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A B S T R A C T

One of the factors that can affect conjugation of IncI1 plasmids, amongst others, is the genetic region known as the shufflon. This multiple inversion system modifies
the pilus tip proteins used during conjugation, thus affecting the affinity for different recipient cells. Although recombination is known to occur in in vitro conditions,
little is known about the regulation and the extent of recombination that occurs. To measure the recombination of the shufflon, we have amplified the entire shufflon
region and sequenced the amplicons using nanopore long-read sequencing. This method was effective to determine the order of the segments of the shufflon and
allow for the analysis of the shufflon variants that are present in a heterogeneous pool of templates. Analysis was performed over different growth phases and after
addition of cefotaxime. Furthermore, analysis was performed in different E. coli host cells to determine if recombination is likely to be influenced. Recombination of
the shufflon was constantly ongoing in all conditions that were measured, although no differences in the amount of different shufflon variants or the rate at which
novel variants were formed could be found. As previously reported, some variants were abundant in the population while others were scarce. This leads to the
conclusion that the shufflon is continuously recombining at a constant rate, or that the method used here was not sensitive enough to detect differences in this rate.
For one of the plasmids, the host cell appeared to have an effect on the specific shufflon variants that were formed which were not predominant in another host,
indicating that host factors may be involved. As previously reported, the pilV-A and pilV-A' ORFs are formed at higher frequencies than other pilV ORFs. These results
demonstrate that the recombination that occurs within the shufflon is not random. While any regulation of the shufflon affected by these in vitro conditions could not
be revealed, the method of amplifying large regions for long-read sequencing for the analysis of multiple inversion systems proved effective.

1. Introduction

Multiple inversion systems or phase variation systems are an effi-
cient strategy adopted by many, highly diverse bacteria to regulate
expression of proteins or to introduce amino acid variability within a
protein, allowing quick and reversible adaptation to environmental
changes. The variations are mostly introduced by a site-specific re-
combinase which can recombine multiple contiguous regions of DNA,
effectively shuffling the order and directionality of specific segments of
the molecule. Some examples of phase variation include gene silencing
of cwpV in Clostridium difficile (Emerson et al., 2009), control of the Mod
methyl-transferases in Haemophilus influenzae (Atack et al., 2015) and
control of the Streptococcus pneumoniae capsule protein gene cap3A
(Waite et al., 2001) but also has analogous features with the more
complex system of antibody maturation in higher organisms (de los
Rios et al., 2015).

Plasmid-based phase variation systems have also been described
including the p15B Min system in a phage-related plasmid in Escherichia

coli and the shufflon system present on plasmids of the I-complex in
Enterobacteriaceae, which includes the IncI1α, IncI1γ, IncI2, IncK, IncB/
O and IncZ plasmids (Komano, 1999; Sandmeier et al., 1991; Seiffert
et al., 2017; Venturini et al., 2013). Due to the high percentage of
homology in the DNA sequence between IncI1α and IncI1γ plasmids,
the variations seen in these plasmids are similar, and these two plasmid
types will be discussed collectively here as IncI1 (Brouwer et al., 2015).

The PilV protein encoded by IncI1 plasmids can have one of seven
different C-terminal domains which are expressed and assembled at the
tip of the thin pilus type IVb during conjugation in liquid media (Roux
et al., 2012). This difference in the PilV C-terminal domain, which acts
as an adhesin with conjugation recipients, result in differences in affi-
nity for recipient cells of the plasmid during conjugation (Komano
et al., 1995). The variations of PilV are generated by the shufflon phase
variation system, which usually consists of four segments (A, B, C, D),
which are located downstream of the 5′ partial constant open reading
frame (ORF) of the pilV gene (Fig. 1). Further downstream is the gene
encoding the site specific recombinase Rci, which catalyses the
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recombination between the sfx recombination sites present at the ends
of the four segments, A–D, and results in rearrangement of the order
and orientation of the segments (Gyohda et al., 2002). The shufflon is
known to be continuously rearranged; resulting in a high diversity of
sequences within a population of cells growing in planktonic culture,
but the mechanism behind the regulation of the recombination reaction
is unknown (Brouwer et al., 2015; Gyohda et al., 2006).

