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Abstract 
Ecological restoration has the potential to tackle major global problems, but knowledge to predict its 

effects are currently limited due to a lack of available multidisciplinary monitoring methods, such as 

mapping soil organic carbon. Therefore, this research aims at constructing a method to quantify soil 

development as a result of ecological restoration. This is done in the semi-arid Baviaanskloof catchment, 

South Africa. This area offered the possibility to derive a 13-year chronosequence using 50 soil samples, 

which were analyzed on SOC. Further analyses of these samples, local legacy data and remote sensing 

derivatives were used to 1) investigate the main drivers of soil development in this study area by 

applying a principal component analyses and investigating the effects of the single soil forming factors, 

2) assess the suitability of a mechanistic model approach to predict the spatial distribution of the 

observed SOC fractions and thereby the current soil development state, 3) assess the potential to 

predict the temporal development of the soil state as a result of ecological restoration, and 4) assess the 

suitability of established carbon models for quantifying soil development (RothC and Carbon Benefit 

Project) by comparing them with the chronosequence findings.  

This study shows that SOC was an appropriate indicator for quantifying soil development, in contrast to 

the NDVI. The most important drivers were parent material and livestock, while the contribution of 

erosion and climate to soil development were hard to quantify. Moreover, the mechanistic model was 

successful in the prediction of the measured distribution of SOC (R2 = 0.67 and thereby improved the 

original model (R2 = 0.41). Given these models limitations are addressed, the mechanistic approach has 

the potential to be applied for the monitoring of restoration practices. The use of a chronosequence 

approach for predicting temporal development resulted in an identification of divergence, an alternative 

state and the soil development state. Although these identifications involved large uncertainties, the 

contribution to the currently scarce knowledge on the behavior of soil development to ecological 

restoration is profound. Moreover, the existing carbon models turned out to overestimate and misjudge 

this temporal behavior of SOC, which means their limitations are critical for the prediction of SOC 

development. This study concludes that despite its complex behavior, the importance of soil forming 

processes in driving the ecological system, teaches us that a multidisciplinary method, such as applied in 

this research, are crucial in the application of restoration practices, monitoring and modelling scenarios 
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1. Introduction 
Landscape restoration is increasingly used for reversing the global pattern of anthropogenically and 

climate change induced land degradation. By also including the local communities in the process of 

introducing vegetation, landscape restoration projects have the aim to return social, financial and 

natural capital, but also inspiration to the people (Ferwerda, 2015). These returns, at the end, are driven 

by the enhancement of ecosystem services including food supply, flood risk and carbon sequestration 

(Keesstra, et al., 2018)., which are described in the recent Sustainable Development Goals (SDG’s)  

The effectiveness of returning these ecosystem services as a result of the restoration projects is 

currently actively discussed and monitored (Chen and Duan, 2009). Especially in semi-arid areas, where 

ecological systems are highly fragile to small environmental disturbances. To successfully describe the 

system regeneration, one requires detailed knowledge on the change of system state over time, which 

should be acquired by active monitoring of restoration sites.  

This active monitoring of the advances is most often done using Normalised Difference Vegetation Index 

(NDVI) as an indicator of vegetation cover (Smit, 2014, Zucca et al., 2015), but this might not be suitable 

for monitoring the soil state as a result of ecological restoration. In fact, the semi-arid ecological system 

this study focusses on, is very complex in terms of processes interacting. Soil development is thereby 

known to be driven by properties related to climate, parent material, topography, time and organisms 

(Jenny, 1941). Since vegetation cover is not included in all of the properties it is most likely not 

simultaneously behaving with soil functioning (Bullock et al., 2011; Chen et al., 2007). Therefore, an 

enhancement of vegetation cover can only be considered a mitigation measure for improving soil 

functioning instead of an indicator of the soil development. An approach is needed which is 

multidisciplinary to consider all single soil forming factors affecting the eventual development. 

For this, the infiltration capacity is known to be an indicator for soil development in arid regions (Van 

Luijk et al., 2013). Because it relates to the process of erosion (Constantini, 2016), it is an important 

indicator of soil state in degraded semi-arid systems. At the same time, infiltration capacity is only an 

indicator of soil structure (Wang and Shao, 2013) and therefore does not tell us everything about soil 

development. Alternatively, soil organic matter (SOM) is known to influence water retention (Haynes 

and Naidu, 1998), soil fertility (Tiessen et al., 1994) and considered a product of mainly biological 

activity. Due to the fact it covers multiple disciplines, SOM is a better option as an indicator of the 

physical, biological and chemical state of a soil (Post and Kwon, 2000). Consequently, SOM is deemed 

useful for monitoring regeneration of degraded areas (Constantini, 2016). To strengthen this 

assumption, multiple examples of increases in SOM as a result of vegetation change can be found (Post 

and Kwon, 2000; Shourzan et al.,2005). 

SOM is hard to measure and therefore usually approximated by using Soil Organic Carbon (SOC) (Read 

and Ridgell,1922). One of the methods for describing SOC is using soil sample measurements in 

combination with geostatistical techniques (Heuvelink and Webster, 2001). This approach is not only 

costly, but these statistical models also tend to exaggerate the interpolation error in comparison with 

the mechanistic method (Robinson and Metternicht, 2006). An alternative method involves the 

construction of a SOC chronosequence, which means dynamics can be set up based on the spatial 

difference in age. However, the chronosequence needs a large range of ages (i.e. long-term 
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experiments) to be able to accurately describe the temporal development (Insam and Domsch, 1988). 

This data is most often not available and therefore the chronosequence method has been applied very 

scarcely in semi-arid regions. Other methods for quantifying SOC development are focusing on 

quantifying large-scale carbon sequestration as a result of land use change. They most often use the 

empirical relations with land use properties (GEF, 2010). However, these carbon models do not include 

important soil forming processes in their calculations. These processes are essential for monitoring 

restoration ecology (Viaud et al., 2010). Therefore, by lacking any implementation of these processes 

the established carbon models might not be suitable for the case of ecological restoration. Concluding 

on the above, most of the methods focusing on quantifying SOC, have serious limitations in their current 

application in the case of monitoring ecological restoration.  

In contrast, remote Sensing (RS) is widely available and can be a time and cost-efficient tool for 

obtaining environmental data. Nowadays, it is also applied to find relationships between soil processes 

and environmental parameters, in time and space (Conant et al., 2011; Mulder et al., 2011). For 

example, SOM stocks are mapped by relating soil processes to environmental legacy data (Minasny and 

McBratney, 2006; Hendriks, 2018). Moreover, RS-sensing parameters can be used as input in dynamic 

models, such as Century (Brady and Weil, 2010), RothC (Coleman and Jenkinson, 1995) and Ecosys 

(Grant, 1995). These models are able to predict vegetation dynamics and ultimately quantifying SOC on 

timescales of decades up to centuries.  

However, applying remote sensing has been only scarcely used in the past to assess the effectiveness of 

restoration measurements. This is caused by a lack of available knowledge of remote sensing techniques 

in the domain of ecology (Aplin, 2005). Moreover, to relate remote sensing images to measurements of 

SOC or soil development one needs a large amount of measurements, both in the spatial as well as 

temporal domain. Mainly due to financial constraints regarding these measurements, scientists tend to 

focus on monitoring vegetation activity (Chen et al., 2007; Chen and Duan, 2009; Liu et al., 2012), which 

is only partly indicating the development of soil. Eventually this results in a mismatch of expected 

restoration results with the observed state caused by this lack of systemic knowledge on soil 

development behavior (Bestelmeyer et al., 2013).  

In this perspective, this research aims to construct a method for monitoring the effect of ecological 

restoration on soil development, mainly focusing on semi-arid areas. To achieve this, the following 

questions need to be answered: 

• What are the main environmental drivers of soil development as a result of ecological 

restoration?  

• Can the current soil development state of the system be found?  

• Can we predict the temporal development of the soil state a result of ecological restoration 

by constructing a restoration curve?  

• How do the methods in this research compare to other methods for quantifying soil 

development in the research area?  

In the following sections the materials and methods used to answer the questions will be described 

(Chapter 2) and eventually its results presented (Chapter 3) and thoroughly discussed (Chapter 4 and 5). 
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2. Materials and Methods 

2.1 Study Area 
To solve the stated research questions, the study was conducted in a semi-arid area where the 

vegetation has been restored over a timescale where changes in ecosystem services could be detected. 

The Baviaanskloof, South Africa, is known to be such an area and is therefore a popular study site. It is 

even assigned as UNESCO world heritage site, due to its unique ecosystem diversity (Mills and Cowling, 

2010). There, mainly the native Spekboom vegetation (Portulacaria afra) has been severely declined in 

the late 1980’s due to grazing of sheep and goats (Jansen, 2008). This has led to frequent erosional 

events and a severe decline in overall soil development (Draajer, 2010). 

Since the year 2001, the Baviaanskloof UNESCO world heritage site has been included in the Spekboom 

restoration program under the flag of the PRESENCE learning network. As a result of this around 65% of 

the area has been put under Spekboom restoration management. This means soil is restored by 

replanting of vegetation and partly excluding livestock (Blanksma, 2011). For this restoration purpose, 

the native original Spekboom vegetation is an effective species to use for restoration due to its strong 

resistance to drought and slope processes. Moreover, its well-known ability to sequestrate substantial 

amounts of organic carbon into the soil (Mills and Cowling, 2010), contributes to its suitability for 

restoration. Also, the fact the Spekboom does not reproduce via seeds, makes this species easy to 

monitor due its passive behavior. Another consequence of this lack of seed source is the requirement of 

Spekboom to be planted as cuttings (Mills and Cowling, 2010) of about 40 cm in size. This size 

dependents on the type of Spekboom planted which can differ between two subspecies (Mills and 

Cowling, 2010). 

The Spekboom restoration management area (446 km2) is part of the 1234 km2 Baviaanskloof 

catchment. Despite focusing on a local scale, we can expect significant spatial differences in 

environmental variables. In fact, the area consists of more than 5 different parent materials strong 

alluvial formations (Bobbins, 2011) and pronounced differences in land use, such as farmland, livestock 

and natural area. Moreover, there is both a large interannual (100-700 mm) as well as monthly temporal 

variability (10-70 mm) in the amount of rainfall in the Baviaanskloof catchment. The latter causes the 

area to be sensitive to both drought and erosion (Jansen, 2008). This underlines the importance for 

managing soil water infiltration and retention.  
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2.2 Data collection and preprocessing 
Table 1 Overview of environmental variables used as input in this research, including source, area coverage and scale/resolution 

Soil forming 
factor 

Description Variable Source Area Vector/Raster 

Climate Mean and standard 
deviation (2000-
2018) 

Yearly average precipitation 
Heavy rainfall 
Cumulative dry days 
Min. temperature 
Mean temperature 
Max. temperature 
 
Mean solar radiation 
Land Surface Temperature 
(LST) 
Soil Moisture Index 
Albedo 

South African Environment 
Observation Network 
(SAEON) 
 
 
 
 
DEM (ASTER) 
Landsat 8, 09-2018, NASA 
Sentinel 09-2018, ESA 
Sentinel 09-2018, ESA 

Study area 
 
 
 
 
 
 
Study area 
Study area 
Study area 

Vector 
 
 
 
 
 
 
Raster 30x30 m 
Raster 30x30 m 
 
Raster 10x10 m 

Organisms NDVI (2000-2018) 
 
 
 
 
Vegetation Height 
 

NDVI timeseries (2000-2018) 
Average NDVI 
NDVI September 
 
 
Vegetation height (cm) 

Landsat 7 (2000-2016), 8 
(2017-2018) (NASA) 
Sentinel 09-2018, ESA 
 
Fieldwork campaign  

Study area 
 
 
 
 
Plot 

Raster 30x30 m 
 
 
Raster 10x10m 
 
Vector 
 

Relief Digital elevation 
model derivatives 

Elevation 
Slope 
Aspect 
Flow accumulation (MUFF) 
Topographic Wetness Index 
(TWI) 

DEM (ASTER) Study area Raster 30x30 m 

Parent 
material 
 
 

Geological map 
 
Field measurements 
 

Geomorphological unit 
 
Stone Fraction 
Texture 
 

SAEON 
 
Lab analyses 
 

Study area 
 
Plot 
 

Vector 
 
Raster 30x30 m 
 

Time Date of restoration Restoration date 
 

Livinglands Plot/area Vector 

Other Field measurements 
 
 
Field description 

pH, EC, nutrients, SOC. 
 
 
Surface conditions 
Descriptive soil horizons 

Lab analyses 
 
 
Field data 

Plot 
 
 
Plot 

Raster 30x30 m 
 
 
Raster 30x30 m 

2.2.1 Environmental variables 
In order to quantify soil development, information about the environment was needed to teach us more 

about soil functioning and to use for establishing a prediction of the soil development state. 

2.2.1.1 Local data 

The majority of the required environmental data was derived from existing maps and databases. More 

specifically, climatic and geological data as well as the date of restoration (Table 1) were received from a 

local observation network (Table 1) and the local policy makers in the study area, respectively. 

Thereby, the geological data did not need any adjustments since it is supplied as a spatial map with each 

polygon representing a different parent material type and age. 

Precipitation data was obtained from a local observation network (Table 1). This data covers 16 weather 

stations across the Baviaanskloof. From this data, the measurement period of 2015 to 2016 is used to 

predict the yearly average rainfall, cumulative heavy rainfall (97.5% percentile) and the number of dry 
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days (2.5% percentile), since in this period available data was most complete for all stations. The goal 

was to use the rainfall variables in assessing differences between sites, but also to predict the spatial 

variability in SOC. To achieve this the point data of the rainfall variables were converted to a spatial map 

over the study area. This was done by performing regression kriging with the elevation as explanatory 

variable (Teng et al., 2014). This has eventually resulted in a spatial map of precipitation, at 30x30m 

resolution. For this study area, the temperature data did not offer the possibility to construct 

derivations other than the mean, since it was only available as a map of yearly maxima and minima. 

