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Range-expansion effects on the belowground
plant microbiome

Kelly S.Ramirez®™, L.Basten Snoek'?3, Kadri Koorem'4, Stefan Geisen®’, L.Janneke Bloem'>,
FreddytenHooven', Olga Kostenko', Nikos Krigas®’, Marta Manrubia®?, Danka Cakovic?,
Debbie van Raaij', Maria A. Tsiafouli¢, Branko Vre$?, Tatjana Celik®, Carolin Weser',

Rutger A. Wilschut®'2 and WimH.van der Putten®'3

Plant range expansion is occurring at a rapid pace, largely in response to human-induced climate warming. Although the move-
ment of plants along latitudinal and altitudinal gradients is well-documented, effects on belowground microbial communities
remain largely unknown. Furthermore, for range expansion, not all plant species are equal: in a new range, the relatedness
between range-expanding plant species and native flora can influence plant-microorganism interactions. Here we use a latitudi-
nal gradient spanning 3,000 km across Europe to examine bacterial and fungal communities in the rhizosphere and surrounding
soils of range-expanding plant species. We selected range-expanding plants with and without congeneric native species in the
new range and, as a control, the congeneric native species, totalling 382 plant individuals collected across Europe. In general,
the status of a plant as a range-expanding plant was a weak predictor of the composition of bacterial and fungal communities.
However, microbial communities of range-expanding plant species became more similar to each other further from their original
range. Range-expanding plants that were unrelated to the native community also experienced a decrease in the ratio of plant
pathogens to symbionts, giving weak support to the enemy release hypothesis. Even at a continental scale, the effects of plant
range expansion on the belowground microbiome are detectable, although changes to specific taxa remain difficult to decipher.

nized as a major uncertainty in predicting the consequences

of global warming for biodiversity and ecosystem functions'”.
Initially, attention was given to the ability of species to keep up
with their shifting climate envelope; now, research questions have
expanded to include the consequences of range shifts for com-
munity interactions’. The disruption of plant range expansions on
aboveground interactions have been well-documented*™, including
on aboveground herbivores and higher tropic levels”®. Although evi-
dence suggests that introduced invasive species can alter soil com-
munities”", the effects of plant range expansion on belowground
microbial communities remain ambiguous.

The relationships between plants and their associated microor-
ganisms can influence plant establishment, fitness and community
assembly'”"'*. It has been proposed that range-expanding plants will
be successful in their new range, because they lose their specialized
soil pathogens™>'*'°. At the same time, range-expanding plants may
also lose specialized mutualistic microorganisms'’~". Results of
these studies lead to the similar expectation that the plant-associated
microbial community in the rhizosphere and surrounding soil (here
called the belowground plant microbiome) of range-expanding
plant species will associate less with the belowground microbiome
in their new range compared to their native range, and compared
to native plant species. However, few studies have characterized or
compared the structure and diversity of the microbiome commu-
nities associated with range-expanding plant species (although see

E ; pecies range expansion in response to climate change is recog-

a previous study®), nor has a direct comparison been made with
related native plant species at a continental scale.

The soil and rhizosphere microbiome, made up largely of bac-
teria and fungi, is taxonomically and functionally diverse®'. The
community composition of the belowground microbiome is broadly
structured by abiotic factors, yet effects differ between bacteria and
fungi*>”. For example, whereas at large spatial scales bacterial com-
munities are strongly influenced by soil pH***, the composition
of fungal communities are simultaneously affected by climate and
nutrients”~*. At the same time, both the soil and rhizosphere micro-
biomes are strongly controlled by biotic factors, including the com-
position of root exudates, plant species identities and plant traits*-'.
Through these properties, plant species can assemble species-specific
microbiomes in which microbial taxa are enriched or suppressed
under some plants and not under others'**>~°. At the same time,
phylogenetic relatedness of range-expanding plants with native flora
can represent another potential effect of range expansion on micro-
bial communities—for which some research suggests that closely
related plant species can contain similar microbial taxa, especially
pathogens®>”’. Finally, plant-microorganism interactions evolve over
time, changing over years and even decades®; therefore, during
range expansion, both the distance from the original range and the
evolutionary history between plants and microorganisms™ have the
potential to influence the belowground plant microbiome.

