability of the forecast again decreases as 

the accumulation period becomes shorter. 

In summary, the skill of the forecast ensemble for inflow predictions is better between February 

and June compared to July and January. In our study we are, however, primarily interested in 

the predictions of the expected inflow from July to February to support water allocation 

decisions for the cropping season which are made from November to February. For the period 

that we are interested in, the forecast ensemble is shown to contain biases. How these affect the 

water allocation decisions, and if using the forecast ensemble leads to better estimates of 

available water compared to the currently used conservative estimate based on climatology is 

evaluated by using the ESP and POAMA forecasts to inform the water allocation decisions. 
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5.3.3 Water allocation using seasonal forecast datasets 

Water allocation decisions for General Security (GS) were emulated for the 1982-2009 period 

using four datasets of expected inflows to the reservoir to determine water availability: (i) 

observed inflow (considered as perfect information); (ii) the conservative inflow (or reference 

information as currently used by the decision maker); (iii) the FoGSS seasonal forecast based 

on POAMA, and (iv) the FoGSS seasonal forecast based on ESP. Water allocations using the 

perfect information and the reference information provide the benchmarks against which the 

decisions made informed by the ensemble forecasts are compared. For each of the two ensemble 

forecasts, two setups were tested. In the first, the inflow prediction at the beginning of the water 

year is obtained from the ensemble forecast made on July 1st, and this is then maintained for 

the next 12 months (non-updating FoGSS set up). This means that the forecast of the available 

water that is established on July 1st is maintained to be the same during the full water year. This 

was done to mimic the current procedure used by the basin authority when using the 

conservative inflow estimate based on climatology. In the second set-up that was tested, the full 

potential of using the ensemble forecast is explored. The water availability estimate to the end 

of season is now updated each month using the FoGSS forecasted inflows determined from the 

forecast made at the start of that month. In determining the expected water availability from the 

FoGSS forecasted inflows for both set-ups, different non-exceedance percentiles of the forecast 

ensemble are used to provide the expected availability of water for allocation, starting with the 

1st non-exceedance percentile (commensurate with a very conservative estimate of water 

availability), and increasing this to the 50th non-exceedance percentile (commensurate with the 

ensemble median). 

5.3.4 Using one prediction at the beginning of the water year. 

Water allocation decisions were emulated using the inflow prediction obtained from the 

seasonal forecast at the beginning of the water year, and then not updated for the next 12 months 

(non-updating FoGSS set up). Figure 5.9 shows the water allocation decisions to General 

Security (GS) for a selected wet year (1998) and a selected dry year (2006) using the 1st, 5th, 

10th, 25th and 50th non-exceedance percentile of the ESP and POAMA ensemble forecast 

datasets. The blue line shows the allocation decisions made using the reference conservative 

inflow estimate, while the red line shows the allocation established using perfect information.  
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Figure 5.9. Water allocation GS for one wet year (1998) and one dry year (2006) using one 

inflow prediction at the beginning of the water year for the next 12months (Non-updated 

forecasts) 

For the dry year (2006), the results show that the water allocation decisions using the forecast 

ensemble are similar to the decisions obtained with the conservative inflow for the 1st percentile. 

This makes sense as the water allocation using the lowest percentiles is the water allocation that 

matches best with the water allocation based on the conservative inflow. It is interesting to note 

that the water allocation based on perfect information is even lower than when using either the 

conservative inflow or the 1st percentile. This is due to 2006 being the driest year on record 

(Dreverman, 2013), with observed inflows below the 1st percentile. For the water allocations 

obtained with the 1st percentile, as well as with the conservative inflow there are no downwards 

revisions during the water year. However, for increasing percentiles, the number of downward 

revisions increases as the initial estimate of available water at the start of the year becomes 

increasingly over confident. For this dry year, the POAMA and ESP forecasts exhibit broadly 

similar behaviour.  

In the wet year (1998), the initial allocation based on the 1st percentile is higher than that using 

the conservative estimate, particularly for the POAMA dataset. For increasing percentiles, the 

water allocation decision approach those using perfect information. For 2006, the observed 

water availability was well above the requirement to fulfil 100% of the allocation to General 

Security. No downward revisions are found, even for the higher percentiles. 

These results provide an initial comparison between using the conservative inflow and 

forecasted inflow for determining the available water for allocation. However, for the full 
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potential of the seasonal forecast to be evaluated, inflow predictions are updated monthly during 

the water year as new FoGSS forecast become available. 

5.3.5 Updating the inflow prediction every month 

In Figure 5.10 and Figure 5.11, the water allocation decisions are shown using the 1st, 5th, 10th, 

25th and 50th non-exceedance percentiles of the ESP and POAMA forecast datasets, with 

monthly updated inflow predictions. Results for the dry years are shown in Figure 5.10, with 

those for wet years shown in Figure 5.11. Of the 28 years evaluated, 13 are considered as dry 

(1982, 1997 and 1999-2009, the latter period constituting the millennium drought) and 15 as 

wet (1983-1996 and 1998). Wet years are taken to be those years when the final water allocation 

to the General Security attains 100% of the concession by the end of the season. For the dry 

years we show results for three years (1982, 2003, and 2006), with the results for the remaining 

years provided in the Appendix B. The selected three years have different levels of water 

allocation based on perfect allocation (70%, 55%, and 10% of the full concession), reflecting 

increasingly severe drought conditions. The reference water allocation based on the 

conservative climatological estimate is again shown in red. For the wet years we equally show 

results for three wet years (1988, 1995, and 1998), with the three different patterns of the 

reference water allocation corresponding to increasingly dry conditions. Results for the 

remaining years are again provided in the Appendix B. 

