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A B S T R A C T

In the daily operation of a greenhouse, decisions must be made about the best deployment of equipment for
generating heat and electricity. The purpose of this paper is twofold: (1) To demonstrate the feasibility and
flexibility of an optimal control framework for allocating heat and electricity demand to available equipment, by
application to two different configurations used in practice. (2) To show that for a given energy and electricity
demand benefit can be obtained by minimizing costs during resource allocation.

The allocation problem is formulated as an optimal control problem, with a pre-defined heat and electricity
demand pattern as constraints. Two simplified, yet realistic, configurations are presented, one with a boiler and
heat buffer, and a second one with an additional combined heat and power generator (CHP) and a second heat
buffer.

A direct comparison with the grower is possible on those days where the other equipment that was at the
grower’s disposal was not used (63 days in the available 2012 data set). On those days overall costs savings of
20% were obtained. This shows that a given heat demand does not come with a fixed price to pay. Rather,
benefits can be obtained by determining the utilization of the equipment by dynamic optimization. It also ap-
pears that prior knowledge of gas and electricity prices in combination with dynamic optimization has a high
potential for cost savings in horticultural practice. To determine the factors influencing the outcome, different
sensitivities to the optimization result were analyzed.

1. Introduction

Greenhouses to produce vegetables, flowers, and ornamentals re-
quire heating in colder periods. High-tech greenhouses in temperate
climates, like the Netherlands and Belgium (Van Den Bulck et al.,
2013), consume large amounts of fossil energy. The quest for energy
saving in modern greenhouse horticulture (Van der Valk and Van der
Poll, 2007) has led to investments in a wide variety of equipment. In
daily operation, decisions about the best deployment of this equipment
must be made. This operation is complex due to varying heat and
cooling demands, and varying prices of gas and electricity and calls for
effective control schemes to support the grower in this process. In
current greenhouse practice the equipment is controlled by different
controllers that operate based on a set of pre-defined rules. Depending
on the configuration the set of rules is tailor-made. Supervision of the
operation is done by the grower. If necessary the grower can overrule

the controller manually.
In order to reduce the energy consumption of greenhouses a two-

stage approach for optimal management of energy resources was in-
troduced in Van Beveren et al. (2015a,b). This approach decouples
greenhouse climate and the generation from the required energy input
(Fig. 1). The first stage minimizes the energy input to the greenhouse
for a pre-defined set of bounds to specify the desired greenhouse cli-
mate. The second stage, described in this paper, minimizes the energy
costs of realizing the required energy profile (obtained from the first
stage) using the available equipment. The motivation is that this ap-
proach does not rely on a complex crop model, but rather uses the
grower’s experience and knowledge.

Control is closely kin to dynamic optimization. Optimization of
energy systems in greenhouse horticulture was studied before (e.g. Van
Willigenburg et al., 2000; Tap, 2000; Van Ooteghem, 2007; Bozchalui
and Cañizares, 2014; Husmann and Tantau, 2001; Vanthoor, 2011;
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Seginer et al., 2018), but the focus was mainly on greenhouse climate
management and control. In those studies, a crop model is needed, and
the operation of equipment is an integral part of the optimization and
does often not comply with current practice. There are far less studies
about the deployment, operation and control of all equipment that
generate and store warm water (used for heating) and cold water (used
for cooling) for greenhouses. Molenaar et al. (2007) presented optimi-
zation of the energy costs for a closed greenhouse using a given heat,
cold and electricity demand for a typical year. The problem was solved
with linear programming techniques by discretizing the model equa-
tions to an hourly time basis. However, the optimization results in
Molenaar et al. (2007) were not compared with data from practice.
Different energy management strategies for commercial greenhouse are
summerized in Vadiee and Martin (2012, 2014). Here, the focus was
not on optimization of an existing energy system, but more on the
configuration and choice of different materials and equipment to im-
prove the energy conservation of the greenhouse.

Applications of various optimization techniques and analyses of
energy systems with a wide variety of equipment in similar configura-
tions are present in other fields. For instance, applications of CHP
systems and thermal storage can be found, amongst others, for re-
sidential buildings in Haeseldonckx et al. (2007), Schütz et al. (2015),
Fuentes-Cortés et al. (2015),Ren et al. (2008), for a hospital in
Vanhoudt et al. (2011), university campus (Pagliarini and Rainieri,
2010; Chandan et al., 2012), and industrial power plants (Mitra et al.,
2013). These studies minimize total energy costs for heating and
cooling based on a specified heat and cold demand. An overview of
optimization techniques for thermal energy storage control of mainly
office buildings, commercial buildings, and university campuses was
published in Ooka and Ikeda (2015),Cho et al. (2014). Greenhouses
differ from the aforementioned buildings because of different heat and
electricity demands, originating from different processes and require-
ments and a stronger thermal coupling to the outdoor climate. Fur-
thermore, the greenhouse industry in the Netherlands is characterized
by a wide deployment of CHP systems. In 2011, for instance, a total of
about 3000MW of electrical power was installed on a total area of

10300 ha. Part of the electricity was used for lighting, but most of the
electricity was sold to the public grid (Vermeulen, 2014). CHP systems
are advantageous for greenhouse horticulture since the heat, electricity,
and CO2 can all be used in the greenhouse. Furthermore, these in-
stallations are important in balancing the national power grid.

The purpose of this paper is twofold: (1) The wide variety of con-
figurations of equipment requires a formulation that is flexible in terms
of type and number of equipment. Therefore, a framework for mana-
ging heat and electricity producing equipment, based on optimal con-
trol is desired. This is offered by an optimal control method that is
presented here. The objective is to study the feasibility and flexibility of
the method. (2) To show that for a given energy and electricity demand
that satisfies minimum overall energy use, further benefit can be ob-
tained by minimizing costs during resource allocation. If the sources
and prices are fixed, there is a fixed price to pay for energy. However,
the freedom to achieve further benefits is, in principle, in the possibility
to shift the mix of sources to fulfil the heat and electricity demand, and
the exploitation of time variation in energy market prices. In order to
investigate this question, ideally an optimized energy profile, as de-
veloped in Van Beveren et al. (2015a) would be the best starting point.
In this paper the starting point is different. Instead of an optimized
profile, actual energy profiles as realized by the grower on days where
the configuration coincides with the one in Fig. 3 are used. The moti-
vation for this choice is that in this way a comparison with real data is
possible, thus increasing the credibility of the results. The formulation
and demonstration of an optimization method for energy equipment
utilization applied to the horticultural greenhouse and compared to real
data is novel.

