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Fair gain allocation in eco-efficient vendor-managed inventory
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Abstract

Transportation is not always organised efficiently, which causes unnecessary costs and CO2

emissions. Vendor-managed inventory (VMI) has been suggested as a form of cooperation
that can reduce economic and environmental impacts of transportation and consequently
improve eco-efficiency of the supply chain. Establishing viable forms of VMI cooperation
requires a fair distribution of the cooperation’s economic benefits. Cooperative game theory
(CGT) research is used to fairly allocate both benefits and costs. However, the environmental
contribution of partners has often been ignored in the benefit allocation. In this study, the
Shapley value (a commonly used CGT method) is used to share the monetary gains in a
way that reflects the partners’ contributions to cost and emissions savings. The method is
applied to evaluate the allocation of economic and environmental benefits of vendor-managed
inventory between cooperating supermarket chains in the Netherlands. The findings show that
there is a set of eco-efficient solutions resulting in lower costs and CO2 emissions compared to
the current situation. For each of the eco-efficient solutions, the relative importance of saving
costs and of saving emissions was quantified, and based on the importance weights, a cost
allocation was found. For all partners that contribute to saving both cost and CO2 emissions,
this approach results in cost savings, and therefore, the approach can be considered fair.
Also, this approach helps to stimulate long-term eco-efficient forms of cooperation.
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Table 1 summarises the abbreviations used in this study.

Table 1: Glossary

Abbreviation Explanation
CDC Central Distribution Centre
CGT Cooperative Game Theory
CO2 Carbon dioxide
DC Distribution Centre
IRP Inventory Routing Problem
JRP Joint Route Planning
VMI Vendor Managed Inventory
VRP Vehicle routing problem

1. Introduction

Public awareness about global environmental changes such as air pollution caused by
intensified economic activity has increased the demand for goods and services that reduce
environmental impact (Garnett, 2008, Hariga et al., 2017). To remain competitive, current
supply chains must be re-designed and become more eco-efficient. In other words, they need
to decrease the environmental impact for the same or even lower cost (Banasik et al., 2016).
A major source of inefficiency of current supply chains is related directly to transportation,
which is responsible for 14% of total CO2 emissions both at global and EU level (Dekker
et al., 2012). Cooperative logistics has been suggested as a way of reducing CO2 emissions
and of improving sustainability in supply chains (McKinnon, 2016, Ramanathan et al., 2014,
Vanovermeire et al., 2014, Chen et al., 2017). This is mainly because cooperation improves the
utilisation rate of vehicles at it allows cooperating companies to exploit the synergies between
them (Cruijssen et al., 2007b). A report from 2012 showed that the average loading rate of
vehicles is 56% in terms of weight, and combining loads could thus decrease the number of
vehicles driving around, which can help reducing costs and CO2 emissions (Cruijssen, 2012).

Vendor-managed inventory (VMI) is a form of cooperation in which a vendor manages
its own inventory as well as the inventory of its customer(s) by taking decisions on the
replenishment quantity and frequency. The vendor is also responsible for keeping the stock
level of the customer within agreed limits (Nagarajan and Sošić, 2008). VMI cooperation can
result in substantial economic and environmental benefits because both transportation and
inventory planning decisions can be optimised jointly (Stellingwerf et al., 2018b). Successful
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long term VMI that aims to improve eco-efficiency of the supply chain requires a fair
distribution of economic benefits or costs based not only on the contribution of each participant
to the shared cost savings but also to the shared environmental savings (Stellingwerf et al.,
2018b).

Cooperative game theory (CGT) methods have been used to identify a fair allocation of
the benefits of cooperation in supply chains. CGT methods generally focus on allocation
of economic benefits based on the contribution of the participants to improve the economic
performance of the cooperation (Frisk et al., 2010). Recently, a commonly used CGT method,
the Shapley value (Shapley, 1953) has been applied to allocate emissions in cooperative
transportation (Naber et al., 2015). However, the possibility to use CGT methods to
allocate the economic benefits based on both the economic and environmental contribution
of participants has not been explored; CGT methods have mainly been used either for
economic or for environmental allocation (Guajardo, 2018). The objective of this study
is to propose a methodology for allocating economic benefits of VMI based on both the
economic and environmental contributions of participants, such that both contributions are
rewarded and eco-efficient forms of cooperation are stimulated. The proposed methodology
is used to distribute economic benefits of VMI cooperation in supermarket chains in the
Netherlands. The remainder of the paper is organised as follows. Section 2 provides the
theoretical framework; Section 3, describes the proposed methods; Section 4 describes a case
study; Section 5 describes the results; and in Section 6, the main conclusions are presented.