The date of restoration was available as a polygon across the full study area. Some polygons included 

multiple restoration dates because they were repeatedly planted with vegetation due to a failure of 

initial vegetation. It is assumed that the first restoration date represents all Spekboom that is planted for 

each polygon, because it was unknown which planting practice has the largest contribution to the total 

planted Spekboom within a polygon. Subsequently, the derived planting dates were converted to the 

number of days after restoration by calculating the time difference with the 21th of September 2018, 

which is the fieldwork date. The uncertainty associated with the assumption of a single representative 

restoration date was quantified by calculating the standard deviation of the different days of 

restoration, associated with the multiple planting dates stated.  

2.2.1.2 Remote Sensing 

The resulting environmental variables from the data collection were derived from freely accessible RS-

images (Table 1).  Preprocessing of satellite data was done according to standardized processing 

methods if needed. Three sources for the acquisition of the remote sensing images were used and will 

be more thoroughly described in the following sections. 

Landsat images 

The NVDI dataset, was derived from 30x30m resolution Landsat daily imagery from the year 2000 to 

2018 (https://earthexplorer.usgs.gov/) according to the following Equation 1 by Tucker (1979): 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑉𝐼𝑆)

(𝑁𝐼𝑅+𝑉𝐼𝑆)
         Equation 1 

where the NIR (near infrared) and VIS (visible red) were obtained from Landsat band 5 and 4 

respectively. Images where reported cloud cover exceeded 10% were rejected. Moreover, the Landsat 

Control Report (QR) attached per image was used to identify flaws in the cell values of the timeseries 

images and set them to NA in case of the presence of any type of possible flaw. This means designated 

fill, dropped frame, terrain occlusion, water, snow, ice, cirrus and clouds are removed. Also values below 

zero and above one, were set to NA, since they do not represent realistic conditions.  

Based on the previously obtained Landsat NDVI at the month of fieldwork (September 2018), the land 

surface temperature was derived according to the following Equation 2: 

 𝐿𝑆𝑇 =
𝐵𝑇

(1+
0.00115∗𝐵𝑇

1.4388
∗𝐿𝑛(𝜀)

        Equation 2 

where the land surface temperature (LST) was defined based on the brightness temperature conversion 

(BT) and emissivity (𝜀) as a product of NDVI, whose equations are described in Avdan and Jovanovska, 

(2016). 

Subsequently the Soil Moisture Index (W) was calculated using the following Equation 3: 
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𝑊 =
𝑖𝑑+𝑠𝑑𝑁𝐷𝑉𝐼−𝐿𝑆𝑇

𝑖𝑑−𝑖𝑤+(𝑠𝑑−𝑠𝑤)𝑁𝐷𝑉𝐼
         Equation 3 

where 𝑖𝑑 and 𝑖𝑤 equal the dry and wet intercept, while 𝑠𝑑 and 𝑠𝑤represent the dry and wet slope of the 

edges of the trapezoid approach described by Sadeghi et al. (2017). 

Sentinel images 

In order to derive a more accurate prediction of the actual vegetation status, the NDVI was calculated 

with a smaller spatial resolution (Table 1: 10x10m). Thereby, Equation 1 is applied to band 8 (NIR) and 

band 4 (VIS) of Sentinel 2 images to derive the NDVI for the month of fieldwork (September 2018).  

Subsequently, using the derived NDVI the Albedo (𝛼) was calculated with the following Equation 4:  

𝛼 = ∑ |𝜌𝑏𝑖
∗ 𝑤𝑏𝑖

|𝑏𝑖
         Equation 4 

where 𝜌 is the reflectance for band number (𝑏𝑖) and 𝑤 equals the weight for the associated band 

number (𝑏𝑖) as described by D’Urso and Calera (2006). 

The derived Sentinel albedo and NDVI images, were resampled to the target plot resolution of 30x30m 

using the aggregated mean value. 

DEM derivatives 

The DEM is derived from ASTER 30x30m images . Following that, the DEM derivatives (slope, aspect and 

flow accumulation, mean solar radiation) were generated using the designated ArcMap tools. Moreover, 

the Topographic Wetness Index (TWI) has been calculated using Equation 6. 

𝑇𝑊𝐼 = ln
𝛼

tan(𝛽)
         Equation 5 

where 𝛼 is the ratio of catchment area and contour length and tan (𝛽) representing the slope (Beven 

and Kirkby, 1979). 

All the environmental variables are ordered based on the main soil forming factor they are related to 

(Table 1). Eventually parameters as shown in Table 1 were available over the study area. While for SOC, 

pH and fine fractions this was available for the chosen plots, the RS-derived covariates (including NVDI) 

were known for the whole study area on various scales (Table 1). 

2.2.2 Fieldwork 

2.2.2.1 Site selection 

In order to obtain enough information to quantify the development of soils in the restoration area, soil 

samples were taken in the Baviaanskloof catchment. The sampling sites were chosen based on a 

combination of purposive sampling (Patton, 1990) and stratified sampling (Neyman, 1934). This 

sampling strategy starts with the creation of strata which were based on each unique combination of 

parent material and the Year Of Restoration (YOR) and livestock presence. These were hypothesized to 

be the most important spatial factors contributing to the SOC distribution. YOR and livestock exclusion 

were expected to determine the tree height distribution while the geology was expected to be the 

driver of soil physical conditions. Therefore, both were deemed important for soil restoration in semi-

arid areas (Van Luijk et al., 2013). Each stratum was at least once represented in the selection of 

sampling sites, except for the sites with livestock inclusion. These sites were expected to all show 
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reduced tree growth conditions and therefore strata with livestock exclusion were reduced to a 

coverage of 13 samples. Secondly, in each strata combination, spatial coverage and accessibility were 

taken into account as factors for the selection of the plots (Fig. 1). Finally, the site-specific conditions 

regarding the success rate of Spekboom restoration were accounted for by only sampling at sites which 

had a success rate ranging from 75% to 100%. This success rate was based on surviving Spekboom 

observed. In case these 75-100% desired success conditions were not present in the strata, the highest 

success rate found was used. This was done to make sure sites were comparable in terms of land cover, 

but also to be able to detect the biggest possible change in soil development allowing to set up 

significant relationships. 

2.2.2.2 Site description 

There was need for a method 

to support the results of the 

analysis of quantitative 

variables. More specifically, in 

case the measured 

quantitative variables would 

be limited in their coverage, 

contain large errors or were 

just absent, qualitative 

variables can be used for a 

better understanding of 

environmental conditions. 

Also, a first understanding of 

site-specific conditions, 

providing an important 

contextual background for further analysis in this research was required. In order to achieve this, a 

qualitative analysis was performed. This means, at the designated plot sites, the soil forming factors 

were qualitatively assessed at 3 different categories according to FAO (2017). These include general site 

information, locations, soil formation factors and soil description.  

2.2.2.3 Soil samples 

At every 30x30 meter sampling plot in Fig. 1, Valeri plot sampling (Rossello and Baret, 2007) was used to 

account for spatial variability. This means sampling was done at 10-15 locations per plot until the 2-liter 

bag was full, including the corners and center of the plots using a 100 ml iron sampling ring. Only the top 

10 cm of the soil was sampled, because soils were barely exceeding the 20 cm depth due to their eroded 

state. Also, the SOC accumulation is expected to be highest in the top part of the soil. In case the soil 

was too dense or stony to sample with the ring, an iron shovel was used to carefully imitate the ring 

sampling procedure. During sampling, locations were chosen within a 50 cm range of any Spekboom 

shrub. This purposive sampling method (Neyman, 1934), was done based on the assumption that the 

relatively young and small Spekboom vegetation has not yet been able to affect more than 50 cm of its 

environment (Mills and Cowling, 2010). Sampling outside this range would have caused uniform values 

over the sampling sites, which would be hard to compare. Afterwards the collected soil was mixed into a 

2-liter bag. 

Fig. 1 Map of sampling locations along the Baviaanskloof catchment including farm borders and the 
road. 
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The collected soil samples were physically and chemically analyzed on nutrients, texture, pH, EC and SOC 

(Walkley and Black, 1934) (Table 1). These analysis (appendix, Table A9) were done at a lab.   

 Subsequently, the mean and standard deviation of the collected variables were computed and their 

relationship with YOR was analyzed.  

2.3 Relation between variables 
In order to obtain knowledge on the most important variable determining soil development, but also to 

gain an overview of the behavior of variables over space and time, the relation between variables was 

assessed. Eventually this was the main source of information in the derivation of the main driver of soil 

development in the area. Firstly, this was done by performing a Principal Component Analysis (PCA; 

Hotelling, 1933). Subsequently the Pearson correlation coefficient (PCC) (Pearson, 1896) between all 

variables was used as a first identification of temporal variability. Finally, a general overview of variables 

was made by making use of summary statistics. Moreover, the variables were individually assessed 

based on the main soil forming factors (Jenny, 1941), since each of them is expected to behave 

differently in relation to the restoration practices applied.  

2.3.1 Assessing the relation between variables using PCA 
As a first step in determining the main drivers of soil development, a PCA (Hotelling, 1933) was 

performed to analyze the different domains the variables are covering in explaining the total variability 

in dataset of environmental variables. The PCA could teach us which variables were similar in describing 

the variability in SOC following the principal components of the dataset variables. Not only this but also 

the distribution of pristine, degraded and restoring samples was valuable for interpreting the effect of 

the environmental variables in perspective of degradation reversal.  

2.3.2 Temporal restoration curve 
There was need to gain insight in the dynamics of SOC over time, related to the desired goal of 

predicting the temporal development of SOC. Eventually, this forms the basis for the comparison with 

other methods for quantifying soil development, but also offers a possibility to get a perspective view on 

the derived SOC values and maps by assessing the values’ temporal proximity to pristine conditions. In 

order to achieve these goals, there was need for a temporal representation of SOC data in the research 

area. Unfortunately, past SOC measurements were not available in any restored part of the 

Baviaanskloof catchment. Therefore, we made use of a soil development chronosequence, which was 

constructed by selecting plots differing in the year and month they have been restored, from 2006 up to 

2015. The unrestored degraded plots in the study area were assumed to show the initial baseline 

conditions (restoration of 0 days). In addition, the pristine conditions were assumed to have a YOR of 

7000 days, which corresponds with the moment the SOC is expected to reach pristine conditions as is 

found by Jia et al. (2005). 

Using a chronosequence for such purpose is not necessarily appropriate (Walker et al., 2010). In case 

initial conditions are different, mainly in terms of primary and secondary ecological succession, the site-

specific development of these ecological successors may differ. This could  potentially cause a multiple 

pathway response in these successors, where the diverging pathways are least appropriate for 

establishing a temporal relationship useful for understanding the trend in SOC development. In the 

current situation, this would mean that e.g. differences in initial microbiological communities (type and 

magnitude) are likely to exist due to different initial land cover state (Sparling, 1992) or aggregate 
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stability (Hattori, 1988) may cause a different response of the system to the Spekboom establishment. 

The system response might be seen in the SOC chronosequence and is expected to follow multiple 

distinguishable trends, i.e. different pathways. This effect for SOC has been seen in earlier studies done 

at an old mining reclamation site (Insam and Domsch, 1988), where the microbial development follows 

two distinguished paths with a similar weakening effect. 

To analyze how appropriate the application of a chronosequence was to the current area, the potential 

occurrence of pathways should be identified. This has formerly been done by using repeated 

measurements over time (Lebrija et al., 2010), but only by monitoring variables of primary and 

secondary ecological succession. For the Baviaankloof catchment, these measurements nor timeseries 

of SOC were available. However, a wide range of environmental variables were measured which could 

most likely heavily influence the dynamics of organic carbon and therefore its potential pathways. This 

means for the purpose of distinguishing pathways, the chronosequence might not be fully suitable. In 

that case, the similarity of important SOC drivers would have distinguished the pathways, rather than its 

temporal development.  

Instead of distinguishing pathways to quantify the potential behavior of soil organic carbon, different 

development scenarios were established for this purpose. These scenarios would tell us more about the 

potential paths SOC can follow, without the need to take complexity of environmental variables into 

account. The maximum and minimum scenario were calculated based on the 95% confidence interval of 

the SOC measurements of subsequent years. Such that every range included at least 4 measurements 

which were similar in days of restoration. This method was applied with the assumption that the 

standard deviation between the set of points of similar restoration date would change following these 

days. This would happen due to the expected divergence of the scenarios over time caused by a 

different development pathway. Eventually this would mean the points are not normally distributed and 

the overall standard deviation would not be valid. To validate the significance of the scenarios, three 

trendlines were fitted through the scenario points and the original chronosequence points, by using a 

linear exponential model. The exponential model was expected to represent realistic conditions since it 

is in line with the theoretical framework describing a positive feedback mechanism (Suding et al., 2004) 

as a result of a SOC increase. Following the derivation of the trendlines, the quality of the fitted trends 

was evaluated using the R-squared value of the applied model and its P-value of significance.  

2.3.3 Organisms 
In order to understand the role of vegetation in soil development, the relationship between tree height 

and SOC was analyzed. Tree height was estimated at plot level and related with the chronosequence 

time. This temporal trend could teach us more about the succession of vegetation for the chosen plots. 

Thereby, the vegetation was expected to follow a logistic growth curve (Hunt, 2012) since this logistic 

behavior had been formerly associated with Spekboom development (Lombard et al., 2001). This logistic 

behavior means that proceeding with time a maximum tree height will be reached. This height is 

assumed to be represented by the observed vegetation height at the pristine plots.  

The tree height measurements, however, did not have the desired full spatial coverage and therefore 

were not suitable to be used to monitor SOC development in the Baviaanskloof catchment. 

Consequently, the relationship with a proxy for vegetation height should be investigated. In this case the 

NDVI was chosen, which had already been used intensively for monitoring restoration practices activity 

in semi-arid areas (Chen et al., 2007; Chen and Duan, 2009; Liu et al., 2012,). The overall mean NDVI 
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(Table 1) was extracted at plot level by using the mean of all pixels. Following this they were related to 

YOR and tree height observations. 