In this paper we demonstrate the generality of the optimization
method with two commercially used configurations of equipment: (1) A
system with a heat demand from a greenhouse equipped with a boiler
and a single high temperature heat buffer. This case serves as a de-
monstration to test and evaluate the optimization method. (2) A system
with a boiler, CHP, and two buffers; one for high temperature heat
storage and one for low temperature heat storage. We compare the
optimization results with real heat and electricity data from a

Fig. 1. Overview of the 2-stage approach. The climate optimization needs the climate constraints (set by the grower), outdoor climate measurements d, controls from
the greenhouse z (here supplementary lighting Suppl and screen position Screen), and greenhouse parameters. The result of stage one is the optimal heat profile Q ,
optimal cooling profile C , the CO2 injection pattern inj and, electricity need of the greenhouse E. Those are fed into the energy optimizer. Here, the prices p of gas pG
and electricity pE and parameters of the equipment are needed. The result of the optimization in stage 2 are the optimal controls u such as the power of the CHP and
boiler, and heat fluxes to the buffers, that lead to the optimal value of the goal function J .
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commercial full-scale greenhouse in the Netherlands.

2. Materials and methods

For 2012, greenhouse climate and energy data (five-minute time
interval) were obtained from the greenhouse process control computer
of a 4 ha commercial rose greenhouse in Bleiswijk, The Netherlands (see
Van Beveren et al., 2015a,b for more details). The recorded data were
obtained from different sensors and actuators in the greenhouse. These
measurements are standard in modern greenhouses.

In addition, a time series with real gas and electricity prices (15-min
time interval) was obtained via the electricity and gas supplying com-
pany of the grower. This makes it possible to compare the optimal
scenarios with the grower’s operation. In the Netherlands, electricity
generated from horticultural CHP installations is partly used for artifi-
cial lighting, but mostly sold to the national power grid (Vermeulen
et al., 2011). Growers in the Netherlands have the possibility to trade
electricity on different markets that operate on different time scales.
The greenhouse in this study traded electricity on the so-called un-
balance market only. On this market, prices fluctuate every 15min.
Although rare, a negative electricity price can occur, meaning that the
grower gets paid for using electricity.

All data were collected for the whole year of 2012. However, in the
real system of the actual greenhouse there was additional equipment,
such as a heat pump and aquifer, which are not considered in this study.
Therefore, we could only compare the days where the configuration of
the actual greenhouse was congruent with the configuration of the
optimization. There are, altogether, 63 days for which the configuration
was congruent with that of the grower, as explained in more detail in
Appendix B.

A general optimal control formulation defines the optimization
problem in a flexible and generic manner. The optimal control problem
in this paper was solved using Tomlab optimization software (Edvall
and Goran, 2009) in Matlab (version 7, The MathWorks Inc., Natick,
USA) on a PC with core i5 CPU 660 3.33 GHz,4 GB RAM and Windows
7× 64 installed. “Tomlab is a general-purpose development, model-
ling, and optimal control environment in Matlab for research, teaching,
practical solution of optimization problems” (Holmstrom et al., 2010).

Tomlab requires the definition of the number of collocation points
to solve the optimization problem (Edvall and Goran, 2009). All opti-
mizations were done using a sequence of collocation points, starting
from 24 collocation points per day. When an optimal solution was
obtained, the result served as the initial guess for the next optimization
with a higher number of collocation points. This procedure was re-
peated for 48, 96 and 144 collocation points per day. The raw data were
resampled to the number of collocation points needed for the optimi-
zation. It was found that the result converged with the number of col-
location points, and that the step from 96 to 144 points hardly gave
further improvement, so 144 points are enough. The reported CPU
times were recorded using 144 collocation points per day.

2.1. Case 1: Demonstration of the optimal control method with
configuration of boiler and buffer

2.1.1. System configuration
The first configuration considered in this work consists of a boiler

and a high temperature buffer (HT) (Fig. 2). The heat demand from the
greenhouse (Qdes = QHT grh, ) as a function of time is assumed to be
known. This constraint follows from the two-stage approach described
in Van Beveren et al. (2015b,a), but could also have another pre-de-
fined pattern. The heat demand of the greenhouse depends amongst
other things largely on the desired greenhouse climate and the outside
weather. The boiler in this example has a maximum capacity (QHT boil

max
, )

of 3MW (75Wm−2). When the boiler is active it should be on for at
least 80% of capacity. In addition, the number of switching instances
should be reduced (Fransen, 2015). Both constraints have been

implemented for reasons of efficiency and minimal wear of the boiler.
The buffer had a maximal capacity of 3.1MJm−2. The heat flux

from or to this buffer is defined as QHT buf, . From a physical point of view
a heat flux should be considered as positive. From this perspective, two
heat fluxes would have to be introduced: one for loading and one for
unloading of the buffer. With such a formulation the optimal control
method does not preclude the possibility of simultaneously loading and
unloading. This is unwanted and in practice not possible. Therefore,
here, the problem is reformulated such that the heat flux from or to the
buffer is either negative (loading the buffer with heat) or positive
(unloading the buffer). This definition ensures that loading and un-
loading of the buffer cannot occur at the same time. The total heat flux
to the greenhouse (Qdes) is determined by the sum of the heat flux
coming from the boiler (QHT boil, ) and the heat flux coming from, or
going to the heat buffer (QHT buf, ). The properties of the heat buffer are
given in Table 1. In this configuration it is assumed that CO2 coming
from the boiler is not used for CO2 enrichment of the greenhouse. This
is the practice for a growing number of greenhouses in the Netherlands
that use CO2 from industrial sources distributed via a pipe network
maintained by the company OCAP (Organic Carbon dioxide for As-
similation of Plants). However, the use of exhaust CO2 from the boiler
for CO2 enrichment can easily be included in the optimal control for-
mulation due to its generic nature.

2.1.2. Formulation of the optimization problem
The energy content of the buffer is described by:

Fig. 2. Schematic overview of the system configuration using a boiler and
buffer. Colors of the arrows: high temperature heat fluxes ( ) and gas flux
( ). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Parameters for optimization of system with boiler, CHP, and buffer in Section
2.2.

