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Chapter 1

Introduction



2 Introduction

1.1 Motivation

Forests play a crucial role in the functioning of the Earth’s climate system, through their

role in the carbon, energy and water cycles (Bonan, 2008). A famous example of how these

effects have a direct impact on human life and how humans can influence these cycles in

turn is the Catskill/Delaware Watershed restoration (Daily and Ellison, 2002). In 1997,

the city of New York faced a drinking water crisis due to ageing water purification plants

and related bacterial invasion of the drinking water. The construction of a new purification

plant was estimated at a cost of $6–$8 billion, which would have blown up the New York

city communal budget. Instead, the restoration and protection of the forest dominated

Catskill/Delaware watershed that provides the drinking water for New York could achieve

comparable results at a cost of only $1.5 billion. In this case, the forested landscape

provided an ecosystem service in the form of water purification through interception of

rainfall, filtering of pollutants, and water storage. Additionally, forests provide several

other services such as carbon sequestration, provision of raw materials, habitats for animals

and options for human recreation.

Both above- and below-ground elements of forests contribute to their functionality and

service provision. Nonetheless, due to much easier access only above-ground elements are

often taken into account when describing forests and assessing their functions. Forest

structure can be used as a summarising term for these elements as it can be defined as

”[...] the spatial arrangement of the above-ground organs of plants in a [forest]” (Campbell

and Norman, 1989). Bongers (2001) further specifies forest texture as ”the qualitative and

quantitative composition of the vegetation as to different morphological elements” and

forest structure as ”the spatial arrangement of these elements”. In geo-spatial terms texture

would describe attributes of canopy elements and structure their location. Important

parameters describing forest structure are for example biomass, leaf area, tree height or

branch arrangement (Pan et al., 2013).

For the assessment and quantification of these parameters scales matter (Bongers, 2001).

Within the canopy, leaves and twigs dominate the description of the canopy structure

at scales <1m, branch arrangement at scales <10m, crown size, shape and arrangement

at scales <100m, and at landscape level species composition is the prevailing descriptor.

Additionally, forest structure is dynamic over time, with different elements having charac-

teristic response intervals. Most traits connected to photosynthesis respond to intra-annual

changes of seasons with a periodic behaviour (Lang et al., 2017; Yang et al., 2016), while

succession and regrowth after disturbance are directional processes across several years.

Responses to climatic changes can affect forest composition over millennia.

In the context of forest structure assessment and monitoring over large areas, Earth

Observation (EO) or remote sensing of the Earth has proven a useful tool (Bergen et al.,

2009; Pan et al., 2013; White et al., 2016). In principal, EO exploits the effects that
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vegetation has on the electromagnetic response of a land surface, no matter whether the

surface illumination originates from the sun or from the observation system. However,

this leads to the fact that EO is always only providing an indirect measurement of forest

structure.

An interesting example for this is the discussion that evolved around the Amazon green-

up phenomenon. Several EO-based studies reported a substantial increase in greenness

expressed as an increase in Enhanced Vegetation Index (EVI) during the dry season from

July to September over large parts of the Amazon rainforest (Huete et al., 2006; Saleska

et al., 2007; Samanta et al., 2012; Xiao et al., 2006). This counter-intuitive observation

was explained with deep roots that maintain the trees’ water supply throughout the dry

season. Simultaneously, a change in leaf demography would occur, namely the flushing of

new young leaves, which would increase the Near-Infrared (NIR) reflectance of the canopy

(Doughty and Goulden, 2008). However, Morton et al. (2014) questioned this hypothesis.

They investigated the MODerate-resolution Imaging Spectroradiometer (MODIS) EVI

observations underlying most of these studies and found a strong effect of seasonal change in

surface anisotropy. These effects are prevalent in surface reflectance and vegetation indices

(Sims et al., 2011; Verrelst et al., 2008). Correcting for them led to stable reflectance

behaviour and suggested unchanging forest canopy properties. In a follow-up study,

Morton et al. (2016) explained seasonal variability of forest productivity observed at eddy

fluxtowers with changing light utilisation throughout the canopy that follows from the

seasonal change in illumination angles.

The above-mentioned example underlines the need for a complete understanding of the

EO signal in response to structural dynamics on the ground in order to allow drawing

firm conclusions based on satellite observations. Even more so, it calls for the need for

rigorous validation of EO products. Validation in this context should be understood as

the ”confirmation, through the provision of objective evidence, that the requirements for

a specific intended use or application have been fulfilled” (Quality management systems

– Fundamentals and vocabulary 2015). In this context, the use of biophysical variables

instead of vegetation indices should be preferred. This is because biophysical variables are

defined independent of the sensing technique and conditions, which should also not affect

the observed biophysical variable. This thesis focusses on validation techniques for the

two biophysical variables Leaf Area Index (LAI) and Above-Ground Biomass (AGB) that

represent forest structure.

The remainder of this chapter is structured as follows: Section 1.2 broadly reviews principal

EO techniques related to the retrieval of structural parameters of forests. Section 1.3

introduces (forest) structure products with a focus on LAI and AGB that have evolved

based on these technologies, which technologies are used to validate these products and

which gaps remain in their validation. Section 1.4 presents new emerging technologies

and developments since approximately 2010 that potentially provide solutions to the
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encountered calibration and validation challenges. In Section 1.5, the objectives of this

thesis are listed that were deducted from these challenges. Finally, Section 1.6 outlines

how the objectives were addressed in this thesis and the thesis’ structure.

1.2 Forest Structure Retrieval from Remotely Sensed

Data

When selecting EO data for the retrieval of forest structural variables, specific regions of

the electromagnetic spectrum and sensor characteristics have preferential qualities. Passive,

optical sensors sensitive to wavelengths from 350 to 2500 nm are most commonly used, due

to their robustness, low cost, data accessibility and intuitive way of signal interpretation,

which is similar to the human eye. For example, large scale forest cover assessment

has been made possible through routine observations of the Landsat family of satellites

(Hansen et al., 2013). However, passive sensor signals carry only limited information about

vertical structural variables like LAI when operated at nadir. Multi-angular sampling or

exploitation of specific viewing angles is required to overcome this limitation (Chen et al.,

2005; Meroni et al., 2004; Roosjen et al., 2018).

Space-borne passive microwave observations at wavelengths from 0.5 to 30 cm have found

a much smaller range of applications focussing on vegetation moisture (Barraza et al.,

2014b), phenological timing (Jones et al., 2011; Jones et al., 2012) and LAI (Barraza et al.,

2014a). Applications with these sensors are limited to biome scales due to the coarse

resolution of typically >5000m, which also makes them difficult to validate with small

scale, independent, ground-based measurements.

Signals from active EO technologies, which provide their own target illumination, can be

linked more directly to in particular vertical vegetation structure expressed as LAI and

AGB. LIght Detection And Ranging (LiDAR) sensors operate in the optical domain at

wavelengths in the range of passive, optical sensors. Airborne Laser Scanning (ALS) is

used for forest vertical structure assessment, tree height and basal area estimation (Drake

et al., 2002) as well as individual tree detection (Duncanson et al., 2014). ALS is used

regularly in Europe’s Nordic countries for national forest inventories that include tree

height and stand delineation (Kangas et al., 2018; Nilsson et al., 2017). Space-borne

LiDAR is exploited for continent-scale AGB estimation (Baccini et al., 2012; Baccini

et al., 2008; Saatchi et al., 2011). A particular disadvantage of space-borne LiDAR is its

discontinuous spatial sampling pattern that produces distinctive ground tracks during

single overpasses.

Space- and air-borne Synthetic Aperture Radar (SAR) sensors utilising large wavelengths

(>15 cm, L band) are treated as a favourable option to estimate forest AGB wall-to-wall

across large areas (Koch, 2010; Santoro and Cartus, 2018). Retrieval based on single

images relies on relationships between SAR backscatter coefficients and AGB. Advanced
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processing like Polarimetric Interferometric SAR (PolInSAR) allow the retrieval of canopy

height, which is closely related to AGB (Villard et al., 2016). Tomographic SAR is also

able to resolve the vertical distribution of scattering elements within the canopy similar

to LiDAR sensors (Reigber and Moreira, 2000), although both systems are sensitive to

different canopy elements according to their exploited spectral domain (Pardini et al.,

2018).

Aside from the spectral domain, an important categorisation of forest structure EO

technologies is according to their observation platform. The reason for this is that the

platform determines the distance to the canopy. This and the finite resolution of digital

sensors in turn defines which canopy elements can be resolved. In this context, so called

proximal sensing plays a special role. Among these techniques are ground-based sensors

that serve to quantify structure at the plot scale and are accepted as means for validation

of space- and air-borne observations. For example, lidar-based clinometers are standard

instruments in forest mensuration for individual tree height appraisal (Luoma et al., 2017).

Terrestrial Laser Scanning (TLS) provides a particular detailed view on the forest canopy

that allows the distinction of single branches (Lau et al., 2018), and reconstruction of full

trees (Calders et al., 2015b; Gonzalez de Tanago et al., 2018) and canopies (Calders et al.,

2018a). Still, these instruments make only indirect measurements of the variable under

observation. Especially in the context of LAI estimation this becomes clear: instruments

treated as standard for validation practices like the LAI-2000 canopy analyser and Digital

Hemispherical Photography (DHP) (Fernandes et al., 2014; Jonckheere et al., 2004) actually

measure canopy transmittance. During processing, this quantity has to be interpreted in

order to derive the desired LAI.

