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Abstract

Motivation: Linkage maps are used to identify the location of genes re-
sponsible for traits and diseases. New sequencing techniques have created op-
portunities to substantially increase the density of genetic markers. Such rev-
olutionary advances in technology have given rise to new challenges, such as
creating high-density linkage maps. Current multiple testing approaches based
on pairwise recombination fractions are underpowered in the high-dimensional
setting and do not extend easily to polyploid species. To remedy these issues,
we propose to construct linkage maps using graphical models either via a sparse
Gaussian copula or a nonparanormal skeptic approach.

Results: We determine linkage groups, typically chromosomes, and the or-
der of markers in each linkage group by inferring the conditional independence
relationships among large numbers of markers in the genome. Through simula-
tions, we illustrate the utility of our map construction method and compare its
performance with other available methods, both when the data are clean and
contain no missing observations and when data contain genotyping errors. Our
comprehensive map construction method makes full use of the dosage SNP data
to reconstruct linkage map for any bi-parental diploid and polyploid species.
We apply the proposed method to three genotype datasets: barley, peanut, and
potato from diploid and polyploid populations.

Availability: The method is implemented in the R package netgwas which
is freely available at https://cran.r-project.org/web/packages/netgwas.

Contact: pariya.behrouzi@wur.nl
Keywords: Linkage mapping; Diploid; Polyploid; Graphical models; Gaus-

sian copula; High-density genotype data.
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A linkage map provides a fundamental resource to understand the order of markers
for the vast majority of species whose genomes are yet to be sequenced. Furthermore,
it is an essential ingredient in the often used quantitative trait loci (QTL) mapping
(Wu et al., 2015, Pang et al., 2017) of genetic diseases, and particularly in identifying
genes responsible for heritable or other types of diseases in humans or traits such as
disease resistance in plants or animals.

Recent advances in sequencing technology make it possible to comprehensively
sequence huge numbers of markers, construct dense maps, and ultimately create a
foundation for studying genome structure and genome evolution, identifying QTLs
and understanding the inheritance of multi-factorial traits. Next–generation sequenc-
ing (NGS) techniques offer massive and cost–effective sequencing throughput. How-
ever, they also bring new challenges for constructing high–quality linkage maps. NGS
data can suffer from high rates of genotyping errors, as the observed genotype for an
individual is not necessarily identical to its true genotype. Under such circumstances,
constructing high–quality linkage maps can be difficult (Buetow, 1991, Ronin et al.,
2015).

Each species is categorized as diploid or polyploid by comparing its chromosome
number. Diploids have two copies of each chromosome. For diploid species many
algorithms for constructing linkage maps have been proposed. Some of them have
been implemented into user-friendly software, such as JOINMAP (Jansen et al., 2001),
R/qtl (Broman et al., 2003), OneMap (Margarido et al., 2007), and MSTMAP (Wu
et al., 2008). Among the algorithms for constructing genetic maps, R/qtl estimates
genetic maps and identifies genotyping errors in relatively small sets of markers.
JOINMAP is a commercial software widely used in the scientific genetics community.
It uses two methods to construct genetic maps: one is based on regression (Stam,
1993) and the other uses a Monte Carlo multipoint maximum likelihood (Jansen
et al., 2001). OneMap has been reported to construct linkage maps in non-inbred
populations. However, it is computationally expensive. MSTMap is a fast genetic
map algorithm that determines the order of markers by computing the minimum
spanning tree of an associated graph.

Polyploid organisms have more than two chromosome sets. Polyploidy is very
common in flowering plants and in different crops such as watermelon, potato, and
bread wheat, which contain three (triploid), four (tetraploid), and six (hexaploid) sets
of chromosomes, respectively. Despite the importance of polyploid species, statistical
tools for construction of their linkage map are underdeveloped (Grandke et al., 2017).
However, Grandke et al. (2017) recently developed a method for this purpose. Their
method is based on calculating recombination frequencies between marker pairs, then
using hierarchical clustering and an optimal leaf algorithm to detect chromosomes and
order markers. Nevertheless, this method can be computationally expensive even for
a small numbers of markers. PolymapR (Bourke et al., 2017) is another software
that construct a genetic map from bi-parental populations of outcrossing autopoly-
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ploids. It clusters markers over a range of LOD thresholds; it requires users to select
the LOD threshold that best clusters the data. Then it uses weighted linear regres-
sion or multi-dimensional scaling for ordering markers. Most literature has focused on
constructing genetic linkage maps for tetraploids, but these are limited only to autote-
traploid species. TetraploidSNPMap, is a software for this situation (Hackett et al.,
2017), but because it needs manual interaction and visual inspection its application is
limited. For example, user needs to specify how many linkage groups (chromosomes)
the algorithm should detect. Furthermore, current approaches to polyploid map con-
struction are based mainly on estimation of recombination frequency and LOD scores
(Wang et al., 2017), which does not use the full multivariate information in the data.

Different diploid and polyploid map construction methods have made substantial
steps toward building better–quality linkage maps. However, the existing methods
still suffer from low quality genetic mapping performance, in particular when ratios
of genotyping errors and missing observations are high. The main contribution of
this paper is to introduce, for both diploid and polyploid species, a novel linkage map
algorithm to overcome the difficulties arising routinely in NGS data. With the pro-
posed method we aim to build high–density and high–quality linkage maps using the
statistical property called conditional dependence relationships, which reveals direct
relations among genetic markers. For diploid scenarios, we evaluated the performance
of the proposed method and the other methods in several comprehensive simulation
studies, both when the input data were clean and had no missing observations and
when the input data were very noisy. We measured the performance of the methods
in accuracy scores of grouping and ordering. In addition, we studied the performance
of our method and an alternative method in constructing linkage maps for tetraploid
peanut. Furthermore, we applied the map construction method in netgwas (Behrouzi
and Wit, 2017b) to construct maps for two genotype datasets: barley and potato from
diploid and tetraploid populations, respectively.

1 Genetic background on linkage map

A linkage map is the linear order of genetic markers on a chromosome. Geneticists
use it to study the association between genes and traits. In this section we describe
the relationship between a linkage map and single nucleotide polymorphism (SNP)
markers. For the moment, we assume that each allele can take only one of two
values, A or a. This assumption can be relaxed without requiring any methodological
adjustments; more will follow in the discussion. Here, we are dealing with markers
from high–throughput data such as NGS and SNP arrays.
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1.1 Linkage map for diploids and polyploids

Diploid organisms contain two sets of chromosomes, one from each parent, whereas
polyploids contain more than two sets of chromosomes. In polyploids the number of
chromosome sets reflects their level of ploidy: triploids have three sets, tetraploids
have four, pentaploids have five, and so forth. Here, we refer to diploids and polyploids
as q-ploid q ≥ 2, where in diploids q = 2, triploids q = 3, tetraploids q = 4, and so
on.

The genotype of any q-ploid organism can be homozygous or heterozygous at
each single locus on the genome. Different genotype forms of the same gene are called
alleles. Alleles can lead to different traits. Alleles are commonly represented by
letters; for example, for the gene related to the trait, the allele could be called A and
a. In q-ploid individuals there are q copies of allele. If all q allele copies of an organism
are identical, the organism is in the homozygous state at that locus; otherwise it is in
the heterozygous state. For instance, a tetraploid individual is homozygous for two
size alleles, A and a, if all 4 allele copies are either A, or a, which correspond with the
genotypes AAAA and aaaa, respectively. If a tetraploid individual is heterozygous
the following three genotypes could appear: one copy of the A allele and three copies
of a (e.g. Aaaa), two copies of A and two copies of a (e.g. AAaa), or three copies of
A and one copy of a (e.g. AAAa). Unlike existing methods, our method works not
only for diploid organisms but also for all polyploids. Obviously, our method can also
be used to analyze simple haploid organisms such as haploid yeast cells.