Symbol Description Value Unit

A Greenhouse area 40709 m2 [grh]
HHT buf

max
, Heat storage capacity buffer HT 3.14× 106 Jm−2 [grh]

HLT buf
max

, Heat storage capacity buffer LT 1.05× 106 Jm−2 [grh]

QHT buf
max

, Maximal heat flux to buffer HT 150 Wm−2 [grh]

QLT buf
max

, Maximal heat flux to buffer LT 150 Wm−2 [grh]

– Installed boiler capacity in the
greenhouse

2× 106 W

– Installed CHP capacity in the greenhouse 2.52× 106 W
QHT boil

max
, Maximum boiler thermal flux 49 Wm−2 [grh]

Qchp
max Maximum CHP thermal flux 62 Wm−2 [grh]

rboil
min Minumum of the range for operating the

boiler
0.8 –

rchp
min Minumum of the range for operating the

CHP
0.85 –

S Combustion heat of natural gas 35.17× 106 Jm−3 [gas]
boil Boiler efficiency 0.94 –

Q chp, Thermal efficiency CHP 0.46 –

E chp, Electrical efficiency CHP 0.37 –
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=
dH t

dt
Q t

( )
( ),HT buf

HT buf
,

, (1)

with the known initial high temperature heat (HT) in the buffer from
the grower (HHT grower, ),

=H t H t( ) ( ).HT buf HT grower, 0 , 0 (2)

In the sequel, for easier readability, the explicit time dependency of the
variables is dropped from the notation where the dependency is evi-
dent.

The amount of heat delivered by the boiler (QHT boil, ) and buffer
(QHT buf, ) at each moment in time is equal to the heat demand of the
greenhouse (Qdes) (Eq. (3)). Eq. (3) acts as a constraint in the optimi-
zation.

+ =Q Q QHT boil HT buf des, , (3)

No losses from the buffer are assumed in order to keep the for-
mulation as simple as possible. Due to their nature, all fluxes have non-
negativity constraints, except for the buffer flux, since it can be positive
or negative as explained before. The buffer flux is constrained by:

Q t Q t Q t( ) ( ) ( ),HT buf
min

HT buf HT buf
max

, , , (4)

where =Q QHT buf
min

HT buf
max

, , . The buffer state has the following state
constraint:

H t H t0 ( ) ( ).HT buf HT buf
max

, , (5)

In order to cope with the operation range of the boiler, a zero-or-
range constraint was introduced (Hansen and Huge, 1989). This range
constraint is represented in the optimal control problem with the fol-
lowing definition:

Q Q b 0HT boil HT boil
max

boil, , (6)

Q r Q b 0HT boil boil HT boil
max

boil, , (7)

Q 0HT boil, (8)

where Eq. (8) is a trivial constraint on the heat flux from the boiler,
which can only be positive. Eqs. (6) and (7) give the following con-
straint for = =b Q0: 0boil HT boil, . For =b 1boil , the constraint is
r Q Q Qboil

min
HT boil
max

HT boil HT boil
max

, , , . The value of rboil
min was 0.8.

The selected control variables are:

= =u
u
u
u

Q
Q

b
b, 0, 1 .

HT boil

HT buf

boil

boil
1
2
3

,

,

(9)

Then, the goal is to find the optimal control u t t t t( ), f0 that
minimizes the cost function in Eq. (10) which is the total gas cost of the
boiler for the given time evolution of the gas price (pG) in €m−3 (Eq.
(11)). The optimization period can be any period in this formulation.
When time periods longer than 24 hour are taken, the gas price varies
over time.

=J p G u tmin min ( ( )) d ,
u u t

t
G boil

f

0 (10)

p t t t t( ), .G f0 (11)

The amount of gas used by the boiler (Gboil) is proportional to the
amount of heat produced by the boiler:

=G
Q

S·boil
HT boil

boil

,

(12)

The parameters for the optimization in Section 2.1.2 are listed in
Table 1.

Switching the boiler on and off too frequently should be avoided in
order to save maintenance costs (Fransen, 2015). This kind of re-
quirements can be implemented in the optimal control formulation by
adding a penalty accounting for the number of switching moments to
the goal function:

= +J p G Q t10 d .G boil HT boil
3

,
2

(13)

The penalty parameter (1× 10−3) is hard to assess a priori and was
therefore chosen empirically to obtain a realistic switching behavior.

2.1.3. Experiments
Three experiments were performed with this configuration to de-

monstrate the optimization procedure and to demonstrate the perfor-
mance of the optimizations with different initial buffer fill status ( f0).
The first two experiments were performed with goal function (Eq. (10)),
to test the effect of the initial buffer status on the performance. In the
third experiment the effect of the buffer switch restriction according to
Eq. (13) was investigated.

Fig. 3. Schematic overview of the system configura-
tion using boiler, CHP, and buffers. Colors of the
arrows: high temperature heat fluxes ( ), low
temperature heat fluxes ( ) gas fluxes ( ), and
electricity fluxes ( ). (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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2.2. Case 2: Optimization of a configuration with boiler, CHP, and buffers
and comparison with real data

2.2.1. System configuration
The second configuration consisted of a boiler, combined heat and

power installation (CHP), and two heat buffers (Fig. 3). The main
reason to have a boiler installed next to the CHP is to serve as a back-up
for heat production in case the CHP cannot run because of maintenance
or repair. The CHP has a maximum thermal capacity (Qchp

max) of 2520 kW
(62Wm−2); of which 70% of the heat is at a high temperature, and
30% at a low temperature. The former is gained from the exhaust gas
condenser. The thermal efficiency of the CHP ( Q chp, ) is 0.46 and the
electrical efficiency ( E chp, ) is 0.37. Thus, the maximum electricity
production is 2060 kW (51Wm−2). The thermal and electrical effi-
ciency of the CHP were assumed to be constant for the operating range
that was used, which is reasonable in view of the restricted operation
range between 0.85 and 1. The thermal and electrical efficiencies are
obtained from the supplier and are in line with the values reported in
Vermeulen (2014). Electricity from the CHP is either used in the
greenhouse for artificial lighting (Edes) or sold to the public electricity
grid (Esell). Electricity can also be bought from the grid (Ebuy).

High temperature heat from the boiler or CHP can be stored in the
high temperature buffer (HHT buf, ) or directly go to the greenhouse. Low
temperature heat (LT) can be stored in the low temperature heat buffer
(HLT buf, ) or directly go to the greenhouse. High temperature heating of
the greenhouse air is done with the pipe rail heating system and low
temperature heating is done with heat exchangers above the crop. In
the analysis, we assume that there is no difference between applying
greenhouse heating with heating pipes or with heat exchangers.

As explained in Section 2.1.1, the heat fluxes to or from the buffers
(Q Q,HT buf LT buf, , ) are positive (unloading of the buffer), negative
(loading of the buffer), or zero. In Fig. 2 and 3 this is indicated by the
two-sided arrows.

2.2.2. Formulation of the optimization problem
The energy content of the high temperature buffer (HHT) is de-

scribed by Eq. (1) and the energy content of the low temperature heat
buffer (HLT) is described by Eq. (14). The energy content of the low
temperature buffer depends only on the low temperature buffer flux
(QLT buf, ). Again, no losses from the buffer are assumed. However, the
effect of this assumption was investigated. Therefore, Eqs. (1) and (14)
were extended as described in Section C according to the numbers given
in Van Steekelenburg et al. (2011).