Here we analyse the microbiome of intra-continental range-
expanding plant species along a latitudinal gradient to explore key
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Fig. 1| Changes in microbial community during plant range expansions. a, When plants move from the southern range to a new range, the range-
expanding plants can either be related to the native flora (circles) or be unrelated to the native flora (stars). b, Hypothesized responses of the
similarity of microbial communities and the relative abundances of pathogens to range expansion; we expect that observed patterns are stronger in
the rhizosphere (solid lines) than in the bulk soil (dashed lines) and that the relatedness of the range-expanding plant to the native flora affects the

strength of the response.

hypotheses that have been previously proposed for exotic and inva-
sive plants, but that may also apply to climate warming-induced
range expansions. To test for the influence of plant phylogeny on
the belowground microbiome during range expansion, we selected
range-expanding plants that are either related or unrelated to the
native flora (Fig. la). To test for the effects of range expansion
on the belowground plant microbiome, we compared changes in
community composition and the relative abundance of pathogens
across the range-expansion gradient (Fig. 1b). We hypothesize that
if plant range expansion influences the belowground plant microbi-
ome, observed patterns will be stronger in the rhizosphere*' than in
bulk soil. Furthermore, if range-expanding plants that are further
from their original range either lose the ability to interact with cer-
tain microbial taxa or preferentially promote the growth of a ben-
eficial community, the microbiome of the range-expanding plants
will become more similar and alpha diversity of communities will
decrease in the new range. However, because plants that are more
closely related to the native community may share microorganisms,
this change will be less pronounced for range-expanding plants that
encounter congeneric native species in the new habitat. Finally, if
the enemy release hypothesis common to invasive plant species is
also applicable to range-expanding plants, we expect fewer below-
ground pathogens to be associated with range-expanding plants
that are unrelated to the native flora compared to related expanding
and native species.

In Europe, the range expansion of plants induced by climate
change is well-documented; many plant species are expanding
their range into higher latitudes and altitudes>”. Here we use high-
throughput Illumina sequencing to explore how the belowground
microbiome of plant species changes when plants expand from
their original range (in lower latitudes) to new ranges (in higher
latitudes). We targeted the microbiome of three plant groups: unre-
lated range-expanding plants (species without native species from
the same genus in their new range); related range-expanding plants
(species that have native species from the same genus in their new
range) (Supplementary Table 1 and Supplementary Fig. 1); and
native plant species, which are congeneric to the related range-
expanding plant species and native throughout the entire gradient.
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All range-expanding plants had either arrived or greatly expanded
within the Netherlands in the late twentieth and early twenty-first
centuries®. In an effort to minimize variation in abiotic factors, we
selected 11 plant species grown on similar parent soil (see Methods).
For each species, we sampled the microbiome in the rhizosphere
and surrounding (bulk) soil of up to 9plant individuals collected
from up to 6 countries, spanning from Greece to the Netherlands,
totalling 382plant individuals (Supplementary Table 1 and
Supplementary Data 2). While some species were cosmopolitan*,
others were quite rare and more difficult to find. Here we included
replicates not only for individual plant species, but also for each
plant type (native, and related and unrelated range-expanding plant
species), and we collected 382 bulk-soil and rhizosphere samples to
obtain a number that should be sufficient to capture large-scale pat-
terns in the microbial communities*?’.

Results and discussion

Overall, rhizosphere and bulk-soil communities were significantly
different from each other, both in community overlap—as visual-
ized by principal component analysis (PCA) (P<0.001 for both
bacteria and fungi; Fig. 2a,b)—and in taxa overlap (Fig. 2c,d). We
found 47,704 bacterial phylotypes and 9,374 fungal phylotypes in
soils, and 33,939 bacterial phylotypes and 6,438 fungal phylotypes
in the rhizosphere. Furthermore, there was little community over-
lap among plant individuals in both the soil (averaging 4,092 (8%)
unique bacterial taxa and 523 (5.5%) unique fungal phylotypes per
sample) and the rhizosphere (averaging 1,932 (5.6%) unique bacte-
rial phylotypes and 257 (4%) unique fungal phylotypes per sample).
High microbiome diversity among 11 plant species is not a surprise,
especially because the selected plants represent a range of phyloge-
netically and ecologically distinct species™*>*¢.