2. Theoretical framework

2.1. Quantifying benefits of cooperation

Literature has shown that logistics cooperation can bring significant benefits to co-
operating partners (Cruijssen et al., 2007b), such as cost reductions and efficiency gains
(Adenso-Dı́az et al., 2014). The review of Chen et al. (2017) suggests that until recently,
cooperation studies have focused on monetary benefits but there is a trend towards measuring
or estimating the environmental impacts of supply chain cooperation as well. For example,
Ramanathan et al. (2014) qualitatively evaluated how the environmental pressure from
different stakeholders can help to improve supply chain cooperation, which in turn can lead
to improved business performance.
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Cooperative benefits have also been studied qualitatively. Stellingwerf et al. (2018b)
have evaluated different forms of cooperation and they have quantitatively shown that VMI
is an advanced form of cooperation that can provide significant cost and emission savings. In
order to quantify benefits of VMI, models based on the inventory routing problem (IRP) can
be used because in these models routing and inventory decisions are optimised simultaneously
(Coelho et al., 2013). In general, IRP models minimise cost, which are calculated by adding
inventory, transportation, and labour cost. Stellingwerf et al. (2018b) used an IRP model to
quantify both the economic and environmental effects of cooperation in fresh food logistics.
This model will be used in this study as well; it will be briefly explained in the next section
and completely formulated in the Appendix. It was found that VMI can bring significant
benefits to partners, since both transportation and inventory are optimised. After total
cooperative benefits have been quantified, they have to be distributed among the partners,
and this is the role of cooperative game theory.

2.2. Allocation of cost and CO2 emissions in supply chain cooperation

In order to ensure that a cooperation is successful in the long run, it is important
that the associated cost and the resulting gains are allocated in a way that is considered
fair by all participants (Cruijssen et al., 2007a). CGT methods have been used to identify
potential coalitions, to quantify the total benefits of these coalitions, and to fairly allocate
the benefits of the coalitions to all cooperating partners (Nagarajan and Sošić, 2008). In
most CGT methods, the benefits or cost allocated to a partner are related to the partner’s
contribution to the group’s cost savings (Guajardo and Rönnqvist, 2016). Different CGT
methods exist and Tijs and Driessen (1986) have summarised them. The most common
methods are the Shapley value, the nucleolus, the equal charge method, the alternative cost
avoided method, and the cost gap method. Recent case studies that compare different cost
allocation methods are, for example, Frisk et al. (2010), Vanovermeire et al. (2014), and
Wang et al. (2017). Frisk et al. (2010) applies different cost allocation methods (the equal
profit method that they developed themselves and the and Shapley value based methods) to
a case study on cooperative wood transportation by different forest companies. They find
similar allocations in both methods, but they argue that the equal profit method is easier to
understand. Vanovermeire and Sörensen (2014) argue that flexibility is crucial in horizontal
logistics cooperation, and they test different allocation methods on their ability to reward
flexibility of cooperating partners. They discuss that the Shapley value, the nucleolus and
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the equal charge method give consistent and fair incentives for flexibility. Wang et al. (2017)
allocate cooperative vehicle routing cost savings using the Shapley value.

The above-mentioned studies focus on transport cooperation. Allocation of benefits in
VMI cooperation (joint optimisation of both transportation and inventory decisions) has
only been studied in the work of Özener et al. (2013). They compare different cost allocation
methods for VMI cooperation in a case study where cost-to-serve has to be split between
clients. They propose different methods which perform better than proportional allocation
methods, which have often been discussed to not result in fair allocations. However, this
study does not consider environmental effects of VMI cooperation, and neither does it study
how those environmental benefits could be used in allocation decisions.

There are some gain allocation studies that conclude that logistics cooperation results in
cost savings as well as environmental benefits (Frisk et al., 2010, Vanovermeire et al., 2014,
Jonkman et al., 2018). Other recent studies have started to use gain allocation methods
to allocation CO2 emissions to cooperating partners (Kellner and Otto, 2012, Naber et al.,
2015, Zhu et al., 2016). Some authors include CO2 emissions as part of the cost function, on
which they apply different allocation methods (Özener, 2014, Niknamfar and Niaki, 2016,
Sanchez et al., 2016). Guajardo (2018) studied cooperative logistics in a cost minimising
as well as in an emission minimising setting. In a small 3-partner problem, costs and
emissions are minimising separately. For the cost minimising solution, costs are allocated
using the proportional method, the Shapley method, and the Nucleolus. And for the emission
minimising solutions, emissions are allocated using the same methods. Despite the small
problem size, the optimal solution for cost and emission minimisation is different, a different
optimal route is found.

Despite the efforts that have been done to quantify and distribute the benefits of
cooperation, the contribution of a partner to reduce the CO2 emissions of the cooperation is
has not been translated to economic benefits, which is the gap this study attempts to address.
In order to engage partners in the improvement of the eco-efficiency of their supply chain
through cooperation, the partners should not only be rewarded based on their contribution
to cost savings of the coalition but also based on their contribution to emissions savings.
Table 2 summarises the studies discussed in the theoretical framework.

From Table 2, it can be seen that the Shapley value is a the most commonly used CGT
method in the discussed studies. According to Guajardo and Rönnqvist (2016), who review
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Table 2: Overview of literature discussed. Abbreviations: JRP, joint route planning; ECM, equal charge
method; ACAM, alternative cost avoided method; EPM, equal profit method; CVMI, cooperative
vendor-managed inventory.