=
dH

dt
Q .LT buf

LT buf
,

, (14)

To ensure fair comparison between grower and optimization, the
heat withdrawn or stored in the buffer over the day must be considered.
Therefore, in the optimization the initial and final fill status are taken
like the values obtained from the data of the grower. This leads to the
following initial and terminal state constraints:

=H t H t( ) ( ),HT buf HT grower, 0 , 0 (15)

=H t H t( ) ( ),LT buf LT grower, 0 , 0 (16)

=H t H t( ) ( ),HT buf f HT grower f, , (17)

=H t H t( ) ( ).LT buf f LT grower f, , (18)

The buffers have state constraints that represent the minimum and
maximum storage capacity:

H t H t0 ( ) ( ),HT buf HT buf
max

, , (19)

H t H t0 ( ) ( ).LT buf LT buf
max

, , (20)

The total heat demand from the greenhouse can be satisfied by the
boiler, high temperature buffer, low temperature buffer, directly from

the CHP, or a combination of those. The sum of these fluxes must be
equal to heat demand from the greenhouse (Qdes).

+ + + + =Q Q Q Q Q QHT boil HT chp LT chp HT buf LT buf des, , , , , (21)

The heat demand from the greenhouse in this paper is obtained from
the realised controls (see Appendix B). In the final two-stage approach
the heat demand will be obtained by minimization of the energy input
of the greenhouse as explained and calculated in Van Beveren et al.
(2015a,b).

The electricity demand (Edes) is taken equal to the electricity con-
sumption of the artificial lighting in the greenhouse. It can be delivered
by the CHP (Echp) or by the grid (Egrid):

+ =E E E .chp grid des (22)

If the CHP produces more electricity than Edes, the electricity is sold
to the grid (Egrid). Egrid is positive if electricity is bought from the grid
and negative if sold to the grid. The cost of electricity generated by the
CHP is already accounted in the gas price.

The CHP has a similar constraint as the boiler and must operate in a
certain power range. Therefore, just like the zero-or-range constraint
for the boiler (Section 2.1.2), another zero-or-range constraint has been
implemented for the CHP. This introduces next to bboil another boolean
control variable (bchp).X The lower bound of the operating range of the
CHP (rchp

min) was determined from the data of the grower to be 0.85.
In summary, the problem is subject to the following inequality

control constraints (similar as in Section 2.1.1),

Q Q b 0,HT boil HT boil
max

boil, , (23)

Q r Q b 0,HT boil boil HT boil
max

boil, , (24)

Q 0,HT boil, (25)

Q Q b 0,chp chp
max

chp (26)

Q r Q b 0,chp chp chp
max

chp (27)

Q 0,chp (28)

b b, {0, 1},boil chp (29)

Q t Q t Q t( ) ( ) ( ),HT buf
min

HT buf HT buf
max

, , , (30)

Q t Q t Q t( ) ( ) ( ),HT buf
min

HT buf HT buf
max

, , , (31)

In Eqs. (30) and (31) =Q Qbuf HT
min

buf HT
max

, , , and =Q Qbuf LT
min

buf LT
max

, , ,
since it was assumed that the minimum and maximum fluxes of loading
and unloading are equal.

The amount of gas used by the CHP (Gchp) is proportional to the
amount of heat produced by the CHP:

=G
Q

Schp
chp

Q chp, (32)

where the total efficiency of the CHP Q chp, = 0.83 was determined
from data from the grower’s gas meter and power data. The electricity
production by the CHP is calculated as:

=E Q .chp
E chp

Q chp
chp

,

, (33)

The ratio between E chp, and Q chp, was obtained from the power data of
the CHP from a full year based on five minute data. A constant value of
0.81 was found.

For this configuration of equipment, the control variables are:
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= =u

u
u
u
u
u
u

Q
Q
Q
Q

b
b

b b, , 0, 1 .

HT boil

HT chp

HT buf

LT buf

boil

chp

boil chp

1
2
3
4
5
6

,

,

,

,

(34)

Then, the goal function minimizing the total costs of buying gas, and
buying or selling electricity - representing the revenues as negative
costs - for the given time evolution of the gas and electricity price (Eqs.
(36) and (37)) is:

= +J p G p E tmin min ( ) d ,
u u t

t
G tot E grid

f

0 (35)

p t t t t( ), ,G f0 (36)

p t t t t( ), ,E f0 (37)

= +G G G .tot boil chp (38)

And Egrid is given through Eqs. (21), (22) and (33) by:

=E E Q Q Q Q·( )grid des
E

Q hp
des HT boil HT buf LT buf, , ,

chp

c (39)

Contrary to Eq. (13), no penalty was added for frequent on/off
switching of the boiler and CHP in the standard optimization runs.
However, different penalty values were tested. On most days, the
control was not affected by the penalty. On some days, there was a
slight reduction of the number of switching events per day (i.e. six in-
stead of seven switching events per day). The total energy costs were
not influenced.

The optimization was performed over a full day period. The para-
meters for the optimization in Section 2.2 are listed in Table 1. The CPU
time for the optimization over a day varied between 1 and 48 s, with a
mean value of 6 s and a standard deviation of 7 s.

2.2.3. Experiments
Various scenarios were analyzed to assess the optimization for the

configuration with boiler, CHP, and buffers all using the desired heat
pattern as calculated with the procedure explained in Appendix B. In
the first scenario fixed prices for gas and electricity were used.

The second scenario was to perform the optimization with real heat
and electricity demand patterns. In order to determine the factors that

influenced the costs most heavily, the effect of the buffer filling term-
inal constraints and the sensitivity for the desired heat and electricity
pattern was analyzed. In order to study the sensitivity of the optimi-
zation result to the final buffer fill status, the final buffer fill status for
the high temperature buffer was changed by 10%. Furthermore, the
heat and electricity demand, calculated from the grower’s operation, as
well as the prices of electricity and gas were varied by 10%. Apart from
changing the electricity price with a fixed percentage, additional sce-
narios were analyzed with randomly modified prices. For each value of
the electricity price (time series) the price was modified by picking a
random value (uniform discrete distribution) from a pre-defined in-
terval. After obtaining the random modification factors, the values
where normalized, such that the mean percentage of change was zero.
A range of −10% to 10%, and a range of −50% to 50% were used and
repeated five times. Lastly, the effect of extending the buffer models
with a heat loss factor was investigated.

3. Results

3.1. Case 1: Demonstration of the optimal control method with
configuration of boiler and buffer

The result of optimizing the utilization of the boiler and buffer is
shown in Fig. 4 for three different scenarios using the same artificial
heat demand profile. The gas price was fixed at 0.34 €m−3 for the three
presented scenarios.