1.2 Mapping population

Mating between two parental lines with recent common biological ancestors is called
inbreeding. Mating between parental lines with no common ancestors up to e.g. 4-6
generations is called outcrossing. In both cases, the genomes of the derived progenies
are random mosaics of the genomes of the parents. As a consequence of inbreeding
parental alleles are attributable to each parental line in the genome of the progeny,
whereas in outcrossing this is not the case.

Inbreeding progenies derive from two homozygous parents. Some inbreeding de-
signs, such as double haploid (DH), lead to a homozygous population where the de-
rived genotype data include only homozygous genotypes of the parents, namely AA
and aa (conveniently coded as 0 and 1). However, some other inbreeding designs such
as F2 lead to a heterozygous population, where the derived genotype data contain
both heterozygous and homozygous genotypes, namely AA, Aa, and aa (conveniently
coded as 0, 1 and 2). Although many other experimental designs are being used in
genetic studies, not all existing methods for linkage mapping support all inbreeding
experimental designs. However, our proposed algorithm constructs a linkage map for
any type of biparental inbreeding experimental designs. In fact, unlike other existing
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methods, our approach does not require specifying the population type because it is
broad and handles any population type that contains at least two distinct genotype
states.

Outcrossing or outbred experimental designs, such as full–sib families, derive from
two non–homozygous parents. Thus the genome of the progenies includes a mixed
set of many different marker types, including fully informative markers and partially
informative markers (e.g. missing markers). Markers are called fully informative
when all of the resulting gamete types can be phenotypically distinguished on the
basis of their genotypes; they are called partially informative when the gamete types
have identical phenotypes.

1.3 Meiosis and Markov dependence

During meiosis, chromosomes pair and exchange genetic material (crossover). In
diploids, pairing at meiosis occurs between two chromosomes. In polyploids the q
chromosome copies may form different types of multivalent pairing. For example, in
tetraploids all four chromosome copies may pair at meiosis. Assume a sequence of
ordered SNP markers Xc

1, X
c
2, . . . , X

c
d along chromosome c in a q-ploid species. We

describe the Markov dependence structure between markers for different population
schemes (see Figure 1):

Scheme (i): During meiosis in inbred populations, genetic material from one of
the two parents is copied into the offspring in a sequential fashion, i.e. reading along
the genome, until the copying switches in a random fashion to the other parent.
Thus, the genome of the offspring is a random but piecewise continuous mosaic of the
genomes of its parents. The genotype state at each chromosomal region, or locus, of
the offspring is either homozygous maternal, heterozygous, or homozygous paternal.
For instance, as a result of genetic linkage and crossover a homozygous maternal
genotype will typically be followed by a heterozygous genotype before being able to
be followed by a homozygous paternal genotype.

Genetic linkage means that markers located close to one another on a chromosome
are linked and tend to be inherited together during meiosis. Another key biological
fact is that during meiosis markers on different chromosomes segregate independently;
this is called the independent assortment law.

For example, in scheme (i) consisting of only a homozygous population, the ran-
dom variable Yj which represents the genotype of an individual at location j can be
defined as

Yj =

{
1 paternal marker at locus j on homologue k,
0 otherwise.

This scheme occurs in inbred homozygous populations that include only two geno-
type states, namely homozygous maternal and homozygous paternal. Mapping popu-
lations, such as backcrossing, are included in this scheme. Then, under the assumption
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(i) (ii) (iii)

Figure 1: Cartoon example of conditional dependence pattern between neighboring
markers in different population schemes: (i) homozygous, (ii) inbred, (iii) outcrossing
(outbred) populations, where ordered markers Y1, . . . , Y5 reside on chromosome 1, and
Y6, . . . , Y10 on chromosome 2.

of no crossover interference – meaning when a crossover has formed, other crossovers
are not prevented from forming – the recombination frequency between the two lo-
cations j and j + 1 is independent of recombination at the other locations on the
genome. So, the following holds

Pr(Yj+1 = yj+1 | Yj = yj, Yj−1 = yj−1, . . . , Y1 = y1)

= Pr(Yj+1 = yj+1 | Yj = yj)
(1)

This equation indicates that the genotype of a marker at location j+1 is conditionally
independent of genotypes at locations j − 1, j − 2, . . . , 1 given a genotype at location
j. This can be written as

Yj+1 ⊥⊥ (Y1, . . . , Yj−1) | Yj (2)

This defines a discrete graphical model G = (V,E) which consists of vertices V =
{1, . . . , p} and edge set E ⊆ V ×V with a binary random variable Yj ∈ {0, 1}p. Given
the above property between neighboring markers, we construct linkage maps using
conditional (in)dependence models. Figure 1(i) shows a cartoon image of conditional
(in)dependencies for this scheme.

Scheme (ii): In inbred populations, one complication arises when in the genotype
data we cannot identify each homologue due to heterozygous genotypes. Q-ploid
(q ≥ 2) heterozygous inbred populations, like F2, are examples of such cases, where
we define Xjk as

Xjk =

{
1 if marker j on homologue k is of type A,
0 otherwise

where A is one of the two possible alleles at that specific location. Here, Xjk represents
the allele at homologue k of a chromosome, where the genotype in that location can
be written as Xj. = {Xj1 . . . Xjq}. For example, at marker location j, Xj = Aaaa
is one possible genotype for a tetraploid species (q = 4); it includes one copy of the
desirable allele A where Xj1 = 1, Xj2 = 0, Xj3 = 0, and Xj4 = 0 represent the alleles
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in the first, second, third and fourth homologues, respectively. The other possible
genotypes which include one copy of the desired allele A are aAaa, aaAa, aaaA.
Because it is typically impossible to distinguish between genotypes with the same
number of copies of a desired allele (e.g. Aaaa, aAaa, aaAa, aaaA), we therefore
take a random variable Yj as the observed number of A alleles at location j:

Yj =

q∑
k=1

Xjk. (3)

Table 1 shows an example of correspondence between Yj and Xj. for a q-ploid species
when q = 4. We note that a q-ploid species contains q+1 genotype states at location
j, as shown in Table 1 for a tetraploid species.

Due to genetic linkage, the sequence of ordered SNP markers Y1, Y2, . . . , Yd forms a
Markov chain as equation (1) with state space S which contains q+1 states. Therefore,
the conditional (in)dependence relationship (2) between neighboring markers is held.
Figure 1(ii) presents a cartoon image of the conditional independence graph for this
scheme.

Scheme (iii): In outcrossing (outbred) populations, unlike inbred populations, the
meaning of “parental” is either unknown or not well defined. In other words, markers
in the genome of the progenies can not easily be assigned to their parental homologues.
For example, if both non-homozygous parents contain AjAjAjAj genotype at marker
location j, then offspring will also have AjAjAjAj genotype at marker location j.
But we do not know whether that genotype belongs to the paternal or maternal
homologue, since both parents have AjAjAjAj genotype at marker location j. So, in
this case we define Xjk as follows

Xjk =

{
1 if marker j on homologue k is of type Aj,
0 otherwise

Table 1
Number of copies (dosage) of a reference allele. Relation between different
genotypes, Xj., and allele dosage, Yj, for a tetraploid individual, where A is the
reference allele.

Yj Xj.

0 aaaa
1 Aaaa, aAaa, aaAa, aaaA
2 AAaa, AaAa, aAAa, AaaA,

aaAA, aAaA
3 AAAa, AaAA, AAaA, aAAA
4 AAAA
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where Aj is one of the possible parental alleles at location j. So, random variable Yj

which represents the dosage of alleles, can be defined as equation (3).
Furthermore, in polyploids the linkage depends on how a single chromosome pairs

during meiosis to generate gametes. In this regard, if both polyploid parents have an
Aj allele in all q haploids, then the offspring will also have it, and this will not co-vary
with neighboring markers. The possibility of different pairing models during meio-
sis makes the situation more complex. In diploids, the two homologue chromosomes
pair up and form a bivalent, then cross-over before recombinations occur. But poly-
ploid meiosis can occur in various ways; in tetraploids four homologue chromosomes
can during meiosis form either two separate bivalents, each of which contributes one
haploid, like diploids, or, alternatively, in a more complex situation, the four homo-
logue chromosomes can form quadrivalents, so that cross-over occurs between eight
haploids. In both pairing models, bivalent or quadrivalent, crossover events result in
recombined haploids that are mosaics of parental chromosomes. Outbred progenies
are genetically diverse and highly heterozygous, whereas inbred individuals have little
or no genetic variation.