Authors Form of Economic Environmental Allocation methods
cooperation quantification quantification studied

Kellner and Otto (2012) JRP no yes 15 different ones including Shapley
Nagarajan and Sošić (2008) CVMI yes no Nash bargaining problem
Frisk et al. (2010) JRP yes no Volume, Shapley, shadow, ECM

ACAM, nucleolus, EPM
Özener et al. (2013) CVMI yes no Duality based methods, Shapley value
Özener (2014) JRP yes yes duality and Shapley value based

allocation mechanism
Naber et al. (2015) JRP no yes Proportional, star, Shapley

Nucleolus, Lorenz, EPM
Niknamfar and Niaki (2016) JRP yes yes dual lexicographic max-min approach
Sanchez et al. (2016) JRP yes yes Shapley
Zhu et al. (2016) JRP no yes Shapley, transport work based,

distance based, cargo volume based
Palhazi Cuervo et al. (2016) JRP yes no Proportional

gain allocation methods in cooperative transportation, this is because the Shapley value
satisfies important fairness properties. Moreover, despite the fact that the Shapley solution
is not guaranteed to be in the core (i.e. the gain allocation of all players within a certain
coalition is better compared to their allocation in all other possible smaller coalitions or the
non-cooperative solution) in most of the studies discussed in the review of Guajardo and
Rönnqvist (2016), the Shapley was found to be a core solution. Finally, Cruijssen et al. (2010)
propose Shapley as a practical CGT method because it is easy to interpret and communicate
with the decision makers. In the study of Vanovermeire and Sörensen (2014), the Shapley
value was used in a case study and it was found that it gave incentives to cooperate. Because
of the appealing properties of the Shapley value and its broad use in CGT literature, it is
attractive from a practical as well as a scientific point of view. Therefore, this study uses the
Shapley value as well.

2.3. Benefit allocation using the Shapley value

The Shapley value (Shapley, 1953) is one of the most common gain sharing rules in
the literature since it provides a unique solution to the allocation problem and it satisfies
appealing fairness properties (Lozano et al., 2013). Almost all studies discussed use (amongst
others) the Shapley value. The Shapley method will be used in this study as it will allow
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for comparison with the other studies. The Shapley value provides an allocation for all
cooperative partners based on each partner’s contribution to the total costs or benefits of
the group and it is calculated as:

yj =
∑

S⊆N\{j}

(|S| − 1)!(|N | − |S|)!
|N |! [c(S)− c(S − {j})], (1)

where N is the group in which all partners participate, which is called grand coalition. S is
any sub-coalition by the partners of the grand coalition, and yj is value allocated to partner
j. C(S) is the value (e.g. costs or CO2 emissions) of coalition S, c(S − {j}) is the value of
coalition S without partner j. Therefore, c(S)− c(S −{j}) is the amount by which the value
of coalition c(S − {j}) increases when participant j joins the coalition, i.e. the marginal
value of participant j. The Shapley value allocated to a partner (Eq. 1) can be interpreted as
the average marginal contribution that partner brings to the group (Shapley, 1953). In order
to calculate the Shapley value, it is necessary to know the value of all possible sub coalitions
that can be formed from the grand coalition. These values are called the characteristic
function. For more information on the Shapley value, the interested reader is referred to
Shapley (1953).

3. Methodology

In order to establish an allocation based on both cost and CO2 emissions, a three-step
methodology is proposed, summarised in Figure 1. In the first step, the set of eco-efficient
solutions is calculated using the green IRP model proposed by Stellingwerf et al. (2018b)
because it optimises inventory and routing decisions simultaneously by minimising either the
environmental impact or the costs of a potential coalition. The IRP is an extension of the
better-known Vehicle Routing Problem (VRP). In the basic VRP model, the objective is to
identify the shortest route for visiting a set of individual customers. Generally, travelling
distance is minimised given (a) vehicle(s) that has to leave and return to a depot and deliver
demand to a number of customers. Constraints are used to limit the carrying capacity of the
vehicles. Lately, variants of the VRP have been developed where the objective function is
formulated such that costs and/or emissions can be minimised instead of distance. A VRP
can be used to solve one-period routing problems. In the IRP, not only routing, but also
inventory decisions are optimised simultaneously. The constraints of the IRP are the same
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as the VRP, but constraints that define the inventory at the depot and the demand locations
are added, as well as inventory capacity constraints. The IRP can be used for multi-period
routing and inventory problems: if there is enough inventory in the demand locations, less
frequent routing with higher volumes could be considered.

In order to estimate emissions E (kg CO2) using an IRP model, the fuel use is calculated
since it is assumed to be linearly related to CO2 emissions. Fuel use in road transport
depends on the weight carried, the slope of the road, the distance travelled, the air density,
and the vehicle speed (Bektaş and Laporte, 2011). The cost C (e) is calculated by adding
wage cost, fuel cost, and inventory holding cost.

Figure 1: Summary of the methodology used in this study to arrive to a cost and CO2 emissions based
Shapley allocation.

The IRP constraints can be subdivided in three main types: (i) inventory constraints:
they impose minimum and maximum levels of the inventory of the depot and the destinations
in each period considering an initial inventory level; (ii) vehicle routing constraints: they
impose that a delivery can be made to a location only if it is visited by a vehicle, and that a
vehicle cannot visit the same location multiple times in the same time period, they restrict
the number of vehicles used per day, and they define vehicle capacity; (iii) flow constraints:
these define how the load of the vehicle changes after visiting a location, eliminate sub
tours, and define impossible arcs. The mathematical formulation of the IRP model and the
calculations of the cost and CO2 emissions are presented in the Appendix. In that section,
the parameters used in the IRP model are also summarised, and the values used to run the
model are given. The IRP model was coded and solved with Fico Xpress Mosel version 8.0
on a PC with Intel Core i5 processor (2.6 GHz) and eight GB of RAM memory.

