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Highlights
Risk-based design, aimed at gaining
control over critical process parameters,
has become the standard in biopharma-
ceutical process development; however,
application for bacterial vaccines is ham-
pered because structurally complex or
undefined antigens are needed.

Process analytical technology needs
to be applied to actively measure
and control novel critical process para-
meters identified by applying systems
metabolic engineering techniques.

Standardized systems metabolic engi-
neering techniques have become
accessible to generate the knowledge
base that is needed to assign critical
process parameters in the feasibility
phase of vaccine development.

To develop reliable production pro-
cesses for bacterial vaccines, risk-
based DBTL cycles should be per-
formed to identify novel critical process
parameters using systems metabolic
engineering techniques.
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Design of a reliable process for bacterial antigen production requires under-
standing of and control over critical process parameters. Current methods for
process design use extensive screening experiments for determining ranges of
critical process parameters yet fail to give clear insights into how they influence
antigen potency. To address this gap, we propose to apply constraint-based,
genome-scale metabolic models to reduce the need of experimental screening
for strain selection and to optimize strains based on model driven iterative
Design–Build–Test–Learn (DBTL) cycles. Application of these systematic meth-
ods has not only increased the understanding of how metabolic network
properties influence antigen potency, but also allows identification of novel
critical process parameters that need to be controlled to achieve high process
reliability.

Risk-Based Process Development for Bacterial Antigen Production
Initiatives such as the World Health Organization (WHO) Global Vaccine Action Plan [1] aim to
make vaccines more accessible to the human population. Furthermore, there are initiatives to
reduce the risks of antibiotic use in livestock. In consequence, there is an increased demand for
new, better, and cheaper vaccines. Antigens (see Glossary) in vaccines that confer protection
against bacterial infectious diseases are either whole-cell bacteria (inactivated or live-attenu-
ated) or components derived from wild-type bacterial strains (Table 1). Bacterial antigens are
produced in a bioprocess, consisting of an upstream part, where the antigens are produced in
large-scale fermenter systems, and a downstream part, where multiple methods are used to
purify, concentrate, or formulate antigens (Figure 1A). The development of a production
process (Figure 1B) for these antigens is a costly (137 million – 1.1 billion US$ [2]) and time
consuming (5–18 years) process, largely because target bacterial production strains and
growth media are not directly optimized for use in a bioprocess. Current methods for process
development require extensive empirical assessments of strains, growth media, and growth
conditions in the feasibility phase. These empirical assessments are needed to understand the
relationship between the growth conditions and the potency of the antigen produced, while
also considering production time, volume, and costs. In addition, control over critical process
parameters (CPPs) that influence antigen potency is required to ensure process reliability.
Here we propose a novel risk-based process development framework (Figure 2) that
incorporates systems metabolic engineering techniques for strain and upstream process
development for bacterial antigen production (Table 2). This novel workflow combines the
Design for Six Sigma (DFSS) methodology [3] for reliable process design with Design–
Build–Test–Learn (DBTL) [4] cycles for rational strain improvement (Box 1). Compared with
current methods for process development, this workflow has two main advantages: (i) the
duration of the feasibility phase can be reduced because systematic methods can replace time-
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Glossary
Antigen: live or inactivated biological
component capable of inducing an
immune response. Bacterial antigens
are undefined (whole-cell inactivated),
defined (conjugates, toxoids, or
subunits), or live-attenuated.
Chemically defined culture
medium: growth medium in which
the exact chemical composition of all
components is known.
Conditionally essential genes:
genes that are required for growth
under specific environmental and
nutritional conditions.
Constraint-based genome-scale
metabolic models (GEMs):
mathematical reconstruction of
biochemical (metabolic) reactions in
an organism where reactions are
associated with genetic/genomic
information, bibliomic information, or
are automatically assigned based on
network structures. The
mathematical format allows
assessment of phenotypic properties
(e.g., growth rate or specific
production rate for biochemicals)
using a variety of computational
techniques.
Critical process parameter (CPP):
consuming trial-and-error methods; and (ii) novel critical process parameters can be identified
whose control during antigen production will result in high process reliability.