Despite recent advances in next-generation sequencing (NGS)
technologies, studies of shufflon recombination have been hampered by
the size of the shufflon region (approximately 1.9 kb), which is too large
for short-read NGS technology to span in single reads or mate pairs.
However, using long-read technologies such as PacBio SMRT sequen-
cing or Oxford Nanopore Technologies MinION, the structural variation
of the shufflon can be studied more easily, and this has already shown
great heterogeneity within samples during the analysis of the IncI2
shufflon (Sekizuka et al., 2017).

The activity of mobile genetic elements can be influenced by the
metabolic state of the host cell, and as such, the activity of the shufflon
may be influenced by external factors. To determine this, we have
measured the variation of the shufflon of several IncI1 plasmids over
different growth phases, in the presence and absence of antibiotics and
in different host cells, using ONT MinION long-read sequencing.

2. Materials and methods

2.1. Cell culture and sampling strategy

Shufflon analysis was performed in the original host E. coli in which
the plasmids were first described, or in E. coli DH10B after electro-
transformation (Invitrogen ElectroMAX DH10B, ThermoFisher
Scientific). Features of the plasmids used in the study are described in
Table 1.

Bacterial cells were grown on LB agar plates containing 1 μg/ml
cefotaxime to select for presence of the plasmids. Liquid cultures were
set up from a single colony and grown overnight in LB medium. For
pESBL-4 and pESBL-283 plasmids, cells were cultured for 3 days with
daily refreshing of the culture by diluting it 1:100 in fresh LB broth.
Samples were taken at the start, middle and end of the exponential
growth phase based on optical density (OD600 approximately at re-
spectively 0.15, 0.4, 0.8), see Fig. 2. At the start of day 3, cefotaxime
was added to the culture medium to a final concentration of 1 μg/ml.

2.2. DNA isolation and sequencing

DNA was isolated using the Blood and tissue DNA isolation kit
(Qiagen). Specific amplification of the shufflon region was performed

using oligonucleotides Nanopore_shufflon_Fw (5′- NNNNNNATGACAG
AAGGGCGAGTTCA -3′) and Nanopore_shufflon_Rev (5′-NNNNNNGGT
GCATTACGTTCCTGGTC -3′) with Biomix Red (Bioline), expected to
produce an amplicon of 2860 bp for the entire shufflon region. Cycling
program consisted of 4min 94 °C, 25 cycles of 30 s 94 °C, 30 s 60 °C,
1min 72 °C and terminating after 10min final amplification at 72 °C.

PCR products were isolated using a PCR purification kit (Qiagen).
Sequencing libraries were prepared according to the manufacturer's
protocol using the Ligation sequencing kit (LSK108) and the Native
Barcoding kit (EXP-NBD103) from Oxford Nanopore Technologies.
Ligation reactions were performed using the NEB Blunt/TA ligase
master mix and NEBNext Quick ligation module (New England
Biolabs). Sequencing was performed on a MinION sequencer using
flowcell type R9.4 (Oxford Nanopore Technologies) and sequencing
was performed for 24–36 h.

2.3. Data analysis

Reads were basecalled using Albacore (v2.2.7, Oxford Nanopore
Technologies). Demultiplexing and adapter trimming of reads were
performed using Porechop (v0.2.1) at default settings (Wick, 2018).
Amplicons contain 539 bp of pilVN-terminus and 319 bp of rci. Any reads
that did not contain either of these sequences at the ends were con-
sidered sequence errors and discarded.

Statistical analysis was performed using R 3.4.0 (R-Core-Team,
2014). The datasets were rarefied to 2100 randomly chosen reads per
sample. The order of the shufflon segments per read were determined
using BLAST against the expected sequences of each of the segments.