In the first step, in order to find a representative set of eco-efficient intermediate solutions
that minimise costs and emissions, the weighing method proposed by Romero and Rehman
(2003) is used, which is a commonly used method in goal programming. This is a convenient
method as the λ value needed for the weighing method can also be used later in the gain
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allocation method. An additive objective function is formulated (Eq. 2) subject to the
constraints of the above mentioned IRP model.

Minimise K = C + λE, (2)

where K is the additive objective function value (e), C is the cost (e), λ is the price of
CO2 emissions (e/kg), which can also be interpreted as the relative importance of saving
CO2 emissions as compared to saving cost, E are the CO2 emissions (kg). By varying λ, the
alternative optimal (eco-efficient) solutions can be found.

The set of eco-efficient solutions is calculated by changing the values of λ. The higher
the value of λ, the more importance is attached to the environmental indicator E. The model
is run in an iterative way, starting with λ (which results in the cost minimising solution) and
the value of λ is increased in steps of 0.1 until the emission minimising solution is found. The
value of lambda leading to an eco-efficient solution is used as the price of emissions when
calculating the benefit allocation of that eco-efficient solution. If there is a range of λ values
leading to the same solution, the average of that range λ is used for the gain allocation step.

In the second step, the λ value of each eco-efficient solution is used in the IRP model
to calculate the minimum K-value for each possible sub-coalition that can be formed from
the cooperating participants. This way, for each λ value, the characteristic function of the
Shapley value (Eq. 1) is calculated.

In step three, the characteristic function is used to allocate the K-value benefits to the
partners using the Shapley value (see Eq. 1). The K-value can be converted back to costs,
which are easier to interpret, using the following equation:

ycj =
ykj × C
K

, (3)

where ykj is the K-value allocated to partner j (e), ycj is the cost allocated to partner
j (e), With this procedure, the total costs of an eco-efficient solution are divided over the
partners. No extra costs are paid for emissions, but when λ chosen such that the cost-
minimising solution is not optimal, the contributions of the partners to saving emissions are
also considered in the cost allocation. The higher the value of λ, the higher the advantage
for partners that help save emissions.
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After this three-step procedure, all eco-efficient solutions, the prices of CO2 emissions
that lead to that solutions, and the allocations based on those emissions prices are calculated.
The cooperative costs (savings) are allocated among the partners, but the cooperative
emissions are not since the partners have agreed to regard that as a group benefit: if the
group saves 40% of emissions, all partners can claim that they save 40% of emissions by
cooperating. In this study, the allocation of benefits based on both costs and emissions is
done using the Shapley value, but other gain allocation methods could be used as well.

The generation of all possible sub-coalitions of step 2 as well as the Shapley value
calculations of step 3 were coded in R (version i386 3.2.1) on a PC with Intel Core i5
processor (2.6 GHz) and eight GB of RAM memory.

4. Case study: VMI for eco-efficient food distribution in the Netherlands

4.1. Data and assumptions

The case study is based on seven supermarket chains in the Netherlands. Currently, they
cooperate by buying their products together in order to negotiate a lower unit price. The
cooperatively bought products are delivered to their shared central distribution centre (CDC,
denoted by 0). From there, the supermarket chains arrange their logistics separately. They
individually pick up (or use a logistics service provider to pick up) the products from the
CDC and bring them to their distribution centres (DCs, denoted by 1–7). The supermarket
chains aim to further cooperate by implementing VMI between the CDC and the DCs to
reduce cost and CO2 emissions. They consider to allocate the resulting economic gains by
accounting for their contribution to reducing both cost and CO2 emissions of the coalition.

The distances between the CDC and the DCs are presented in Table 3. The aggregate
weekly demand of a representative set of fresh food products of each DC (in kg) is presented
in Table 4. Note that there is no demand on Sunday because the CDC and the DCs are
closed on that day. On some days, there is no demand (the zeroes in Table 4) because some
DCs do not place orders every day. Other values used to run the IRP model can be found in
Table 10 in the Appendix.
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Table 3: Distances (in km) between the DCs of the supermarket chains (denoted by 1–7) and the CDC
(denoted by 0)

DC 0 1 2 3 4 5 6 7
0 0 91 6 134 82 117 74 192
1 91 0 91 75 134 43 20 155
2 6 91 0 134 84 117 75 194
3 134 75 134 0 168 46 94 90
4 82 134 84 168 0 158 140 180
5 117 43 117 46 158 0 59 117
6 74 20 75 94 140 59 0 174
7 192 155 194 90 180 117 174 0

Table 4: Aggregate demand in kg at each DC (1–7).

Monday Tuesday Wednesday Thursday Friday Saturday
1 540 540 450 450 810 0
2 1890 1680 1260 2760 2220 1170
3 270 630 360 540 1440 0
4 0 1122 0 1248 0 0
5 1260 810 1350 1260 540 1080
6 1170 1524 1170 1608 2412 0
7 0 720 360 720 360 450

