

Octabin filling process

To develop understanding of granulate thickening and octabin deformation during the filling process

ATO report no. B666/January 2003

Confidential

Aart Zegveld Gerárd van den Boogaard Martijntje Vollebregt

Octabin filling process

To develop understanding of granulate thickening and octabin deformation during the filling process

ATO report no. B666/January 2003

Confidential

Aart Zegveld Gerárd van den Boogaard Martijntje Vollebregt

AIO B.V.

Agrotechnological Research Institute

Bornsesteeg 59 P.O. Box 17 6700 AA Wageningen The Netherlands

Tel: +31.0317.475024 Fax: +31.317.475347

Octabin filling process

develop understanding of granulate thickening and octabin deformation during the filling process

PTL

Gérard van den Boogaard Martijntje Vollebregt Aart Zegveld

WAGENINGEN

Contents

- Project
- Experimental setup
- Results octabin deformation
- Results granulate thickening
- Conclusions
- Additional results
- Further research

Project

Goal: develop understanding of granulate thickening and octabin deformation during the filling process

Current process:

- sinusoidal vibrations
- one frequency (16.33 Hz)
- adjustable amplitude (2-3 mm)

Vibration machinery of Van Overveld Machines B.V.

Experimental setup

What has most impact?
Amplitude, frequency, partial filling?

Runs:

- 1 standard: 90% filling, 16.33 Hz, 2.5 mm ampl., vibrated until no further thickening.
- 2 partial filling: As 1 with 50% filling, filled to 90%, vibrated until no further thickening. Idem after filled to 100%.
- 3 higher frequency: As 1 with 32.6 Hz.
- 4 inner bottom: As 1 with an inner bottom.
- 5 smaller amplitude: As 1 with 2 mm amplitude.

Experimental setup

Material:

Octabin: Duaboard Heavy

440 WS/200 SC/186 K/200 SC/440 WS (AA flute)

Granulate: EPS with density 0.65 kg/m³

Vibration table:

Vertical vibration test system (Lansmont Corporation, Model 7000-10 TTV)

Experimental setup

Measurements:

- height of granulate to top of octabin
- deformation at 6 different heights along 2 opposite side walls (at pallet level, repeatedly 32 cm higher until top of octabin is reached)
- time of occurrence of side wall bends

Times of measurements:

- granulate height after filling
- granulate height and deformation after placement on vibration table before vibrations
- granulate height and deformation after placement on vibration table after repeated vibration periods

Octabin deformation

Theorem: optimal form with given perimeter and largest area is a circle

- Area octabin (side walls 0.45 m): 0.978 m²
- Area circle with same perimeter: 1.032 m² (5.5% increase)

Summary experimental results

From least to most time needed before last 100 kg can be added:

- partial filling (time of total process?)
- higher frequency
- standard
- inner bottom
- smaller amplitude

From least to most deformation before last 100 kg is added:

- partial filling (time of total process?)
- higher frequency, standard, smaller amplitude
- inner bottom

Effects of combination of thickening processes?

Conclusions

At the moment that 100 kg can be added:

- Partial filling leads to least deformation and fastest thickening
- Larger frequency leads to standard deformation and to faster thickening
- Smaller amplitude leads to standard deformation and to slower thickening
- Inner bottom leads to most deformation and to slower thickening

In case of more required thickening:

- Larger frequency leads to more deformation than standard process
- Smaller amplitude leads to less deformation than standard process

Additional results

Conduction of project resulted also in:

- reference set of test runs for ATO equipment (to compare effect on other octabins and / or granulate)
- current experimental setup is sufficient to compare thickening recipees (with the addition of initial octabin deformation measurements)
- several Matlab functions to analyse and visualise the results

Potential further research

Further research:

- When is a certain octabin deformation or granulate thickening reached?
- What is the behaviour for other types of octabins or other granulates?
- What is the effect of filling recipees on long term storage behaviour?
- Can the filling recipee be optimised to minimise octabin material?