All raw data was uploaded to the European Nucleotide Archive and
is available from accession numbers ERS3014708-ERS3014731.

3. Results and discussion

3.1. Shufflon analysis over time

The accepted biological function of the shufflon is to generate var-
iation in the C-terminal domain of the pilV ORF. To determine the ac-
tivity of the shufflon in various conditions, two IncI1α plasmids, pESBL-
4 and pESBL-283, were transformed into E. coli DH10B, see Table 1.
Cells were grown in liquid culture for 36 h during which samples were
taken at several time points throughout different growth phases and
after the addition of the antibiotic cefotaxime, to which both plasmids
encode resistance (Fig. 2).

The complete shufflon region, including partial ORFs of the up-
stream pilV and the downstream rci, was amplified by PCR and se-
quenced by nanopore longread sequencing. Analysis of the sequenced
reads showed that many variants of the shufflon were present and new
variants were continuously measured at consecutive timepoints
(Fig. 3a). For pESBL-4 the mean number of different variants per time
point was 178 while the mean for pESBL-283 was 89 over the seven
time points. Furthermore, the cumulative number of variants over all
time points was 522 versus 157 respectively. This difference was caused
by the different number of shufflon segments between these plasmids.
The presence of segment D in pESBL-4 contributed to an exponential
increase in the hypothetical biological variation (Brouwer et al., 2015;
Sekizuka et al., 2017).

Analysis of the shufflon amplicons showed that many of the reads

Fig. 1. Structure of the complete shufflon as first
described in plasmid R64 (Komano et al., 1987).
Figure adopted from (Brouwer et al., 2015). PCR
primers that were used for the amplification of the
shufflon region are indicated by above and below the
structure by green arrows. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Features of the plasmids and original isolates used for this study.

Plasmid Isolate Origin Shufflon segments Reference

pESBL-4 ESBL-4 Human A, B, C, D Smith et al. (2015)
pESBL-12 ESBL-12 Human A, B, C, D Brouwer et al. (2014)
pESBL-117 ESBL-117 Human A, B, C Brouwer et al. (2014)
pESBL-283 ESBL-283 Pig A, B, C Brouwer et al. (2014)
pESBL-305 ESBL-305 Poultry A, B, C Brouwer et al. (2014)
pESBL-355 ESBL-355 Poultry A, B Smith et al. (2015)
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did not contain all of the expected shufflon segments (Fig. 3b). pESBL-4
contained 4 segments in 59 to 64% of the reads while pESBL-283
contained 3 segments in 57 to 66% of the reads over all time points.
Although the majority of plasmids still contain all segments over all
time points, the loss of these segments in vitro is far greater than ex-
pected as most IncI1 plasmids described in the literature contain either
3 or 4 segments (Brouwer et al., 2015). It is therefore hypothesized that
in most in vivo environments the plasmids will experience greater

selective pressure in which loss of shufflon segments will lead to severe
loss of fitness compared to those plasmids that have retained all shuf-
flon segments. Although loss of segments was measured from time point
1, the fraction of plasmids that retained all segments of the shufflon was
stable over time, between 56 and 66% of the reads (Fig. 3b). Duplica-
tion of segments was observed in a small number of reads (0.7–0.8%)
which had not previously been reported as it would not be possible to
assemble using short-read NGS data.