This brings up a crucial point in the retrieval of forest structure on the basis of EO data.

The retrieval always requires a model that connects observation and the desired biophysical

variable. This can be a statistical or physical model with arbitrary complexity. In the

context of passive, optical EO, Radiative Transfer Models (RTMs) like PROSAIL have

been extensively used to retrieve physical canopy and leaf chemical properties (Jacquemoud

et al., 2009). However, for application in forests, RTMs like the Discrete Anisotropic

Radiative Transfer (DART) or librat models that can represent heterogeneous scenes

have been preferred (Calders et al., 2013; Disney et al., 2000; Gastellu-Etchegorry et al.,

1996; Malenovský et al., 2008). Probably the most common model for LAI retrieval from

below-canopy sensors is the gap fraction model (Weiss et al., 2004).

1.3 Remote Sensing-based Forest Structure Products

Based on available EO technology, a range of scientific products have been developed.

The term product is loosely used in literature to refer to both ad hoc results as well

as systematically produced datasets. Since EO technology has matured over the past

decades, monitoring applications are more and more envisaged, so that systematic products
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gain in relevance. The products’ temporal and spatial resolution vary, but need to be

in line with dominant processes in observed variables. For example, LAI in agricultural

applications needs to be monitored with sub-weekly resolution to be able to derive

meaningful management plans reacting to the crop development (Defourny et al., 2019).

The development of global scale products often poses various challenges, because the

underlying algorithms needs to be robust and generic to suit a wide range of ecosystems,

and processing load is high (Hansen et al., 2013). The Copernicus Land Services contain a

palette of vegetation structure products, like tree cover density and LAI (https://land.

copernicus.eu). Another example for consolidated structure products is the MODIS

land product suite (https://modis-land.gsfc.nasa.gov).

Leaf Area Index (LAI)

LAI is defined as one half of the vegetation surface area per area horizontal ground (Chen

and Black, 1992). It is mostly derived from passive, optical sensors, when global scales are

targeted. So far, LAI products have been predominantly based on hectometric EO missions

like MODIS due to the availability of high frequency observations and robust algorithms

at this scale. Lately, decametric resolution products are targeted based on Copernicus

Sentinel-2 (Defourny et al., 2019; Delegido et al., 2011; Verrelst et al., 2013). Production

algorithms typically invert RTMs either with Look Up Tables (LUTs) (Myneni et al., 2011)

or with Machine Learning Regression Algorithms (MLRAs) like neural networks (Baret

et al., 2007).

In order to support LAI product validation efforts, the Committee on Earth Observing

Satellites (CEOS) Land Product Validation (LPV) Subgroup has compiled a validation

best practice guideline (Fernandes et al., 2014). It was written in order to work towards the

Global Climate Observing System (GCOS) targets for global LAI products and therefore

typically works with examples of hectometric products. These products cannot be validated

directly based on in situ data, because ground reference is typically only representative

over (deca)metric scales. Hence, hierarchical upscaling of in situ data should be performed

(Figure 1.1).

In this context, the Elementary Sampling Unit (ESU) plays an important role as the

smallest spatial unit in the validation chain. The LAI guideline defines ESUs as ”[...]

contiguous spatial region[s] over which the expected value of LAI can be estimated through

in situ measurement[s]” (Fernandes et al., 2014). The ESU size is determined by the

maximum within-ESU variability that can be tolerated and hence depends on the spatial

LAI variability at the validation site. Taking this into account, the quality of any validation

effort is dependent on a number of factors, which each individually can be improved to

reach a higher quality validation:

• Spatial within-ESU LAI variability. This can be controlled by choosing homogeneous

sites for ESUs, but will be limited by the site conditions.

https://land.copernicus.eu
https://land.copernicus.eu
https://modis-land.gsfc.nasa.gov
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• The number of established ESUs defines the confidence with which uncertainties can

be reported.

• Speed and accuracy of the in situ acquisition method.

• Resources available for the validation effort. These will most likely be given and/or

be limited.

Wide reaching validation efforts have been undertaken in different projects with varying

spatial and temporal coverage. For example, the BEnchmark Land Multisite ANalysis

and Intercomparison of Products (BELMANIP) project collected in situ observations

from 371 ESUs across the globe from dedicated campaigns and existing experimental

networks for validation of hectometric products (Baret et al., 2006). However, these

special efforts are rare. Systematic acquisition of LAI is performed within ecosystem

networks like the Integrated Carbon Observation System (ICOS) in Europe and the

National Ecological Observatory Network (NEON) in the United States. FLUXNET is a

meta-network summarising several regional or national networks. However, the sites of

these networks were typically not intended for validation of satellite land products, so

that the chosen locations and surroundings might not be optimal (Fang et al., 2012b) and

respective measurements might not get high priority.

Individual measurements

Averaging

Correlation
analysis

Transfer 
function

Value at ESU level

Value(s) at site level

Global validation

10-100 
measurements 

per ESU

20-100
ESUs

per site

50-100
sites

globally Medium resolution 
products to be validated

High spatial resolution
image (SPOT/ETM/ASTER)

Figure 1.1: Global LAI product validation procedure (remodelled after Morisette et al., 2006).

Image credits: ESA (2005), ESA and Université Catholique de Louvain (2010), and Jonckheere

et al. (2004).
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A range of studies have shown that independent validation data from in situ measurements is

essential to evaluate LAI products. They could generally conclude that global LAI products

did not meet quality requirements set by GCOS like absolute accuracy of 0.5m2 m−2

(Canisius et al., 2010; Fang et al., 2012a; Fang et al., 2012b). This is especially true for

forest biomes, where absolute errors are larger and agreement between global datasets is

lower compared to other biomes (Fang et al., 2013; Garrigues et al., 2008). Still, due to

the available validation data, LAI land surface products in general have reached validation

stage 2 of 4 in the CEOS validation hierarchy. This means that ”product accuracy is

estimated over a significant set of locations and time periods by comparison with reference

in situ [...]” (Land Product Validation subgroup, 2019). In order to progress in validation

levels and thereby increase scientific soundness of the products, the uncertainty structure

associated with the products has to be further evaluated (level 3) and validation needs to

be performed regularly (level 4). For this, the total number and the temporal coverage of

in situ sites needs to be increased.

Above-Ground Biomass (AGB)

AGB is defined as the ”amount of organic matter that is stored in vegetation above the

ground level” (Santoro and Cartus, 2018). In contrast to LAI, there are no operational,

global AGB products available yet. Product development has been hampered by the

lack of systematic observations from suitable space-borne missions. Only the Advanced

Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar

(PALSAR) missions of the Japan Aerospace Exploration Agency (JAXA) would suit this

purpose, but data access is connected to costs, which is a major hurdle on the way to global

products (Reiche et al., 2016). Noticeable regional AGB and Growing Stock Volume (GSV)

products were prepared for the pan-tropics (Avitabile et al., 2016; Baccini et al., 2012;

Saatchi et al., 2011), northern hemisphere (Santoro et al., 2015), and African woodlands

and savannahs (Bouvet et al., 2018).

All of the above-mentioned maps rely on extensive databases of ground measurements

based on forest inventory plots, which are used both for model calibration and validation.

Plot AGB estimates are typically derived with plot tree inventories for which simple

tree metrics, such as Diameter at Breast Height (DBH) and tree height are measured

(Chave et al., 2005). These metrics are used in combination with Allometric Scaling

Equations (ASEs) — also called allometric models — to derive AGB. ASEs in turn need

to be established based on empirical relationships between the tree metrics and AGB, for

which calibration samples need to be harvested destructively. Final ASEs are species or

region specific and wrong application can propagate errors into the AGB product (Yuen

et al., 2016).

Despite progress in AGB mapping approaches, Mitchard et al. (2013) found markedly

different AGB estimates and patterns between the maps of Saatchi et al. (2011) and



1.4 Innovations in Technology and Data Accessibility 9

Baccini et al. (2012), with differences only cancelling out when aggregating to the country

scale. Next to differences in data sources and processing procedures, different ASEs

underlying the training data were discussed as principal reasons for the map differences.

This underlines the significant role of ASEs and plot level AGB estimation.

In contrast to the case of LAI, a best practice guideline for AGB product validation is still

in preparation. Also, AGB products are only working towards CEOS validation stage 2,

which is targeted for 2019 (Land Product Validation subgroup, 2019).

1.4 Innovations in Technology and Data Accessibil-

ity as Opportunities for Innovation in Product

Validation

As outlined in the previous section (Section 1.3), global vegetation structure product

calibration and validation in particular of forests face specific challenges. In summary

and with regard to the technical process of validation, these challenges require regular

validation data in case of LAI as well as accurate AGB estimation at the tree level combined

with scalability of such methods to the plot level. Since technological evolution and data

accessibility have ever been fundamental drivers in Earth Observation innovations, forest

structure product calibration and validation is no exception to this and recent technologies

could improve validation data production.

Concerning ground based systems, automatic sensor systems have been introduced that

perform measurements periodically. In the case of LAI, Li et al. (2015b) combined DHP

with wireless network technology to automatically acquire LAI of agricultural crops. Crop

photos were uploaded to a central server, which allowed continuous remote monitoring.

Fan et al. (2018) developed a simple VIS/NIR camera system for ryegrass monitoring. The

raw images were radiometrically calibrated to Bidirectional Reflectance Factor (BRF) and

multi-linear regression models were established with LAI derived with an LAI-2200. Both

systems can provide daily measurements of LAI, but employ downward looking optics and

connected processing procedures, and are therefore not immediately suitable for forest

applications.

