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1
Introduction

In this chapter we introduce microtubules and present their properties,
as well as their functions in the cell. We address questions that concern a
wide range of microtubule-based phenomena from their spatial organization
up to the establishment of cell polarity. We make a short reference to the
models to be developed in order to give answers to the questions addressed.
Finally, we give an outline of the content of each chapter as well as the
analytical and simulation techniques that will be applied.
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Chapter 1. Introduction

1.1 Biological context

1.1.1 Understanding the living cell

Cells are highly complex systems with many processes occurring simulta-
neously, which makes their study as whole units highly challenging. Nev-
ertheless, many labs worldwide are currently attempting various forms of
whole-cell modelling. The initiatives in this direction typically include the
development of electronic platforms, which incorporate information con-
cerning the metabolic pathways, as well as gene regulation and expression
[1]. In this way, many biochemical reaction networks have been imple-
mented.

However, these whole-cell modelling approaches typically do not con-
sider the spatial dynamics of cellular structures, although these may may
become part of it in the future [2]. So, basic physical and biochemical ef-
fects which are spatially dependent, such as localization, spatially extended
structuring and even motion of cellular components, are not analyzed in
these approaches.

It is for these types of questions that the so-called modular approach to
cell biology has proved highly effective. This approach starts from identify-
ing functional modules [3]: a finite set of intracellular parts that together,
and mainly in isolation of other components, perform a distinct biological
function. The study of such modular functions is based on three comple-
mentary approaches: (i) The development of better methods for monitoring
dynamic processes in cells, (ii) the synthetic biology approach of reconsti-
tuting modular parts or building new ones in a controlled in vitro setting
and (iii) the establishment of modelling frameworks that to complement
the experiments opening the road to full mechanistic understanding.

In the current thesis we will adopt the latter approach, and explore
a number of cellular modules, with the common thread that they are all
based on the dynamical behaviour of microtubules.

1.1.2 Microtubule-based cellular modules

The main actors in the present study are microtubules, their regulatory en-
vironment, and their individual and collective behaviour. Microtubules are
the one of the three kinds of filamentous protein aggregates that constitute
the cellular structure called the cytoskeleton, the other two being actin and
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1.1. Biological context

the intermediate filaments [4].

The cytoskeleton plays many important roles in the cell. As its name
already suggests, one of these is to control the overall cell shape [5]. An-
other major task fulfilled by the cytoskeleton is the intracellular transport
of vesicles to the cell membrane, where the latter may be incorporated
through a process called exocytosis [6]. The transport is achieved by mo-
tor proteins that bind on one of their ends to vesicles and with the other
end “walk” on the cytoskeletal filaments towards the cell boundary. The
resulting asymmetric spatial organization of vesicles and, generally, cellular
components at the cell boundary is known as cell polarization. This polar-
ization is essential to many basic processes of the cell, like cell division, cell
differentiation, cell migration, cell-cell signaling and morphogenesis.

Here, we apply the modular approach and study four cytoskeletal mod-
ules all based on microtubule. These are the plant cortical microtubule
array, the organization of the interphase radial microtubule array in ani-
mal cells, the localization dynamics of the fully formed mitotic spindle, and
microtubule-based cell polarization mechanisms.

1.1.3 The microtubule cytoskeleton

1.1.3.1 Structure and dynamics of microtubules

Microtubules are the stiffest polymers of the cytoskeleton, with a persis-
tence length of ≈ 1mm [7], implying that unless actively deformed they are
effectively rigid on the typical size scale of cells. At the same time they can
reach lengths in the order of ∼ 10µm, allowing them to be sensitive to the
geometry of the cell. The structural units of microtubules are heterodimers
of α and β tubulin. The selective α-to-β longitudinal end-to-end binding
of these dimers leads to straight protofilaments, thirteen of which are po-
sitioned side by side to form a hollow cylinder with an outer diameter of
25 nm. At one end (denoted by -) of a protofilament the α subunits of
the dimers are exposed, while at the other end (denoted by +) it is the β
subunits that are exposed. Due to this fact, a microtubule has an intrinsic
structural polarity, which is basic for its biological function. Specifically,
among the many microtubule associated proteins (MAPs) [8] there are mo-
tor proteins, like kinesins and dyneins, which can walk on microtubules
exclusively in one direction taking advantage of this structural polarity.
This enables directionally selective vesicle transport to the cell membrane
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Chapter 1. Introduction

by these motor proteins, opening the way for the cell polarization.

A key property of microtubules is their highly dynamic character. They
can switch stochastically from a state of growth to that of shrinkage — an
event called a catastrophe — and the other way round — in an event called
a rescue —. This intrinsic property of microtubules is known as dynamic
instability [9]. The growth of microtubules depends on the availability of
GTP-bound tubulin. Indeed, only GTP-bound tubulin dimers can drive
polymerisation through attachment at the microtubule +-end [10] and the
presence of a “cap” of GTP-tubulin at this end is necessary for growth.
Once incorporated into the microtubule lattice the tubulin-bound GTP
can be hydrolyzed to GDP. It is thought that a catastrophe occurs when
through a statistical fluctuation the microtubule cap is fully hydrolyzed
[11]. At present our understanding of the mechanism underlying the rescue
event is almost non-existent. The continuous turn-over of GTP which drives
this coupled growth-shrinkage process indicates that microtubule dynamics
is a far out-of-equilibrium process. The fact that microtubules can shrink
to zero length following a catastrophe, implies that maintaining a stable
population of microtubules also requires their (re)nucleation as an essential
process.

1.1.3.2 Cellular organization and function of microtubules

The first microtubule-based cellular module that we describe is the cortical
microtubule array in growing interphase plant cells. While in animal cells
microtubules are typically nucleated from a single microtubule organizing
center (MTOC) [12], such a structure is absent in plant cells [13]. The
resultant type of microtubule organisation is therefore referred to as non-
centrosomal. The plant cortical microtubules are nucleated from nucleation
complexes that are mainly attached to pre-existing microtubules [14, 15].
Both new and parent microtubules are all attached to the cell membrane
with linking proteins [16] and together form the cortical array (see figure
1.1). The attachment to the membrane creates an effectively 2D environ-
ment for the interactions between cortical microtubules. These interactions
have been observed in the form of frequent collisions of the tips of growing
microtubules with other microtubules [17]. These collisions can collectively
lead to spontaneous alignment of the microtubule population, as has been
shown e.g. by computer simulations [18]. The correct orientation through
mutual alignment of the plant cortical array is essential for proper plant
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1.1. Biological context

morphogenesis as it regulates the oriented deposition of cellulose in the
plant cell wall [19], which in turn determines the direction of cell growth.

Figure 1.1: Schematic of the plant cortical array. We can see the alignment
of the cortical microtubules on the facets of the plasma membrane under
the cell wall.

The second module that we’ll be studying is the interphase radial ar-
ray in animal cells. This is an array of microtubules that are nucleated by
a single centrosome and extend radially towards the cell boundary. The
microtubule radial array supports the transport of vesicles to the plasma
membrane with the help of motor proteins that move along the micro-
tubules of its network.

The third cellular module that we’ll examine is the localization dynam-
ics of the mitotic spindle, which plays a crucial role in cell division. The
interaction of microtubules with the cell boundary generates forces which
lead to the positioning of the mitotic spindle in a way that down-stream en-
ables the correct spatial segregation of the daughter chromosomes . Within
the mitotic spindle, microtubules fulfill three different main functions. The
kinetochore microtubules connect the spindle poles with the chromosomes,
the interpolar microtubules connect the two poles and support the kineto-
chore microtubules and, finally, the astral microtubules connect the spindle
poles with the plasma membrane.

9



Chapter 1. Introduction

Figure 1.2: Schematic of the mitotic spindle. We can see the two centro-
somes (red circles) and the radial array of astral microtubules (blue line
segments) nucleated by them during cell division. Astral microtubules sta-
bilize the spindle by interacting with the cell boundary (black elliptical
border). The black line segment stands for the kinetochore and interpolar
microtubules.

Figure 1.3: Schematic of a polarized fibroblast. Most of the microtubules
(blue line segments) that are nucleated from the centrosome (red circle)
bind to the flat cell edge, which supports the directed migration of the
fibroblast.

The fourth module that we’ll investigate are microtubule-based cell
polarization mechanisms. The spatial organization of centrosomal micro-

10



1.2. Our focus: how cell shape controls microtubule organization

tubules as determined by their intrinsic dynamics in concert with the cell
shape, is a first step for the establishment of polarity in animal cells (see
figure 1.3). The ability of microtubules to bind and selectively transport
proteins to the plasma membrane is the property that opens a route to cell
polarization. As already mentioned, the asymmetric distribution of intra-
cellular components is of key importance to many developmental processes
in biology.

1.2 Our focus: how cell shape controls micro-
tubule organization

In the present thesis we develop a series simple minimalistic models for
the four microtubule-based cellular modules described above. A red thread
running through all these models is the question of how the finite size and
shape of cells influences the spatial organization of microtubules.

We start with the plant cortical microtubule array. In this case the role
of cell shape is still implicit, as it only serves to select the global orientation
of the aligned microtubules [20]. Instead, we focus on the influence of
the unique directionality of microtubule-bound microtubule nucleation that
occur. Simulations have shown that these can strongly impact the degree
of ordering of the array [21], but a proper theoretical basis was lacking.
We focus on the competition between the anisotropic microtubule-bound
nucleation and the background isotropic nucleation in the bulk, which we
hypothesize to be strong homeostatic mechanism for robust microtubule
alignment.

On the other hand, in animal cells the spatial organization of micro-
tubules originates from the centrosome. While microtubules interact with
other intracellular components such as MAPS, organelles, and, during mi-
tosis, with chromosomes, the strongest geometrical constraint on their be-
haviour is likely due to interactions with the cell boundary. This raises the
simple, but hitherto less explored, question of how cell shape by itself in-
fluences the spatial distribution of microtubules. Under certain conditions
[22], microtubules hitting the cell boundary can stop growing and remain
stalled there for a variable duration. A key question in this case is how
can we predict the length distribution of microtubules as a function of the
orientation with respect to the axes of the cell. However, if microtubules
continue to grow after hitting the cell boundary, pushing forces are gener-
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Chapter 1. Introduction

ated that feed back on the microtubules. Therefore, when the boundary is
not spherical, the microtubules can slide slide along the cell surface surface.
The pushing forces have a dynamic nature as they are explicitly related to
the growth speed and the catastrophe rate of microtubules at the boundary.
A key question at this level is how can we build a model that predicts the
motion of the sliding microtubule ends along the cell boundary by properly
incorporating the dynamic nature of the pushing forces.

It is known that astral microtubules are nucleated from the two poles of
the mitotic spindle and, subsequently, interact with the plasma membrane
leading to the positioning of the spindle. A few models for the spindle posi-
tioning have been presented to date [22, 23, 24, 25], but so far the dynamic
nature of the pushing forces has not been taken into consideration. We aim
to formulate a model that predicts the spindle motion and positioning by
using a self-consistent dynamic force production mechanism taking place at
the cell boundary. Earlier work on positioning has pointed to an important
role in positioning for pulling forces generated on the tips of microtubules
[26, 23], so these will be included as well. The questions we address are
how the model parameters contribute to the robustness ans selectively of
the positioning of the spindle within the cell volume.

In setting up models for the fourth module we consider, we choose to
adopt a synthetic biology approach. Instead, of looking at existing polar-
ization mechanisms in vivo, we are interested in building a model that can
provide a route towards the creation of cell polarity in a minimal cell-like
environment. Currently, there is a world-wide drive towards building such
synthetic cells. Of special interest to us the so-called bottom-up approach
[27], in which in an opportunistic fashion different cellular modules, based
on or inspired by existing ones from different organisms, are combined to
form a functional whole. In that context it is interesting to ask how a
polarization mechanism can be built using the minimal number of avail-
able components. From a theoretical point of view it is then important
to provide proof of principle for the most difficult case, that of a perfectly
spherical cell. However, generically cells are not spherical, and therefore we
must also address how cell geometry modulates our candidate polarization
mechanism.

12



1.3. Modelling microtubules

1.3 Modelling microtubules

Since we are interested in modelling biological phenomena that place on a
time scale of minutes to hours in cells that have a typical size of a few to
tens of µm’s, we use a mesoscopic model in order to represent microtubule
molecules [28]. We therefore do not regard the internal atomic structure of
a microtubule or any other processes at the atomic scale, like the binding
of individual nm-sized tubulin dimers to the microtubule end, with which
sub-millisecond timescales are associated [29]. Rather we treat the macro-
molecule as a whole as a single object, described by small set of relevant
observables. The choice of mesoscopic representation enables the treat-
ment of the microtubule dynamics using both semi-deterministic analytical
models and particle-based stochastic simulations described below.

1.3.1 Analytical approach

Our analytical modelling is based on the original dynamic instability model
introduced by Dogterom and Leibler [9]. According to this model, every
microtubule is a rigid rod with a ’plus’ end that is either growing with a
speed v+ or is shrinking with a speed v−. The ’plus’ end can also switch
stochastically from a growing to a shrinking state (a catastrophe) with rate
r+, or from a shrinking to a growing state (a rescue) with rate r−. A nu-
cleation process must also be included. Here we present a variant of the
original model with a fixed number overall number of microtubules, each of
which is associated with a nucleation complex. We call a not yet nucleated
microtubule dormant. It is activated from this state with a constant rate
rn. When a microtubule shrinks to zero length, it reenters the dormant
state. The observables in this model are the densities m+(l, t) and m−(l, t)
representing the average number of growing and shrinking microtubules of
length l at time t respectively and m0(t) the number of dormant micro-
tubules. These quantities satisfy the following set of dynamical equations,
which in essence describe the conservation of total tubulin “mass”

∂tm
+(l, t) =− v+∂lm

+(l, t) + r−m
−(l, t)− r+m

+(l, t) (1.1)

∂tm
−(l, t) =v−∂lm

−(l, t)− r−m−(l, t) + r+m
+(l, t) (1.2)

∂tm0(t) =− rnm0(t) + v−m
−(l = 0, t) (1.3)
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Chapter 1. Introduction

where ∂x denotes a partial derivative with respect to the variable x. In the
steady state Eqs.(1.1), (1.2), (1.3) reduce to

v+∂lm
+(l) = r−m

−(l)− r+m
+(l) (1.4)

−v−∂lm−(l) = −r−m−(l) + r+m
+(l) (1.5)

v+m
+(l = 0) = rnm0 (1.6)

Adding Eqs. (1.4) and (1.5) gives

∂l{v+m
+(l)− v−m−(l)} = 0 (1.7)

The physically acceptable solutions should be bounded as the microtubule
length goes to infinity, which dictates the integration constant to vanish.
This yields the balance equation

v+m
+(l) = v−m

−
i (l) (1.8)

Then, we can eliminate m−(l) in Eq. (1.4) and solve this equation using
Eq. (1.6)

m+(l) =
rn
v+
m0e

−l/l̄ (1.9)

where

l̄ =

(
r+

v+
− r−
v−

)−1

> 0 (1.10)

is the mean length of microtubules. This quantity has a finite positive value
in the bounded-growth regime, which requires the inequality r+v−−r−v+ >
0 to hold. [9]. Throughout this is the regime that we work in, which is
justified as the cellular environment has a finite volume and, therefore, con-
tains a finite amount of tubulin. Even if the intrinsic dynamical parameters
put the microtubules in the unbounded growth regime, the growth speed
will eventually be decreased by a shortage of free tubulin available for poly-
merization. Hence, in steady state the microtubules will effectively always
be in the bounded growth regime. A final characteristic parameter of the
microtubule dynamics is the mean lifetime [30]

t̄ = l

(
1

v+
+

1

v−

)
(1.11)
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1.3. Modelling microtubules

which is the expected lifetime of a newly nucleated microtubule.

In the rest of the thesis the model described here will be extended
with the necessary ingredients to describe the specific phenomena we are
interested in.

1.3.2 Stochastic simulations

Stochas(c	update	of	MT	states		
(dormant,	growing,	shrinking,	…)	

Update	of	MT	proper(es	
(length,	…)	

Calcula(on	of	degree	of	ordering	
&	other	proper(es	of	MTs	

Parameter	input		
(Rates,	speeds,	(me-step,	…)	

Output	

Is	the	
desired	
number	
of	steps	
achieved

?	

Yes	

No	

Figure 1.4: Flowchart of the basic stochastic simulation algorithm applied
in the present thesis (MT implies microtubule).

15



Chapter 1. Introduction

The use of a mesoscopic model for representing microtubules makes
possible the application of particle-based stochastic simulations either for
verifying our analytical results or analyzing microtubule-based models that
are complex to investigate analytically. In our simulations each individual
microtubule is described as being in specific dynamical state (in the simplest
model growing, shrinking and dormant) and having certain properties
(in the simplest case just a length l). The microtubules evolve in time by
taking small discrete time steps ∆t. This time step needs to be taken small
enough such that the probability of a state-changing event (in the simple
model a catastrophe, a rescue, or a nucleation event) which is given by
the product rate× time step, is so small (typically less the 10−2) that the
probability of two events happening in the time step is negligible. In each
cycle of the simulation each microtubule is considered in turn. Depending
on its state a random number is drawn and compared to the probability
of the relevant state-changing event. If it the event is accepted, the state
changes. Otherwise it continues in its present state, and its properties, e.g. a
change of length due to growth or shrinkage, are updated. After a desired
number of time-steps is executed, relevant statistical quantities, such as
steady-state length distributions, are calculated and stored. A flowchart of
the simulation algorithm is shown in Figure 1.4.

1.4 Outline

The first part (chapter 2) of this thesis is about the role of the branched
nucleation of microtubules in ordering in the plant cortical array. Using an
analytical approach in the context of a mean-field theory, we reveal a single
parameter that determines the relative influence of the microtubule-bound
nucleation to the background nucleation. Applying bifurcation analysis,
we find the main determinant parameter that leads the system to order.
We confirm the robustness of our mean-field theory by comparing with
particle-based simulations.

The second part of the thesis is about the spatial organization of mi-
crotubules that is induced by the cell shape. In chapter 3 we develop
analytical relations predicting the distribution of centrosomal microtubules
inside a 3D confinement and we validate them by 2D simulations. The
distribution of non-centrosomal microtubules inside an elliptical boundary
is also calculated, by numerical analysis.
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1.4. Outline

In chapter 4 we develop a boundary-sliding model that predicts the
distribution of centrosomal microtubules, which slide on a non-spherical
cell boundary. The force-production mechanism that is used generates
pushing forces of dynamic nature by following the Hooke’s law. We solve
the complex equations of the model by considering a small perturbation to
the sphere and we prove the existence of a preferential ordering direction of
microtubules stalled to the boundary. We verify the establishment of this
ordering by applying 2D stochastic simulations.

In chapter 5 we formulate a model that predicts the positioning of the
mitotic spindle in cell. We apply the force-production mechanism that we
referred previously, leaving apart the sliding effect, but adding the pulling
forces acting by dynein motors at the boundary. By performing computer
simulations to an elliptical cell, we reveal the central role that pulling forces
play in the spindle stabilization. Furthermore, for the cell shape of a half-
ellipse, we show how the axes ratio determine the transition between two
orientation states of the spindle.

The third part of this thesis is about a microtubule-based establishment
of cell polarity. In chapter 6 we develop a minimal model for spontaneous
and persistent polarity in a spherical cell. The model is based on the abil-
ity of microtubules to bind and transport proteins. We show analytically
that our system supports a stable unipolar symmetry-broken state for a
wide range of parameters. We validate the predictions of the model by 2D
particle-based simulations. Our model may form the basis for creating po-
larity in a minimal cell-like environment using a biochemical reconstitution
approach.

In chapter 7 we focus on the polarization of an elliptical cell. We apply
stochastic simulations in order to find possible predominant directions of
microtubule ordering. We study the competition between geometry depen-
dent effects which promote bipolar ordering (described in Chapters 3 and
4) and the polarization mechanism (described in Chapter 6) that promotes
unipolar ordering. Except of the simulations, the results are also confirmed
theoretically by regarding a model with a pre-established bias.
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Part I

Branched Nucleation
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2
The effect of anisotropic

microtubule-bound nucleations on
ordering in the plant cortical array

The microtubules play a key role in the elongation of plant cells, as they
define the direction along which cell expands. Microtubules achieve this by
forming inside the plasma membrane a structure known as cortical array.
The nucleation of the cortical microtubules is carried out by nucleation
complexes that are mostly attached to pre-existing microtubules. This
attachment combined with collisional interactions among microtubules can
result in a spontaneous alignment of microtubules, which has been shown
by stochastic simulations. In this chapter, we proceed to the theoretical
foundation of this phenomenon, which is caused by the known as ’branched’
nucleation. Furthermore, we reveal the existence of a single parameter that
determines the relative influence between the microtubule-bound nucleation
and the background isotropic one.
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Chapter 2. Anisotropic microtubule-bound nucleations

2.1 Introduction

Microtubules are dynamic filamentous protein aggregates and a key con-
stituent of the cytoskeleton of all eukaryotic cells. They can reach lengths
of several ten’s of µm’s and are therefore able to span lengths comparable
to the dimensions of cells. This allows them to perform a host of functions
related to establishing and maintaining the morphology and mechanical
properties of cells. In plants, a number of cell types, e.g. the well-studied
root cells, grow by expansion along a single axis [31], and microtubules play
a key role in defining this axis. They do so by setting up a plant-unique
structure called the transverse cortical array, a highly aligned arrangement
of microtubules bound to the inside of the plasma membrane [16]. There is
mounting evidence that the microtubules in the transverse array guide the
insertion and the direction of motion cellulose synthase complexes [32, 33].
These complexes deposit cellulose microfibrils, the main architectural com-
ponent of the plant cell wall. The widely accepted idea is that the ensuing
transverse orientation of the cellulose microfibrils allows the cells to elon-
gate in a single direction, whilst maintaining mechanical integrity in the
face of an appreciable internal osmotic pressure (turgor).

A crucial aspect of microtubules and the structures they form is that
they are both dynamic and intrinsically out of thermodynamic equilib-
rium. Individual microtubules alternate stochastically between growing
and shrinking states in an energy-consuming process dubbed “dynamic in-
stability” [34]. In the plant cortical array, where the microtubules are
bound to the plasma membrane and hence form an effectively 2D system,
it is this process which drives collisions between growing microtubules and
obstructing microtubules. The stochastic and angle-of-incidence dependent
outcomes of these collisions are classified as (i) zippering, where the incom-
ing microtubule alters its course by bending and continues to grow along
the obstructing microtubule, (ii) induced catastrophes, where the incoming
microtubule rapidly switches from a growing to a shrinking state, and (iii)
cross-overs, where the incoming microtubule manages to “slip over” the
obstructing one and continues to grow in its original direction [17]. Several
groups have shown how the ordering of the cortical array (hereafter ab-
breviated as CA) can be understood on the basis of these collisions, using
both computer simulations [35, 18, 36] and an analytical model [37]. The
dynamical instability process implies that microtubules can shrink to zero
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length and thus are expected to have a finite lifetime. This means that
in order to achieve a steady state, new microtubules need to be nucleated
at a finite rate, for which cells employ specific nucleation complexes called
γ-TuRCS [38]. In most of the modeling approaches the nucleation of new
microtubules was assumed to occur homogeneously distributed over the
2D “cortex” and in arbitrary directions, as is observed during the initial
stages of CA formation. In the later stages of CA formation, when there
is an appreciable density of microtubules, most of the nucleations actually
occur from preexisting microtubules, and moreover with a specific orienta-
tional distribution with respect to the direction of the parent microtubule
[14, 15, 39].

In a previous paper [21] we have addressed the impact of this microtubule-
bound orientationally-biased nucleation mechanism on CA ordering using
computer simulations, showing among others that (partially) co-aligning
the newly nucleated microtubules with the parent microtubules provides
a positive feedback on the ordering process, significantly widening the
range of parameters for which the aligned state is stable. Here we pro-
vide the theoretical underpinning of these observations by generalizing our
previously developed analytical model to explicitly incorporate anisotropic
microtubule-bound nucleations. This allows us to perform a full parametric
analysis of the location of the ordering transition in the presence of these
more complex nucleations. Significantly, this analysis reveals that the co-
alignment parameter ν2 introduced on phenomenological grounds in [21],
is indeed also formally the system parameter that most strongly influences
the propensity of the system to order. Moreover, the full model allows
us to go beyond the simulations by also considering the effect of different
firing rates of the nucleation complexes whether in the bound- or the un-
bound state, and showing how this difference interacts with the effects of
differential binding of the nucleation complexes to the microtubules.

The outline of the paper is as follows. In Section 2.2 we present our
theory, first recapping the basic elements of the formalism (Section 2.2.1),
then implementing a binding equilibrium for the nucleation complexes (Sec-
tion 2.2.2), discuss the treatment of anisotropic nucleations (Section 2.2.3),
finishing with a dimensional analysis, which reveals a single parameter that
governs the influence of the microtubule-bound nucleations (Section 2.2.4).
In Section 2.3 we locate the critical values of the control parameter of the
system using bifurcation analysis (Section 2.3.1), calculate the latter nu-
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merically (Section 2.3.2) and compare with simulations (Section 2.3.3). We
end with conclusions and outlook in Section 2.4.

2.2 Theoretical framework

2.2.1 Basic theory

Here we first recap the basic elements of the analytical model by Hawkins,
Tindemans and Mulder [37] for the mechanism of orientational order of the
plant CA.

The cortical microtubules are confined to a 2D plane and each mi-
crotubule is considered to consist of one or more straight segments with
a fixed orientation, connected end-to-end. The intrinsic dynamics of the
microtubules is described by the standard two-state dynamic instability
model of Dogterom and Leibler [9], which assumes that each microtubule
has a “plus” end on its final segment that is either growing with speed v+

or shrinking with speed v−. This plus end can switch stochastically from
growing to shrinking, a so-called spontaneous catastrophe, with rate rc, or
from shrinking to growing, a so-called rescue, with rate rr. The dynam-
ics of the interactions between colliding microtubules dynamics is encoded
into the probabilities Pc(θ) of observing an induced catastrophe, Pz(θ) of
a zippering event and Px(θ) of a crossover when the collision occurs at a
relative angle θ. An individual segment of a microtubule can be either in
the growing (+) or shrinking (−) state, provided it is the final segment, and
otherwise is in the inactive state (0). The main ingredients of the model
are graphically summarized in figure 2.1.

A coarse-grained description is employed for the alignment of micro-
tubules in the cortical array: Instead of individual microtubules, local den-
sities of microtubule segments are considered. The system is assumed to be
spatially homogeneous and has as fundamental variables the areal number
densities mσ

i (l, θ, t) of segments in state σ ∈ {0,+,−}, where the segment
number i keeps track of the number of orientation-changing zippering events
(= i− 1) that preceded in creating the segments, l is the length of the seg-
ments and θ their orientation and t the time. These densities obey a set
of partial differential evolution equations determined by the overall rates
of growth and shrinkage, spontaneous and induced catastrophes, zippering
and reactivation of inactive segments through shrinking.
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Figure 2.1: Schematic illustration of the main ingredients of our model
for cortical microtubule dynamics. Top left: The dynamical instability
mechanism, with random switches between a growing and a shrinking state.
Top right: Labelling of microtubule segments from the nucleation point
(bar),increasing after each zippering event (collision with gray obstructing
microtubule). Bottom left: Collision outcomes. Bottom right: Nucleation
of new microtubules.

In steady state, the length of all segments, independently of type, turns
out to be distributed exponentially with a common average segment length
l(θ)

mσ
i (l, θ) = mσ

i (θ)e−l/l(θ), (2.1)

which introduces the angle dependent density at zero length mσ
i (θ). The

stationarity of the total length of microtubules implies the balance equation

v+m+
i (l, θ) = v−m−i (l, θ). (2.2)

An important role is played by the total length density k(θ) of all micro-
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tubule segments in direction θ, which is defined as

k(θ) =
∞∑
i=1

∫
dl l [m+

i (l, θ) +m−i (l, θ) +m0
i (l, θ)]. (2.3)

Next, the quantities Qi(θ), are defined as the ratio between the densities
of inactive and active microtubules for segments with index i

Qi(θ) =
m0
i (θ)

m+
i (θ) +m−i (θ)

. (2.4)

As is shown in [37], these quantities do not in fact depend on the index
i, hence Qi(θ) = Q (θ) . Finally, the quantity t(θ) is defined as the overall
density of active segments

t(θ) =
∞∑
i=1

∫ ∞
0

dl [m+
i (l, θ) +m−i (l, θ)]

= l(θ)
∞∑
i=1

[m+
i (θ) +m−i (θ)], (2.5)

where the second equality is a result of the exponential distribution equation
Eq. (2.1).

We now formulate the governing equations of the system. The “cross-
section”of the collisions is determined in part by the geometrical factor
sin(θ − θ′), where θ is the angle of the incoming growing microtubule seg-
ment and θ′ is the angle of the microtubule “scatterer” with respect to a
fixed reference frame. This factor is absorbed into the interaction proba-
bilities by defining

f(θ − θ′) ≡ | sin(θ − θ′)|Pf (θ − θ′)

where f ∈ {c, z, x}, with c denoting induced catastrophes, z zippering
events and x crossovers. We will assume that the collisions are insensitive
to the relative orientation of the microtubule plus-minus end polarities, so
that f (θ) = f (π − θ) for f ∈ {c, z, x} . The average segment length l(θ) is
shown to satisfy

1

l(θ)
= −g +

∫
dθ′[c(θ − θ′) + z(θ − θ′)]k(θ′) (2.6)
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where
g =

rr
v−
− rc
v+

is called the growth parameter, and characterizes the behavior of the non
interacting system. Here we will limit ourselves to the case g < 0, which
ensures a priori that the length of the microtubules remains intrinsically
bounded. While the second term on the right-hand side of Eq. (2.6) could
in principle offset the effect of g > 0, the resulting system is expected to
be absolutely unstable with respect to alignment [37] which would lead to
a degenerate non-steady state with continuously elongating microtubules.
Although the dynamical parameters measured in some plant systems (see
e.g. [35]) would suggest that g may be positive, the situation in planta is
complicated by the activity of the microtubule severing protein Katanin
(see e.g. [40]), which provides an additional channel for microtubule length
control. The effects of the latter, as well as other factors such length capping
due to the presence of cell boundaries, are beyond the scope of the present
work. For a more extended discussion of these issues please refer to [41].