For both dry and wet years, results found with POAMA and ESP differ only slightly in 

magnitude, and the trend during the water year is similar. For most of the years evaluated, 

results obtained using the forecast ensembles show that the derived water allocation decisions 

tend towards those established with the perfect water allocation (which was established using 

the observed inflow). For all wet years and many of the dry years, the water allocations using 

the forecast ensemble are generally closer to those made using the perfect water allocation 

compared to those made with the reference water allocation. In the wet years results closest to 

the forecast are obtained with the higher forecast percentile (less conservative estimate), while 

for the dry years the lower percentiles provide the best results. 
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Figure 5.10. Water allocation GS for selected dry years (1982, 2003 and 2006) using new 

inflow predictions every month (Monthly updated forecasts). 
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Figure 5.11. Water allocation GS for selected wet years (1988, 1995 and 1998) using new 

inflow predictions every month (Monthly updated forecasts). 

For some of the dry years (1982 and 2006 in Figure 5.10), the water allocation using the 

conservative inflow initially overestimates the “real” water allocation. The water allocation is 

then revised downwards as the season progresses. In 2006, the water allocation based on the 

conservative inflow is 10% higher than the perfect water allocation during the entire year 

Observed inflows for the 2006 water year were the lowest on record (Dreverman, 2013). Similar 

behaviour is found in 2007 and 2008, though initial storages at the start of these years in these 

dry years were so low that allocations never exceeded 0%. The overestimation at the start of 

the season may well be attributed to a wet bias in the forecast for these dry years, with the more 

conservative forecasts (1% - 10%) thus providing the best estimate of actual inflows.  In other 

years, the water allocation using the conservative inflow is lower than the perfect water 

allocation at the beginning of the water year and progressively increases (e.g.1982 and 2003). 
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Using the forecast ensemble shows better water allocation results compared to using the 

conservative inflow. For many of the dry years (Figure 5.10, Appendix B), downward revisions 

of the water allocation do occur during the water year for all percentiles of the forecast ensemble. 

Using a higher percentile leads to a higher water allocation at the beginning of the water year 

as expected, and consequently to larger downward revisions, though the difference in water 

allocations between forecast percentiles converges as the year progresses. In some years (e.g. 

2003 and 2006) the magnitude of water allocation using the forecast ensemble is similar to that 

of the perfect water allocation, though this depends on which date the water allocation is 

estimated and which forecast percentile is used. For example, in the dry year of 2006 the initial 

water allocation (July 1st) using the forecast ensemble is overestimated (at 15% for the 1st 

percentile of ESP), but as of September 14th the predicted water allocation tends towards the 

perfect water allocation at 9%. A similar trend happens for the dry year 2003, but in this case 

the initial water allocation using the forecast ensemble is underestimated (at 40% for the 1st 

percentile of ESP) and tends towards 54%. For the dry year of 1982 the water allocation using 

the forecast ensemble does not tend towards the perfect water allocation, at least not for the 1st 

percentile. Using the 50th percentile the water allocation initially tends towards the perfect water 

allocation on September 14th, but afterwards the water allocation is underestimated, leading to 

continuous downward revisions. Using a higher forecast percentile leads to more downward 

revisions in a water year. This is shown in Figure 5.12 (for three dry years), Figure 5.13 (for 

three wet years) and in the Appendix B (for all dry years and all wet years), which show the 

annual inconsistency of the allocation including the total upward revisions (positive 

inconsistency) and total downward revisions (negative inconsistency). For dry years, using a 

higher non-exceedance percentile leads to less upward revisions (lower positive inconsistency) 

at the cost of more downward revisions (higher negative inconsistency). 
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Figure 5.12. Inconsistency for selected dry years (1982, 2003 and 2006) using new inflow 

predictions every month (Monthly updated forecasts) and one inflow prediction for the next 

12 months (Non-updated forecasts). 
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Figure 5.13. Inconsistency for selected wet years (1988, 1995 and 1998) using new inflow 

predictions every month (Monthly updated forecasts) and one inflow prediction for the next 

12 months (Non-updated forecasts). 

For those wet years (Figure 5.11) where the initial water estimate is below 100% (e.g. 1995 and 

1998), there are primarily upward revisions of the allocation (with only very minor downward 

revisions) for all percentiles of the forecast ensemble. Water allocation results using the forecast 

ensemble are generally equal to the perfect water allocation after the September 14th decision 

date for all non-exceedance percentiles until the end of the cropping season. For several wet 

years, the water allocation decision based on the conservative inflow are lower than for the 

perfect water allocation at the beginning of the water year and then progressively increase (e.g. 

1982 and 2003). These may be up to 55% lower than the perfect water allocation of 100% (e.g. 

1998). For all years where this occurs, using the forecast ensemble shows better water allocation, 

even for the lowest forecast percentiles, which are closest to the conservative forecast. For many 

of the wet years, the initial allocation using both the perfect information, as well as the 

conservative inflow are already at 100%, as are allocations based on all forecast percentiles.  

The annual inconsistency (number of upward revisions) using the forecast ensemble (see Figure 

5.12 and Appendix B) is lower than when using the conservative inflow for the 10th, 25th and 

50th non-exceedance percentiles. For the wet years, using the least conservative (50th percentile) 

leads to the lowest annual inconsistency (see Figure 5.13 and Appendix B). Although the annual 

inconsistency provides information about how the upward and downward revisions during the 

water year, it does not allow for easy comparison against the perfect water allocation. To 
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evaluate how close the allocations established using the forecast ensemble were to those using 

the perfect information the Root Mean Squared Difference (RMSD) was calculated using 

difference between the water allocation established using the ensemble and that of the perfect 

forecast for each decision date. In Figure 5.14 and Figure 5.15, the RMSD for each decision 

date is shown for dry and wet years using the forecast ensemble, as well as for the allocations 

based on the conservative inflow. 