LiDAR

LiDAR has seen a steep increase in forest structure applications, because of its ability for

explicit 3D structure retrieval, as indicated by the rise in occurrence of the keyword in

scientific publications (Figure 1.2). It is worth noting that LiDAR systems can primarily be

divided into two types for which data recording and subsequent analysis techniques differ.

These are large-footprint, full-waveform systems like National Aeronautics and Space

Administration (NASA)’s Laser Vegetation Imaging Sensor (LVIS) and small-footprint,
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Figure 1.2: Occurrence of selected technologies as keywords in Web of Science publications

relative to all publications in connection to forest structure since 2000. Additional to label

terms the following synonyms were used: Laser scanning for LiDAR, airborne/terrestrial

lidar and airborne/terrestrial laser scanning for ALS/TLS, UAV, UAS, drone and RPAS for

Unmanned Aerial Vehicle (UAV). Only the fields Environmental Sciences & Ecology, Forestry,

Physical Geography, Imaging Science & Photographic Technology, and Remote Sensing were

considered (accessed: 2019-01-29).

discrete return systems of commercial suppliers like RIEGL and Leica. The former require

interpretation of the recorded waveform and typically assume a statistical model of the

canopy. The latter allow for discovery of discrete elements like individual trees, branches

and leaves, and can possibly also simulate full-waveform, space-borne LiDAR (Ristorcelli

et al., 2014).

For the estimation of LAI and the vertical distribution of foliage throughout the canopy

expressed as Plant Area Volume Density (PAVD), ALS was demonstrated to be an effective

tool over large areas (Morsdorf et al., 2006; Zheng and Moskal, 2009) as well as in the

context of space-borne missions (Korhonen et al., 2017; Tang et al., 2014). ALS LAI

retrieval relies on the gap fraction model, which is also applied with indirect ground-based

methods like DHP, but for ALS often with simplifying assumptions. For example, viewing

direction is often assumed to be nadir, even though neglecting observation geometry can

lead to systematic errors at large scan angles (Liu et al., 2018; Zheng et al., 2017).

ALS has also proven its usability for forest AGB estimation at the plot (Asner and

Mascaro, 2014; Kankare et al., 2013), regional (Drake et al., 2002) and national level

(Kangas et al., 2018; Nilsson et al., 2017). In contrast to LAI, AGB methods rely on

empirical relationships between AGB measured in forest inventory plots and ALS features.

In the case of full-waveform, these features are typically some type of canopy height metric

like the Height Of Median Energy (HOME) (Drake et al., 2002). Height metrics are also

used in the case of discrete return systems (Asner and Mascaro, 2014), but these can
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additionally provide Individual Tree Detection (ITD), which can further support AGB

estimation (Duncanson et al., 2014; Eysn et al., 2015; Kankare et al., 2013; Koch et al.,

2006; Str̂ımbu and Str̂ımbu, 2015).

These two fields show the possible synergies between LAI and AGB retrievals, which

are both possible from ALS. However, a bottleneck with ALS is data availability. Even

though many countries in western Europe, Scandinavia, and North America have regular,

national ALS surveys, which are also exploited for infrastructure and natural resource

management, only some countries make these datasets publicly available. Additionally,

repetition frequencies are too low to track seasonal changes for effective LAI validation.

ALS availability is even lower in tropical countries, where 44.3% of global forest area is

situated (Keenan et al., 2015).

The introduction of TLS into forestry applications in the early 2000s was driven by the

motivation to measure forest plots in an accurate, rapid and reproducible manner (Liang

et al., 2016). Therefore, initial studies focussed on emulating traditional forest inventories

by deriving stem maps, DBH and tree height (Bienert et al., 2006; Liang et al., 2016;

Simonse et al., 2003). Since then, the number of studies that utilise TLS capabilities

has steadily grown (Figure 1.2). Meanwhile, TLS is discussed as a disruptive technology

rather than a development (Newnham et al., 2015) in particular in the context of AGB

measurements (Disney et al., 2018) as well as forest ecology (Malhi et al., 2018).

AGB estimation by means of TLS is typically achieved by extracting single trees from

plot-scale point clouds and subsequently fitting simple geometrical models — usually

based on cylinders — to the single tree point clouds (Hackenberg et al., 2014; Raumonen

et al., 2013; Stovall et al., 2017). In fact, current studies predominantly focussed on single

tree AGB estimation (Calders et al., 2015b; Gonzalez de Tanago et al., 2018; Lau et al.,

2018; Momo Takoudjou et al., 2018) due to the challenges of plot-scale tree reconstruction.

These challenges are increasingly tackled: improved field protocols allow accurately co-

registered plot-scale point clouds (Liu et al., 2017; Tremblay and Béland, 2018; Wilkes

et al., 2017), automatic segmentation algorithms can identify individual trees (Burt et al.,

2018; Parkan and Tuia, 2015), and automatic foliage identification algorithms can separate

photosynthetically active material from woody components (Vicari et al., 2019; Wang

et al., 2018). Still, fieldwork is time consuming and requires 3 to 6 days/ha (Wilkes et al.,

2017). Thus, plot-scale analysis (Calders et al., 2018a) and direct upscaling to space-borne

missions is rare for AGB estimation.

With respect to foliage and LAI, TLS has been adopted as a close approximation to the

point quadrat method (Wilson, 1963). In this sense, TLS has been used to estimate gap

fraction and subsequently LAI. The distance measurement capability of TLS has also

allowed to derive PAVD, which is the vertical distribution of foliage across the canopy

(Jupp et al., 2009). The active character is also an advantage over passive ground-based

sensors as it provides independence from illumination conditions (Jupp et al., 2009) and
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can achieve discrete clumping appraisal through voxelisation (Pimont et al., 2018). Further

improvements have been suggested with respect to multi-return TLS signals (Lovell et al.,

2011; Newnham et al., 2012), topographic correction of PAVD profiles (Calders et al.,

2014), individual tree LAI estimation (Béland et al., 2011; Li et al., 2017), fieldwork

protocols (Zheng and Moskal, 2012), treatment of gap fraction underestimation due to

partial hits (Hancock et al., 2014), bias treatment in voxelised approaches (Pimont et al.,

2018) as well as calibration procedures (Soma et al., 2018).

For the installation in forests, Culvenor et al. (2014) developed an automatic LiDAR-based

LAI monitoring system, which combines the advantages of monitoring instruments and

TLS. However, the prototype was still prone to malfunctions in early experiments as well

as to battery drainage (Griebel et al., 2015). Additionally, rain and moist weather had a

negative impact on the recorded LAI, so that rain events need to be identified and filtered

from the record (Griebel et al., 2015; Portillo-Quintero et al., 2014). Finally, LiDAR

systems tend to have a higher price tag than passive sensors due to their specialised sensors

and system configuration, which limits the use in wide range satellite validation.

UAV

UAVs — also called Unmanned Aerial Systems (UASs), Remotely Piloted Aircraft Systems

(RPASs) or simply drones — do not provide a fundamentally new class of sensors for

vegetation observations, but rather a new perspective that could previously not be filled

with ground-based, air- or space-borne sensors. Additionally, entry level commercial UAVs

come at an affordable price and have a low requirement in training before first take-off.

This opens up new opportunities for applications. On top of the fast growing number

of publications in recent years dealing with UAVs (Figure 1.2), a range of reviews tried

to categorise and summarise the latest trends: Anderson and Gaston (2013) reviewed

UAVs for ecological, Tang and Shao (2015) and Torresan et al. (2016) for forestry, and

Pádua et al. (2017) for agroforestry applications. Aasen et al. (2018) provide extensive

background information for radiometric and geometric procedures related to UAVs with

respect to quality of the observed spectral quantities.

Plot inventories are a typical target of UAV studies in the context of forest structure

assessment (Torresan et al., 2016). Here, the strength of fast acquisition with consumer

frame-cameras in combination with Structure from Motion (SfM) photogrammetric work-

flows is exploited. This makes the production of Canopy Height Models (CHMs) possible

that can be fed into ITD algorithms (Lisein et al., 2013; Puliti et al., 2015; Sankey et al.,

2017). This approach based on passive optical sensors can provide tree height estimation

in open canopy forests, which in turn can be used together with ASEs to derive AGB (Lin

et al., 2018). However, dense canopy cover prevents visibility of the ground and proper

CHM generation in closed forests (Wallace et al., 2016). With respect to LAI, a wide

range of studies present procedures to estimate LAI in field crops based on UAVs (Duan
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et al., 2014; Roosjen et al., 2018; Roth et al., 2018), but only very few deal with estimation

over forests (Chianucci et al., 2016; Tian et al., 2017).

Unmanned Aerial Vehicle Laser Scanning (UAV-LS) is the crossing of LiDAR and UAV

technology. An important technological requirement for the development of UAV-LS

systems is the accurate, high frequency position and orientation estimation during flight,

which can be achieved with miniaturised Inertial Measurement Units (IMUs) (Jaakkola

et al., 2010) or inclusion of SfM into the processing workflow (Wallace et al., 2012). An

early, custom-built example was presented by Jaakkola et al. (2010) with a theoretical

measurement rate of 38 000 points/s. Commercial suppliers provided solutions only very

recently. For example, RIEGL offers a system since 2015 with a measurement rate of

500 000 points/s. Due to its canopy penetration capabilities, UAV-LS has found applica-

tions for forest structure retrieval, including forest inventory relevant CHM estimation and

ITD (Balsi et al., 2018; Guo et al., 2017; Jaakkola et al., 2017; Lin et al., 2011; Wallace

et al., 2012; Wallace et al., 2014b), as well as DBH and AGB estimation (Jaakkola et al.,

2017). Guo et al. (2017) additionally derived LAI for three study sites, but this was not

validated against independent data sources.