The term (1) partially holds for the scheme (iii), where a discrete graphical model
can be defined for a multinomial variable Yj = {0, 1, . . . , q}. We use conditional
independence to construct linkage maps in outbred populations. However, in this
type of population, due to a mixed set of different marker types, the conditional
independence relationship between neighboring markers may be more complicated.
Many genetic assumptions made in traditional linkage analyses (e.g., known parental
linkage phases throughout the genome) do not hold here. For example, when both
parents have Aj allele, then their offspring will also have it; however this will not
covary with neighboring markers. Figure 1(iii) shows a cartoon example of such
conditional independence graphs.

To summarize, term (1) holds for schemes (i) and (ii), and partially (iii) because
transition probability from a genotype at location j to a genotype at location j + 1
depends on the recombination frequency between the two locations j and j+1, which
is independent of recombination in the other locations. This can be modeled by a
discrete Markov process {Yj}j=1,...,d with state space S which contains q+1 genotype
states and a transition matrix, which, in case of polyploids (q ≥ 3), can be calculated
with respect to the mode of chromosomal pairing (e.g. bivalent or quadrivalent).
The Markov structure of the SNP markers in all three schemes yields a graphical
model with as many nodes as markers in a genome. The random variable Yj follows
a discrete graphical model whereby the joint distribution P (Y ) can be factorized as,

P (Y ) =
C∏
c=1

pc−1∏
j=1

f
(c)
j,j+1(Y

(c)
j , Y

(c)
j+1), (4)

where C defines the number of chromosomes in a genome, and pc stands for the

8



number of markers in chromosome c. The outer multiplication of (4) shows the inde-
pendent assortment law, and the inner multiplication represents the genetic linkage
between markers within a chromosome, where the factor f

(c)
j,j+1 indicates the condi-

tional dependence between adjacent markers, given the rest of the markers. Through
this probabilistic insight, the inferred conditional (in)dependence relationship between
markers provides a high-dimensional space for the construction of a linkage map.

2 Algorithm to detect linkage map

We propose to build a linkage map in two steps; first, we reconstruct an undirected
graph for all SNP markers on a genome, and second, we determine the correct order
of markers in the obtained linkage groups from the first step. We also show how
our method handles genotyping errors and missing observations in reconstructing a
linkage map.

2.1 Estimating marker-marker network

To reconstruct an undirected graph between SNP markers in a q-ploid species we
propose two methods: the sparse ordinal glasso approach (Behrouzi and Wit, 2017a)
and the nonparanormal skeptic approach (Liu et al., 2012) (the latter discussed under
Supplementary Materials). The former method can deal with missing values, whereas
the latter is computationally faster.

An undirected graphical model for the joint distribution (4) of a random vector
Y = (Y1, . . . , Yp) is associated with a graph G = (V,E), where each vertex j corre-
sponds to a variable Yj. The pair (j, l) is an element of the edge set E if and only if Yj

is dependent of Yl, given the rest of the variables. In the graph estimation problem,
we have n samples of the random vector Y , and it is our aim to estimate the edge set
E. Depending on how various mapping populations are produced, Y represents either
binary variables Y = {0, 1}, as in homozygous populations, or multinomial variables
Y = {0, 1, . . . , q} where q is the ploidy level. For example in diploids q is 2 and in
tetraploids 4.

Sparse ordinal glasso. A relatively straightforward approach to discover the con-
ditional (in)dependence relation among markers is to assume underlying continuous
variables Z1, . . . , Zp for markers Y1, . . . , Yp, which can not be observed directly. In our
modeling framework, Yj and Zj define observed rank and true latent value, respec-
tively, where each latent variable corresponds to one observed variable. The relation-
ship between Yj and Zj is expressed by a set of cut-points (−∞, C

(j)
1 ], (C

(j)
1 , C

(j)
2 ], . . . ,

(C
(j)
q ,∞), which is obtained by partitioning the range of Zj into qj − 1 disjoint inter-

vals. Thus, y
(i)
j , which represents the genotype of the i-th sample for the j-th marker,
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can be written as follows

y
(i)
j =

q∑
k=1

k × 1{C(j)
q−1<z

(i)
j ≤C

(j)
q } i = 1, 2, . . . , n, (5)

where we define D = {z(i)j ∈ R | C(j)
q−1 < z

(i)
j ≤ C

(j)
q }. We use a high dimensional

Gaussian copula with discrete marginals. We assume

Z ∼ Np(0,Σ)

where the p× p precision matrix Θ = Σ−1 contains all the conditional independence
relationships between the latent variables. Given our parameter of interest Θ, we
non-parametrically estimate the cut-points for each j = 1, . . . , p as follows

Ĉ(j)
q =


−∞ if q = 0 ;

Φ−1(
∑n

i=1 I(y
(i)
j ≤ q)/n) if q = 1, . . . , qj − 1;

+∞ if q = qj.

Penalized EM algorithm. In genotype datasets we commonly encounter situa-
tions where the number of genetic markers p exceeds the number of samples n. To
solve this dimensionality problem we propose to impose an l1 norm penalty on the
likelihood consisting of the absolute value of the elements of the precision matrix Θ.
Furthermore, to be able to deal with commonly occurring missing values in genotype
data we implement an EM algorithm (McLachlan and Krishnan, 2007), which itera-

tively finds the penalized maximum likelihood estimate Θ̂λ. This algorithm proceeds
by iteratively computing the conditional expectation of complete log-likelihood and
optimizing it. In the E-step we compute the conditional expectation in the penalized
log-likelihood

Qλ(Θ | Θ̂(m)) =

n

2

[
log |Θ| − tr(

1

n

n∑
i=1

EZ(i)(Z(i)Z(i)t|y(i), Θ̂(m), D̂)Θ)− p log(2π)

]
− λ||Θ||1

(6)

where λ is a nonnegative tuning parameter. To calculate the conditional expectation
R̄ = 1

n

∑n
i=1EZ(i)(Z(i)Z(i)t|y(i), Θ̂(m), D̂) we propose two different approaches, namely

Gibbs sampling and an approximation method (Behrouzi and Wit, 2017a, Guo et al.,
2015). Further details on the calculation of the conditional expectation are provided
in the Supplementary Materials. The M-step is a maximization problem which can
be solved efficiently using either graphical lasso (Friedman et al., 2008)

Θ̂
(m+1)
glasso = argmax

Θ

{
log |Θ| − tr(R̄Θ)− λ||Θ||1

}
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or the CLIME estimator (Cai et al., 2011)

Θ̂
(m+1)
CLIME = argmin

Θ
||Θ||1 subject to ||R̄Θ− Ip||∞ ≤ λ,

where Ip is a p-dimensional identity matrix.
In large-scale genotyping studies, it is common to have missing genotype data.

Before determining the number of linkage groups and ordering markers, we handle
the missing data within the E-step of the EM algorithm, where we calculate the con-
ditional expectation of true latent variables given the observed ranks. If an observed
value, y

(i)
j is missing, we take the unconditional expectation of the corresponding la-

tent variable. In the EM framework we can easily handle high ratios of missingness
in the data.

2.2 Determining linkage groups

A group of loci that are correlated defines a linkage group (LG). Depending on the den-
sity and proximity of the underlying markers each LG corresponds to a chromosome
or part of a chromosome. The number of discovered linkage groups is controlled by
the tuning parameter λ (section 2.1). We use the extended Bayesian criterion (eBIC),
which has successfully been applied by Yin and Li (2011) in selecting sparse Gaussian
graphical models for genomic data to determine the number of linkage groups. The
eBIC is defined as

eBIC(λ) = −2ℓ(Θ̂λ) + (log n+ 4γ log p)df(λ), (7)

where ℓ(Θ̂λ) is the non-penalized likelihood and γ ∈ [0, 1] is an additional parameter.