In Fig. 4a the result of minimizing the gas cost with an initial buffer
fill status ( f0) of 0.5 is shown. The buffer is empty at the end of the
optimization period (Fig. 4a). This is the expected result since the goal
is to minimize the total gas cost. The effect of the zero-or-range con-
straint (Section 2.1.2) can be seen in Fig. 4a. When the boiler is active,
it is active between 60 and 75Wm−2 (i.e. between 80 and 100% of full
capacity). The surplus of heat is stored in the buffer as indicated by the
negative buffer flux (QHT buf, ) during these periods. When the boiler is
not active, the greenhouse is heated using heat from the buffer. At 22 h
the boiler is active for 90% and some heat is coming from the buffer in
order to empty it completely. The total gas cost for this day was 1186 €
for the whole greenhouse, and therefore equal to 2.92×10−2 €m−2.

When the initial buffer fill status is zero (Fig. 4b), the only heat
source available for heating the greenhouse is the boiler. The first half
of the day the boiler is active, and the surplus heat is stored in the
buffer. The second half of the day the buffer and boiler are active in

Fig. 4. Desired heat profile of the greenhouse (top row), optimal control of the boiler (second row), optimal buffer flux (third row), and corresponding heat stored in
the buffer (bottom row).
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such a way that the buffer is empty again at the end of the optimization
period. The total gas cost for this day were 4.54×10−2 €m−2, which
is higher than in the previous case because no ‘free’ heat was available
in the buffer at the start.

In order to reduce the switching behavior of the boiler, a penalty on
the switching of the control was implemented by replacing the goal
function with Eq. (13) as described in Section 2.1.2.

Because the value of the goal functions is different, a direct com-
parison is not possible, but when we compare the gas costs component,
it appears that the total gas costs remain the same. This reveals that
there are several buffer control solutions for the optimization with the
original goal function, meaning that the control solution found in
Fig. 4b is not unique. In fact, by adding the penalty, the solution is
forced to the quieter operation of Fig. 4c, without additional costs.

3.2. Case 2: Optimization of a configuration with boiler, CHP, and buffers
and comparison with real data

3.2.1. Optimization with fixed prices
The desired heat and electricity demand profile to be delivered to

the greenhouse and prices for November 1, 2012 are shown in Fig. 5a
and b, respectively. The electricity demand is the electricity consump-
tion of the lamps for artificial lighting in the greenhouse. The maximum
capacity of the lamps was 112.5Wm−2. The heat demand (Fig. 5a) was
higher during the period when the lamps were off. The buffer fill status

at beginning and end were fixed at the observed values.
Fig. 6 shows the results for November 1, 2012 with a fixed gas price

of 0.24 €m−3 and a fixed electricity price of 0.014× 10−6 € J−1

(0.05 € kWh−1) (equal to the mean prices for the whole year 2012).
Heat fluxes of the boiler and CHP, the buffers, and the energy content of
the buffers are shown in Fig. 6c for the optimal situation and in Fig. 6f
for the grower’s operation.

The total costs in the optimal scenario were 0.11 €m−2, while in the
grower’s scenario this would have been 0.12 €m−2 (using the same
fixed prices). In the optimal scenario the CHP was always running,
producing 5.3MJm−2, while the grower produced 4.5MJm−2 with
the CHP. The remaining heat demand was produced by the boiler.

The optimization with fixed prices was also performed for a summer
day (July 13, 2012) with a lower electricity and heat demand profile
(not shown). The total costs were 0.037 €m−2, while in the grower’s
scenario this would have been 0.040 €m−2. The CHP was used to
produce all heat in both cases. However, the moments when the CHP
was on were different. Less electricity was bought from the grid, and
more electricity was sold to the grid in the optimal scenario.

For both days, it appears that varying the level of the gas and
electricity prices affected the total costs but did not affect the amount of
heat and electricity produced.

3.2.2. Optimization with real, time variant, prices
3.2.2.1. Optimization results. Two days were selected in order to

Fig. 5. Desired heat (solid) and electricity demand (dashed) (a), and gas price and electricity price (b) for November 1, 2012 with fixed prices for gas and electricity.

Fig. 6. Optimal (a,b,c) and grower’s operation (d,e,f) of operating the boiler and CHP (a,d), buffer fluxes (b,e) and energy content of the buffers (c,f) for November 1,
2012 with fixed prices for gas and electricity.
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demonstrate the grower’s operation of the system and of the optimized
operation. The first selected day was July 13, 2012, which was a day
with a relatively low electricity demand. The second day was October 9,
2012, which was a day with a higher electricity demand. The heat and
electricity demand and prices for July 13, 2012 are shown in Fig. 7a
and b, respectively. The heat and electricity demand and prices for
October 9, 2012 are shown in Fig. 9a and b, respectively (see Fig. 10).

Heat fluxes of the boiler and CHP, heat fluxes of the buffers, and the
energy content of the buffers are shown in Fig. 8c for the optimal si-
tuation, and Fig. 8f for the grower’s operation.

The breakdown of heat and electricity production for the selected
days is summarized in Table 2. For July 13, 2012 the boiler was not

used in both the optimal and grower’s scenario. All heat was produced
by the CHP. The total amount of heat produced by the CHP was slightly
higher in the optimal scenario. More electricity was sold to the grid,
while a similar amount of electricity was bought from the grid. The
total costs for buying the electricity were lower and the total revenues
from selling electricity were higher in the optimized scenario compared
to the grower’s operation. It can be seen that between the fixed initial
and final values, that are identical for both optimization and grower,
the time pattern of the energy content of the buffers (Hbuf HT, and
Hbuf LT, ) were quite similar in both scenarios.

For October 9, 2012, the boiler was used in the optimal scenario but
not by the grower. In the optimized scenario the CHP was used less.

Fig. 7. Desired heat and electricity demand (a), and gas price and electricity price (b) for July 13, 2012.

Fig. 8. Optimal (a) and grower’s operation (d) of operating the boiler and CHP, buffer fluxes optimal scenario (b) and grower’s operation (e), and energy content of
the buffers optimal scenario (c) and grower’s operation (f) for July 13, 2012.

Fig. 9. Desired heat and electricity demand (a), and gas price and electricity price (b) for October 9, 2012.
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More electricity was bought from the grid to fulfil the electricity de-
mand. Therefore, the electricity costs were slightly higher than in the
grower’s scenario, but this was more than compensated by the lower
expenditure for gas.

The boiler was utilized, such that the heat demand at each time is
delivered and the constraints on the filling of the buffers at the end of
the optimization period were fulfilled.