General challenges for UAV operation still lie in rapidly changing regulations and frag-

mented regulations across countries, despite well-coordinated regulations of other air-traffic

participants (Stöcker et al., 2017; Torresan et al., 2016). In forests, required safety

regulations like Visual Line of Sight (VLOS) add to this problem. In the future and

following fast development in the private and commercial sectors, regulations will probably

consolidate. Additionally, regulations and technology that allow relay systems — observing

and controlling one UAV from another one closer to the observer — could extend the

operational envelope especially in forests.

Open Data

Next to the access to ground- and low altitude-based technology, access to data from

space-borne missions was and is a major driver for innovations in forest structure retrieval

and validation. The price of such data products gains importance when dealing with longer

time series and larger areas for which data is required, and both dimensions are desirable

for robust validation approaches. There have been two noticeable events in this context.

First, the opening of the Landsat archive in 2008 (Wulder et al., 2012) and second, the

launch of the Copernicus Sentinels relevant for land applications starting with Sentinel-1A

in 2014 (Torres et al., 2012).

1.5 Research Objectives

The main objective of this thesis is to explore new technologies for forest structure

biophysical variable estimation that enable timely, repeatable and cost-effective calibration
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and validation of EO products. The work is focussing on LAI as a measure of total

canopy foliage and tree structure, defined by tree height, DBH and total tree volume. The

investigated technologies are ground-based monitoring sensors, open decametric multi-

spectral satellite observations as well as UAV-LS. The following research questions were

derived in order to reach the main objective:

RQ1 How can forest LAI be efficiently and automatically monitored over time?

RQ2 How is prediction performance of hybrid RTM-MLRA forest LAI-retrieval chains

affected by their individual processing chain parts?

RQ3 What is the capability of UAV-LS to estimate canopy height and DBH?

RQ4 How can UAV-LS contribute to tree volume assessment?

1.6 Thesis Structure

In order to fulfil the objectives of this thesis, the experimental Speulderbos Reference Site

has been established in the Veluwe forest area in the Netherlands (Brede et al., 2016). All

fieldwork related to the studies in this thesis were performed at this site.

In Chapter 2, automatic monitoring of foliage dynamics is tested with the PAI Autonomous

System from Transmittance Sensors at 57◦ (PASTiS-57) system. The test is split in two

parts: first, RTM experiments are employed to explore the validity of the general retrieval

algorithm with respect to assumptions on the canopy’s architecture. Second, a field

experiment is performed and PASTiS-57 observations are compared to light-independent

retrievals of a time series of TLS acquisitions as well as the space-borne MODIS LAI

product. (Research Question 1)

Chapter 3 tests how new decametric space-borne missions like Landsat and Sentinel-2

can estimate the seasonal development of forest LAI. For this, RTMs and MLRAs are

combined. Single modules in the processing work-flow are examined in order to identify

the importance of single modules as well as which factors perform most successful. The

results are benchmarked against a time series based on TLS acquisitions and litter trap

LAI estimates. (Research Question 2)

In Chapter 4 a novel UAV-LS system is tested with respect to production of CHM and

single tree DBH estimation. Both variables can be used in combination with ASEs to

estimate AGB. The resulting products are compared to TLS-derived estimates. (Re-

search Question 3)

Chapter 5 adopts a state-of-the-art Quantitative Structure Model (QSM) to test with

the UAV-LS data in order to explicitly model single trees and estimate individual tree

volume. The QSM work-flow is modified by using control cylinders instead of control

circles in order to accommodate the lower point density of the UAV-LS compared to
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TLS. The UAV-LS volume estimates are compared to TLS based modelling results.

(Research Question 4)

Chapter 6 summarises the main findings of this thesis, and discusses implications and

opportunities for further research.





Chapter 2

Monitoring Forest Phenology and

Leaf Area Index with the Automatic,

Low-Cost Transmittance

Sensor PASTiS-57

This chapter is based on:

B. Brede, J.-P. Gastellu-Etchegorry, N. Lauret, F. Baret, J. Clevers, J. Verbesselt, and

M. Herold (2018). “Monitoring Forest Phenology and Leaf Area Index with the Au-

tonomous, Low-Cost Transmittance Sensor PASTiS-57”. Remote Sensing 10.7, 1032. doi:

10.3390/RS10071032
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Abstract

Land Surface Phenology (LSP) and Leaf Area Index (LAI) are important variables that

describe the photosynthetically active phase and capacity of vegetation. Both are derived on

the global scale from optical satellite sensors and require robust validation based on in situ

sensors at high temporal resolution. This study assesses the PAI Autonomous System from

Transmittance Sensors at 57◦ (PASTiS-57) instrument as a low-cost transmittance sensor

for simultaneous monitoring of LSP and LAI in forest ecosystems. In a field experiment,

spring leaf flush and autumn senescence in a Dutch beech forest were observed with

PASTiS-57 and illumination independent, multi-temporal Terrestrial Laser Scanning (TLS)

measurements in five plots. Both time series agreed to less than a day in Start Of

Season (SOS) and End Of Season (EOS). LAI magnitude was strongly correlated with

a Pearson correlation coefficient of 0.98. PASTiS-57 summer and winter LAI were on

average 0.41m2 m−2 and 1.43m2 m−2 lower than TLS. This can be explained by previously

reported overestimation of TLS. Additionally, PASTiS-57 was implemented in the Discrete

Anisotropic Radiative Transfer (DART) Radiative Transfer Model (RTM) model for

sensitivity analysis. This confirmed the robustness of the retrieval with respect to non-

structural canopy properties and illumination conditions. Generally, PASTiS-57 fulfilled

the Committee on Earth Observing Satellites (CEOS) Land Product Validation (LPV)

requirement of 20% accuracy in LAI for a wide range of biochemical and illumination

conditions for turbid medium canopies. However, canopy non-randomness in discrete tree

models led to strong biases. Overall, PASTiS-57 demonstrated the potential of automatic

devices for monitoring of phenology and LAI at daily temporal resolution as required for

validation of satellite products that can be derived from ESA Copernicus’ optical missions,

Sentinel-2 and -3.
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2.1 Introduction

Vegetation phenology describes the ”timing of seasonal developmental stages in plant

life cycles including bud burst, canopy growth, flowering, and senescence [...]” (Kimball,

2014). This includes the start, end and length of the photosynthetically active phase in the

year. A mechanistic understanding of controls on these events is still lacking for most biomes

(Richardson et al., 2013). This leads to a general misrepresentation of vegetation temporal

behaviour in global circulation models and uncertainty in vegetation-climate feedbacks.

Standardised, wide-spread observations are paramount for the quantification of phenology

and climate feedbacks.

Proximal sensing techniques such as phenocams or webcams allow high revisit frequency and

objective analysis techniques (Browning et al., 2017; Keenan et al., 2014; Richardson et al.,

2009). They are based on the principle that changes in canopy biophysical and -chemical

composition, which go along with leaf development and senescence, alter its radiative

regime. Most often exploited is the decrease of reflectance in the visible wavelengths

due to absorption for photosynthesis and the increase in the Near-Infrared (NIR) due

to reflecting properties of leaves. The latter effect can be exploited when sensors also

record NIR (Petach et al., 2014; Soudani et al., 2012). This can be done for example with

tower-based proximal sensing. However, these sensors are often not standardised in terms

of measurement protocols (Balzarolo et al., 2011).

Apart from this, the change in reflective behaviour is also utilised to detect phenological

events over large areas with satellite-borne sensors (Che et al., 2014; Zhang et al., 2003).

The spatially aggregated, temporal behaviour of plants over larger areas that are observed

from space is referred to as LSP (Kimball, 2014). In contrast to ground-based systems,

space-borne missions have the advantage to use only single or few sensors, which makes it

easier to derive comparable products.

The case is similar for another quantitative vegetation property, the LAI. It is defined as

the one-sided leaf area per unit of ground surface area (Chen and Black, 1992). Hence, it

quantifies the amount of leaves that are available for photosynthesis during the photoperiod.

Similar to LSP, LAI can be inferred from ground-based and space-borne instruments,

but also from air-borne sensors (Casas et al., 2014; Frampton et al., 2013; Koetz et al.,

2005) and Unmanned Aerial Vehicles (UAVs) (Chianucci et al., 2016; Roosjen et al., 2018).

Ground-based LAI observations are typically performed with consumer-grade cameras

equipped with fish-eye lenses, referred to as Digital Hemispherical Photography (DHP)

(Jonckheere et al., 2004). This method relies on gap fraction theory to infer LAI (Weiss

et al., 2004). Most often, observations with a viewing zenith angle of 57.5◦, the so-called

hinge angle, are analysed, where impact of the Leaf Angle Distribution (LAD) on gap

fraction is minimal. Other hand-held instruments are also available. However, in general,

ground-based instruments for LAI are used manually and in campaigns that cover larger



20 Monitoring Forest Phenology and Leaf Area Index

areas to capture the extent of satellite scenes (Frampton et al., 2013). Regular re-sampling

of the same locations is possible, but labour-intensive (Lang et al., 2017; Lukasová et al.,

2014).