And df(λ) =
∑

1≤i<j≤p I(θ̂ij,λ ̸= 0) where θ̂ij,λ is (i, j)th entry of the estimated preci-

sion matrix Θ̂λ and I is the indicator function. In case of γ = 0 the classical BIC is
obtained. Typical values for γ are 1/2 and 1. We select the value of λ that minimizes
(7) for γ = 1

2
. We note that in practice there is an opportunity that linkage groups

have been selected manually given a prior knowledge.
It is notable that in existing map construction methods the construction of linkage

groups is usually done by manually specifying a threshold for pairwise recombination
frequencies; this, however, influences the output map, whereas our method detects
linkage groups automatically in a data–driven way.

Some genotype studies suffer from low numbers of samples or they contain sig-
natures of epistatic selection (Behrouzi and Wit, 2017a), which may cause bias in
determining the linkage groups. To address this problem, besides the model selection
step, we use the fast-greedy algorithm to detect the linkage groups in the inferred
graph. This community detection algorithm reflects the two biological concepts of
genetic linkage and independent assortment in a sense that it defines communities
which are highly connected within, and have few links between communities.
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Figure 2: The certainty associated with the linkage map estimation in A.thaliana
using the non-parametric bootstrap.

2.3 Ordering markers

Assume that a set of d markers has been assigned to the same linkage group. Let
G(V (d), E(d)) be a sub–graph on the set of unordered d markers, where V (d) =
{1, . . . , d}, d ≤ p and the edge set E(d) represents the estimated edges among d

markers where E(d) ⊆ E. We remark that the precision matrix Θ̂
(d)
λ , a submatrix

of Θ̂λ, contains all conditional dependence relations between the set of d markers.
Depending on the type of mating between the parental lines we introduce two meth-
ods to order markers, one based on dimensionality reduction and another based on
bandwidth reduction. Both methods result in a one-dimensional map.

Inbred. In inbred populations, markers in the genome of the progenies can be as-
signed to their parental homologues, resulting in a simpler conditional independence
pattern between neighboring markers. In the case of inbreeding, we use multidi-
mensional scaling (MDS) to represent the original high-dimensional space in a one-
dimensional map while attempting to maintain pairwise distances. We define the dis-
tance matrix D which is a d×d symmetric matrix where Dii = 0 and Dij = − log(ρij)
for i ̸= j. Here, the matrix ρ represents the conditional correlation among d objects
which can be obtained as ρij = − θij√

θii
√

θjj
, where θij is the ij-th element of the

precision matrix Θ.
We aim to construct a configuration of d data points in a one–dimensional Eu-

clidean space by using information about the distances between the d nodes. Given
the distance matrix D, we define a linear ordering L of d elements such that the dis-
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tance D̂ between them is similar to D. We consider a metric MDS, which minimizes

L̂ = argminL

d∑
i=1

d∑
j=1

(Dij − D̂ij)
2 across all linear orderings.

Outbred. An outbred population derived from mating two non-homozygous par-
ents results in markers in the genome of progenies that can not easily be assigned to
their parental homologues. Neighboring markers that vary only on different haploids
will appear as independent, therefore requiring a different ordering algorithm [see
Figure 1c]. In that case, to order markers we use the reverse Cuthill-McKee (RCM)
algorithm (Cuthill and McKee, 1969). This algorithm is based on graph models. It
reduces the bandwidth of the associated adjacency matrix, Ad×d, for the sparse matrix

Θ̂
(d)
λ . The bandwidth of the matrix A is defined by β = maxθij ̸=0 |i− j|. The RCM al-

gorithm produces a permutation matrix P such that PAP T has a smaller bandwidth
than does A. The bandwidth is decreased by moving the non-zero elements of the
matrix A closer to the main diagonal. The way to move the non-zero elements is de-
termined by relabeling the nodes in graph G(Vd, Ed) in consecutive order. Moreover,
all of the nonzero elements are clustered near the main diagonal.

2.4 Uncertainty in map construction

Both empirical estimation of marginals and selection of the tuning parameter pro-
duce uncertainty in the map construction procedure. We compute the uncertainty
associated with the estimated linkage map through a non-parametric bootstrap. We
replicate B datasets that are created by sampling with replacement n samples from
the dataset Yn×p. We run the entire map construction procedure to each bootstrap
dataset. Each estimated map is associated with an adjacency matrix. The average of
the B bootstrap adjacency matrices for the bootstrap samples reflects the underlying
uncertainty in the estimation procedure of the linkage map construction.

We have applied this procedure to evaluate the uncertainty associated with the
estimation of the linkage map for the example data set Cvi×Col in A.thaliana. This
well-studied experiment is derived from a RIL cross between Columbia-0 (Col-0) and
the Cape Verde Island (Cvi-0), where 367 individual plants were genotyped across 90
genetic markers (Simon et al., 2008). The Cvi−0×Col−0 RIL is a diploid population
with three possible genotypes, where the genotypes are coded as {0, 1, 2}, where 0
and 2 represent two homozygous genotypes (AA resp. BB) from Col-0 and Cvi-0, and
1 defines the heterozygous genotype (AB). We generate 100 independent bootstrap
samples from the Col-0 and Cvi-0 cross. For each 100 bootstrap samples, we apply
the map construction algorithm. Figure 2 presents the certainty associated with the
estimated linkage map for a subsample of n = 50 plants. The line type shows the
estimated certainty associated with each link. For example, the gray dotted between
marker “c2.00593” from chromosome 2 and marker “c1.298998” from chromosome 1
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Figure 3: Comparison of performance between map construction in netgwas and
MSTMAP for different genotyping error rates. Simulated data contain 300 markers for
different numbers of individual n. Top figure reports average grouping, and bottom
figure shows average ordering accuracy scores over 50 independent runs.

has the certainty value of 0.01, likewise for markers “c3.22147” and “c4.00012” from
chromosomes 3 and 4. To sum up, for the links in the original dataset we obtain a
56% certainty that the links are really there, whereas for the non-links in the original
dataset we are 98% certain that they are not there. We remark that when we use all
n = 367 individuals, all the 100 bootstrap samples estimate an identical linkage map,
which is the reason why for illustrative purpose, we used a subsample n = 50.

3 Simulation study

In this section, we study the performance of the proposed method for different diploids
and polyploids. In section 3.1 we perform a comprehensive simulation study to com-
pare the performance of the proposed algorithm with other available tools in diploid
map constructions, namely JOINMAP (Jansen et al., 2001) and MSTMap (Wu et al.,
2008). The former is based on Monte Carlo maximum likelihood and the latter uses
a minimum spanning tree of a graph.

In section 3.2 we compare our method with an alternative method to examine
their performance on polyploids. At this moment the proposed method is the only
one that constructs linkage maps for polyploid species in data-driven way without
any manual adjustment.

3.1 Diploid species

We simulate genotype data from an inbred F2 population. This population type
generates discrete random variables with values Y = {0, 1, 2} associated with the
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three distinct genotype states, AA, Aa, and aa at each marker. The procedure
in generating genotype data is as follows: first, two homozygous parental lines are
simulated with genotypes AA and aa at each locus. A given number of markers, p,
are spaced along the predefined chromosomes. Then, two parental lines are crossed to
give an F1 population with all heterozygous genotypes Aa at each marker location.
Finally, a desired number of individuals, n, are simulated from the gametes produced
by the F1 population.

A genotyping error means that the observed genotype for an individual is not
identical to its true genotype, for example, observing genotype AA when Aa is the
true genotype. Genotyping errors can distort the final genetic map, especially by
incorrectly ordering markers and inflating map length. Therefore, to order markers
that contain genotyping errors is an essential task in constructing high-quality linkage
maps. To investigate this, we create genotyping errors in the simulated datasets by
randomly flipping the heterozygous loci along the chromosomes to either one of the
homozygous allele.