Using the Eqs. (2.1) through (2.5) we find that the length density k(θ)
obeys

k(θ) = l(θ)[1 +Q(θ)]t(θ) (2.7)

The inactive/active ratio Q(θ) satisfies the following self-consistency
equation

Q(θ) =

∫
dθ′z(θ − θ′)k(θ′)l(θ′)

(
1 +Q(θ′)

)
. (2.8)

Finally, the overall density of active tip segments t(θ) obeys

t(θ) = (1 +
v+

v−
)l(θ)m+

1 (θ) + l(θ)k(θ)

∫
dθ′z(θ − θ′)t(θ′). (2.9)

We see that the density m+
1 (θ) of zero-length segments that have not

been created by a zippering event only appears explicitly in Eq. (2.9) for
the density of active tips. This density is determined by the rate and the
orientation at which new microtubules are nucleated, which serves as a
boundary condition to the steady state equations

v+m+
1 (θ) = rn (θ) . (2.10)

The precise form of the angle-dependent nucleation rate rn (θ) per unit
area, which hitherto was considered to be an isotropic constant, will be
discussed below.
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2.2.2 Binding equilibrium of the nucleation complexes

While in the initial stages of cortical array formation almost all of the
microtubule nucleations occur on random locations in the cortex and in
random directions, it appears that with increasing array density most of
the nucleations are localized to existing microtubules [15, 39]. Moreover,
these microtubule-bound nucleations occur with a distinct distribution of
orientations with respect to the parent microtubule. The majority of all
these nucleations is due to the presence of specific nucleation complexes,
so-called γ-TuRCs, that are able to bind specifically to microtubules, with
the precise geometry of the individual binding configurations giving rise
to the observed angular pattern of the microtubule-bound nucleations. To
include these effects into our model, we first of all assume that there is finite
density of available nucleation complexes. Next, we assume that binding
and unbinding happens on a time scale fast compared to the other processes.
These assumptions allow us to model the fraction of bound- versus unbound
nucleation complexes as being determined by a binding equilibrium.

We let nucleation complexes bind to a unit of length of microtubule per
unit of system area with a rate rb. In steady state, the length density of
microtubules is given by Eq. (2.3)

ktot =

∫ 2π

0
dθ k(θ). (2.11)

Bound nucleation complexes can unbind from their parent microtubule with
rate ru. The overall (areal) density of nucleation complexes is given by
ntot = nb + nu, where nb and nu are the bound- and unbound densities
respectively. With these definitions, the chemical equilibrium condition
then reads

nbru = rbktotnu (2.12)

Thus, the fractions of bound and unbound nucleation complexes are given
by

xb =
nb
ntot

=
rbktot

rbktot + ru
≡ ktot
ktot + k 1

2

xu =
nu
ntot

=
ru

rbktot + ru
≡

k 1
2

ktot + k 1
2

, (2.13)
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where the cross-over density k 1
2

= ru
rb

, which equals the microtubule length

density for which exactly half the nucleation complexes are bound, con-
trols the shift between the regime of microtubule densities dominated by
unbound nucleations and bound ones respectively.

2.2.3 Anisotropic distribution of nucleation angles

To determine the angle-dependent nucleation rate rn (θ) we now differenti-
ate between nucleations occurring from unbound nucleation complexes and
bound ones. Consistent with observations, we take the nucleations from
the unbound complexes to be isotropically distributed and assume that
an available unbound complex “fires” with a rate run. The distribution of
nucleation angles in the global reference frame associated with unbound
nucleations is trivially given by

ψu (θ) =
1

2π
. (2.14)

Nucleations from microtubule-bound complexes, on the other hand, have
been shown to occur with a distinct orientational pattern with respect to
the parent microtubule. We describe this pattern through the normalized
relative nucleation angle distribution ν (∆θ) , with∫ 2π

0
d∆θ ν(∆θ) = 1. (2.15)

To determine the distribution of nucleation angles due to the bound nu-
cleations in the global reference frame, this distribution must be convolved
with the orientation distribution of the microtubules themselves, thus

ψb(θ) =
1

ktot

∫ 2π

0
dθ′ν(θ − θ′)k(θ′), (2.16)

which as one checks is again normalised. Finally, we take the firing rate of
bound nucleation complexes to be rbn. In the following, the only condition
we will assume on the relative nucleation angle distribution is that it is
mirror symmetric with respect to the parent-microtubule axis, i.e. ν(∆θ) =
ν (−∆θ) .

With these ingredients we can now construct the overall angle-dependent
nucleation rate

rn (θ) = nur
u
nψu(θ) + nbr

b
nψb(θ), (2.17)
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where nu and nb are the densities of unbound and bound nucleation com-
plexes respectively, as derived in the previous section. We graphically il-
lustrate the elements in the construction of the angle-dependent nucleation
rate in figure 2.2.

Nucleation modes

unbound bound

ru

rb

rn
u

isotropic anisotropic

rn
b

∆θ

binding equilibrium

ψ
b
(∆θ)

Figure 2.2: Schematic illustration of the model for the overall angle-
dependent nucleation rate, consisting of a chemical equilibrium be-
tween isotropic nucleation from unbound nucleation complexes (left)
and anisotropic nucleation from microtubule-bound nucleation complexes
(right). The light gray shape surrounding the nucleation complex (solid cir-
cle) represents a polar plot of the distribution of relative nucleation angles,
circular (= isotropic) in the unbound case (left) and a nontrivial function
ψb(∆θ) in the bound case (right).

It is now convenient to introduce the overall nucleation rate

rn = nbr
b
n + nur

u
n, (2.18)

and the relative firing rate

ρ =
rbn
run
, (2.19)

and to define
rn (θ) =

rn
2π
R(θ) (2.20)
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which introduces the absolute nucleation angle distribution R(θ). The latter
is explicitly given by

R(θ) =
ρktot

ρktot + k 1
2

2πψb(θ) +
k 1

2

ρktot + k 1
2

, (2.21)

where we have used the results of Eq. (2.13). The choice of the normaliza-
tion

1

2π

∫ 2π

0
dθ R(θ) = 1 (2.22)

for this distribution serves to minimize the number of explicit factors 2π
appearing in the final set of dimensionless equations discussed below.

2.2.4 Dimensional analysis

The set of Eqs. (2.6)–(2.9) can be simplified by the use of dimensional
analysis. The adoption of the length scale

l0 =

(
1

π

v+

(1 + v+

v− )rn/(2π)

)1/3

allows the definition of the dimensionless variables

L(θ) = l(θ)/l0, (2.23)

K(θ) = πk(θ)l0, (2.24)

T (θ) = πl20t(θ), (2.25)

and dimensionless control parameter of the problem

G = gl0 =

[
2v+v−

rn(v+ + v−)

]1/3 ( rr
v−
− rc
v+

)
. (2.26)

It is convenient to adopt the collision operators

C[h](θ) =
1

π

∫ 2π

0
dθ′c(θ − θ′)h(θ′),Z[h](θ) =

1

π

∫ 2π

0
dθ′z(θ − θ′)h(θ′),
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where h (θ) is any integrable function. With these definitions we can formu-
late the set of dimensionless equations describing the system in the presence
of anisotropic nucleation

1

L(θ)
= −G+ C[K](θ) + Z[K](θ) (2.27)

K(θ) = L(θ)(1 +Q(θ))T (θ) (2.28)

Q(θ) = Z[LK(1 +Q)](θ) (2.29)

T (θ) = L(θ)R(θ) + L(θ)K(θ)Z[T ](θ) (2.30)

The expression for the absolute nucleation angle distribution is facilitated
by the introduction of two additional operators

V[h](θ) =
1

π

∫ 2π

0
dθ′ν(θ − θ′)h(θ′) (2.31)

U[h](θ) =
1

π

∫ 2π

0
dθ′h(θ′) (2.32)

Non-dimensionalizing the microtubule length density using the definition
in Eq. (2.24), we find

R(θ) =
2πβV[K] + 1

βU[K] + 1
(2.33)

where the parameter β is given by

β =
ρ

k 1
2
l0
. (2.34)

Strikingly, this single parameter suffices to capture the relative importance
of the bound nucleations with respect to the unbound ones: it is high
whenever the affinity of the nucleation complexes to the microtubules is
high (small k 1

2
) or when the nucleation rate of the bound complexes is high

(large ρ) compared to that of the unbound ones.
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2.3 Results

2.3.1 Bifurcation analysis

In the isotropic state of the system, all angular dependence drops out and
the set of equations becomes

1

L̄
= −G+ (ĉ0 + ẑ0)K̄ (2.35)

K̄ = L̄(1 + Q̄)T̄ (2.36)

Q̄ = ẑ0L̄K̄(1 + Q̄) (2.37)

T̄ = L̄R̄+ ẑ0L̄K̄T̄ (2.38)

where throughout the overbar denotes quantities of the isotropic phase.
Here, as in the following, the coefficients ĉn and ẑn are the eigenvalues of
the operators C and Z respectively, on the basis of the cosines cos (nθ)

C [cos (nθ)] = ĉn cos (nθ) , Z [cos (nθ)] = ẑn cos (nθ) . (2.39)

Next, equation (2.33) readily gives

R̄ = 1 (2.40)

showing that the equations for the isotropic state are, as expected, inde-
pendent of the angular details of the nucleation mechanism and therefore
the same as those considered in [37] (cf. Eqs. (40) in that reference).

Using straightforward elimination we can derive the equations

K̄(ĉ0K̄ −G)2 = 1 (2.41)

and
N̄(1− ẑ0N̄)2G3 − [(ĉ0 + ẑ0)N̄ − 1]3 = 0 (2.42)

where N̄ = L̄K̄, that yield to equivalent ways of characterizing the isotropic
state as a function of the control parameter G.

In order to perform a bifurcation analysis, probing the stability of the
isotropic state against anisotropic perturbations, we parametrize the solu-
tions to the full problem as

L = L̄(1 + λ) (2.43)

K = K̄(1 + κ) (2.44)

Q = Q̄(1 + χ) (2.45)

T = T̄ (1 + τ) (2.46)
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where we assume that the perturbations λ, κ, χ and τ are small. Inserting
into the equations (2.27), (2.28), (2.29) and (2.30) and expanding to the
first order in the perturbations we obtain

−λ = N̄ (C[κ] + Z[κ]) (2.47)

κ = λ+ τ + ẑ0N̄χ (2.48)

χ =
1

ẑ0
Z
[
κ+ λ+ ẑ0N̄χ

]
(2.49)

τ = λ+ N̄ (ẑ0κ+ Z[τ ]) + (1− ẑ0N̄)B[κ] (2.50)

where

B[κ] =
βK̄

2βK̄ + 1
(2πV[κ]−U[κ]) (2.51)

Eliminating λ, χ and τ from these equations we find a linear eigenvalue
problem for the length density perturbation κ

(1− ẑ0N̄)κ = −2N̄C[κ] + (1− ẑ0N̄)B[κ] (2.52)

which is satisfied whenever κ(θ) is an eigenfunction of both the operators
C and B. Given the symmetries of the operators C,V and U the relevant
set of common eigenfunctions is the family cos (2jθ) , where j ≥ 1 (j = 0 is
not an anisotropic perturbation). We assume, as in [37], that the longest
wavelength perturbation cos (2θ) , i.e. the case j = 1, corresponds to the
first break of symmetry on increasing G. Inserting this assumption into the
eigenvalue equation (2.52), we get the equation which implicitly defines the
location of the corresponding bifurcation point

(1− ẑ0N̄) = −2N̄ ĉ2 + (1− ẑ0N̄)
2βK̄

2βK̄ + 1
ν2. (2.53)

Here we have introduced the co-alignment parameter

ν2 =

∫ 2π

0
dθ cos(2θ)ν(θ) ∈ [−1, 1] , (2.54)

which provides the relevant measure for the degree of orientational co-
alignment of microtubules originating from bound nucleation events with
their parent microtubules. Its appearance in the bifurcation equation (2.53)
provides an a posteriori theoretical underpinning for its heuristic use in
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the analysis of the simulation data in [21]. When ν2 = 1, which occurs
e.g. when ν(θ) = δ (θ)), the nucleated microtubules are perfectly co-aligned
(either in the plus- or minus end direction) with the parent microtubule,
when ν2 = −1, which occurs when ν(θ) = 1

2

(
δ
(
θ − π

2

)
+ δ

(
θ + π

2

))
, the

nucleated microtubules are maximally dis-aligned (= perpendicular) to the
parent microtubule. Finally, the intermediate case ν2 = 0 occurs when the
microtubules are either nucleated evenly into the “neutral” directions ±π

4
and ±3π

4 or simply isotropically
(
ν(θ) = 1

2π

)
.

The bifurcation equation (2.53), together with the isotropic state equa-
tions (2.41) and (2.42), allow us to calculate the critical value of the control
parameter G∗ at which the bifurcation occurs. We start by rewriting Eq.
(2.53) as

N̄ =
1

ẑ0 + M̄
, (2.55)

where

M̄ = (−2ĉ2)
(2βK̄ + 1)(

2βK̄(1− ν2) + 1
) . (2.56)

Inserting this form of N̄ into Eq. (2.42), we obtain

G∗ = M̄1/3(
ĉ0

M̄
− 1). (2.57)

We note that this result is valid independent of the sign of G∗. However,
in line with our choice, discussed in Sect. 2.2.1, to limit the analysis to the
regime G < 0, so that we are ensured an ordered steady-state can exist,
we now enquire under which constraints in fact G∗ < 0. As by definition
ĉ0 > 0, we should need both M̄ > 0 as well as M̄ > ĉ0. We now note
that sgn

(
M̄
)

= − sgn (ĉ2) , so that we require ĉ2 < 0. As discussed in
[37], this is generically the case for induced catastrophe probabilities Pc (θ)
that are (semi)monotonically increasing in θ on the interval

[
0, π2

]
, which

in turn is consistent with the in vivo observations [17]. Next, we note
that for ν2 ∈ [0, 1] , i.e. the range of nucleations that are effectively in
the forward to neutral directions with respect to the parent microtubules,
M̄ ≥ (−2ĉ2), so that it is then sufficient to require, as in [37], that (−2ĉ2) >
ĉ0. The latter requirement is readily met for realistic induced catastrophe
probability profiles. Finally, the available data indicates that ν2 ∼ 0.7−0.9.,
i.e. in the required regime [15, 39]. In the following we therefore freely adopt
these constraints.
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Chapter 2. Anisotropic microtubule-bound nucleations

We also note that in the limit β = 0, where the nucleation complexes
do not bind to the microtubules and all nucleations take place isotropically
in the bulk, Eq. (2.57) correctly reduces to

G
(0)
∗ = (−2ĉ2)1/3

(
ĉ0

−2ĉ2
− 1

)
, (2.58)

the result previously obtained in [37]. After some algebra, we can also
obtain the first order effect of a non-zero ν2 on the location of the transition

G
(1)
∗ =

∂G∗
∂ν2

∣∣∣∣
ν2=0

=
1

3ĉ2
(−2ĉ2)

1
3 (ĉ0 − ĉ2)

2βK̄
(0)
∗

(2βK̄
(0)
∗ + 1)

< 0 (2.59)

where K̄
(0)
∗ is the critical length density at ν2 = 0. This result indicates that

for positive co-alignment (ν2 > 0) the bifurcation point is shifted towards
lower G values, indicating a widening of the ordered region. Note also that
Eq. (2.57) implies that, in spite of the anisotropic nucleation mechanism,
the location of the transition does not depend on the presence or absence
of the zippering mechanism, in line with the analysis presented in [37].

To obtain the bifurcation point for arbitrary values of ν2, we introduce
(2.57) into the equation (2.41) coupling K̄ and G in the isotropic state,

ultimately obtaining a 15th order polynomial equation in
√
K̄ (not shown).

Numerical solutions of this equation allow us to identify the unique positive
real root that yields the critical value of the microtubule length density K̄∗,
which in turn can be used in Eq. (2.41) to back out the critical value G∗ of
the control parameter. The results of this procedure are discussed in the
next section.

2.3.2 Numerical solutions

To present our numerical results on the location of the ordering transition
we first have to choose a set of collision probabilities. Following Refs. [35]
and [36] we opted for the following stylized representation of the available
data

Pz (∆θ) =

{
1 ∆θ < θc = 40◦

0 θc ≤ ∆θ ≤ 90◦

Pc (∆θ) =

{
0 ∆θ < θc = 40◦

pc θc ≤ ∆θ ≤ 90◦
(2.60)
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2.3. Results

In figure 2.3 we show the result for the critical value G∗ as a function
of ν2 for a few values of the parameter β in the specific case pc = 0.5.
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Figure 2.3: Critical values G∗ of the control parameter G as a function of
the degree of co-aligned nucleation ν2 for 4 different values of the parameter
β.

We see that for all values of the parameter β, which governs the strength
of the anisotropic nucleation mechanism, the critical value of the control
parameter is a decreasing function of the coalignment parameter ν2. This
means that the regime of microtubule dynamical parameter for which the
system establishes an ordered state is widened. Indeed, we can interpret the
co-aligned nucleation of new microtubules as an additional positive feedback
mechanism on the basic “survival of the aligned” mechanism presented
in [37]: longer-lived aligned microtubules also generate “offspring” that
is similarly aligned, will therefore experience fewer catastrophe inducing
collisions, and hence “inherit” the longevity of their parents.
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Chapter 2. Anisotropic microtubule-bound nucleations

2.3.3 Comparison to simulations

In order to verify that the results of our mean-field theory are reasonable,
we here compare them with results from particle-based simulations. First
we compare with the semi-realistic simulations described in [21] (see figure
2.4). These employed a microtubule-bound nucleation distribution with n%
of nucleation along the parent microtubule in the forward direction, and
the remainder isotropically distributed. By varying the percentage n, the
degree of co-alignment, which in this case is simply given by ν2 = n/100,
can be varied over the full range [0, 1]. A second-rank order parameter S2

is defined as

S2 =
|
∫ 2π

0 dθei2θK(θ)|∫ 2π
0 dθK(θ)

(2.61)

and is calculated from the simulation data for different values of the con-
trol parameter G [21]. Then, the critical control parameter G∗ is easily
calculated.

In spite of the fact that the simulation employed the so-called simple
bundle collision dynamics, in which an microtubule impinging on a bundle
only sees a single target microtubule [42], and had explicitly treadmilling
microtubules [43], the qualitative agreement between the predicted loca-
tions of the transitions and the ones observed in the simulations is satis-
factory (see figure 2.4), specifically in reproducing the marked widening of
the ordered region.

To fully probe the validity of the theory, especially regarding the pre-
diction that the single parameter β governs the strength of the anisotropic
nucleation effects (at constant ν2), we vary independently the parameters
ρ and k1/2(see Eq. (2.34)) as we have adapted the simulations to accom-
modate for a different nucleation rate of the bound- versus the unbound
nucleations.

As a small technical aside, we remark that our event-driven simulation
scheme intrinsically employs a constant propensity rtry n for nucleation
events. To differentiate the rates of bound- versus unbound nucleations
(ρ 6= 1) we have used a rejection method discarding a fraction of bound (in
the case ρ < 1) or unbound (in the case ρ > 1) nucleations. This implies
that overall nucleation rate is less than the fixed propensity and more-
over state dependent (through the density dependence of the microtubule-
binding equilibrium of the nucleation complexes cf. Eq. (2.13)). To com-
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Figure 2.4: Comparison between simulation results [21] (filled circles,
dashed line to guide the eye) and theoretical predictions (solid line) for
the critical values G∗ of the control parameter as a function of the degree
of co-aligned nucleation ν2 for a model with pc = 0.5.

pare the theory, which assumes a constant overall nucleation rate rn, with
the results from the simulation we performed a scaling between the simula-
tion value of the coupling parameter Gsim (rtry n) and the theoretical value
G ≡ Gth (rn) , given by

Gth (rn) =


(
〈xb〉+ 1

ρ 〈xu〉
)− 1

3
Gsim (rtry n) ρ ≥ 1

( ρ 〈xb〉+ 〈xu〉)−
1
3 Gsim (rtry n) ρ < 1

(2.62)

where 〈xu〉 (and 〈xb〉 = 1− 〈xu〉) are averaged values determined from the
simulations.

We first check that indeed the critical value G∗ of the control parameter
G depends only on β, by choosing a fixed product ρ·k1/2 = β ·l0 and running
a number of simulations with ranging value of ρ. The simulation results
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Chapter 2. Anisotropic microtubule-bound nucleations

show (see figure 2.5) that the transition point to order is common for all
the tested pairs (ρ, k1/2) which correspond to the same value of β.

The results for the critical value of the coupling parameter as a function
of the nucleation co-alignment parameter ν2 for a number of different values
of β, shown in figure 2.6, prove that the theory is able to quantitatively
reproduce the simulation data.

As a separate check, to explicitly rule out the influence of zippering,
we have also performed the simulations with Pz (∆θ < θc) = 1, i.e. with
the same zippering/induced catastrophe strength ratio as in the standard
collision model Eq. (2.60), which yielded no significant differences. Indeed,
as we can see in figure 2.7, the presence of zippering does not affect the
location of the transition point of the system and its route to order.

Figure 2.5: Order parameter S2 as a function of the scaled to theory control
parameter G for different pairs (ρ, k1/2) with ratio ρ/k1/2 = βl0 = 0.75 and
ν2 = 0.60. Blue: (1, 4/3), red: (1.5, 2.0), black: (3, 4), cyan: (2/3, 8/9) and
pink: (6, 8).
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Figure 2.6: Critical values G∗ of the control parameter as a function of the
degree of co-aligned nucleation ν2 for a model with pcat = 0.01 and pzip =
0 for 3 different values of β, where β1 = 0.018 (Underlying parameters:
k 1

2
= 4µm−1, ρ = 1, l0 = 4.7425µm). Stars: simulation results. Lines:

theoretical results.

Figure 2.7: Order parameter S2 as a function of G with and without zip-
pering interactions. The distribution parameter ν2 of nucleation is equal
to 0.80 for both cases. The two systems are equilibrated for 20,000 seconds
before the alignment is measured. Results are averaged over 60 runs.
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Chapter 2. Anisotropic microtubule-bound nucleations

2.4 Conclusion

We have shown that the theoretical framework for describing the self-
organization of the microtubule cortical cytoskeleton in plant cells first
presented in [37] can be robustly extended to include the biologically rele-
vant microtubule-bound anisotropic nucleations. The relative importance
of this effect as compared to the background isotropic nucleation events is
predicted to depend on a single dimensionless number β, that takes into
account both the affinity of nucleation complexes for microtubules, as well
as a possible binding-state dependence of their firing rate. Our bifurcation
analysis furthermore reveals that averaged co-alignment of the bound nu-
cleations with the parent microtubule, captured by the parameter ν2, is the
main determinant of the location of the transition. The significant widening
of the ordered regime with increasing ν2 can be ascribed to a positive feed-
back mechanism that enhances the “survival of the aligned” mechanism
already described in [18]: aligned microtubules “beget” co-aligned “off-
spring” thus increasing the survival of the preferential direction. Finally,
the comparisons with the particle-based simulations, show that the theory,
albeit of a mean-field nature, is a robust approximation to full dynamical
system including the spatial dependencies.

The work described here is a first step in the extension of the model to
include a number of factors that are known to be involved in the in vivo
ordering process. Here, we specifically mention the effects of minus-end
treadmilling, microtubule severing by Katanin-like proteins and finiteness
of the available tubulin monomer pool. Including these effects is part of
our ongoing research effort.

42



Part II

Microtubule-based
phenomena induced by

shape
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3
Cell shape and the spatial

distribution of microtubules

We address the question how cell shape can modulate the intrinsic dynam-
ics of microtubules leading to anisotropic spatial distributions. To that
end we develop a 3D analytical model for microtubules that can stall at
a cell boundary and from which they detach at a variable rate. The re-
sulting equations are solved for a model cell with the shape of a general
ellipsoid and microtubules emanating from a single centrosome located in
the center of the cell. Depending on the parameters, either a longitudinal
or an transverse ordering pattern is observed. These analytical results are
subsequently verified by 2D stochastic simulations. Finally, we extend our
analysis to non-centrosomal spatially dispersed nucleation sites.
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Chapter 3. Cell shape and the spatial distribution of microtubules

3.1 Introduction

Recently evidence was presented for a microtubule organization mechanism
that is driven by the cell shape in epidermal cells of Drosophila [44]. This
raises the general question of how the fact that microtubules live within
the finite boundaries of the cell influences their spatial distribution.

There are a number of factors that should play a role. First and foremost
is the intrinsic dynamics of the microtubules. The values of the dynamical
parameters that characterize this dynamics control the mean length of the
microtubules, and hence the degree to which they are sensitive to the finite
size of the cell. Note that these dynamical parameters themselves may be
subject to cellular control through the interactions of microtubules with
microtubule associated proteins (MAPs) [45], which, among others, have
the ability to affect their stability, and hence their length distribution.
Next, an important role is played by how and where they are nucleated.
In proliferative animal cells microtubules are commonly nucleated from a
single localized cellular structure called a centrosome [46]. However, in
most differentiated cells microtubules are nucleated from non-centrosomal
sites and form arrays that are specific depending on the cell type [47].
Non-centrosomal microtubule organizing centers (ncMTOCs) are e.g. found
in human fibroblasts, neurons, plant epidermal cells, myotubes, intestinal
epithelial cells, and in C. elegans germ cells [48]. Last but not least, there
are the interactions of microtubules with the cell boundaries. It has been
shown experimentally in vivo [49] and in vitro [22] that a microtubule can
stall to the cell boundary. So, depending on the details of their interactions
with the boundary, microtubules can have a variable residence time there,
which can in principle be both longer or shorter than the typical waiting
time to a catastrophe for a free microtubule. Another effect known to play
a role is the fact that growing microtubules can exert forces causing them
to buckle [50] or even to slide along the boundary. Together these factors
will determine to what extent the spatial distribution of the microtubules
is dependent on the geometry of the cell.

Here, we wish to explore these effects from fundamental point of view.
In this chapter we will focus on the simplest setting, in which the mechan-
ical effects of the interaction with the boundary, like buckling and sliding,
are neglected. We will return to the effects of polymerization force driven
sliding in the next chapter. We first consider on the organization of centro-
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somal microtubules. To that end, we extend to 3D a previously developed
1D model for microtubules interacting with a boundary [51], and derive ex-
plicit equations for the angle-dependent microtubule length distributions in
the steady state. This formalism is then applied to a model cell shaped as
a general ellipsoid with a single centrosome at its center. Most real cells are
axially symmetric and the latter geometry can be reasonably well approxi-
mated by a 2D ellipse with the aspect ratio as the single shape parameter.
In this case we can also directly compare the analytical results with com-
putationally less demanding 2D stochastic simulations, which verify the
mean-field assumptions implicitly in the theory. Then, extend our study
to the non-centrosomal microtubules, first by considering the effects of a
non-central nucleation site and finally a spatially homogeneous distribution
of nucleation sites, both within an ellipse-shaped cell.

3.2 Model for microtubules nucleated isotropically
in a bounded space

We consider a point-like model “centrosome” located at a position r within
a bounded volume. It is homogeneously covered by nucleation sites that
can nucleate microtubules in a radial direction from this location. We
describe these nucleation sites through a constant (solid) angular density
m, so that the maximum number of microtubules that can emanate from
the centrosome is given by M = 4πm. Each nucleation site can be labelled
by the unit vector ω̂ of the direction in which it can nucleate a microtubule.
If it is unoccupied, it will do so at a rate rn. It is convenient to consider an
occupied nucleation site as a dormant microtubule, waiting to be nucleated.
Once a microtubule has been nucleated, it follows the standard dynamical
instability model [9], with growth speed v+, shrinking speed v− catastrophe
rate r+ and rescue rate r−. When the microtubule hits the cell boundary
it stalls, remaining there until it switches to the shrinking state with a rate
ru. The length of the microtubule when it hits the boundary is given by
L(ω̂|r), with the latter function encoding all the relevant information about
the shape of the cell. The dependent variables in our model are respectively

• m0(ω̂, t|r): The density (per solid angle) of dormant microtubules
pointing in the direction ω̂ at time t.

• m+
i (l, ω̂, t|r): The density (per solid angle per unit length) of growing
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L(ω|r)

r

Figure 3.1: Microtubule nucleation from position r inside a bounded geom-
etry. We can see the unit vector ω̂ and the distance L(ω̂|r) to the boundary
at the direction of nucleation.

microtubules of length l.

• m−i (l, ω̂, t|r): The density (per solid angle per unit length) of shrink-
ing microtubules of length l.

• mb(ω̂, t|r): The density (per solid angle) of microtubules bound to
the surface.