In the context of Earth observation satellite missions and programmes, such as NASA’s

MODerate-resolution Imaging Spectroradiometer (MODIS) or ESA’s Sentinel-3 mission

(Berger et al., 2012; Donlon et al., 2012), both LSP and LAI spatial products require

robust quality ground-based validation. This demands monitoring devices that match land

product’s temporal resolution, potentially able to record LAI at high resolution so that

LSP can be inferred from the time series. Low-cost devices would be preferred to allow

deployment over larger areas and at many sites.

The PASTiS-57 is a candidate to fulfil these requirements. It was developed by Institut

national de la recherche agronomique (INRA)-Hiphen (Avignon, France) during the FP7

ImagineS project (http://fp7-imagines.eu). Its main application was to support multi-

day calibration and validation field campaigns for retrieval of LAI and Fraction Absorbed

Photosynthetically Active Radiation (FAPAR) with hectometric resolution space-borne

sensors (Latorre et al., 2014; Nestola et al., 2017; Raymaekers et al., 2014; Simic et al.,

2012). Recently, it was compared with seasonal measurements of LAI-2200 and DHP in

agricultural fields (Fang et al., 2018). Its measurement principle is based on gap fraction

theory. Similar to DHP, it exploits the LAD quasi-invariance at the hinge angle. However,

a more detailed assessment of its performance characteristics especially with respect to

changing illumination conditions and plant biochemical properties has not been presented

yet.

In this context, vegetation RTMs can support sensitivity analysis, the definition of new

sensors and the development of inversion procedures to translate the radiative signal

into canopy variables (Jacquemoud et al., 2009). Generally, vegetation RTMs model the

interaction of sun radiation with canopy elements based on the canopy’s biophysical and

-chemical properties. In this way, they can be exploited to assess the sensors sensitivity

to canopy parameters in idealised conditions, i.e. without measurement noise, and for

a wide range of possible canopy conditions. For example, the widely used PROSAIL

model, a combination of the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy

and PROSPECT leaf radiative models, has been exploited to design vegetation indices

(Clevers and Verhoef, 1993) and for biophysical parameter retrieval via inversion (Atzberger

and Richter, 2012; Campos-Taberner et al., 2016; Rivera et al., 2013). However, SAIL

represents the canopy as a homogeneous layer of scatterers. This assumption does not

hold for clumped canopies such as forests.

In these cases, a heterogeneous representation that can take into account canopy clumping

and non-random structure is more appropriate. The DART model implements this

paradigm (Gastellu-Etchegorry et al., 1996). DART applications include canopy biophysical

and -chemical parameter retrieval (Banskota et al., 2015; Demarez and Gastellu-Etchegorry,

http://fp7-imagines.eu
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2000), surface energy budget studies (Gastellu-Etchegorry et al., 2004) and recently

chlorophyll fluorescence modelling (Gastellu-Etchegorry et al., 2017). Additionally, DART

incorporates the option to implement in-scene sensors such as hemispherical or pinhole

cameras (Gastellu-Etchegorry et al., 2017). This provides the option to test arbitrary

sensor designs.

The aim of this study has been twofold: (i) testing the ground-based transmittance sensor

PASTiS-57 for monitoring LSP and LAI in a forest stand with daily frequency; and (ii)

assessing the sensor’s sensitivity to canopy properties other than LAI and their interactions

by means of RTM experiments, thereby testing the robustness of the measurement principle

to different canopy conditions. This study is structured as follows: The PASTiS-57 sensor

is presented in detail in Section 2.2.1. Section 2.2.2 describes the field data collection and

analysis. Section 2.2.3 elaborates on implementation of the sensor in DART, the set up of

the synthetic canopy and how sensitivity analysis was conducted. Results are presented

in Section 2.3 and discussed in Section 2.4. Section 2.5 summarises the results and lists

implications for future sensor design.

2.2 Materials and Methods

2.2.1 PASTiS-57 Instrument

The PASTiS-57 consists of a weather proof, battery powered datalogger with 6 photodiode-

based sensors (Figure 2.1). The sensors are fixed to a viewing zenith angle of 57.5◦,

sensitive in the blue spectral region to minimise canopy multiple scattering and have

different lengths of wire for sensor distribution around the data-logger. The logger is

battery powered and can automatically collect data at 1min interval for up to four months.

Intervals of 2min and 5min are also possible. Radiation is recorded with uncalibrated

Digital Number (DN) in the interval 0–4000, whereas larger DNs are treated as unreliable

due to saturation effects. The signal can be calibrated with dedicated Photosynthetically-

Active Radiation (PAR) sensors (Latorre et al., 2014). However, a more practical approach

is to utilise the relative signal by installing one device above the canopy, which serves as

reference for incoming radiation, and another device below the canopy, which represents

the observations. In this way, many plots can be served by one reference sensor, as long as

it is within a distance where illumination conditions can be assumed comparable. The

observed signal is the spectral directional transmittance τ for each sensor:

τ =
DNbelow canopy

DNabove canopy

(2.1)
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Figure 2.1: The PASTiS-57 instrument installed in the Speulderbos site: (A) With the

opened data-logger box, the six sensors can be seen on top, a spare cable is curled up at the

back of the data-logger, and two D-cell batteries for power supply in the box; and (B) two

PASTiS-57 installed at the centre of Plot C (centre marker not visible).

2.2.2 Field Experiment

Study Area and Field Data Collection

PASTiS-57 sensors have been installed at the Speulderbos Fiducial Reference site in

the Veluwe forest area (N52◦15.15′ E5◦42.00′), The Netherlands (Brede et al., 2016)

(www.wur.eu/fbprv). This site represents a maturing stand of mixed European beech

(Fagus sylvatica), pedunculate oak (Quercus robur) and sessile oak (Quercus petraea) with

few understorey. The trees were initially planted in 1835. Nowadays, the stand has a

density of around 200 trees/ha.

PASTiS-57 instruments were installed in the centres of five plots. For redundancy, each

plot was equipped with two devices (Figure 2.2). Contrary to previous studies where

sensors were put onto the ground, the individual sensors in this study have been mounted

on top of the data logger on a plastic board to face the NE, E, SE, SW, W and NW

directions. Each PASTiS-57 unit was fixed at 1.30m above ground at an iron rod, aligned

to north with a magnetic compass and levelled with a bubble level. Another two devices

have been mounted at the top of a 42m high scaffold tower approximately 550m west of

Plot A to record above canopy reference downward radiation. Campaigns were conducted

in spring 2016 during leaf flush, autumn 2016 during leaf senescence, and summer and

autumn 2017. Campaigns were programmed with 2min interval in 2016 and 1min interval

in 2017.

www.wur.eu/fbprv
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Figure 2.2: Map of the study site with the scaffold tower where reference instruments were

placed and the five sampling plots. Background is an airborne false-colour composite of 2013.

The location of the study site within The Netherlands is marked on the inset.

Plant Area Index (PAI) Retrieval

It should be noted that many proximal sensing techniques cannot distinguish between

foliage and woody canopy elements. The PAI includes both classes, while LAI refers only

to photosynthetically active plant tissue (Calders et al., 2015c; Woodgate et al., 2016). In

the following, PAI refers to observed plant area, while LAI refers to the actual quantity of

green leaf area. Typically, LAI retrieval from below canopy sensors such as DHP uses gap

fraction theory (Leblanc et al., 2005; Weiss et al., 2004). For this, the canopy is assumed

as a uniform cloud of randomly oriented, black facets (ρ = 0, τ = 0). In this case, the gap

fraction is related to LAI based on Beer–Lambert’s law:

P (θ) = e−G(θ)Ω(θ)L/ cos θ (2.2)

where θ is the viewing zenith angle, P (θ) the canopy gap fraction in direction θ, G(θ)

the projection of unit foliage in the θ direction, which characterizes the foliage angular

distribution, Ω(θ) the clumping index that describes the non-randomness of the canopy

and L the LAI. P (θ) has been variably interpreted as gap fraction in the case of DHP

(Weiss et al., 2004), hit probability in the case of lidar sensors (Calders et al., 2014; Jupp

et al., 2009) or transmittance in the case of PASTiS-57 (Nestola et al., 2017; Raymaekers

et al., 2014).

For canopy clumping estimation, the method of Lang and Xiang (LX) (Lang and Xiang,

1986) and the six different viewing directions of each PASTiS-57 instrument were exploited.

The LX method assumes that within a segment the foliage is random and it contains
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gaps. In the case of PASTiS-57 the instantaneous field of view of a single sensor can be

interpreted as a segment. In that case, canopy clumping can be described as:

Ω(θ) =
lnP (θ)

lnP (θ)
(2.3)

where P (θ) is the mean gap fraction of all segments and lnP (θ) the logarithm of the

mean gap fraction of all segments. ”The reasoning behind this technique is that since

the [LAI] is related to the natural logarithm of the gap fraction, the average LAI should

follow the logarithm average of the gap fraction” (Leblanc et al., 2005). In this sense, the

denominator in Equation (2.3) normalises the gap fraction by the logarithm. Using this

definition for clumping, replacing P (θ) with PASTiS-57 measured transmittance τPASTIS

and exploiting the near constant value of the G-function at θ = 57.5◦ for many LAD

reduces Equation (2.2) to

L =
−1.075 ln(τPASTIS)

Ω
(2.4)

The goal of this study was to produce daily observations of LAI, from which phenological

parameters can be derived. Earlier studies in forests showed that sub-daily retrievals with

PASTiS-57 based on Equation (2.4) produce results with strong, high frequency noise

with ±0.5LAI amplitude (Lecerf et al., 2010). Therefore, raw readings require appropriate

quality filters to be applied. Here, these filters were based on experience gathered while

investigating the raw time series. The primary result was that high frequency noise stems

from changing illumination conditions that violate the assumptions for the retrieval.