For each simulated dataset, we compare the performance of the map construction
in netgwas with two other models: JOINMAP, and MSTMap. We compute two crite-
ria: grouping accuracy (GA) and ordering accuracy (OA), to assess the performance
of the above mentioned tools in estimating the correct map. The former measures
the closeness of the estimated number of linkage groups to the correct number, and
the latter calculates the ratio of markers that are correctly ordered. We define the
grouping accuracy as follows: GA = 1

1+(LG−L̂G)2
, where LG stands for actual num-

ber of linkage groups and L̂G is the estimated number of linkage groups. The GA
criterion is a positive value with a maximum of 1. A high value of GA indicates
good performance in determining the correct number of linkage groups. To compute
ordering accuracy, we calculate the Jaccard distance, dJ , which measures mismatches
between the estimated order and the true order. We define the ordering accuracy of
the estimated map as OA = 1

1+dJ
. This measurement lies between 0 and 1, where 1

and 0 stand for a perfect and a poor ordering, respectively.
In terms of computational burden, it is worth noting that netgwas runs in parallel.

In the performed simulations, we ran the map construction functions, both in netgwas

and MSTMAP on a Linux machine with 24 2.5GHz Intel Xeon processors and 128GB
memory. JOINMAP runs only on Windows. We ran it on a Windows machine with
3.20 GHz Intel Xeon processors and 8 GB RAM memory.

When the data are clean and complete, netgwas and MSTMAP are both efficient in
terms of running time. For 1000 markers over five chromosomes and 200 F2 individ-
uals, they run in 1.4 and 0.20 min, respectively, on Intel i7 laptop with 16Gb RAM.
However, as shown in Figure 4 in Wu et al. (2008), when the input data is noisy, the
running time for MSTMAP increases, whereas the noise ratio does not affect running
time in netgwas.
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Table 2
Summary of performance measures of linkage map construction in simulated F2
populations for netgwas, MSTMAP and JOINMAP at different rates of missingness
and genotyping errors. The Tables presents average grouping and ordering accuracy
scores for 50 independent runs and standard deviation in parentheses. Best scores
are boldfaced.

Grouping Accuracy Ordering Accuracy

Missing Error
rate rate netgwas MSTMap JOINMAP netgwas MSTMap JOINMAP

p=1000 & n=200
0 0 1.00 (0.00) 0.61 (0.36) 0.00 (0.00) 1.00 (0.00) 0.91 (0.06) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.04 (0.03) 0.00 (0.00) 0.56 (0.00) 0.51 (0.09) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.44 (0.16) 0.00 (0.00) 0.52 (0.00) 0.78 (0.02) 0.00 (0.00)
0.15 0.15 1.00 (0.01) 0.05 (0.00) 0.00 (0.00) 0.52 (0.00) 0.60 (0.13) 0.00 (0.00)

p=1000 & n=100
0 0 1.00 (0.00) 0.74 (0.35) 0.00 (0.00) 1.00 (0.00) 0.82 (0.08) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.13 (0.07) 0.00 (0.00) 0.53 (0.01) 0.50 (0.04) 0.00 (0.00)
0.10 0.10 0.95 (0.16) 0.01 (0.00) 0.00 (0.00) 0.52 (0.01) 0.13 (0.16) 0.00 (0.00)
0.15 0.15 0.95 (0.15) 0.00 (0.00) 0.00 (0.00) 0.49 (0.04) 0.00 (0.00) 0.00 (0.00)

Evaluation of estimated maps in presence of genotyping errors

We studied the accuracy of the estimated linkage maps using two methods: netgwas
and MSTMAP where genotyping errors are randomly distributed across the genetic
markers. The simulated data contained 300 markers for both n = 100 and n = 200
individuals where the genotyping error rates ranged from 0 up to 0.45. In these sets
of simulations we activated the error-detection feature in MSTMAP.

Figure 3 evaluates the accuracy of estimated maps in terms of grouping (Figure
3, top) and ordering accuracies (Figure 3, bottom). In general, this figure shows that
netgwas constructed significantly better maps than MSTMAP across the full range
of genotyping error rates. More specifically, for a moderate number of individuals,
(n = 200), Figure 3 (top) shows that netgwas correctly estimated the actual number
of linkage groups for the full range of genotyping error rates. When n = 100 netgwas

perfectly estimated the actual number of linkage groups up to 10% genotyping errors,
and very accurately (≥ 0.95) estimated the number of linkage groups for error rates
between 10% and 30%. With more than 30% genotyping errors the accuracy dimin-
ished. MSTMAP always made significantly poorer estimates of the actual number of
linkage groups than did netgwas; its performance immediately began to drop as soon
as there was some level of genotyping errors. Surprisingly, it estimated the number of
linkage groups better when n = 100 than n = 200. As Wu et al. (2008) mentioned in
their paper, choosing ϵ remains a critical issue in MSTMAP to detect correct number
of linkage groups. In their clustering approach, ϵ does not only depends on n, but
it also depends on the Hamming distance between linkage groups. Therefore, it it
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Figure 4: Tetraploid Peanut linkage map comparison. Performance of netgwas and
MapMaker on map construction for tetraploid peanut. There is a high level of consis-
tency between MapMaker and netgwas.

might be that the estimation of the linkage group or clustering is better for small n
rather than for big n.

Figure 3(bottom) shows the ordering accuracy within each correctly estimated
linkage group. Ordering quality in netgwas was significantly better than MSTMAP

for both n = 100 and n = 200. This is because conditional independence is an
effective way to recover relationships among genetic markers. More specifically, when
n = 200 and the error rate equaled zero, netgwas ordered markers perfectly (100%
accuracy) and MSTMAP orders markers with a high accuracy (95%). In addition,
with increased genotyping error rates, the map construction in netgwas outperformed
that of the MSTMAP in ordering markers within each LG. Based on our simulations,
we remark that with both netgwas and MSTMAP erroneous markers remain in the
estimated linkage map. However, netgwas orders them in the correct LG (see Figure
3), whereas MSTMAP performs poorly in detecting LGs as well as in correctly ordering
markers. We note that, if one is interested in identifying erroneous markers, netgwas
uses the Lincoln and Lander (1992) approach to detect markers that have genotyping
errors. In their approach, an error LOD score is calculated for each individual at each
marker; large scores (> 4) indicate likely genotyping errors. The netgwas uses R\qtl
package (Broman et al., 2003) to detect genotyping errors.

Evaluation of estimated maps for incomplete and noisy data

In Table 4 we simulate inbred F2 populations with 10 linkage groups that contain
different rates of missing and genotyping error. Here, we report average grouping
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and ordering accuracy scores over 50 independent simulated datasets. In all scenar-
ios, netgwas detects linkage groups with higher accuracy. Furthermore, the netgwas
performs well in correctly ordering markers as its ordering accuracy scores are higher
compared to the other two methods, except in one case where MSTMAP performs
better.

We remark that the ordering accuracy scores in Table 4 should be interpreted
carefully, as inversion in the order of flanking markers reduces the number of correct
ordering and ultimately decreases orderings accuracy scores. Furthermore, determin-
ing linkage groups (LGs) in JOINMAP requires an input parameter to be specified by
the user, whereas the other two methods determine LGs in data-driven way. Thus,
to treat all the three methods equally we used a conservative LOD score threshold as
suggested by Stam (2012) to detect LGs. The fact that JOINMAP scores so badly is
the result of these automated selection of the tuning parameters. The zero grouping
accuracy is because markers were incorrectly assigned to many more linkage groups
than the true number of linkage groups, where the zero ordering accuracy comes
from the large Jacard distance between the estimated order of JOINMAP and the true
order. Practitioners have reported better results when manually tuning the various
parameters of JOINMAP.