Insight in the suitability of the NDVI for observing vegetation activity in the research area was important 

since the NDVI might be useful for monitoring purposes and would act as input for the prediction of 

SOC. In order to analyze this suitability, the change of NDVI as a result of the applied restoration 

practices was assessed. This was done by creating the yearly timeseries of the NDVI-index for a wide 

time range of observations (2000-2018). Additionally, timeseries of yearly rainfall measurements was 

added since it is previously reported by Davenport and Nicholson (1993) that the NDVI is sensitive to 

changes in rainfall. Both the variables observations were reduced to plot level and averaged among 

plots in order to get an overview of the response of NDVI to the restoration efforts. Finally, the 

timeseries trends were identified by performing loess regression and smoothing in R. 

2.3.4 Relief 
In the perspective of soil erosion, relief would be important in decreasing SOC stocks. Therefore, the 

effect of slope, TWI, aspect and flow accumulation on SOC was assessed using the PCC and P-value of 

significance. In addition, the PCA scores were compared. These scores are important for understanding 

the similarity of the DEM-derived variables, which can be very much similar due to their similar origin 

which is the digital elevation model. 

2.3.5 Climate 
Due to the potential impact of climatic variables on multiple processes determining SOC stocks, it was 

important to look at them separately. In fact, temperature and rainfall both potentially would have an 

effect on tree growth, mineralization and erosion (Jenny, 1941). Therefore, in order to understand the 

potential behavior of the climatic variables, the scores of the PCA were analyzed for each climatic 

variable. Moreover, the PCC offered more insight in the direct relationship with SOC. 

2.3.6 Parent material 
The relation of parent material with SOC can be found in the texture class, stoniness and location of the 

geographical units. This section investigates the effect of parent material on the potential differences in 

pathways followed by SOC. This was achieved by constructing chronosequence curves using an 

exponential linear model for all different parent materials and assessing the goodness of fit with the R-

squared value and P-value of significance obtained. A statistical T-test was performed on categorical 

variables, like Parent material to explain differences in environmental conditions 

2.3.7 Other 
Livestock grazing is an important factor in determining the growth of Spekboom, because it was the 

main cause of soil degradation in the Baviaanskloof catchment (Jansen, 2008). Since livestock is not fully 

excluded in the study area, its presence could have inhibited the growth of trees and therefore the SOC 

development after restoration. In order to investigate the potential effect of livestock presence, the 

development of the tree height and SOC stock was assessed for two separate datasets of livestock 

exclusion and inclusion. Curves of tree height and SOC stocks over the chronosequence were fitted 

according to the expected temporal relation of SOC (exponential) and tree height (logistic). These curves 

were again assessed on the goodness of fit, which could offer more insight in the potential effect of 

livestock. 
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2.4 Mechanistic model 

2.4.1 Model setup 
In order to understand and predict the spatial variability in SOC, a mechanistic model was set up (Fig. 2). 

This was done according to a method documented in recently published data (Hendriks, 2018). This 

method used well known relationships of 1) litter production (LP), 2) turnover rate (TR), 3) 

mineralization (MR) and 4) soil erosion (ER) with the SOM stock. Since the SOC stock is a good indicator 

of the SOM dynamics during the land use change process (Leifeld and Kögel, 2005), it was expected the 

same approach could be used. This approach relies on the assumption of an equilibrium state between 

the afore mentioned 4 processes influencing SOC stocks according to Equation 7: 

𝐿𝑃∗𝑇𝑅

𝑀𝑅+𝐸𝑅
= 0          Equation 7 

eventually coming up with the following Equation 8: 

𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 =
𝐿𝑃∗𝑇𝑅

𝑀𝑅+ 
𝐸𝑅

𝐵𝐷∗𝑆𝐷∗100,000

        Equation 8 

Where BD and SD equal bulk density (𝑔 𝑐𝑚−3) and soil depth (𝑐𝑚), respectively. As mentioned above, 

the 4 processes determining SOC are LP, TR, MR and ER. These processes were predicted using known 

physical relationships with environmental variables (Hendriks, 2018) represented in equations 9-12: 

𝐿𝑃 = 𝑘1 + (𝑘2 ∗ 𝑇ℎ)         Equation 9 

𝑇𝑅 =
1

3.09+2.7𝑒𝐶𝑙         Equation 10 

𝑀𝑅 = 𝑘3𝑒(𝑘4∗𝑆𝑚+𝑘4∗𝑇𝑒)        Equation 11 

𝐸𝑅 = 𝑘6 + (𝑘7 ∗ 𝑆) + (𝑘8 ∗ 𝑊𝑎)       Equation 12 

Where 𝑇ℎ, 𝐶𝑙, 𝑆𝑚, 𝑇𝑒, 𝑆 and 

𝑊𝑎 equal tree height, clay 

content, soil moisture, 

temperature, slope processes 

and water accumulation 

respectively. 

The k values (𝑘1-𝑘8) are 

constants that were optimized 

in the calibration process 

explained in section 2.4.2. 

The adjustments to the original 

mechanistic model of Hendriks 

(2018) can be found in the 

variables used for describing the 

processes. Previously no 

differences in clay content were 

found and a combination of Fig. 2 the structure of the mechanistic model approach for predicting SOC carbon 
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temperature and soil moisture in the calculations for the mineralization rate were absent. Moreover, 

previously only the slope had been taken into account for predicting the erosion rate, while it is known 

that more variables are influencing this rate (Ziadat and Taimeh, 2013). It was expected to find better 

prediction results by increasing complexity and therefore it was deemed important to describe 

processes realistically. 

2.4.2 Model calibration 
To determine which environmental proxy would be suitable to predict the variables in the equations 

described above, expected physical relationships formed the first basis. This means tree height was 

expected to follow the same trend as NDVI, clay content would be determined by parent material and 

water accumulation determined by relief. Additionally, the combined results of the PCA and correlation 

coefficients were used as a confirmation. The variables which did have a similar direction in the PCA 

were used interchangeably, whereas the largest correlation with SOC was also a determining factor for 

selecting the proxies to use to predict SOC.  

The R optim. base function was used to optimize the k-values in the model equations (Eq. 9:12) for the 

root mean square deviation (RMSD), which equals: 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝑆𝑂𝐶𝑜𝑏𝑠,𝑖 − 𝑆𝑂𝐶𝑝𝑟𝑒𝑑,𝑖)2𝑛

𝑖=1       Equation 13 

 

Where 𝑛 is the number of observations and 𝑆𝑂𝐶𝑜𝑏𝑠,𝑖 and 𝑆𝑂𝐶𝑝𝑟𝑒𝑑,𝑖 are both the observed (Equation 14) 

and predicted SOC stock (Equation 8) in sample number 𝑖, respectively. The observed SOC fraction 

(𝑓𝑆𝑂𝐶) first needed to be converted to SOC stocks. Since the stone fraction could not be accurately 

determined with the current sampling methods and only the first 10 cm was sampled, the calculation of 

𝑆𝑂𝐶𝑜𝑏𝑠 was done using a constant value for stone fraction (𝑆𝐹 = 33%) and bulk density (𝐵𝐷 =

1.53 𝑔/𝑐𝑚3) according to Equation 14: 

𝑆𝑂𝐶𝑜𝑏𝑠  = 𝑓𝑆𝑂𝐶 ∗ (𝑆𝐷 ∗ 𝐵𝐷 ∗ (1 − 𝑆𝐹))      Equation 14 

Where, soil depth (SD) in cm was applied up to 10 cm. 

The k values (𝑘1: 𝑘8) in equation 9:12 were calibrated by optimizing for the k values which generated the 

least RMSD when applied to the formulas together with the chosen environmental proxies.   

The calibration process resulted in a RMSD and a correlation coefficient between the predicted and the 

measured SOC values. These values were compared with a calibration run with the original set of proxies 

and the original results when setting up the model by Hendriks (2018). Moreover, the residuals or 

unexplained variance of the data, represented by the observed SOC stock, were subtracted from the 

difference of observed and modelled SOC stock. Following that the residuals were analyzed for its 

potential causes. These causes were expected to relate to assumptions made in the model regarding 

spatial uniformity. To test this hypothesis the relations with environmental variables that are known to 

not be accurately represented in the model, were assessed. 

2.4.3 Spatial mapping 
In order to extrapolate the SOC measurements from plot to catchment level the previously calibrated 

model needed to be applied to catchment scale. This spatial prediction was performed by applying 
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equation 8 to 12 to the two calibration runs: Hendriks original model and the current application. The 

input of the equations was the calibrated k-values and the set of environmental proxies (on catchment 

level instead of plot level). To generate a final SOC map for the Baviaanskloof catchment, the residuals 

of the calibrated model were interpolated using ordinary kriging (Elbasiouny et al., 2014) and added to 

the spatial model equation prediction. Hereby, negative SOC stock values were physically impossible and 

therefore set to 0. The standard error of the kriging prediction was visualized and used to assess the 

quality of the derived SOC maps. 

2.5 Comparison other maps/models 

2.5.1 Spatial 
The goal of the next applied method was to get more insight in the quality of the prediction of the SOC 

map and therefore the suitability of this mechanistic mapping method for monitoring current soil 

development as a result of ecological restoration. Moreover, the following methods did aim at getting 

more insight in the impact of choosing different environmental proxies. To achieve those goals, a 

comparison of the mechanistic model and chronosequence approach with other methods was required. 

Therefore, the generated SOC map was compared with a SOC map for the Baviaanskloof catchment 

which was derived with the same environmental proxies as originally designed by Hendriks (2018). 

2.5.2 Temporal run, Carbon Benefit Project and RothC 
In order to assess the suitability of the current chonosequence method for predicting the temporal 

development of SOC, but also to get more insight in its relationship with the established carbon models, 

a comparison between methods was required. Therefore, the temporal run of the mechanistic model 

was compared with two former methods: Carbon benefit project (Victoria et al., 2012)  – detailed 

assessment and RothC (Coleman and Jenkinson, 1995) for assessing carbon sequestration in soils as a 

result of land use change (Table 2). Since both methods grant an annual SOC sequestration value, they 

were compared with the slope of both the temporal mechanistic model run and the chronosequence 

restoration curve derived in section 2.3.2. This was done by calculating CO2e.year-1 into C.year-1 using 

the moll fraction CO2:C. 

The RothC and CBP calculations were performed on catchment scale, while the chronosequence was 

only derived on plot scale. Comparison required a setup of the carbon models such that the derived 

average catchment conditions would be similar to the ones observed at plot level. Both the CBP and 

RothC model provided the opportunity to put the chronosequence scenarios in a qualitative perspective. 

This was done by differing the magnitude of certain variables, such that SOC behavior can be mimicked 

and understood. 

The following sections describe the setup of the Carbon benefit project – detailed assessment (Table 2) 

and the RothC tool for ecological restoration case in the study area. 
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Carbon benefit project 

The carbon benefit project detailed assessment compares the baseline scenario (degraded) with the 

actual project scenario (restored) in terms of carbon sequestration according to the conceptual 

framework described by Victoria et al. (2012). These scenarios differ in the fractions of the different 

types of landuse (Table 2). For the Baviaanskloof area this would mean an increase of ‘Forestland’ and a 

decrease of “Severely degraded grassland”. Where the latter represents degraded area. The magnitude 

of these estimations was done according to field observations documented in section 3.1.2, but also 

according to local information as well as personal communication with restoration project leaders. Using 

the CBP detailed assessment tool a maximum and minimum project scenario was implemented. The 

maximum scenario would mimic what was measured on plot level by sampling close to trees which 

would be a success rate and tree cover of near 100%. The minimum scenario represents what was 

expected to happen on plot/catchment level, when assessing the average tree cover observed on plot 

level, which would be a 100% success rate.  

The carbon benefit project tool also required a selection of the vegetation type and status, which was 

selected to be mature dry tropical forest plantation. This vegetation is well representative for 

Spekboom, because similar to Spekboom, the tropical vegetation, has a strong potential to sequestrate 

carbon (Eleanor Milne, personal communication, Januari, 2019; Mills and Cowling, 2010). The fractions 

of grassland types (moderately degraded, heavily degraded and natural) were chosen according to 

Method Mechanistic 
model 

Carbon 
benefit 
project 

RothC Chronosequence 

Approach Semi-
emperical 

Conceptual Conceptual Observations 

Purpose Predicting 
measurements  

Land use 
change 

Crop 
management 

Temporal behavior 

Climate input P, Temp  None P,Temp None 

Texture input Clay fraction None Clay fraction None 

Grazing 
pressure input 

None Vegetation 
and Manure 

Manure None 

Vegetation 
parameter 

Empirical 
fitting 

Crop selection Decomposition 
parameter 

None 

Spatial 
component 

Spatial input Land use 
cover 
fractions 

None None 

Temporal 
component 

None Linear yearly Linear yearly Exponential daily 

Table 2 Overview of different methods applied in the research. These are compared using their purpose, input parameters and 
temporal/spatial components 



Page 18 
 

average measured land use fraction. Grass, bare soil and shrubs represent these grassland types, 

respectively. The cover of annual crops, perennial crops, agroforestry, wetlands and settlements were 

set to 0 ha since the existence of a ‘natural’ system is assumed. The livestock parameter could be 

changed to investigate the effect of livestock, where the implementation of the number and type of 

animals were based on personal communication with farmers. However, the model assumes livestock 

grazing is not affecting the implemented vegetation, since dry tropical forest species are too tall for 

being grazed by livestock. Consequently, this parameter was excluded from analysis. 