In terms of these variables, the dynamic equations of the system read

∂tm
+
i (l, ω̂, t|r) = −v+∂lm

+
i (l, ω̂, t|r) + r−m

−
i (l, ω̂, t|r)− r+m

+
i (l, ω̂, t|r)

(3.1)

∂tm
−
i (l, ω̂, t|r) = v−∂lm

−
i (l, ω̂, t|r)− r−m−i (l, ω̂, t|r) + r+m

+
i (l, ω̂, t|r)

(3.2)

∂tm0(ω̂, t|r) = −rnm0(ω̂, t|r) + v−m
−
i (l = 0, ω̂, t|r) (3.3)

∂tmb(ω̂, t|r) = −rumb(ω̂, t|r) + v+m
+
i (L(ω̂|r), ω̂, t|r) (3.4)
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with boundary conditions

rnm0(ω̂, t|r) = v+m
+
i (l = 0, ω̂, t|r) (3.5)

rumb(ω̂, t|r) = v−m
−
i (L(ω̂|r), ω̂, t|r) (3.6)

We introduce the integrated quantities

m+
i (ω̂, t|r) =

∫ L(ω̂|r)

0
dlm+

i (l, ω̂, t|r) (3.7)

m−i (ω̂, t|r) =

∫ L(ω̂|r)

0
dlm−i (l, ω̂, t|r) (3.8)

ma
i (ω̂, t|r) = m+

i (ω̂, t|r) +m−i (ω̂, t|r) (3.9)

respectively the total number of growing, shrinking and active microtubules
in the given direction in the interior. Integrating Eqs. (3.1), (3.2) over the
relevant lengths, and adding the resulting equations with (3.3), (3.4) and
using the boundary conditions, we find

∂tm
+
i (ω̂|r, t) + ∂tm

−
i (ω̂|r, t) + ∂tm0(ω̂|r, t) + ∂tmb(ω̂|r, t) = 0 (3.10)

verifying the conservation of total number of microtubules in our systems,
which we can also express as

m0(ω̂, t|r) +ma
i (ω̂, t|r) +mb(ω̂, t|r) = m (3.11)

In the steady state Eqs. (3.1), (3.2), (3.3), (3.4) are written

v+∂lm
+
i (l, ω̂|r) = r−m

−
i (l, ω̂|r)− r+m

+
i (l, ω̂|r) (3.12)

−v−∂lm−i (l, ω̂|r) = −r−m−i (l, ω̂|r) + r+m
+
i (l, ω̂|r) (3.13)

v+m
+
i (l = 0, ω̂|r) = rnm0(ω̂|r) (3.14)

v+m
+
i (L(ω̂|r), ω̂|r) = rumb(ω̂|r) (3.15)

Adding Eqs. (3.12) and (3.13) gives

∂l{v+m
+
i (l, ω̂|r)− v−m−i (l, ω̂|r)} = 0 (3.16)

Combining Eqs. (3.15) and (3.6), yields

v+m
+
i (L(ω̂|r), ω̂|r) = v−m

−
i (L(ω̂|r), ω̂|r) (3.17)
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which shows that the constant of integration of the previous equation van-
ishes and, so, we get

v+m
+
i (l, ω̂|r) = v−m

−
i (l, ω̂|r) (3.18)

This allows us to eliminate m−(l, ω̂|r) in Eq. (3.12) and solve this equation
using Eq. (3.14)

m+
i (l, ω̂|r) =

rn
v+
m0(ω̂|r)e−l/l̄ (3.19)

where

l̄ =

(
r+

v+
− r−
v−

)−1

(3.20)

is the mean length of unperturbed microtubules. Similarly, we get

m−i (l, ω̂|r) =
rn
v−
m0(ω̂|r)e−l/l (3.21)

We can now use the boundary condition (3.6) to find

mb(ω̂|r) =
rn
ru
m0(ω̂|r)e−L(ω̂|r)/l (3.22)

The final unknown, m0(ω̂|r), can now be obtained, by employing the con-
servation law (cf. Eq. (3.10))

m0(ω̂|r) +

∫ L(ω̂|r)

0
dl {m+

i (l, ω̂|r) +m−i (l, ω̂|r)}+mb(ω̂|r) = m (3.23)

Inserting the equations for m+
i (l, ω̂|r), m−i (l, ω̂|r) and mb(ω̂|r) we obtain

m0(ω̂|r)

{
1 + rn

(
1

v+
+

1

v−

)
l(1− e−L(ω̂|r)/l) +

rn
ru
e−L(ω̂|r)/l

}
= m (3.24)

or

m0(ω̂|r) = m
t0

t0 + t̄(1− Fb(ω̂|r)) + tbFb(ω̂|r)
(3.25)
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Here, we have introduced

t0 =
1

rn
(3.26)

t̄ =

(
1

v+
+

1

v−

)
l (3.27)

tb =
1

ru
(3.28)

Fb(ω̂|r) = e−L(ω̂|r)/l (3.29)

with t0 the mean life time in the dormant state, t̄ the mean lifetime of
a microtubule without a boundary constraint, tb the mean lifetime of the
bound state and Fb(ω̂|r) loosely interpreted as the fraction of active mi-
crotubules that enters the bound state. This representation allows an easy
interpretation of the steady-state densities in terms of the fraction of the
time spent in the specific state. In this way, we consider the density mα(ω̂)
of the active microtubules

ma
i (ω̂|r) =

∫ L(ω̂|r)

0
dl {m+

i (l, ω̂|r) +m−i (l, ω̂|r)} (3.30)

which, by combining (3.19), (3.21) and (3.25), becomes

mα(ω̂|r) = m
t̄ (1− Fb(ω̂|r))

t0 + t̄(1− Fb(ω̂|r)) + tbFb(ω̂|r)
(3.31)

Similarly, combining equations (3.22) and (3.25) we get

mb(ω̂|r) = m
tbFb(ω̂|r)

t0 + t̄(1− Fb(ω̂|r)) + tbFb(ω̂|r)
(3.32)

While the number densities of microtubules in a certain direction are inter-
esting, a physically more relevant description of the spatial distribution of
the microtubules is provided by the length densities, which measure e.g. the
capacity to bias motor-driven transport in a given direction, which relies
both on the ability of motor-proteins to bind, itself proportional to length,
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as well as the distance of which transport can place. We therefore We re-
gard now the length densities lai (ω̂|r), lb(ω̂|r) of the active and the bound
microtubules in the steady state

lai (ω̂|r) =

∫ L(ω̂|r)

0
dl l ma

i (l, ω̂|r) (3.33)

lb(ω̂|r) = L(ω̂|r)mb
i(ω̂|r) (3.34)

Using Eqs. (3.19), (3.21), (3.25) and (3.33), we find

la(ω̂|r) = m
t̄

t0 + t̄(1− Fb(ω̂|r)) + tbFb(ω̂|r)

(
l̄ − (L(ω̂|r) + l̄)Fb(ω̂|r)

)
(3.35)

And, using also Eqs. (3.22)and (3.34), we get

lb(ω̂|r) = m
tb

t0 + t̄(1− Fb(ω̂|r)) + tbFb(ω̂|r)
L(ω̂|r)Fb(ω̂|r) (3.36)

Finally, the total length density l(ω̂|r) is defined as

l(ω̂|r) = la(ω̂|r) + lb(ω̂|r) (3.37)

For estimating the degree of microtubule alignment, we need to consider a
nematic order parameter. To this end, we regard the unit vector along the
microtubules given by ω̂ = (sin θ cosφ, sin θ sinφ, cos θ). Then the 3D order
parameter tensor is given by

Q = 〈1
2

(3ω̂ ⊗ ω̂ − I)〉 (3.38)

which works out as

Q = 〈

 3
2 cos2(φ) sin2(θ)− 1

2
3
2 cos(φ) sin2(θ) sin(φ) 3

2 cos(θ) cos(φ) sin(θ)
3
2 cos(φ) sin2(θ) sin(φ) 3

2 sin2(θ) sin2(φ)− 1
2

3
2 cos(θ) sin(θ) sin(φ)

3
2 cos(θ) cos(φ) sin(θ) 3

2 cos(θ) sin(θ) sin(φ) 3
2 cos2(θ)− 1

2

〉
(3.39)

The random element Qij of Q for e.g. the length density la(ω̂|r) of the
active microtubules is

Qij =

∫ π
0 dθ sin θ

∫ 2π
0 dφ 1

2 (3ω̂ ⊗ ω̂ − I)ij la(ω̂|r)∫ π
0 dθ sin θ

∫ 2π
0 dφ la(ω̂|r)

(3.40)
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The eigenvalues of Q are the scalar order parameters at the directions
defined by the three components of the unit vector ω̂.

The 2D uniaxial order parameter tensor is defined by

S = 〈2ω̂ ⊗ ω̂ − I〉 (3.41)

with ω̂ = (cos θ, sin θ) the unit vector along the microtubules. We can easily
get

S = 〈
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
〉 (3.42)

Then, for e.g. the case of the length density la(ω̂|r) it holds

〈cos 2θ〉 =

∫ 2π
0 dθ cos 2θ lα(ω̂|r)∫ 2π

0 dθ lα(ω̂|r)
(3.43)

and

〈sin 2θ〉 =

∫ 2π
0 dθ sin 2θ lα(ω̂|r)∫ 2π

0 dθ lα(ω̂|r)
(3.44)

The positive eigenvalue of the 2D uniaxial order parameter tensor is

S =
√
〈cos 2θ〉2 + 〈sin 2θ〉2 (3.45)

which is the scalar order parameter. For S = 0 we have a perfectly isotropic
system, while for S = 1 all microtubules align to the same direction.

In order to distinguish the longitudinal bipolar state from the transverse
one, we use the order parameter S2, which measures the degree of order
along the longitudinal axis

S2 = 〈cos 2θ〉 (3.46)

For S2 > 0 we get a longitudinal ordering, whereas for S2 < 0 we get a
transverse one.

For the unipolar state we use the order parameter

S1 =
√
〈cos θ〉2 + 〈sin θ〉2 (3.47)
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3.3 Results

3.3.1 General ellipsoidal cell with a central centrosome

We now consider as a model cell shape a general ellipsoid with a centrosome
fixed at its center r = 0. For notational convenience we will no longer ex-
plicitly refer to the position of the centrosome. Using a Cartesian reference
frame with the origin at the centrosome, the ellipsoid is described by the
equation

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.48)

Then, by symmetry the Q order parameter tensor reduces to the diagonal
form

Q =

 〈32 cos2(φ) sin2(θ)− 1
2〉 0 0

0 〈32 sin2(θ) sin2(φ)− 1
2〉 0

0 0 〈32 cos2(θ)− 1
2〉


(3.49)

The three diagonal elements are in this case the eigenvalues of the 3D order
parameter and, so, are the scalar order parameters in the directions of the
ellipsoid axes a, b, c.

The distance L(θ, φ) from the centrosome to the boundary in terms of
the polar angle φ and azimuthal angle θ is given by

L(θ, φ) =
abc√

a2b2 + c2(a2 − b2) sin2 θ sin2 φ+ b2(c2 − a2) sin2 θ
(3.50)

Two example cell shapes, a prolate and an oblate ellipsoid, are shown in
figure (3.2).

By keeping the two axes lengths a and c constant and varying between
them the length of the third axis b, we get different ellipsoids with charac-
teristics between a prolate and an oblate ellipsoid. For each of them and for
the set of parameters shown in Table (3.1), we calculate the three scalar or-
der parameters that give the degrees of microtubule length ordering parallel
to axes a, b, c. The results are shown in figure (3.3).
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Figure 3.2: Prolate (left) and oblate (right) ellipsoids with centers at r = 0.
Prolate semi-axes a = 1, b = 1, c = 3 and oblate a = 1, b = 3, c = 3.
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Figure 3.3: Order parameters S2(a), S2(b), S2(c) for the uniaxial ordering of
microtubule length in an ellipsoid with axes a, b , c as functions of the only
axis with variable length b. Parameters: a= 1, c = 3 and the remaining as
in Table 1.
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Parameter Value Reference
v+ 0.018 µm s−1 [52]
v− 0.040 µm s−1 [52]
rn 0.05 s−1 [53]
r+ 0.0078 s−1 [52]
r− 0.0016 s−1 [52]
ru 0.01 s−1 [49]

Table 3.1: Model parameters.

At this point we explain why we chose the value l̄ = 2.54 of the mean
length in our calculations. The reason is that this value is close to the
longest distance (c = 3) to the boundary, which is a necessary requirement
in order to take into consideration the interaction of microtubules with the
most distant boundary regions.

3.3.2 Axially symmetric cell with a central centrosome

3.3.2.1 Analytical approach

Having in mind the comparison between theory and 2D-simulations, which
are simpler and faster than the 3D ones, we examine here the sensitivity of
the ordering degree when we change the model from 3D to 2D. To this end,
we compare a 3D ellipsoid of revolution with axes half-lengths a = b < c,
with the elongated direction along the z-axis, with a 2D ellipse with axes
half-lengths a < c, with the long axis now along the x direction. In both
cases we call the polar angle with respect to the long axis θ. We now note
that

L(3)(θ, φ) = L(3)(θ) =
ac√

a2 cos2 θ + c2 sin2 θ
= L(2)(θ) ≡ L(θ) (3.51)

This implies that as a function of θ the results for the length distributions
in the 2D and the 3D cases are identical, i.e.

l(3)(θ) = l(2)(θ) =
t̄l̄(1− Fb(θ)) + (tb − t̄)L(θ)Fb(θ)

t0 + t̄(1− Fb(θ)) + tbFb(θ)
≡ l(θ) (3.52)
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We thus need to compare

S
(2)
2 =

∫ π
0 dθ cos(2θ)l(θ)∫ π

0 dθ l(θ)
(3.53)

S
(3)
2 =

∫ π
0 dθ sin(θ)P2(cos θ)l(θ)∫ π

0 dθ sin(θ)l(θ)
(3.54)

where in the 2D case we have used that by symmetry l(θ+ π) = l(θ). This
shows that in this setting the 2D case rigorously reproduces the 3D case,
in the sense that the length-distribution is identical.

A numerical analysis is applied to a prolate ellipsoid and the ellipse
that generates it by rotation for the set of parameters of Table 3.1. The
comparison is made for the ordering degree in the direction of the long axis,
which is common for the two shapes, and for different values of its length.

The numerical results are shown in figure 3.4 and reveal that S
(2)
2 ≥ S

(3)
2

by a factor ∼ 2 at intermediate ordering. The difference between the order
parameters is simply due to the difference in their definition, since the
analytical form of length distributions is the same.
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Figure 3.4: 3D and 2D order parameters for a prolate ellipsoid and the
ellipse that generates it, as functions of the long axis length. Parameters:
short axes equal to 1 and the remaining as in Table 3.1.
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3.3.2.2 The effect of the residence time at the boundary and the
mean length on 2D ordering.

Here, we are going to calculate numerically the order parameter S2 for the
case of a finite unbinding rate ru and the case of no binding at the boundary
of an ellipse with a, b as the short and the long semi-axes (see figure 3.5).
For each one of these cases we will regard two subcases, one with a < l̄ and
one with a > l̄ for a certain value of l̄. Then, for each sub-case we are going
to regard four sub-sub-cases of different b values.

a

a

b

θ

MTs

dynamical

Figure 3.5: Schematic of the model applied to an ellipse. We can see
the dynamical microtubules nucleated from a centrosome positioned at the
center of the ellipse with semi-axes a, b. The nucleation angle θ of a single
microtubule is shown, too.

We calculate now the order parameter S2 for the case of no binding at
the boundary and the case of a residence time tb at the boundary larger
than t̄. These cases are combined with the cases of a shorter or a longer
than l̄ short-axis a.
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Figure 3.6: Order parameter S2 =< cos 2θ > as a function of b/a. The
cases of a finite (ru = 0.002s−1) and an infinite binding rate are examined in
combination with the cases of a shorter (a=1µm) and a longer (a=6.35µm)
short-axis than l̄. Parameters: rn = 0.05s−1, l̄ = 2.54µm, t̄ = 205s.

Looking at the results shown in figure (3.6), we can see that the long
residence time of microtubules at the cell boundary lowers the degree of
longitudinal ordering and, in combination with longer short-axes in relation
to the mean length l̄, changes ordering to transverse. So, low unbinding
rates and higher ratios of short-axis to mean length work together to the
direction of the transverse ordering. Furthermore, we can see that the axes
ratio b/a affects significantly ordering when the short axis is shorter than
the mean length of microtubules and there is no binding to the boundary.

3.3.2.3 Comparison with 2D-simulations

In order to verify the theoretical results, we proceed to computer simula-
tions. In the simulation algorithm we regard the states dormant, grow-
ing and shrinking for the microtubules that do not touch the cell bound-
ary. We also consider the state bound for the microtubules that are stalled
to the boundary.

The dormant state is the state after which a microtubule comes to
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the growing state. Regarding the growing state, it describes a growing
microtubule that has not yet touched the boundary of the ellipse. So, the
microtubule can continue to this state or it can go to a catastrophe and
pass to the shrinking state or it can come to the boundary and pass to
the bound state.

Regarding the shrinking state, there are also three possibilities for a
microtubule. It can go to the dormant state by keep shrinking and coming
to the centrosome site, it can go to the growing state by keep shrinking
and undergo a rescue or it can simply stay in the same state. Regarding
the bound state, a microtubule can unbind from the cell boundary going
to the shrinking state or it can stay in the same state.

We regard an ellipse and M angle bins equal to 2π/M . The angle
position of each bin is θm = (m+1)2π/M,m = 0, 1..M−1. For a certain set
of parameters, we calculate the length density of microtubules at each bin
and, following, we construct the graph of the length density as a function
of the angle position. Furthermore, the order parameter S2 for the bipolar
degree of the length distribution of microtubules is calculated as

S2 =

∑M−1
m=0 lm cos 2θm∑M−1

m=0 lm
(3.55)

where lm is the length density of microtubules at the m-th angle θm.

On the other hand, the analytical length density of microtubules for
the same set of parameters is calculated by Eq. (3.52). We apply this
calculation for the same angular binning with the simulation model and
we construct the graph of the theoretical length density. The two graphs,
corresponding to theoretical and to simulation results, are shown in figure
(3.7). By comparing them, we find a high level of qualitative agreement.
The same holds for the order parameters values of simulation (Eq.(3.55))
and theory (Eq.(3.43)), which are found to be equal to the value 0.449.

In the chapters of Part III, where the cell polarity is examined, the
number densities of bound microtubules play a significant role. So here,
except of the length density study, we proceed also to the application of
the number density equations for bound microtubules and their comparison
with 2D simulations. First, we write equation (3.32) for 2D bound space

mb(θ) = m
tbFb(θ)

t0 + t̄(1− Fb(θ)) + tbFb(θ)
(3.56)

60



3.3. Results

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300  350  400

A
n
g
u
la

r 
le

n
g
th

 d
e
n
s
it
y

Bin number

simulation results
theoretical results

Figure 3.7: Verification of the theoretical length density by 2D simulations.
The total angular length density (µm per radian) of microtubules as a func-
tion of the angle bin number is shown. Parameters: long semi-axis b=4µm,
short semi-axis a=2µm, rn, l̄, t̄ as in figure (3.6), 1000 microtubules, 400
bins, ru = 0.002s−1, 300 · 106 time steps equal to 0.5s each.

Then, we apply this equation to an elliptical boundary for two chosen sets
of parameters which differ only in the value of the unbinding rate ru, getting
the number density graphs of figure (3.8).

We can see that the number density of the bound microtubules is higher
at sites of the boundary that are closer to the point of nucleation, as we
expected taking into consideration the dynamics of microtubules. We can
also see how the change of the unbinding rate at the boundary affects the
distribution of the bound microtubules.

In order to verify the equation for the number density of bound micro-
tubules nucleated from the center of an ellipse, we perform 2D simulations.
Since the boundary is not circular, equal angles do not correspond to equal
arc lengths. So, when representing boundary concentrations, we have to
map the nucleation angles to arc lengths on the boundary. To that end,
we choose to transform the nucleation angles θ of the polar coordinates to
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Figure 3.8: Number density of the bound microtubules nucleated from the
center of an ellipse for two different unbinding rates ru = 0.01s−1 (blue
color) and ru = 0.02s−1 (red color) at the boundary. The distance from
the center equals fifteen times the value of the number density. Parameters:
long semi-axis b=3µm, short semi-axis a=1.5µm and the rest as in figure
(3.7).

angles ν of the elliptic coordinates [54]

ν = arctan

(
b

a
tan θ

)
(3.57)

Then, it’s easy to find the arc length s that corresponds to angle ν

s =

∫ ν

0
dν ′
√

a2 cos2 ν ′ + b2 sin2 ν ′ (3.58)

Discretizing the ellipse boundary to a certain number of equal lengthed bins,
we map each bin node length s to a corresponding node angle, creating in
that way a table of angles and corresponding arc lengths values. Then, a
random angle of nucleation can be easily mapped by interpolation at the
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table values to an arc length that informs us about the bin number where
it belongs.

We apply this procedure for a chosen set of parameters. The results
are shown in figure (3.9), where the theoretical results are shown, too. The
verification of theory by the simulations is obvious.
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Figure 3.9: Verification of the theoretical number density of bound micro-
tubules by 2D simulations. The number density of the bound microtubules
as a function of the elliptical arc bin number is shown. Parameters: as in
figure (3.7) for 106 time steps equal to 0.5s each.

3.3.3 Non-central nucleation

3.3.3.1 Influence of the position of nucleation

Here we examine how the position of the centrosome inside an elliptical
cell affects the length distribution of microtubules. To that end, we re-
gard different positions of the centrosome inside an ellipse. We apply Eq.
(3.52) for the angular length density of the microtubules to five different
nucleation sites inside an ellipse and we get five length distributions for
the microtubules, which are shown in figure (3.10). We can see the strong
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influence of the nucleation position to the length density distribution of the
microtubules.

Figure 3.10: Total length density of microtubules nucleated from 5 different
sites inside an ellipse. For each nucleation site the length density is 1/5 of
the distance from it. Parameters: as in figure (3.8), ru = 0.01s−1.

Figure 3.11: Length density of the bound microtubules nucleated inside an
ellipse. For each nucleation site the length density is 1/10 of the distance
from it. Parameters: as in figure (3.8), ru = 0.01s−1.

Then, we calculate the length density distributions of the bound mi-
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crotubules that are nucleated from the same points inside the ellipse. To
that end, we apply equation (3.36) for each nucleation site. The resulting
distributions are shown in figure (3.11).

3.3.3.2 Homogeneously distributed nucleation sites

As we referred in the introduction, here we’ll examine the case of non-
centrosomal nucleation sites that are homogeneously distributed inside an
ellipse. We determine the ordering behavior of the bound microtubules
by performing stochastic simulations. To that end, we regard the order
parameter

S
(r)
2 =

∫
dr
∫
dθ cos 2θ lb(θ|r)∫

dr
∫
dθ lb(θ|r)

(3.59)

where θ is the nucleation angle, r is the radial vector of the random nucle-
ation site and lb(θ|r) is the angular length density of the bound microtubules
nucleated from site r.

Due to complexity of calculating S
(r)
2 from the above equation, we use

a numerical integration technique known as Monte Carlo integration. By
regarding a finite number of nucleation points with random positions, the
integration over the position vectors is replaced by the sum of the integrals
of the nucleation points over the nucleation angle. So, the order parameter
is read

S
(r)
2 =

∑n
i=1

∫
dθ cos 2θ lb(θ|ri)∑n

i=1

∫
dθ lb(θ|ri)

(3.60)

where n is the total number of the nucleation sites.

The random positions of the nucleation sites inside the ellipse are con-
sidered to follow the homogeneous distribution. To that end, we must not
select random values ri, θi of the polar coordinates, as the elementary area
is not equal to drdθ, but it’s equal to rdrdθ. So, we must use the cartesian
coordinates xi, yi for which the elementary area is dxdy.

We regard a, b as the semi-axes of the ellipse with a>b. We also regard
the random numbers rx, ry with rx, ry ∈ [−1, 1], which generate the random
points (arx, bry). These points must be at the interior of the ellipse, so the
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following condition must be satisfied

(arx)2

a2
+

(bry)
2

b2
< 1 (3.61)

which becomes

r2
x + r2

y < 1 (3.62)

We performed simulations for 6 different cases of axes ratio b/a com-
bined with 2 different values of short semi-axis a. The calculated values of
the order parameter S2 form the graphs of figure (3.12).
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Figure 3.12: Order parameter S2 as a function of b/a for non-centrosomal
nucleation sites homogeneously distributed inside an ellipse. The cases of a
shorter (a=1µm) and a longer (a=6.35µm) short-axis than l̄ are examined.
Parameters: as in figure (3.7), ru = 0.01s−1, 120 nucleation points.
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Figure 3.13: Order parameter S2 as a function of b/a for the case of a single
centrosomal nucleation site at the center of an ellipse and the case of non-
centrosomal nucleation sites homogeneously distributed inside an ellipse
with a=1µm, both examined for ru = ∞ and ru = 0.002s−1. Parameters:
as in figure (3.7), 120 nucleation points.

Looking at the graphs of figure (3.12), we conclude that as the short
axis becomes longer than the mean length l̄, the degree of ordering in the
longitudinal direction becomes lower opening the way for ordering in the
transverse direction. This is a corresponding conclusion with that of the
case of a single centrosomal nucleation site.

A more detailed comparison of ordering between the case of a single
centrosomal site at the center of an ellipse and the case of homogeneously
distributed nucleation sites inside the ellipse is possible through the graphs
of figure (3.13). For the case of an infinite unbinding rate and a certain
set of parameters the S2 parameter is calculated for different axes ratio.
The shown results reveal the similar way that the shape affects ordering of
centrosomal and non-centrosomal microtubules.
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3.4 Conclusion

In this chapter we have extended to 3D space a 1D model previously de-
veloped in [51] for microtubules which can stall at a boundary, and we
derived the equations describing the length distribution of microtubules
inside a cell. The equations were first formulated for a generic boundary
shape. Subsequently, they were applied to the specific form of an ellipsoid
of revolution with a centrosome at its center for which they could be solved
numerically.

The presence of axial symmetry in the specific case of the ellipsoid made
our model not very sensitive to a change of dimension, opening the way
for a simpler and faster 2D simulation approach. We therefore regarded
the subcase of a 2D ellipse with a centrosome at its center. An order
parameter for the distribution of microtubules in 2D space was defined. By
applying a numerical analysis of the equations, we revealed the domination
of either a longitudinal or a transverse direction of ordering depending of
the parameters of system. High unbinding rates and shorter short semi-
axes in relation to the mean length of microtubules work to the direction
of longitudinal ordering and the opposite combination leads towards the
transverse ordering. A 2D simulation analysis was performed showing a
high qualitative agreement between numerical and simulation results.

Going further with this model, we examined the influence of the nucle-
ation position on the form of the length density distribution. To that end,
we applied the equations extracted for a general form of a boundary to dif-
ferent nucleation sites inside an ellipse. In this way, we obtained different
length density distributions, revealing a strong dependence on the position
of nucleation.

We continued our analysis by regarding non-centrosomal nucleation
points inside an ellipse. We defined an order parameter to calculate the
degree of microtubule ordering and we approximated it by applying the
method of Monte Carlo integration to a large number of spatially homoge-
neously distributed nucleation sites. By comparing the numerical results
with the previously calculated ones for the single central nucleation site,
we found that cell shape and the unbinding rate from the boundary have
comparable effects on microtubule ordering.
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4
A microtubule boundary-sliding

model

When a growing microtubule end hits the cell boundary, pushing forces
acting on microtubules are generated. In non-spherical cells these forces
lead to the slipping of microtubules along the plasma membrane. We de-
velop a model to predict the effect of the sliding motion of microtubules
on their orientational distribution. Unlike previously developed models for
this effect, our model takes into account the dynamic nature of the push-
ing forces. Both an analytical treatment of a slightly perturbed spherical
boundary and 2D stochastic simulations reveal a marked increase in the
bipolar longitudinal ordering of the sliding microtubules.
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4.1 Introduction

Here we develop a model for the phenomenon known as ’slipping’ of the
microtubules, which is described by the sliding of growing microtubule ends
along non-spherical cell boundaries. Such ’slipping’ of microtubules has
been observed experimentally in vitro [55]. This motion of microtubules is
the result of pushing forces acting on microtubules from the boundary, so
to understand it we need to consider a force production mechanism. We
call our model a ’boundary-sliding’ model.

The interaction between microtubules and the cell boundary is crucial
for the positioning of structures like the centrosome, the nucleus and the
mitotic spindle. Pushing forces acting on microtubules when “hitting” the
cell cortex are generated due to their polymerization [49, 56].

Furthermore, it is known that the growth velocity has quasi-statically
an exponential decaying dependence on force [50]. We also know from a
phenomenological model [57] that in steady state the mean time to catas-
trophe is a linear function of the growth velocity. Consequently, provided
that different values of force are generated at the boundary, there is an
obvious dependence of the catastrophe rate at the boundary on the values
of the force acting on stalled microtubules.

One of the existing models, developed by Foethke et al. [58], takes into
consideration the linear dependence of the catastrophe rate on the growth
speed and the exponential decay of the growth speed with force. However,
it doesn’t predict theoretically the force values by assuming some force
production mechanism, but uses force values observed in vitro. Another
known model, due to Pavin and Laan [59], calculates the pushing forces
on microtubules based only on the geometry of the confinement. This geo-
metrical effect is expressed by the consistency between the growth speed of
microtubules and their slipping speed on the boundary. Both these models
neglect the dynamical nature of the pushing force acting on a microtubule
that ’hits’ the cell boundary.

Here we present a model, to date only briefly described in [60], which
introduces the concept of a growing microtubule at the boundary “stor-
ing length”, which causes it to be compressed following the Hooke’s law.
The resultant force has two effects, it slows down the further increase in
length following the known force-velocity rule, and it increases the rate of
catastrophe in keeping with the observed linear relation between life time
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and growth speed. Together these two effects self-consistently describe the
dynamic character to the pushing force acting on the microtubules.

In the following, we’ll look at how our model can predict the motion
of the sliding microtubules and if any pattern of ordering is formed. To
this end, we’ll develop evolution equations for the sliding microtubules.
Continuing, we are going to calculate analytically the distribution of the
microtubules in the steady state at a boundary of certain 3D geometry.
Next, we’ll perform 2D stochastic simulations in order to investigate the
existence of any ordering effect and, ending, we’ll compare the results of
our model with the work of Pavin et al. [59].

4.2 The model

4.2.1 Force-production model

We consider microtubules described by the standard two-state dynamical
instability model. When not in contact with the boundary they switch be-
tween states in which they grow with speed v+ and shrink with speed v−
. The rate of switching between growth and shrinkage in the unobstructed
state is given by r+ (catastrophe) and the rate of switching between shrink-
ing and growth by r− (rescue).

We adopt the model developed in [60], which introduces the notion of
the “stored length”. According to this model, when a microtubule hits the
fixed barrier at a distance L from the nucleation site, it can still continue to
grow as thermal fluctuations of the microtubule tip can open a gap for a new
tubulin dimer to be added. The resultant compression of the elongating
microtubule exerts a force on the barrier (an equal reaction force is of course
exerted by the barrier on the microtubule) following Hooke’s law

F (l) = k(l − L) (4.1)

where k is the compression modulus of the microtubule and l − L is the
stored length.

71



Chapter 4. A microtubule boundary-sliding model
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Figure 4.1: Schematic of the force-production model of “stored” length.
a) Notion of a microtubule (MT) with length l larger than the possible
maximum length L to the boundary. b) Equivalent system with a “stored”
length l−L on a microtubule with length L and pushing force F = k(l−L).

We next assume that the microscopic dynamics of the microtubule,
involving the addition and removal of individual tubulin subunits, is fast
compared to the growth process, and that the off-rate is small with respect
to the on-rate. In that case the growth speed quasi-statically decreases as
[50]

v̄+(l) = v+e
−βdF (4.2)

where β = (kBT )−1 is the inverse temperature in units of the Boltzmann
constant and d is the microscopic stepsize of the growth process. This
parameter can be determined phenomenologically on the basis of measured
force-velocity relations. The value suggested by [58] are

βd =
1

fs
=

1

1.67pN
(4.3)

where fs is the sensitivity of the microtubule growth to the opposing force.
Throughout, we will use the overbar to denote quantities in the force-

loaded state. The catastrophe rate should increase when in contact with the
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boundary. Lacking a detailed microscopic catastrophe model, we choose to
extend the observation by Janson and Dogterom [57] that in steady state
growth the mean time to catastrophe is proportional to the growth velocity,
and we now assume that this also holds instantaneously. This implies that

t̄+(l) =
1

r̄+(l)
∝ v+(l) (4.4)

which yields

r̄+(l) = r+e
βdF (l) (4.5)

Moreover, we assume that in the loaded state, l > L, no rescues are possible,
so that once a catastrophe occurs in this regime the microtubule will shrink
to the unloaded state l ≤ L and that the shrinkage speed is unaffected by
the loading.

a

a

b

θ

MTs

dynamical

F1

F2

s

Figure 4.2: Schematic of the boundary-sliding model applied to an ellipse.
The sliding force F1 at the beginning and F2 at the end of a ’sliding’ step of
a stalled microtubule is shown. We can see also the arc length coordinate
s and the nucleation angle θ of a single microtubule.

For non-spherical cells, the growth force is generically not perpendicular
to the boundary and, so, has a tangential component F‖. This component
of the force is countered by the damping force of the microtubule-end’s
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Chapter 4. A microtubule boundary-sliding model

sliding motion on the boundary with velocity v‖. Velocity and force are
connected by the viscous equation of motion

F‖ = −ξv‖ (4.6)

where ξ is the sliding drag coefficient.

4.2.2 Evolution equations of sliding microtubules

We proceed now to formulate the evolution equations which govern the
sliding of the microtubules on the cell boundary. For simplicity reasons, we
regard a convex cylindrically symmetric body, which will represent the cell
shape in our analytical study. Due to the cylindrical symmetry, the points
on the surface are parametrized by the radial distance r(θ), i.e. are only
dependent on the polar angle θ. The physical quantity for which we will
develop evolution equations, is the number density m̄(l, θ) of the sliding
microtubules on the boundary.

Let δA(θ) be an (infinitesimal) element of surface area, n̂(θ) the unit
vector perpendicular to it and r̂(θ) the unit vector parallel to the position
vector r(θ). We have

r(θ) = r(θ)(sin θ cosφ, sin θ sinφ, cos θ) (4.7)

n̂(θ) =

∂r
∂θ ∧

∂r
∂φ

‖∂r∂θ ∧
∂r
∂φ‖

(4.8)

r̂(θ) =
r(θ)

r(θ)
(4.9)

The projection of this element of area onto the sphere with radius r = r(θ)
is r2(θ) sin θδθδφ, so

δA(θ) =
r2(θ) sin θδθδφ

cosψ(θ)
(4.10)

with

cosψ(θ) = n̂(θ) · r̂(θ) (4.11)
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ψ

n

r

δΑ

r sinθ δφ

r δθ

90-θ

r 

φ

x

y

z

δθ

δφ

Figure 4.3: Elementary surface area δA of a cylindrically symmetric body.
The angle ψ between the perpendicular to δA unit vector n̂ and the radial
unit vector r̂ is a function of the polar angle θ and correlates δA to the
spherical coordinates r, θ, φ.