 

Figure 5.14. RMSD for all dry years (1982, 1997, and 1999-2009) using new inflow 

predictions every month (Monthly updated forecasts) and one inflow prediction for the next 

12 months (Non-updated forecasts). 
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Figure 5.15. RMSD for all wet years (1983-1996, and 1998) using new inflow predictions 

every month (Monthly updated forecasts) and one inflow prediction for the next 12 months 

(Non-updated forecasts). 

For dry years, the RMSD of the reference water allocation reduces from 21% at the beginning 

of the water year to 6% at the start of the cropping season (13/11). The RMSD using the monthly 

updated forecast ensemble shows lower errors than the reference water allocation for all non-

exceedance percentiles until October 14th (ESP) and October 29th (POAMA). On October 14th 

(ESP and POAMA) using the 1st percentile of the ensemble results in a higher error compared 

to the reference water allocation. The RMSD using the monthly updated forecast ensemble is 

lower than the RMSD using the conservative inflow between July 1st and September 29th. A 

major error reduction occurs between August 30th and September 14th (from 13% to 6% for the 

50th percentile POAMA). After September 14th the difference remains more or less equal until 

the end of the cropping season. 

For wet years, the RMSD of the reference water allocation reduces from 9% at the beginning 

of the water year to below 5% in the cropping season (from 13/11 until 26/02). The RMSD in 

water allocation using the monthly updated forecast ensemble shows lower errors than the 

reference water allocation (using the conservative inflow), especially when using the 50th 

percentile. The RMSD in water allocation using the 50th percentile tends towards the RMSD of 

the reference water allocation after September 14th. For lower non-exceedance percentiles, the 

error increases. After September 14th the error is similar between non-exceedance percentiles.  
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5.4 DISCUSSION 

The water allocation framework developed in this study was applied to assess the benefit of 

using a seasonal forecast ensemble (FoGSS) in estimating the available water for allocation. 

The potential for farmers to benefit from this seasonal forecast is discussed in the following 

paragraphs based on i) how well climate can be predicted, ii) how much this information helps 

in the actual decision process and iii) how much it contributes in reducing the negative impacts 

(Hansen, 2002). 

5.4.1 How well can the climate be predicted? 

FoGSS is an experimental seasonal streamflow forecast ensemble for a 12 months horizon 

developed for the Australian continent (Bennett et al., 2016, 2017) . FoGSS post-processes 

climate forecasts, either derived from ESP or POAMA to force a monthly hydrological model. 

ESP is an ensemble of seasonal precipitation forecasts based on climatology and POAMA is an 

ensemble including a coupled ocean-atmosphere general circulation model (CGCM). 

A long time series (28 years) of climate predictions was used assuming a full representation of 

climate variability. The time period includes extremely dry years between 2001 and 2009 

referred to as the Millennium Drought (van Dijk et al., 2013b) and very wet years, such as 1988 

and 1989 (BoM, 2019b). 

The derived inflow predictions were transformed into accumulative monthly volumes from 

each prediction month until the end of the water year (June). This set up was used to mimic the 

current water allocation process in which the basin authority uses a conservative inflow 

prediction at the beginning of the water year for the next 12 months. In our approach a 

prediction of the inflow to the end of the season is updated in each month using the forecast 

ensemble. 

Our findings reveal that for the prediction months the inflow forecast ensemble contain a 

mixture of high and low biases, both for the FoGSS forecast based on ESP and on POAMA. 

We would expect progressively better results after the first prediction month in July, as the 

climate forecast is updated for a progressively shorter prediction period. However, this is not 

reflected in the inflow ensemble results. Uncertainty of the predicted inflows in July and August, 

at the start of the wet season are dominated by the uncertainty in the precipitation forecast from 

POAMA/ESP. In the sixth prediction month (December), the worst expected inflow is, however, 

obtained. We argue that this happens due to the memory of the hydrological model used to 

simulate basin conditions from previous wet months. October and November are wet months 

(BoM, 2019a), with a high variability for the selected years (1982-2009). This can explain the 

under-dispersion of the ensemble in December, as the seasonal forecast then contains little 

rainfall, with simulated flows conditioned primarily by (uncertain) model states at the start of 

the forecast, which are treated deterministically. Inflow predictions after February do 

progressively improve due to the shorter prediction periods, as the updated climate forecasts 

compensates the model uncertainty. Further evaluation is needed to determine how these biases 

negatively affect the water allocation decisions. 
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5.4.2 How much does FoGSS help in the actual decision process? 

Currently, only upward water allocation revisions are made during the water year in river basins 

in Australia. This is because a conservative inflow for the next 12 months is used to determine 

the water allocation, essentially resulting an estimate of available water that is always on the 

safe side from the point of view of the allocation decision. However, for the farmer, advance 

knowledge of the ultimate allocation is beneficial as it allows for better planning. Using 

information from a seasonal forecast ensemble to provide a better estimate of inflows to 

reservoirs to inform the water allocation decision may reduce upward revisions and lead to 

improved allocation decisions. Our water allocation framework and findings using FoGSS add 

value to the typical forecast skill assessment. Particularly, the novelty of our work consists in 

arranging the forecasted datasets in the way that inflow predictions are used for the next n 

months until the end of the water year in a water allocation framework. In addition, key decision 

dates for water allocation are evaluated to determine the impact on farmers planning and 

operational decisions, especially for months before and during the cropping season. 