RothC 

Another method that was used for comparison is the RothC carbon model (Coleman and Jenkinson, 

1995). This model requires climatic data (maximum, minimum, annual mean precipitation and 

temperature), crop cover, crop sequester potential and clay content as input (Table 2). The former was 

provided using the available precipitation and temperature datasets. Crop cover was set to equal to the 

coverage of Spekboom at the comparison scale. In case of plot level, this meant crop cover was set close 

to 100%, since sampling was solely done in a range of 50 cm from the vegetation. In contrast, 

catchment/plotwide comparison needs a cover commonly found at the plots. Changing crop cover could 

be a powerful tool for mimicking the effect of livestock grazing, but its effect is absent in the RothC 

model. Crop sequester potential was set to equal tropical species, since its potential equals Spekboom 

potential (Mills and Cowling, 2010). Required clay fraction input was available from lab measurements 

as described in section 2.2.2. Other factors that could be changed in RothC such as residue and yield 

management, were not applicable to the management practices in the Baviaanskloof or any information 

about them was not available (manure input). 

3. Results and Discussion 

3.1 Data Collection 

3.1.1  Environmental Variables 
In total, 50 soil samples were taken from 50 

plots covering the study area. From these 50 

plots 4 had pristine conditions and 6 were non-

intervened. The remainder of the plots had 

been restored between the year of 2006 and 

2015, which resulted in an average value of 

years of restoration (YOR) for the samples of 

7.86 years (Table 3). 

A large range of topographic conditions was 

sampled. Slopes were ranging from 0 to 35 

degrees and elevation from 350 to 720 meters.  

The climatic conditions were variable with 

time, having a mean, maximum and minimum 

temperature of 12.5, 19.4 and 5.6 degrees 

over the year, respectively. Spatially, however, 

these temperatures did not show too much 

Table 3 Results of remote sensing and legacy data, including mean, 
standard deviation (st.dev) and the pearson correlation with year 
of restoration (YOR) 
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variation between plots (st.dev = 0.5 degrees). This invariability was caused by the coarse resolution of 

the temperature raster but is also related to the relatively small surface area of the study area 

compared of the climatic variations. The lack of spatial variability holds true as well ?? for mean yearly 

rainfall which only had a standard deviation of 23 mm derived from an average of 279.41 year-1 (Table 3) 

for the study area. 

3.1.2 Fieldwork 
The sampling plots varied in land cover (Table 4). On 

average, 50% of the surface area of the plots contained bare 

soil while only 25% was covered by trees. This tree cover 

value is positively correlating with YOR (cor.= 0.82), which 

also holds for the tree height at these plots (cor.= 0.89). 

The total surface stoniness, which consist of a sum of stone, 

boulder and rock fraction, covered a substantial fraction of 

the plots (mean = 42.88), which might be a possible 

indication of eroded conditions. 

In general, the soils were relatively stony (mean = 47%) as 

well. This high fraction of stones in the soil increased forced 

use of a sampling shovel instead of the regular sampling ring 

and therefore introduced errors in sampling. More 

importantly the larger stones made it hard to sample the first 10 cm accurately. The stone fraction might 

be overestimated due to these phenomena. Generally, due to the degraded past of the study sites, 

average soil depth was rather shallow (24.42 cm). Nevertheless, there was still a substantial fraction of 

clay left (mean=14.08).  

3.1.3 Lab Analysis  

The analysis of 50 soil samples resulted in an average SOC 

per plot of 1.49% (Table 5) which ranged from 0.5% for 

degraded to 5% for pristine conditions. These SOC values 

showed a strong correlation with YOR (cor. = 0.75), but also 

other soil quality indicators, like bulk density, pH, 

permeability are correlated with YOR. These correlation 

values with YOR, respectively -0.13, -0.35 and 0.63 were 

smaller than the value for SOC, which might indicate SOC 

being a better indicator for the successfulness of restoration 

monitoring. Total nutrients did also increase with time 

(cor.=0.45), most likely due to the increase of organic matter 

content. Nevertheless, some nutrients, such as phosphorus 

(cor.=-0.38) did decrease with time, which might be an 

indication of continuously ongoing erosion. The same might 

hold for clay fractions which were not higher for older plots 

(cor.=-0.18), while you might expect a stabilized 

Table 5 Results of the fieldwork campaign lab 
analyses including mean, standard deviation (st. dev) 
and the pearson correlation with year of restoration 
(YOR) 

Table 4 Results of the fieldwork campaign site 
description including mean, standard deviation 
(st.dev) and the pearson correlation with year of 
restoration (YOR) 
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concentration due to increased soil stabilization by vegetation. 

3.2 Relations between variables 

3.2.1 Assessing the relation between variables using PCA 
By extracting the principal component of the different variables described in section 2.1, relations 

between the collected environmental variables were found. Soil organic carbon was situated mainly in 

the first dimension (Dim1) of the Principal Component Analysis (PCA), which can be seen in Fig. 3. SOC 

was explaining most variation in this dimension, which was in its own case the most important 

dimension (31.1%) of the dataset. That is why SOC (appendix, Table A11 cor.= 0.81) can be seen as the 

most important variable explaining the variation in the total dataset, together with restoration days 

(cor.=0.86), tree height (cor.= 0.89), and permeability (cor.= 0.86). These three last variables, on their 

turn, were all not accurately determined and therefore their scale of contributions to the restoration 

process becomes doubtable.  

Dimension 1 also highly determines the transition from degraded to restoring to pristine in the graph. In 

this transition, most of the samples taken were more similar to being at the degraded site of the graph 

rather than the pristine corner, which tells us something about the current state of the system already. 

More specifically the magnitude of the environmental variables for the restoring plots showed more 

similarities to degraded plots rather than pristine plots, which indicates a tendency for the majority of 

Fig. 3 The Principal Component Analysis (PCA) of the most important environmental variables collected in describing the 
variability in the dataset. 
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the variables to be more degraded instead of pristine. In fact, at least 5 samples can be qualified for 

being still completely degraded, based on the PCA. 

What also became clear of the principal component analysis (Fig. 3) was the division of the soil forming 

factors in their scores on the different dimensions. Climatic variables (albedo, summer precipitation and 

solar radiation) were closely situated to each other in the second dimension. Whereas, for instance the 

variables related to parent material (rock age, clay and silt) were positioned lower in the second 

dimension. Because of the positions of the different soil forming factors on the PCA, also their 

contribution for explaining variation in soil organic carbon, and thus the total restoration process, were 

separately distinguished.  

For the purpose of predicting SOC, the most important variables were assessed based on their scores on 

Dim1. Restoration days, slope and NDVI-related variables were the most important variables in Dim1, 

whereas the temperature, silt fraction and solar radiation seemed to be less important in influencing 

SOC. In case the absolute PCA scores overlapped, the variables could be interchangeably used for 

predicting SOC. In case of the variables derived from the NDVI (LST, soil moisture and NDVI 2018) this 

overlap was to be predicted. In contrast, the tree height, permeability and restoration days were from 

other origin, but explained similar variability in the dataset. Nevertheless, the contribution of predictors 

in explaining SOC by using Dim1 of the PCA, should be interpret with caution. In fact, SOC is also 

represented in Dim3 (cor.= 0.19), Dim4 (cor. = -0.16) and Dim5 (cor.=0.19). Therefore, the PCA cannot 

offer a definitive answer on the most important drivers of SOC. As a consequence, the drivers should be 

individually related to SOC and carefully interpret. 

3.2.2 Temporal restoration curve 

 

Fig. 4 Development of organic carbon as a result of the chronosequence approach including horizontal uncertainty errors and 
multiple development scenarios 
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Years after restoration (YOR), which is from now on visualized as days after restoration, is considered 

one of the most important factors in the restoration process (Fig. 4). Time was heavily correlated 

(appendix, Table A11; cor.=0.75) to organic carbon development which is understandable concerning 

the restoration measurements. Also, the found positive exponential trend with time agreed with the 

understanding of a theoretically stronger organic carbon buildup due to SOC’s positive effect on soil 

functioning.  

As a result of the chronosequence approach applied here, multiple scenarios of organic carbon 

development have been distinguished (Fig. 4). Both scenarios showed a divergence from the mean with 

increasing restoration days, which is in line with the hypothesis of the possible occurrence of pathways. 

Both the exponential models connecting the points representing the scenarios contained a R-squared 

value of 0.74. This high predictability of the scenarios strengthens the observations of significant 

divergence. The divergence means the standard deviation of the points did increase with time, such that 

there was potentially a driver which caused a difference in slope which was not linear. The points can be 

considered very unpredictable in time, because the possible development of SOC in time varies 

substantially. Where at day 0 the SOC could range from 0 to 1% it could differ at day 7000 from 1%-7% 

using the established scenarios in Fig. 4. 

The creation of the chronosequence restoration curve could have some important uncertainties. Firstly, 

the placement of some points involved uncertainty on the x-axis, due to inaccurate monitoring of the 

date of restoration (YOR). This uncertainty is represented by the arrows in Fig. 4. Time of restoration 

was also important considering the initial climatic planting conditions, which potentially could be a 

factor influencing tree height success rate and finally development of SOC. The most important 

limitation regarding the approach of identifying the divergence is related to sample size. The limited 

measurements available created an uncertainty in determining the divergence or increased the standard 

deviation in sample points. The determination of divergence in the range from initial to restoring state 

was not affected by sampling size. In this range a lot of measurements defended the observations. In 

contrast, the measurements approaching the end of the chronosequence timescale, in particular 

pristine conditions, cannot be fully justified with only four measurements. Additionally, farms associated 

with heavy degradation due to livestock abundance are not sampled for a year of restoration before 

2013, which causes an absence of points associated with livestock presence. Another potential 

uncertainty involving the interpretation of the derived restoration curve is related to variables spatially 

affecting SOC. These can be significant in determining divergence and therefore the effect of single 

environmental variables on the development of SOC will be more thoroughly discussed in the following 

sections. 

3.2.3 Organisms 
The role of organisms or vegetation (tree height) in the development of soil functioning can be found in 

both dimension 1 (appendix, Table A10; cor. = 0.88) as well as dimension 2 (cor. = 0.13) of the PCA (Fig. 

3). The tree height is one of the most important variables in explaining SOC (appendix, Table A10; 

cor.=0.79). Tree height follows a logistic temporal trend (Fig. 5; 𝑅2.= 0.88) which is similar to the 

exponential trend SOC follows in time (Fig. 4).  

This determination of tree height as a driver of SOC might be partially affected by the high variability 

(Table 4; st.dev = 66) in the tree height of plots. More specifically ,this variability exceeds other 

environmental variables which leads to a less pronounced effect of uncertainty in its derivation and a 
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more significant relation with SOC. The results of tree height for the plots can be deemed less accurate 

due to the judgmental measurements of heights higher then 2m or inaccessible stems.  

Another restriction in the analysis of the tree height contribution to soil development is related to the 

overlap of tree height with YOR in the PCA, which means their variability over the plots is similar. 

Keeping in mind tree height generally increases with time as a result of tree growth, YOR is correlated 

with tree height. In case SOC and time also positively correlate as a result of an annual positive carbon 

balance, the tree growth correlation is to be higher due to this phenomenon then it would be in a 

condition with uniform YOR. Therefore, in general the contribution of tree height might be potentially 

overestimated. The same overestimation would be caused by SOC increasing fertility and water 

retention, such that it stimulates tree growth. The correlation coefficient includes the multiple effects 

and thus overestimates the single physical effect of tree height on SOC.  

The results of the chronosequence applied the NDVI values show an increase of NDVI with time (Fig. 5; 

𝑅2.=0.49). Therefore, the NDVI is correlated with tree height (appendix, Table A10; cor. = 0.62) and SOC 

(cor. = 0.51). However, it follows a different temporal trend when fitting a logistic model to the 

chronosequence timescale (Fig. 5). Therefore, an adjustment should be made when predicting tree 

height/litter input with NDVI. 

 

Fig. 5 Vegetation development after restoration, including the measured Tree height in cm and the NDVI-index derived from 
September 2018 for 0 to 7000 days after restoration 
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The NDVI timeseries derived from the time period of 2000 to 2018 for the 50 plots barely shows an 

increase in vegetation activity as a result of the restoration practices (Fig. 6). Instead, the yearly NDVI 

shows the same, slightly delayed timing of peaks, as the yearly average precipitation. The relation with 

NDVI and precipitation can also be seen back in the PCA (Fig. 3), where winter precipitation is explaining 

similar variance in the dataset as the NDVI parameters does. This implies the effect of precipitation on 

the NDVI is dominating the increase in NDVI due to tree growth, at least for most of the plots. Other 

possible causes of the weakly observed NDVI trend can be explained by a situation where the observed 

greenness of the vegetation does not change as a result of its growth. This situation could have been 

caused by livestock grazing decreasing the present observable leave area while unobservable roots and 

stems are unaffected. The lack of a clear trend in the NDVI as a result of ecological restoration makes it 

almost impossible to derive a prediction of the future NDVI and therefore tree height further in time. 

3.2.4 Relief 

The relief of the area is potentially an important factor in determining SOC due to its relationship with 

erosion. The effect of relief can well be seen in the PCA (Fig. 3), where slope explains both Dim1 

(appendix, Table A11; cor.=0.72) as well as Dim2 (cor.= 0.32). Opposite to the expectations of the effect 

of slope, a steeper slope is observed to have a positive effect on SOC (appendix, Table A10; cor.=0.50). 

This effect can be understood when looking at the topographic wetness index (TWI), which is similarly 

Fig. 6 The yearly mean NDVI timeseries, averaged for 50 plots including the yearly average precipitation. 
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describing the variability in the PCA, but oppositely directed. This implies that the effect of a lower slope 

contributing to the accumulation of water is far more important than a steeper slope causing instability. 

When also considering the role of stone fraction is this process, one can explain a situation in which the 

high stone fractions cause stabilization of SOC at steeper slopes is this region. At the accumulative 

positions there is both erosion of the top layer, but also deposition of carbonates causing higher pH 

(cor.=-0.19) at gentle slopes. Consequently, Duric horizons are formed, which are found at the most 

degraded plots in this region. Eventually the TWI and Slope can be used interchangeable due to their 

similarities in the PCA caused by their similar origin.   