For a small time step ∆t, neglecting for the moment the catastrophe
rate r+ on the boundary, we can consider that the number of sliding micro-
tubules of the elementary surface area δA is conserved. This conservation
law can be expressed as

m̄(t+ ∆t, l + ∆l, θ + ∆θ)δA(θ + ∆θ) = m̄(t, l, θ)δA(θ) (4.12)

Substituting now δA in (4.12), we get

m̄(t+ ∆t, l + ∆l, θ + ∆θ)δl′δθ′
sin(θ + ∆θ)r2(θ + ∆θ)

cosψ(θ + ∆θ)
=

m̄(t, l, θ)δlδθ
sin θr2(θ)

cosψ(θ)
(4.13)

We introduce the angular velocity ω(θ) by using finite differences

ω(θ) =
∆θ

∆t
(4.14)
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Then, the expanded finite differences δl′ and δθ′ are

δl′ = δl +
∂v̄+

∂l
δl∆t (4.15)

δθ′ = δθ +
∂ω

∂θ
δθ∆t (4.16)

By definition, the angular velocity is given by

ω(θ) =
v‖

r(θ)
(4.17)

So, we get

ω(θ) =
F‖

ξr(θ)
=
k (l − r(θ)) sinψ(θ)

ξr(θ)
(4.18)

We now define g(θ) as

g(θ) ≡ δA(θ)

δθδφ
=

sin θr2(θ)

cosψ(θ)
(4.19)

Then, expanding the first part of (4.13) and g(θ) (see Appendix 4.6.1 to
this chapter) and considering that there is a catastrophe rate r̄+(l) of the
microtubules at the boundary, we get

∂m̄

∂t
(t, l, θ) +

∂

∂l
(v̄+m̄(t, l, θ)) +

1

g(θ)

∂

∂θ
(g(θ)ω(θ)m̄(t, l, θ)) =

−r̄+m̄(t, l, θ) (4.20)

which gives

∂m̄

∂t
(t, l, θ) = − ∂

∂l
(v̄+m̄(t, l, θ))− 1

g(θ)

∂

∂θ
(g(θ)ω(θ)m̄(t, l, θ))

−r̄+m̄(t, l, θ) (4.21)

Finally, in the steady state we have

∂

∂l
(v̄+m̄(l, θ)) = − 1

g(θ)

∂

∂θ
(g(θ)ω(θ)m̄(l, θ))− r̄+m̄(l, θ) (4.22)
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4.3 Analytical results

We regard an ellipsoid of revolution that is a small perturbation of a sphere
of radius a and has equal surface area Se with the sphere surface area
Ss = 4πa2. The surface position where the pushing force is acting, can be
found by considering the radial distance for a single elliptical generator of
the ellipsoid

r(θ) =
ā√

1− ε2 cos2 θ
(4.23)

where ā < b and the eccentricity ε =
√

1− ( āb )2 < 1.

For the surface area of ellipsoid it holds

Se = 2πā2

(
1 +

b

āe
sin−1 ε

)
(4.24)

and approximating sin−1, we get

Se = 4πā2

(
1 +

1

3
ε2
)

(4.25)

The equality between the surface area of the sphere Ss = 4πa2 and the
surface area of the ellipsoid gives

ā =
1√

1 + 1
3ε

2
a (4.26)

Then, substituting into (4.23) and approximating, we get

r(θ) = a
(
1 + f1(θ)λ

)
(4.27)

where we introduce λ = ε2 << 1 and f1(θ) = 1
4

(
cos 2θ + 1

3

)
. We calculate

e−βdF (l,θ) = e−βdk(l−r(θ)) = e
−kβd

(
l−a
(

1+f1(θ)λ
))

= e−kβd(l−a)
(

1 + kβdaf1(θ)λ
)

(4.28)

Similarly, we get

eβdF (l,θ) = e−kβd(l−a)
(

1− kβdaf1(θ)λ
)

(4.29)
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Then, we get for the growth speed at the boundary

v̄+ = v+e
−kβd(l−a)

(
1 + kβdaf1(θ)λ

)
(4.30)

∂v̄+

∂l
= −v+kβde

−kβd(l−a)
(

1 + kβdaf1(θ)λ
)

(4.31)

We approximate the following quantities to the first order in λ

sinψ = −1

2
λ sin 2θ (4.32)

cosψ = 1 (4.33)

tanψ = −1

2
λ sin 2θ (4.34)

f = −k(l − a)

2aξ
λ sin 2θ (4.35)

1

g

∂

∂θ
(gf) = −k(l − a)

2aξ
(3 cos 2θ + 1)λ = f2(l, θ)λ (4.36)

with

f2(l, θ) = −k(l − a)

2aξ
(3 cos 2θ + 1) (4.37)

We set

p = kβd (4.38)

Then, equation (4.22) becomes(
v+e

−p(l−a)(1 + paf1(θ)λ)
)∂m̄
∂l

+
(k(l − a)

2aξ
λ sin 2θ

)∂m̄
∂θ

+(
f2(l, θ)λ+ pv+e

−p(l−a)(1 + paf1(θ)λ)− r+e
p(l−a)(1− paf1(θ)λ)

)
m̄ = 0

(4.39)

Now, we perturb the density m̄(0)(l) of the sphere to approximate the den-
sity m̄(l, θ) at the ellipsoid to first order in λ

m̄(l, θ) = m̄(0)(l) + λm̄(1)(l, θ) (4.40)
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Following the formalism developed in Appendix 4.6.2, we get

m̄(0)(l) =
rn
v+
e−

a
l̄ e

r+
2pv+

(e2p(l−a)−1)−p(l−a)
(4.41)

So, from (4.70) results

m̄(1)(l) = m̄(0)(l)A(3 cos 2θ + 1) (4.42)

with

A = − ar+

12v+
e2p(l−a) +

k(l − a)

2aξv+p
(ep(l−a) − 1)− 1

12

(
2 +

a

l̄
− ap

)
(4.43)

Looking at equation (4.42), we conclude that for an ellipsoid that is a small
perturbation to a sphere, a bipolar distribution of the bound microtubules
is established.

4.4 Simulations

In order to examine the sliding effect on a more general boundary shape
that is not a small perturbation to a sphere, we implement 2D computer
simulations. To that end, we regard an elliptical cell boundary with a fixed
centrosome positioned at its center. Since we are interested in the distri-
bution of the microtubules that are stalled at the boundary, we use an arc
length coordinate s instead of the angle θ. We discretize the cell bound-
ary into a finite number of equal-length bins and we follow the procedure
described in Chapter 3 to get arc length coordinates from the nucleation
angles of microtubules. The finite time-step for a sliding event is chosen
equal to ∆t = 0.5s.

The ’stored length‘ dynamics of microtubules and the dynamic insta-
bility properties determine the states of the microtubules nucleated from
centrosome. The pulling forces generated by motor proteins at the bound-
ary are not taken into consideration, as they can not contribute to stress
relaxation due to the the fact that we have pinned the location of the
centrosome.

We regard the states dormant, growing and shrinking for the mi-
crotubules that do not touch the cell boundary. We also consider the states
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Chapter 4. A microtubule boundary-sliding model

push growing and push shrinking connected with the force production
mechanism. The last two states replace the bound state that we considered
in Chapter 3 for microtubules that are bound to the cell boundary.

Regarding the growing state, it describes a growing microtubule that
has not yet touched the boundary of the ellipse. So, the microtubule can
continue in this state, or it can undergo a catastrophe and pass to the
shrinking state, or it can reach to the boundary and pass to the push
growing state.

The dormant and the shrinking states are the same as the ones
introduced in the algorithm of the anisotropic distribution of microtubules
without sliding. So, a microtubule in the shrinking state can go to the
dormant state, to the growing state or it can stay in the same state. A
dormant microtubule can be nucleated into the growing state.

PUSH SHRINKING-SLIDING

PUSH GROWING-SLIDING

GROWINGSHRINKING

DORMAΝT

BOUNDARY

Figure 4.4: State diagram of the boundary-sliding model, which was applied
to the simulations. The microtubule state “push shrinking-sliding” can be
left out without any practical effect, as we show in the following.

The push growing state describes a growing microtubule with a ”stored
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Parameter Simulation value
b 4 µm
a 2 µm
v+ 0.018 µm s−1

v− 0.040 µm s−1

rn 0.05 s−1

r+ 0.0078 s−1

r− 0.0016 s−1

βd 0.60 pN−1

k 0.3 pN µm−1

MTs 1000
M 400

Table 4.1: Model parameters. The elliptical boundary is divided to M equal
bins, while the total number of microtubules is MTs.

length“ l > L and, so, a pushing force acting on it. The catastrophe rate
of the microtubule at the boundary defines the future of a microtubule of
this state. So, it can continue staying in this state or it can change to the
push shrinking state. If it stays in its state, then a sliding event takes
place on the boundary defined by the value of the pushing force acting on
the microtubule in the examined finite time step.

Finally, the push shrinking state describes a shrinking microtubule
with a ”stored length“ l > L and, so, a pushing force still acting on it. We
assume that no rescues occur at the boundary. A microtubule can therefore
continue to stay in this state, causing a sliding event, or it can go to the
shrinking state, if it leaves the boundary when its length is shorter than
the radial distance to its current location on the boundary.

Our algorithm is applied to two sets of parameters, which differ only in
the value of the sliding drag coefficient ξ. The remaining parameters are
given in Table 4.1.

As a result, we construct the two graphs of the distribution of boundary
microtubules shown in figure 4.5, one for a high and one for a low sliding
drag coefficient. Comparing the two graphs, we conclude that low sliding
friction leads to a strong longitudinal ordering of the bound microtubules.
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Chapter 4. A microtubule boundary-sliding model

Figure 4.5: Distribution of microtubules on an elliptical boundary for a low
(ξ=5 pN s/µm, left) and a high (ξ=30 pN s/µm, right) sliding friction. The
zero of the ellipse length coordinate is set at the edge of the long semi-axis.
Remaining parameters: as in Table 4.1.

We now ask whether the pushing force from the boundary after the mi-
crotubule switching to the shrinking state is in fact important. We therefore
perform simulations in order to examine how the distribution of the bound
microtubules is affected, if we set the pushing forces on bound microtubules
that have just gone to the shrinking state to zero.

The simulation results in figure 4.6 show that there is a small difference
between the case of force and no force acting on bound microtubules that
are shrinking, which concerns mainly the number of bound microtubules
at the longitudinal axis ends. We conclude that the influence of a non-
zero pushing force applied after switching to shrinking state is practically
negligible and, so, our previous results shown in figure 4.5 are essentially
recovered.

At this point, we are going to compare the simulation results of our
model with the corresponding ones of the model developed by Pavin and
Laan [59]. To this end, and for a certain set of parameters, we regard an
appropriate value for the compression modulus k of our model in order
to get the same mean pushing force per microtubule and the same mean
number of microtubules for the two models. Then, the comparison between
the two models is possible and leads to the results shown in figure 4.7.
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Figure 4.6: Distribution of microtubules on an elliptical boundary for the
cases of a trivial (blue line) and a non-trivial (red line) pushing force acting
on bound microtubules after switching to the shrinking state. The zero
of the ellipse length coordinate is set at the edge of the long semi-axis.
Parameters: sliding drag coefficient ξ=30 pN s/µm and the rest of the
parameters as in figure 4.5.

Looking at the microtubule distribution on the boundary for the two
models that we examined, we notice that the overall degree of the longitu-
dinal ordering is similar, however there are marked differences concerning
the shape of the two distributions.

4.5 Conclusion

In this chapter we developed a model for the “sliding” of force-producing
microtubule tips along the cell boundary. The force-production mecha-
nism first proposed in [60] was considered as the driving force for this phe-
nomenon. This mechanism takes into consideration the dynamic nature of
force, which is influenced by the thermal fluctuations, the microscopic step
size of the growth process and the stored length of a microtubule, which on
the one hand generates an elastic force, but also increases the catastrophe
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Figure 4.7: Distribution of microtubules on an elliptical boundary for our
boundary-sliding model and the model of Pavin and Laan [59]. The two
curves correspond to the same mean pushing force per microtubule (0.7
pN) and the same mean number (104) of bound microtubules. The zero
of the ellipse length coordinate is set at the edge of the long semi-axis.
Parameters: sliding drag coefficient ξ=5 pN s/µm, compression modulus
k=54 pN/µm and the rest of the parameters as in figure 4.5.

rate. The resultant sliding motion of the microtubules is counteracted by
the viscous exerted by the intracellular fluid..

The analysis assumed a cylindrical symmetry for simplicity reasons and
lead to evolution equations for the number densities of sliding microtubules
on the cell boundary. Due to the high complexity of the equations, even in
the steady state, a full solution was not possible. Therefore only an ellipsoid
of revolution very close to being spherical was considered, allowing a per-
turbative approach. This analysis revealed the establishment of a bipolar
longitudinal distribution of the microtubules stalled to the boundary.

The longitudinal ordering of the sliding microtubules was verified in a
more general elliptical shape by stochastic simulations. Both at the low and
high friction a net longitudinal bipolar ordering was observed. However, in
the high friction case the degree is markedly less, and the distribution over
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the surface shows clear signs of an underlying transverse ordering, as found
in Chapter 3.

Finally, the boundary-sliding model developed here was compared with
a competing model that considers pushing forces without a dynamic char-
acter [59]. The simulation analysis that was applied to the two models,
revealed an overall similar degree of longitudinal ordering, suggesting that
on a coarse scale the exact nature of the force-production mechanism is
less important. However, the calculated distributions of boundary micro-
tubules for the two models presented notable differences in the details of
their shape, and hence to potentially testable predictions.

4.6 Appendix

4.6.1 Expansions for the evolution equations

Expanding now the first part of (4.13), we get(
m̄(t, l, θ) +

∂m̄

∂l
∆l +

∂m̄

∂θ
(t, l, θ)∆θ +

∂m̄

∂t
(t, l, θ)∆t

)
δl′δθ′g(θ + ∆θ)

=

(
m̄(t, l, θ)δl + m̄(t, l, θ)

∂v̄+

∂l
δl∆t+

∂m̄

∂l
(t, l, θ)∆lδl

+
∂m̄

∂θ
(t, l, θ)∆θδl +

∂m̄

∂t
(t, l, θ)∆tδl

)(
δθ +

∂ω

∂θ
δθ∆t

)
g(θ + ∆θ)

= (m̄(t, l, θ)δlδθ +H(t, l, θ)δθ) g(θ + ∆θ) (4.44)

with

H(t, l, θ) = m̄(t, l, θ)δl
∂ω

∂θ
∆t+ m̄(t, l, θ)

∂v̄+

∂l
δl∆t+

∂m̄

∂l
(t, l, θ)∆lδl

+
∂m̄

∂θ
(t, l, θ)∆θδl +

∂m̄

∂t
(t, l, θ)∆tδl =

m̄(t, l, θ)δl
∂ω

∂θ
∆t+ m̄(t, l, θ)

∂v̄+

∂l
δl∆t+

∂m̄

∂l
(t, l, θ)v̄+∆tδl

+
∂m̄

∂θ
(t, l, θ)ω∆tδl +

∂m̄

∂t
(t, l, θ)∆tδl =

∂

∂l
(v̄+m̄(t, l, θ))δl∆t+

∂

∂θ
(ω(θ)m̄(t, l, θ))δl∆t+

∂m̄

∂t
(t, l, θ)∆tδl (4.45)
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By expanding g(θ), (4.44) becomes

(m̄(t, l, θ)δlδθ +H(t, l, θ)δθ) g(θ + ∆θ) =

(m̄(t, l, θ)δlδθ +H(t, l, θ)δθ)

(
g(θ) +

∂g

∂θ
∆θ

)
=

m̄(t, l, θ)δlδθg(θ) + m̄(t, l, θ)δlδθ
∂g

∂θ
∆θ +H(t, l, θ)δθg(θ) =

g(θ)m̄(t, l, θ)δlδθ + m̄(t, l, θ)δlδθ
∂g

∂θ
ω(θ)∆t+ g(θ)

∂

∂l
(v̄+m̄(t, l, θ))δl∆tδθ

+ g(θ)
∂

∂θ
(ω(θ)m̄(t, l, θ))δl∆tδθ + g(θ)

∂m̄

∂t
(t, l, θ)∆tδlδθ =

g(θ)m̄(t, l, θ)δlδθ +
∂

∂θ
(g(θ)ω(θ)m̄(t, l, θ))δl∆tδθ

+ g(θ)
∂

∂l
(v̄+m̄(t, l, θ))δl∆tδθ + g(θ)

∂m̄

∂t
(t, l, θ)∆tδlδθ (4.46)

Then, (4.13) gives

g(θ)
∂m̄

∂t
(t, l, θ)∆tδlδθ + g(θ)

∂

∂l
(v̄+m̄(t, l, θ))δl∆tδθ

∂

∂θ
(g(θ)ω(θ)m̄(t, l, θ))δl∆tδθ = 0 (4.47)

and, so,

∂m̄

∂t
(t, l, θ)∆tδlδθ +

∂

∂l
(v̄+m̄(t, l, θ))δl∆tδθ

+
1

g(θ)

∂

∂θ
(g(θ)ω(θ)m̄(t, l, θ))δl∆tδθ = 0 (4.48)

4.6.2 Perturbation analysis

Using equation (4.40), we calculate at the boundary l = r(θ) of the ellipsoid

m̄(r(θ), θ) = m̄(0)(r(θ)) + λ1m̄
(1)(r(θ), θ)

= m̄(0)(a+ f1(θ)λa) + λ1m̄
(1)(a+ f1(θ)λa, θ)

= m̄(0)(a) + aλf1(θ)
∂m̄(0)

∂l
(a) + λ1m̄

(1)(a, θ) (4.49)

The number of microtubules per unit of surface area of the sphere should
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be equal to that of microtubules per unit of surface area of the ellipsoid:

a2 sin θdθdφ
rn
v+
e−

r(θ)

l̄ = m̄(l = r(θ), θ)
sin θr2(θ)

cosψ(θ)
dθdφ (4.50)

which gives the general boundary condition

m̄(l = r(θ), θ) =
a2 cosψ(θ)

r2(θ)

rn
v+
e−

r(θ)

l̄ (4.51)

Using (4.27) and (4.51) we find

m̄(l = r(θ), θ) = m̄
(
a(1 + f1(θ)λ), θ

)
=

a2 cosψ(θ)

(a+ f1(θ)λa)2

rn
v+
e−

a+f1(θ)λa

l̄

=
rn
v+
e−

a
l̄ + λL(1)(a, θ) (4.52)

where

L(1)(a, θ) = −
(

2 +
a

l̄

)
f1(θ)

rn
v+
e−

a
l̄ (4.53)

We combine equations (4.49) and (4.52) and get

m̄(0)(a) =
rn
v+
e−

a
l̄ (4.54)

m̄(1)(a, θ) = L(1)(a, θ)− af1(θ)
∂m̄(0)

∂l
(a) (4.55)

Equation (4.39) becomes after introducing (4.40)

(
v+e

−p(l−a)(1 + paf1(θ)λ)
)(∂m̄(0)

∂l
+ λ1

∂m̄(1)

∂l

)
+(

f2(l, θ)λ+ pv+e
−p(l−a)(1 + paf1(θ)λ)− r+e

p(l−a)(1− paf1(θ)λ)
)

(
m̄(0) + λ1m̄

(1)(l, θ)
)

= 0 (4.56)
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from which we get the following system of equations

∂m̄(0)

∂l
+
(
p− r+

v+
e2p(l−a)

)
m̄(0)(l) = 0 (4.57)

paf1(θ)
∂m̄(0)

∂l
+ f2(l, θ)

1

v+
ep(l−a)m̄(0)(l) +

∂m̄(1)

∂l
+(

p− r+

v+
e2p(l−a)

)
m̄(1)(l, θ) + paf1(θ)

(
p+

r+

v+
e2p(l−a)

)
m̄(0)(l) = 0 (4.58)

which becomes

∂m̄(0)

∂l
=
(r+

v+
e2p(l−a) − p

)
m̄(0)(l) (4.59)

∂m̄(1)

∂l
=
(r+

v+
e2p(l−a) − p

)
m̄(1)(l, θ)− paf1(θ)

∂m̄(0)

∂l

−
(
f2(l, θ)

1

v+
ep(l−a) + paf1(θ)

(
p+

r+

v+
e2p(l−a)

))
m̄(0)(l) (4.60)

Substituting (4.59) to (4.60), we get

∂m̄(1)

∂l
=
(r+

v+
e2p(l−a) − p

)
m̄(1)(l, θ)− paf1(θ)

(r+

v+
e2p(l−a) − p

)
m̄(0)(l)

−
(
f2(l, θ)

1

v+
ep(l−a) + paf1(θ)

(
p+

r+

v+
e2p(l−a)

))
m̄(0)(l) (4.61)

We calculate

∂m̄(1)

∂l
=
(r+

v+
e2p(l−a) − p

)
m̄(1)(l, θ)

−
(
f2(l, θ)

1

v+
ep(l−a) + 2paf1(θ)

(r+

v+
e2p(l−a)

))
m̄(0)(l) (4.62)

We have

f2(l, θ)
1

v+
ep(l−a) + 2paf1(θ)

(r+

v+
e2p(l−a)

)
=

− ξk(l − a)

2a
(3 cos 2θ + 1)

1

v+
ep(l−a) + 2pa

1

4

(
cos 2θ +

1

3

)(r+

v+
e2p(l−a)

)
=(par+

2v+
e2p(l−a) − 3ξk(l − a)

2av+
ep(l−a)

)
cos 2θ +

(par+

6v+
e2p(l−a) − ξk(l − a)

2av+
ep(l−a)

)
(4.63)

88



4.6. Appendix

Now, equation (4.62) is written

∂m̄(1)

∂l
+
(
p− r+

v+
e2p(l−a)

)
m̄(1)(l, θ) =

(
−par+

6v+
e2p(l−a) +

ξk(l − a)

2av+
ep(l−a)

)
(3 cos 2θ + 1)m̄(0)(l) (4.64)

We set

Q(l, θ) =

(
−par+

6v+
e2p(l−a) +

ξk(l − a)

2av+
ep(l−a)

)
(3 cos 2θ + 1)m̄(0)(l) (4.65)

Then, (4.64) is written

∂m̄(1)

∂l
+
(
p− r+

v+
e2p(l−a)

)
m̄(1)(l, θ) = Q(l, θ)m̄(0)(l) (4.66)

From (4.59) we get

m̄(0)(l) = c1e
−
∫ l
a (p− r+

v+
e2p(l

′−a))dl′
(4.67)

and using (4.54)

c1 = m̄(0)(a) =
rn
v+
e−

a
l̄ (4.68)

Then, we calculate from (4.66)

m̄(1)(l) =e
−
∫ l
a (p− r+

v+
e2p(l

′−a))dl′(∫ l

a
e
∫ l
a (p− r+

v+
e2p(l

′−a))dl′
Q(l′)c1e

−
∫ l
a (p− r+

v+
e2p(l

′−a))dl′
dl′ + c

)
=c1e

−
∫ l
a (p− r+

v+
e2p(l

′−a))dl′
(∫ l

a
Q(l′)dl′ + c2

)
(4.69)

where c2 = c
c1

This equation becomes with the help of (4.67)

m̄(1)(l) = m̄(0)(l)
(∫ l

a
Q(l′)dl′ + c2

)
(4.70)

which gives

m̄(1)(a) = m̄(0)(a)c2 = c1c2 (4.71)

89



Chapter 4. A microtubule boundary-sliding model

and using (4.55)

L(1)(a, θ)− af1(θ)
∂m̄(0)

∂l
(a) = c1c2 (4.72)

This equation gives with the help of (4.59) and (4.68)

L(1)(a, θ)− af1(θ)

(
r+

v+
− p
)
c1 = c1c2 (4.73)

Using now (4.53) and (4.68), we get

c2(θ) = −f1(θ)

(
a
(r+

v+
− p
)

+
(

2 +
a

l̄

))
(4.74)

Then, from (4.67) and (4.68) we calculate m̄(0)(l)
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5
Mitotic spindle positioning in cells

The mitotic spindle plays a key role in cell division by segregating the
duplicated chromosomes. Each of the two spindle poles is occupied by a
centrosome, which nucleates microtubules. The interactions of centrosomal
microtubules with the cell boundary are responsible for the positioning of
the mitotic spindle in cell. In this chapter, we formulate a model that can
predict the spindle positioning on the basis of these interactions. Our model
takes into consideration the dynamic nature of the pushing forces acting
on microtubules by the cell boundary, as well as pulling forces generated
by cortical motor proteins. 2D stochastic simulations reveal the crucial
role of the pulling forces to the stable positioning of the spindle. The
transition between two stable orientation states is also examined for a model
asymmetric cell shape.
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5.1 Introduction

The mitotic spindle is the cytoskeletal structure that segregates the du-
plicated chromosomes during eukaryotic cell division. At each of the two
spindle poles a centrosome is positioned from which microtubules are nu-
cleated, with different roles during mitosis. The structure of the spindle
complex that is formed by the microtubules and the chromosomes is de-
scribed next in our model.

It is known that the mitotic spindle interacts with the plasma mem-
brane and both pushing [56] and pulling forces take place. The pushing
forces are generated through microtubule polymerization. The predomi-
nant mechanism for the generation of pulling forces [26, 22, 23] is the one
in which they are generated by dynein motors positioned at the cell cortex
[22].

Here, we formulate a model that can predict the positioning of the
mitotic spindle in the cell, based on the results of Chapter 3 and 4 of
this thesis. It complements very recently published work [24] in which a
model for the positioning and the orientation of the mitotic spindle was
presented, which, however, did not consider the dynamic character of the
pushing forces acting on microtubules.

We apply stochastic simulations, first to a 2D-elliptical confinement, in
order to study the interplay of pushing and pulling pulling forces on the
stability of spindle localization. Next, we consider spindle orientation in
model asymmetric cell shape, a half-ellipse, constructing a phase diagram
revealing the competition between different stable orientations.

5.2 The model

5.2.1 Structure of the spindle complex

The mitotic spindle is structured by microtubules with different roles. The
kinetochore microtubules connect the two spindle poles with chromosomes
at the kinetochores. The interpolar microtubules make antiparallel overlaps
forming bundles that are bridging sister kinetochore microtubule fibers [61].
The polar microtubules grow towards the spindle middle and their plus ends
are free. The astral microtubules grow towards the plasma membrane and
interact with it, ans so contribute to the positioning the spindle [62]. The
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spindle complex is illustrated in Figure 5.1.

In our model we consider the part of the mitotic spindle without the
astral microtubules as a rigid rod moving in a 2D-confinement. We are in-
terested in the motion of the spindle as a whole, neglecting the interactions
between kinetochore and interpolar microtubules or between antiparallel
overlapping interpolar microtubules. The spindle motion is then deter-
mined by the interactions of the astral microtubules with the cell boundary.
Furthermore, we consider the spindle length and width to be constant, thus
we neglect any elongation effects. We chose a spindle-length to -width ratio
equal to 3, which is a realistic value [63].

Figure 5.1: Schematic of the mitotic spindle complex [62]. We can see the
two centrosomes (big black circles) at the spindle poles, the astral micro-
tubules (black line segments) nucleated towards the elliptical cell boundary,
the kinetochore microtubules (red color) connecting the spindle poles with
the kinetochores (small black circles) of the chromosomes, the interpolar
microtubules (blue color) bridging sister kinetochore microtubules and the
polar microtubules (green color).

Finally, we argue that due to stereochemical obstruction between each
MTOC and the finite-width spindle axis (formed by both interpolar and
kinetochore microtubules), the nucleation of microtubules from the two
MTOCs at the spindle poles cannot be over the full 360 degrees range. We
therefore assume that nucleation can not happen from a pole in directions
which have an angle less than a minimal value value φ with the spindle
axis.
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5.2.2 Equations of motion

In the cytoplasmic fluid viscous forces dominate over the inertial ones and
for small enough velocities there exist a linear dependence between forces
and velocities mediated by linear drag coefficients [64]. This results in the
following equations of motion for our model spindle

F⊥ = −γ⊥v⊥ (5.1)

F‖ = −γ‖v‖ (5.2)

T = −γrω (5.3)

where F⊥, F‖ are the viscous drag forces perpendicular and parallel to the
spindle axis, v⊥, v‖ are the corresponding translational velocities, T , ω are
the viscous torque and the rotational velocity of the spindle, γ⊥, γ‖ stand
for the translational drag coefficient in the perpendicular and the parallel
direction to the spindle axis and γr stands for the rotational drag coefficient.
These viscous forces and torque counter the forces and corresponding torque
that the astral microtubules apply on the spindle.

We express the drag coefficients γ⊥, γr in terms of γ‖. Given the as-
sumed geometry of our model spindle, we find the following relations (see
the Appendix 5.5 for details of this derivation).

γ⊥ = 2γ‖ (5.4)

γr = 20γ‖ (5.5)

What remains is to estimate the effective viscosity the spindle expe-
riences. In the metaphase spindle, the non-kinetochore microtubules are
crosslinked by proteins [65]. The dynamics of the crosslinking leads to
a structural rearrangement of the spindle. Hence the spindle exhibits an
intrinsic effective viscosity, which is about 160 times larger than the cyto-
plasmic viscosity [66]. In our model, we consider that the motion of the
mitotic spindle is highly affected by this effective viscosity, as the spindle
is not a rigid body, but a network of components in a cytoplasmic pool.
So, we regard a value of viscosity which is intermediate for the interval
between the cytoplasmic viscosity and the internal viscosity of the spindle.
We therefore choose a viscosity 70 times greater than the cytoplasmic one
(1.2 Pa·s), equivalent to η0=84 Pa·s.
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5.3 Simulations

5.3.1 Simulation model

In our model we adopt the force production mechanism introduced in the
Chapter 4, which is based on the concept of the ’stored length’. Here, we
combine this mechanism with the presence of pulling forces due to the effect
of dynein motors present at the cell boundary. For simplicity reasons, how-
ever, we do not take into consideration the sliding of microtubules on the
cell boundary. Unless otherwise indicated, we fix the minimum nucleation
angle to be φ = 45◦.

Leaving out the sliding effect from the present simulation algorithm,
we thus regard two boundary states of the microtubules. The first, push
growing in which pushing forces act on a bound microtubule, without
sliding taking place. The second, which we call pulling state, in which a
constant pulling force of magnitude Fpull is exerted on the microtubule.

A microtubule can go to the pulling state from the push growing
state, if a dynein motor binds to it. Then, the microtubule stops growing
and its length is taken to be equal to the distance between the centrosome
and the boundary in accordance to recent experimental data [22]. We
implement this by instantaneously setting the stored length to zero in the
pulling state of our model. The microtubule can stay in this state if the
dynein motor stays bound to it or, otherwise, it can return to the shrinking
state leaving the boundary. A complete state diagram including all the
possible microtubule states and the routes between them is presented in
figure 5.2.