There is a slight difference in heat and electricity produced between
the optimal scenario and the scenario of the grower (Table 2). This is
because of noise in the assessment of the energy content of the buffers
in the data of the grower (Appendix B). The heat profile sometimes
showed negative values (Appendix B) since in the current set up it is not
possible to take cooling needs into account; they were set to zero. For
days with no negative values in Qdes, the total produced heat and
electricity in the optimal scenario and grower’s scenario were equal
(not shown).

The optimization results for the 63 days where the configuration

was congruent with that of the grower, are summarised in Fig. 11.
The cumulative cost function value (J ) on those 63 days was 20%

lower in the optimal scenario compared to the costs of the grower. This
is mostly explained by the lower costs for buying electricity from the
grid Ebuy (−19%) and the higher benefits from selling electricity to the
grid Esell (+140%). The optimization can make use of the prior and full
knowledge of the prices over the optimization horizon, in contrast to
the grower. The costs for gas vary much less over time than the costs for
electricity, therefore, the difference between the total costs for gas
differs much less (5%) between the optimal scenario and the grower’s
scenario.

A comparison of energy consumption and utilization of equipment
for the analyzed days is shown in Fig. 11b. In the optimal scenario the

Fig. 10. Optimal (a) and grower’s operation (d) of operating the boiler and CHP, buffer fluxes optimal scenario (b) and grower’s operation (e), and energy content of
the buffers optimal scenario (c) and grower’s operation (f) for October 9, 2012.

Table 2
Performance indicators calculated from grower’s operation of the greenhouse
and optimization for two example days: July 13, 2012 and October 9, 2012.

Symbol July 13, 2012 October 9, 2012 Unit

Optimal Grower Optimal Grower

Energy
QHT boil

tot
, 0.00 0.00 1.29 0.00 MJm−2

Qchp
tot 1.69 1.64 3.00 4.22 MJm−2

Ebuy 1.72 1.74 5.06 4.14 MJm−2

Esell 0.91 0.67 0.55 0.38 MJm−2

Costs of energy
Gtot 0.025 0.025 0.058 0.070 €m−2

Ebuy 0.007 0.008 0.057 0.051 €m−2

Esell −0.015 −0.009 −0.007 −0.005 €m−2

J 0.018 0.025 0.114 0.116 €m−2

Fig. 11. Energy costs (a) and total energy fluxes (b) of the grower’s scenario
(red) and the optimal scenario (blue) for 63 days in 2012. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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amount of heat coming from the boiler is higher than in the grower’s
scenario. The boiler only produces heat but has a higher efficiency for
heat production than the CHP. This means that less natural gas must be
bought to produce the same amount of heat. Another difference be-
tween the optimal scenario and the grower is that more electricity is
sold to the grid and more electricity is bought from the grid.

Fig. 12 shows the difference of the total costs between the grower
and the optimized scenario for all 63 days considered. The optimal cost
function value is lower on all 63 days than the costs of the grower.

3.2.2.2. Sensitivity analysis. The results of the single parameter
sensitivity analysis (Section 2.2.3) on the final buffer fill status (HHT),
desired heat demand (Qdes) and desired electricity demand (Edes) are
shown in Table 3.

A lower total buffer fill status of the high temperature buffer at the
end of the optimization period of 10% led to a lower gas use of
0.7 m3m−2 and lower total costs of 0.11 €m−2. A higher terminal
buffer fill status led to higher gas use and costs. The total extra costs for
the extra gas are relatively low because more electricity was produced
that was sold to the grid. This means that a higher heat demand does
not necessary lead to higher costs when the surplus electricity is sold for
a price that is high enough. The same holds for overall lower and higher
desired heat profile. The difference in total costs are relatively low. The
costs and gas use for the case with 10% lower heat demand were about
the same as in the standard scenario.

The total gas use was similar when the electricity demand profile
was varied because more electricity was bought from the grid when the
electricity demand was higher than the electricity production of the
CHP. The total costs were much more sensitive to the electricity de-
mand than the heat demand for the analyzed days.

Lowering the gas price always by 10% led to lower energy costs and

higher gas use. This is because, compared to the standard scenario,
there were more moments with electricity demand from the greenhouse
for which it was cheaper to generate the electricity with the CHP in-
stead of buying the electricity from the grid. Also, the costs of produ-
cing electricity when sold to the grid was lower. Higher electricity
prices also lead to higher gas use, for the same reasons, but the total
energy costs become somewhat higher. Lower electricity prices led to
somewhat lower energy costs and gas use as in the standard scenario.

The effect of a perfect price forecast for electricity was investigated
by random modification of the electricity price at each time with a
random percentage from a pre-defined range. The standard deviation of
the optimal solutions was 0.0007 € for the interval of −10% to 10%,
and 0.004 € for the interval of −50% to 50%. This effect is rather small,
because the mean percentage of the changed price was zero.

The effect of heat loss from the buffer for 1% heat loss per day led to
an increase of 0.4% of the total costs for energy. The total costs for
scenario 14 in Table 3 were 0.8% higher than the costs of the standard
scenario. The gas use increased proportionally with the heat loss.

4. Discussion

4.1. Configuration

In this study, optimizations were first performed using a boiler and
heat buffer (configuration 1) and secondly using a boiler, CHP, and two
different heat buffers (configuration 2). Both configurations occur in
Dutch greenhouse horticulture practice. Clearly, in practice, config-
urations may vary; for instance, in configuration 2, often just one heat
buffer is installed. However, the optimal control method is flexible and
can easily be adapted to the actual scenario, such as selling heat to the
neighboring greenhouse or adding additional equipment.

CO2 for the enrichment of greenhouse air was not taken into ac-
count for the two configurations optimized in this paper. The reason is
that in this case an industrial CO2 source was used. The desired CO2

concentration or dosing strategy in modern greenhouses depends,
amongst others, on the type of crop, crop development stage, light
conditions, and the ventilation rate. However, by virtue of the generic
character of the optimization problem this scenario can be accom-
modated as well, provided that like heat and electricity demand, the
CO2 demand pattern is specified in advance. CO2 from the boiler is
often used directly for CO2 enrichment (Bailey, 2002). CO2 from the
CHP is also often used but the exhaust gas is mostly cleaned in order to
prevent crop damage due to noxious gasses in the exhaust gas. To im-
plement this in the optimization framework, the desired CO2 must be
produced by the boiler or CHP (both with their own efficiency for the

Fig. 12. Difference in the cost function value of the grower’s scenario and the
optimized scenario (J Jgrower optimal) for all analyzed days in 2012. See Appendix
B for the corresponding dates and day numbers.

Table 3
Effect of final buffer fill status, desired heat demand, desired electricity demand, and prices of electricity and gas on the goal function (J ) and optimal gas use (Gtot)
over the selected 63 days.