The analysis of the contribution of slope in driving SOC development is limited due to the influence of 

slope on tree height. Spekboom is naturally growing on steep slopes causing a better establishment at 

these positions. Larger Spekboom height, as previously observed, means higher SOC stocks. Through this 

mechanism the slope is positively contributing to SOC concentrations, while it has not so much to do 

with its physical effects on erosion. Keeping in mind also the other interrelated variables previously 

described, it is hard to quantify accurately the contribution of slope to SOC development as a result of 

ecological restoration  

3.2.5 Climate 
The results showed climate factors (solar radiation, summer precipitation and heavy precipitation) are 

mostly explaining the second dimension of the PCA (Fig. 3), both negatively as positively. Albedo is 

closely related to these climatic parameters in its role of determining soil temperature. The land surface 

temperature (LST), in the contrary, is not situated close to those variables since it is a combination of the 

opposite effects of albedo and solar radiation on temperature. Due to this effect the LST becomes an 

important variable in describing dimension 1 (appendix, Table A11; cor.= -0.70) and therefore SOC 

(appendix, Table A10; cor.=0.59). 

Precipitation variables are mostly located at the negative axis of dimension 2 (Fig. 3). What is 

noteworthy is the difference between summer and winter precipitation in explaining variability in the 

timeseries. Winter precipitation is weakly explaining any variability, but is directed perpendicular to the 

vegetation variables, which relates to the previously shown effect on NDVI. The summer precipitation 

however is mainly contributing negatively to SOC (cor.=-0.16) as well as heavy precipitation (cor.=-0.25). 

Both are explaining erosional effects and have similar effects as the TWI on SOC. The interrelation 

between variables holds for climatic variables such as rainfall, soil moisture and temperature, which will 

be included in the model, but its variables not always showing such high correlations with SOC. With 

their effects on erosion and mineralization, respectively, climate variables impose a theoretical 

importance (Jenny, 1991), which cannot be ignored. 

3.2.6 Parent material 
Since there are 5 different types of parent material present in the study area, one would expect it causes 

differences in soil development. In the PCA this soil forming factor, represented as rock type, is just 

weakly represented in Dim1 (appendix, Table A11; cor.=0.05) and therefore mainly situated in the third 

dimension (cor. = 0.45). The weak contribution to the prediction of the variability of environmental 

parameters is most likely because of the categorical character of parent material as a variable. 

Nevertheless, when comparing the development of SOC as a result of ecological restoration between 

the different parent materials, the effect of parent material is visible.  
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Both the lines (Fig. 7) categorized by Shale and Quartizitic sandstone show higher average levels of SOC, 

while Quartizitic Sandstone and Conglomerate lines show faster buildup of SOC. These differences could 

either be caused by 1) random variability and uncertainty represented by low accuracy (low P-values). 2) 

the distribution of texture classes, where a higher clay content stabilizes organic carbon and sandy 

fractions stimulate the buildup 3) a possible gradient in grazing pressure caused by remotely positioned 

parent materials relative to the grazing areas 4) a difference in albedo and emissivity between parent 

materials causing differences in LST and therefore mineralization rates 5) higher stone fractions 

preventing heavy erosional events during extreme rainfall. 

The second hypothesis is supported by a significant difference (appendix, Fig. A14; P=0.02) in mean clay 

fraction of Shale and Feldspathic Sandstone (appendix, Table A11; 15.6%) compared to Alluvium, 

Conglomerate and Quartzitic Sandstone (13.0%). Where Quartzitic Sandstone in its case has a sand 

fraction of 76% (appendix, Fig. A15), which is almost significantly different (P=0.06) from other Parent 

materials containing on average 71% of sand. A high clay fraction could be beneficial in the stabilization 

of organic matter through aggregates (Six et al.,2004). Thereby, the influence of aggregates on soil 

functioning is known to be more prominent for Shale parent materials than for the quartzites (Barskale 

and Itani, 1989), where other parent materials in the area belong to. Stabilization of SOC and microbial 

communities in the aggregates during the degradation process could cause the starting point for these 

plots to be substantially higher in terms of microbial communities’ diversity and magnitude (Zhang et 

al.,2010) and therefore cause divergence in its development (Walker et al., 2010).  

Fig. 7 Development of organic carbon separated for the different parent materials including shale, conglomerate, feldspathic 
sandstone, alluvium and quartzitic sandstone. 
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The influence of texture can also be understood by the fact higher sand/lower clay fractions might be 

beneficial when looking to the main driver of turnover according to (Coleman and Jenkinson, 1995). 

Turnover is driven by the fraction of clay present, which negatively contributes to litter turnover in 

water limited systems (Rietkerk et al.,1997). Consequently, the observed faster increase of SOC in case 

of the Quartzitic sandstone parent material can be explained by a higher mean sand fraction. 

Both the two mechanisms in the parent materials are caused by physical properties, however, the effect 

is not necessarily evident when looking to the environmental variables available. Texture classes 

between parent materials differ heavily with a standard deviation of up to 30% (appendix, Table A13;), 

but also the contribution of aggregates is very much dependent on the genesis of the parent material 

(Harris, 2003), which is beyond the scope of research.  

3.2.7 Other 
The third hypothesis of parent material as driver of SOC is strengthened by looking at the effect of 

grazing on the development of organic carbon. Grazing does affect the tree height by reducing growth 

and keeping the height under the 70 cm length line, at least for the available observations (Fig. 8). The 

same negative effect of grazing is visible in the PCA where livestock has a negative contribution to Dim1 

(appendix, Table A11; cor.=-0.46) 

However, other observations seem to contradict the positive effect of livestock derived from the PCA. In 

fact, livestock grazing seems to have an average positive effect on SOC for the first 3000 days of soil 

development, as can be seen from the grey and black line in Fig. 8. The large diversity present, is not 

surprisingly, caused by differences in parent material. The lower points in the “livestock inclusive” graph 

do represent a parent material, which is very close to road and farmland, while the more remotely 

situated Shales and Quartzitic Sandstones are higher on the graph. These observations can sketch a 

situation where a somewhat lower grazing pressure does not cause the dieback of vegetation, but 

microbiological life to be stimulated due to the presence of livestock (Raiesi and Asadi, 2006). However, 

the contribution of microbial activity in relation to grazing pressure has not been measured and cannot 

be taken into account in the current prediction of SOC, nor the quantification of grazing pressure be 

compared to SOC measurements. 
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The contribution of drivers in this research can be summarized when looking to the points associated 

with the minimum scenario in section 3.2.2. In comparison with average statistics of plots, one can 

observe reduced tree height (appendix, Table A12; 40cm), gentle slopes (6 deg.), specific parent 

materials (Conglomerate, Feld. Sandstone and Alluvium) and low stone fractions (20%). Obviously, 

reduced vegetation activity has caused these plots to barely have developed compared to degraded 

plots. Plot 6 has inclusion(0), but extra accumulation, which could have caused extra degradation. Other 

plots were exposed to livestock grazing, which could have been the cause of the reduced tree growth. 

However, livestock grazing has not been observed as being dominant over environmental conditions 

(section 3.2), although a gradient in grazing pressure was associated with parent material locations. 

Assuming grazing pressure was dominant in the past, and physical conditions at water accumulative 

plots are less favorable, a new situation can be sketched. Thereby, the combination of both erosion and 

grazing pressure driving extreme degradation at these plots, have been leading to conditions 

characterized by Duric horizons and or absence of organic carbon and microbes. Restoration activities 

were not successful, at these plots, in introducing vegetation nor increasing carbon stocks due the 

alternative degraded conditions. This implies initial conditions tend to dominate at an early stage and 

therefore its drivers are important to consider.  

 

SO
C

 (
%

) 

Fig. 8 The development of tree height and SOC for days after restoration of 0 to 7000. This includes a separation of SOC 
and tree height by livestock presence and exclusion 
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3.3 Mechanistic model 

3.3.1 Model calibration 
In order to quantify the current soil development state, a prediction of the SOC stock was established 

using a mechanistic model. Based on the least RMSD generated by including multiple different proxies in 

the model runs, a set of proxies and constants has been chosen to relate to the observed SOC stocks 

(Table 6). The proxies that resulted in the lowest RMSD in the model, did confirm the observed scale of 

contribution of those proxies in describing the principal components. More specifically, variables were 

chosen which did show the highest correlation with SOC in the first dimension of the PCA. The exception 

is found in the prediction of temperature and soil moisture, which are based on the model results which 

are not most accurately done by using respectively the LST and soil moisture. Instead using respectively 

solar radiation multiplied by albedo, and summer precipitation to predict the mineralization rate, gave 

the best results regarding least RMSD (Table 6). Most probably because soil moisture and LST are a 

product of the NDVI and therefore its variability is already represented in the first equation of the 

model. Moreover, the tree height was predicted on catchment scale by fitting a regression model to the 

relation of tree height to NDVI (Table 6) 

 

The calibration of the model resulted in a RMSD of 2972 kg/ha, which is about 30% of the total SOC 

stock (Table 7). The model’s PCC was 0.82 when comparing observed and modelled SOC stock. On 

average the litter input was 1362 kg/ha, which is about 50% of pristine Spekboom yearly litter input 

(Mills and Cowling, 2010). In addition, the modelled mineralization rate of 0.01 corresponds to earlier 

findings (Hendriks, 2018). Compared to a model simulation with the original parameters of the 

mechanistic model, the newly developed model performed better in explaining the variance, but also 

showed smaller residuals (Table 7). That might be due to the fact the original model underestimated the 

erosion rate, because the slope was wrongly inversibility related to erosion in this model. This causes 

the tendency of the model to reject the erosion process. The new model performed better in explaining 

this and other processes, therefore showing similar magnitudes for process values as reported by 

Hendriks (2018) (Table 7). However, the relative RMSD (RMSD/SOC stock = 0.3) was much higher than 

originally reported for another study area (0.049), which is related to the large residuals generated by 

the current model. 

 

Process Proxy Hendriks 2018 This research 

Litter input Tree height NDVI ~ Tree height 

Turnover rate Clay (%) Rocktype ~ Clay (%) 

Mineralization rate Temperature Temperature ~ albedo*solar 
radiation, Soil moisture ~ 
summer rainfall 

Erosion Slope 𝑆𝑙𝑜𝑝𝑒−1, heavy rainfall 

Table 6 Overview of the implementation of proxies compared to two different model calibrations (Hendriks and the current 
research) 
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The largest residuals were found in the lowest and highest range of the modelled SOC stock values, 

where the plots with equilibrium conditions (pristine and degraded) are located (Fig. 9). This is normal 

when considering the general behavior of models in the upper and lower tail of the prediction. 

Nevertheless, this is not the only factor that possibly explains the observed residuals involved with the 

modelling methods. The unpredictability of the presence of livestock is also an important factor 

contributing to the residuals. In fact, plots without livestock exclusion showed larger residuals in their 

prediction (Table 8). This can be related to the effect of livestock presence on small scale biological soil 

processes, as explained in previous sections. These microbiological processes were not taken into 

account in the model. The other residuals can be partly be explained by microbiological processes 

related to the chronosequence scenarios explained in section 3.2.1. Additionally, the prediction of clay 

fraction per parent material introduced some uncertainties, since there was a significant standard 

Variable/process Value Hendriks 
Cantabria (Spain) 

Value Hendriks 
Baviaanskloof 

Value Koster 
Baviaanskloof 

RMSD/SOC stock 0.049 0.526 0.305 

Pearson correlations 0.44 0.64 0.82 

Average Balance (kg/ha) -821 -3.27 -3E-15 

Litter input (kg/ha) 18000 6556 1362 

Turnover rate (-) 0.16 0.16 0.16 

Mineralization rate (-) 0.015 0.05 0.01 

Erosion rate (%SOM) 0.7 4.5E-5 0.8 

Table 7 Results of the mechanist model calibrations, including comparison between the original Hendriks model, the 
Baviaanskloof Hendriks application and the current model (Koster) on the different processes and model statistics. 

Fig. 9 The prediction of SOCstock compared to the observed SOCstock. Livestock included, degraded and pristine plots are 
indicated. 
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deviation associated with this assumption and the texture classes did not follow a linear effect on SOC 

build up (section 3.2.6).  

Moreover, the limitations of the model regarding the stability of the system could have been a factor 

that influenced the model predictions. The model might have failed in explaining equilibrium conditions 

(degraded and pristine) due to the fact its parameters were applied to a dynamic system, while the 

original model was designed for steady state conditions. The observation of this limitation is 

strengthened by the observations of a decreasing relative error with time (appendix, Fig. A16). Most 

likely this occurs because equilibrium conditions were approaching proceeding with time. Another 

explanation for the decreasing relative error with time is the dependency of the temporal development 

on initial conditions, which were not taken into account in this research, but identified as important 

(section 3.2). This phenomenon also strengthens the hypothesis of alternative states, especially when 

looking at the location of the highest relative errors in the graph (appendix, Fig. A16), which corresponds 

to the points associated with degraded conditions in section 3.2. These degraded points were also the 

most important residuals of the chronosequence trendline (appendix, Fig. A16). 

Another explanation for the poor prediction is related to the NDVI. The index has been shown to be very 

variable in time, with no clear trend. Therefore, the choice of the time period for the NDVI calculation 

determines the magnitude of the constants in the calibration of the model. In fact, using the NDVI for 

future analysis of soil development with the same mechanistic method, requires a new relationship 

between NDVI and tree height, since the NDVI is very variable. Combining this sensitivity for the time 

period and the already described uncertainty in the NDVI tree height prediction (section 3.2.3), the 

prediction of tree height becomes highly uncertain.  

Not only the spatial distribution, but also the temporal variability was important for the derivation of the 

current soil development status. First of all, the temporal variability in rainfall was barely taken into 

account due to the fact only the time period of 2015 until 2016 was available for almost all stations. The 

difference of the average of these years with the all-time average has potentially caused a mis-

calibration. Moreover, not all Spekboom vegetation on the plots have been living in the same amount of 

years, while the same time period was used for all plots. Given the fact the most extreme situations 

might have an impact on the vegetation development, this approach might have been causing 

uncertainties since some extreme cases have possibly been excluded. Keeping in mind, the rainfall data 

was interpolated between stations of which each had its own unknown uncertainty, the derivation of 

rainfall statistics for the designated plots were limited in accuracy. This uncertainty cannot only be dealt 

with by looking only at the large-scale variability, since the large-scale variability in rainfall has also its 

uncertainties. 