Basis of the Workflow: Risk-Assessment to Identify Potential CPPs
To guarantee high process reliability, a risk-based process design is required by most
regulatory authorities [5] and is standard practice in the biopharmaceutical industry. Risk-
based process design requires an effective risk assessment to identify CPPs [6,7]. Examples
of current CPPs in the upstream bacterial antigen process are: composition of raw materials,
oxygen uptake rate, and concentration of (toxic) byproducts during cultivation (Table 3).
These and other parameters are monitored using process analytical technology (PAT)
and are maintained within defined ranges to guarantee process reliability. Some CPPs can be
directly controlled, such as temperature and pH, while others can be indirectly controlled by
adapting the environmental conditions for growth or the metabolic capabilities of production
strains. An effective risk assessment method for the identification of potential CPPs is failure-
mode and effect analysis (FMEA) (Box 1), which is widely applied in industry to identify
where and how a process step could fail and to estimate the ability to detect and correct the
failure once it occurs. Risks are systematically prioritized during FMEA, and high-priority risks
are addressed first.

As shown in Figure 2, the DFSS framework consists of five steps: (i) Define, where process
specifications are defined; (ii) Measure, where initial system capabilities are determined; (iii)
Analyze, where the design space is determined; (iv) Design, where strains are optimised; and (v)
Verify, where process reliability is determined using process analytical technology. These five
steps are discussed in more detail below. As indicated in Table 2, different systems metabolic
engineering techniques may be applied in each step.
key process parameter that should
be maintained within a specified
range to ensure that the product
reaches critical targets related to
quality (e.g., safety or potency
criteria).
Design–Build–Test–Learn (DBTL):
iterative design methodology that
consists of developing a design or
prototype, testing of the design,
analyzing the performance against
design specifications and learning
what worked well and what did not.
When conditions have been met
(design matches specifications) the
iteration stops.
Design for Six Sigma (DFSS):
methodology for design of a product
or process based on the needs of
the business and the customer. Uses
techniques applied for Six Sigma
process improvement where the aim
is to reach high process reliability
(3.4 failures in 1 million
opportunities).
European Pharmacopoeia: official
publication that provides common
quality standards for the
pharmaceutical industry in major
regions in Europe to control the
quality of medicines, and the

Table 1. Major Bacterial Antigens Produced for Human Vaccines Using Bacterial Production Strains

Vaccine Disease Antigens Doses
administered
in 2017
(�million)a

DTP Laryngeal diphtheria, toxic
myocarditis, muscular stiffness or
spasm, bronchopneumonia

Corynebacterium diphtheriae and Clostridium
tetani toxoids, Bordetella pertussis whole-cell
inactivated or acellular

342.2

PCV Pneumonia, meningitis, and febrile
bacteraemia

Polysaccharide conjugate Streptococcus
pneumoniae

193.9

BCG Tuberculosis Live attenuated Mycobacterium bovis 129.0

Hib Pneumonia, meningitis Conjugated polyribosylribitol phosphate
capsular polysaccharide of Haemophilus
influenzae type b