3.2 Polyploid species

The peanut (Arachis hypogaea L.) is an important oilseed crop and food legume grown
in tropical or subtropical regions (Bertioli et al., 2013). Linkage map for tetraploid
peanut have already been generated in Bertioli et al. (2013) using MapMaker (Lan-
der et al., 1987). In total, 771 markers were mapped into 20 linkage groups. This
population consisted of 89 F6 individuals derived from a cross between A. hypogaea
cv. Runner IAC 886 and a colchicine-induced tetraploid. We applied netgwas to
construct linkage map for the same population based on the same sample.

Figure 4 compares the estimated maps from netgwas and MapMaker. The netgwas
builds the tetraploid peanut map by using marker-marker partial correlations. It
detects all the peanut chromosomes correctly, except for chromosome TA9, which it
detected as two smaller linkage groups containing 10 and 42 markers. Bertioli et al.
(2013) used MapMaker to map 771 markers into 20 linkage groups with minimum
LOD score of 3.0 and a maximum recombination fraction of 0.35. In Bertioli et al.
(2013), they manually tune the number of LGs to the known information about the
peanut chromosome, whereas netgwas detects number of LGs in a data-driven way.
In terms of ordering markers the maps were similar, except in chromosomes TA9 and
TA10. In addition, netgwas runs in 22.44 seconds on an Intel i7 laptop with 16GB
RAM. The run-time of MapMaker is unknown because the authors of the peanut
dataset did not provide computational times.
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Figure 5: Summary of comparison between netgwas and MSTMAP in barley data.
Table on top summarizes estimated number of LGs (chromosomes) and size of markers
within each LG. Below, ordering accuracy scores for the two methods. Below figure
estimated undirected graph in netgwas for the barley data. This consists of 7 sub–
graphs, each showing a chromosome.

4 Construction of linkage map for diploid barley

In the literature (Wu et al., 2008) a barley genotyping dataset is used to compare
different map construction methods for real-world diploid data. This genotyping
dataset is generated from a doubled haploid population, which results in homozygous
individual plants, Yij ∈ {0, 1}. Barley genotype data are the result of crossing Oregon
Wolfe Barley Dominant with Oregon Wolfe Barley Recessive (see http://wheat.

pw.usda.gov/ggpages/maps/OWB). The Oregon Wolfe Barley (OWB) data include
p = 1328 markers that were genotyped on n = 175 individuals of which 0.02%
genotypes are missing. The barley dataset is expected to yield 7 linkage groups, one
for each of the 7 barley chromosomes.

As shown in Figure 5, through estimating Θ̂λ, which contains conditional (in)de-
pendence relationships between barley markers, we were able to correctly detect the 7
barley chromosomes as sub–graphs in the estimated undirected graph. Furthermore,
using the conditional correlation matrix as distance in the multi-dimensional scaling
approach helped us to order markers with high accuracy. In addition, Figure 5 reports
the result of applying the two methods: netgwas and MSTMAP, to construct a linkage
map for the barley data. The top part of Figure 5 shows that our method correctly
estimated the true number of chromosomes. Also, the size of markers within each
chromosome is consistent with the number of markers that reported in Cistué et al.
(2011). MSTMAP was not able to estimate the true number of chromosomes and
grouped all 1328 markers as one linkage group. The bottom of Figure 5 shows the
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accuracy of estimated marker order in 7 barley chromosomes. To be able to compare
marker order in both methods we used the actual map to cluster markers in the map
resulting from MSTMAP. Thus, at the bottom of Figure 5 it is assumed that MSTMAP

has estimated correct number of chromosomes. Average ordering of accuracy scores
across the linkage groups in netgwas is higher than those in MSTMAP except with
chromosomes 1 and 3.

To investigate the influence of segregation distortion on map construction in
netgwas, we constructed a linkage map for a Double Haploid (DH) wheat popu-
lation of size 599 markers that genotyped on 218 individuals (the dataset is available
at ASMap package). This genotype data contains a set of markers with segregation
distortion. The netgwas ordered distorted markers in the correct linkage group (see
Table 1 in supplementary materials). Based on this result, we remark that segregation
distortion seems to have little influence on netgwas map construction.

5 Construction of linkage map for tetraploid potato

World-wide, the potato is the third most important food crop (Bradshaw and Bonier-
bale, 2010). However, the complex genetic structure of tetraploid potatoe’s (Solanum
tuberosum L.) makes it difficult to improve important traits such as disease resistance
in this crop. Thus there is a great interest in constructing linkage maps in the potato
to identify markers related to disease resistance genes.

The full-sib mapping population MSL603 consists of 156 F1 plants resulting from a
cross between female parent Jacqueline Lee and male parent MSG227-2. The obtained
genotype data contain 1972 SNP markers (Massa et al., 2015) with five allele dosages
which are associated with the random variables Yj ∈ {0, 1, . . . , 4} for j = 1, . . . , 1971.

Figure 6 represents the result of applying the proposed map construction method
to the unordered potato genotype data. Figure 6a shows the estimated sparse pre-
cision matrix for the unordered genotype data. Figure 6b represents the estimated
precision matrix after ordering markers; it reveals the number of potato chromosomes
as blocks across the diagonal. The potato genome contains 12 chromosomes. The
proposed method correctly identifies all 12 chromosomes. The estimated linkage map
contains 1957 markers. Figure 6c compares the estimated order in netgwas versus the
estimated order in Massa et al. (2015) using the TetraploidSNPMap software (Hack-
ett et al., 2017). Each dashed line shows the estimated linkage group (LG), where
netgwas estimates LGs using the eBIC criteria in (7) and in TetraploidSNPMap the
number of LGs should be specified manually. Given that the ordering of markers
has always been a challenging task in linkage map constructions, and in particular
for polyploid species, both methods ordered markers with similar precision except in
chromosome 9 where TetraploidSNPMap suggests a different ordering.

Using simulated tetraploid data with 3000 markers over five chromosomes and
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Figure 6: Construction linkage map in potato. (a) Estimated precision matrix for
unordered genotype data of tetraploid potato. (b) Estimated precision matrix af-
ter ordering markers. (c) Estimated order of markers across potato genome, versus
estimated order in tetraploidSNPmap software. Each dashed line represents a chro-
mosome. All potato chromosomes were detected correctly in netgwas.

207 F1 individuals netgwas produced maps within 5.5 minutes, whereas Tetraploid-
SNPMap took 15 minutes on an Intel i7 laptop with 16GB RAM.

6 Conclusion

Construction of linkage maps is a fundamental and necessary step for detailed genetic
study of diseases and traits. A high-quality linkage map provides opportunities for
greater throughput gene manipulation and phenotype improvement.

Here we have introduced a novel method for constructing linkage maps from high-
throughput genotype data where the number of genetic markers exceeds the number
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of individuals. The proposed method makes full use of SNP dosage data to construct
a linkage map for any bi–parental diploid or polyploid population. We propose to
build linkage maps in two steps: (i) inferring conditional independence relationships
between markers on the genome; (ii) ordering markers in each linkage group, typically
a chromosome. In the first step of the proposed method we used the Markov prop-
erties of adjacent markers: the genotype of an individual haploid at marker Yj given
its genotype at Yj−1 or Yj+1 is conditionally independent from the genotype at any
other marker location. This property defines a graphical model for discrete random
variables.

We employed a Gaussian copula graphical model combined with a penalized EM
algorithm to estimate a sparse precision matrix Θ̂λ. This method iteratively computes
the conditional expectation of the complete penalized log-likelihood, and optimizes
it to estimate Θ̂λ. The method can also deal with missing values, which are very
common in genotype datasets. The nonparanormal skeptic is an alternative approach
that is computationally faster but can not deal with missing genotypes. The number
of linkage groups is determined via the information criteria, eBIC. Detection of linkage
groups in the existing map construction software is usually done by manual tuning;
this, however, influences the output map, whereas our method detects linkage groups
automatically in a data–driven way.