We found that using the seasonal forecast ensemble does not reduces upward revisions (or 

positive inconsistency) for all years, but, that it does improve the accuracy in estimating 

available water for allocation (lower RMSD). Hence using the seasonal forecast ensemble helps 

in the actual decision process because the available water during the water year is better 

predicted. However, this comes at a cost. There is a trade-off between obtaining better 

predictions of water available for allocation than the conservative low estimate as it comes at 

the cost of more downward decisions during the water year. This is more evident for dry years 

than for wet years. In dry years downward revisions of the water allocation due to forecast 

biases. In wet years upward revisions are reduced (compared to the reference water allocation) 

and only very minor downward revisions occur. For both dry and wet years, the accuracy of the 

available water for allocation using the forecast ensemble improves during the water year. This 

is most evident on the decision date around September 14th, where the accuracy of the water 

allocation decision informed by the forecast improves significantly and maintains this accuracy 

until the end of the water year. The benefit of using the forecast ensemble is shown clearly in 

the root mean square difference results, which shows the magnitude of the difference in 

allocation when compared to that made with the perfect forecast. The root mean square 

difference with the forecast ensemble attains a value more or less to the root mean square 

difference obtained with the conservative inflow, but two months before the original decision 

date (from November 13th to September 14th). This means that for the same accuracy of 

predicted water allocation, decision makers can rely on the forecast ensemble information two 

months in advance when compared to the conservative inflow information. This may be of 

significant benefit to the farmers as they can then better plan their irrigation season based on 

the amount of water they would expect to be allocated. 

Whether the basin authority in charge of water allocation announcements would choose to adopt 

a seasonal forecast such as that provided by FoGSS and change the water allocation policy will 

depend very much on how acceptable downward revisions of allocated water are. The current 

policy has been designed to avoid such downward revisions unless exceptional circumstances 

dictate. When using the full potential of the seasonal forecast (including a monthly update of 
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the expected inflow as new forecasts become available) provides more accuracy in water 

allocation estimates at the cost of downward revisions. How acceptable such downward 

revisions may be will depend on the impact these have, compared to the benefit of the improved 

and more advanced information on the water allocation. The ratio of downward and upward 

revisions is also influenced by the selection of the non-exceedance percentile. For the dry years, 

selecting a lower, more conservative, percentage would appear to be the best strategy, while for 

the wet years a much higher percentage should be selected. A non-exceedance percentile of 

10% would appear to provide the best performance on average for both dry and wet years 

evaluated in this study, but a more dynamic approach could also be taken depending on the 

forecast as well as the available storage at the beginning of the water year. The downward 

revisions that occur (primarily in the dry years) are primarily due to biases in the inflow forecast. 

When comparing the results of forecasts made using the POAMA dataset to those of the ESP 

dataset, the number of revisions (both upward and downward) in Figures 12 and 13 indicate 

that these are marginally smaller for the POAMA dataset. This would suggest that further 

improving the seasonal forecast would contribute to reducing undesirable downward revision. 

Additional improvement to the inflow predictions through reducing the uncertainty in the 

hydrological model of the basin will also contribute to reducing the bias of the inflow 

predictions and improved allocation results. 

5.4.3 How much does FoGSS contribute in reducing negative 
impacts? 

The impact in irrigated agriculture of uncertainty in the available water resources has been 

widely assessed in Australia considering climate variability and climate change scenarios 

(Kirby et al., 2013, 2014a, 2014b, 2015). Adaptation measures, reallocation strategies and 

policy reform are currently in discussion to prevent future impacts due to extreme events (Bark 

et al., 2014; van Dijk et al., 2013b). In this study we explore the possibility of using a seasonal 

forecast ensemble to secure the right amount of allocated water at the right time during the 

water year. The contribution of using a seasonal forecast ensemble to provide more accurate 

estimates of the water allocation earlier in the season contributes to reducing production losses 

in irrigated agriculture. More accurate and earlier estimate of the water allocation can enhance 

the decisions made at farm level, such as choosing which crop to plant and the area to be 

irrigated. 

In the Murrumbidgee basin, farmers decide on the area to be cropped based on the water 

allocation announcement for General Security. The water year starts on July 1st, but the summer 

cropping season starts on November 1st and ends March 1st. In that sense, the period to decide 

on the area to be cropped is between July 1st and November 1st, and the period for operational 

decisions (e.g. irrigation schedule, weed management) is from November 1st to March 1st. 

Farmers can wait until the last allocation announcement before November 1st to decide on the 

area to be cropped, but due to pre-cropping planning activities and investments (e.g. buying 

seeds, maintenance of irrigation assets, or investing in agricultural equipment and machinery) 

they would prefer to take decisions earlier, and rely on water allocation announcements made 

on an earlier date. Based on the findings of our work, we would recommend famers to rely on 
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the water allocation announcement made on September 14th, when using the currently available 

forecasts to inform the water allocation decisions. This will reduce negative impacts due to 

either over or underestimating the area to be cropped as the available water is better predicted. 

5.5 CONCLUSION 

We apply a water allocation framework to assess the benefit of using a seasonal forecast 

ensemble in water allocation decisions. This water allocation framework uses an estimate of 

the available water for the irrigation season that is based on the balance of the demand to the 

available water in the reservoirs in a basin and the expected inflows to those reservoirs from 

the decision date until the end of the water year. Our framework emulates the decisions made 

by basin authorities on the allocation of water to meet claims to water as defined in water 

concessions. Depending on availability, water may be allocated to fully meet these concessions 

or only to a set percentage. We apply the framework in the Murrumbidgee basin in Australia. 