4.2. Setup of calculations

In order to establish a Shapley allocation based on both the environmental and the
economic contributions of the partners, the three-step method described in Figure 1 is
followed. First, the data described above are input to an IRP model (Stellingwerf et al.,
2018b) with the aggregate objective function (Eq. 2) to find the eco-efficient cooperative
solutions (Romero and Rehman, 2003). To find all these solutions, the IRP model is run
iteratively with an increasing value of λ, with a step size of 0.1. The weighing method (which
uses an additive objective functions) results in an optimal solution for each λ. As these λ
values directly correspond with the price of emissions, it can also be used in the rest of the
calculations. For each eco-efficient solution, the corresponding average price of emissions
(λ) is determined. Second, the IRP model is solved for all possible sub-coalitions and for
all different eco-efficient solutions (using the different values of λ). And third, the Shapley
value is calculated based using the characteristic function calculated in step 2. The Shapley
allocation based on the K-value is translated to the actual cost. Finally, the savings in terms
of the additive objective function value K, and in terms of cost for all groups and for all
individuals are calculated using Eq. (3).
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To assess the potential benefits of VMI cooperation the allocations of each eco-efficient
solution are compared to the current situation. To estimate the current allocations, costs
are minimised using the IRP model while imposing that each supermarket chain optimises
transportation separately. To better understand the impact of important model parameters
such as the distance between DCs and CDC and the demand of the SC one of the eco-efficient
solutions found is used to test a set of alternative scenarios is explored. These scenarios
test the effect of distance and demand. Table 5 summarises the scenarios. In this table,
base refers to one of the solutions found optimising the additive objective function given
the demand and distance data in Table 3 and 4. In this table equal distance refers to the
situation where all partners are located equally far from the CDC, but the total distance
of the matrix is still the same as in the base case scenarios (illustrated in Figure 2). Equal
demand refers to the situation where the total demand of all partners is equal (1/7 of the
group demand), but the week structure is kept (i.e. if 14% of the total demand is on Monday
in the base case, that is still the case in the equal demand situations).

Table 5: The scenarios used to assess the impact of distance and demand.

Scenario Distance Demand
1 Base Base
2 Equal Equal
3 Base Equal
4 Equal Base

Figure 2: Uniform distance distribution of locations. Black point indicates CDC, white points indicate DCs.
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Figure 3: CO2 emissions (kg) and cost (e) for the cooperative solution options and the current situation.

5. Results and discussion

5.1. Analysis of the eco-efficient solutions

Using the IRP model with the additive objective function, the eco-efficient solutions
were calculated. Figure 3 shows the cost and CO2 emissions of all calculated eco-efficient
solutions and of the current situation: 11 discrete eco-efficient cooperative solutions were
calculated. All this solutions are optimal and depend on the importance allocated to the
two objectives through the value of lambda. To find these solutions, the model was run in
multiple iterations with a range of lambda values (0-40 with a step size of 0.1). Values of λ
above 31.6 result in the emission-minimising solution. For all other solutions, there was a
range of λ values leading to that solution.

The 11 eco-efficient solutions found were labelled as s1 for the emission minimising
solution to s11 for the cost-minimising solution. Table 6 shows the CO2 emissions, costs,
distance, travelling time and the number of trips related to each eco-efficient solution, as
well as the current situation. Since there was a range of lambdas leading to the different
solutions, only the averages of each solution range are shown.

Table 6 shows that all cooperative eco-efficient solutions result in less CO2 emissions
compared to the current situation. Solutions s5 to s11 correspond to lower costs than the
current situation. Moreover, minimising CO2 emissions results in a solution in which products

13



Table 6: Current solution and the eco-efficient solutions.

current s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
λ 0 31.6 22.25 9.15 4.95 3.95 2.60 1.50 0.90 0.45 0.25 0.10
CO2 emissions (kg) 976 479 484 485 490 496 547 552 559 664 710 723
Costs (e) 946 1139 997 977 953 925 752 743 736 676 666 664
- Transportation cost (e) 512 252 254 255 257 260 287 290 293 348 373 380
- Inventory cost (e) 433 888 743 722 695 665 465 453 443 328 293 284
Distance (km) 1837 808 816 820 828 841 931 938 950 1168 1215 1241
Travelling time (h) 29.0 13.0 13.3 13.4 13.8 14.2 16.2 16.5 16.9 20.5 21.6 22.2
Number of trips 14 4 4 5 5 6 6 6 7 8 7 8

are delivered less frequently. On the other hand, minimising cost results in a solution in
which the companies are supplied more frequently, since this reduces their inventory cost.
This is also reflected in the decrease in transportation cost and an increase in inventory cost
when the price of CO2 emissions (λ) increases. Moreover, it is illustrated by the change in
the number of trips, the distance driven and the driving time.

5.2. Shapley allocation of the K-value and costs

Table 7 provides the current uncooperative costs and CO2 emissions, as well as the total
savings in CO2 emissions for each solution and the cost allocation based on the K-value for
each participant in each eco-efficient solution. Also, it shows the percentage allocated to each
partner in each solution. Since Eq. (3) is used to convert the K-allocation to costs using a
fixed factor (the K-allocation of a partner divided by the total K-value), the percentage of
total allocation will be the same whether this is cost, emissions or K-value.