In the simulation model, by regarding finite time steps and displace-
ments, the velocities of the Eqs. (5.1), (5.2) and (5.3) are given by

v⊥ =
∆y

∆t
(5.6)

v‖ =
∆x

∆t
(5.7)

ω =
∆φ

∆t
(5.8)

where ∆x is the displacement parallel to the spindle axis, ∆y is the dis-
placement vertically to the spindle axis and ∆φ is the angle of rotation
round the spindle middle.
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Unbinding

Figure 5.2: State diagram for the astral microtubules nucleated by the
centrosomes at the two spindle poles.

Denoting by 1 and 2 the two spindle poles, the calculated absolute
values of the net forces acting on these poles are F1, F2 , the component
forces parallel to the spindle axis F1x, F2x and the component forces that
are perpendicular to that axis F1y, F2y . Then, the net torque T acting on
the center of the spindle at each time step is calculated as

T = (F1y − F2y)
Lspin

2
(5.9)

So, the rotation angle ∆φ for this step is

∆φ =
1

µr
T∆t (5.10)
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The displacements of the spindle axis are calculated as

∆x =
1

µ‖
(F1x + F2x)∆t (5.11)

∆y =
1

µ⊥
(F1y + F2y)∆t (5.12)

The last three equations determine the new position of the spindle for the
next time step. We start most simulations with the spindle at an initial
angle θ = 45◦ with respect to the long axis of the cell. The calculations
are continued until the system relaxes to a steady state. There, the mean
angle that is formed by the spindle and the long semi-axis of the half-ellipse
shape becomes practically constant.

5.3.2 Simulation geometries

a

a

b

θ

L

s

p

i

n

φ

Figure 5.3: Microtubule nucleation angle distribution at the two spindle
poles. We can see the elliptical cell boundary and the mitotic spindle with
length Lspin. We can also see the short semi-axis a, the long semi-axis b, the
orientation-angle θ of the spindle with b axis and the minimum nucleation
angle φ.

In order to investigate how the pulling forces affect the stability of posi-
tioning of the mitotic spindle, we first apply our model to an elliptical cell
(figure 5.3) comparing the case of co-existing pushing and pulling forces
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with the case of pushing forces only. By suitably adjusting the basic pa-
rameter of the force-production model, the compression modulus k, we can
achieve realistic values of the pushing forces. The impact of the pushing
forces magnitude to the fluctuations of the spindle orientation is then also
examined.

a

b

a

1

2

θ

Figure 5.4: Cell boundary (solid line with black color) of a half-ellipse shape
and mitotic spindle (blue color). We can see the short semi-axis length a,
the long semi-axis length b, the initial angle θ = π/4 of the spindle with b
axis and the centrosomes 1 and 2 at the spindle poles.

Moreover, we further investigate how cell shape can influence the posi-
tioning of the mitotic spindle by applying our model to a cell geometry that
does not possess double-axis symmetry. For that purpose we selected the
half-ellipse shape. More specifically, the line segment defined by the two
short semi-axes and the half elliptical perimeter connecting them, form the
cell boundary inside which we regard the spindle. In the simulations we
calculate the mean angle θ which spindle forms with the long semi-axis b in
the steady state for different values of short semi-axis a. The cell geometry
and the spindle inside it are shown in figure 5.4.

5.3.3 Results

5.3.3.1 Parametrizing the magnitude of the pushing forces

Before we proceed with simulation analysis, we are going to show that
our force-production mechanism can generate pushing forces of a realistic
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magnitude. To that end, we select a value for the compression modulus
(k=150 pN/µm), which leads to an realistic [22] value of the mean maxi-
mum pushing force (4.3 pN), in the presence of an also realistic value (5
pN) of pulling force [22]. A histogram showing the distribution of the max-
imum pushing forces values corresponding to the previously referred mean
value, is presented in figure 5.5.
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Figure 5.5: Distribution histogram of the maximum pushing force acting
on microtubules for a compression modulus k=150 pN/µm. The calcu-
lated mean maximum pushing force equals to 4.3 pN, which is feasible
[22]. Parameters: a=4µm, b=9µm, Lspin=6µm, L̄=3.34µm, W=2µm,
M=600, dt=0.5s, η0=84Pa·s, kb=0.02s−1, koff=0.01s−1, kn=0.03s−1,
βδ=0.60pN−1, Fpull=5pN, t = 106s.

5.3.3.2 The role of pulling forces

In order to investigate the role of the pulling forces in the stabilization of
the mitotic spindle, we estimate the magnitude of the fluctuations of the
spindle orientation angle in steady state. The standard deviation of this
angle is calculated as a function of the compression modulus for the case of
only pushing forces and the case of both pushing and pulling forces included
in the system. The simulation results are shown in figure 5.6. The much
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higher fluctuations of a system with only pushing forces reveal the crucial
role of the pulling forces in the stabilization of the mitotic spindle in cells.

Looking at the results of the figure 5.6, we can see that for a system
that includes only pushing forces, the size of the fluctuations depends sig-
nificantly on the value k of the compression modulus. Specifically, as we
increase k, the orientation fluctuations are becoming bigger. So, larger
pushing forces work to the direction of destabilization.

In order to further analyze this effect, we calculate the distribution of
the net torque acting on the spindle for two extreme values of the compres-
sion modulus (k=5, k=150 pN/µm). A histogram of the torque distribution
is shown in figure 5.7. We can see that lower pushing forces (low k) are dis-
tributed mainly round low values of torque, while the distribution for higher
pushing forces (high k) extends to larger torque values. This confirms the
fact that large pushing forces increase the spindle orientation fluctuations.
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Figure 5.6: Standard deviation of the mean orientation angle as a function
of the compression modulus for the cases with and without pulling forces.
Parameters: as in figure 5.5.

At this point, we are going to investigate why the pulling forces de-
crease the orientation fluctuations of the spindle. To this end, we calculate
the distribution of the spindle torque with and without pulling forces for
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Figure 5.7: Distribution histogram of the torque acting on spindle for the
cases of a low and a high value of compression modulus in the absence of
pulling forces. Parameters: as in figure 5.5.

a certain value of the compression modulus. The simulation results are
presented in the torque histogram of the figure 5.8, where the wider range
of torque values when we have only pushing forces in the system verifies
the stabilization of the spindle by the pulling forces.

The lower torque values explain indeed why the fluctuations are lower
when the pulling forces are present. But how is this ’narrow’ distribution of
torque generated? First, we note that the pushing forces are reduced when
we introduce pulling forces in the system. This is because pulling is an
additional state option for the bound microtubules, so the residence time of
the pushing microtubules at the boundary becomes less and, consequently,
we get lower pushing force values. Second, when we regard pulling forces,
we have more bound microtubules than if we have only pushing forces. This
is a simulation result, which we present in figure 5.9. The higher number
of bound microtubules increases the degree of the spindle stabilization.
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Figure 5.8: Distribution histogram of the torque acting on spindle for the
cases with and without pulling forces. Parameters: as in figure 5.5.
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Figure 5.9: Number of bound microtubules as a function of the compression
modulus for the cases with and without pulling forces. Parameters: as in
figure 5.5.
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5.3.3.3 Transition between spindle orientation states

Up to this point, our simulation model has been applied to an elliptical
confinement for the investigation of the pulling forces impact to the spindle
stabilization. Now, we apply the same simulation algorithm to a half-ellipse
shape in order to study the influence of the cell shape to the spindle posi-
tioning. Taking both pushing and pulling forces acting on the microtubules,
we calculate the mean orientation angle of the spindle and the correspond-
ing standard deviation for different values of the short semi-axis a. The
simulation results are shown in figure 5.10.

We can see that there is a transition between two distinct stable states
of the spindle orientation, which occurs at the point 2a/b=1. The expected
higher fluctuations round the transition point are confirmed by the standard
deviation graph.
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Figure 5.10: Spindle mean orientation angle (blue line) and standard de-
viation (red line) as functions of the ratio 2a/b with both pushing and
pulling forces. Parameters: b=8µm, Lspin=6µm, L̄=3.34µm, W=2µm,
η0=27.5Pa·s, kb=0.02s−1, koff=0.01s−1, kn=0.03s−1, k=150pN/µm,
βδ=0.60pN−1, Fpull=5pN.

To illustrate the differences between the different possible configura-
tions we show snapshots in the steady state of the spindle and the bound
microtubules with their ’stored length’ for three different values of the short
semi-axis close to the critical one, but all other parameters fixed, in figures
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5.11, 5.12, 5.13.

Figure 5.11: Spindle orientation (snapshot) in the steady state with push-
ing and pulling microtubules for 2a/b = 0.95 and b = 12µm. We can
see the spindle (blue color) and the microtubules (black color) which
are bound to the cell boundary (perimeter of half-ellipse) and extend
outside it, if they have a ’stored length’. Parameters: Lspin=6µm,
L̄=3.34µm, W=3µm, η0=27.5Pa·s, kb=0.02s−1, koff=0.01s−1, kn=0.03s−1,
k=2pN/µm, βδ=0.60pN−1, Fpull=0.2pN.

Figure 5.12: Spindle orientation (snapshot) in the steady state with pushing
and pulling microtubules for 2a/b = 1.05 and b = 12µm. Parameters: as
in figure 5.11.

Figure 5.13: Spindle orientation (snapshot) in the steady state with pushing
and pulling microtubules for 2a/b = 1.15 and b = 12µm. Parameters: as
in figure 5.11.
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5.4 Conclusion

In this chapter we developed a model for the prediction of the mitotic
spindle positioning inside a 2D-confinement. The force production mecha-
nism which was applied is that of the ’stored length’ combined with pulling
forces acting by dynein motors bound to the boundary. The movement of
the spindle was determined by the equation of motion for viscous fluids.

By applying stochastic simulations to an elliptical cell, we calculated the
spindle orientation fluctuations with the presence or not of pulling forces.
The results revealed the crucial role that pulling forces play in the stabi-
lization of the mitotic spindle. Specifically, when pulling forces are present
in the system, the magnitude of the pushing forces is reduced and the num-
ber of bound microtubules to the cell boundary increases. In this way, we
get lower fluctuations of the spindle orientation angle and, consequently, a
higher degree of stabilization.

The simulation model was applied further to a half-ellipse shape for
the investigation of the cell shape impact to the spindle positioning. A
transition from an almost perpendicular to the short axis spindle orientation
state to an almost vertical one was found and the corresponding phase
diagram was constructed as a function of the axes ratio.

For simplicity reasons, our model neglected the effect of microtubule
sliding on the cell boundary. Also, it didn’t take into consideration the
interactions between microtubules and chromosomes or the cytoplasmic
forces generated by dyneins and cross-linkers of interpolar microtubules.
The above interactions are included in a recently developed model [24],
which appeared after the work described here was finished. This model,
however, unlike the one presented here, does not consider the dynamic
nature of the pushing forces acting on microtubules by the cell boundary.
In the latter model the pushing forces are strongly length-dependent, and
hence geometry-dependent, as they are generated mostly by buckling. A
basic difference between the two models concerns the role that pulling forces
play. Our model agrees with the model of Laan et al. [22] that pulling
forces work towards the direction of a more stable positioning. On the other
hand, the previously referred model [24] is compatible with the observations
presented in Garzon-Coral et al. [25] which indicate that, at least in C.
elegans embryo cells, the presence of pulling forces generates instability
in the system. Resolving this discrepancy between the models, should be
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pursued in future research.
The dynamic character of the pushing forces is necessary for a realistic

representation of the magnitudes of forces acting on the spindle poles. In a
future work, however, we need to combine this dynamics with the boundary-
sliding of microtubules, as they both define the interaction with the cell
boundary.

5.5 Appendix: Relations between the drag coef-
ficients

The Einstein-Smoluchovski relation [67] connects a macroscopic magnitude,
which is the absolute temperature T , with a microscopic one, which is the
diffusion (D coefficient) of a particle inside a fluid

D = µkBT (5.13)

where kB is the Boltzmann’s constant and µ is the mobility of the particle,
which depends on the fluid viscosity and the particle shape. The mobility
µ is the inverse of the drag coefficient γ [68]

µ =
1

γ
(5.14)

From Eq. (5.13) we get

D =
kBT

γ
(5.15)

We generalize this equation by coupling translation and rotation as follows

[D] = kBT [γ]−1 (5.16)

where [D] is the diffusion tensor (6x6) and [γ] is the corresponding drag
coefficient tensor [69] with

[D] =

(
Dtt Dtr

Drt Drr

)
and

[γ] =

(
γtt γtr

γrt γrr

)
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The elements of these tensors are (3x3) sub-matrices, which correspond to
translation (tt), rotation (rr) and translation-rotation coupling (tr). For
example, the Dtt element is

Dtt =

 Dxx
tt Dxy

tt Dxz
tt

Dyx
tt Dyy

tt Dyz
tt

Dzx
tt Dzy

tt Dzz
tt


Then, the translational diffusion coefficient Dt is written as [69]

Dt =
1

3
Tr(Dtt) =

1

3
(Dxx

tt +Dyy
tt +Dzz

tt ) (5.17)

where Dzz
tt = 0, since we regard a 2D-motion on the plane xy.

The equation (5.15) holds individually for any ofDxx
tt , Dyy

tt . So, equation
(5.17) becomes

Dt =
1

3

(
kBT

γ‖
+
kBT

γ⊥

)
(5.18)

since we regard that x and y axes are correspondingly parallel and vertical
to the spindle axis.

About the translational drag coefficients γ‖, γ⊥ of rod-like objects with
length to width ratio equal or larger than 2, many analytical solutions
have been proposed by different models. All the solutions for the γ‖ drag
coefficient have the same basic form [70]

γ‖ =
2πη0L

ln(L/W ) + C‖
(5.19)

where η0 is the viscosity of the cytoplasm, L is the length of the rod-like
object, W is its width and C‖ is a correction factor (numerical constant),
which differs among the various solutions.

Correspondingly, the solutions for the γ⊥ drag coefficient have the fol-
lowing common form [70]

γ⊥ =
4πη0L

ln(L/W ) + C⊥
(5.20)

In our model we use the correction factors C‖, C⊥ proposed in [71]. Then,
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the calculated values of the two translational drag coefficients are such that
we can regard the approximation (5.4).

Following, we get from Eq.(5.18)

Dt =
1

2

kBT

γ‖
(5.21)

We consider now the rotational diffusion coefficient Dr and the correspond-
ing drag coefficient γr. Then, by applying Eq.(5.15), we get

Dr =
kBT

γr
(5.22)

Dividing the last two equations yields

Dt

Dr
=

γr
2γ‖

(5.23)

The first part of the above equation can be calculated analytically [72]

Dt

Dr
=
L2

9

ln(L/W ) + Ct
ln(L/W ) + Cr

(5.24)

where Ct, Cr are numerical constants.
Then, from the last two equations we get the approximation (5.5).
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Cell polarity
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6
Spherical cell polarity: a minimal

model

The establishment of cell polarity is of high importance to many develop-
mental biological processes. In this chapter, we formulate a minimal model
for the spontaneous and persistent generation of polarity in a spherical
cell. Our model is based on the positive feedback mechanism that the lo-
cal density of polarity factors delivered to the membrane by microtubules
supports through the stabilization of the microtubules at the membrane.
The analytical results are verified by 2D particle-based simulations. The
presented model does not correspond to any known polarity mechanism,
but it is based on feasible molecular roles. Hence, it may form the basis of
a synthetic biology approach by establishing polarity in a minimal cell-like
environment.
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6.1 Introduction

The establishment and maintenance of cell polarity, the spatially asymmet-
ric distribution of intracellular components is of crucial importance to many
developmental processes in biology, such as anisotropic growth morpholo-
gies and asymmetric divisions as precursors to differentiation. The unrav-
eling of the subtle molecular mechanisms underlying these phenomena is
an active field of biological research [73]. At the same time, the funda-
mental nature of this problem has also drawn the attention of biophysicists
[74]. Building on Turing’s seminal work on biological pattern formation in
reaction diffusion systems, the so-called Gierer-Meinhardt mechanism of a
slow diffusing autocatalytic “activator” competing with a fast diffusing “in-
hibitor” has developed into a canonical modelling approach towards these
questions (for a review see: [75]). The feasibility of such a mechanism was
recently demonstrated by the Lim group [76], who designed such networks
in silico and implemented them in vivo using a synthetic biology approach.

However, it appears that the cytoskeleton, the dynamic network of pro-
tein filaments that performs a host of structural and mechanical roles in all
eukaryotic cells, is often implicated in polarity mechanisms [77]. A well-
known example is fission yeast where microtubules are involved in deposit-
ing polarity factors to the cell ends, which in turn leads to the recruitment
of actin nucleators, a key event in establishing polarized growth [78]. The
question thus arises what role these non-diffusible filaments, whose primary
role in interphase cells is to facilitate motor protein-driven linear transport,
play in polarity generation. A class of polarity models proposed by the
Altschuler-Wu group already implicitly includes the role of cytoskeletal fil-
aments in the form of pre-positioned “patches” on the cell membrane in
which the dynamics of a partially membrane bound target molecule is al-
tered [79]. These models do indeed display persistent anisotropic patterns,
yet, arguably, do not explain the spontaneous occurrence of symmetry-
breaking, as the resultant patterns are predicated on the pre-established
position of the patches. The same authors later also considered a single
species self-activation model which does generate spontaneous symmetry
breaking [80, 81]. However, in the latter model the patterns are not spa-
tially persistent, but fluctuate over time, and disappear when the number
of signalling molecules increases, indicating that this is an effect driven
by finite particle number noise, rather than a steady state collective phe-
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nomenon. Recently, Freisinger et al. [82] presented the first quantitative
model that addresses these shortcomings in the concrete setting of Cdc42
polarization in budding yeast. This model requires two feedback loops to
yield a robust axis of polarization, one of which involves an actin-based
Cdc42 recycling channel, which itself is reinforced by actin nucleation stim-
ulated by the presence of the active form of Cdc42. In this way the polarity
factor Cdc42 can locally stabilize one of its delivery channels to the mem-
brane, effectively spontaneously creating the “patches” of Ref. [79].

Here we show that the latter idea – positive feedback on membrane
insertion through stabilisation of transporting structures – is by itself a
sufficient mechanism to generate robust cell polarity. We do so by for-
mulating a model that achieves the two desirable features of spontaneous
symmetry breaking and steady-state persistence, using a minimal number
of components. It is based on the proven ability of microtubules to bind
and directionally transport proteins.

Although this model does not correspond to any presently known po-
larity mechanism in vivo, it is fully based on feasible molecular roles, e.g.
motor proteins from the kinesin family are ubiquitous plus-end transporters
[83] and a number of proteins is able to stabilize microtubules at membranes
[84, 85]. At the very least it establishes proof-of-principle and may form the
basis of a synthetic biology approach to set up polarity in a minimal cell-
like environment, such as lipid bilayer-enclosed microvolumes containing
purified and/or engineered protein components.

6.2 The Model

The key ingredient of the model is that the molecules acting as polarity
factors, having been delivered to membrane by dynamical microtubules,
stabilize the latter against detaching from the membrane. At the same time,
a locally increased concentration of the polarity factors on the membrane,
by itself depletes the finite pool of this species present in the cell providing
a global inhibitory effect on the propensity of similar stable patches to
develop elsewhere. Conceptually this model thus belongs to the generic
class of activator-depletion models (for concrete examples see [86, 87] and
[75] for a general overview), but distinguishes itself by employing the non-
diffusible microtubules as a mediator species. Moreover, it allows an explicit
analysis of the conditions under which polarization can occur. The model
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is schematically illustrated in figure 6.1.

delivery

unbinding

diffusion

dynamical 

MTs

MT 

stabilisation

binding

polarity factor

Figure 6.1: Schematic of the model: dynamic microtubules (MTs) transport
polarity factors to the membrane. The latter are recycled to the cell interior
after diffusing in and unbinding from the membrane. The polarity factors,
however, stabilize microtubules against unbinding from the membrane, and
thus are able to create local hotspots of polarity factor delivery creating a
positive feedback loop leading to spontaneous polarization.

Our setting is a spherically symmetric cell of radius R, bounded by a
membrane. Microtubules are nucleated from a point-like centrosome in the
cell center covered with a constant density m nucleation sites per unit of
solid angle, as we have referred in the model of chapter 3. The unoccupied
sites can “fire” with a rate rn, creating a new microtubule. The micro-
tubules obey again the standard two-state dynamical instability model [9],
with growth speed v+, shrinking speed v−, catastrophe rate r+ and rescue
rate r−. If the microtubules hit the cell boundary they stall, after which
they switch to the shrinking state with a rate ru (cb (ω̂, t)) which depends
on the local concentration cb (ω̂, t) of the polarity factor in the membrane,
where the unit vector ω̂ parameterizes the cell boundary. The dynamical
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equations for the microtubules are then given by

∂tm
+
i (l, ω̂, t) =− v+∂lm

+
i (l, ω̂, t) + r−m

−
i (l, ω̂, t)

− r+m
+
i (l, ω̂, t), (6.1)

∂tm
−
i (l, ω̂, t) =v−∂lm

−
i (l, ω̂, t)− r−m−i (l, ω̂, t)

+ r+m
+
i (l, ω̂, t), (6.2)

∂tm0(ω̂, t) =− rnm0(ω̂, t) + v−m
−
i (l = 0, ω̂, t), (6.3)

∂tmb(ω̂, t) =− ru (cb(ω̂, t))mb(ω̂, t) + v+m
+
i (R, ω̂, t), (6.4)

where m+
i (l, ω̂, t) and m−i (l, ω̂, t) are the densities of growing and shrinking

microtubules in the direction ω̂ in the cell interior, mb(ω̂, t) the density
of stalled microtubules at the boundary, and m0(ω̂, t) the density of un-
occupied nucleation sites, conveniently considered as density of “dormant”
microtubules. These equation are supplemented by the boundary condi-
tions

rnm0(ω̂, t) = v+m
+
i (l = 0, ω̂, t), (6.5)

ru (cb(ω̂, t))mb(ω̂, t) = v−m
−
i (R, ω̂, t), (6.6)

and the microtubule conservation law

m =m0(ω̂, t) +

∫ R

0
dl
{
m+
i (l, ω̂, t) +m−i (l, ω̂, t)

}
+mb(ω̂, t) (6.7)

The polarity factor can either be adsorbed to the membrane, on which
it diffuses with (angular) diffusion constant D = Db/R

2 and from which
it unbinds with rate ku, freely diffuse within the interior of the cell, where
we assume it diffuses with effective diffusion constant Di = ∞ or bind to
microtubules. Its conservation law reads

C = Cf (t) + Cm (t) +

∫
dω̂ cb (ω̂, t) (6.8)

where Cf is the number of free polarity factors in the interior, Cm the num-
ber bound to microtubules and cb the density on the membrane. We assume
that the binding kinetics of the polarity factor to the microtubules is fast
with respect to the other processes, so it can be described as an equilib-
rium, with the density (per unit length) of polarity factors on microtubules
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given by

cm (t) =
Cm (t)

ltot (t)
=

1

ltot (t) + l 1
2

(
C −

∫
dω̂ cb (ω̂, t)

)
, (6.9)

where

ltot (t) =

∫
dω̂

∫ R

0
dl l
{
m+
i (l, ω̂, t) +m−i (l, ω̂, t)

}
+R

∫
dω̂ mb(ω̂, t) (6.10)

is the total length of all microtubules in the system, and l 1
2

is a parameter

that sets the affinity of the polarity factors for binding to the microtubules.
The polarity factors bound to the microtubules are transported towards the
microtubule plus end with speed vm, where they are delivered to the mem-
brane, if the microtubule they are bound to is attached to the membrane,
or they simply fall off. The time evolution of the polarity factor density on
the membrane is thus described by

∂tcb(ω̂, t) = D∆ω̂cb (ω̂, t)− kucb(ω̂, t) + vmcm (t)mb(ω̂, t) (6.11)

where ∆ω̂ is the Laplacian on the unit sphere. The final ingredient of the
model we need to specify is the dependency of the residence time of the
microtubules at the boundary on the local density of polarity factors, which
we parametrize as

ru(cb) = (ru(0)− ru(∞))σ

(
cb
c∗

)
+ ru(∞) (6.12)

where ru(0) > ru(∞) (stabilization), c∗ sets the relevant density scale and
σ (γ) is a dose-response function that monotonically decreases from a max-
imal value σ (0) = 1 and vanishes sufficiently fast for large arguments, i.e.
limγ→∞ γσ (γ) = 0. Our results are generic for a wide class of dose-response
functions (see Appendix 6.9.2 to this chapter), but for concreteness sake,
we will adopt a standard sigmoidal Hill type function.

6.3 Steady State Analysis

In this section we derive the steady state solutions to the microtubule dy-
namical equations. The steady state equations for the microtubules are
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given by

0 = −v+∂lm
+
i (l, ω̂) + r−m

−
i (l, ω̂)− r+m

+
i (l, ω̂) (6.13)

0 = v−∂lm
−
i (l, ω̂)− r−m−i (l, ω̂) + r+m

+
i (l, ω̂) (6.14)

0 = −rnm0(ω̂) + v−m
−
i (l = 0, ω̂) (6.15)

0 = −ru (cb(ω̂))mb(ω̂) + v+m
+
i (R, ω̂) (6.16)

with boundary conditions

rnm0(ω̂) = v+m
+
i (l = 0, ω̂) (6.17)

ru (cb(ω̂))mb(ω̂) = v−m
−
i (R, ω̂) (6.18)

Combining Eqs. (6.16) and (6.18) yields

v+m
+
i (R, ω̂) = v−m

−
i (R, ω̂) (6.19)

which in combination with Eqs. (6.13) and (6.14) leads to the well-known
[9] balance law

v+m
+
i (l, ω̂) = v−m

−
i (l, ω̂) (6.20)

for all l ∈ [0, R]. This allows the elimination of m−i (l, ω̂) in Eq. (6.13) and
its solution with the aid of Eq. (6.15):

m+
i (l, ω̂) =

rn
v+
m0(ω̂)e−l/l̄ (6.21)

m−i (l, ω̂) =
rn
v−
m0(ω̂)e−l/l̄ (6.22)

where

l =

(
rc
v+
− rr
v−

)−1

(6.23)

is the mean microtubule length in the absence of boundaries. We can now
use the microtubule conservation law

m = m0(ω̂) +

∫ R

0
dl
{
m+
i (l, ω̂) +m−i (l, ω̂)

}
+mb(ω̂)

=

(
1 + rnl

(
1

v+
+

1

v−

)(
1− e−R/l

))
m0(ω̂) +mb(ω̂) (6.24)

and the boundary condition Eq. (6.18) which here reads

ru (cb(ω̂))mb(ω̂) = v−m
−
i (R, ω̂) = v+m

+
i (R, ω̂) = rnm0 (ω̂) e−R/l (6.25)
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to determine

mb (ω̂) =
mrne

−R/l((
1 + rnl

(
1
v+

+ 1
v−

)(
1− e−R/l

))
ru (cb(ω̂)) + rne−R/l

)
(6.26)

m0 (ω̂) =
mru (cb(ω̂))((

1 + rnl
(

1
v+

+ 1
v−

)(
1− e−R/l

))
ru (cb(ω̂)) + rne−R/l

)
(6.27)

This shows that in steady state all microtubule densities are fully deter-
mined by the density of polarity factors at the membrane. For convenience,
we now introduce the following dimensionless quantities

µi ≡ rnl
(

1

v+
+

1

v−

)(
1− e−R/l

)
(6.28)

µb ≡ e−R/l (6.29)

which respectively are proportional to the number of microtubules of length
< R, corresponding to the cell interior, and of length R, thus reaching the
boundary, in the absence of boundary effects, i.e. dependent only on the
microtubule dynamical parameters. We now turn to the calculation of the
total length of the microtubules

ltot (t) =

∫
dω̂

∫ R

0
dl l
{
m+
i (l, ω̂, t) +m−i (l, ω̂, t)

}
+R

∫
dω̂ mb(ω̂, t) (6.30)

which works out as

ltot [cb] =

∫
dω̂

(
1

v+
+

1

v−

)
rnm0 (ω̂)

∫ R

0
dl le−l/l̄ +R

∫
dω̂ mb (ω̂)

=

∫
dω̂
m
(

1
v+

+ 1
v−

)
rn l̄
(
l̄ − e−R/l̄

(
l̄ +R

))
ru (cb(ω̂)) +RMrne

−R/l̄((
1 + rnl

(
1
v+

+ 1
v−

)(
1− e−R/l

))
ru (cb(ω̂)) + rne−R/l

)
= ml̄

∫
dω̂
rn l̄
(

1
v+

+ 1
v−

)(
1− e−R/l̄

(
1 + R

l̄

))
ru (cb(ω̂)) + R

l̄
rne
−R/l̄((

1 + rnl
(

1
v+

+ 1
v−

)(
1− e−R/l

))
ru (cb(ω̂)) + rne−R/l

)
(6.31)
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We introduce the dimensionless quantities

λi ≡ rn l̄
(

1

v+
+

1

v−

)(
1− e−R/l̄

(
1 +

R

l̄

))
(6.32)

λb ≡
R

l̄
e−R/l̄ (6.33)

proportional to the mean length stored in microtubules of length < R and
length equal to R respectively, again in the absence of boundary effects.
These definitions allow us to concisely write

ltot [cb] = ml̄

∫
dω̂

λiru (cb (ω̂)) + λbrn
(1 + µi) ru (cb (ω̂)) + µbrn

(6.34)

and
mb (ω̂) = m

rnµb
(1 + µi) ru (cb(ω̂)) + µbrn

(6.35)

So, in steady state both the density cm of polarity factors on the micro-
tubules and the density mb(ω̂) of microtubules at the boundary functionally
depend on the density cb(ω̂) of polarity factors in the membrane. This al-
lows us to formulate a single autonomous equation for the latter density

D∆ω̂cb (ω̂)− kucb(ω̂) +Kb [cb] (ω̂) = 0 (6.36)

where, combining Eq. (6.9) and the steady state solutions, the effective
binding rate Kb of polarity factors to membrane is given by

Kb [cb] (ω̂) ≡ vmcmmb (ω̂) =
mvm

ltot [cb] + l 1
2

(
C −

∫
dω̂′cb

(
ω̂′
))
×

µbrn
(1 + µi) ru (cb (ω̂)) + µbrn

(6.37)

Note that since both ltot and cb are proportional to the number density
m of microtubules, a scaling of l 1

2
with m will leave the effective binding

rate invariant. A decrease of m can therefore be exactly compensated by
an increased binding affinity of the polarity factors to the microtubules.

Clearly, Eq. (6.36) admits an isotropic solution c̄b (C) for any value of
the number of polarity factors. For our purposes it suffices to establish
that c̄b (C) is monotonically increasing with C and is asymptotically linear,
c̄b (C) ∝ C, C → ∞ (neglecting saturation of binding), so that c̄b (C) can
take on any positive value (see Appendix 6.9.1 to this chapter).
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6.4 Bifurcation Analysis Results

We now ask whether Eq. (6.36) can also support an anisotropic solution.
To that end we adopt a standard bifurcation approach and consider the
first order response of the isotropic solution to a perturbation of the type

cb (C) = c̄b (C) + ε c
(1)
b (ω̂) where ε� 1. This leads to the Helmholtz equa-

tion
D

ku
∆ω̂c

(1)
b (ω̂) + Ω2 (c̄b/c∗) c

(1)
b (ω̂) = 0 (6.38)

where

Ω2 (c̄b/c∗) = −

(
1 +

c̄b
c∗

dσ
dγ (c̄b/c∗)

σ (c̄b/c∗) + η

)
(6.39)

which identifies the parameter

η ≡
(
ru (∞)

ru (0)
+

µbrn
(1 + µi) ru (0)

)
/

(
1− ru (∞)

ru (0)

)
> 0 (6.40)

As expected, the relevant dimensionless scale for the bound polarity factor
density is given by the ratio γ ≡ c̄b/c∗, which, in view of its monotonic
dependence on C, we henceforth adopt as the parameter that governs the
availability of polarity factors.