In this basin, conservatively low estimates of the expected inflow based on climatology are 

currently used at the beginning of the water year to estimate the available water. As the water 

year progresses, water allocated to each concession may be revised if expected water 

availability improves. As the initial estimates are conservative, water allocations are mostly 

conservatively low, and consequently revised upwards. Although upward revisions of the 

allocation is beneficial to irrigators, advance and consistent information on the water allocated 

is important to them to help better plan their irrigation season. 

Instead of the currently used conservative low estimates for inflow predictions we propose 

using inflow predictions from an ensemble seasonal streamflow forecast to inform water 

allocation decisions. Inflow predictions are obtained from the “Forecast Guided Stochastic 

Scenarios” (FoGSS), a seasonal ensemble streamflow forecasting system for Australia using 

either Ensemble Streamflow Prediction (ESP) or the POAMA M2.4 seasonal climate 

forecasting system as climate forcing. Of the two, predicting the inflows into reservoirs using 

the POAMA datasets were found to have better skill than using the ESP datasets. The seasonal 

forecast ensemble helps improve the decision process because the available water estimates 

during the water year are better predicted than the conservative forecast used as reference. 

However, the inconsistency in water allocation decisions during the water year is higher when 

using the seasonal forecast. This implies establishing a trade-off between obtaining better 

accuracy in available water estimates and the cost of more downward revisions during the water 

year. This is more evident for dry years than for wet years. In dry years more downward 

decisions occur than is currently the case. In wet years upward revisions are reduced (compared 

to the reference water allocation) and relatively no downward revisions occur. Both for dry or 

for wet years, the accuracy of the available water estimates using the forecast ensemble 

improves progressively during the water year, especially some one and a half months before 

the start of the cropping season in November. This additional time is important to the user, as 

it allows farmers to better plan the cropping season (November to February). Using the forecast 

ensemble thus contributes to reducing negative impacts in irrigated agriculture. The use of these 
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datasets would help the basin authority in developing a better estimate of the available water 

for allocation and reduce agricultural losses. 
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6.1 SYNTHESIS 

New hydrological datasets from earth observations, hydrological and land-surface models, as 

well as seasonal forecasts continue to be developed and tested around the world. The quality of 

these datasets has been improving rapidly due to the consideration of longer periods of record, 

increasingly finer spatial resolutions, better accuracy in hydrological estimates and predictions, 

and the consideration of uncertainty through ensembles (Derin et al., 2016; Dijk et al., 2016; 

Her et al., 2019; Orth et al., 2017; Schellekens et al., 2017). For example, a new version of 

MSWEP global precipitation dataset (historic dataset over 30 years) was enhanced from a 0.25 

degree to a 0.1 degree spatial resolution in less than one year (Beck et al., 2017b, 2018). These 

improvements increase the potential application of these datasets in smaller basins to support 

estimations of surface water availability and the development of basin management plans. In 

addition, seasonal streamflow forecasts are developed and applied to support operational 

decisions. For example, the ECMWF seasonal forecasting system is used with improved skill 

from sea surface temperature (SST) prediction and the fifth generation of atmospheric 

reanalyses of the global climate (Copernicus Climate Change Service (C3S), 2017; Stockdale 

et al., 2011). In the Australian continent an experimental seasonal streamflow forecast ensemble 

has been developed to better predict streamflow for a 12 month horizon (Bennett et al., 2017). 

At the same time, these improved hydrological datasets have become more accessible through 

online portals and databases. End users such as basin and water authorities can easily download 

hydrological datasets and make use of them to support their decision-making processes. 

However, despite these improvements it is not fully clear what the value is of using these 

datasets for decision making. This thesis explores the value of using hydrological datasets to 

support decisions in managing water resources, in particular those related to water allocation. 

The limitations and potential of these datasets is addressed in view of various aspects. On the 

one hand, the potential value of these datasets depends on the current network of hydrological 

stations being used. If the there is a well established network, with a good density of 

hydrological measurements the value of additional datasets may well be limitied. On the other 

hand, the actual value of hydrological datasets depends on the scale and purpose of the decision. 

If, for example, the decision maker would like to estimate the adequate design area of an 

irrigation district based on the available water to satisfy irrigation requirements, a monthly time 

scale would be enough for the assessment. However, if the decision maker would like to know 

about the available water for weekly water allocation announcements, a daily times scale would 

be necessary for an adequate evaluation. 

6.1.1 Hydrological data quality and water allocation decisions 

The first step was to evaluate the existing network of hydrological stations being used in large 

irrigation districts. In chapter 2, the link between sub-optimal water allocation decisions and 

the quality and availability of hydrological information in irrigation districts is explored. In this 

case, the water allocation decision that is considered is an operational decision in an irrigation 

district which consists of the opening or closing the main canal gates at the water source location 

to meet downstream demand, while considering the availability of water. An example of a sub-
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optimal water allocation decision is where there is sufficient water available to satisfy irrigation 

demand, but the operator does not open the gate on the perception that there is insufficient water, 

thus generating water shortage in the canal system. It was found that such sub-optimal water 

allocation decisions are often taken in large irrigation districts in Australia, Costa Rica and 

Colombia. The rate of which which sub-optimal water allocation decisions are taken is found 

to depend on the quality of the hydrological information available. In an irrigation district with 

high quality hydrological information, the rate of occurrence of sub-optimal water allocation 

decisions is relatively low when compared to an irrigation district with low quality hydrological 

information. The quality of hydrological information is quantified by an index composed of the 

period of record, spatial and temporal resolution of the available in-situ data at different 

locations in the irrigation district and the water supply basin. The challenge is to reduce sub-

optimal water allocation decisions through complementing the in-situ data available with 

additional hydrological information that can help extend the period of record, and improve the 

temporal and spatial resolution. The key message is to explore the use of hydrological 

information additional to the available in-situ measurements, including hydrological models, 

remote sensing and reanalysis datasets, and through this help reduce sub-optimal water 

allocation decisions. 