Across the gradient, plant species was the strongest predictor of
the composition of the bacterial and fungal communities in both
soil and rhizosphere environments, explaining 7 to 14% of the varia-
tion (Fig. 3 and Supplementary Table 2) and plant genus as a proxy
of phylogenetic relatedness (Supplementary Fig. 1) provided no
additional predictive power. Conversely, the effects of plant group-
ing (unrelated range-expanding, related range-expanding and native
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Fig. 2 | The rhizosphere and soil contain different microbial communities. a
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(permutational multivariate analysis of variance using distance matrices (PE
abundances of bacterial (¢) and fungal (d) taxa from the rhizosphere and soi

plant species) and latitude had a much smaller effect on microbial
composition and explained a maximum of 2% of the variation in all
cases. In general, soil abiotic factors also had a minor influence on
variation, accounting for less than 1% of the variation for all fac-
tors (for example pH, nitrogen and carbon), except for soil bacterial
communities, for which pH explained approximately 5% of the vari-
ation. The relatively minor effect of soil abiotic factors on microbial
communities—compared to previous studies”—can be explained
by the small variation in soil factors across the gradient and between
plants (Supplementary Fig. 2), as was the goal of choosing plant spe-
cies that grow on the same parent soil material. In comparison, other
studies have been more focused on elucidating patterns in the com-
position of the microbial community relative to changes in abiotic
factors™?*". Thus, the observed differences are more likely to be due
to the effects of the plant species themselves™, such as plant ecology,
relatedness with native flora and life-history traits***.

In support of our hypothesis, we found that range-expanding
plants that were further from their original range had microbial
communities that were more similar to other plant individuals. Put
another way, the variation in community composition decreased
among individuals in the new range. Furthermore, there were
negative correlations between ‘range’ (the country samples were
collected from) and community dissimilarity for all plant groups
(Fig. 4 and Supplementary Table 3); when analysed using latitude
and distance, equivalent results were obtained. This pattern was
significant for bacterial communities in the soil and rhizosphere

606

RMANOVA): P<0.001 for both). PC, principal component. ¢,d, Relative
I

of all plant types (p varied between —0.08 and —0.32 and P <0.05
for all). However, for fungal communities, correlations were only
observed in soils (p varied from —0.10 to —0.13, P<0.05 for all) and
not in the rhizosphere. The negative correlation between range and
community dissimilarity was strongest in unrelated range-expand-
ing species (Supplementary Table 3). We also found a significant
difference in the degree of microbial community similarity by plant
group, although there was an interaction of country in two sce-
narios (soil fungi and rhizosphere bacteria) (P <0.0001 in all cases)
(Supplementary Table 4). This suggests that controls on the compo-
sition of microbiome communities of native and range-expanding
plants differs across the gradient. For instance, the microbiomes of
native plants (and to a lesser extent related range-expanding spe-
cies) may be more influenced by a long-term co-evolutionary his-
tory that would be consistent across this latitudinal gradient™’,
whereas microbiome patterns of unrelated range-expanding plants
might be more determined by more recent spatial effects and the
native (neighbour) plant community*. Because we used a survey to
explore changes to the belowground microbiome across a natural
range expansion transect, we were unable to test for co-evolution-
ary history between microorganisms and plants. Still, our results
suggest that future studies should be designed with this process in
mind, particularly to identify the role of the microbial community
for plant adaptions during climate change®*.