Table 7: Current costs (e) and emissions (kg CO2, and total emission savings (%) costs (e) and percentage
of the K-value (%) allocated for all eco-efficient solutions

Solution s1 s2 s3 s4 s5
E saving 51% 50% 50% 50% 49%

Individual
Partner C E C K C K C K C K C K

1 113 96 106 9 92 9 89 9 87 9 84 9
2 58 39 38 3 36 4 45 5 54 6 55 6
3 166 143 170 15 148 15 143 15 138 14 133 14
4 75 86 177 16 153 15 143 15 131 14 124 13
5 208 249 189 17 167 17 167 17 167 18 165 18
6 168 162 165 15 147 15 152 16 155 16 154 17
7 158 202 294 26 254 25 237 24 220 23 210 23

sum 946 976 1139 100 997 100 977 100 953 100 925 100
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Table 7: Current cost (e), and costs (e) and percentage of the K-value (%) allocated for all eco-efficient
solutions (continued)

solution s6 s7 s8 s9 s10 s11
E saving 44% 43% 43% 32% 12% 26%

Individual
Partner C E C K C K C K C K C K C K

1 113 96 66 9 64 9 66 9 61 9 71 9 58 9
2 58 39 48 6 52 7 54 7 51 8 64 8 55 8
3 166 143 109 14 109 15 111 15 103 15 124 15 103 16
4 75 86 97 13 92 12 86 12 77 11 89 11 72 11
5 208 249 137 18 139 19 141 19 132 20 161 20 132 20
6 168 162 129 17 130 18 128 17 115 17 138 17 113 17
7 158 202 165 22 158 21 150 20 137 20 162 20 132 20

sum 946 976 752 100 744 100 736 100 676 100 808 100 664 100

The percentage of benefits allocated to partner 1 remains the same in all calculated
eco-efficient solutions; partner 1 may equally contribute to saving cost and to saving CO2

emissions. For partner 2, 5, and 6 there is an increase in the allocation when moving from s1,
the CO2 minimising solution, to s11, the cost minimising solution. Apparently partner 2, 5,
and 6 are more helpful in saving CO2 compared to the other partners. These partners have a
relatively high demand, but not too high to limit to possibility to combine their demand with
other demands. Moreover, they are located close to the CDC and their demand is spread well
over the week. These aspects make it easy to combine these partners in cooperative routes.

For partner 3, the emission allocation is relatively stable from s1 to s5 but from s6 to
s11, when the price of CO2 increases further, partner 3 is allocated an increased amount
of emissions. Apparently partner 3 does not contribute that much to saving emissions in
comparison to the other partners. This might relate to the fact that partner 3 is located
relatively far from the CDC. The cost allocation results (Table 7) show that partner 4 does
not save cost in any solution except for solution s11, the cost minimising solution. The
demand of partner 4 is relatively low, and this partner only has demand on two days of the
week. This might limit the opportunities for making cooperative route, which is why the
benefits allocated to this partner are also relatively low. For solution s1 to s8 (when the
price of emissions is higher than 0.90 e/kg), partner 7 is faced with a cost increase. Partner
7 is located the furthest from the CDC, which is why this partner does not contribute much
to saving emissions, and why this partner only benefits when the price of emissions is low.
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5.3. The effects of distance and demand on the allocation

To assess the impact of different demand and distance scenarios on the calculated
allocation, the eco-efficient solution s8, which has a λ value of 0.9, was further analysed. The
total cost and CO2 emissions of this solution are e559 and 736 kg, respectively. This solution
is a non-extreme, balanced solution between cost and CO2 emissions. These scenarios could
also be tested on any other eco-efficient solution. Table 8 provides the resulting allocations.

Table 8: The benefit allocations (%) resulting from the distance and demand scenarios.

Partner
Scenario Distance Demand 1 2 3 4 5 6 7

1 Base Base 9.0 7.3 15.1 11.6 19.2 17.4 20.4
2 Equal Equal 14.3 14.3 14.3 14.3 14.3 14.3 14.3
3 Base Equal 12.0 4.1 16.3 17.6 14.0 11.3 24.7
4 Equal Base 10.2 22.9 12.0 8.5 16.6 19.5 10.3

When all distances to the DC are equal and all demands are equal, the resulting allocation
is equal for every partner (Table 8). This result is inherent to the Shapley value, because
it has the symmetry property: if a partner contributes the same as an other partner, the
allocation of those partners should be the same. Partner 4 and 7 do not always benefit from
the allocation (see Table 7). The results of the demand and distance scenarios can help
explain why this is the case. In the base case, partner 4 is relatively far from the other DCs.
Therefore, the equal-distance cases cause a lower allocation for partner 4. Partner 4 also has
a low demand and only has demand on two days in the base case. This probably causes
partner 4 to have a limited number of cooperation possibilities which is why this partner can
also not benefit that much from cooperation. Note that the relative allocation to partner 4
is not high but since the demand is low, the allocation per unit is relatively high.

Partner 7 is located very far from the CDC in the base case. Therefore, a reduction in
distance (as in the equal distance scenarios) also reduces the allocated percentage of this
partner.

6. Conclusions and future work

This study developed a method to allocate benefits of costs and emissions according
to contributions of the cooperating partners. A case study on VMI cooperation between
Dutch supermarket chains demonstrated how the method works. The results of the case
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study showed a trade-off between costs and emissions, and multiple alternative cooperative
solutions. Different emissions prices were used to determine the different solutions. In turn,
emissions prices were used to allocate the monetary benefits. Most of the solutions resulted
in savings for all partners. However, some partners were confronted with cost increases.
Those partners have demand or location characteristics that make cooperation with the other
partners non-beneficial. In practise, those partners might choose to continue individually
organising their logistics, or to cooperate with partners outside the group used in the case
study. The results have shown that the economic benefits of cooperation can be fairly divided,
while simultaneously rewarding the effort of partners that reduce CO2 emissions and costs.