6.1.2 The value of using additional hydrological data from global 
observations and models 

Global precipitation datasets and global hydrological models are continuously being developed, 

tested and improved. In chapter 3, the value of using an ensemble of global hydrological models 

is evaluated in determining the surface water availability for irrigation area planning. In chapter 

4, the value of two global precipitation datasets, CHIRPS and MSWEP, is assessed for the same 

purpose, but now in combination with calibrated local hydrological models. 

A hydro-economic framework was developed and applied to evaluate the value of using longer 

periods of record as well as of ensembles of river discharge information from global 

precipitation datasets and global hydrological models in irrigated agriculture. This framework 

combines principles of the economic utility theory (Neumann and Morgenstern, 1966) and 

probabilitstic hydrology (Wilks, 2011) applied to irrigation management. The Relative Utility 

Value is introduced as a measure to determine the risk of annual crop production loss based on 

the monthly probability of water scarcity for the derived size (area) of an irrigation district. The 

size of these irrigation areas was derived using the simulated river discharge information and 

compared against a reference area that was established using the available observed river 

discharge information. The annual crop yield loss was evaluated for rice, which is the main 

crop grown in the case studies explored, when water scarcity occurs in each growth stage. The 

Relative Utility Value varies depending on the monthly probability of water scarcity, but also 

on the monthly crop sensitivity due to water deficit. 

Initially, the hydro-economic framework was tested in a large basin in Australia (84000 km²) 

using information from global hydrological models. It was found that using an ensemble of 

global hydrological models is more beneficial than using single models because the information 
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content of the ensemble provides a more robust estimate of the area that can be reliable irrigated, 

given available water. This means that a shorter time period of river discharge information can 

be used when using an ensemble of global hydrological models as the information content of 

the ensemble offsets the reduction of the time period. Specifically, using an ensemble of global 

hydrological models with a period of fifteen years of river discharge information provides equal 

accuracy in irrigated area estimation compared to thiry years of river discharge information 

from single global hydrological models. 

The hydro-economic framework was extended to explore the cost of choosing between 

irrigation areas obtained from simulated river discharge calibrated with short time periods of 

observed river discharge. The simulated river discharge is determined by using different global 

precipitation products (e.g. CHIRPS and MSWEP) for a reference thirty year period driven by 

calibrated hydrological models. The rationale of the approach is that a modeller would like to 

know what happens if only five years of river discharge are available to calibrate a model. To 

emulate this situation, six independent samples, each five years in length, were extracted from 

the reference thirty-year dataset for calibration of the model parameters. Prior information about 

which period of five years is available for calibration and how representative each five-year 

sample is of the hydro-climatic variability was assumed to be unknown. Among the six periods 

extracted from the full thirty year dataset, some are sampled from more wet periods, while 

others represent normal or dry periods. Once a period of five years is selected the calibration is 

done, resulting in a model with the “best” model parameter sets, conditional on the sample used 

for calibration. Simulated river discharges are then obtained for the reference thirty year period 

using global precipitation datasets. The approach was tested in a medium sized (2000 km²) 

mountainous basin in Colombia. The main outcome is that it is more cost-effective to plan 

irrigated areas using thiry years of simulated river discharge information from global 

precipitation datasets than using only five years observed discharge data. This happens because 

the additional precipitation data from five to thirty years constrains the model uncertainty of 

the calibration procedure. In the selected basin, using additional precipitation data from 

CHIRPS outperforms MSWEP. Both precipitation datasets are originally corrected with 

information from ground stations, but in the selected basin the amount of stations used for 

correction is lower for MSWEP. In addition, MSWEP has a coarser resolution than CHIRPS, 

contributing to lower performance. 

The application of an ensemble of global hydrological models allows the use of shorter time 

periods in river discharge estimates compared to single global hydrological models. On the 

other hand, the application of global precipitation datasets helps in providing longer time 

periods allowing the simulation of reliable surface water estimates when observed river 

discharge is limited. In large basins, the application of an ensemble of global hydrological 

models is recommended for initial surface water estimations for irrigation area planning. In 

corresponding subbasins, the application of a calibrated hydrological model is suitable to 

estimate the area to be cropped in irrigated agriculture. 
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6.1.3 The value of using seasonal streamflow forecasts 

In chapter 3 and chapter 4 the value of using different global hydrological datasets were 

evaluated to enhance planning decisions in irrigated agriculture. These decisions include long 

term planning decisions such as the viability of developing new irrigation areas. However, there 

is also added value to using hydrological datasets to enhance operational decisions. In chapter 

5, the value of using seasonal streamflow forecasts is assessed. The use of seasonal forecasts to 

support decisions has been addressed in several settings (Crochemore et al., 2016; Shukla et al., 

2014; Turner et al., 2017; Winsemius et al., 2014). However, the potential enhancement in water 

allocation decisions in irrigated agriculture, informed by seasonal forecasts has been little 

studied. A complete assessment of the added value of seasonal forecasts can allow basin 

authorities to explore the opportunities seasonal forecasts provide to improve their operational 

decisions, and reduce potential losses to agricultural by improving water allocation estimates. 

In many basins, conservative estimates of the available resource in rivers and reservoirs may 

lead to allocated water to be underestimated due to conservative estimates of future (in) flows. 