106.3

TT2+/Td2+ Laryngeal diphtheria, toxic
myocarditis, muscular stiffness, or
spasm

Corynebacterium diphtheriae and Clostridium
tetani toxoids

75.8

MenA Meningitis Polysaccharide conjugate Neisseria
meningitidis group A

3.6

aNumber of doses of vaccines used in humans in 2017 for which antigens are produced with nonoptimized bacterial
strains. Data have been adapted from information provided by the WHO (https://www.who.int/immunization/
monitoring_surveillance/data/en/) on country-reported administered doses per year.
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substances used to manufacture
them.
Failure mode and effects analysis
(FMEA): structured, systematic
technique to analyse how a product
or process could fail and to prioritize
identified failure risks based on
probability, severity, and the chance
a failure is detected.
Flux balance analysis (FBA):
mathematical method for simulating
the flow of metabolites through a
metabolic network reconstruction.
High-throughput insertion
tracking by deep-sequencing
(HITS): mapping of transposon
insertion sites by next-generation
sequencing after transposon
insertional mutagenesis. The method
is similar to Tn-seq but uses
alternative transposons that require
nontargeted DNA fragmentation (Box
3).
Pathogenic bacteria: bacteria that
can cause disease.
Polysaccharide conjugates:
vaccines that contain
polysaccharides, often obtained from
a bacterial cell capsule, covalently
linked to a protein which elicits a T
cell-mediated immune response (e.
g., tetanus toxoid, diphtheria carrier
protein, or meningococcal group B
outer membrane protein).
Potency: a term used to indicate the
immunogenicity of the antigen, that
is, the ability to induce an immune
response. For bacterial antigens this
correlates with, for example, the
concentration of polysaccharides
produced with a correct formation or
the concentration of toxoids
produced.
Process analytical technology
(PAT): mechanism to design,
analyse, and control a
pharmaceutical manufacturing
process through timely or continuous
measurement of critical process
parameters.
Process reliability: probability that
a process performs adequately and
matches predefined specifications for
quality in a defined period under
specified process conditions.
Scaled-down industrial
conditions: simulation of large-scale
industrial conditions in small-scale
systems where critical parameters of
the large-scale system (e.g., mixing
time and gas transfer) will be
mimicked on a small scale.
Step 1: Define Product Specifications and Potential CPPs
DFSS starts with a Define phase, where product specifications are set depending on business
and customer needs. For bacterial vaccines, the product specifications defined by the cus-
tomer are related to safety, efficacy, and ease of use. Business specifications are defined by
financial constraints (e.g., minimal profit margin for the product) and from legal and regulatory
requirements (e.g., in Europe, raw material requirements are described in the European
Pharmacopoeia). In addition to the definition of product specifications, an initial assessment
of potential CPPs is also required by performing an FMEA based on a draft process map. The
draft process map should contain information on the preferred cultivation systems, the number
of steps needed for scale up, the growth media available at the start of the project, the preferred
downstream process technology, and the tests that can be used to determine product quality
and yield. It is essential to determine potential CPPs early in the project to prevent delays in
future stages caused by missed CPPs, which often occur when applying current methodology.

Step 2: Measure Initial Process Capabilities
After setting the product specifications and defining potential CPPs, the Measure phase in
DFSS is started which determines the initial capability of the process. Important parameters
such as the potency of the antigen, growth rate of strains, and the total amount of biomass
produced in the final fermentation are measured. This phase can be accelerated by applying
automatically created draft constraint-based genome-scale metabolic models (GEMs)
(Table 2 and Box 2) to assess metabolic capabilities of strains in silico [8–10], followed by
rationally designed in vitro experiments to establish strain performance. For example, draft
GEMs can be used to provide insight into potential carbon sources and auxotrophic require-
ments such as amino acids or nucleotides that need to be added for growth. Ideally, a test is
available at this stage to determine potency by measuring the concentration of one or more
antigenic components (proteins or polysaccharides). Finally, in high-throughput experiments
multiple model-derived medium compositions can be tested under scaled-down industrial
conditions and the strain and conditions which show maximized potency will be selected for
the Analyze phase.

Step 3: Analyze Initial Design Space
In the Analyze phase of DFSS, the initial design space for the production process will be
determined by performing experiments to test value ranges for potential CPPs. For example,
the optimal concentration of specific components in a selected growth medium or the optimal
cultivation temperature and pH is analyzed. At this stage, the automatically created draft GEM
should be manually curated [11] and constrained based on the experimental data obtained
during the Measure phase (Box 1 and Figure 2). This manually curated GEM can then be used
to design an improved complex or a chemically defined culture medium [12,13]. However,
the predictive power of the GEM is limited in designing chemically defined culture media
because the exact biomass composition of bacterial strains is not always known, and some
components may be taken up from the environment (Table 2). Using GEMs in this stage can
also identify potential metabolic bottlenecks or wasteful byproduct formation as targets for
optimization during the Design phase. In addition to in vitro methods, clinical studies could be
considered to show efficacy of the chosen antigen produced under model-optimized
conditions.

Step 4: Rational Strain Design to Improve Process Performance
In the design phase of DFSS, the actual bioengineering takes place to improve strain perfor-
mance and process robustness. Design strategies vary based on the type of antigen that is
needed (Figure 1A). GEMs can be applied in this stage to predict the effect of using gene
Trends in Biotechnology, Month Year, Vol. xx, No. yy 3
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Systems metabolic engineering:
integration of computational
modelling with rational engineering
(including synthetic biology),
evolutionary engineering, and
systems biology to develop
industrially competitive
microorganisms.
Toxoid vaccines: vaccines that
contain a toxin that has been made
harmless but still elicits a neutralizing
immune response against the toxin.
Transposon sequencing (Tn-
SEQ): mapping of transposon
insertion sites by next-generation
sequencing after transposon
insertional mutagenesis using the
Himar I Mariner transposon (Box 3).
knockout or knock-in mutant strains with respect to optimal growth rates or antigen production
[14]. Although not all bacterial pathogenic strains are considered to be genetically amenable,
recent advances in gene editing techniques have considerably expanded the toolbox enabling
researchers to make targeted gene deletions even in bacteria that were previously thought to
be inaccessible [15,16]. At this stage in the project, aside from process risks, the regulatory
aspect should also be considered since the use of genetically modified organisms (GMOs) is
often tightly regulated (e.g., Directive 2009/41/EC) and permission to use an engineered strain
is based on information regarding the safety of the strain.