The climate variables were also doubtful in their contribution to the processes included in the model. 

Due to the fact temperature influences mineralization, tree growth, litter decomposition and water 

availability (Hevia et al., 2013, Alvarez and Lavado,1998, Homann et al.,1995), its contribution as well as 

the contribution of precipitation was very much dependent on the individual case (Yang et al.,2008) 

(Hevia et al., 2013). This theoretical understanding of climatic variables having multidirectional effects is 

in line with the observation of a low correlation between climate variables and SOC (appendix, Table 

A10). An exception would be the relation with heavy rainfall and number of dry days, which are 

theoretically single directed (Jin et al.,2009).  
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Finally, the stone fraction, soil depth and bulk density were necessary to include in the model to convert 

SOC fractions to SOC stocks. However, these variables were not accurately established and therefore 

caused uncertainty in the SOC stock derivations. In case of the soil depth this means stocks were 

reduced where only 7 cm of soil was sampled, while this soil depth was not certain in the first place. The 

choice for 10 cm depth sampling has also its implications on the uncertainty related to below and 

upperground exchange. More specifically, the limited soil depth sampled did not cover the full SOC stock 

present, which is most likely exceeding beyond 10cm depth (Zhang and Hartemink, 2017). Consequently, 

the variability in below-upper ground exchange might be relatively large relative to the limited SOC 

stock sampled. 

3.3.2 SOM map and accuracy 
The generated SOC map shows SOC fractions between 0.2% and 5% (Fig. 10), which are similar to the 

range of sampling conditions. The spatial distribution of SOC is in line with the hypothesis that the 

natural areas contain the highest SOC fractions and are closer to pristine (Fig. 4). Moreover, one can see 

slight improvements in soil functioning compared to the majority of the area when looking to the area 

situated in between both natural areas. These slightly improved areas are known to be restored 

between 2005 and 2016 and are close to turning pristine in the future (Fig. 4). However, these higher 

SOC areas tend to follow drainage patterns, which might have caused higher NDVI and therefore higher 

SOC. Moreover, the small differences between the restored and other areas are not larger than the 

standard error of the prediction (Fig. 10) and therefore not certain.  

Another uncertainty in the derived maps can be related to the sampling method used. More specifically, 

the SOC map is based on SOC samples taken within the influential tree range. What is known however, 

is that the SOC outside of the tree range does not follow the same development (Mills and Cowling, 

2010). This means only using the current sampling sites for spatial mapping, creates an overestimation 

of the SOC content. This overestimation is barely present for degraded and pristine areas, since their 

assumed tree cover is close to 0% or 100%, respectively. 

When looking to the generated uncertainty of the maps, the standard error of the prediction ranges 

between 0.17% and 0.23% SOC (Fig. 10), which is an average relative standard error of about 30%. The 

largest standard error is found for the areas closer to the corners of the catchment, which is explained 

by the absence of measurements in those regions. Since the lowest SOC fractions are also situated in 

Fig. 10 left: predicted map of SOC for the Baviaanskloof catchment, right: standard error of the predicted map of the Baviaanskloof 
catchment. 

[Grab your reader’s attention with a great quote from the document or use this space to emphasize 
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those areas, the relative error could potentially exceed 100%, which makes the values highly uncertain, 

especially when looking to small scale spatial distribution in those corner areas. Consequently, the 

standard error it generates on the actual maps is acceptable in the absolute sense, but represents 

uncertainties associated with the SOC buildup of tens of years (section 3.2.2) 

For some of the uncertainty factors mentioned in the previous section, the small-scale variability is 

unknown, while the average values and large-scale distribution is rather well known due to the derived 

relationships and existing maps. Therefore, the derived maps of prediction and standard error of the 

model, on a large scale, can be justified regarding these uncertainty factors in the calibration of the 

model. However, the misfit caused by absence of an accurate representation of soil physical processes 

and livestock effects has the potential to significantly influence the large-scale spatial distribution of soil 

development. The reason for that can be found in the understanding of the causes for differences in 

these two factors, which source is found in both the parent material as well as a gradient in grazing 

pressure, which might not be randomly distributed. Therefore, there is a potential for a large-scale misfit 

in the soil development maps, both in the distribution of the prediction results, but also regarding the 

standard error distribution. 

3.4. Comparison 

3.4.1 Spatial 
When comparing the generated map of both mechanistic models with the resulting maps of SOC over 

the whole Baviaanskloof catchment, the differences are distinct. The order of magnitude in SOC values is 

similar (Fig. 11; 0.4%-6%).  

Fig. 11 topleft: generated SOC map with the Hendriks/Stoorvogel model, topright: generated uncertainty map with the Hendriks 
model, bottomleft: generated SOC map with the Koster model, bottomright: generated uncertainty map with the Koster model.. 
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The spatial distribution of SOC however includes distinct differences, which are related to the large 

residuals generated by both models shown in section 3.3.1. Moreover, the relation between slope and 

SOC is differently directed in both models, which also causes distinct spatial differences between both 

maps. The average standard error of the newly developed model (Fig. 11; ~0.25 SOC%) is substantially 

lower than the original (~0.70 SOC%), which sources from the difference in variograms (appendix, Fig. 

A17 and A18). This ultimately indicates a more accurate spatial prediction of the current model 

compared to the mechanistic model with the original set of proxies. 

3.4.2 Temporal 
Tool setup 

 Based on observations in section 2.2.2 

two carbon sequestration tools have been 

setup. Based on average land cover 

classes, both the baseline and 25% cover 

scenarios were established (Table 8). 

Where “pristine grasses” were assumed 

to represent the observed 14% shrubs in 

the tool, the 11% grasses were 

implemented as “moderately degraded”. 

“Severely degraded” corresponds with 

observed bare soil, whose fraction is equal 

to the remainder of the area. 

Tool comparison 

The carbon benefit project tool reports annual carbon sequestration between 436370 tons of 

CO2e.year-1 and 1694000 tons of CO2e.year-1. This equals an interval of 0.06-0.24 (%) SOC.year-1 (Fig. 2). 

When applying this to the previously constructed chronosequence one can find the point level SOC 

curves included in the range simulated by the GBP tool. This simulated range has an average relative 

error of the mean curve of more than 50%. This would be the relative error in a situation one does not 

have any knowledge about the tree cover or effects of grazing on the organic carbon development. 

Both the CBP and RothC 100% tree cover scenario show similarities with the maximum scenario in the 

chronosequence curve. This makes sense keeping in mind the maximum scenario. This scenario is 

expected to describe an almost full potential of Spekboom stimulating SOC development. This, in 

combination with the sampling design dedicated to represent full tree cover, aligns well with the 

simulated model scenarios, since these models were implemented to simulate full cover and are not 

limited by any factor. 

Table 8 Overview of the implemented land use cover scenarios using the 
Carbon Benefit Project (CBP) tool. 

Land cover Baseline CBP 
100% 
cover 

CBP 25% 
cover 

Forest (ha) 0 113946 28486 

Total grass (ha) 113946 0 85459 

Grass 
pristine/shrubs 

17100 0 17100 

grass moderately 
degraded/grass 

12540 0 12540 

grass severely 
degraded/bare soil 

84306 0 55819 



Page 35 
 

The 25% cover curve is similar to the minimum chronosequence scenario in the curve (Fig. 12), but 

slightly overestimated. This means, keeping in mind close to 100% tree cover is sampled, in that 

situation the Spekboom has only used less than 25% of its sequestration potential.  

Limitations 

The model scenarios differ from the chronosequence scenarios in their temporal behavior which is 

linear in contrast to the exponential behavior of the SOC chronosequence. Considering the theoretical 

framework, which explains a mechanism of a positive feedback involving the development of SOC 

(Suding et al.,2004), this assumption might be incorrect. This could potential mean an initial 

overestimation followed by an underestimation of the actual SOC buildup. However, the errors 

associated with this assumption do not seem to exceed 1% of SOC. 

Since sampling was biased in the sense that only surviving Spekboom was chosen to sample and the 

sampling was done right next to the tree, the maximum chronosequence scenario was not likely 

representable for the full study area. This is supported by fact this pathway is similar to the 100% tree 

cover scenarios simulated by RothC and CBP, which is not likely when looking at the actual coverage of 

25% on average for the sampling sites. The same holds for the minimum scenario which offers still an 

overestimation of the carbon sequestration by assuming 100% survival rate. The actual area wide 

sequestration is dependent on the lower remaining tree biomass, which is still unknown in magnitude. 

Tools 

The range of values generated by the established models corresponds with a tree cover difference of 

75%, while the chronosequence was constructed for a relatively constant tree cover scenario by 

sampling close to trees. The fact that the observed differences had to be mimicked by changing tree 

cover implies the most important drivers causing the variation in the actual development of carbon, are 

not taken into account in both models. An exception exists for the clay fraction included in RothC, but 

Fig. 12 The development of SOC between 0 and 7000 days after restoration. This includes the fitted curve in 
section 3.2.2, its associated scenarios, the CBP 100% and 25% scenarios and the same scenarios ran with the 
RothC carbon model. 
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the actual contribution of clay to SOC is very doubtable, given both the correlation with SOC and the 

graphic results in this research. The failure in explaining the variability in case of the carbon models 

implies there is no valid factor that can be changed in the model to mimic the range of temporal 

development, and therefore only an average be assumed.  

A corresponding average tree cover scenario both RothC and GBP would lie somewhere between 100% 

and 25% cover, given the graphs in section 3.4.2. In contrast, the actual coverage sampled is 100% since 

sampling is done at actual trees. The fact the carbon models need lower tree covers for mimicking 

observations represented by 100% scenarios implies a strong overestimation of the carbon 

sequestration by the established models. Moreover, to simulate the actual SOC values one needs to 

know the actual tree cover, which is very hard to establish. This is due to the lack of available indicators 

of tree cover (section 3.2.3) and the scarce knowledge on the success rate of establishment. Even if this 

success rate is known, a failure of growth does not necessarily mean that the soil is not affected. For 

instance, in this research a bunch of plots has been sampled where livestock has caused a hold to tree 

growth, but where there is an indication soil organic carbon has developed substantially. Such effects 

are not been taken into account in the models and make a difference between the maximum and 

minimum chronosequence sequestration scenario, which do differ in such magnitude that these 

differences can cause a mismatch between expected and actual circumstances using the available 

carbon models.  

4. General Discussion 

4.1 Environmental drivers 
SOC 

The first questions in this study sought to determine the most important drivers of soil development as a 

result of ecological restoration. The results indicate that SOC can be considered the most important 

indicator of soil development during ecological restoration. This finding is supported by SOC being the 

most important factor in deciding the degraded-pristine transition in the PCA (Fig. 3). Consequently, SOC 

is more important compared to other well-known indicators of ecological state transitions. 

Although this study has successfully applied SOC as indicator for soil development, its application has 

certain limitations that need to be discussed. Firstly, an inappropriate simplification of reality might have 

been assumed, because SOC as a single indicator is being assumed valid for the complex soil state. This 

assumption might not be appropriate since previous studies have considered multiple environmental 

indicators when assessing the soil development state. They did that in their successfully application of a 

soil health assessment strategy (Idowu et al., 2008; 2009). However, other studies contradict by noting 

that the timescale considered is more important for deciding the best indicator of soil development 

(Carpenter and Turner, 2000), because response times of the diverse indicators of soil development are 

different. Applying this response time theory to the current observations, teaches us that the decadal 

scale that applies here allows SOC changes to be accurately visible. This ultimately implies that the 

current study assumptions of organic carbon as an appropriate soil development indicator are most 

likely justifiable and therefore do agree with the conclusions of Constantini et al. (2016) and Muñoz‐

Rojas et al. (2016).  
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A second limitation of the use of SOC as indicator for soil development arises from the use of total SOC 

instead of different SOC fractions. The current analysis of total SOC cannot detect changes in SOC 

composition, while these changes can have implications for soil development (Constantini et al., 2016). 

In fact, differences in SOC composition can be present in this region, since it is known that the SOC 

composition is sensitive to the occurred soil degradation (Franzluebbers, 2002). This would imply that 

some important changes in soil development, might not have been detected by the analysis of total 

SOC. However, the impact is expected to be minor, since the majority of samples is situated in the same 

state of degradation (Fig. 3) and therefore expected to show a stable SOC composition. Although SOC 

has concluded to be an appropriate indicator of soil development, it is considered to be multidisciplinary 

and thus complex in its behavior. Therefore, understanding the behavior of the system regarding 

environmental drivers requires a focus on the drivers involving the individual soil forming factors, which 

are considered less complex in their effects on the soil state. 

Tree height 

Vegetation height is representing the organisms in the development of soils and is an important factor 

during soil development as a result of ecological restoration. The results have shown that it correlated 

better to SOC (R2=0.88) compared to other environmental factors. This observed importance of tree 

height in deciding soil functioning agrees with the theoretical framework described by Suding et al. 

(2004), where it is raised as the main source of organic carbon input via litter. Also, Andel and Grootjans 

(2005) stated the vegetation is essential in increasing soil stability, litter input and microbial activity and 

thus important for increasing SOC. Not only vegetation is known to be important for building up SOC, 

but also the other way around, SOC is an essential factor promoting tree height growth by increasing 

nutrient and water availability (Suding et al, 2016). Due to this mutual dependence between SOC and 

tree height, their correlation between has turned out to be relatively large (R2 = 0.88) compared to other 

drivers. The observed strong correlation increases the indication vegetation should be considered as a 

simplified indicator of the effectiveness of restoration, such as SOC, instead of the main driver of its 

success (Bullock et al., 2011, Chen et al., 2007). Since vegetation cannot be defined as the main driver, 

other factors should be considered. 