Whereas community structure became more similar across
the gradient, changes in bacterial richness and fungal richness
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Fig. 3 | Plant species was the strongest predictor of bacterial and fungal community structure in both the soil and the rhizosphere. a-d, PCA ordinations
show the centroid of all individuals for each plant species, with lines representing connections to individual samples (not plotted). a, Bacterial community
structure in the soil. b, Bacterial community structure in the rhizosphere. €, Fungal community structure in the soil. d, Fungal community structure in

the rhizosphere. Plant group (native: Centaurea jacea, Geranium molle, Tragopogon dubious and Rorippa sylvestris. C. stoebe and R. austriaca; related range
expander (related): Centaurea stoebe, Geranium pyrenaicum, Tragopogon pratensis and Rorippa austriaca; and unrelated range expander (unrelated): Dittrichia
graveolens, Lactuca serriola and Rapistrum rugosum) is represented by shape, and plant genus by colour.

was much more variable (Fig. 5 and Supplementary Table 5).
Under unrelated range-expanding species, fungal alpha diversity
in the rhizosphere significantly increased with distance from the
original range (p=0.36, P<0.001 in the rhizosphere, P> 0.05
in soil). However, related range-expanding plants showed no
relationship between fungal diversity and distance from origi-
nal range (P> 0.05 for both soil and rhizosphere) in compari-
son to native plants, for which fungal alpha diversity increased
with latitude in both the rhizosphere (p =0.20, P <0.05) and the
bulk soil (p=0.23, P<0.05). The mechanisms behind increased
fungal diversity in the rhizosphere of unrelated range-expanding
remain unclear. It could be that if range-expanding plants do
not need to invest in belowground defence™, the rhizosphere
becomes accessible for a larger proportion of microorganisms,
although this varies by plant species™. Alternatively, it has been
proposed that exotic species and range-expanding plants pro-
mote high microbial diversity as part of a defence mechanism®.
The latter proposition, that range-expanding plants enrich their
rhizosphere, is congruent with our findings that community
composition becomes more similar among individuals in the
northern part of the range (Fig. 4), and that unrelated range-
expanding plants had higher fungal and bacterial diversities in
their rhizosphere and lower diversities in the associated soils
(P<0.0001 in all cases) (Supplementary Table 6). Overall, the
inconsistency between the responses of the two types of range-
expanding plant species suggests that related and unrelated
range-expanding plants have different controls on microbial
diversity. Furthermore, the variability in alpha diversity pat-
terns indicates that alpha diversity and community similarity are
affected by different mechanisms.
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It has been proposed that in novel ecosystems, the success
or failure of a plant species is based on reduced exposure to soil-
borne pathogens combined with continued association with sym-
bionts™**. We applied this concept here and used FunGuild™ to test
how the abundance of potential fungal functional groups changes
as range-expanding plants move further from their original range.
Specifically, we examined potential plant pathogens and arbuscular
mycorrhizal fungi, as these are the relevant mutualistic symbionts
for most of our plant species, except for the crucifers. However,
we could not detect any significant changes in the relative abun-
dance in either of these groups under range-expanding plant species
(Supplementary Fig. 3). However, there was a significant positive
correlation in the ratio of plant pathogens to symbionts across the
transect (p=0.31, P<0.001) (Supplementary Table 7). By con-
trast, under native plants the relative abundance of plant pathogens
increased in both the soil and rhizosphere from south to north
(p=0.23 for both). In contrast to previous studies, these results do
not directly verify that range-expanding plants lose their specialist
microorganisms®’ or are released from specialist enemies™. Instead,
the results suggest that compared to native species, range-expand-
ing plants are exposed to fewer potential pathogens and symbionts
in the new range, which has been predicted for range-expanding
plant species®® and demonstrated for introduced exotic species in
their new range®-®. At the same time, recent studies of plant succes-
sion®*** clearly demonstrate that plant success and nutrient cycling
is tied to the microbial communities. However, it remains unclear
whether the mechanisms that underlie plant range expansion are
the same as those observed elsewhere.

Still, these results are not without caveats. Notably, the molecu-
lar methods used are not infallible—the DNA community analysis
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does not assess the active microbial community nor the true func-
tional capabilities of the detected microorganisms. Thus, potential
functional groupings and relative abundances of taxa cannot indi-
cate the expected pathogenicity of these fungi in the rhizospheres
of the host plant. Equally important is that, for all plant groups,
the relative abundance of these functional groupings make up
approximately 5% of the fungal community. This indicates that
any changes in composition or diversity may overinflate or obscure
true changes in these low-abundance groups® and specific primers
or culture work is necessary to explore the functional changes more
thoroughly. Our study exemplifies that high-throughput sequence
data can be used to assess large-scale patterns in plant-soil asso-
ciations; however, future functional analyses (for example, metage-
nomics and metatranscriptomics approaches) and experimental
studies must be designed to take the low abundance of pathogen
sequences into account.