The bifurcation equation (6.38) has spherical harmonics Y m
n (ω̂) as so-

lutions provided Ω2 (γ) = n (n+ 1)D/ku. Given that Ω2 (0) = −1 and
limγ→∞Ω2 (γ) = −1, we thus first need to establish whether conditions
exist for which Ω2 (γ) > 0 for some values of the surface density γ. If this
is the case, a suitably small value of the parameter δ ≡ D/ku, which can
be interpreted as the square of the mean angular displacement before un-
binding, will always make the unipolar (n = 1) solution Y 0

1 (ω̂) ∝ cos θ
accessible. The explicit form of the dose-response function we adopt is

σ (γ) =
1

1 + γp
, p > 1 (6.41)

which introduces the Hill coefficient p as our final parameter . For this
choice

Ω2 (γ) =
pγp

(γp + 1) (η + ηγp + 1)
− 1 (6.42)

and we see that Ω2 (γ) = 0 has two real solutions whenever the following
criterion is met

η < ηmax = (p− 1)2 /4p (6.43)
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The parameter η can be made arbitrarily small by both increasing the
residence time of the microtubules at the boundary, i.e. reducing ru (∞),
and simultaneously decreasing the probability of microtubules reaching
the boundary, which through the expression µb = exp

(
−R/l̄

)
is sim-

ply governed by the mean length of the microtubules. As argued above,
polarization is possible when Ω2 (γ) ≥ 2δ. Since max Ω2 (γ) = p − 1 −
2p
(√

η (1 + η)− η
)
≤ p − 1, we find that polarization can only occur for

δ < δmax = 1/2 (p− 1) . Finally, explicitly solving Ω2 (γ) = 0 in the limit
η ↓ 0, yields an absolute lower bound on the number of polarity factors
necessary, which is given by γmin = (p− 1)−1/p . The full phase diagram in
terms of the three parameters η, γ and δ is presented in figure 6.2.

γ

η

δ

δ
max

η
max

γ
min

0

Figure 6.2: Phase diagram of our model for a fixed value of the Hill co-
efficient p. This shows that there is a wide region in the values of the
parameters η, γ and δ, below the depicted boundary surface, for which the
polarized state is stable.

On the basis of these results, we can say that spontaneous polarization
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will occur whenever (i) there is a sufficient number of polarity factors (gov-
erned by γ), (ii) their effect on enhancing the microtubule residence time at
the membrane is high enough (governed by η), (iii) the density dependence
of this enhancement is steep enough (governed by p), (iv) after insertion
the polarity factors unbind from the membrane before influencing other
microtubules at farther away locations (governed by δ), and finally, (v) ar-
rival of microtubules is rare enough (governed by η) that a locally stable
polar patch of polarity factor can be established, which then suppresses
the formation of other patches through the inhibitory pool depletion effect
that decreases the availability of polarity factors to stabilize microtubules
at other locations.

For fixed values of p, η and δ which meet the criteria, a value of C
(through its proxy γ) can be found above which spontaneous symmetry
breaking to a unipolar steady state occurs. However, as the pool of avail-
able polarity factors is increased, inevitably the polarization inducing mech-
anism breaks down: When the monotonically increasing average density of
polarity factors in the membrane rises significantly above c∗, the lifetime
of the membrane-bound microtubules becomes ' ru(∞)−1 independent of
position, and the system will revert back to the isotropic state. We thus
expect that as a function of the number of available polarity factors we can
distinguish three regimes: At low values of γ there are insufficient polar-
ity factors bound to membrane to activate localized regions of longer-lived
microtubules. At high values of γ, the surfeit of available polarity factors
precludes any localized increase of polarity factors to inhibit its accumula-
tion at other locations, and microtubules are equally stabilized everywhere.
Only in the intermediate regime, where activation balances inhibition can
sustained polarization be achieved. Figure 6.3 graphically illustrates this
analysis, which also explains the reentrant behavior evident from the phase
diagram, where at finite η and suitably small δ any line parallel to the γ
axis pierces the ordered region at two locations.

Interestingly, the dimensional dependence of the model is in fact very
weak, and essentially only enters through the eigenvalue of the angular
laplacian (i.e. n2 in 2D vs. n(n+ 1) in 3D). For simplicity’s sake, we there-
fore chose to provide proof-of-principle of our mechanism by simulations
of a 2D stochastic version of our model in which both polarity factors and
microtubules are explicitly modelled as particles, but note that achieving
polarization in 3D through this mechanism, be it in silico or in vitro, should
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be equally feasible.
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Figure 6.3: The angular wavelength Ω2 as a function of γ, itself effectively
proportional to the total number C of available polarity factors. Sponta-
neous polarization is possible only in the intermediate regime where the
necessary condition Ω2 > 0 is fulfilled, and is achieved when the sufficient
criterion Ω2 > 2δ is met (white area). In the other two regimes (blue
areas) polarization is impossible due to insufficient activation (low γ) or
insufficient inhibition (high γ).

6.5 Simulation Method

We implement a 2D stochastic simulation in a circular cell geometry with a
radius R. The control parameter in the simulations is the total number C of
polarity factors in the system. The finite time-step in the simulation is cho-
sen to be ∆t = 0.5s. A point-like centrosome in the center of the disc has M
nucleation sites that each can nucleate an microtubule in one of M equally-
spaced directions. When not connected to an active microtubule, these sites
have a nucleation rate rn. Active microtubules obey the standard two-state
dynamical instability mechanism. When after a time step a microtubule
has a length ≥ R it is put into the bound state. The boundary of the disc
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Chapter 6. Spherical cell polarity: a minimal model

is divided to M equal segments, each subtending an angle ∆θ = 2π/M
around one of the nucleation directions, θm = m∆θ,m = 0, 1, 2, . . . ,M − 1.
The number of polarity factors in the m’th segment is denoted by Cmb . An
microtubule in the bound state at angle θm, can switch to the shrinking
state at an instantaneous rate given by ru (cm) (Eq. (6.12)), where we de-
fine the local density of polarity factors as cm = Cm−1

b +Cmb +Cm+1
b i.e. we

regard a neighbourhood also containing the flanking circle segments. This
slightly dampens the potentially strong finite number of fluctuations at low
values of C. At each time step the total length ltot of active microtubules is
evaluated and used to determine the number of microtubule-bound polarity
factors Cm from the number Ci of polarity factors in the cell interior, using
the chemical equilibrium approach described earlier.

At the boundary, a polarity factor can either diffuse or unbind thus
recycling back into the cell interior. The probability of unbinding from
the membrane in a single time step is given by ku∆t, where ∆t is the
time step and ku is the unbinding rate. Correspondingly, the probability of
diffusing on the membrane is given by 1− ku∆t. To determine the angular
displacement δθ of a diffusing polarity factor, we sample from the analytical
form of the cumulative probability of diffusion on the unit circle

P (δθ) =
δθ

2π
+

1

π

∑
n=1

e−2n2D∆t

n
sin(nδθ), (6.44)

where we took into account the first 20 terms of the sum and ∆t is the time
step.

Where available, we have used simulation parameters consistent with
generic experimental values reported in the literature (see Table 6.1).

The binding affinity of polarity factors to microtubules in our simu-
lations is set by the parameter l1/2, while in the literature the “binding
density” v is used as derived in the McGhee and von Hippel model [94]
and defined for one-dimensional lattices as the number of moles of bound
ligands per mole of total lattice residue.

To compare the two affinity parameters, we first consider the total num-
ber N of available dimers for binding, by introducing the length l = 8nm
of a single tubulin dimer and taking into account that microtubules have
13 protofilaments and find

N = 13
ltot
l

(6.45)
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Parameter Simulation value Reference value Reference

R 3 µm (2.58±0.54)µm [88] Budding yeast
v+ 0.013, 0.018 µm/s (0.010–0.033)µm/s [52] Budding yeast
v− 0.040, 0.045 µm/s (0.025–0.048)µm/s [52] Budding yeast
rn 0.05/s (0.007–1.5)/s [53] Budding Yeast,

[89] Kidney epithe-
lium

r+ 0.0078/s 0.0078/s [52] Budding Yeast
r− 0.0016/s 0.0016/s [52] Budding Yeast
vm 0.81 µm/s (0.80–0.83)µm/s [90] Kinesin-1
ku 0.07/s 0.065/s [91] Rac
D 0.02, 0.035 µm2/s (0.036±0.017)/s [79] Yeast
M 1000 60 [92] Xenopus egg
C (0.10–0.80)× 105 105 [93] Eucaryotes
l1/2 15, 150 µm 0–∞ [94],[95] Dam1 com-

plex
(M/3)c∗ 20× 103 unknown
ru(0) 0.01/s 1/((90±35)s) [49]
ru(∞) 0.001/s unknown
p 5 unknown

Table 6.1: Model Parameters

The binding density (assuming each dimer can bind a polarity factor) is
then simply

ν =
Cm
N

(6.46)

On the other hand, Eqs. (6.8) and (6.9) yield

l1/2 =
Cf
Cm

ltot =
Cint
Cm

ltot − ltot, (6.47)

where Cint is the total number of polarity factors in the cell interior. Com-
bining the two results, yields the desired relation between the two affinity
parameters

l1/2 =
Cintl

13v
− ltot (6.48)
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Figure 6.4: The order parameter S1 as a function of the average membrane
density of polarity factors γ as determined in 2D particle-based simulations
with p = 5 and R = 3µm. The parameter η was tuned by changing the
spontaneous catastrophe rate of the microtubules, yielding microtubules of
mean length l̄ = 1.77µm (top curve) and l̄ = 2.54µm (middle and bottom
curves).The corresponding theoretical predictions for the polarized regimes
are shown as gray bars above each curve. Error bars denote standard errors
in the mean from multiple independent runs.

Simulations were run from an initial state with no active microtubules
and all polarity factors in the cell interior, until a steady state was reached.
To measure the degree of polarization in the steady state we use the order
parameter defined by equation (3.47)

S1 =

√(∑M−1
m=0 cm∆θ cos θm

)2
+
(∑M−1

m=0 cm∆θ sin θm

)2

∑M−1
m=0 cm∆θ

(6.49)

which has a value of 0 for a perfectly isotropic system and a value of 1 for
a fully polarized system, where all polarity factors accumulate in a single
bin. To obtain independent samples of the distribution {Cmb }m=0,...,M−1,
observations were spaced by 100s. Moreover, as expected, the location of
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the maximum of the distribution (if this exists) can slowly drift over the
unit circle. To obtain meaningful averages, we therefore corrected for this
phase-drift, by extracting the phase through a Fourier analysis and shifting
the distribution accordingly. To obtain the averages, roughly 400 samples
were taken. At each value of C a number of independent simulations were
performed, allowing an error estimate of S1 to be obtained (see below). To
obtain results as function of the relative membrane density γ = c̄b/c∗, we
used Eqs. (6.78) and (6.79) to convert the value of C into the corresponding
theoretically predicted value γ, leading to the graph shown in figure 6.4 of
the polar order parameter S1 ≡ 〈cos θ〉 describing the angular distribution
of polarity factors on the boundary as a function of the mean membrane
density γ of polarity factors in the cell for three different values of η and δ.

Figure 6.5: Snapshots of the simulation. Left: γ = 0.923, C = 30000,
center: γ = 1.288, C = 37000, and right: γ = 1.853, C = 50000. The thick
outer contour is a radial histogram of the polarity factor density at the
boundary, with the outer circle marking the mean density level. The inner
circle represents the cell boundary. For presentation purposes multiple
microtubules resident at the boundary are lumped together, the pale blue
lines representing a lower density and the dark blue lines a higher density.
Also, all microtubules of length < R are not shown, and the dense central
area is masked by the gray disk. Values of the remaining parameters:
η = 0.322, δ = 0.286 and p = 5. Results show the predicted sequence of
a low polarity factor membrane density isotropic state due to insufficient
activation, an intermediate density polarized state, and a high-density state
which is again unpolarized due to saturation.

The results show that the observed polarization is both qualitatively
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and quantitatively captured well by the theory, albeit that inevitable finite
particle number effects shift the phenomenon to slightly higher values of
γ. Figure 6.5 shows snapshots of the system in the low-γ isotropic, the
polarized and the high-γ saturated regime respectively.

6.6 Particle Finite Number Effects

Using our simulation results for Cint and ltot calculated for l1/2 = 150µm we
find a value of v ' 0.03, which, comparing to data obtained for the Dam1
complex [95], clearly corresponds to a very low binding-density regime. This
suggests that we can readily compensate for a decrease in the number of
microtubules to a more realistic value of ' 102, by increasing the binding
affinity (decreasing l 1

2
) to levels which are still feasible. In fact, Eqs.

(6.34) and (6.37) show that, everything else remaining equal, a simultaneous
scaling of the microtubule density m and l 1

2
by the same amount, leaves the

effective binding rate of polarity factors to membrane invariant, implying
that the overall behaviour is identical.
To validate this prediction, we performed simulations with M = 100 and
l 1

2
= 15µm, comparing it to the case M = 1000 and l1/2 = 150µm. The

results are shown in figure 6.6.

Although the two curves are already fairly close, it is obvious that finite
particle number effects are more prominent at M = 100, as evidenced by
the significantly higher values of S1 in the isotropic phase, be it in the
regime of insufficient activation ( factor of 3 larger than at M = 1000) or of
insufficient inhibition ( factor of 2 larger than at M = 1000). To estimate
the magnitude of these effects we performed additional simulations in which
we the total number of polarity factors in the membrane is equal to that of
the original simulations, but artificially maintained an isotropic distribution
by “homogenizing” the membrane density at each time step. This results in
the lower curves in figure 6.6, which are in essence a lower-bound estimate
of the finite particle number noise contribution to the observed degree of
polarization. Subtracting these noise curves from the full results yields
figure 6.7 in which the location of the ordered peak is now seen to fully
coincide between the two cases, leaving a reduced amplitude and a slight
broadening of the ordered region as the main effects of the reduced number
of microtubules.
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Figure 6.6: The order parameter S1 as a function of the average membrane
density of polarity factors γ for the cases M=100 and M=1000. For each
case two curves are drawn: the “noise curve” obtained by artificially keeping
the system in the unpolarized state and the full unconstrained curve. Error
bars denote standard errors in the mean from multiple independent runs.
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Figure 6.7: The order parameter S1 as a function of γ for the cases M=1000
(upper curve) and M=100 (lower curve). Each curve is the result of sub-
tracting the noise curve from the full curve (see figure 6.6) of the same
case.
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6.7 Effect of a Finite Tubulin Pool

In our model we have so far assumed that the amount of tubulin is not a
limiting factor. Since, however, we are working in a finite volume it is a
reasonable question to ask to what extent our results are robust against
possible finite tubulin pool size limitations. Indeed, recent experiments
[96] have shown that the size of cytoskeletal structures, such as the mitotic
spindle, could well be limited by tubulin availability. Here we address
this question, by explicitly modelling the effect a finite pool has on the
microtubule dynamics, specifically the growth speed and the nucleation
rate. For simplicity, we disregard the effects of the capping of lengths due
to cell boundary, focusing on the first order effects.

6.7.1 Dynamical equations

We assume the cell contains a finite amount of tubulin, which is represented
in terms of a total microtubule length Ltot. There are M nucleation sites
from which microtubules can be nucleated with a rate given by

rn (Lfree) = rn
Lqfree

Lqfree + L 1
2

(6.50)

where Lfree is the available free (non-polymerized) tubulin length, L 1
2

a

cross-over parameter, which distinguishes the regime of low availability, in
which the rate is strongly limited by the available free pool size, and the
regime of high availability, in which the rate ultimately becomes indepen-
dent of the free pool size. The Hill coefficient q > 1, describes the potential
cooperativity necessary in the nucleation a new microtubule. Once nucle-
ated, microtubules grow with a speed

v+ (Lfree) = v+
Lfree

Lfree + L 1
2

, (6.51)

which at low availability captures the linear dependence of growth on the
free tubulin density. The other dynamical parameters v−, r+ and r− are
considered to be independent of the available amount of free tubulin. De-
noting by M0 (t) the total number of free nucleation sites (orientation is
unimportant in this context), the dynamics of the system is described by
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the equations

d

dt
M0 (t) = −rn (Lfree (t))M0 + v−m− (0, t) (6.52)

∂

∂t
m+ (l, t) = −v+ (Lfree (t))

∂

∂l
m+ (l, t)− r+m+ (l, t) + r−m− (l, t)

(6.53)

∂

∂t
m− (l, t) = v−

∂

∂l
m+ (l, t)− r+m+ (l, t) + r−m− (l, t) (6.54)

d

dt
Lfree (t) = −v+ (Lfree (t))

∫ ∞
0

dlm+ (l, t) + v−

∫ ∞
0

dlm− (l, t) (6.55)

with boundary condition

rn (Lfree (t))M0 = v+ (Lfree (t))m+ (0, t) (6.56)

As a check on these equations we note that they should obey the conserva-
tion laws

M0 (t) +

∫ ∞
0

dl {m+ (l, t) +m− (l, t)} = M (6.57)

Lfree +

∫ ∞
0

dll {m+ (l, t) +m− (l, t)} = Ltot (6.58)

Now note that∫ ∞
0

dl

{
∂

∂t
m+ (l, t) +

∂

∂t
m− (l, t)

}
=

∫ ∞
0

dl

{
−v+ (Lfree (t))

∂

∂l
m+ (l, t) + v−

∂

∂l
m+ (l, t)

}
= v+ (Lfree (t))m+ (0, t)− v−m− (0, t) = − d

dt
M0 (t) (6.59)

and∫ ∞
0

dll

{
∂

∂t
m+ (l, t) +

∂

∂t
m− (l, t)

}
=

∫ ∞
0

dll

{
−v+ (Lfree (t))

∂

∂l
m+ (l, t) + v−

∂

∂l
m+ (l, t)

}
= v+ (Lfree (t))

∫ ∞
0

dlm+ (l, t)− v−
∫ ∞

0
dlm− (l, t) = − d

dt
Lfree (t)

(6.60)

where we have assumed liml→∞m+ (l, t) = liml→∞m− (l, t) = 0.
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6.7.2 Steady state solution

We now consider the steady state, for which

−rn (Lfree)M0 + v−m− (0) = 0 (6.61)

−v+ (Lfree)
∂

∂l
m+ (l)− r+m+ (l) + r−m− (l) = 0 (6.62)

v−
∂

∂l
m+ (l)− r+m+ (l) + r−m− (l) = 0 (6.63)

−v+ (Lfree)

∫ ∞
0

dlm+ (l) + v−

∫ ∞
0

dlm− (l) = 0 (6.64)

with boundary condition

rn (Lfree)M0 = v+ (Lfree)m+ (0) (6.65)

We note that Eqs. (6.62) and (6.63) lead to

m+ (l) =
m0

v+ (Lfree)
e−l/l̄ (6.66)

m− (l) =
m0

v−
e−l/l̄ (6.67)

where

l̄ (Lfree) =

(
r+

v+ (Lfree)
− r−
v−

)−1

(6.68)

We can determine M0,m0 and Lfree through the identities

M = M0 +m0

(
1

v+ (Lfree)
+

1

v−

)
l̄ (Lfree) (6.69)

L = Lfree +m0

(
1

v+ (Lfree)
+

1

v−

)
l̄ (Lfree)

2 (6.70)

rn (Lfree)M0 = m0 (6.71)
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so that

M0 =
M

1 + rn (Lfree)

(
1

v+(Lfree)
+ 1

v−

)
l̄ (Lfree)

(6.72)

Lfree =

L−
rn (Lfree)M

1 + rn (Lfree)

(
1

v+(Lfree)
+ 1

v−

)
l̄ (Lfree)

(
1

v+ (Lfree)
+

1

v−

)
l̄ (Lfree)

2

= L−
rn (Lfree)

(
1

v+(Lfree)
+ 1

v−

)
l̄ (Lfree)

1 + rn (Lfree)

(
1

v+(Lfree)
+ 1

v−

)
l̄ (Lfree)

Ml̄ (Lfree) (6.73)

We now take as our length scale l0 = L 1
2
/M and introduce λ = L/L 1

2
,

λfree = Lfree/L 1
2

and λ̄ (λfree) = l̄ (Lfree) /l0 so that

λfree = λ−
rn (λfree)

(
1

v+(λfree)
+ 1

v−

)
λ̄ (λfree)

1 + rn (λfree)

(
1

v+(λfree)
+ 1

v−

)
λ̄ (λfree)

λ̄ (λfree) (6.74)

and note that
Lfree

Lfree + L 1
2

=
λfree

λfree + 1
(6.75)

In the Appendix 6.9.3 to this chapter, we prove the following two in-
equalities:

λ̄ (λfree (λ)) ≤ λ̄ (λfree (∞)) (6.76)

M −M0 (λfree (λ)) ≤ M −M0 (λfree (∞)) (6.77)

These first inequality implies that, due to the finite tubulin pool, the
microtubules are on average shorter than in the saturated case. This de-
creases the fraction of microtubules reaching the boundary, and hence de-
creases the parameter η (Eq. 6.40), which in turn enhances the propensity
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to polarize. As we have already shown (Eqs. (6.34) and (6.37)), the model
can in fact be made robust against the concomitant decrease in the number
of active microtubules, implied by the second inequality.

6.8 Conclusion

The model discussed here assumed no limits on the availability of tubulin,
which could be a concern given the fact that we consider a finite-volume
geometry. Having analyzed the first order effects of a limited tubulin pool
on the number and length of microtubules using a suitably extended micro-
tubule dynamics, we argue that our model is robust against finite tubulin
pool size effects.

In summary, we have presented a minimal, yet feasible, model for spon-
taneous cell polarization. Although it comprises no less than 13 parameters,
the explicit analysis it allows shows that its behavior is in fact only gov-
erned by 4 quantities, the source localization parameter η (Eq. (6.40)),
which regulates the efficiency by which microtubules can locally enhance
the insertion of polarity factors, the mean angular displacement δ = D/ku
of polarity factors in the membrane, which determines the extent to which
polarity factors once inserted remain localized, the Hill parameter p, which
controls the steepness of the switch that distinguishes stabilized micro-
tubules from non-stabilized microtubules at the membrane, and finally the
relative membrane density γ = c̄b/c, which controls the availability of po-
larity factors in the membrane to drive the polarization mechanism. We
argue that the roles played by these 4 quantities, are universal for a whole
class of polarization mechanisms which rely on the autocatalytic enhance-
ment of localized insertion, and as such transcend the specifics of the model
presented here. Using techniques currently under active development (see
e.g. [97]), it should be possible to implement this type of model in vitro,
potentially providing a building block of a minimal synthetic cell. It is of
course also interesting to consider how the current model can be coupled
to polarized cell growth to further elucidate the biologically highly relevant
interplay between cell shape, microtubule organization and polarization.
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6.9 Appendix

6.9.1 Properties of the isotropic solution

Here we derive the fact that the density of polarity factors on the membrane
in the isotropic state increases monotonically with the total number of
polarity factors C, which is a minimal requirement for the bifurcation to
the polarized state to occur.

The steady state equation for the density of polarity factors in the
membrane (Eq. 6.36) admits an isotropic solution cb(ω̂) = c̄b which satisfies

− kuc̄b +Kb(C, c̄b) = 0 (6.78)

where, making the dependence on the number C of polarity factors explicit,

Kb (C, c̄b) =
mvm

ltot (c̄b) + l 1
2

(C − 4πc̄b)
µbrn

(1 + µi) ru (c̄b) + µbrn
(6.79)

with

ltot (c̄b) = 4πml̄
λiru (c̄b) + λbrn

(1 + µi) ru (c̄b) + µbrn
. (6.80)

Trivially, c̄b (C = 0) = 0, and an explicit calculation shows that

d

dC
c̄b (C = 0) =

vmm̄b (c̄b = 0)

ku

(
ltot (c̄b = 0) + l 1

2

)
+ 4πvmm̄b (c̄b = 0)

≥ 0 (6.81)

Taking the derivative of Eq. (6.78) with respect to the total number of
polarity factors C and rearranging, yields

d

dC
c̄b (C) =

∂
∂CKb (C, c̄b (C))

ku − ∂
∂c̄b
Kb (C, c̄b (C))

. (6.82)

We now note that, from Eq. (6.79)

∂

∂C
Kb (C, c̄b (C)) =

Kb (C, c̄b (C))

C − 4πc̄b (C)
> 0. (6.83)

Thus d
dC c̄b (C) can only change sign through a pole (ruled out as Kb (C, c̄b)

is bounded) or a cusp (ruled out by smoothness of Kb (C, c̄b)), showing that
c̄b (C) is monotonically increasing.
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Finally, the form of Eq. (6.79) and the asymptotic behaviour of ru (c̄b) =

ru (∞) +O
(

(c̄b)
−1−ε

)
as c̄b →∞, which follows from the Ansatz

limx→∞ xσ (x) = 0 on the dose-response function, dictate that c̄b (C) is
asymptotically linear. An explicit calculation gives

c̄b (C) ∼ vmm̄b (c̄b =∞)

ku

(
ltot (c̄b =∞) + l 1

2

)
+ 4πvmm̄b (c̄b =∞)

C, C →∞, (6.84)

Together these results imply that c̄b (C) can take on any positive value by
suitably choosing C.

6.9.2 Requirements on the dose-response function

Here we derive the minimal requirements the dose-response function
σ (γ = c̄b/c∗) must meet in order for polarization to be possible.

A necessary requirement for the bifurcation to the polar state to occur
is that (see Eq. (6.39))

S (γ) ≡ −γσ′ (γ)− σ (γ) = − (γσ (γ))′ > η > 0 (6.85)

This criterion is met (for suitably small η) if S (γ) has at least one zero
for a finite value of γ. This, however, is guaranteed as S (0) = −1 and by
assumption

lim
γ→∞

∫ γ

0
dγ′S

(
γ′
)

= − lim
γ→∞

γσ (γ) = 0 (6.86)

so that S (γ) > 0 for some γ ∈ (0,∞). If we furthermore assume that
σ (γ) has no more than a single inflection point on (0,∞), the zero of S (γ)
is moreover unique. This analysis also shows that the response function
need not be sigmoidal. E.g. σ (γ) = exp (−γ) also works, as S (γ) =
(γ − 1) exp (−γ) has an obvious single zero at γ = 1. In this case ηc =
maxγ S (γ) = exp (−2) ' 0.135.

6.9.3 Proof of the Finite Tubulin Pool Inequalities

We note that rn (λfree) ,

(
1

v+(λfree)
+ 1

v−

)
and λ̄ (λfree) are all bounded as

λfree →∞, so that λfree (λ) ∼ λ as λ→∞. As rn (0) and(
1

v+(λfree)
+ 1

v−

)
λ̄ (λfree) → 1/r+ as λfree ↓ 0, we have λfree (0) = 0. As
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the second term on the right hand side of Eq. (6.74) is definite positive, we
conclude λfree (λ) ≤ λ, for all λ. Consider

λ̄ (λ) =
M

L 1
2

(
r+

v+

1 + λ

λ
− r−
v−

)−1

(6.87)

Thus λ̄ (0) = 0 and λ̄ (∞) <∞.
Moreover,

d

dλ
λ̄ (λ) =

M

L 1
2

(
r+

v+

1 + λ

λ
− r−
v−

)−2 r+

v+

1

λ2
≥ 0 (6.88)

so that λ̄ (λfree (λ)) ≤ λ̄ (λ) ≤ λ̄ (∞) = λ̄ (λfree (∞)) <∞. Likewise,

d

dλ

{(
1

v+ (λ)
+

1

v−

)
λ̄ (λ)

}
=

M

L1/2

r+ + r−

((r−v+ − r+v−)λ− r+v−)2 ≥ 0

(6.89)
and

d

dλ
rn(λ) =

qrnλ
q−1

(λq + 1)2
≥ 0 (6.90)

So, we can write

d

dλ

{
rn(λ)

(
1

v+ (λ)
+

1

v−

)
λ̄ (λ)

}
≥ 0 (6.91)

We also have rn (∞)
(

1
v+(∞) + 1

v−

)
λ̄ (∞) <∞, and so

M −M0 (λfree (λ))

M
≤ M −M0 (λ)

M
=

rn (λ)
(

1
v+(λ) + 1

v−

)
λ̄ (λ)

1 + rn (λ)
(

1
v+(λ) + 1

v−

)
λ̄ (λ)

≤ M −M0 (∞)

M
=
M −M0 (λfree (∞))

M
(6.92)
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7
Polarization in non-spherical cells

We consider the effects of a non-spherical shape on the microtubule-driven
polarization mechanism in the setting of an ellipse-shaped model cell. In
contrast to the spherical case, two new effects come into play. First, the
shape itself will influence the distribution (Chapter 3). Next, the sliding
mechanism (Chapter 4) will also contribute to anisotropic ordering. Both
these effects appear to promote bipolarity in the distribution of the micro-
tubules. An extensive computational analysis and a theoretical prediction,
however, confirm that a unipolar polarization state can still be achieved.
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7.1 Introduction

In nature cells are rarely spherical. In fact an ellipsoidal shape is very
common [98, 99]. Moreover, many other cell shapes, like the egg shape
[100], can be approximated effectively by an ellipsoid. At the same time,
there is an active drive to create in vitro reconstructed biomolecular systems
in elongated rod-like confinements [101].

It is therefore a logical next step to ask to what extent the microtubule-
based cell polarization mechanism introduced in Chapter 6 “survives” in
the setting of an ellipsoidal model cell. In Chapter 3 we already showed
that shape itself influences the spatial distribution of microtubules nucle-
ated isotropically from a fixed centrosome, due to interactions of the mi-
crotubules with the cell boundary. Moreover, in a non-spherical cell the
sliding mechanism discussed in Chapter 4 will also contribute to further
shape the distribution. In the bilaterally symmetric ellipsoidal cell, both
these effects at first sight would bias the distribution to become bipolar.

For reasons of computational convenience also outlined in the previ-
ous Chapter, we examine these questions in the 2D ellipse geometry. We
perform stochastic simulations, implementing the polarity mechanism in-
troduced in Chapter 6, with and without including the sliding mechanism of
Chapter 4. In both cases, we find that for suitable choices of the parameters
a unipolar polarized state can still be established. In the case where sliding
is included, we encounter the appearance of metastable states indicating
the transition to the polarized state is no longer continuous. To probe
these effects, we study how the system evolves depending on the choice of
pre-biased initial conditions. Finally, to understand why the unipolar state
is so robust, we analytically study a simple one dimensional model, which
imposes the maximal amount of bi-polar pre-biasing due to the geometry.
This rigorously shows that the non-linear polarity mechanism based on dif-
fusive polarity factors transported by the microtubules is strong enough to
overcome any bias.