Strain design strategies depend on the type of antigen needed in a vaccine and differ between
whole-cell inactivated vaccines with undefined antigens, vaccines with defined antigens, and
live-attenuated vaccines. Design strategies for each type of antigen are discussed below in
more detail.

Rational Strain Design for Whole-Cell Inactivated Vaccines with Undefined Antigens
Robust strains used to produce whole-cell inactivated vaccines should have an optimized and
well-controlled in vitro growth rate and consistent antigen potency. Strain robustness could be
improved in a DBTL cycle through genome streamlining by knockout of nonessential genes
predicted by the GEM and verified with gene-essentiality screens using random mutagenesis,
such as recently performed for the bacterial pathogens Mycoplasma pneumoniae [17], Pseu-
domonas aeruginosa [18], and Streptococcus pneumoniae [19]. Alternatively, metabolism can
be re-engineered to remove production of toxic compounds and to remove energy sinks when
competing pathways are present [4]. Strain performances must be verified under scaled-down
industrial conditions and ultimately in an efficacy study after each design cycle as there is a risk
that the potency of biomass is diminished.

Rational Strain Design for Bacterial Vaccines with Defined Antigens
When antigens are defined (specific virulence factors on inactivated whole cells, toxoids, or
polysaccharide conjugates), the relationship between the formation of antigens and
metabolic fluxes should be understood, resulting in more predictive metabolic models. This
aspect is challenging because the influence of metabolic networks on the production of
virulence factors in pathogenic bacteria has only recently been investigated [20–24]. GEMs
have been successfully applied to optimize production strains for production of biochemicals
[25,26]. To optimize antigen potency, process engineers may attempt to increase metabolic
flux toward the formation of virulence factors or their precursors. Random transposon mutant
libraries can help to assess with high throughput detection methods [e.g., transposon
sequencing (Tn-seq) or high-throughput insertion tracking by deep-sequencing
(HITS)] [27] whether genes are needed for growth, antigen potency, or both [20]. If growth
and antigen potency are coupled, algorithms such as Optknock [28] can be used to suggest
genetic manipulations to rationally engineer strains with increased antigen potency. In addi-
tion to these targeted approaches, genomes could be optimized to obtain more robust
phenotypes as for undefined antigens. Furthermore, pathogenic bacteria can use alternative
metabolic pathways during growth in the host [24,29]. Mimicking these growth conditions
during fermentation could result in increased expression of virulence factors [18,30] and
possibly increased antigen yield.

Rational Strain Design for Live-Attenuated Vaccines
By simulating a range of growth conditions, GEMs can be applied to predict genes that are
either essential or conditionally essential [31], which allows researchers to predict metabolic
reactions that are essential for growth in a host but nonessential for growth in the production
4 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Figure 1. Production Platforms for Bacterial Vaccine Production and the Process Development Pipeline. (A) Simplified platforms for production of
bacterial antigens. Five types of antigen are used in bacterial vaccines: live-attenuated and inactivated whole-cell bacteria, subunits, toxoids, and polysaccharide
conjugates. Each process starts with cultivation of bacteria in controlled fermentation systems to reach high antigen potency. Next, cultures are concentrated and
purified using a variety of methods [53]. After purification an adjuvant is usually added to increase the immune response. (B) Antigen process development timeline. The
feasibility phase (first three blocks) can be most time consuming. Application of risk-based process design and systems metabolic engineering techniques until early
development (orange blocks), can decrease the duration of the feasibility phase and increase process reliability by uncovering novel critical process parameters.
Abbreviations: CPP, critical process parameter; inac., inactivated; incl., including.
process. Disrupting such genes could result in live-attenuated strains with robust fermenter
growth and improved safety in the host. Once a suitable live-attenuated strain is obtained, a
genome-scale metabolic model of this strain can be used to further optimize growth conditions
to reach higher cell counts in live culture. However, a key challenge is to balance attenuation
with immunogenicity [32] and therefore engineered strains should always be tested in animal or
clinical studies.