Our study contributes initial steps for the identification of the
patterns of the changes in the plant microbiome that occur dur-
ing plant range expansion. Although we show that microbial com-
munity and diversity dynamics change across a range-expansion
gradient, clarifying the mechanisms behind the observed changes
would require further experimental study. In the present study, we
attempted to link the concepts from plant ecology to the microbi-
ome by assuming that plant establishment outside the native range
results in altered exposure to soil microorganisms. Our results sug-
gest that although terms such as ‘exotic species, ‘range-expanding
species’ and ‘native species are helpful descriptors in plant ecology,
it should not be assumed that these labels are equally relevant to
describe the belowground microbial community of such plant spe-
cies. Future research will require consideration of the ecological
roles of both plants and microorganisms®**; however, the ecologi-
cal roles of many microbial taxa currently remain unknown. At the
same time, we think that this large-scale biogeographical study of
plant-soil-microorganism associations of native, related and unre-
lated range-expanding plant species along a latitudinal gradient
is an essential step to understand how climate warming-induced
range-expanding plant species may assemble a new microbiome
in their novel range. This approach may also stand as a model for
processes that take place belowground after introduction of exotic
plant species in a new continent. Subsequent experimental work is
needed to understand the functional consequences of invasiveness
and naturalization.

Almost 4% of extant global vascular flora have established out-
side their native range®, and range expansion induced by climate
change is not expected to slow down®. Although soil microorgan-
isms exert strong selective pressures on plant species and commu-
nities®®®, our understanding of microbial community dynamics
during range expansion remains limited. Range expansion offers an
opportunity to explore not only how global change may alter the
relationship between plants and their microbiome, but also how the
belowground microbiome changes across large geographical scales.
Understanding the effect of range expansion on the belowground
plant microbiome can provide baseline knowledge for predicting
ecological consequences of current rapid climate warming, and
it may also be used to enhance our understanding of community
responses to invasion scenarios for introduced exotic species.

Methods

Plant species and soil collection. In central Europe, rivers flow to the south
and north away from the Alps, resulting in habitats with sediments from similar
parent materials and soils that spread across a latitudinal gradient. Within these
well-connected river habitats, and in response to climate change, many plant
species are expanding their range with much more movement expected in the
coming decades”*”!. Within this latitudinal gradient, spanning almost 3,000
km from Greece in the south to the Netherlands in the north, we identified

7 range-expanding species for which the range has expanded north into Austria,
Germany and the Netherlands over the last 50 years, approximately’”. Range-
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expanding plants without native congeneric species in the northern sites (that is,
unrelated range-expanding plants) include Dittrichia graveolens, Lactuca serriola
and Rapistrum rugosum. Range-expanders with native congenerics (that is,

related range-expanding plants) include Centaurea stoebe, Geranium pyrenaicum,
Tragopogon pratensis and Rorippa austriaca. As a control, we also included 4 native
plant species that are congeneric with the related range-expanding species,
Centaurea jacea, Geranium molle, Tragopogon dubious and Rorippa sylvestris.

C. stoebe and R. austriaca originated from central and eastern Europe, while all
other range-expanding species originated from southern Europe (www.gbif.org).
Plant populations were sampled from 6 countries in Europe—Greece, Montenegro,
Slovenia, Austria, Germany and the Netherlands—in the summer growing
seasons of 2013 and 2014. All plants were flowering at the time of sampling.

At each sampling site, environmental parameters, including weather conditions

at sampling dates, were recorded (Supplementary Data 2). For each sampling
location of a single species, 3 individuals of 3 distinct populations (in most cases,
with a separation of at least 400 m) were chosen, totalling 9 plant individuals for
each location (see Supplementary Table 1 for sample numbers). For collection of
all samples, permissions were obtained from both the nature reserves and
government agencies that are responsible for the land.