Depending on the type of mapping population, inbred or outbred, we use either
a multi-dimensional scaling approach or the Cuthill-McKee algorithm, respectively,
in step 2 of the proposed linkage map construction. Both ordering algorithms result
in a one-dimensional map. We noted that in outcrossing populations it is difficult to
order markers because a clear definition of the parental genotype is lacking.

We performed several simulation studies to compare the performance of the pro-
posed method with other commonly used diploid map construction tools. To address
the challenges in the construction of a linkage map from genotype data, we stud-
ied the performance of the proposed method on simulated data with high ratios of
genotyping errors. As shown in our simulation studies, our method, called netgwas,
outperformed the commonly available linkage map tools, when the input data were
noisy.

As outlined in Cervantes-Flores et al. (2008), constructing linkage maps in poly-
ploids, with outcrossing behavior, is a challenging task. So far, based on our experi-
ence, no method has been developed to construct polyploid linkage maps for a large
number of different marker types without any manual adjustment and/or visual in-
spection. Based on the simulated polyploids with outcrossing behavior, the proposed
method detected the true number of linkage groups with high accuracy, and ordered
markers with reasonable precision.

We applied the proposed method to two genotype studies involving barley and
potato. In the barley map construction, we correctly detected its 7 chromosomes,
whereas other method grouped all markers in one linkage group. The netgwas

22



method ordered markers with higher accuracy in most of the chromosomes. The
method detected all the potato chromosomes, although it identified chromosome 10
as two linkage groups. Its ordering of markers within each chromosome was a sub-
stantial improvement of what has been possible up until now. We remark that the
proposed map construction method uses all possible marker types, unlike the other
map construction methods, which use a subset of markers (Grandke et al., 2017).

Although modern sequencing methods might be able to create accurate physical
maps, there is an important role for methods such as ours that creates a linkage
map. Despite its apparently appeal, a physical map merely orders the nucleotides
(ATCG) of a chromosome, which defines the physical distance, but it does not give
information on the genetic distance between markers. For breeders, knowing about
genetic distance is more relevant than physical distance, as it will be more obvious
which parts of the genotype will tend to be inherited together. Also, a linkage map
is the first requirement for estimating the genetic background of phenotypic traits
in quantitative trait loci (QTL) studies. In practice, many software packages for
performing QTL analysis require linkage maps, not physical maps. Another reasons
why linkage map construction methods continue to be developed is that they enable us
to determine linkage disequilibrium structure between polymorphisms (Matise et al.,
2007, Rodriguez-Fontenla et al., 2014, Behrouzi and Wit, 2017a) and they are very
useful in assembling the genome of a particular species.
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Supplementary Materials

Computing conditional expectation

We calculate R̄ in equation (6) of the paper as

E

[
Z(i)Z(i)t|Y (i), Θ̂(m)

]
= E

[
Z(i)|Y (i), Θ̂(m)

]
E

[
Z(i)|Y (i), Θ̂(m)

]t
+ cov

[
Z(i)|Y (i), Θ̂(m)

]
(8)

The conditional random variable Z|Y follows a truncated p-variate normal distribu-
tion. Wilhelm et al,.(2010) provided the analytical solution to compute moments of
truncated multivariate normal distribution. However, their approach is feasible for
only very few variables. Here, we propose instead to simulate a large number of sam-
ples from the truncated p-variate normal distribution and compute the sample condi-
tional covariance matrix and sample conditional mean to estimate E

[
Z(i)Z(i)t|Y (i), Θ̂(m)

]
using the equation (8).

Alternatively, we use an efficient approximate estimation algorithm, which is im-
plemented in Behrouzi and Wit (2017) and Guo et al,. (2015). The variance elements
in the conditional expectation matrix can be calculated through the second moment
of the conditional Z

(i)
j | Y (i), and the rest of the elements in this matrix can be ap-

proximated through E(Z
(i)
j Z

(i)
j′ | y(i); Θ̂, D̂) ≈ E(Z

(i)
j | y(i); Θ̂, D̂) E(Z

(i)
j′ | y(i); Θ̂, D̂)

using mean field theory. The first and second moment of z
(i)
j |y(i) can be written as

E(Z
(i)
j | y(i), Θ̂, D̂) = E[E(Z

(i)
j | z(i)−j, y

(i)
j , Θ̂, D̂) | y(i), Θ̂, D̂], (9)

E((Z
(i)
j )2 | y(i), Θ̂, D̂) = E[E((Z

(i)
j )2 | z(i)−j, y

(i)
j , Θ̂, D̂) | y(i), Θ̂, D̂], (10)

where z
(i)
−j = (z

(i)
1 , . . . , z

(i)
j−1, z

(i)
j+1, . . . , z

(i)
p ). The inner expectations in (9) and (10) are

relatively straightforward to calculate. z
(i)
j | z(i)−j, y

(i)
j follows a truncated Gaussian

distribution on the interval [c
(j)

y
(i)
j

, c
(j)

y
(i)
j +1

] with parameters µi,j and σ2
i,j given by

µij = Σ̂j,−jΣ̂
−1
−j,−jz

(i)t
−j ,

σ2
i,j = 1− Σ̂j,−jΣ̂

−1
−j,−jΣ̂−j,−j.

Let rk,l =
1
n

∑n
i=1E(Z

(i)
k Z

(i)
l | y(i), Θ̂, D̂) be the (k, l)-th element of empirical correla-

tion matrix R̄, then to obtain the R̄ two simplifications are required.

E(Z
(i)
k Z

(i)t
l | y(i), Θ̂, D̂) ≈ E(Z

(i)
k | y(i), Θ̂, D̂)E(Z

(i)
l | y(i), Θ̂, D̂) if 1 ≤ k ̸= l ≤ p,

E(Z
(i)
k Z

(i)t
l | y(i), Θ̂, D̂) = E((Z

(i)
k )2 | y(i), Θ̂, D̂) if k = l.
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Applying the results in the appendix to the conditional z
(i)
j | z(i)−j, y

(i)
j we obtain

E(Z
(i)
j | y(i); Θ̂, D̂) = Σ̂j,−jΣ̂

−1
−j,−jE(Z

(i)t

−j | y(i); Θ̂, D̂) +

ϕ(δ̂
(i)

j,y
(i)
j

− ϕ(δ̃
(i)

j,y
(i)
j +1

)

Φ(δ̃
(i)

j,y
(i)
j +1

)− Φ(δ̃
(i)

j,y
(i)
j

)
σ̃
(i)
j ,

(11)

E((Z
(i)
j )2 | y(i); Θ̂, D̂) = Σ̂j,−jΣ̂

−1
−j,−jE(Z

(i)t

−j Z
(i)
−j | y(i); Θ̂, D̂)Σ̂−1

−j,−jΣ̂
t
j,−j + (σ̃

(i)
j )2

+ 2

ϕ(δ̃
(i)

j,y
(i)
j

)− ϕ(δ̃
(i)

j,y
(i)
j +1

)

Φ(δ̃
(i)

j,y
(i)
j +1

)− Φ(δ̃
(i)

j,y
(i)
j

)
[Σ̂j,−jΣ̂

−1
−j,−jE(Z

(i)t

−j | y(i); Θ̂, D̂)]σ̃
(i)
j

+

δ
(i)

j,y
(i)
j

ϕ(δ̃
(i)

j,y
(i)
j

)− δ̃
(i)

j,y
(i)
j +1

ϕ(δ̃
(i)

j,y
(i)
j +1

)

Φ(δ̃
(i)

j,y
(i)
j +1

)− Φ(δ̃
(i)

j,y
(i)
j

)
(σ̃

(i)
j )2, (12)

where Z
(i)
−j = (Z

(i)
1 , . . . , Z

(i)
j−1, Z

(i)
j+1, . . . , Z

(i)
p ) and δ̃

(i)

j,y
(i)
j

= [c
(i)
j −E(µ̃ij | y(i); Θ̂, D̂)]/σ̃ij.