Firstly, broken cloud cover can result in different sky illumination conditions at the

location of the reference and the observation sensors. Here, this was counteracted by

aggregating via averaging of the 1min transmission readings to a daily time series. Secondly,

strong cloudiness reduces the radiation reaching the forest floor, especially at the north-

facing sensors, resulting in below canopy DN of 0, which are interpreted as infinite

PAI (Equation (2.4)) and do not match the assumptions behind the clumping appraisal.

Therefore, DN readings of 0 for the below canopy sensors were removed from the time

series. Thirdly, large canopy gaps result in direct illumination on the below canopy sensor,

which violates the assumption of diffuse illumination and produces high DN readings.

These conditions are only of short duration when the sun moves over the specific gap.

Even the NW and NE sensors experience these conditions when canopy elements are overly

strong illuminated through canopy gaps and result in recorded high transmission. To

counteract this effect, all DN exceeding the 95th daily percentile were removed.

Reference Datasets

Next to PASTiS-57 records, a multi-temporal campaign with a RIEGL VZ-400 TLS

(RIEGL LMS GmbH, Horn, Austria) was conducted at the Speulderbos site. This scanner
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has shown good results for monitoring phenology (Calders et al., 2015c). The main

advantage of TLS as a gap fraction sensor is its independence from illumination conditions

(Calders et al., 2018b; Hancock et al., 2014; Jupp et al., 2009). This results in high

precision time series, i.e. with low noise in the temporal domain. On the other side, partial

hits lead to underestimation of gap fraction by these kind of sensors (Hancock et al.,

2014; Vaccari et al., 2013). Partial hits result from objects that only partially cover the

laser instantaneous field of view, but are registered as full interceptions by the waveform

analysis methods of commercial suppliers to maximise point cloud density. In this way,

gap fraction is underestimated and, consequently, PAI is overestimated. In addition, wet

canopy conditions have to be avoided for the sampling, because water droplets on canopy

elements absorb the laser beam, thereby apparently increasing gap fraction.

In total 45 sampling events were conducted. The sampling strategy was to focus efforts

during change periods, i.e. SOS and EOS, and to avoid rain conditions. For each sampling

event, the scanner was mounted on a surveying tripod in each centre of the five plots, at a

maximum distance of 3m from the respective PASTiS-57 devices. P (θ) was derived from

the hemispherical scans by taking into account the multi-return capability of the scanner

(Calders et al., 2014). The hinge angle was approximated with the 55◦ to 60◦ region, which

is a typical strategy (Calders et al., 2014; Calders et al., 2015c; Jupp et al., 2009).

Apart from the ground-based TLS time series, MODIS Collection 6 MCD15A3H LAI

products were retrieved (Myneni et al., 2015; Myneni et al., 2011). MCD15A3H is a four-day

composite product based on inversion of a vegetation RTM. Its eight-day companion product

was validated to Stage 2 according to the LPV subgroup (https://lpvs.gsfc.nasa.gov/).

However, the four-day product was preferred over the eight-day product as the goal here

included estimating temporal metrics, thus denser samples were important.

The samples were retrieved from the Application for Extracting and Exploring Analysis

Ready Samples (APPEARS) service of the US Geological Survey (https://lpdaacsvc.

cr.usgs.gov/appeears/) for the period 1 January 2016 until 28 February 2018 and for

the 500m pixel centred at the Speulderbos site. This means that the MCD15A3H samples

also included forest patches other than beech, i.e. some mixed species stand included in the

Speulderbos site. After downloading, the time series was filtered with the accompanying

quality flags to allow only good quality LAI retrievals. After visual inspection it was

clear that some outliers in summer with LAI below 3m2 m−2 occurred, which have been

excluded as well.

Phenological Model Fitting

LSP can be modelled with logistic functions (Kimball, 2014; Zhang et al., 2003). These

mathematically simple models are fitted piecewise to time series of vegetation indices or

LAI to describe the spring growth and autumn senescence periods (Calders et al., 2015c).

From these models LSP indicators like SOS and EOS can be derived. Here, a logistic

https://lpvs.gsfc.nasa.gov/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
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model was used (Calders et al., 2015c; Zhang et al., 2003):

PAI(t) =
U − L

1 + e−k(t−tm)
+ L (2.5)

where t is time (expressed as Day Of Year (DOY)), U the upper asymptote ( m2 m−2),

L the lower asymptote ( m2 m−2), k the growth rate (d−1) and tm the inflection point,

where k is maximal (DOY). The model was fitted with a non-linear least squares routine

implemented in the nls function of the R stats package (Bates and Watts, 1988; R Core

Team, 2014). Separate sigmoids were estimated for the spring 2016 and autumn 2017

periods. In addition to the model parameters’ best estimates, non-linear least squares

estimate also produces prediction intervals. Finally, SOS and EOS were estimated as the

time of the year when the fitted model reached the 95% upper and lower prediction interval

for the L and U parameter, respectively. This fitting strategy was applied separately to

the PASTiS-57, TLS and MODIS time series, and results were compared.

2.2.3 Radiative Transfer Model Experiments

In-scene sensors in DART can be implemented as frame cameras with arbitrary viewing

direction and properties (see Figure 2.3 for an example), and record at-sensor spectral

radiance for any number of spectral bands with any bandwidths (Wm−2 sr−1
µm−1). For

this study, the frame camera characteristic was not exploited, but only the integrated

radiance over the whole sensor FOV was regarded similar to the PASTiS-57 photo-diodes.

As in the field set up (Section 2.2.2), in this simulation the 6 PASTiS-57 sensors were

directed in the NE, E, SE, SW, W and NW directions with a viewing zenith angle of 57.5◦.

In the DART scene, one device consisting of six sensors was positioned below, another

above the simulated canopy, so that canopy transmittance could be calculated in the

same way as in the field experiment (Equation (2.1)). The PASTiS-57 spectral response

curve is not exactly known, so a blue waveband centred at 490 nm with 20 nm bandwidth

(FWHM) was chosen. Additionally, bands centred in the green (560 nm), red (665 nm)

and NIR (865 nm) were tested following the specifications of the Sentinel-2 MultiSpectral

Instrument (MSI) (Drusch et al., 2012). These additional bands allowed judging the

instrument performance in the case photo-diodes would have been chosen that are sensitive

in another spectral region.

Two scenarios were set up to test different canopy parameters. In both, only the sensitivity

of PASTiS-57 to change in LAI was investigated, but not to the temporal evolution. This is

justified with the direct dependence of temporal sensitivity on the sensitivity to LAI. The

first scenario modelled the canopy as a turbid medium, which is in accordance to gap fraction

theory that is underlying the LAI retrieval (Section 2.2.2). This scenario was intended

to test the retrieval robustness to different illumination conditions as well as variation

in biophysical and -chemical canopy composition. Table 2.1 summarises the parameters

and their chosen values. For each case, one typical and two extreme cases were chosen.
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Figure 2.3: DART sample scene: (A) True colour image sample for below-canopy sensor in

DART. The viewing zenith angle is 57.5◦, but the field of view is extended compared to the

sensors used in the modelling to give an overview of the scene. (B) Top view of the created

mock-up with 50 trees.

All parameters were varied in a full grid approach, resulting in a total of 450 simulations.

For this experiment, clumping was not investigated (Ω = 1) because the canopy was

homogeneous in all directions. The solar azimuth angle was kept constant at 180◦. The

simulated sensors were analysed with respect to their prediction performance of the true

LAI. The results were compared with the Global Climate Observing System (GCOS)

requirement for LAI retrieval accuracy, which is 20% as well as the accuracy goal for

agricultural meteorology applications identified by the WMO, which is 5% (Fernandes

et al., 2014). The Relative Error (RE) was chosen as accuracy metric and calculated

as:

RE =
PAIsimulated PASTIS − LAIDART

LAIDART

(2.6)

where LAIDART is the DART input LAI and PAIsimulated PASTIS the PAI derived with

the simulated PASTiS-57. Using this formulation, positive REs meant overestimation of

the PASTiS-57-derived PAI.

During analysis of the results of these RTM simulations, a systematic bias in PAI estimation

has been identified. This could be linearly modelled with the form PAI = aLAI + b+ ε

independently for each LAD (p < 0.01). For assessment of this error’s impact on LSP

metrics estimation, PAI in Equation (2.5) was replaced with the linear bias model and

solved for t. The comparison of this with the unbiased estimation of t gave the expected

error in LSP metric. Since the analytic solution was complex, the impact of the relative

error was assessed numerically by testing a range of values for U , L and k. In the case of

U and L extreme combinations were tested, i.e. L = 0 and U ∈ {1, 2, ...10}. In the case of

k, estimates from the field derived models were used (Section 2.2.2), i.e. k ∈ {0.5,−0.08}.
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Table 2.1: Biophysical, biochemical and illumination parameters and values used for turbid

DART experiments.