Testing Performance of Engineered Strains
Once a production strain has been built, its performance should be tested under scaled-
down industrial conditions by performing the test phase in DBTL, which is in principle a
Trends in Biotechnology, Month Year, Vol. xx, No. yy 5
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Figure 2. Risk Management Workflow for Bacterial Antigen Process Development. The novel workflow combines the DFSS methodology for robust process
design with systems metabolic engineering techniques (Table 2) for rational strain improvement applying DBTL cycles (Box 1). DFSS consists of five steps: (1) Define,
definition of process specifications; (2) Measure, determination of initial system capabilities; (3) Analyze, where the design space is determined; (4) Design, strain
optimization; and (5) Verify, determination of process reliability using process analytical technology. The Analyze phase (Step 3) can be repeated during DBTL cycles in
the Design phase (Step 4). In Step 2–Measure, automatically created constraint-based metabolic models are applied to evaluate the potential of different strains (Box 2).
In Step 4–Design, strain optimization is performed using iterative DBTL cycles. In the workflow, process risk is decreased by implementing risk management techniques
and development of process analytical technology to control (Box 2) or analyse the process (Box 3). Abbreviations: DBTL, Design–Build–Test–Learn; DFSS, Design for
Six Sigma.

Table 2. Applications and Limitations of Systems Metabolic Engineering Techniques for Optimization of Bacterial Vaccine Production Processes

Project stagea Techniqueb Applications Limitations Refs

Step 2: initial capability Genome-scale constraint-based
metabolic modelling (GEM: Box 2)

Comparison of different
metabolic landscapes, rational
decision making when selecting a
production strain

Automatically created models are
incomplete but are still useful as a
knowledge base, capturing all
available biochemical knowledge
in an actionable format

[8–10]

Step 4: strain optimization
DBTL

Curated predictive GEM
constrained with knowledge
obtained in Step 3

Growth medium development,
improvement of yield and
robustness

Model functions as an improved
knowledge base but may not be
predictive for all antigen design
specifications defined in Step 1

[12,13]

Model-based genome editing/
streamlining (Box 2)

Gene knock-in/knockout for
strain improvement and flux
redirection to production of
precursors for virulence factors

Requires development of
genome engineering tools, strict
regulations for engineered strains

[4,14,20]

Transcriptomics Model validation, process
optimization, biosensor discovery

Transcript levels do not always
represent protein levels or
correlate with flux distributions

[33,35]

Metabolomics + 13C flux analysis Model validation, process
optimization, biosensor discovery

No complete metabolome
coverage, analysis and sampling
techniques are complex,
intracellular biosensors require
strain engineering

[36]

Model validation and lead discovery
for further improvement

Restart the DBTL cycle for
iterative improvement

Multiple iterations may be
required which can be time
consuming

[54]
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Table 2. (continued)

Project stagea Techniqueb Applications Limitations Refs

Step 5: process reliability

Predictive GEM Model predicted control of CPPs GEM assumes a steady-state
system, highly dynamic systems
require alternative models

[38,39]

Transcriptomics PAT � process consistency Currently offline sample analysis
required. Online analysis
methods need to be developed.

[55,56]

Metabolomics PAT to monitor process
consistency

For complex/intracellular
metabolites, online analysis is not
yet possible

[57]

aProject stage in DFSS (Figure 2).
bSee Boxes 2 and 3 for details.
targeted repetition of the Analyze phase (Step 3, Figure 2). In this phase, GEMs can be
applied to design the experiments to test the engineered strains, and transcriptomic and
metabolomic analyses can be performed to verify model predictions (Table 2).
Although transcriptomic analysis cannot be easily correlated with metabolic flux distribu-
tions [33,34], applying model-driven design and -omics analysis in this stage has the
advantage that novel CPPs can be identified and translated to a PAT. For example, an
expression-level analysis of virulence factors determined the optimal harvest point during
antigen production for an inactivated Bordetella pertussis vaccine [35]. In this study, a
novel CPP was determined as a function of glutamate and lactate concentrations following
analyses of the transcriptional landscape at maximal antigen potency. Novel CPPs can
also be identified by applying a focused metabolomics analysis strategy. Toxin production
in Clostridium tetani was recently shown to be induced by a metabolic switch from
consumption of free amino acids to consumption of peptides from complex growth
medium [36]. This observation not only provided leads to improve the production medium,
but also enabled the development of an additional PAT by measuring concentrations of
amino acids or peptides using either online analysis methods or biosensors. In summary,
GEMs and omics-based insights into the regulation of expression of virulence factors
enable the study of novel gene clusters, the discovery of novel CPPs, as well as the
implementation of novel PATs.