Water allocations may be revised as the season progresses. The resulting inconsistency in 

allocation is undesirable to farmers and may lead to opportunity costs in agricultural production. 

In chapter 5, a feedback loop between simulated reservoir storage and decisions on the amount 

of water to allocate to irrigation was developed to evaluate two seasonal forecast datasets 

(Poama and ESP) derived from the Forecast Guided Stochastic Scenarios (FoGSS), a 12 month 

seasonal ensemble forecast in Australia (Bennett et al., 2017). The approach was evaluated in 

the Murrumbidgee basin, comparing water allocations obtained with an expected reservoir 

inflow from FoGSS against the allocations obtained with an expected reservoir inflow from a 

conservative climatological estimate (as currently used by the basin authority), as well as 

against those obtained using observed inflows (perfect information). The inconsistency in 

allocated water is evaluated the changes in allocated water made every 15 days from the initial 

allocation at the start of the water year to the end of the irrigation season, including both 

downward and upward revisions of allocations. Results show that the inconsistency due to 

upward revisions in allocated water is lower when using the forecast datasets (Poama and ESP) 

compared to the conservative inflow estimates (reference) which is beneficial to the planning 

of cropping areas by farmers. Over confidence can, however, lead to an increase in undesirable 

downward revisions. Even though biases are found in inflow predictions, the accuracy of the 

available water estimates using the forecast ensemble improves progressively during the water 

year, especially one and a half months before the start of the cropping season in November. 

This means that basin authorities and farmers can rely on the forecast ensemble for water 

allocation decisions, as these enhance the accuracy of the available water estimates, and 

importantly, provide more time to prepare for pre-cropping activities and investments (e.g. 

buying seeds, maintenance of irrigation assets, or investing in agricultural equipment and 

machinery) and plan adequate cropping areas. 
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6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the research shows the significant potential of using hydrological modelling and earth 

observations combined with in-situ datasets, and application of a seasonal forecast the 

framework developed in this study contains several limitations that should be further addressed 

such as the uncertainty in hydrological models, and the conjunctive water use between surface 

water and groundwater in irrigation districts. 

In this research, it was found that an ensemble of global hydrological models is beneficial in 

estimating the surface water availability in a large basin in Australia. In addition, a local 

calibrated hydrological model showed to be useful in estimating the surface water availability 

in a medium sized basin in Colombia. However, the hydrological models are under continuous 

process of improvement. Global hydrological models, such as LISFLOOD or PCR-GLOBWB, 

lack information about hydropower operation and storage change. Local hydrological models, 

such as the one used in Colombia (Dynamic Water Balance Model), are based only on three 

model parameters, which may underestimate the full characterization of the basin. In the 

Magadelana-Cauca basin in Colombia, three hydrological models including the Dynamic Water 

Balance Model, VIC and WFLOW models were tested in several subbasins for water resources 

management purposes (Rodriguez et al., 2017). These results may help in deciding which 

hydrological model to use for a specific subbasin in Colombia. 

In the evaluated irrigation districts the conjunctive use between surface water and groundwater 

was not considered. It is crucial to continue work and efforts to understand the groundwater use 

in these irrigation districts and how it is affecting the water balance and groundwater levels. 

Several studies suggests that groundwater is not being fully monitored and the available 

resource has not been properly quantified (Cuadrado-Quesada et al., 2018; Petheram et al., 

2008). In Costa Rica, quantifying the total available resource (including surface and 

groundwater) may support water allocation decisions and avoid unnecessary investments. 

In addition, the framework used to estimate the crop yield due to water scarcity can be extended 

in order to include more characteristics such as irrigation management practices, and the actual 

crop stage development. Irrigation management practices such as transplanting or direct sowing, 

fertilizers use or even different crop varieties may affect crop yield. The actual crop stage 

development will help in estimating the true evapotranspiration deficit. The application of an 

open source crop model such as AquaCrop from FAO (Raes et al., 2009; Steduto et al., 2009) 

and AquaCrop-OS (Foster et al., 2017) can be explored. 

Finally, the collaboration between different fields of study is recommended. An effort was done 

in this PhD work to combine knowledge about water allocation policy and technical information 

about hydrological datasets. However, similar efforts should be developed in larger countries 

and at basin level and irrigation district level in order to gain accountability about the use of 

hydrological data. Researchers and private consultancy may know that the use of hydrological 

data is important, however if current policy and regulation do not encourage and set 

requirements on the proper spatial and temporal resolution of the data, possibly the estimation 



 

 

 

121 

of the water resource will be established based on inaccurate and low quality information, which 

will finally impede the adequate planning of the available resource and lead to water conflicts. 
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Figure A1. Observed and simulated Coello River discharge with 30 years (1983-2012) of In-

Situ precipitation (Sim 30y 𝑷𝑰𝒏−𝑺𝒊𝒕𝒖) for all calibration samples (1983-1987, 1988-1992, 

1993-1997, 1998-2002, 2003-2007, 2008-2012). 

 

 

Figure A2. Observed and simulated Coello River discharge with 30 years (1983-2012) of 

CHIRPS precipitation (Sim 30y 𝑷𝑪𝑯𝑰𝑹𝑷𝑺) for all calibration samples (1983-1987, 1988-1992, 

1993-1997, 1998-2002, 2003-2007, 2008-2012). 
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Figure A3. Observed and simulated Coello River discharge with 30 years (1983-2012) of 

MSWEP precipitation (Sim 30y 𝑷𝑴𝑺𝑾𝑬𝑷) for all calibration samples (1983-1987, 1988-1992, 

1993-1997, 1998-2002, 2003-2007, 2008-2012). 