Parameter Values Unit

Leaf Area Index (LAI) 1, 2, ..., 10 m2 m−2

Leaf Angle Distribution (LAD)
spherical, erectrophile, planophile

-
extremophile, plagiophile

Chlorophyll a and b (Cab) 20, 50, 80 µg cm−2

Solar Zenith Angle (SZA) 0, 57.5, 80 ◦

Values for tm were not necessary, because it cancels out when only considering the difference

between two estimates.

The second scenario was intended to test the retrieval performance with respect to canopy

non-randomness. For this, discrete trees were modelled with ellipsoid crowns with 10m

diameter and 5m height, and trunks with 40 cm diameter. The number of trees per scene

was varied between 50 and 400 trees on a scene of 80m×80m. Illumination and canopy

biochemical parameters were held constant with a spherical LAD, 50 µg cm−2 Cab and SZA

of 57◦ to extract the effect of clumping alone.

2.3 Results

2.3.1 Field Experiment

Figure 2.4 shows the raw DN recordings of two sampling days, one before SOS, one after

leaf flush in summer. For both days, averages were clearly lower than reference readings

above the canopy, resulting in average canopy transmittance of 29.1% and 0.9% before

and after the start of season, respectively. Another feature was the high number of 0DN

readings at early and late hours of the day after leaf flush, which made up 25.7% of all

observations on that day. At these times, the SZA is typically large, so that the direct

path through the canopy is long and not sufficient radiation reaches the below canopy

sensors. In contrast to this, the SW sensor on the reference device experienced saturation

in the afternoon, probably due to direct illumination. Overall, the two days showed high

agreement in temporal evolution, indicating similar impact of changes in illumination.

These stem from the course of the sun, resulting in the rise and fall of readings over the

course of the day, and from clouds and stems, causing high frequency changes.

A full PAI time series for all three campaigns derived from a device on Plot C can be

seen in Figure 2.5. While the difference between the single sensors was only marginal,

the impact of the filtering was clearly visible. The naive retrieval resulted in strong, high

frequency noise with positive spikes and a Lag 1 Auto-Correlation Coefficient (ACC1) of
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Figure 2.4: Recordings of two sampling days for one device in Plot A. Upper panels are the

observations below the canopy, lower panels are reference readings from above the canopy.

DN axis is on log-scale. Dotted horizontal line is saturation point at 4000DN. Discontinued

lines on lower panel reach saturation. Only pairs for which the observation did not reach

0DigitalNumber were considered.

0.93. The noise after filtering was modest and evolved equally around a mean course of

PAI with ACC1 of 0.97. The former resulted from situations under full canopy in summer,

when the below-canopy sensors had 0DN readings. This results in theoretically infinite

PAI according to Equation (2.4). When comparing the two years, an earlier decrease in

PAI could be observed in 2017. This can be explained with the natural variability of EOS.

This results from different wind loads, which is the main force to defoliate the trees once

the leaves have died.

In Figure 2.6 PASTiS-57 and TLS estimated PAI are plotted together for the dynamic

phases of the yearly phenology, which are spring leaf flush and autumn senescence. Overall,

PASTiS-57 and TLS showed high agreement in temporal development. Both sensors’ time

series reflect the fast leaf development during spring and the longer senescence period in

autumn. The TLS sampling intervals were not sufficient to record the fast changes in

spring, especially between the sampling events of 4 May 2016 and 12 May 2016 when PAI

increased by 1.86m2 m−2 on average within eight days. The PASTiS-57 with their daily

interval could closely follow the development.

Considering the magnitude, both sensors agreed strongly with a Pearson correlation

coefficient of 0.98. However, PASTiS-57 retrievals were lower in winter by 1.44m2 m−2

compared to TLS. This was likely due to the different sensing techniques. In case of

PASTiS-57, backward scattering from woody elements increases recorded radiation at the
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Figure 2.5: All campaigns of one instrument in Plot C before (Naive) and after application

of filtering (Filtered).

below canopy sensors, thus decreases PAI estimates. In the case of TLS, the partial hits

are mainly responsible for the sensitivity to the recording of canopy elements. For both

instruments, PAI > 1.5 in winter pointed to the large influence of woody material on the

retrievals. In contrast to this, PASTiS-57 average and TLS agreed in summer to within

0.74m2 m−2.

Parameter estimates for the fitted phenological models are summarised in Tables 2.2

and 2.3. A total of 21 and 40 samples for each plot were used for TLS and MODIS,

respectively. Concerning the upper and lower asymptotes U and L, PASTiS-57 showed

significantly lower estimates compared to TLS in all plots. For both spring and autumn

campaigns, PASTiS-57 U and L were on average 0.41m2 m−2 and 1.43m2 m−2 lower than

TLS, reflecting the difference in acquisition mechanism. Compared to MODIS, PASTiS-57

U and L were 0.19m2 m−2 lower and 0.97m2 m−2 higher, respectively. Again, this

reflects the different nature of the retrieval algorithms. MODIS LAI makes use of top of

canopy reflectance and is stronger utilising the NIR signal. This makes it less sensitive

to woody material in the canopy, thus MODIS LAI showed generally lower values than

PASTiS-57.

Furthermore, PASTiS-57 agreed very well with TLS in terms of SOS with an average

difference of less than a day. EOS was estimated on average 22 days later by TLS. However,

agreement among TLS plots was low with a range of 29 days in EOS. More samples during

winter would have been necessary to decrease the estimation error. Moreover, PASTiS-57

achieved the lowest estimation standard error on the sigmoid inflection points tm. This was

made possible by the high temporal density of the PASTiS-57 time series. Additionally,

PASTiS-57 agreed well with MODIS SOS to within 2 days. As in the case of TLS, EOS
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Figure 2.6: Comparison of PASTiS-57 and TLS derived PAI for single sensors (coloured) and

Land and Xiang clumping correction (LX), and MODIS LAI for five plots during the spring

2016 and summer 2017 campaigns.

estimation of MODIS was impaired. Only for MODIS, persistent cloud cover — which is

common in autumn in The Netherlands — prevented frequent observations.

2.3.2 Radiative Transfer Model Experiments

The DART RTM experiments permitted to have control over all canopy and illumination

parameters, and to model abstract canopies. Figure 2.7 summarises the results for the

turbid medium canopy case. Most influential was the choice of the spectral band. For

instance, NIR retrievals were generally more than 75% lower than true LAI. This strong

misinterpretation stems from the retrieval assumption of black leaves, which is not fulfilled

in the NIR. In fact, leaves typically transmit around 45% of incoming radiation in this

band. This leads to higher recorded radiation below canopy and underestimation of LAI.

Additionally, the RE was larger at small SZA. This could be explained by a smaller optical

path through the canopy at small SZA, which leads to increased below-canopy recorded

radiation compared to what would be expected for black leaves. These effects could also

be observed to some degree in the green spectral band, where leaves typically transmit

>10%.

In contrast, the blue and red bands were less compromised. They both underestimated

true LAI by maximum 40.0% and on average by 14.2% and 14.5%, respectively. Thus,

the average accuracy was within the GCOS threshold accuracy of 20%. Leaf absorption
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Table 2.2: Phenological model fitting results for the spring 2016 campaign with parameter

mean estimates and their 95% standard error. U is the upper asymptote ( m2m−2), L the

lower asymptote ( m2m−2), k the growth rate (d−1), tm the inflection point (DOY) and SOS

the Start Of Season (DOY). MODIS results refer to all plots and represent LAI in case of U

and L.

Parameter A B C D E

UPASTIS 5.31 (±0.04) 5.65 (±0.04) 5.46 (±0.05) 5.09 (±0.05) 5.67 (±0.05)

UTLS 5.82 (±0.03) 6.10 (±0.03) 5.72 (±0.04) 5.62 (±0.04) 5.99 (±0.03)

UMODIS 5.63 (±0.15) – – – –

LPASTIS 1.63 (±0.03) 1.94 (±0.03) 1.85 (±0.04) 1.57 (±0.03) 1.75 (±0.04)

LTLS 3.10 (±0.02) 3.51 (±0.03) 3.02 (±0.03) 3.03 (±0.03) 3.32 (±0.02)

LMODIS 0.80 (±0.09) – – – –

kPASTIS 0.43 (±0.03) 0.49 (±0.04) 0.54 (±0.06) 0.48 (±0.04) 0.44 (±0.03)

kTLS 0.41 (±0.03) 0.52 (±0.05) 0.47 (±0.04) 0.43 (±0.04) 0.31 (±0.02)

kMODIS 0.77 (±0.26) – – – –

tm,PASTIS 129.5 (±0.2) 129.3 (±0.2) 129.3 (±0.2) 129.2 (±0.2) 129.1 (±0.2)

tm,TLS 130.0 (±0.3) 128.6 (±0.4) 129.3 (±0.4) 129.5 (±0.4) 130.9 (±0.3)

tm,MODIS 126.0 (±0.5) – – – –

SOSPASTIS 117.9 119.5 121.0 119.6 118.4

SOSTLS 118.2 119.9 119.7 119.2 115.8

SOSMODIS 120.9 – – – –

is strongest at these wavelengths due to absorption by chlorophyll, so that the canopy

comes close to the approximation of black facets. Typical transmittance for these spectral

regions is <2% and reflectance <4%. This is why blue channels of digital cameras are

recommended for LAI retrieval (Jonckheere et al., 2005; Lang et al., 2017). Nonetheless,

even these low values in ρ and τ led to higher detected radiation at the sensor compared to

what would be expected with black leaves, so that canopy transmittance was overestimated,

which leads to underestimation of PAI.