Step 5: Verifying Process Consistency
After successfully finishing the DBTL phase for rational strain design, the last phase in DFSS is
the verification of strain performance by showing process consistency. At this stage, it is
Box 1. Risk Management Methods

DFSS [3] is a project management method related to Six Sigma that uses statistical tools in predefined phases to
develop a product or process such that it matches business and customer needs. DBTL [4] defines the four phases in a
metabolic engineering project, which are followed consecutively and often in an iterative cycle to rationally improve strain
performance. Both methods rely on effective risk assessment. An important tool for risk assessment is FMEA [40]; a
systematic method to analyse how and where a process or design might fail. To identify failure modes, FMEA requires
participation of all experts needed to successfully develop and produce a vaccine on a large scale. A process flowchart
shows all steps in a process; for each step, possible failure modes are assessed by scoring for occurrence, level of
impact, and for the likelihood of detection. Using overall scores, risks are prioritized and should be addressed before
moving to the next project phase.

Trends in Biotechnology, Month Year, Vol. xx, No. yy 7
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Table 3. Advantages and Disadvantages of Current and Novel PAT to Control Potential Upstream CPPs during Bacterial Antigen Production

Process step CPP PAT and control measures Advantages Disadvantages

Raw materials
Nonconforming
Chemical
composition

RAMAN spectroscopy Fast, early in the process
which allows time for
corrective action

Accuracy not high
enough to measure
individual components

Near-infrared spectroscopy

Growth medium production

Temperature
during heat-
sterilization

Online temperature probe
measurement used for
temperature control

Fast measurement, no
further testing needed for
sterility of medium if
temperature profile is
correct

N.A.a

Bioburden load
or filter integrity
for filter
sterilization

Offline filter integrity test and
offline determination of
bioburden levels prior to
sterile filtration

Filter integrity test is fast
and standardized

Tests are performed after
the medium is produced
risking batch rejection

Medium pH Online measurement with
probes

Fast, standardized
measurement

N.A.

Cultivation

Environmental
conditions
(temperature,
pH, dissolved
oxygen,
dissolved CO2)

Online measurement of
critical parameter with
probes and direct control
using control mechanisms
such as heating/cooling or
addition of base/acid

Fast measurement,
standardized systems for
control

Probes could fail, risking
batch rejection, could be
prevented by using
multiple probes

Cell growth and
metabolic rates
measured by
oxygen uptake
rate or carbon
dioxide
production rate

Off gas analysis, direct
comparison with historical
expectations, allows setting
of feed strategies to control
culture growth

Fast measurement,
directly correlated to
growth phase

Requires relatively high
concentration of
component of interest in
off gas, not sensitive
enough when using a
high airflow rate on
fermenter systems

Concentration of
medium
components
needed for
growth or
byproducts that
limit growth

Online measurement with
probes or sensors. Offline
measurement with
(automated enzyme assays)
or chromatography (HPLC,
LC-MS/MS). Allows control
of feed strategy or removal of
byproducts using filtration or
dialysis.

Online measurements
are fast, optimized
growth with fed-batch
strategies

Calibration needed
before each production
run, LC-MS/MS analysis
is labour intensive and
time consuming

Mixing time and
aeration rate

Measurement and control of
the stirrer speed and aeration
rate used to agitate and
aerate the vessel. Mixing time
can be calculated for different
vessels based on physical
dimensions of the vessel and
impeller. For dynamic
simulation of fluid motion and
air in the vessel,
computational fluid dynamics
can be applied.