Prior to the case study, the partners were already cooperating to a limited extent. The
partners arranged their procurement together and were co-owners of a shared distribution
centre. Therefore, CGT methods were a logical next step in distributing benefits. In other
similar cases where pre-existing forms of cooperation already exist, CGT methods are an
appropriate approach for allocating cooperative benefits. Guajardo et al. (2018) studied
coalition formation among cooperative agents. When there are many possible cooperative
partners, it is useful to combine their techniques with CGT. Future research or other case
studies could focus on situations with no pre-existing form of cooperation. In those situations,
non-cooperative game theory could be used to find coalitions with a low chance of being
abandoned.

In the study, emission prices between 0 and 3.95 e/kg led to a reduction of CO2 emissions
without increasing costs. All cooperative solutions resulted in a decrease of CO2 emissions
compared to the current situation, even when emissions were priced at 0 e/kg. Most of the
emissions prices tested were much higher than the current price. For example, 3.95 e/kg
corresponds with 3950 e/ton whereas in the European Trading Scheme it has varied over
the last 10 years between 4 and 40 euros per ton (CBS, 2018). However, the price of CO2

emissions used in this study does not necessarily translate to an increase in costs; it mainly
captures the importance a group attaches to savings attributed to CO2 emissions. It does
influence the cost allocation based on the price of emissions.

The method proposed in the study can be applied to other kinds of cooperative partner-
ships. However, applying these methods to bigger cases can increase computation time for
both the IRP model and for the Shapley value calculation. Heuristics for the IRP model and
approximation methods for the Shapley value could reduce the calculation times. In this
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study, the Shapley value is used to allocate benefits based on both costs and CO2 emissions,
but the proposed three-step methodology can be used with other CGT methods as well. For
example, the Equal Profit Method (Frisk et al., 2010) and the methods described by Kellner
and Otto (2012) could be useful for cases with more cooperating partners. Applying different
CGT methods within the proposed framework can provide valuable information about the
differing outcomes of cost and CO2 emissions based allocations.
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Appendix: Green IRP formulation

The green IRP can be used to optimise inventory and vehicle routing decisions simulta-
neously. The difference with the basic IRP is that it can be used to minimise CO2 emissions
but also costs. The mathematical formulation of the IRP model presented by Stellingwerf
et al. (2018b) is presented below.

Description of symbols

G = (V,A) denotes a graph in which V = {0, 1, ..., n} is the set of nodes. The CDC is
located at vertex 0, V \{0} is the set of DCs, and A = {(i, j) : i, j ∈ V, i 6= j} is the set of
arcs. With every arc (i, j) is associated with a non-negative distance cij. t is defined as an
index for the set of time periods {1, ..., T}, where T is the length of the planning horizon.
The demand at each DC i in each period t is given by dti, and Ci is the capacity of DC i.
There is a set of identical vehicles K = {1, ..., k} with capacity Q and a curb (empty) weight
of Q0 (kg). The speed driven on arc (i, j) is given by vij.

The following decision variables are used: xktij is a binary variable equal to 1 if and only
if vehicle k drives from node i to node j in period t; wktij is the total weight carried, including
the vehicle weight, from node i to node j by vehicle k in period t; qkti is the weight of the
products delivered to DC i by vehicle k in period t; and I ti is the inventory level of DC i in
time period t.

Table 9 gives an overview of all parameters used in the green IRP model.
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Table 9: Parameters used in the green IRP model.

Parameter Unit Definition
αij m/s2 arc-specific constant
β kg/m vehicle-specific constant
∆T K difference in temperature inside an outside vehicle
ηm - motive energy conversion efficiency
ρ kg/m3 air density
θij ° slope of the road
a m/s2 acceleration of the vehicle
A m2 frontal area of the vehicle
C e total cost
cij m distance of arc ij
c0 e/kg unit inventory cost CDC
Cd - coefficient of drag
cf e/L unit fuel cost
cI e/kg unit inventory cost DC
CI e inventory cost
Ci kg capacity DC i

Cr - rolling resistance
Ct e transportation cost
cw e/s unit wage cost
dt

i - demand node i in period t

E kg CO2 total emissions for transportation
ef kg/L fuel to CO2 emissions factor
f L fuel use for ambient transport
g m/s2 gravitation constant
m number of vehicles
Pij kWh motive power on arc ij
Pf kWh/L energy content of the fuel
Q kg vehicle capacity
Q0 kg curb weight
s s service time at each stop
vij m/s speed driven on arc ij
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Objective functions

The IRP formulated by Stellingwerf et al. (2018b) uses two objective functions: to
minimise CO2 emissions from transportation and to minimise costs from transportation and
inventory.

Transportation CO2 emissions E can be approximated as

E = fef

= (
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

αwktij cij +
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

βcijx
kt
ij v

2
ij)

1
3.6× 106 Pf ηm

)ef ,
(4)

where the first two terms of the equation are used to calculate the motive power
requirement (kWh), which is converted to fuel use by dividing the power by 3.6 × 106 to
convert J to kWh, by the chemical to motive energy conversion efficiency (ηm), and by the
energy content of the fuel (Pf). Then the fuel use is converted to CO2 emissions by using
the CO2 emissions factor (ef , in kg/L).

Other terms used are αij, which is the arc-specific constant; β, which is the vehicle-
specific constant; cij, which is the distance from node i to node j (m); and vij, which is the
speed (m/s) with which arc ij is traversed (m/s).