Other drivers 

Interestingly, parent material is a driver which has a considerable effect on SOC development. This study 

showed parent material be the factor mainly determining the temporal divergence of SOC development 

(Fig. 7). This has been theoretically explained in section 3.4 by relating parent material to soil traits such 

as aggregate type and magnitude (Barskale and Itani,1989), texture class distribution and stoniness. 

When linking these soil traits with well-known SOC drivers such as microbiology (Zhang et al.,2010), 

litter turnover (Rietkerk et al.,1997) (Chen et al., 2016) and erosion, respectively, parent material can be 

related to SOC development. In reviewing the literature, no data was found associating parent material 

to drive the development of soils during ecological restoration. This absence might have been caused by 

the weak understanding of the role of microbes in restoration ecology (Singh and Gupta, 2018, Zhang et 

al.,2016) associated with parent material. Another possible explanation can be the lack of an observed 

significant effect of parent material on SOC. These observations might lack because the generally high 

variance in texture classes per parent material (section 3.2.6) are causing the non-linear effect of texture 

differences on SOC (Rietkerk et al.,1997, Chen et al., 2016) to be hard to trace back to parent material. 

Despite, the absence of the relation between parent material and SOC in literature, this study indicates 
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that parent material may be directly associated to SOC and therefore counts as an essential driver in the 

development of soil as a result of ecological restoration  

Limitations 

The analysis of the most important driver of soil development involved some uncertainties. Many of the 

analyzed drivers did have both a positive as well as a negative effect on processes influencing SOC. 

Moreover, they have potentially influenced other drivers as well. This phenomenon could have lowered 

the significance of correlations between drivers and SOC, made the correlation absent or made it 

different in direction. The first relationship affected by the described phenomenon is those of slope and 

SOC. Slope behaved counterintuitively by stimulating SOC, instead of decreasing it. This behavior, which 

has been identified in other areas before (Zhang and Dong, 2010, Jian-Bing et al., 2006) most likely 

occurred in this region due to correlation of slope with vegetation dynamics and water accumulation. 

Due to the counterintuitive behavior of slope, the theoretically large importance of slope processes for 

erosion and therefore SOC in this region (Van Luijck et al., 2013), can hardly be confirmed with practical 

evidence. The second hard to establish relation was related to the climatic variables in this study 

(section 3.2.5). These variables were hardly correlating with SOC but are known to be important for soil 

functioning (Hevia et al., 2003). An underestimation of the importance of climatic drivers for SOC 

development might have occurred. The last example refers to the effect of grazing pressure on SOC 

development, which was observed to be weakly positive. Although some positive influences of grazing 

pressure on SOC are reported (Skarpe, 2000, Raiesi and Asadi,2006), grazing of livestock is considered to  

decrease SOC, because it causes a hampering in vegetation growth. Therefore, grazing theoretically 

largely reduces litter input of leaves and ultimately SOC development. The described uncertainties 

caused by the complex effect of variables are worsened by the limited sampling size. Limited sampling 

size namely, causes a higher relative impact of small effects of a different environmental variable on the 

overall relationship between SOC and the analyzed variable. This is also the reason that the relations 

between different parent materials and SOC could not be significantly proven, while the importance of 

parent material is substantial in this study.  

The final uncertainty in establishing the main drivers of SOC development after ecological restoration is 

related to the complex system faced. The results of Fig. 4 and the indications of SOC’s dependency on 

initial conditions (section 3.2.2), helps to indicate that past conditions are still influencing the current 

soil status and thus SOC values. This agrees with the findings of Anand (2004), which describe the 

process of ecological restoration by applying the complex system theory. This theory is thoroughly 

described by Runge et al. (2015). Analyzing this theory for the current case means initial conditions of 

SOC drivers do have a profound effect on the currently measured SOC values. More specifically, legacy 

of SOC itself, rainfall, but also texture class might still have their impact on the current SOC values. This 

means that the current SOC values are also influenced by remnant values of drivers, while the current 

values of drivers might be very different. This complex system behavior causes the suggested 

importance based on the correlation of drivers with SOC to be different than their actual physical 

importance. Ultimately the complex system behavior hardens the identification of the main drivers of 

SOC, which causes stable parameters in the temporal domain, like parent material, to be easier 

identifiable and therefore potentially overestimated in importance. 
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4.2 Current soil development state 
With respect to the second research question, it was possible to find the current soil development state 

in the region, indicated by the current SOC value. The mechanistic model applied to predict the SOC 

content observed in soils was successful (cor. = 0.82) in explaining the overall variance of the samples 

taken. Consequently, this method turned out to be successful in quantifying large-scale differences in 

SOC (Fig. 10) associated with the applied management practices. The current soil development state was 

derived by situating the current SOC content in the derived SOC development curves and asses its 

horizontal proximity to the pristine areas in the figure (Fig. 7). By generating a 30x30 m resolution SOC 

map of the Baviaanskloof catchment, this method offered a noteworthy improvement compared 

current SOC maps generated by (Minasny et al., 2017, Arrouays et al.,2017). In contrast to the current 

method, these maps only provided single ranges (0-5%) of SOC for the full study area. As a result, the 

current method significantly improved the overview of soil development state in this region. Moreover, 

the fact all soil forming factors are included in the applied prediction of SOC observations indicates the 

mechanistic model involves a multidisciplinary approach. This multidisciplinary in combination with cost-

effective SOC mapping, has not been applied before to cases of ecological restoration. Therefore, this 

method improves, for instance, the locally applied carbon benefit project approach tools, which lack 

multidisciplinary by neglecting soil erosion and parent material as input (GEF, 2010). These are soil 

physical factors, this study and other studies highlight (Van Luijk et al.,2013), as being highly important 

for spatial differences in SOC.  

Despite the ability to predict most of the variability in the SOC observations, the current model performs 

less compared to other mechanistic models. In fact, the current model captured significantly less 

variance compared to the original setup of Hendriks (2018). Firstly, this can be explained by the current 

methodological assumption of steady-state conditions. This assumption might not have been 

appropriate for predicting SOC in a non-equilibrium case associated with ecological restoration (Choi, 

2004). While this assumption is frequently applied in other cases (Karhu et al. 2012, Ortiz et al. 2013), 

also Wu et al. (2015) observed a poor prediction of a well-established mechanistic model applied to 

restoration cases. However, the assessment of the impact of the equilibrium assumption to a dynamical 

complex system, as described before, requires environmental legacy data (Anand, 2004), which was not 

available in this study.  

The second reason for the lower explained variance is the poor contribution of the NDVI to the spatial 

distribution of SOC. While this variable explained SOC variation in some other study areas well (Abu-

hashim et al.,2016, Wang et al., 2018), its contribution has been questioned in this and other studies 

(Peng et al., 2015). This research explains the possible poor contribution of NDVI to SOC dynamics and 

therefore overall monitoring of ecological restoration. This explanation is related to the observed 

influence of rainfall variability and legacy on the temporal variability in the NDVI (Davenport and 

Nicholson, 1993). Since, the variability in rainfall does not necessarily follow the same trend as the tree 

height variability, the prediction of tree height by NDVI is disturbed in the current situation, especially 

for a combination of water limiting areas and a particular vegetation type (Davenport and Nicholson, 

1993). Spekboom is one of the vegetation types (Harris et al., 2018) due to its smaller leave area, which 

in combination with a water scarce environment, offers a poor example of the assessment of the 

vegetation development trend with the NDVI. 

https://link-springer-com.ezproxy.library.wur.nl/article/10.1007/s10980-014-0110-3#CR20
https://link-springer-com.ezproxy.library.wur.nl/article/10.1007/s10980-014-0110-3#CR25
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The prediction of the soil development state with SOC, has also been very much limited to sampling 

design in this research. Firstly, the design is not fully representative for the spatial distribution of SOC on 

plot level. This is due to the decision that samples were going to be taken close to trees, which is made 

because this research aimed at detecting a significant change of SOC as a result of Spekboom planting. 

However, sampling close to tree implies SOC at other land covers types are neglected, while differences 

in SOC between land cover types are present due to limited change in SOC outside the influential zone 

of Spekboom (Mills and Cowling, 2010). Ultimately, the current sampling design causes the generated 

SOC maps to be relatively unrepresentative for the actual soil development state in the area, although 

spatial differences are minimally affected by the described limitations. Secondly, sampling size, 

compared to the mechanistic approach of Hendriks (2018), has been a major issue regarding the 

uncertainty and validation of the derived SOC map. Thereby, there was a suboptimal spatial coverage of 

samples due to the availability of only 50 samples for covering the full catchment. Moreover, there was 

limited possibility to compare the current approach with regular kriging techniques, which require a 

higher spatial coverage of samples to be performed optimally (Hughes and Lettenmaier,1981). Because 

of the lack of comparison, the applied mapping technique cannot be fully validated, besides assessing 

the model calibration on its possible limitations. Nevertheless, the limitations caused by sampling design 

can only be regarded limiting for the accuracy and representativeness of the SOC map. It is not limiting 

for achieving the actual goal of determining the suitability of the proposed methods for identifying the 

soil development state. In fact, it was very much possible to create a map using the mechanistic 

approach for quantifying the development state and thus the current success of ecological restoration. 

4.3 Temporal development 
Chronosequence 

The following section discusses the possibility of predicting the temporal behavior of the soil 

development state after restoration has been taking place, using the chronosequence time period. The 

findings have shown that the SOC chronosequence, which is established at the short-term timescale of 

the observations (Fig. 7) showed an exponential increase in SOC with time, which is well predictable 

(R2=0.58). Further analysis showed that the maximum and minimum scenario curves diverged from the 

overall mean curve proceeding over time. Where the majority of plots including the maximum scenario 

could be associated to “restoring conditions”, the minimum scenario showed some alternative 

“degraded conditions”. At these plots belonging to the minimum scenario, Spekboom planting did not 

result in any change in SOC nor other important environmental parameters (Fig. 3), in contrast to other 

restored plots.  

The observations of divergence in results of chronosequences are not new to scientists (Walker et al., 

2010). Yet, divergence has never been associated with SOC chronosequences associated with land use 

changes. In this study, divergence is related to the occurrence of alternative states in restoration 

ecology. On this topic, literature suggests the likely occurrence of such states in restoration ecology 

(Bestelmeyer, 2006, Suding et al., 2004, Scheffer et al, 2001), but scientists have not yet been able to 

prove its occurrence using actual timeseries or chronosequences. They suggest that an alternative 

degraded state, as observed and associated here with the lower chronosequence scenario, occurs when 

the system, earlier on, has tipped from a “restoring state” to a “degraded state” (Bestelmeyer, 2006). 

Grazing pressure, erosion, but also drought (Vetter, 2009) and extreme rainfall (Ahmed, 2017) can be 

drivers which reduce the resilience of the system and could have triggered such tipping points in the 
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current region. The degraded plots agree with having such conditions associated with heavy grazing 

pressure, high rainfall accumulation and low physical protection to erosion. The degraded state is hard 

to overcome by planting vegetation (Bestelmeyer, 2006, Suding et al., 2004, Scheffer et al, 2001) and 

therefore no increased SOC detected.  

The occurrence of divergence and alternative states makes the currently derived chronosequence less 

suitable for predicting the behavior of SOC after restoration. As an addition, this prediction involves 

other uncertainties. These mainly arise from spatial variability in environmental factors. Their influence 

on the observed SOC fractions hardens the ability of getting a clear indication of divergence and possible 

alternative states. Therefore, in combination with a limited sample size, the points which could be 

clearly qualified for alternative conditions, were limited. Consequently, limited amount of available 

points causes it to be hard to statically prove the existence of a different temporal response of the soil 

state to ecological restoration. The uncertainty on the actual response ultimately leads to an uncertainty 

in the prediction of the development path of SOC. Thus, although alternative states could be associated 

and theoretically strengthened, they should be interpreted with caution. 

Future development 

The previous section focused on the chronosequence curve and the predictability of SOC after 

restoration up to the chronosequence timescale. To predict future conditions, the findings in this study 

should be extrapolated over time. These findings have shown that the oldest samples are close to 

pristine in terms of SOC values. This indicates the majority of plots are close to turning pristine in the 

future. This would agree with the hypothesis of Mills and Cowling, (2010) which explains 17 years of 

restoration is needed to approach pristine conditions in this ecological region, associated with 

Spekboom development. 

To come to the described findings some uncertainties were involved. These uncertainties are related to 

the extrapolation of the chronosequence. The extrapolation was needed since this study did not collect 

any data about the development of SOC after 12 years (Fig. 7). Extrapolation can be very uncertain in 

case of non-linear behavior. A tipping point from restoring to pristine, associated with the period after 

12 years in this research, would contribute to this non-linearity and has been established before 

(Scheffer et al., 2001). However, other research contradicts by stating the transition from restoring to 

pristine conditions lacks any additional threshold associated with tipping point behavior (Suding et al, 

2006). Moreover, the same behavior is assumed before in the implementation of temporal behavior in 

organic carbon models (Coleman and Jenkinson, 1995). The extrapolation of the chronosequence 

becomes more uncertain when considering the impact of the observed divergence (Fig. 7) for future 

predictions of SOC. Keeping this in mind, the extrapolation of the chronosequence would create 

uncertainties associated with decades of carbon build up. However, this current study offered some 

potential factors influencing the divergence, which, in combination with the assumed absence of 

additional tipping points, allows decent predictability associated with future extrapolation of the 

chronosequence. 

In order to offer any alternative approach for predicting future development of SOC, this study was very 

much limited to the application of methods which were unsuitable for this purpose. First, the findings 

show that the mechanistic approach could not be temporally extrapolated. This is caused by the fact the 

NDVI could not accurately predict tree height development, which is the main external factor influencing 

SOC in the temporal domain. Another failure of this model for the purpose of predicting temporal 
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development is related to the fact the mechanistic model includes large residuals associated with the 

prediction of SOC observations, these residuals would only increase by temporally extrapolating the 

approach. Finally, the results show that the known carbon models for predicting carbon sequestration, 

do not capture the SOC dynamics well  (Fig. 12). This is due to assumption of linear behavior, a lack of 

the implementations of important drivers and a general overestimation of SOC development. Given the 

fact these models also heavily depend on the correct implementations of land cover fractions, the 

known carbon models are deemed unsuitable for predicting the future SOC stock development. This 

contributes to the overall conclusion that the future conditions could not be accurately established, 

which makes it difficult to determine when pristine conditions might be reached, associated with a 

potential different state (Suding et al., 2004). Due to the necessity of chronosequence extrapolation and 

the lack of a better alternative, it is still uncertain how the current system is developing towards a future 

pristine condition.  