Standard control system
on fermenter systems,
mixing time can be
controlled consistently
between vessels

Parameters such as
power input to the liquid
phase or impeller tip
speed will vary between
vessels at different scales
when there is only focus
on controlling mixing
time, computational fluid
dynamics studies when
applied to determine
stirrer speed are labour
intensive

Optimal harvest
moment

Online measurement of
biomass with a biomass
probe or a parameter that
consistently changes when
cultures reach stationary
phase or maximum potency

Fast measurement,
could utilize PAT
currently in the process

Sensitivity of biomass
probes insufficient to
measure low biomass
concentrations, harvest
moment needs to fit with
the production schedules

8 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Table 3. (continued)

Process step CPP PAT and control measures Advantages Disadvantages

of biomass is reached (e.g.,
oxygen consumption, base
consumption, depletion of a
component in growth
medium)

Expression of
genes related to
antigen potency
(future CPP)

Measurement of gene
expression levels using offline
methods (microarray,
quantitative RT-PCR, RNA
sequencing), active control
using biosensors

Adds a novel level of
control, data obtained
can be integrated with
GEMs to build a
knowledge base needed
to improve process
performance

Transcriptomics methods
require extensive
validation and are time
consuming, biosensors
are novel in the field, and
robustness needs to be
optimized for the specific
application (stimulus
strength, response time,
crossreactivity [58]),
requires genetic
modifications

Intracellular
concentration of
critical
metabolites
(future CPP)

Online measurement of
intracellular metabolite levels
using spectroscopy,
possibility to control
metabolite levels using feed
strategies

Adds a novel level of
control, data obtained
can be integrated with
GEMs to build a
knowledge base needed
to improve process
performance

Requires genetic
modification, biosensors
are novel in the field, and
robustness needs to be
optimised for the specific
application

aAbbreviations: HPLC, high performance liquid chromatography; N.A. not applicable.

Box 2. Tools for Process Modelling and Process Control

GEMs are created in a bottom-up approach by translating genome information into metabolic capabilities, from which a
complete metabolic map of the cell is reconstructed, capturing the stoichiometry, directionality, and gene–protein
relationships for all known metabolic and transport reactions. A GEM thus represents a species-specific knowledge
base that can be used as a platform for hypothesis-driven investigations, interpreting multiomics data, and rational strain
and process design [11]. Based on the genome sequences of candidate bacterial strains, descriptive draft GEMs can be
created automatically at low cost [41–44], allowing researchers to start a vaccine development project with a set of
GEMs [45]. Insight into the metabolic capabilities is further increased by flux balance analysis (FBA), which utilizes
reaction stoichiometry to model metabolic flux at steady state using linear problem solving [46–48]. To obtain a
physiological meaningful solution space, the network is constrained for uptake of nutrients (e.g., maximal glucose
uptake rate that is determined by transporter capacity). Solving an FBA problem means that the minimal or maximal flux
through a target reaction is calculated. Relevant target reactions to optimize for production of bacterial antigens could
be biomass formation, that is, calculation of the growth rate or production rate of a compound needed for virulence.
Data needed to constrain the model are obtained from metabolomics analyses that can be rapid online analysis, using
for instance, automated enzyme assays or enzyme probes, or more complex offline analysis such as liquid chromato-
graphy mass spectrometry (LC-MS/MS). For model validation, especially flux analysis, using 13C-labeled metabolites is
widely applied [49]. Metabolite profiling using MS analysis and model-based interpretation of these data could result in
detection of novel metabolite concentrations that need to be measured and controlled during a production process.
Real-time monitoring of CPPs can be reached using PAT (Table 3 in main text). Introduction of PAT to the production
process for bacterial vaccines is crucial, because insufficient control over critical process parameters could result in
production batch failure. Examples of PAT are: temperature probes, pH probes, or online metabolite analyzers.
Advanced PAT can also be developed using molecular biology techniques allowing for instance the online detection
of maltose or glutamate levels [50,51] in the cell using biosensors.
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Box 3. Omics Tools Applied during the Design and Verify Phases