Fig. 2. Impression of the sampling scheme for experiment 1. Each green circle represents a time point and the appurtenant growth condition for which the sample
was taken. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Analysis of shufflon rearrangements through time. Plasmids pESBL-4 and pESBL-283 were both present in E. coli DH10B cells. (a) Blue bars show the number
of shufflon variations measured at each timepoint. The red lines show the cumulative number of variations in the pool measured over the successive time points. (b)
Counts of the number of shufflon segments that are present in the sequencing reads, measured over time. (c) Relative prevalence of each of the PilV ORFs that were
formed, measured over time. (d) Relative distribution of the 10 most abundant shufflon variants, measured over time. (e) Novel variant of the PilV ORF PilvDx that
was detected in low prevalence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Analysis of the C-terminal end of the pilV ORF showed that for both
pESBL-4 and pESBL-283, over all time points there was a preference for
the pilV-A and pilV-A' ORFs, together making up 55–75% of all reads in
each of the conditions (Fig. 3c). While pilV-B and pilV-B′ were less
frequent in pESBL-4, in pESBL-283 equal fractions of the ORFs of seg-
ments B and C were measured. In pESBL-4, pilV-D was detected in ap-
proximately equal fractions to pilVC and pilVC’ but unexpectedly, the D
segment was also detected in opposite orientation in a small fraction of
reads, which would lead to a truncated PilV protein, referred to here as
PilV-Dx, Fig. 3e.

Analysis of the complete shufflons indicated that certain variants
appear to be present in the pool of variants more often than others
(Fig. 3d). This finding is supported by previously published data on the
IncI2 plasmids (Sekizuka et al., 2017). Based on the data presented
here, we cannot conclude if these variants were formed early on in the
experiment and continuously outcompeted all other variants due to
their overrepresentation in the starting culture or if recombination fa-
vors these variants. However, as shufflon recombination is actively
ongoing in the cultures, greater heterogeneity could be expected.

No particular difference between the various measured time points
could be detected, either in the number of variants present in a popu-
lation of plasmids or the rate at which they emerge as derived from the
cumulative number of novel variants (Fig. 3a), suggesting that stress
caused by high cell densities and nutrient deprivation or presence of an
antibiotic had no measurable effects.

3.2. Shufflon analysis in different host cells

To determine if the type of host cell had any influence on the re-
combination of the shufflon, five IncI1α plasmids were grown either in
their original E. coli host or in E. coli DH10B. For these cells, only a
single time point was measured, early exponential phase. In addition to
the plasmids pESBL-4 and pESBL-283, pESBL-12, pESBL-117 and
pESBL-355 were analyzed here. These plasmid encoded either 2, 3 or 4
shufflon segments (see Table 1 for details). The number of variants
measured per plasmid was dependent on the number of shufflon

segments that the plasmid had at the start of the experiment (Fig. 4a).
pESBL-4 and pESBL-12 encoded 4 segments and had 174–275 shufflon
variants regardless of the host cell,. pESBL-117 and pESBL-283 encoded
3 segments and had 113–141 variants, whereas pESBL-355 only en-
coded 2 segments and 62–69 variants were measured. The number of
variants for pESBL-4 and pESBL-283 in E. coli DH10B were similar to
those measured in the first experiment at the first time point.

The number of shufflon segments that was measured per read was
similar for pESBL-4 in E. coli DH10B as measured in the first experi-
ment, but for pESBL-283, this went from 57-66% of sequences con-
taining 3 segments to 38% (Fig. 4b). However, this is comparable to the
number of reads containing all 3 segments for pESBL-283 in the native
cell (41%). For pESBL-12 in DH10B, 39% of reads contained 4 segments
compared to 64% in the native cell, although this might be attributed to
natural variation and the lack of further replicate experiments.

Analysis of the pilV ORFs that were formed in the shufflons showed
little variation for the host cell of the plasmids (Fig. 4c). The ORFs of
the A segment were present downstream of pilV in 48–79% of reads. In
all samples of both experiments, there was some bias for pilV-A'
(52–64%) over pilV-A. None of the other segments showed such a
preference of either side of the segment that was conserved in all
plasmids and host cells that were measured except for segment D which
only encodes a single partial ORF, Fig. 3d. Nonetheless, pilV-Dx was
detected in approximately 2.5% of reads for pESBL-4 in E. coli DH10B in
both experiments. However, in experiment 2, for pESBL-4 in the native
E. coli host and for pESBL-117 in the native host or E. coli DH10B, pilV-
Dx was found only in 0.5% of reads.