4.4 Future perspective/recommendations 

4.4.1 Restoration practices 
The conclusions of this study regarding the main drivers of soil development as a result of ecological 

restoration do have important consequences for the future perspective of restoration practices. This 

study concluded parent material and livestock to be two important underestimated drivers. There 

influences on other environmental traits, such as aggregates and microbial activity, can potentially 

decide the ultimate faith of soil development state after ecological restoration. However, parent 

material and livestock presence are associated with some uncertainties due to spatial variation. 

Therefore, it is deemed important to overcome uncertainties regarding the contribution of these drivers 

first, before concluding on their consequences. To do this, purposeful sampling is recommended as a 

tool to determine the contribution of environmental drivers in influencing the effect of ecological 

restoration on soil functioning. This sampling design means areas should be assessed on soil 

development status by comparing plots with different magnitude of the driver desired to investigate, 

but a similar magnitude of other important environmental parameters. Preferably the same plots are 

repeatedly sampled over time, such that, multiple restoration curves can be made differing in the 

magnitude of the investigated driver. Only then an accurate determination of the impact of the drivers 

can be assessed and consequently be applied into the practice of ecological restoration. 

The conclusions related to the temporal behavior of soil development after ecological restoration has 

implications for restoration practices, as well. This study indicated the occurrence of multiple SOC 

development scenarios, of which one was characterized by a lack of vegetation growth and SOC 

development (degraded state). The presence of such a degraded system state implies that applying 

ecological restoration might not be beneficial in returning ecosystem services in these areas 

(Bestelmeyer, 2006). This knowledge has implications for the future perspective of ecological restoration 

which is very much aimed to return ecosystem services, which benefits from a large success rate of 

vegetation introduction. These success rates of vegetation planting are currently low, both in the 

Baviaankloof as well as other areas around the world (Cao et al., 2011). Consequently, in most parts of 

the study area, ecological restoration has failed in improving soil functioning, despite the promising SOC 

development showed in this research in case of the successful sites. To improve success rates the 

restoration of vegetation in a new area should be carefully planned. Thereby, one should take into 

account the most important drivers determining the possible occurrence of restoration failure. These 

drivers have been poorly understood in the past in semi-arid areas (Bullock et al., 2011) but are 
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indicated in this study. Eventually this may imply that applying ecosystem restoration, in terms of 

natural development, might not turn out to be beneficial in areas where initial soil conditions are 

negatively deciding the ultimate success of vegetation establishment. This means initial conditions, in 

terms of main drivers, should be improved first, as is done more frequently nowadays by applying for 

example sedimentation traps (Thomaz and Luiz, 2012). Another possibility is applying restoration only to 

areas where its benefits are optimal (Marrs et al., 2000), which corresponds with finding optimal 

conditions in terms of soil development drivers. 

4.4.2 Monitoring 
The application of the current methods for predicting the soil development state in the Baviaanskloof 

catchment involves high potential for monitoring purposes. SOC turned out to be an appropriate 

indicator of soil functioning. Combined with the fact this study was successful in identifying the current 

soil development state by applying the mechanistic model, the findings involve high potential for 

monitoring the successfulness of ecological restoration practices. Especially because the approach is 

cost-effective and addresses multiple disciplines associated with soil development due to the usage of 

SOC as indicator of soil functioning. Such a combination of cost-effectiveness and multidisciplinary has 

only been scarcely applied for monitoring restoration practices. Moreover, it highly improves the 

currently applied models, which exclude such processes. Therefore, those models fail on the temporal 

domain of SOC development, which also means they would be unsuccessful in quantifying spatial 

development. In contrast, the mechanistic approach is more reliable. 

Despite the effectiveness of this method for quantifying the SOC development in case of successful 

restoration, unsuccessful restoration was harder to quantify. The importance of identifying the 

unsuccessful situations becomes important when keeping in mind that by far the most vegetation 

planted does not establish due to unfavorable initial conditions. Where previously the NDVI was the 

prime indicator of the effectiveness of ecological restoration, in this study it turned out to have trouble 

capturing the spatial variation in vegetation activity and soil development. The failure of the NDVI for 

this purpose implies that the current method could not reliably give a full overview of the success of the 

restoration efforts, next to the fact initial conditions could hardly be predicted with the mechanistic 

model. Therefore, policy makers should reconsider using indices such as the NDVI in areas where they 

might not be appropriate. To determine the possible suitability of the index, the vegetation type and 

climate zone have been indicated important. To accurately establish an overview of suitable cases and 

to perform consultancy on third parties in the application of the NDVI, more research on various cases is 

needed. 

The future perspectives for the application of the current mechanic model approach to monitoring are 

dependent on the improvements of limitations. These limitations up to now prevent accurate 

determination of the development state. The already discussed poor contribution of the NDVI should be 

improved by selecting a proper vegetation indicator instead. A good cost-effective alternative might be 

the RS-derived CASA netto primary production (NPP), which incorporates climate and land use cover 

next to the NDVI  (Potter et al., 1993). Subsequently the vegetation indicator can be used as input for 

soil development models, as is successfully being applied by Feng et al. (2013). Finding a proper 

indicator for vegetation is a first step for improving the current soil development assessment and 

therefore the monitoring strategy. A next step can be found in applying a sampling design which has an 

optimized sampling distribution for accurate spatial coverage, which potentially hugely increase the 

performance of the model as can be seen from Hendriks (2018). Moreover, sampling design should be 
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adjusted to the goals to be achieved. Thereby, current study focused on establishing the relation with 

soil and vegetation and therefore sampled at trees. In case of monitoring however, full spatial coverage 

should be sampled, unrelated to tree cover locations. The same holds for sampling depth, which should 

be adapted to aim at capturing the full desired physical influence of land use change (Zhang and 

Hartemink, 2017), instead of selecting sampling depth based on available equipment or convenience. 

The last, more advanced step is finding a solution for applying a more appropriate dynamical model 

instead of the current steady-state mechanistic model to a non-equilibrium case. This would increase 

complexity but might be an important to improve prediction of SOC, mainly related to the effect of 

initial conditions on the current SOC present.  

Finally, one can discuss the applicability of mechanistic models to other restoration cases. More 

specifically, since the relationships are optimized and therefore not applicable to other cases, the 

application of this model needs baseline measurements, which might cause other sampling methods to 

be more effective regarding financial constraints. Nevertheless, despite the limited sampling size and 

input parameters the mechanistic model approach can accomplish an indication of the current soil 

development state. Therefore, it is recommended very useful for monitoring purpose, given the 

recommendations are followed 

4.4.3 Temporal SOC modelling 
The analyses on the temporal development of SOC in the restoration curve have profound implications 

for future modelling of SOC development as a result of ecological restoration. This study has identified 

multiple scenarios and system states, which have only scarcely been found before in restoring 

ecosystems. This is the case because identifying them is widely beyond scope of most research (Suding 

et el.,2004). However, identifying the possible system states is considered highly important. In fact, 

research on restoration ecology has acknowledged that the response of the complex ecological system 

(Anand, 2004) to land use change is important for the understanding for further recommendations on 

restoration ecology (Suding et al., 2016). For the current situation this means the results obtained by 

applying the chronosequence might have the granted policy makers involved, a better indication of the 

potential soil development of plots exposed to ecological restoration. Thereby, the possible time it takes 

to approach pristine conditions has been identified. 

Another implication for modelling scenarios relates to the results of the comparison between the 

chronosequence scenarios and the already known carbon models. This comparison offered an important 

realization about the suitability of those models. This includes that the carbon models were found to be 

unsuitable for quantifying the temporal development of SOC. Therefore, at catchment scale, the carbon 

sequestration assessment they pursue involves a considerable uncertainty. This has large implications 

for the current application of such models. More specifically it implies that these models are only usable 

for larger national scale assessments of carbon sequestration. Thereby large caution should be taken 

when implementing land cover fractions and vegetation type into these models, which are most often 

very uncertain, while potentially highly influencing the outcomes. 

to improve the future perspective of soil carbon predictions, the vast limitations of both carbon models 

and the methods in this study, should be overcome. A method, which would overcome the temporal 

limitations described, requires to obtain repeated measurement of SOC over time. These should be 

conducted on plots differing in environmental conditions associated with the occurrence of alternative 

states such as suggested by Alday and Marrs (2010). However, Alday and Marrss (2010) focuses on 
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ecological state variables, which have not been proved to be the ultimate indicators of soil system 

development. Instead focusing on the main drivers of soil development as described in this study, is 

highly recommended.   

Another option to overcome limitations would be creating a new chronosequence with an increased 

number of samples. Preferably samples with a longer restoration time should be included as well. This 

new approach would allow a significant differentiation between the development scenarios and a more 

accurate prediction of future scenarios. However, the initial conditions, mainly related to aggregates, 

livestock grazing, and most likely microbial biomass, have been identified as being potentially highly 

important for causing divergence (Walker et al., 2010). Consequently, these Initial conditions should be 

considered as well, when constructing a chronosequence for temporal SOC prediction. Thereby, either 

the collection of knowledge to predict those conditions or taking few repeated measurements is 

recommended. This contributes to the accurate establishment of the possible temporal development 

scenarios of SOC as a result of ecological restoration. 

Despite the large uncertainties associated with the establishment of scenarios, the current research 

raises awareness for the possible scenarios soil development may imply. In relation with the current 

established models for carbon sequestration assessments, it shows these models bear uncertainties 

which are hard to overcome, especially on the current spatial scale. Therefore, reports on carbon 

sequestration are highly dependent on scenarios followed and on success rates which are not always 

possible to obtain. Based on this, the mismatch between modelled and observed soil development 

conditions have not yet been overcome and should be addressed in order to increase global success 

rates of ecological restoration and to gain insight in the global potential of these practices. 

5. Conclusion 
Understanding the process of soil development after ecological restoration is deemed important for 

management decisions and the global potential of carbon sequestration. The suitability of SOC to 

monitor soil development is shown to be appropriate, while other indicators like the NDVI tend to fail 

for this purpose. Tree height is the main driver of SOC in this study area, but its establishment and 

development are strongly influenced by initial conditions. The influence of initial conditions was related 

to parent material type as well as susceptibly livestock presence and erosional processes. The effect of 

those drivers on the success rate of vegetation establishment and development raises awareness these 

drivers should be included in management decisions regarding ecological restoration, especially in semi-

arid areas. 

Monitoring requires a cost-effective assessment strategy for the quantifying current soil development 

state. The potential of the mechanistic model method for this purpose is identified, since it was 

successful in predicting the observed variability in SOC. However, it includes limitations regarding 

sampling design and coverage, vegetation indication and suitability for complex systems. Although a 

complex system theory would tackle the last limitation, the current study offered a more cost-effective 

strategy for quantifying the soil state. Therefore, the mechanistic model approach is potentially more 

applicable for monitoring given the fact recommendations are followed. It therefore the importance of 

including soil forming processes and initial conditions to improve predictions of soil development. 

The goal of predicting temporal development of SOC in the Baviaanskloof, was moderately successful 

using the chronosequence approach. Multiple scenarios of development where established, which 
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showed divergence and indicated the possible occurrence of an alternative degraded state. However, 

sampling size and influence of environmental conditions limited the prove. Identification of the future 

soil state was uncertain due to limited possibility to temporally extrapolate the measurements and the 

unsuitability of the known methods to predict SOC development. Since indications of temporal behavior 

and future states were established, this study contributes in narrowing the gap between modelled and 

observed soil development conditions.  

The available carbon models for quantifying carbon sequestration and development did fail in capturing 

the complexity of the system and were overestimating the vegetation potential in building up SOC, 

when being compared to the chronosequence approach. Because of this general failure in the 

Baviaanskloof catchment, both models might not be suitable for quantifying soil organic carbon in 

smaller catchments. Moreover, these models include substantial sensitivity to its input parameters 

regarding land use coverage, which are most often uncertain. Consequently, the limitation described 

should be carefully assessed when applying the known models to a restoration case. 

The identification of parent material as a driver in determining (temporal) soil development in 

combination with the successful application of a multidisciplinary model for predicting SOC distribution 

contributes to an important conclusion. Despite its complex behavior, the importance of soil forming 

processes in driving the ecological system, teaches us multidisciplinary methods such as applied in this 

research, are crucial in the application of restoration practices, monitoring and modelling scenarios.  
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8. Appendix 
Table A9 List of tests associated with the analyzed lab parameters (source: BEMLAB) 
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Table A10 correlations of environmental parameters associated with the different dimension in the PCA. 
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Table A11 Correlation table (pearson correlation) of all associated variables in this research 
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 Fig. A14 Description of the ttest statistics comparing Shale with other parent materials on clay content. 

 

 

 

 

 

 

 

Fig. A15 Description of the statistics comparing Quartizitic Sandstone with other parent materials on sand content. 

Fig. A12 The effect of tree height on SOC fraction 
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Table A12 Descriptive statistics of texture classes, stone fraction and SOC fraction for the 5 parent materials in the Baviaanskloof 
catchment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A13 Values of the most important parameters determining conditions for the plots 
associated with an alternative degraded condition (6, 49, 3,10 and 36) compared to the 
mean of all plots. 
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Fig. A16 Relative prediction error of the Koster mechanistic model on plot level, between day 0 and day 7000 after restoration 

 

Fig. A17 Semivariogram of residuals of the Koster model applied to the SOC values on plot level 



Page 60 
 

 

Fig. A18 Semivariogram of residuals of the Hendriks model applied to the SOC values on plot level 