There is a multitude of tools that can be used for targeted modification of a bacterial genome using sequence-specific
nucleases [15,16]. Zinc finger nucleases and transcription activator-like effector (TALE) nucleases are widely applied
techniques. Recently, genome editing using CRISPR-Cas9 has become popular since its specificity is directed by
guide RNA, and protein engineering of the DNA binding domain is no longer needed. Nontargeted modification of a
bacterial genome can be applied when a process is optimized using evolutionary engineering or when gene
essentiality is studied. In the latter case, transposon mutagenesis [27] (Tn-seq or HITS) is often applied. Tn-seq
or HITS examine gene essentiality by randomly inserting transposon sequences in the genome of bacterial strains.
Insertion of a transposon sequence in most cases inactivates the gene function. The location of insertions in
nonessential genes can be determined using second-generation DNA-sequencing techniques. Tn-seq uses spe-
cifically a Himar I Mariner transposon that introduces MmeI restrictions sites in the inverted repeat sections of the
minitransposon. When DNA is fragmented using a type IIS restriction endonuclease, terminal ends are obtained with
a length of 16 base pairs, which can be amplified, sequenced, and used to map the location of insertions in the
bacterial genome. HITS uses a similar method but with nonspecific DNA fragmentation, resulting in a variety of
terminal end lengths that need to be mapped to the bacterial genome after DNA sequencing. DNA or RNA
sequencing techniques allow the rapid elucidation of bacterial strain genomes or transcriptomes. Currently,
third-generation sequencing techniques are in development that allow the rapid detection of long fragments of
DNA or RNA without chemical modification [52]. Second-generation sequencing techniques, especially Illumina
sequencing, have been widely applied to the sequencing of bacterial genomes and rely on fragmentation of DNA or
RNA, amplification of fragments, and massively parallel sequencing of short fragments generating small reads. These
reads can be mapped to the genome of a strain in the case of RNA sequencing or combined to generate a genome in
the case of DNA sequencing. The combined use of short-read, second-generation sequencing, and long-read, third-
generation sequencing, should result in high quality genome or transcriptome data.

Outstanding Questions
What are the best strategies to design
chemically defined media for bacterial
antigen production using metabolic
modelling?

Is control over metabolic fluxes suffi-
cient to optimize antigen potency for
bacterial pathogens?

Which novel process analytical tools
can be applied on large-scale to better
control antigen potency based on met-
abolic flux analysis?

How much faster can novel bacterial
vaccines reach the market if systems
metabolic engineering techniques are
routinely applied for strain improve-
ment and to define and control critical
process parameters in large-scale fer-
mentation processes?
important to develop a robust control strategy and demonstrate in at least three consecutive
test runs that process performance is consistent and matches the criteria defined in the first
stage of DFSS. In addition to the standard CPPs identified in the Analyze phase, the novel CPPs
identified in the Design phase should also be controlled using process analytical technology.
Further development of biosensors (Table 3) could allow process engineers to continuously
monitor gene expression and key metabolite levels [37] in bacterial cultures. Feeding this
information into a control model could enable real-time interventions in the process to optimize
antigen expression. Multivariate data analysis, together with data about the quality of the
medium components and process conditions, can be used to correlate process data with
biomass yields or antigen potency [38,39].

Although we focused on the upstream process development, the downstream process can
be developed in parallel using a similar risk-based approach and DFSS methodology. The
development of highly efficient purification or concentration techniques in the downstream
process or strong adjuvants for the vaccine could help lower the minimal requirement for
antigen potency in the upstream process and further reduce the risk of batch failure due to
low antigen potency. After DFSS is successfully finished, the complete process can be
scaled up and validated at final manufacturing scale (Figure 1B). Compared with empirical
trial-and-error approaches, the rational approaches discussed here can save time and
costs during scale-up, as the process has been designed based on the full-scale process
parameters (mixing times and transfer times). Furthermore, controls will be in place for
CPPs resulting overall in a reliable, high-yield process with a low chance of failure during
scale-up.

Concluding Remarks
Risk-based process design delivers a reliable production process by gaining a more thorough
understanding of and control over critical process parameters. A complete understanding of
critical process parameters for bacterial antigen production remains difficult because protective
structures are often undefined, and strains and media are usually not well characterized.
10 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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However, for these antigens, novel critical process parameters may be identified by iterative
application of systems metabolic engineering strategies following a DBTL approach within the
DFSS framework. Genome-scale metabolic models, in particular, will allow process developers
to analyze the influence of metabolic flux distributions on the growth and antigen potency. We
strongly encourage further investigation on the coupling of metabolic fluxes and antigen
potency (see Outstanding Questions) as this plays a key role in the future systems metabolic
engineering framework. Because systematic methods are used to choose strains and optimize
performance, fewer experiments will be needed to design the final production process. Within
the MycoSynVac project, the aim of which is to design a universal chassis for animal vaccina-
tion, we have begun to apply these methods with promising results [see MycoSynVac,
Engineering Mycoplasma pneumoniae as a broad-spectrum animal vaccine (http://www.
mycosynvac.eu/)].
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