The most highly abundant variants of the complete shufflons was
analysed per plasmid, comparing the two different host cells and the
results of the earlier experiment (Figs. 3d and 4d). Little commonality
was detected for pESBL-4 in the native E. coli or E. coli DH10B; however,
between the first and second experiment, an overrepresentation of
variants A+B+C+D- and A-B+C+D- was seen. Although it can
be argued that this might represent the shufflon orientation of the
original transformant, both experiments were initially started from in-
dividual colonies of separate agar plates, making this scenario less

Fig. 4. Analysis of shufflon rearrangements in different hosts. Shufflon rearrangement was measured in plasmids pESBL-4, pESBL-12, pESBL-117, pESBL-283 and
pESBL-355 measured either in the original E. coli isolate or after transformation into E. coli DH10B. (a) Blue bars show the number of shufflon variations measured.
(b) Counts of the number of shufflon segments that are present in the sequencing reads. (c) Relative prevalence of each of the PilV ORFs that were formed. (d)
Relative distribution of the 10 most abundant shufflon variants, calculated per plasmid for both host cell types. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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likely.
For pESBL-117, pESBL-283 and specifically pESBL-355, some more

commonality between the data from the different hosts can be seen,
which is at least partially caused by the decreased amount of variability
when the experiment is started with less than 4 shufflon segments.

4. Conclusions

The results presented here demonstrate that the recombination of
the shufflon is not a random process. This data on IncI1 plasmids show
much similarity with the results previously presented for three IncI2
plasmids from a study which utilized a different long-read sequencing
platform, PacBio, and directly sequenced complete plasmids (Sekizuka
et al., 2017). As such, the coverage of the shufflon is much lower
(96–134 reads per plasmid compared to 2100 amplicon reads analyzed
here) but they also reported predominance of certain shufflon variants.
Due to the difference in sequences of the segments between IncI1 and
IncI2 plasmids, it is difficult to compare the predominant shufflon
variants between these two studies. Nonetheless, the pilV ORFs pilV-A
and pilV-A' were overrepresented in each of the plasmids of the two
studies that contained segment A.

An unexpected finding in the analysis of our Nanopore data is the
loss of shufflon segments that was detected. However, in vitro experi-
ments using genetic fragments flanked by shufflon sfx sites previously
reported low levels of loss of artificial shufflon segments when sym-
metric sfx sites were present (Gyohda et al., 2006). Here, we did not
check for the symmetry of the sfx sites as the quality of the nanopore
reads is not sufficient. In vivo, variants of the shufflon that have lost one
or multiple segments have been described which may come at a fitness
cost, depending on the environment in which the plasmid is present
(Brouwer et al., 2015). The second unexpected finding was the lack of
difference that was found at the different time points of the first ex-
periment which were chosen to represent several growth stages and
stress factors. Nonetheless, we could not observe differences in terms of
recombination activity of the shufflon, something that could be in-
vestigated further using molecular reporter assays.

Conjugation is a major contributor to the spread of antimicrobial
resistance genes, for which plasmids of the IncI complex (IncB/O/K/Z/
IncI1/IncI2) contribute greatly in certain environments (Rozwandowicz
et al., 2018). As deletion of pilV has been shown to significantly reduce
the conjugal transfer of IncI1 in liquid environments, the shufflon
system plays an important role for the selection of recipient cells (Kim
and Komano, 1989). Limiting the transfer of AMR by reducing con-
jugation seems like an attractive strategy, but to determine if the
shufflon is a suitable target, it is necessary to determine: 1) if and how
the shufflon recombinase Rci is regulated, and 2) if the bias for certain
shufflon variants and PilV ORFs is random or reproducible.

The method we have used here of amplifying large genomic regions
and sequencing using long-read NGS will also be suitable for the

analysis of large numbers of DNA molecules of other multiple inversion
systems. Analysis of large numbers of amplicons can indicate well what
the distribution is within a heterogeneous population.
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