Before addressing these results, the chapter starts with some technical
details on the implementation of the simulations.
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7.2. Simulation details

7.2 Simulation details

7.2.1 Implementing and validating diffusion

7.2.1.1 The Gaussian approximation

In the case that we examine, the diffusion of the polarity factors in our
model takes place on a closed elliptical boundary. However, in finite time
step simulations we can approximate the diffusion process with that of
unbounded diffusion in one dimension. To that end, we recall the Gaussian
approximation theory [102], which is based on the mapping of the one-
dimensional diffusion to sampling from a Gaussian step size distribution.
The diffusion equation of a particle moving in one dimension is written

c(s, t) =
1√

4πDt
e−

s2

4Dt (7.1)

where D is the diffusion constant. On the other hand, the Gaussian that
is symmetric round zero obeys the equation

f(s) =
1√

2πσ2
e−

s2

2σ2 (7.2)

So using the Einstein relation

σ2 = 2Dt (7.3)

the one-dimensional diffusion is mapped onto a Gaussian. In the sim-
ulations the average ‘jump’ of the diffusing particle is approximated by
σ =

√
2D∆t, where ∆t is the time step. If ∆t is sufficiently small, the

mean diffusion jump σ becomes much smaller than the circumference Cell
of the ellipse. In this case, the jumps never “feel” the closed shape and the
approximation is reasonable.

7.2.1.2 Solution of diffusion equation

Before we proceed with simulations, we develop an analytical method that
can validate the simulation results of the Gaussian approximation method.
To this end, we regard the diffusion equation on the ellipse boundary

∂c(s, t)

∂t
= D

∂2c(s, t)

∂s2
(7.4)
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where c is the concentration on the boundary, s is the arc length along the
boundary and t is time. At time t = 0, we regard a single particle at the
position s = s0. So, we have the initial condition

c(s, 0) = δ(s− s0) (7.5)

Using separation variables, we assume a solution of the form

c(s, t) = U(t)W (s) (7.6)

Then, by substitution in Eq. (7.4) we get

U ′(t)W (s) = DUW ′′(s) (7.7)

and following

U ′

DU
=
W ′′

W
= −k2 (7.8)

which gives

U(t) = U(0)e−k
2Dt (7.9)

The initial condition depends only on s, so U(0) = 1. Setting

k2 =

(
2πm

Cell

)2

(7.10)

we get the spatial solution

W (s) = cos

(
2πm

Cell
(s− s0)

)
(7.11)

where Cell is the perimeter of the ellipse and m an integer.
Finishing with the calculation of the probability density function, we

expand the initialized by the delta function c(s, t) to a Fourier series

c(s, t) =
1

Cell
+

2

Cell

∞∑
m=1

e
−
(

2πm
Cell

)2
Dt

cos

(
2πm

Cell
s0

)
cos

(
2πm

Cell
s

)
(7.12)

For t→∞ we see that the probability density of the particle ultimately be-
comes homogeneously spread out over the circumference, c(s,∞) = 1/Cell.
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7.2.1.3 Validation of diffusion algorithm

Having extracted the analytical expression (7.12) for the probability density
function, we proceed with validating the simulation model that is based on
the Gaussian approximation method. For efficient sampling from a normal
distribution, we use the well-known ’ziggurat’ code [103]. We regard an
ellipse with short semi-axis a = 2µm and long semi-axis b = 4µm, and we
divide its boundary into 400 equal bins. We also take D = 0.035µm2/s and
a small time step ∆t = 0.5s. With these choices, the bin length works out
as about 0.048µm and the mean diffusion jump as σ = 0.19µm, which is
about 4 times the bin length. The particles are inserted by a point-source
on the boundary with a rate kn = 0.05s−1. The simulation results are in
full quantitative agreement with the theoretical ones of Eq. (7.12), as it
is shown in figure 7.1. In this way, the diffusion algorithm is validated for
a small time step. For a complete validation of the algorithm, we proceed
with simulations for longer times. For the same set of parameters as be-
fore, the simulation results and the analytical ones from Eq. (7.12) are in
quantitative agreement, as it is shown in figure 7.2.

 0

 0.5

 1

 1.5

 2

 2.5

 9  9.5  10  10.5

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

s (µm)

Equation (7.9)
Equation (7.12)

Figure 7.1: Validation of the Gaussian approximation for a small time step
(t = 0.5s) of the diffusion process on an elliptical boundary. We can see the
high agreement between the probability densities of equations (7.12) and
(7.1) for a source of polarity factors positioned at s = Cell/2. Parameters:
Cell = 19.3788µm, D = 0.035µm2s−1.
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Figure 7.2: Validation of the Gaussian algorithm for longer times. By
applying it repeatedly for small time steps (∆t = 0.5s), we recover the
resulting distribution of Eq.(7.12) for a total time of t = 100s. Parameters:
as in figure 7.1.

7.2.1.4 Validation of diffusion with source and unbinding

As we referred to at the beginning of this chapter, we are interested in
examining the polarization of elliptical cells that is induced by the spa-
tial organization of microtubules. So, except the diffusion process of the
polarity factors, the microtubule nucleation from a centrosome and the un-
binding from the cell boundary are also basic processes that we incorporate
in our model. In order to validate a simulation algorithm, which includes
diffusion, nucleation and unbinding, we again develop an analytical result.
To this end, we regard a system with N particles in total, from which Ni

are distributed over the interior. Particles from the interior are inserted at
position s = 0 with a rate kn per particle per unit time. Within the bound-
ary the particles diffuse with diffusion coefficient D until they unbind with
rate ku, and are recycled to the interior again. We are looking for the
steady-state distribution of the density c (s) of particles in the boundary.
The time dependent problem is given by

∂

∂t
c(s, t) = D

∂2

∂s2
c(s, t)− kuc(s, t) + knNi(t)δ(s) (7.13)

144



7.2. Simulation details

In steady state we find

D
d2

ds2
c (s)− kuc (s) + knNiδ (s) = 0 (7.14)

We solve the equation by Fourier analysis, multiplying by cos
(

2πm s
Cell

)
(the solution should be symmetric around s = 0) and integrating, yielding∫ Cell

0
cos

(
2πm

s

Cell

)(
D
d2c

ds2
− kuc+ knNiδ(s)

)
ds = 0 (7.15)

By analyzing to terms, we get∫ Cell

0
D cos

(
2πm

s

Cell

)
d2c

ds2
ds−

∫ Cell

0
ku cos

(
2πm

s

Cell

)
cds+∫ Cell

0
knNiδ(s) cos

(
2πm

s

Cell

)
ds = 0

(7.16)

Using the periodicity identity of cosine and sine functions, we get from the
last equation

−D
(

2πm

Cell

)2 Cell
2
cm − ku

Cell
2
cm + knNi = 0 (7.17)

where

cm =
2

Cell

∫ Cell

0
cos

(
2πm

s

Cell

)
c(s)ds (7.18)

is the m-th Fourier coefficient of the density function c(s). From Eq.(7.17)
we take

cm =
knNi

Cell
2

(
ku +D

(
2πm
Cell

)2
) (7.19)

So, the Fourier expansion of the probability density function c(s) in steady
state becomes

c(s) =
1

2
c0 +

∞∑
0

cm cos

(
2πm

s

Cell

)

=
1

Cell

knNi

ku
+

2

Cell

∞∑
0

knNi

ku +D
(

2πm
Cell

)2 cos

(
2πm

s

Cell

)
(7.20)
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Now, we can proceed to simulate the system that includes nucleation, dif-
fusion and unbinding, which we analyzed previously. The distribution of
particles on the boundary calculated by the simulations for this system,
are in a satisfactory agreement with the distribution predicted by equation
(7.20), as we can see in figure 7.3.
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Figure 7.3: Theoretical and simulation results for a system with nucleation,
diffusion and unbinding. There is a satisfactory agreement between the
simulation results and the distribution defined by the probability density
of Eq. (7.20). Parameters: D = 0.035µm2s−1, ∆t = 0.5s, ku = 0.07s−1,
kn = 0.05s−1, N = 200000, a = 2µm, b = 4µm.

7.2.2 Force production in presence of polarization factors

In the following, we are going to study the effect on polarization when mi-
crotubule ends can both slide along the boundary of an ellipse and transfer
polarity factors to it. For that purpose, we use the boundary-sliding model
that was developed in Chapter 4. This model describes the behavior of
the sliding microtubules on the boundary, without regarding the presence
and impact of any polarity factors. Here, the algorithm for the diffusion
of particles on the boundary and the unbinding from it, which we vali-
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dated earlier analytically, is added to that model. Furthermore, this model
does not yet include the polarity mechanism that is based on the residence
time of the microtubules on the boundary. As we described in Chapter 6,
this mechanism relies on the change of the catastrophe rate of the bound
microtubules, depending on the concentration of the polarity factors at
each boundary site. To develop a simulation model for the investigation of
polarity caused by sliding microtubules across an elliptical boundary, we
have to connect the force-production mechanism to the polarity-generation
mechanism.

We apply the following procedure: First, we recall the equation of the
force-production mechanism that gives the mean waiting time 〈τc〉 until a
microtubule undergoes catastrophe [60]:

〈τc〉 =
1

r+

√
π
√
AeA erfc(

√
A) (7.21)

where
A =

r+

2βδkv+
, (7.22)

erfc is the complementary error function

erf z =
2√
π

∫ ∞
z

e−t
2
dt (7.23)

and r+, v+ are the force-free values of the catastrophe rate and the growth
speed respectively. On the other hand, in the polarity mechanism which we
introduced in Chapter 6 the catastrophe rate of bound microtubules, which
is equivalent to the unbinding rate ru(cb), is a function of the concentration
cb of polarity factors on boundary sites according to Eq. (6.12). In order
to connect the two mechanisms, we require

〈τc〉(cb) ≡
1

ru(cb)
=

1

r+(cb)

√
π
√
A(r+(cb))e

A(r+(cb)) erfc(
√
A(r+(cb))),

(7.24)
i.e. we choose the feedback mechanism to modulate the force-free catastro-
phe rate.

In the absence of polarity factors, we regard the same values of the
growth speed v+ = 0.018µm/s, the bare catastrophe rate r+ = 0.0078s−1

and the unbinding rate ru(0) = 0.01 s−1 (i.e. 〈τc〉(cb) = 100 s) as in Chapter
6. We then use Eq. (7.21) to solve for the compression modulus, yielding
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k = 0.3pN/µm. With these values in place, we solve Eq. (7.24) for r+(cb)
over a range of cb values, tabulating the results. These tabulated results
are used in the simulation to determine, together with the values for the
force produced, the instantaneous catastrophe rate for any microtubule at
the boundary. Fig. 7.4 shows the calculated catastrophe rate as function
of the density of polarity factors at the membrane.
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Figure 7.4: Force-free catastrophe rate r+ (in s−1) as a function of the po-
larity factors density cb (per bin) at the cell boundary (ellipse with a=2µm,
b=4µm).

7.2.3 Order parameters

The appropriate independent variable for describing the density of polarity
factors on the boundary of the ellipse is the arc length at each point of the
boundary, already used in the theoretical solution (7.20), measured from a
length origin, conveniently located on the major axis at one of the poles.
This means we also need to map the nucleation angles to arc lengths on
the ellipse boundary. To that end, we choose to transform the nucleation
angles φ of polar coordinates to angles ν of elliptic coordinates, following
the procedure that we developed in Chapter 3.
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We must also consider the proper analog of the angle-based order pa-
rameter used in Chapter 6. Furthermore, we have to consider not one but
two order parameters, since the elliptical geometry can give also a bipolar
state, apart from the unipolar one. These can be constructed by replacing
the angular argument in the trigonometric functions cos and sin by 2πs/Cell
for the unipolar order parameter and 4πs/Cell for the bipolar one in the
definition equations (3.47), (3.46).

So, the scalar unipolar order parameter S1 is defined as

S1 =

√(∑M−1
m=0 C

m
b cos(2πsm/Cell)

)2
+
(∑M−1

m=0 C
m
b sin(2πsm/Cell)

)2

∑M−1
m=0 C

m
b

(7.25)
where sm = (m+ 1)∆s is the coordinate of the m-th bin, M is the number
of bins and Cb is the number of the polarity factors bound on the m-th bin.

The bipolar order parameter S2 is defined as the algebraic mean value
of cos(4πs/Cell)

S2 =

∑M−1
m=0 C

m
b cos(4πsm/Cell)∑M−1
m=0 C

m
b

(7.26)

The positive values of S2 imply a longitudinal bipolar phase, while negative
values a transverse bipolar phase.

7.3 Results

7.3.1 Polarization in the absence of sliding

We first consider a model that is essentially the same as the microtubule-
based minimal model for spherical polarity developed in previous chapter.
The only difference concerns the cell shape, which now is elliptical (see
figure 7.5).
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Figure 7.5: Schematic of the elliptical model without microtubule sliding.
The ellipse length coordinate s substitutes the angular coordinate φ of the
spherical model, which now stands only for the nucleation angle.

In the simulations executed in the rest of Chapter 7, we use the pa-
rameters shown in Table 7.1 for a time step ∆t = 0.5s. We apply our
algorithm with as initial condition all the microtubules and the polarity
factors confined to a small region of one of the short axes endpoints of the
ellipse.

Regarding the simulation results, for the value of C=10000, S1 con-
verges asymptotically to zero while the bipolar order parameter S2 con-
verges to negative values (Fig.7.6). This means, that the transverse bipolar
phase is established, which is confirmed by the distribution shown in figure
7.7. The same happens for the higher value of C=40000, the distribution
of which is shown in figure 7.10.
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Parameter Simulation value
b 4 µm
a 2 µm
v+ 0.018 µm s−1

v− 0.040 µm s−1

rn 0.05 s−1

r+ 0.0078 s−1

r− 0.0016 s−1

βd 0.60 pN−1

k 0.3 pN µm−1

MTs 1000
M 400
ku 0.07 s−1

D 0.035 µm2 s−1

(M/3)c∗ 20× 103

ru(0) 0.01 s−1

ru(∞) 0.001 s−1

vm 0.81 µm s−1

l1/2 150 µm
p 5

Table 7.1: Model parameters used in the simulations of Chapter 7.

For C=20000, the unipolar order parameter S1 converges asymptoti-
cally to a significant non-zero value, as we can see in figure 7.8. In that
way, the establishment of a transverse unipolar phase is proved. The distri-
bution profile coming out from the simulations (Fig.7.9), also depicts this
phase.

After executing a large number of simulations with different values of
C, we are able to construct the graph of the unipolar order parameter S1 as
a function of C and the corresponding graph of the bipolar order parameter
S2. The two graphs are shown in figure 7.11. The existence of three areas
of C values (two with a transverse bipolar ordering and one with a unipolar
ordering), which we detected earlier by running simulations for C=10000,
C=20000 and C=40000, are now presented in this figure. The absence of
the sliding effect of microtubules from our analysis, restricts the presence
of the bipolar phase to the transverse direction of the ellipse.
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Figure 7.6: Order parameters S1, S2 as functions of time for C = 10000.
Initial condition: all the microtubules and the polarity factors are bound
to a small region round φ = π/2. S1 converges asymptotically with time to
zero while S2 converges to a negative value, supporting a transverse bipolar
phase.
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Figure 7.7: Transverse bipolar phase with no sliding for C = 10000.
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Figure 7.8: Order parameter S1 as a function of time for C = 20000. Initial
condition: all the microtubules and the polarity factors are bound to a small
region round φ = π/2. S1 converges asymptotically with time to a non-zero
value, supporting a transverse unipolar phase.
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Figure 7.9: Transverse unipolar phase with no sliding for C = 20000.
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Figure 7.10: Transverse bipolar phase with no sliding for C = 40000.
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Figure 7.11: Transverse unipolar and bipolar order parameters S1 and S2

in the case of no sliding. The negative value of S2 restricts the bipolar
phase at the transverse direction.
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7.3.2 Polarization in the presence of sliding

Here we recall the simulation algorithm developed for the sliding of micro-
tubules in Chapter 4. This algorithm is suitable as it concerns the states of
the microtubules, but needs a modification in order to include the polarity
mechanism. So, we modify it following the previously developed introduc-
tion of the polarity mechanism to the boundary-sliding model. The new
model is presented in figure 7.12.
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Figure 7.12: Schematic of the elliptical model including microtubule sliding.
The microtubules slide on the boundary due to the tangential components
(like F1, F2) of the pushing forces.

In the first simulations that we executed and for certain numbers of
polarity factors C, a change of the polarization from transverse bipolar to
unipolar showed up. This typically occurred after a large number of the
system’s time steps. This fact suggests the existence of a metastable state,
which the polarity factors have to overcome during the evolution of the
system.
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In order to circumvent a possible metastable state, we vary the initial
conditions of our simulations. Intending to examine thoroughly the inter-
play between sliding, shape and the polarity mechanism, we regard three
different initial condition-cases for the microtubules and the polarity fac-
tors. Each initial condition is chosen as to introduce the strongest bias that
opposes a possible resultant state of the system. More specifically, we ap-
ply the transverse unipolar initial condition to the boundary position with
φ = π/2, the longitudinal unipolar condition at the point with φ = 0 and
the longitudinal bipolar condition. Additionally to these cases, we examine
the case of the isotropic nucleation from the center of the ellipse.

Regarding the simulation results, figure 7.13 shows that for C=14000,
S1 converges asymptotically to zero and S2 converges to a negative value.
So, a stable transverse bipolar phase is established. This is confirmed also
by the simulation distribution shown in figure 7.14, which corresponds to
the isotropic nucleation case.

Figure 7.15 shows the stability of the longitudinal unipolar phase estab-
lished for C=22000. Figures 7.16 and (7.17) present unipolar distributions
developed from the isotropic nucleation at different endpoints of the long
semi-axes of the ellipse, which implies that the site of unipolar ordering
on the longitudinal direction is chosen randomly among the two possible
boundary sites.
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Figure 7.13: Order parameters S1, S2 calculated for each time value from
the mean of the history distributions for the case C = 14000. The unipolar
phase is excluded as S1 converges to zero and the transverse bipolar phase
dominates as S2 converges to a negative value.
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Figure 7.14: Number density of the polarity factors on the boundary for
the case of isotropic nucleation with C = 14000. The transverse bipolar
phase is established.
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Figure 7.15: Order parameter S1 calculated for each time value from the
mean of the history distributions for the case C = 22000. The unipolar
phase dominates as S1 converges to a non-zero value. There is no specific
unipolar or bipolar initial condition, but the isotropic nucleation is applied.
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Figure 7.16: Number density of the polarity factors on the boundary for the
case of the isotropic nucleation with C = 22000. The longitudinal unipolar
phase can appear at the boundary site with φ = 0.
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Figure 7.17: Number density of the polarity factors on the boundary for the
case of the isotropic nucleation with C = 25000. The longitudinal unipolar
phase can appear at the boundary site with φ = π.
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Figure 7.18 shows that for C=45000, S1 converges asymptotically to
zero and S2 converges to a positive value. So, a stable longitudinal bipolar
phase is established. This is confirmed by the simulation distribution shown
in figure 7.19, which comes out from the isotropic nucleation.
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Figure 7.18: Order parameters S1, S2 calculated for each time value from
the mean of the history distributions for the case C = 45000. The unipolar
phase is excluded as S1 converges to zero and the longitudinal bipolar phase
dominates as S2 converges to a positive value.
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Figure 7.19: Number density of the polarity factors on the boundary for the
case of the isotropic nucleation with C = 45000. The longitudinal bipolar
phase dominates.
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Executing a large number of simulations with different values of C and
for all four simulation cases, we construct the graphs of the unipolar order
parameter S1 and the bipolar order parameter S2 as functions of time.
The two graphs are shown in figures 7.20 and 7.21 where the existence of
three areas of C values with longitudinal bipolar or unipolar ordering are
presented.

An important conclusion about the function of the dynamical system
examined comes from the observation of S2(t) graph. In figure 7.21 we can
see that the system shows the phenomenon of hysteresis. Indeed, there is a
regime of C values, which can support two alternative stable states. For the
initial condition with φ = 0, the system supports the longitudinal unipo-
lar state, while for the other initial conditions examined and the isotropic
nucleation case supports the longitudinal bipolar state.
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Figure 7.20: Unipolar order parameters S1 in the case of sliding. The
simulation results shown correspond to the cases of three initial conditions
for the microtubules and the polarity factors plus the case of the isotropic
nucleation. The extended unipolar phase of the case φ = 0 in relation with
the other cases reveals a hysteresis effect.
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Figure 7.21: Bipolar order parameter S2 in the case of sliding. We can see
the hysteresis loop distinguishing the initial condition at φ = 0 from the
other three cases.

7.3.3 Analytical model of perfect bipolar biasing

The unipolar ordering, even for a certain regime of C values, is a result
we initially did not expect in the presence of sliding. In order to prove
analytically that indeed the unipolar state is inevitable in the system, we
consider a simple model with the strongest possible bipolar bias. Regarding
an ellipse with the endpoints of the long semi-axes at angles θ = 0 and θ =
π, we want to maximally bias the microtubules towards these points. So,
all the microtubules (nucleated from the center of the ellipse) are oriented
from the outset at angles θ = 0 and θ = π, and the corresponding poles are
the only delivery points for the polarity factors.

Then, the diffusion equation for the polarity factors in the boundary is
of the form

D
∂2

∂ϑ2
cb (ϕ)− kucb (ϑ) +Kb (cb (0)) δ (ϑ) +Kb (cb (π)) δ (ϑ− π) = 0 (7.27)

with Kb set as

Kb(cb(θ)) = umcm(cb(θ))mb(cb(θ)) (7.28)
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We know from the spherical polarity problem, that the number of the bound
microtubules is given by the relation

mb(θ) =
mµbrn

(1 + µi)ru(cb(θ)) + µbrn
(7.29)

which in our case becomes

mb(θ) = mb(θ = 0) +mb(θ = π) (7.30)

We set ∆ru = ru(0)− ru(∞). Then, we can write

ru(cb(θ)) = ∆ruσ(cb(θ)/c∗) + ru(∞) (7.31)

and following

mb(cb(θ)) =
mµbrn

(1 + µi)(∆ruσ(cb(θ)/c∗) + ru(∞)) + µbrn
(7.32)

We also know that the density cm of polarity factors that are bound on the
microtubules is given by the relation

cm(cb(θ)) =
C −

∫ 2π
0 dθcb(θ)

ltot(cb(θ)) + l1/2
(7.33)

We set

Λ(cb(θ)) = ltot(cb(θ)) + l1/2 = ml̄

∫ 2π

0
dθ

λiru(cb(θ)) + λbrn
(1 + µi)ru(cb(θ)) + µbrn

+ l1/2

(7.34)

We first consider the bipolar reference solution, for which c
(0)
b (ϑ) =

c
(0)
b (π − ϑ) , so that Kb

(
c

(0)
b (0)

)
= Kb

(
c

(0)
b (π)

)
. The reference solution

is the solution with the maximum symmetry. We also recall that

δ (ϑ) =
1

2π
+

1

π

∞∑
n=1

cos (nϑ) . (7.35)

The reference solution thus satisfies

D
∂2

∂ϑ2
c

(0)
b (ϑ)− kuc(0)

b (ϑ) +Kb

(
c

(0)
b (0)

)
{δ (ϑ) + δ (ϑ− π)} = 0 (7.36)
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The solution to this equation is

c
(0)
b (ϑ) = Kb

(
c

(0)
b (0)

){ 1

2πku
+

1

π

∞∑
n=1

1

(4Dn2 + ku)
cos (2nϑ)

}
(7.37)

Self-consistency requires that

c
(0)
b (0) = Kb

(
c

(0)
b (0)

){ 1

2πku
+

1

π

∞∑
n=1

1

(4Dn2 + ku)

}
(7.38)

= Kb

(
c

(0)
b (0)

) coth

(
π
2

√
ku
D

)
4
√
kuD

. (7.39)

This is an implicit, non-linear relation that fixes c
(0)
b (0) for every C. We

consider now the general solution to (7.27)

cb (ϑ) =

∞∑
n=0

cn cos (nϑ) (7.40)

We find

− kuc0 +

∞∑
n=1

(
−n2D − ku

)
cn cos (nϑ) +

1

2π
{Kb (cb (0)) +Kb (cb (π))}

+
1

π

∞∑
n=1

{Kb (cb (0)) + (−)nKb (cb (π))} cos (nϑ) = 0 (7.41)

so

c0 =
1

2πku
{Kb (cb (0)) +Kb (cb (π))} (7.42)

c2n−1 =
1

π

Kb (cb (0))−Kb (cb (π))(
(2n− 1)2D + ku

)
 , n ≥ 1 (7.43)

c2n =
1

π

Kb (cb (0)) +Kb (cb (π))(
(2n)2D + ku

)
 , n ≥ 1 (7.44)
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Thus

cb (ϑ) =
1

2πku
{Kb (cb (0)) +Kb (cb (π))}

+
1

π

∞∑
n=1

Kb (cb (0)) +Kb (cb (π))(
(2n)2D + ku

)
 cos (2nϑ)

+
1

π

∞∑
n=1

Kb (cb (0))−Kb (cb (π))(
(2n− 1)2D + ku

)
 cos ((2n− 1)ϑ) (7.45)

The self-consistency equations are

cb (0) = {Kb (cb (0)) +Kb (cb (π))}
coth

(
π
2

√
ku
D

)
4
√
kuD

+ {Kb (cb (0))−Kb (cb (π))}
tanh

(
π
2

√
ku
D

)
4
√
kuD

(7.46)

cb (π) = {Kb (cb (0)) +Kb (cb (π))}
coth

(
π
2

√
ku
D

)
4
√
kuD

− {Kb (cb (0))−Kb (cb (π))}
tanh

(
π
2

√
ku
D

)
4
√
kuD

(7.47)

It is useful to introduce the shorthands

B =

coth

(
π
2

√
ku
D

)
4
√
kuD

(7.48)

P =

tanh

(
π
2

√
ku
D

)
4
√
kuD

(7.49)

It is clear that the bipolar solution corresponds to the choice cb (0) =
cb (π) = c̄b, in which case it reduces to

c̄b = 2BKb (c̄b) (7.50)
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We now attempt to linearize around this solution setting

cb (0) = c̄b + ε0 (7.51)

cb (π) = c̄b − επ (7.52)

Initially, we calculate the general perturbation ε to mb, which is either
mb(φ = 0) or mb(φ = π). Later, in the place of ε, we’ll put either ε0 or επ.
We use the relation

ru(c̄b + ε) = ru(c̄b) + ∆ru
ε

c∗
σ′(c̄b/c∗) (7.53)

and we get

mb(c̄b + ε) =
(m/2)µbrn

(1 + µi)(∆ruσ(c̄b/c∗) + ru(∞) + ∆ru(ε/c∗)σ′(c̄b/c∗)) + µbrn

=
(m/2)µbrn

((1 + µi)(∆ruσ(c̄b/c∗) + ru(∞)) + µbrn)
(

1 + (1+µi)∆ru(ε/c∗)σ′(c̄b/c∗)
(1+µi)(∆ruσ(c̄b/c∗)+ru(∞))+µbrn

)
= mb(c̄b)

1(
1 + ∆ru(ε/c∗)σ′(c̄b/c∗)

(∆ruσ(c̄b/c∗)+ru(∞))+
µbrn
1+µi

)
= mb(c̄b)

1(
1 +

∆ru
ru(0)

(ε/c∗)σ′(c̄b/c∗)

( ∆ru
ru(0)

σ(c̄b/c∗)+
ru(∞)
ru(0)

)+
µbrn

(1+µi)ru(0)

)
= mb(c̄b)

1(
1 + (ε/c∗)σ′(c̄b/c∗)

σ(c̄b/c∗)+η

)
= mb(c̄b)

(
1− (ε/c∗)σ

′(c̄b/c∗)

σ(c̄b/c∗) + η

)
= mb(c̄b)−mb(c̄b)

σ′(c̄b/c∗)

σ(c̄b/c∗) + η

ε

c∗
(7.54)

where η is the known quantity from the spherical polarity problem

η =

(
ru(∞)

ru(0)
+

mbrn
(1 + µi)ru(0)

)
/

(
1− ru(∞)

ru(0)

)
(7.55)

Now, we apply the perturbation to cm. First, we apply it to the number of
the free polarity factors

C−
∫ 2π

0
dθ(c̄b(0) + ε0)δ(θ)−

∫ 2π

0
dθ(c̄b(π)− επ)δ(θ − π) = C−2c̄b (7.56)
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and, then, as a general perturbation ε to c̄b in Λ(c̄b)

Λ(c̄b + ε) = ml̄

∫ 2π

0
dθ

λi(ru(c̄b) + ∆ru(ε/c∗)σ
′(c̄b/c∗)) + λbrn

(1 + µi)(ru(c̄b) + ∆ru(ε/c∗)σ′(c̄b/c∗)) + µbrn
+ l1/2

(7.57)

We approximate the integral by neglecting the contribution of the term
multiplied by ε

Λ(c̄b + ε) = 2πml̄
λiru(c̄b) + λbrn

(1 + µi)ru(c̄b) + µbrn
+ l1/2 = Λ(c̄b) (7.58)

So, it holds

cm(c̄b + ε) = cm(c̄b) (7.59)

Now, we can write

Kb(c̄b + ε) = vmcm(c̄b)mb(c̄b + ε)

= vmcm(c̄b)

(
mb(c̄b)−mb(c̄b)

σ′(c̄b/c∗)

σ(c̄b/c∗) + η

ε

c∗

)
= Kb(c̄b)−Kb(c̄b)

σ′(c̄b/c∗)

σ(c̄b/c∗) + η

ε

c∗
= Kb(c̄b) +K ′b(c̄b)ε

(7.60)

with

K ′b(c̄b) = −Kb(c̄b)
1

c∗

σ′(c̄b/c∗)

σ(c̄b/c∗) + η
(7.61)

We substitute the perturbed values Kb(c̄b + ε0) and Kb(c̄b − επ) to the
self-consistency equations (7.44) and (7.45), which leads to

ε0 = BK ′b (c̄b) (ε0 − επ) + PK ′b (c̄b) (ε0 + επ) (7.62)

επ = BK ′b (c̄b) (ε0 − επ)− PK ′b (c̄b) (ε0 + επ) (7.63)

or(
1 +K ′b (c̄b) (B + P ) K ′b (c̄b) (−B + P )
−K ′b (c̄b) (−B + P ) 1−K ′b (c̄b) (B + P )

)(
ε0

επ

)
=

(
0
0

)
(7.64)
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which has a non negative solutions only if(
1 +K ′b (c̄b) (B + P )

) (
1−K ′b (c̄b) (B + P )

)
+
(
K ′b (c̄b) (−B + P )

)2
= 0
(7.65)

leading to the bifurcation condition

K ′b (c̄b) =
1

2
√
BP

= 2
√
kuD = 2ku

√
δ (7.66)

The bifurcation in our system, leads to the breaking of the bipolar
symmetry and, so, to the establishment of the unipolar phase.

We can also see why one could not assume from the outset that the
bifurcating solution is a pure unipolar perturbation. Indeed the assumption

c
(1)
b (ϑ) = −c(1)

b (π − ϑ) would be incorrect. This is evident from (7.62-7.63),
because setting ε0 = επ yields two equations which are consistent only for
K ′b (c̄b) = 0, i.e. when the bifurcation equation identically yields zero, i.e.
where there is no perturbation.