# Standard scenario New scenario J , € m−2 Gtot , m3m−2

1 =H t H t( ) ( )HT buf f HT grower f, , 5.22 13.9

2 =H t H t( ) ( )HT buf f HT grower f, , H t H t( ) ( )HT buf f HT grower f, , 5.22 13.9
3 =H t H t( ) ( )HT buf f HT grower f, , H t H t( ) 0.9· ( )HT buf f HT grower f, , 5.11 13.2
4 =H t H t( ) ( )HT buf f HT grower f, , H t H t( ) 1.1· ( )HT buf f HT grower f, , 5.32 14.5
5 Q t( )des Q t0.9· ( )des 5.04 12.8
6 Q t( )des Q t1.1· ( )des 5.41 14.9
7 E t( )des E t0.9· ( )des 4.69 13.9
8 E t( )des E t1.1· ( )des 5.74 13.9
9 p t( )G p t0.9· ( )G 4.86 14.4
10 p t( )G p t1.1· ( )G 5.56 13.3
11 p t( )E p t0.9· ( )E 5.03 13.3
12 p t( )E p t1.1· ( )E 5.38 14.4
13 =a 0% =a 1% 5.24 14.0
14 =a 0% =a 2% 5.26 14.0
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production of CO2) or come from an external CO2 source. The efficiency
or costs of running the exhaust gas cleaner need to be considered in case
of a CHP with exhaust gas cleaner.

4.2. Optimization

The desired heat and electricity profiles for generating the green-
house climate were taken equal to those of the grower. These profiles of
the grower were calculated from data of power production by the CHP,
boiler and buffers stored in the greenhouse process control computer. In
the optimization, the amount of heat stored in the buffers depends on
the incoming and outgoing heat flux. Heat losses during transportation
and storage were neglected, and it was assumed that all heat that was
stored in the buffer was regained, which could lead to an under-
estimation of the true energy consumption of about 0.4% per percent of
heat loss per day as shown in the sensitivity analysis. The available
measured buffer data showed very fluctuating behavior (Appendix B).

More than one buffer control solution is possible if the buffer effi-
ciency is equal to 1, as assumed in the paper, and when the gas price is
constant. Even when the efficiency of the buffer is smaller than 1, there
can be multiple controls that can deliver the same amount of heat to the
greenhouse. However, in that case the total costs will be slightly higher
since not all heat that is put in the buffer can be regained.

The costs for electricity and gas found in the optimization were 20%
lower than in the grower’s scenario. An important difference is that, in
the optimization, the costs of gas and electricity were perfectly known
in advance. Differences between the energy fluxes in the optimized and
grower’s scenario were sometimes small but could result in large dif-
ferences in the costs because of the strong fluctuations that occurred in
the electricity price. Therefore, we emphasize that a reliable prediction
of the prices, together with a proper prediction of the heat and elec-
tricity demand of the greenhouse would be very valuable for growers.
Zaheer-uddin and Zheng (2000) also suggest that it is possible to take
advantage of the storage possibilities and electricity prices by allowing
the demand of heat and electricity to vary within acceptable limits. This
is also in line with the energy savings found by widening the bounds in
Van Beveren et al. (2015b).

The presented optimization is an open loop optimization. In the
current form, the optimization is performed afterwards and can be used
as a tool to analyze the performance and find possibilities for im-
provement. In order to implement the optimization procedure in the
current greenhouse practice as a forecasting tool, a receding horizon
optimal control approach would be suitable Tap (2000), Van Straten
et al. (2002), Van Ooteghem et al. (2005) and Oldewurtel et al. (2012).
In that case, a reliable weather forecast and price forecasts for elec-
tricity and gas must be available for the horizon of the optimization
(e.g. one or a few days). The prediction of outdoor weather is important
because the heat and electricity profiles that must be realized depend
strongly on the weather conditions.

Also, in practice, the calculation time is an important aspect for
implementation. The calculation times found for the optimization with
fixed prices were far below the chosen time interval of one hour. Even
the longest calculation time of 316 s for three successive days is still
shorter than the time interval of one hour. The CPU time for the opti-
mization with real prices were all shorter than one minute. Therefore,
we do not expect problems with calculation time in practice. Another
aspect for practical implementation is the prevention of frequent
switching of the equipment. The current quadratic method did not
provide a satisfactory solution, thus, requires further investigation.

In practice, many different configurations and combinations of
equipment for heat and cold production and storage occur. This work
aimed to be a starting point for optimizing and understanding optimal
scheduling of these systems. Therefore, the next logical step would be to
expand the optimization framework with other equipment like a heat
pump, aquifer storage, cold storage in short term buffers, and cooling
machines. Heat and cold storage in aquifers is typically used for long

term (seasonal) energy storage. Extension of the optimization frame-
work in such systems requires a solution to handle long term buffering.

Optimizing the configurations as described in this paper for a longer
period are expected to decrease the energy use and costs since the
buffers can be used more effectively. In case of a longer optimization
period, the buffers have more freedom and time to anticipate to the
desired heat and electricity profile. This is supported by the results of
the sensitivity analysis on the final buffer filling.

If there are no constraints on the buffer capacity and final buffer
filling, the cost effectivity of the CHP can be assessed as follows: The
boiler has a thermal efficiency of 0.94. To produce 1MJ of heat,
35.17m3 of gas must be burned. As 1MWh is equivalent to 3600MJ,
the production of 1MWh of heat with the boiler requires 109m3 gas
with associated costs of pG (€m−3) ∗ 109 (m3). The thermal efficiency
of the CHP is 0.46 for heat (Table 1). To produce 1MWh of heat with
the CHP, 223m3 gas must be burned, so it seems that the costs of
1MWh CHP heat are pG (€m−3) ∗ 223 (m3). However, this comparison
is not fair since the CHP also produces electricity. So, the total effi-
ciency (heat+ electricity) of the CHP is 0.83. With an efficiency of
0.83, 123m3 gas is needed to produce 1MWh (heat+ electricity),
whereby, about 45% is electricity and 55% is heat. Although it seems
that the CHP is not as energy efficient as the boiler, economically the
CHP is in general more efficient, provided that the electricity price is
high enough. For example, burning 114m3 gas produces 0.8MWh
electricity, in this case, the CHP is more cost-effective if the electricity
price is larger than p0.14 G.

5. Conclusion

Several issues that hamper the application of the flexible dynamic
framework for resource allocation in greenhouses have been solved. In
particular, zero-or-range constraints were implemented in order to
operate the boiler and CHP between a specified range when they are
active. In addition, simultaneous loading and unloading of the buffer
was prevented by defining the heat flux from and to the buffers as a
single flux that can be positive or negative. It was shown that these
modifications, together with a powerfull numerical tool, ensured the
feasibility of the dynamic optimization approach.