Total costs C can be approximated as

C = Ct + CI = Cw + Cf + CI

=
∑
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∑
j∈V

∑
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I ti cI ,

(5)

where Ct refers to the transportation cost (e), CI refers to the inventory cost (e), Cw
refers to the total wage cost (e), Cw refers to the total fuel cost (e), cf is the unit fuel cost
(e/L), and cw is the unit wage cost (e/s), cI are the unit inventory cost(e/kg/day).
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Constraints

The IRP constraints can be subdivided in three main types: (i) inventory constraints:
they impose minimum and maximum levels of the inventory of the depot and the destinations
in each period considering an initial inventory level; (ii) vehicle routing constraints: they
impose that a delivery can be made to a location only if it is visited by a vehicle, and that a
vehicle cannot visit the same location multiple times in the same time period, they restrict
the number of vehicles used per day, and they define vehicle capacity; (iii) flow constraints:
these define how the load of the vehicle changes after visiting a location, eliminate sub tours,
and define impossible arcs. The constraints are formulated as follows:

I t0 = I t−1
0 −

∑
i∈V ′

∑
k∈K

qkti t ∈ {2, ..., T} (6)

I1
0 =

∑
i∈V ′

∑
t∈T

dti (7)

I ti = I t−1
i +

∑
k∈K

qkti − dti i ∈ V ′, t ∈ T (8)

I1
i = 0 i ∈ V ′ (9)

I ti ≥ 0 i ∈ V ′, t ∈ T (10)

I ti ≤ Ci i ∈ V ′, t ∈ T (11)∑
k∈K

qkti ≤ Ci − I t−1
i i ∈ V ′, t ∈ {2, ..., T} (12)

qkti ≤ Ci
∑
j∈V

xktij i ∈ V ′, k ∈ K, t ∈ T (13)

wktij ≤ (Q+Q0)xktij i ∈ V, j ∈ V, k ∈ K, t ∈ T (14)

wktij ≥ Q0x
kt
ij i ∈ V, j ∈ V, k ∈ K, t ∈ T (15)∑

j∈V
xktij ≤ n

∑
j∈V ′

xkt0j i ∈ V, k ∈ K, t ∈ T (16)

∑
k∈K

∑
i∈V

xktij ≤ 1 j ∈ V ′, t ∈ T (17)
∑
j∈V ′

xkt0j ≤ 1 k ∈ K, t ∈ T (18)

xktij + xktji ≤ 1 i ∈ V ′, j ∈ V ′, k ∈ K, t ∈ T (19)

xktii = 0 i ∈ V, k ∈ K, t ∈ T (20)
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∑
j∈V

xktij =
∑
j∈V

xktji i ∈ V, k ∈ K, t ∈ T (21)

∑
i∈V |i 6=j

wktij −
∑

i∈V |i 6=j
wktji = qkti j ∈ V ′, k ∈ K, t ∈ T (22)

wktij ≥ 0 i ∈ V, j ∈ V, k ∈ K, t ∈ T (23)

qkti ≥ 0 i ∈ V ′, k ∈ K, t ∈ T (24)

I ti ≥ 0 i ∈ V, t ∈ T (25)

xktij ∈ {0, 1} i ∈ V, j ∈ V, k ∈ K, t ∈ T . (26)

Constraints (6)–(12) are inventory related constraints: constraints (6)–(7) define the
inventory at the CDC, while constraints (8)–(11) define the inventories at the DCs, and
constraints (12) are the maximum level inventory policy constraints. Constraints (13)–(20)
are vehicle related constraints: Constraints (13) state that no delivery can be made at DC i

in period t when there is no vehicle visiting that node in that period, constraints (14) and
(15) are the vehicle capacity constraints, constraints (16) restrict the number of vehicles used
per day, constraints (17) restrict the number of visits to each DC to at most one per day,
constraints (18) state that at most one vehicle per day visits each location, constraints (19)
state that a vehicle leaves from the same DC as the one it entered, and constraints (20)
eliminate impossible arcs. Constraints (21)–(22) are flow related constraints: constraints (21)
are the flow conservation equations, and constraints (22) eliminate sub tours. Constraints
(23)–(26) are nonnegativity and binary constraints: constraints (23)–(25) are nonnegativity
constraints, while constraints (26) are binary constraints.

To run the IRP model, the values given in Table 10 are used.
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Table 10: Values used to run the green IRP model.

Symbol Value Unit Source
αij 0.0981 m/s2 Stellingwerf et al. (2018a)
β 3.013 kg/m Stellingwerf et al. (2018a)
ηm 0.3 - Bektaş and Laporte (2011)
ρ 1.2041 kg/m3 Bektaş and Laporte (2011)
A 7.15 m2 Stellingwerf et al. (2018a)
c0 0.001 e/kg Soysal et al. (2015)
Cd 0.7 - Bektaş and Laporte (2011)
cf 1.4 e/L Bektaş et al. (2016)
cI 0.01 e/kg Soysal et al. (2015)
Cr 0.01 - Bektaş and Laporte (2011)
cw 0.0022 e/s Bektaş et al. (2016), Stellingwerf et al. (2018a)
ef 2.668 kg/L Tassou et al. (2009)
g 9.81 m/s2

m 3 -
Pf 8.8 kWh/L Bektaş and Laporte (2011)
Q 12500 kg Koç et al. (2016)
Q0 5500 kg Koç et al. (2016)
s 900 s
vij 20 m/s Tassou et al. (2009)
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