 

Figure A4. KGE performance metric for simulated river discharge for the complete time 

period of 30 years (1983-2012) using three different precipitation datasets (In-Situ, CHIRPS 

and MSWEP) in the Coello basin. Six independent samples of observed river discharge of 5 

years (1983-1987, 1988-1992, 1993-1997, 1998-2002, 2003-2007 and 2008-2012) are used to 

calibrate model parameters, with the sample used for model calibration indicated in the 

header. 
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Figure A5. Pbias performance metric for simulated river discharge for the complete time 

period of 30 years (1983-2012) using three different precipitation datasets (In-Situ, CHIRPS 

and MSWEP) in the Coello basin. Six independent samples of observed river discharge of 5 

years (1983-1987, 1988-1992, 1993-1997, 1998-2002, 2003-2007 and 2008-2012) are used to 

calibrate model parameters, with the sample used for model calibration indicated in the 

header. 

 

Figure A6. Pearson correlation, r performance metric for simulated river discharge for the 

complete time period of 30 years (1983-2012) using three different precipitation datasets (In-

Situ, CHIRPS and MSWEP) in the Coello basin. Six independent samples of observed river 

discharge of 5 years (1983-1987, 1988-1992, 1993-1997, 1998-2002, 2003-2007 and 2008-

2012) are used to calibrate model parameters, with the sample used for model calibration 

indicated in the header. 
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Figure A7. Probability of water scarcity using the irrigation area obtained with the observed 

river discharge of 5 years (Obs 5y) and the reference surface water availability. Boxplots 

show the median, interquartile range and minimum-maximum range. 

 

Figure A8. Probability of water scarcity using the irrigation area obtained with simulated 

river discharge information (Sim 30y 𝑷𝑰𝒏−𝑺𝒊𝒕𝒖, Sim 30y 𝑷𝑪𝑯𝑰𝑹𝑷𝑺, Sim 30y 𝑷𝑴𝑺𝑾𝑬𝑷) and the 

reference surface water availability. Boxplots show the median, interquartile range and 

minimum-maximum range. 
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Figure A9. Probability of water scarcity using the irrigation area obtained with simulated 

river discharge information (Sim 5y 𝑷𝑰𝒏−𝑺𝒊𝒕𝒖, Sim 5y 𝑷𝑪𝑯𝑰𝑹𝑷𝑺, Sim 5y 𝑷𝑴𝑺𝑾𝑬𝑷) and the 

reference surface water availability. Boxplots show the median, interquartile range and 

minimum-maximum range. 

 

Figure A10. Relative Utility Value using observed river discharge of 5 years for water 

scarcity happening independently in one month. Ky is the sensitivity of the crop to water 

deficit. Boxplots show the median, interquartile range and minimum-maximum range. 
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Figure A11. Relative Utility Value using simulated river discharge of 30 years for water 

scarcity happening independently in one month. Ky is the sensitivity of the crop to water 

deficit. Boxplots show the median, interquartile range and minimum-maximum range. 

 

Figure A12. Relative Utility Value using simulated river discharge of 5 years for water 

scarcity happening independently in one month. Ky is the sensitivity of the crop to water 

deficit. Boxplots show the median, interquartile range and minimum-maximum range. 
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Figure B1. Water allocation GS for dry years (1982, 1997, 1999) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B2. Water allocation GS for dry years (2000, 2001, 2002) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B3. Water allocation GS for dry years (2003, 2004, 2005) using new inflow 

predictions every month (Monthly updated forecasts). 

 



  

 

 

135 

 

 

Figure B4. Water allocation GS for dry years (2006, 2007, 2008, 2009) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B5. Water allocation GS for wet years (1983, 1984, 1985) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B6. Water allocation GS for wet years (1986, 1987, 1988) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B7. Water allocation GS for wet years (1989, 1990, 1991) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B8. Water allocation GS for wet years (1992, 1993, 1994) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B9. Water allocation GS for wet years (1995, 1996, 1998) using new inflow 

predictions every month (Monthly updated forecasts). 
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Figure B10. Inconsistency for dry years using new inflow predictions every month (Monthly 

updated forecasts) and one inflow prediction for the next 12 months (Non-updated forecasts). 
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Figure B11. Inconsistency for wet years using new inflow predictions every month (Monthly 

updated forecasts) and one inflow prediction for the next 12 months (Non-updated forecasts). 
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LIST OF ACRONYMS 

DRAT: Arenal-Tempisque Irrigation District 

MIA: Murrumbidgee Irrigation Area or Murrumbidgee Irrigation District 

WMO: World Meteorological Organization 

ir : Period of record for hydro-meteorological variable i 

jr : Period of record in established control locations j 

𝑄: River discharge 

𝐷: Irrigation demand 

𝑆: Water supply 

𝑆𝑑: Water storage in the reservoirs 

𝑟: Irrigation demand rate 

𝑈: Expected annual utility 

𝑈𝑐: Cummulative water use due to allocation 

𝑈𝑑: Daily expected allocation for the different water users 

𝑅: Risky annual production 

𝑅𝑎: Annual reserve of water storage 

𝑅𝑈𝑉: Relative utility value 

𝑃𝑅𝑈𝑉: Pooled relative utility value 

𝐾𝑦: Crop sensitivity factor 

CHIRPS: Climate Hazards Group InfraRed Precipitation with Station data 

MSWEP: Multi-Source Weighted-Ensemble Precipitation 

ESP: Extended Streamflow Prediction 

POAMA: M2.4 seasonal climate forecasting system 

FoGSS: Forecast Guided Stochastic Scenarios 

𝑊𝐴: Allocated water 

𝐴𝑊: Available water for allocation 
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