The application of open-loop optimization for a realistic greenhouse
configuration showed a potential benefit in the order of 20% as com-
pared to the actual operation of the grower, at least for those days
where the configurations were congruent. It shows that a given heat
demand does not necessariliy come with a fixed price to pay. Rather,
using price information in conjunction with dynamic optimization ap-
pears to pay off. It underlines that trading and short-term forecasting of
gas and electricity prices in combination with dynamic optimization
have a high potential for cost savings in horticultural practice. The total
energy cost for the studied greenhouse was more sensitive to the elec-
tricity demand than to the heating demand.

The benefits of the optimization procedure implemented this way are
twofold: (1) it facilitates the decision on when and how to deploy which
piece of equipment, and (2) it provides an economically optimal solution.

The presented framework will be the basis for further development
and extension with other equipment for heating and cooling.
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Appendix A. Nomenclature

Table A.

Appendix B. Derivation of the desired heat profile

In order to compare the optimization results with the operating strategy resulting from grower’s operation of the greenhouse, the desired heat
and electricity profiles were calculated from the realized production and delivery of heat and electricity as registered by the process control computer
at the greenhouse facility (Eq. (B.1)).

= + + +Q Q Q Q Q Q Qdes grower HT boil chp HT buf load HT buf unload LT buf load LT buf unload, , , , , , , , , , (B.1)

The greenhouse also delivered heat to a neighboring greenhouse (Qbuf ext, ). This heat must also be delivered, so it was assumed to be part of Qdes grower, .
The five minute data of the buffer fill rate showed rather fluctuating behavior, while the data of the boiler and CHP were less fluctuating and

more smooth. The fluctuating behavior was stronger for the low temperature heat buffer than for the high temperature heat buffer. To obtain data
that better represent the inertia of the heat buffers, the high frequency was removed by taking hourly mean values for Qdes (Fig. B.13). A possible
explanation for the behavior of the data can be the update interval of the energy content calculation and delays in the system due to the volume of
the heating system.

Only days when the heat pump was not used were selected for comparison between the utilization of the equipment by the grower and the
optimal scenario because the heat pump and heat buffering in the aquifer are not part of the model and optimization procedure yet. This extension
will be considered in future research. In 2012 there were 64 days without heat pump usage. Some data were missing during one of the days,
therefore, this day was excluded from the analysis. A list of the selected days is given in Table B.5. Within these 63 days, the low temperature heat
storage was not used on 17 days. On those days the low temperature heat buffer was used as storage of cold water for greenhouse cooling. In the
optimization procedure, this was implemented by adapting the maximum heat storage capacity, namely by setting HLT buf

max
, = 0.

Table A
Nomenclature

Symbol Description Unit

a Buffer heat loss factor %d−1

A Greenhouse area m2

b Boolean control variable –
E Electricity flux Wm−2 [grh]
G Gas flux m3 [gas] m−2 [grh] s−1

H Heat content Jm−2 [grh]
J Goal function €m−2 [grh]
p Price €
Q Heat flux Wm−2 [grh]
r Range of operation –
S Heat of combustion Jm−3 [gas]
t Time s
u Control variable

Buffer heat loss factor %s−1

Efficiency –

Subscript
boil Boiler
buf Buffer
buy Bought from the grid
chp Combined heat an power installation
des Desired
E Electricity
f Final
grh Greenhouse
grower Grower
G Gas
grid Public electricity grid
HT High Temperature
LT Low Temperature
load Loading
optimal hlOptimal
sell Sold to the grid
unload Unloading

Superscript
min Minimum
max Maximum

Optimal
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Appendix C. Derivation of heat loss factor buffer

The buffer without heat loss is modelled as (Eqs. (1) and (14)):

=dH
dt

Q (C.1)

Suppose the heat loss Qloss is proportional to the heat content:

=Q Hloss (C.2)

Eq. (C.1) then becomes:

=dH
dt

H Q (C.3)

Heat loss factors for different buffers used in greenhouse horticulture can be found in Van Steekelenburg et al. (2011). Suppose the heat loss for
1 day (24 h) is a% of the starting energy content. Assume =Q 0. Then it follows from Eq. (C.3) that:

=H t H t e( ) ( )f
t t

0
( ( ))f 0 (C.4)

Since =H tf a H t( ) (1 0.01 ) ( 0) it follows that:

=t t a( ) ln(1 0.01 )f 0 (C.5)

From this it follows that with = =t t h24 24·3600 s,f 0 is given by:

= a(ln(1 0.01 ))/(24·3600) (C.6)

In this way, the empirically known value of daily heat loss a is replaced by the parameter , so that the optimization including heat loss can be
performed by replacing Eq. (C.1) by Eq. (C.3).

Fig. B.13. Calculated desired heat pattern using five minute data ( ) and hourly means ( ) for October 9, 2012.

Table B.5
Selected days for analysis.

Index Day of year Date Index Day of year Date Index Day of year Date

1 24 24-Jan-12 22 198 16-Jul-12 43 279 5-Oct-12
2 44 13-Feb-12 23 199 17-Jul-12 44 280 6-Oct-12
3 62 2-Mar-12 24 200 18-Jul-12 45 282 8-Oct-12
4 65 5-Mar-12 25 201 19-Jul-12 46 283 9-Oct-12
5 70 10-Mar-12 26 255 11-Sep-12 47 284 10-Oct-12
6 97 60-Apr-12 27 256 12-Sep-12 48 286 12-Oct-12
7 105 14-Apr-12 28 257 13-Sep-12 49 287 13-Oct-12
8 106 15-Apr-12 29 260 16-Sep-12 50 290 16-Oct-12
9 124 3-May-12 30 261 17-Sep-12 51 291 17-Oct-12
10 131 10-May-12 31 264 20-Sep-12 52 292 18-Oct-12
11 156 4-Jun-12 32 265 21-Sep-12 53 293 19-Oct-12
12 157 5-Jun-12 33 266 22-Sep-12 54 294 20-Oct-12
13 158 6-Jun-12 34 267 23-Sep-12 55 295 21-Oct-12
14 159 7-Jun-12 35 268 24-Sep-12 56 296 22-Oct-12
15 161 9-Jun-12 36 269 25-Sep-12 57 298 24-Oct-12
16 170 18-Jun-12 37 270 26-Sep-12 58 299 25-Oct-12
17 176 24-Jun-12 38 271 27-Sep-12 59 301 27-Oct-12
18 191 9-Jul-12 39 272 28-Sep-12 60 306 1-Nov-12
19 192 10-Jul-12 40 273 29-Sep-12 61 312 7-Nov-12
20 195 13-Jul-12 41 277 3-Oct-12 62 313 8-Nov-12
21 197 15-Jul-12 42 278 4-Oct-12 63 319 14-Nov-12
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