7.4 Conclusion

In this chapter we focused on the polarization of an elliptical cell. We ap-
plied stochastic simulations in order to investigate the interaction between
the shape, the sliding effect and the polarity mechanism. We considered
both the without sliding and with microtubule sliding. The main conclu-
sion in both cases is that the shape cannot impose its symmetry on system
in every regime of the total number of polarity factors.

More specifically, in the case without sliding a win of the shape would
be expressed by the presence of a transverse bipolar state for every value
of the number of polarity factors, due to the intrinsic dynamics of the
microtubules. But this is not happening, as the transverse unipolar phase
dominates in a certain range of C values. This is a win of the polarization
mechanism against the shape.

In the presence of the sliding effect, a win of the shape would be the
establishment of the longitudinal bipolar phase for every value of C. This
is because the endpoints of the long semi-axes are equally favored by the
sliding mechanism. However, the simulation results reveal the domination
of the longitudinal unipolar state, again in a certain regime of C values.
This is a win of the polarization mechanism over the shape and the sliding
effect.
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Summarizing, we can say that the polarization mechanism is able to
override the effects both of the shape and the sliding mechanism and hence
provides control over the polarity effect in elliptical cell. Except of the
simulation results, this is confirmed also theoretically by the nucleation
model with the strongest bipolar bias, which was also analyzed in this
chapter.
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General discussion
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8
Conclusion and Outlook

In this chapter we summarize the results from the earlier chapters and
discuss them in a biological context. Following the present study, we suggest
some possible new directions for future work.
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8.1 Branched versus background nucleation

In Chapter 2 we focused on the microtubules of the plant cortical array. We
incorporated the phenomenon of microtubule-bound anisotropic nucleation
to a theoretical framework previously developed. The co-alignment of the
branched nucleations with the parent microtubules, was confirmed by a
bifurcation analysis as the main determinant of the transition location to
order. Proceeding with numerical analysis, we showed the robustness of our
mean-field theory approach by comparing with particle-based simulation
results. As a key conclusion, our analytical model confirmed the strong
self-consistent positive feedback on microtubule ordering.

Apart from confirming earlier simulation results, our theoretical analysis
reveals the existence of a single dimensionless parameter called β that deter-
mines the relative influence of the branched and the background isotropic
nucleation. The new parameter that we introduced, depends on the affinity
of nucleation complexes for microtubules and the relative strength of their
nucleation rates in the bound and the unbound state.

A numerical analysis shows that by increasing the parameter β — re-
inforcing branched vs background nucleation —, we get a wider regime
of the microtubule dynamical parameters for which the system is ordered.
This means that the ordered state becomes more robust as it can resist
higher variation of the system parameters, which is potentially biologically
significant.

It would be interesting to extend the presented model in order to in-
clude a number of effects that are involved in the in vivo ordering process.
Specifically, we mention the effects of minus-end treadmilling, microtubule
severing and the finiteness of the available tubulin pool.

8.2 Microtubule organization induced by shape

8.2.1 Stalling at the cell boundary

In Chapter 3 we developed a 3D-model for centrosomal microtubules that
can stall at the cell boundary and we investigated their spatial distribution.
To this end, we derived the equations that describe the length distribution
of microtubules for a general form of a boundary. We also defined 3D and
2D length order parameters and calculated how ordering is influenced when
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we change gradually the shape from a prolate to an oblate ellipsoid. Next,
we showed that in the presence of an axial symmetry the behaviour of our
model is not very sensitive to a change of dimension. This observation
enabled us to apply 2D particle-based simulations, which are simpler and
faster than the 3D ones.

A numerical analysis was applied to the case of an ellipse with a cen-
trosome fixed at its center. The results revealed the existence of two di-
rections of ordering. One was longitudinal and the other was transverse,
each one dominating at a different regime of the system parameters. More
specifically, high unbinding rates from the cell boundary and shorter short
semi-axes in relation to the mean length of microtubules drive the system
to longitudinal direction of ordering and the opposite combination works
towards ordering in the transverse direction. The comparison between the
numerical and the simulation results, showed a high qualitative agreement.

Furthermore, regarding the ordering behaviour, we examined the known
experimental values for the unbinding rate and the short-axis to mean
length ratio of the fission yeast [49]. The conclusion is that the set of
the observed values is indeed able to achieve a bipolar ordering.

The equations for the length density of microtubules that we extracted
for the case of a general boundary, were applied numerically for different
sites of the centrosome inside an ellipse. In this way, we examined the influ-
ence of the nucleation position on the length distribution of microtubules.
The results showed a high impact of the nucleation site inside the cell on
the form of the microtubule distribution.

After the investigation of centrosomal microtubule organization, we pro-
ceeded with examining non-centrosomal microtubules. The latter are nu-
cleated from non-centrosomal nucleation sites in most differentiated cells,
where they form arrays that are specific to the cell-type. We regarded a
large number of nucleation sites that were homogeneously distributed in-
side an elliptical cell. Then, we defined an order parameter that took into
consideration each nucleation site and applied numerically the equation for
the length distribution of the stalled microtubules. The implementation
of the Monte Carlo integration technique bypassed the complexity of the
calculations. The results revealed a similar effect of the cell shape and the
unbinding rate from the boundary on ordering of microtubules with the
case of a single centrosomal site.

Except of the microtubules length density we investigated their number
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density, too. This was necessary as the distribution of microtubules will
be of main interest in the next chapters. By applying numerically the
extracted equations of our model, we found that ordering is dominated by
the shortest axis and, so, it is transverse. This was an expected result, as
the microtubule distribution is exponential in nature, and hence strongly
weighted towards shorter lengths.

In a future work our model could be used for the examination of other
cell shapes than the elliptical. Furthermore, the stochastic simulations
could be extended to 3D space instead of the 2D one.

8.2.2 Sliding on the cell boundary

In Chapter 4 we investigated the spatial organization of microtubules, which
is caused by their dynamic interaction with the cell boundary. The micro-
tubules, unlike the described ones as ’stalled’ in Chapter 3, keep growing
when they hit the cell boundary and a pushing force is acting on them by
the boundary.

The pushing forces have a dynamic character, as they enclose effects like
the thermal fluctuations, the microscopic growth process and the Hookean
’stored’ length of microtubules. At non-spherical cells these forces lead to
’sliding’ of microtubules along the cell boundary, which has been observed
experimentally in vitro [55].

In the present study we developed a ’boundary-sliding’ model in order to
predict the motion of microtubules that slide along the cell boundary. Our
model considers the dynamic nature of the pushing forces, unlike other
currently developed models. This leads to a significant difference in the
system’s behaviour, as a much stronger longitudinal ordering is enabled.

In the analysis we didn’t consider the presence of pulling forces at the
boundary since we worked with fixed centrosomes, and so forces transmit-
ted to the centrosome are not salient. We only considered pushing forces
because they modulate the dynamics. The effect of pulling forces would
be to stabilize microtubules further, but this can effectively accommodated
e.g. by regarding a weaker spring constant.

By considering a cylindrical symmetry, we derived the evolution equa-
tions for the sliding microtubules. Due to the complexity of the equations,
we regarded an ellipsoid of revolution which was a small perturbation to
a sphere and we proceeded with the analysis. The analytical solution re-
vealed the establishment of a bipolar longitudinal ordering of the bound
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microtubules to the cell boundary. This is a key conclusion showing that
the sliding effect enables the microtubule distribution along the long axis.

By applying 2D stochastic simulations to an ellipse with a centrosome at
its center, we verified the existence of a longitudinal ordering direction of the
sliding microtubules. Furthermore, we investigated the role of the sliding
friction by examining the cases of a high and a low friction coefficient.
The simulations showed that the low friction works toward the bipolar
longitudinal ordering.

An object of a future work could be the possible rearrangement of mi-
crotubule positions at the cell boundary due to the buckling mechanism.
However, the increase in model complexity of the latter would be signifi-
cant.

8.2.3 Positioning the mitotic spindle

The mitotic spindle is a structure that plays a crucial role in cell division,
as it segregates the chromosomes. In chapter 5 we developed a model that
predicts the positioning of the mitotic spindle inside a cell boundary. Unlike
the currently developed models, our model considers the dynamic nature of
the pushing forces acting on microtubules when they hit the cell boundary.
This dynamics is represented by the force-production mechanism of the
“stored length”.

We considered the spindle as a rigid body that is moving in the vis-
cous cytoplasm. We regarded pulling forces acting on microtubules at the
boundary and we considered no sliding effect to take place. The pulling
forces are known to play a role in vivo by regulating the cortical microtubule
dynamics [22]. The motion of the spindle and its centrosomes enabled us
to study the role of the pulling forces on the robustness and accuracy of
the spindle positioning.

By applying 2D stochastic simulations, we determined the spindle mo-
tion and its position in the steady state. A key result of our analysis was
that the mitotic spindle seeks the long axis of the ellipse to orientate by.
Furthermore, by examining the fluctuations of the spindle orientation, we
revealed the crucial role that the pulling forces play in the stabilization of
the spindle. The main conclusion is that the orientation mechanism be-
comes more precise when pulling forces are present. Moreover, by changing
the dimensions ratio of a 2D cell shape, we found that a transition between
two stable orientation states exists.
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In a future work we could analyze other cell shapes and extend the
simulation analysis to the 3D space.

8.3 Microtubule-based cell polarity

8.3.1 Spherical cell

Cell polarity, which is created by the asymmetric distribution of polarity
molecules at the cell boundary, is crucial for many developmental processes
in biology. The investigated spatial organization of microtubules induced
by their dynamics and the cell shape forms the basis for the establishment
of polarity in animal cells. It is the propensity of microtubules to bind and
transport proteins to the cell membrane that modifies this spatial organi-
zation and leads to cell polarization.

In Chapter 6, we followed a synthetic biology approach in order to
generate a spontaneous and persistent polarity in a spherical cell-like envi-
ronment. To that end, we developed a minimal model based on dynamic
microtubules and a single mobile molecular component. The only feedback
mechanism we imposed is that the stabilization of the transporting struc-
tures (microtubules) at the membrane increases with the local membrane
density of the transported molecules (polarity factors).

Using a bifurcation analysis we proved that our model supports a spon-
taneous unipolar symmetry broken-state with a following steady state per-
sistence. The analytical results were verified by 2D simulation results. A
further explicit analysis revealed the existence of 4 parameters-quantities
that govern the behavior of the model. So, there is a parameter which reg-
ulates the competitive advantage of stabilized microtubules to recruit more
stabilizing polarity factors, a parameter that determines the extent to which
polarity factors once inserted to the membrane remain localized, a param-
eter controlling the steepness of the switch that distinguishes microtubules
stabilized at the membrane from non-stabilized ones and a parameter con-
trolling the availability of polarity factors at the membrane. We argue that
these 4 quantities are universal for a class of polarization mechanisms that
rely on the autocatalysis of localized insertion.

Although the model we proposed does not correspond to any presently
known polarity mechanism in vivo, it is fully based on feasible molecular
roles. The role of microtubule-mediated transport in maintaining cell polar-
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ity is well established in fission yeast, where the polarity factors Tea1/Tea4
are transported through association with microtubule plus-end tracking
(+TIPs) proteins such as Mal3 and the kinesin Tea2 to ensure the polar
localization of cell growth [104]. Recently, Recouvreux et. al. [105] have
deconstructed this system, by using a explicitly engineered chimeric com-
plex using the membrane binding domain of Pom1 coupled to Mal3. This
minimal system also displays clear polar enrichment. This also shows that
using +TIPs, of which a large number have been identified through the
work of Akhmanova and others [106, 107], is an alternative to more classi-
cal plus-end transporters such as the kinesin family of motor proteins [83].
Perhaps the most crucial part of our mechanism is the ability to stabilize
microtubules at the membrane. Here there is a recent work that shows
that Agrin mediates the localized capture of microtubules and subsequent
stabilization by Clasp2 at the synaptic membrane of neuromuscular cells
[84]. Similarly, the actin binding protein Moesin has been shown to directly
bind to microtubules and stabilize them, albeit in the cortex and not at the
membrane proper.

On the whole, the main conclusion to be drawn from our analysis, is
the possibility of setting up a feasible and robust cell polarity mechanism.
This may, at the very least, form the basis of a biochemical reconstitution
approach to set up polarity in a minimal cell-like environment, such as
lipid bilayer-enclosed microvolumes containing purified and/or engineered
protein components. Steps in this direction are currently actively pursued
e.g. by the Dogterom lab [108, 109].

In our model we assumed a non-limit availability of tubulin into a finite-
volume geometry. However, applying an extended formalism of the micro-
tubule dynamics we proved the robustness of our model against finite size
effects on the number and length of microtubules. Interesting future work
would be to assume a finite tubulin pool and proceed with simulation anal-
ysis in order to verify our analytical results.

Another interesting future study would be to extend our approach to
other mechanisms of cell polarity generation that involve cytoskeletal poly-
mers. A prime example is the polarization mechanism in budding yeast
which marks the position of the future daughter cell, in which actin plays
a role in recruiting polarization factors to the cell membrane [110].
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8.3.2 Non-spherical cell

In Chapter 7 we investigated the establishment of polarity to an elliptical
cell. The elliptical boundaries can support the sliding effect, as the pushing
forces acting on the microtubules are not vertical to the tangential direction
of the cell boundary. So, it is the interaction between the cell shape, the
polarity mechanism and the sliding effect that determines the microtubule
organization in non-spherical cells. The present study revealed the relative
influence of these three factors.

We began our approach with stochastic simulations for the case of an
elliptical cell. Surprisingly, we found that the polarization mechanism dom-
inates over the influence of the cell shape or the sliding effect. A win of
the shape would be the domination of the bipolar transverse ordering when
the sliding is absent or the domination of the bipolar longitudinal ordering
when we include sliding independently of the system parameters. Instead
of this, we observed the establishment of a unipolar phase at a transverse
or a longitudinal axis end for a certain range of the total number of polarity
factors.

In order to verify the presence of the unipolar phase, we formulated
analytically a model with the strongest possible bipolar bias. A bifurcation
analysis proved that indeed a stable unipolar state can exist. In this way,
the main conclusion of Chapter 7 was established, that geometrical cues are
not strong enough to overcome the intrinsic monopolarity of the developed
polarization mechanism.

In a future work, it would be interesting to set up polarity in vivo in
an elliptical cell-like environment, by following a reconstitution approach.
To this end, we could address the question about what ingredients are
necessary to achieve a true stabilized bipolar polarization. Then, a se-
lective establishment of a unipolar or bipolar microtubule ordering in a
non-spherical cell could be possible.

178



Bibliography

[1] E-Cell project.

[2] Jonathan R Karr, Koichi Takahashi, and Akira Funahashi. The
principles of whole-cell modeling. Current Opinion in Microbiology,
27:18–24, oct 2015.

[3] Leland H. Hartwell, John J. Hopfield, Stanislas Leibler, and An-
drew W. Murray. From molecular to modular cell biology. Nature,
402(6761supp):C47–C52, dec 1999.

[4] E Fuchs and K Weber. Intermediate Filaments: Structure, Dynamics,
Function and Disease. Annual Review of Biochemistry, 63(1):345–
382, jun 1994.

[5] Daniel A Fletcher and R Dyche Mullins. Cell mechanics and the
cytoskeleton. Nature, 463(7280):485–92, jan 2010.
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Summary

Living cells are highly complex systems and their study encompasses a wide
range of challenging questions. Broadly speaking, two different modelling
strategies have been developed to date to confront these challenges. The
first is the whole-cell modelling approach, which is based on storing and
processing information about metabolic pathways, gene regulation and ex-
pression in electronic platforms. However, this modelling approach by fail-
ing to a large extent to consider the spatial dynamics of cellular molecules
and structures, cannot analyze many basic physical and biochemical ef-
fects, which are spatially dependent. For these types of effects the so-called
modular approach to cell biology has proved extremely effective. This ap-
proach is based on distinguishing and then studying in isolation finite sets
of intracellular components —known as functional modules— that perform
distinct biological functions. In the present thesis, we adopt this latter ap-
proach and study a number of cellular modules, with the common feature
that they all relate to the dynamics of microtubules.

Microtubules are the stiffest polymers of the cytoskeleton, being effec-
tively rigid on the typical scale of cells. A key feature of microtubules is
their highly dynamic character determined by their stochastic switching
between states of growth and of shrinkage, which is an intrinsic property
known as dynamic instability. The microtubule cytoskeleton plays many
important roles in the cell. Among the various tasks that it fulfills are con-
trolling the overall cell shape and their role in the transport of vesicles or
other molecular components to the cell membrane leading to an asymmetric
spatial organization known as cell polarization.

The first microtubule-based cellular module that we study is the corti-
cal microtubule array in growing interphase plant cells. The plant cortical
microtubules are nucleated from nucleation complexes that are mainly at-
tached to pre-existing microtubules. Their attachment to the membrane
creates an effectively 2D environment for the observed collisional interac-
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tions between them. In Chapter 2 we incorporate the microtubule-bound
anisotropic nucleation to a theoretical framework previously developed. A
bifurcation analysis confirms the co-alignment of the branched nucleations
with the parent microtubules as the main determinant of the transition loca-
tion to order. A numerical analysis shows the robustness of our mean-field
theory approach after comparing with particle-based simulation results.
Our analytical model confirms the strong self-consistent positive feedback
on microtubule ordering. Furthermore, a numerical analysis shows that
by increasing branched vs background nucleation, we get a wider regime
of the microtubule dynamical parameters for which the system is ordered.
This means that the ordered state becomes more robust as it can resist
higher variation of the system parameters, which is potentially biologically
significant.

The second cellular module that we study is the interphase radial micro-
tubule array in animal cells. This is an array of microtubules that are nucle-
ated by a single centrosome and extend radially towards the cell boundary.
In Chapter 3 we develop a 3D-model for centrosomal microtubules that
can stall at the cell boundary and we investigate their spatial distribution.
We derive the equations that describe the distribution of microtubules for
a general form of a boundary. We show that in the presence of an axial
symmetry the behaviour of our model is not very sensitive to a change of
dimension. A numerical analysis applied to the case of an ellipse with a
centrosome fixed at its center, reveals the existence of two directions of
ordering. One is longitudinal and the other is transverse, each one dom-
inating at a different regime of the system parameters. Furthermore, we
investigate the distribution of non-centrosomal microtubules nucleated ho-
mogeneously inside an ellipse. A numerical analysis reveals a similar effect
of the cell shape and the system parameters on ordering of microtubules
with the case of a single centrosomal site.

In Chapter 4 we extend our study on the radial microtubule array
by regarding its dynamic interaction with the cell boundary. Based on
a Hookean pushing force acting on microtubules by the boundary, we build
a boundary-sliding model in order to predict the motion of microtubules
that slide along the cell membrane. By considering a cylindrical symmetry,
we derive the evolution equations for the sliding microtubules. The analyt-
ical solution for an ellipsoid of revolution which is a small perturbation to
a sphere reveals the establishment of a bipolar longitudinal ordering of the
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boundary microtubules. The distribution along the long axis is verified by
2D stochastic simulations applied to an ellipse.

The third cellular module that we study is the localization dynamics
of the mitotic spindle, which plays a crucial role in cell division. The
interaction of microtubules with the cell boundary generates forces which
lead to the positioning of the mitotic spindle so that the correct spatial
segregation of the daughter chromosomes is enabled. In Chapter 4 we
develop a model that based on pushing and pulling forces acting on the
astral microtubules of the mitotic spindle, predicts its positioning inside a
cell boundary. By applying 2D stochastic simulations to an ellipse we find
that the spindle seeks the long axis to orientate by. The main conclusion
extracted is that the orientation mechanism becomes more precise when
pulling forces are present. Furthermore, by changing the dimensions ratio
of a 2D cell shape, we find that a transition between two stable orientation
states exists.

The fourth cellular module that we’ll investigate are microtubule-based
cell polarization mechanisms. Cell polarization is created by the asym-
metric distribution of intracellular components at the cell boundary. The
ability of microtubules to bind and selectively transport proteins to the
plasma membrane is the property that opens a route to cell polarization.
In Chapter 6 we follow a synthetic biology approach in order to generate
a spontaneous and persistent polarity in a spherical cell-like environment.
To that end, we develop a minimal model based on dynamic microtubules
and a single mobile molecular component. The only feedback mechanism
we impose is that the stabilization of the transporting microtubules at the
membrane increases with the local membrane density of the transported
molecules. A bifurcation analysis proves that our model supports a spon-
taneous unipolar symmetry broken-state with a following steady state per-
sistence. The analytical results are verified by 2D stochastic simulations.
Although the model we propose does not correspond to any presently known
polarity mechanism in vivo, it is fully based on feasible molecular roles.

In Chapter 7 we investigate the establishment of polarity to an elliptical
cell. We explore the relative influence of the cell shape, the polarity mech-
anism and the sliding effect on the microtubule organization. Stochastic
simulations show that a unipolar phase can exist for a certain range of the
number of the polarity components. This is verified analytically by a model
with the strongest possible bipolar bias. The main conclusion is that geo-
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metrical cues are not strong enough to overcome the intrinsic unipolarity
of the developed polarization mechanism.

The models that we develop in the current thesis lay the foundation for
understanding how the spatial organization of microtubules is influenced by
the cell shape or polarization mechanisms. Furthermore, they can form the
basis of a rational design approach towards using biochemical reconstitution
to set up polarity in a minimal cell-like environments. In the concluding
Chapter 8, we discuss some possible directions of future work inspired by
the present study.
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Levende cellen zijn zeer complexe systemen en hun studie omvat een breed
scala aan uitdagende vragen. Tot op heden zijn er in grote lijnen twee
strategieën ontwikkeld om deze uitdagingen het hoofd te bieden. De eerste
benadering probeert de cel in zijn geheel te modelleren. Deze aanpak is
gebaseerd op het opslaan en verwerken van alle beschikbare informatie over
metabole reactiepaden en genregulatienetwerken. Zon benadering vereist
noodzakelijkerwijs de inzet van grootschalige rekencapaciteit. Deze vorm
van modelleren gaat doorgaans echter voorbij aan de ruimtelijke dynamiek
van moleculen en structuren in de cel en verwaarloost daarom veel funda-
mentele fysische- en biochemische effecten, die sterk ruimtelijk afhankelijk
zijn. Voor deze klasse van verschijnselen is de zogenaamde modulaire be-
nadering van celbiologie uiterst effectief gebleken. Deze aanpak is gebaseerd
op het onderscheiden en vervolgens in isolatie bestuderen van eindige verza-
melingen van intracellulaire componenten — bekend als functionele mod-
ules — die elk verantwoordelijk zijn voor specifieke biologische functies.

In dit proefschrift volgen we deze laatste aanpak en bestuderen een aan-
tal cellulaire modules met als gemeenschappelijk kenmerk dat ze allemaal
betrekking hebben op de dynamiek van microtubuli.

Microtubuli zijn de stijfste polymeren van het cytoskelet, en effectief
als rigide te beschouwen op de typische lengteschaal van cellen. Een be-
langrijk kenmerk van microtubuli is hun zeer dynamische karakter bepaald
door hun stochastische omschakeling tussen toestanden van groei en van
krimp, een intrinsieke eigenschap bekend als dynamische instabiliteit. Het
microtubule cytoskelet speelt een aantal belangrijke rollen in de cel. Onder
die verschillende taken is het onderhouden de algehele celvorm en een grote
rol in het transport van vesicles (celblaasjes) of andere moleculaire compo-
nenten naar het celmembraan. Dit laatste proces kan bijvoorbeeld leiden
tot een asymmetrische ruimtelijke organisatie bekend als celpolarisatie.

De eerste op microtubuli gebaseerde cellulaire module die we bestud-
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eren is de zogenaamde corticale microtubule array in groeiende interfase
plantencellen. De corticale microtubuli in planten worden genucleëerd door
nucleatiecomplexen die voornamelijk gekoppeld aan reeds bestaande micro-
tubuli. Doordat ze gehecht zijn aan de binnenzijde van het celmembraan
creëert dit een effectieve 2D-omgeving wat aanleiding is voor de interacties
door botsingen, die op hun beurt de oorzaak zijn voor de waargenomen
oplijning van de array als geheel.

In Hoofdstuk 2 bestuderen we de invloed van microtubule-gebonden
anisotrope nucleatie naar een eerder ontwikkeld theoretisch model. Een
bifurcatie-analyse van de geformuleerde theorie bevestigt dat de mate waarin
de vertakte nucleaties in dezelfde richting wijzen als de ouderlijke micro-
tubuli de belangrijkste determinant van de locatie van de ordeningsover-
gang. Een numerieke analyse toont de robuustheid van de door ons ge-
bruikte gemiddelde-veld benadering aan door de uitkomsten te vergelijken
met eerdere op deeltjes gebaseerde simulatieresultaten. Ons analytisch
model bevestigt zo de sterke, zelfconsistente positieve feedback bij het or-
denen van microtubuli. Bovendien laat een numerieke analyse dat zien
door het vergroten van vertakte nucleatie ten opzichte van de doorgaans
isotrope achtergrond nucleatie, we een breder regime van de dynamische
parameters van de microtubule krijgen waarvoor het systeem is geordend.
Dit betekent dat de geordende toestand robuuster wordt tegen variatie van
de systeemparameters, wat potentieel biologisch significant is.

De tweede cellulaire module die we bestuderen is de interfase radiale
microtubule array in dierlijke cellen. Dit is een array van microtubuli die
genucleëerd worden door één enkel centrosoom en zich vervolgens radiaal
uitstrekken naar de celgrens.

In hoofdstuk 3 ontwikkelen we een 3D-model voor centrosomale mi-
crotubuli die geblokkeerd worden op de celgrens en we onderzoeken hun
ruimtelijke verdeling. We leiden de vergelijkingen af die de verdeling van
microtubuli beschrijven voor een algemene celgeometrie. We laten dat zien
dat in de aanwezigheid van een axiale symmetrie het gedrag van ons model
niet erg gevoelig is voor een verandering van dimensie. Een numerieke anal-
yse toegepast op het geval van een ellips met één centrosoom in het midden
van de cel, laat zien dat er twee mogelijke richtingen van ordening bestaan.
De ene is longitudinaal en de andere is transversaal, ieder te induceren
in een ander regime van de systeemparameters. Verder onderzoeken wij
de verdeling van niet-centrosomale microtubuli die op homogeen verdeelde
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locaties binnen een ellipsvormige cel worden genuceleerd. Een numerieke
analyse onthult dat er vergelijkbare effecten van de celvorm en de systeem-
parameters optreden wat de ordening betreft als eerder gezien bij een enkele
centrosomale site.

In Hoofdstuk 4 breiden we ons onderzoek naar de radiale microtubule
array uit door de dynamiek van de interactie met de celgrens te beschouwen.
We formuleren een op een Hookeaanse veerkracht gebaseerd model dat kan
beschrijven hoe tegen het membraan duwende microtubuli kunnen glijden.
Voor het cilindrisch symmetrische geval kunnen we de evolutievergelijking
van de ruimtelijke verdeling van microtubuli aan het membraan opstellen.
Door middel van een analystische perturbatie analyse van het geval van een
bijna-sferische omwentelingsellipsoide kunnen we laten zien dat het systeem
streeft naar een bipolaire ordening langs de langste as van de cel. Dit effect
kan vervolgens geverifieerd worden door stochastische simulaties in een 2-
dimensionale ellipsvormige cel.

De derde cellulaire module die we bestuderen is de lokalisatiedynamiek
van de mitotische spindel, die een cruciale rol speelt in celdeling. De inter-
actie van microtubuli met de celgrens genereert krachten die leiden tot de
positionering van de mitotische spindel in de celgeometrie, nodig voor de
correcte ruimtelijke segregatie van de dochterchromosomen.

In hoofdstuk 5 ontwikkelen we een model dat gebaseerd is op zowel
duwende als trekkende krachten die werken op de zogenaamde astrale mi-
crotubuli van de mitotische spindel dat in staat is om de positionering te
voorspellen als functie van de celvorm. Door middel van 2D-stochastische
simulaties in een ellipsvormige cel, vinden we dat de spil vanzelf de lange
as zoekt om zich te oriënteren. De belangrijkste conclusie die we uit deze
simulaties halen is dat het oriëntatiemechanisme preciezer wordt wanneer
trekkrachten aanwezig zijn. Door vervolgens de lengte-breedte verhouding
van de cel te variren van de 2D-celvorm, laten we ook zien we dat een er
overgang tussen twee stabiele orintaties bestaat.

De vierde cellulaire module die we onderzoeken zijn celpolarisatiemech-
anismen gebaseerd op microtubuli. In het algemeen wordt celpolarisatie
gekarakteriseerd door een asymmetrische verdeling van intracellulaire com-
ponenten aan de celgrens. Het vermogen van microtubuli om eiwitten te
binden en vervolgens selectief te transporteren naar het celmembraan is de
cruciale eigenschap die een mogelijke route naar celpolarisatie opent.

In Hoofdstuk 6 volgen we een synthetische biologie benadering om de
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vraag te beantwoorden hoe we een spontane en persistente polariteit kun-
nen genereren in een strikt bolvormige cel. Daartoe ontwikkelen we een
minimaal model op basis van dynamische microtubuli en één enkele mo-
biele moleculaire component. Het enige feedbackmechanisme dat wij veron-
derstellen is dat de stabilisatie van de transporterende microtubuli aan
het membraan toe neemt met de lokale dichtheid van de getransporteerde
moleculen. Een bifurcatie-analyse bewijst dat ons model ondersteuning
biedt voor het bestaan van een unipolaire symmetrie-gebroken toestand
in steady-state. Deze analytische resultaten worden vervolgens geveri-
fieerd door 2D-stochastische simulaties. Hoewel het voorgestelde model
niet overeenkomt met enig op dit moment bekend polariteitsmechanisme in
vivo, is het volledig gebaseerd op realistische moleculaire rollen en param-
eterwaarden.

In Hoofdstuk 7 tenslotte, onderzoeken we de invloed van celgeometrie
op het eerder geintroduceerde polarisatiemechanisme in een elliptische cel.
We verkennen hierbij zowel de rol van de celvorm op zich als de invloed
van een het krachtgedreven model voor het glijden van microtubuli gentro-
duceerd in Hoofdstuk 4. Stochastische simulaties laten zien dat er slechts
een unipolair gepolariseerde toestand kan bestaan voor een bepaald bereik
van het aantal polariteitsmoleculen. Dit wordt analytisch geverifieerd door
een toy model waarin we een maximaal mogelijke bipolaire bias aanleggen.
De belangrijkste conclusie is dat de invloed van geometrische signalen niet
sterk genoeg zijn om de intrinsieke unipolariteit van het ontwikkelde polar-
isatiemechanisme te overwinnen.

De modellen die we in dit proefschrift ontwikkelen leggen een basis voor
begrijpen hoe de ruimtelijke organisatie van microtubuli benvloed wordt
door celvorm of polarisatiemechanismen. Bovendien kunnen ze de basis
vormen van een rationele ontwerpstrategie voor het creëren van polariteit
in een minimale synthetische celachtige omgeving door middel van bio-
chemische reconstitutie.

Ter afsluiting bespreken we in Hoofdstuk 8 enkele mogelijke richtingen
van toekomstig werk gëınspireerd door de huidige studie.
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