In this way, an approximation for R̄ is obtained as follows:

r̃kl =

{
1
n

∑i=n
i=1 E(Z

(i)
k | y(i), Θ̂(m), D̂)E(Z

(i)
l | y(i), Θ̂(m), D̂) if 1 ≤ k ̸= l ≤ p

1
n

∑i=n
i=1 E((Z

(i)
k )2 | y(i), Θ̂(m), D̂) if k = l.

The latent graphical model discussed in the paper, though it is a natural approach,
is computationally expensive for a large number of variables (p > 2000). We there-
fore describe here an alternative method to construct high–dimensional undirected
graphical models.

Nonparanormal SKEPTIC

As alternative, we use the nonparanormal skeptic approach (Liu et al., 2012) to
estimate the penalized concentration matrix Θ. In this approach, instead of using the
transformed data to estimate precision matrix Θ, a sample correlation matrix Γ can
be computed from pairwise rank correlations, such as Kendall’s tau and Spearman’s
rho. For the random vector y

(1)
j , . . . , y

(n)
j the Kendall’s tau and Spearman’s rho are

given, respectively, by

τ̂jl =
2

n(n− 1)

n∑
i,́i=1

sign(y
(i)
j − y

(́i)
j )(y

(i)
l − y

(́i)
l )
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and

ρ̂jl =

∑n
i=1(r

i
j − r̄j)(r

i
l − r̄l)√∑n

i=1(r
i
j − r̄j)2.

∑n
i=1(r

i
l − r̄l)2

Γ̂jl =

{
sin(π

2
τ̂jl) j ̸= l

1 j = l
;

Γ̂jl =

{
2 sin(π

6
ρ̂jl) j ̸= l

1 j = l.
To estimate the sparse precision matrix and the graph, one can use either the graph-
ical lasso

Θ̂glasso = argmax
Θ

{
log |Θ| − tr(ΓΘ)− λ||Θ||1

}
(13)

or CLIME estimator, with Γ̂ as input

Θ̂CLIME = argmin
Θ

||Θ||1 subject to ||Γ̂Θ− Ip||∞ ≤ λ, (14)

Although both methods involve convex optimization problems, these can be efficiently
solved.

Evaluation of estimated maps for incomplete and noisy data

In Table 4 we simulate inbred F2 populations with 10 linkage groups that contain
different rates of missing and genotyping error. Here, we report average grouping
and ordering accuracy scores over 50 independent simulated datasets. In all scenar-
ios, netgwas detects linkage groups with higher accuracy. Furthermore, the netgwas
performs well in correctly ordering markers as its ordering accuracy scores are higher
compared to the other two methods, except in one case where MSTMAP performs
better.

We remark that the ordering accuracy scores in Table 4 should be interpreted
carefully, as inversion in the order of flanking markers reduces the number of correct
ordering and ultimately decreases orderings accuracy scores. Furthermore, determin-
ing linkage groups (LGs) in JOINMAP requires an input parameter to be specified by
the user, whereas the other two methods determine LGs in data-driven way. Thus,
to treat all the three methods equally we used a conservative LOD score threshold as
suggested by Stam (2012) to detect LGs. The fact that JOINMAP scores so badly is
the result of these automated selection of the tuning parameters. The zero grouping
accuracy is because markers were incorrectly assigned to many more linkage groups
than the true number of linkage groups, where the zero ordering accuracy comes
from the large Jacard distance between the estimated order of JOINMAP and the true
order. Practitioners have reported better results when manually tuning the various
parameters of JOINMAP.
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Table 3
Influence of distorted markers on map construction for wheat population in
netgwas. We used a Double Haploid wheat population, which contains a set of
markers with segregation distortion. The netgwas ordered distorted markers in the
correct linkage group (LG).

distorted
marker(s)

known
LG

netgwas
LG

marker order in netgwas

1A.m.34
1A.m.37

1A 1

1A.m.1, 1A.m.2, 1A.m.3, 1A.m.13, 1A.m.4,
1A.m.5, 1A.m.6, 1A.m.7 1A.m.8, 1A.m.9,
1A.m.10, 1A.m.11, 1A.m.12, 1A.m.15, 1A.m.14
1A.m.18, 1A.m.16, 1A.m.17, 1A.m.19 1A.m.21
1A.m.20 1A.m.22, 1A.m.23, 1A.m.24, 1A.m.25,
1A.m.26, 1A.m.27, 1A.m.28, 1A.m.29, 1A.m.30,
1A.m.32, 1A.m.33, 1A.m.34, 1A.m.31,
1A.m.35, 1A.m.36, 1A.m.37, 1A.m.38,
1A.m.39, 1A.m.40, 1A.m.41

3B.m.15
3B.m.16
3B.m.17
3B.m.18
3B.m.19
3B.m.20

3B 9

3B.m.1, 3B.m.2, 3B.m.4, 3B.m.3, 3B.m.5,
3B.m.6, 3B.m.7, 3B.m.8, 3B.m.9, 3B.m.10,
3B.m.13, 3B.m.12, 3B.m.11, 3B.m.14,
3B.m.15, 3B.m.18, 3B.m.16, 3B.m.19,
3B.m.17, 3B.m.20, 3B.m.21, 3B.m.22,
3B.m.23, 3B.m.24, 3B.m.26, 3B.m.25, 3B.m.27,
3B.m.28, 3B.m.29, 3B.m.30

6D.m.12 6D 20

6D.m.5, 6D.m.1, 6D.m.2, 6D.m.3, 6D.m.4,
6D.m.6, 6D.m.7, 6D.m.8, 6D.m.9, 6D.m.10,
6D.m.11, 6D.m.12, 6D.m.14, 6D.m.13,
6D.m.15

7B.m.6 7B 22

7B.m.1, 7B.m.2, 7B.m.6, 7B.m.3, 7B.m.4,
7B.m.7, 7B.m.5, 7B.m.8, 7B.m.9, 7B.m.12,
7B.m.10, 7B.m.11, 7B.m.13, 7B.m.17, 7B.m.14,
7B.m.15, 7B.m.16, 7B.m.18, 7B.m.19, 7B.m.20,
7B.m.21, 7B.m.22, 7B.m.23, 7B.m.24, 7B.m.25,
7B.m.26 7B.m.27, 7B.m.28, 7B.m.29, 7B.m.30,
7B.m.32, 7B.m.31, 7B.m.33, 7B.m.34, 7B.m.36,
7B.m.35, 7B.m.37
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Table 4
Summary of performance measures of linkage map construction in simulated F2
populations for netgwas, MSTMAP and JOINMAP at different rates of missingness
and genotyping errors. This Table presents average grouping and ordering accuracy
scores for 50 independent runs and standard deviation in parentheses. Best scores
are boldfaced.

Grouping Accuracy Ordering Accuracy

Missing Error
rate rate netgwas MSTMap JOINMAP netgwas MSTMap JOINMAP

p=1000 & n=200
0 0 1.00 (0.00) 0.61 (0.36) 0.00 (0.00) 1.00 (0.00) 0.91 (0.06) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.04 (0.03) 0.00 (0.00) 0.56 (0.00) 0.51 (0.09) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.44 (0.16) 0.00 (0.00) 0.52 (0.00) 0.78 (0.02) 0.00 (0.00)
0.15 0.15 1.00 (0.01) 0.05 (0.00) 0.00 (0.00) 0.52 (0.00) 0.60 (0.13) 0.00 (0.00)

p=1000 & n=100
0 0 1.00 (0.00) 0.74 (0.35) 0.00 (0.00) 1.00 (0.00) 0.82 (0.08) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.13 (0.07) 0.00 (0.00) 0.53 (0.01) 0.50 (0.04) 0.00 (0.00)
0.10 0.10 0.95 (0.16) 0.01 (0.00) 0.00 (0.00) 0.52 (0.01) 0.13 (0.16) 0.00 (0.00)
0.15 0.15 0.95 (0.15) 0.00 (0.00) 0.00 (0.00) 0.49 (0.04) 0.00 (0.00) 0.00 (0.00)
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