To assess the soil and rhizosphere microbiomes of native and range-expanding
plant species, soil and roots plus rhizosphere were collected from under individual
plants. In brief, the entire plant was dug up within a 10-cm radius around the
plant and bulk soil was shaken off the plant roots. Bulk soil was homogenized
and 10 g was collected for microbial and chemical analyses. Separately from the
bulk soil, the fine plant root and rhizosphere soil was then collected separately,
which is referred to as the rhizosphere community. All rhizosphere and soil
samples were stored at 4 °C until shipped, within 1 week, to the Netherlands
Institute of Ecology (NIOO). At the NIOO, soil and rhizosphere samples for
DNA extraction were frozen at —80°C. A subset of soil was stored in the fridge at
4°C for chemical analyses.

Soil chemical analyses. For all soil samples collected in 2014, nutrients and

pH were measured on fresh soil stored at 4°C (Supplementary Data and
Supplementary Fig. 2). Gravimetric moisture (percentage of water) was determined
on soil samples that were oven-dried at 105 °C. Total soil carbon and nitrogen
content was determined from these dried soils on an elemental analyser (LECO).
Extractable NO, and NH, were measured using the KClI extraction protocol. In
brief, soils were dried at 4°C, 10 g dry soil was then mixed with 1M KCl solution
and shaken, after which the supernatant was used for analyses of NO, and NH,.
Soil pH was measured in an H,O slurry solution using a bench-top pH meter
following the ISO 10309 standard procedure.

Community level sequence analysis. To identify the bulk-soil and rhizosphere
microbiomes of native and range-expanding plants, DNA was extracted from
0.25 g of ground bulk soil and 0.35 g of ground rhizosphere material using the
PowerSoil-htp 96-well soil DNA isolation kit (MO BIO Laboratories) according
to the manufacturer’s instructions. Bacterial community composition was
determined by targeting 16S rRNA amplicons using 515F/806R primers™ and
the fungal community composition was determined by targeting the ITS region
using primers ITS4/fITS9™. To prevent the amplification of plant material”,
PNA Clamps (PCR Blockers) (CGACACTGACACTGA-KK) were added at the
PCR step for rhizosphere bacterial DNA. For all samples, DNA was amplified
by PCR in duplicate using barcoded primers™. PCR products were purified
using the Agencourt AMPure XP magnetic bead system (Beckman Coulter Life
Sciences) and analysed using the Standard Sensitivity NGS Fragment Analysis kit
(1-6,000bp). Pooled PCR amplicons were sequenced with the Illumina MiSeq
platform at BGI Tech Solutions.

MiSeq paired-end reads targeting the 16S rRNA amplicon were merged
and only reads that had a minimum overlap of 150 bp and a PHRED score of 25
(estimated using the RDP extension of PANDASeq™®). Primer sequences were
stripped using Flexbar version 2.5”. Sequences were then clustered to OTUs with
VSEARCH version 1.0.107, using the UPARSE strategy of dereplication, sorting by
abundance and clustering using the UCLUST smallmem algorithm™. All singletons
were removed and potential chimeric sequences were removed using the UCHIME
algorithm®. Taxonomic classification for each OTU was obtained using the RDP
classifier version 2.10°".

Similarly, MiSeq paired-end reads targeting the ITS region were treated as
described above with the following adjustments: ITS primer sequences were
stripped using ITSx version 1.0.11* before clustering, and sequences were classified
using the UNITE database®. All bioinformatics steps were implemented with a
publicly available workflow made with Snakemake®. After samples were removed
due to sampling error or falling below the rarified threshhold, 382 samples were
included in downstream analyses of plant soil and rhizosphere microbiomes.

Community similarity was visualized with a PCA of the dissimilarity matrix
based on Bray-Curtis distances. Plotted in Fig. 3 is the centroid of each plant
species community with lines representing connections to all other samples of
that species. We quantified phylogenetic distances between all plant species used,
but did not make a full analysis of these distances with differences in microbiome
composition, as plant genus or family-specific issues might interfere with pure
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phylogenetic distances (Supplementary Fig. 1). To investigate how distance from
the original range influences the microbiome for each plant species, we tested
within country dissimilarity of bacterial and fungal communities in both the
rhizosphere and the soil. In brief, pairwise Bray-Curtis dissimilarity was estimated
between samples of each plant species within each country. Diversity of soil
communities were analysed using the ‘vegan’ package® using the PERMANOVA
test and visualized with the ‘ggplot2’ package. Correlation patterns were visualized
with the LOESS smoothing function®. Because within-country distance was much
smaller than between-country distance, diversity patterns were the same whether
plotted by latitude, country or geographical distance, which here we refer to as
‘range’. Spearman rank correlations were run on latitude and plots show country
name for clarity. FunGuild analyses were generated using the web interface and
only taxa that received a ‘highly probable’ classification were included. When all
taxa were included results remained the same. All other analyses were performed
using the R programming language (R Development Core Team).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The authors declare that the data supporting the findings of this study are
available within the paper and its Supplementary Information. Sequences have
been deposited in the European Nucleotide Archive under accession numbers
PRJEB25697, PRJEB25694, PRJEB25693 and PRJEB25692.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection In house python and R code

Data analysis R code

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data is available in the manuscript or upload to a sequence database and is freely available.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Changes in the belowground microbiome of range-expanding plant species in central Europe.

Research sample The soil and rhizosphere microbes were characterized of 11 plant species were collected with their plant populations were sampled
from 6 countries in Europe — Greece, Montenegro, Slovenia, Austria, Germany and the Netherlands - in the summer growing seasons
of 2013 and 2014. All plants were flowering at the time of sampling.

Sampling strategy At each sampling site, environmental parameters, including weather conditions at sampling dates, were recorded. For each sampling
location of a single species, 3 individuals of 3 distinct populations (in most cases at least 400m separation) were chosen, totaling 9

plant individuals for each location (see Supplementary Figure 1 for sample numbers).

Data collection illumina sequencing data and soil parameter data was collected by KSR, FTH, LIB, CW, DvR
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Timing and spatial scale  Collected in summer of 2013/2014
Data exclusions Samples where sequences did not meet predetermined quality checks were excluded.

Reproducibility This is a survey of the belowground plant microbiome. Reproducibility is possible as we have recorded locations of all plant
populations that were sampled.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? ~ [X] Yes [ Ino

Field work, collection and transport

Field conditions Samples were collected in natural systems between May and September. Samples were not collected during rain events.
Temperatures ranged from 12 - 28C depending on the location and the day.

Location Greece, Montenegro, Slovenia, Austria, Germany, The Netherlands
Access and import/export In all relevant locations permits were obtained to collect samples or permissions from private landholders.
Disturbance Small disturbances were made when soils were collected, but were approved by permits and permissions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
D Antibodies D D ChlIP-seq
D Eukaryotic cell lines D D Flow cytometry
D Palaeontology D D MRI-based neuroimaging

D Animals and other organisms

D Human research participants

Ooooodds

D Clinical data
o
Antibodies ]
S
Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number. e
Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.




Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pgme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.
Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement),

where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new
dates are provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design
questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how
these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
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Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChlIP-seq

Data deposition
D Confirm that both raw and final processed data have been deposited in a public database such as GEO.

D Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.
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Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to

(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChlP-seq experiments; as applicable, provide supplier name, catalog number, clone
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChlP, control and
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold
enrichment.

Software Describe the software used to collect and analyze the ChlIP-seq data. For custom code that has been deposited into a

community repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
D All plots are contour plots with outliers or pseudocolor plots.

D A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance | Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures
Acquisition

Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI

D Used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type of analysis: [ | Whole brain

Statistic type for inference
(See Eklund et al. 2016)

Correction

Models & analysis

n/a | Involved in the study

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

D Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MINI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first
and second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

|:| Both

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

D ROI-based

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte
Carlo).

|:| D Functional and/or effective connectivity

|:| D Graph analysis

|:| D Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Graph analysis

Report the measures of dependence used and the model details (e.g. Pearson correlation, partial
correlation, mutual information).

Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).
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Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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