Within the blue and red spectral bands most variation was across the different LADs.

While the spherical LAD underestimated true LAI by an average of 2.8% and a maximum

of 11.0% in the blue, simulated canopies with planophile LADs resulted in average and

maximum underestimation of 38.2% and 40.0%, respectively. In the latter case, the

deviation of the G-function value from 0.5 and transmitting properties of the leaves

probably interacted to increase the deviation from true LAI.

Apart from this, underestimation was generally increasing with true LAI. This means that

at higher LAI more radiation was reaching the sensor than expected by the model, i.e.

canopy transmittance is larger than expected. This effect could be created by multiple
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Table 2.3: Same as Table 2.2, but for the autumn 2017 campaign referring to the EOS (DOY).

Parameter A B C D E

UPASTIS 5.69 (±0.04) 5.72 (±0.03) 5.64 (±0.05) 5.49 (±0.05) 5.79 (±0.04)

UTLS 6.06 (±0.08) 6.07 (±0.08) 6.00 (±0.13) 6.05 (±0.12) 6.15 (±0.10)

UMODIS 5.06 (±0.11) – – – –

LPASTIS 1.59 (±0.04) 1.80 (±0.04) 1.69 (±0.05) 1.55 (±0.05) 1.64 (±0.04)

LTLS 3.05 (±0.10) 3.43 (±0.14) 2.74 (±0.17) 2.78 (±0.18) 3.34 (±0.16)

LMODIS 0.65 (±0.09) – – – –

kPASTIS −0.08 (±0.00) −0.08 (±0.00) −0.07 (±0.00) −0.08 (±0.01) −0.09 (±0.01)

kTLS −0.08 (±0.01) −0.12 (±0.02) −0.07 (±0.01) −0.10 (±0.02) −0.09 (±0.02)

kMODIS −0.16 (±0.02) – – – –

tm,PASTIS 307.6 (±0.7) 307.8 (±0.7) 307.5 (±1.0) 309.8 (±1.0) 311.7 (±0.7)

tm,TLS 307.2 (±1.9) 317.4 (±2.0) 307.4 (±3.0) 314.4 (±2.6) 316.7 (±2.6)

tm,MODIS 292.5 (±1.7) – – – –

EOSPASTIS 250.0 250.4 243.2 256.2 262.8

EOSTLS 258.8 288.4 263.7 280.8 281.4

EOSMODIS 269.0 – – – –

scattering in the canopy. According to the gap fraction model assumption there are no

scattering processes within the canopy. Radiation is only absorbed or transmitted without

interaction. However, the DART simulated leaves had τ > 0, which allows radiation to

go through leaves. The more leaves there are, the stronger the mismatch between gap

fraction and DART model.

Concerning Cab, pairwise Student’s t-tests between any of the Cab levels showed no

significant differences in LAI estimation (p > 0.95) and differences were below 0.1%. This

showed that the direct influence of Cab on LAI estimation was very low.

Finally, SZA had minor overall impact on the retrievals. This was on average 0.9% in the

blue band between SZA 0◦ and 57.5◦. However, the difference was larger for spherical and

erectophile LADs. The extreme case was at LAI 10, where the relative error for 0◦ and

57.5◦ differed by 5.1◦ and 9.7◦ for spherical and erectophile LADs, respectively.

When translating the impact of the bias in LAI retrieval on LSP metrics, erectophile LADs

delivered the largest error with 1.9 days later estimation of EOS. Spherical, planophile,

extremophile and plagiophile LADs resulted in 1.5 days, 0.8 days, 1.0 days and 1.1 days

later EOS, respectively. SOS estimation showed lower errors with on average 0.1 days.

This means EOS as the generally slower process experiences larger errors in LSP metric

retrieval based on the LAI bias error. It should be noted that this difference was based on

the particular phenological model used here (Section 2.2.2), but models based on sigmoid

functions in general should experience errors on the same order of magnitude.
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Figure 2.7: DART model results for turbid canopy representation for west facing sensors.

Positive errors mean over-estimation by the retrieval. Light grey and darker grey areas are the

20% and 5% accuracy requirement of GCOS, respectively (Fernandes et al., 2014).

RTM results for the heterogeneous scenario are presented in Figure 2.8. Tree density

was significantly altering retrieval performance in scenarios with <200 trees and LAI >

5m2 m−2. This led to underestimation of up to 69.4% at true LAI 10m2 m−2 and a scene

with 50 trees. For these scenarios the present leaf mass was concentrated in few crowns, so

that the assumption of a homogeneous canopy did not hold and LAI was underestimated.

The clumping correction after Lang and Xiang (Lang and Xiang, 1986) could account for

some of these effects, but could only reduce the underestimation to 55.1% in the case of

50 trees. In those cases, the assumption of a random foliage distribution within the sensor

FOV was violated. Actually, the horizontal FOV of the PASTiS-57 is large compared

to the solid angles that camera pixels represent. The clumping correction after Lang

and Xiang (Lang and Xiang, 1986) corresponds rather to the small FOVs represented by

camera pixels.
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Figure 2.8: DART model results of discrete canopy representation for five different tree

densities (horizontal panels in number of trees). Retrieval without (None) and with clumping

correction after Lang and Xiang (LX) (Lang and Xiang, 1986).
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2.4 Discussion

Ground-validation of LSP and LAI require high temporal density canopy observations.

This study explored the PASTiS-57 instrument for automatic monitoring of phenology

and PAI in a Dutch beech forest. DART RTM experiments helped to evaluate sensing

mechanism of the PASTiS-57 in relation to changes in canopy biochemical and structural

properties other than LAI.

The field experiments showed very good temporal agreement with illumination independent

TLS and MODIS LAI products when temporal density of these reference products was

high. Biases in PAI magnitude were attributed to differences in sensing mechanism. The

field observations required filtering and aggregating the readings to daily time series to

reduce high frequency noise, especially during full canopy coverage in summer. This

noise can be partially tracked back to the sensor’s radiometric resolution of 4000DN.

Considering Equation (2.4), the change in PAI per DN, which is the sensitivity to signal

digitisation, is inversely proportional to the DN. This is because the first derivative of

Equation (2.4) with respect to τ is proportional to the inverse of τ : L′ ∝ − 1
τ
. This can

result in differences as large as 0.75m2 m−2 between DN observation readings of 1 and

2 when the reference sensor is close to saturation (Figure 2.9). Radiometric sensitivity

also impacts the maximum PAI that can be recorded. In the case of PASTiS-57, it

lies at 8.91m2 m−2 with a single measurement. Modern digital cameras typically offer

digitisation up to 14 bit for raw images, resulting in 16 384 grey levels, so that theoretically

10.43m2 m−2 can be retrieved. Therefore, a higher signal bit depth improves the sensitivity

to high LAI as well as maximum retrievable LAI. In the case of the field experiment, the

maximum summer PAI was ∼ 6m2 m−2 (Figure 2.5), which was within the theoretical

range.

The RTM experiments confirmed the principles underlying the retrievals. In particular,

below canopy transmittance measurements in blue and red spectral bands have a high
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Figure 2.9: Sensitivity of PASTiS-57 PAI due to digitisation at low observation readings

(DN) for two levels of reference readings.
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sensitivity to canopy structure and are robust against variation in biochemical composition

and illumination conditions. This is not the case for top of canopy reflectance measuring

sensors, i.e. tower based or satellite sensors, which often exploit the NIR. These are much

more dependent on Cab and illumination angle (Jacquemoud et al., 2009).

However, heterogeneous scenarios confirmed the strong effect of canopy non-randomness

on LAI estimation. In particular in case of low tree density scenarios, which violate the

homogeneous canopy assumption more than dense canopies with closed cover, LAI was

strongly underestimated. Clumping correction after Lang and Xiang (Lang and Xiang,

1986) counteracted this effect somewhat. Other clumping correction strategies exist, but

these usually require estimation of gap size distribution (Gonsamo and Pellikka, 2009;

Leblanc et al., 2005). This is possible with DHP, but not with pointing devices, such as

PASTiS-57. Therefore, a strategy for field measurements would be to employ multiple

PASTiS-57 instruments per plot. Alternatively, a new sensor design based on low-cost

micro-computers equipped with fish-eye cameras could be tested. Such an imaging sensor

could also retrieve LAD concurrently with LAI (Weiss et al., 2004).

Another disadvantage of the single-band, pointing device design of the PASTiS-57 is the

lack of options to distinguish woody and foliage canopy elements. Gower et al. (1999) list

ranges of 7% to 34% of wood area index contribution to PAI based on a literature review.

Previous studies proposed solutions to this problem with multi-band imaging sensors,

including NIR (Kucharik et al., 1997) or imaging sensors combined with radiative transfer

modelling (Woodgate et al., 2016). Another way is multi-temporal estimation by using the

winter measured PAI as branch area index and subtract it from the summer measured PAI.

However, this neglects radiative interaction processes when both elements are present in

the canopy (i.e. occlusion of leaves by branches) and is not agreed on (Bréda, 2003). The

lack of consolidated correction methods has also led to a prevalent neglect of correction

(Bréda, 2003; Woodgate et al., 2016). This topic needs to be addressed with dedicated

devices, i.e. dual-wavelength lidar (Howe et al., 2015).

In the context of sensor simulation, DART proved to be a versatile tool. Especially the

option to simulate arbitrary sensors allowed the implementation of the PASTiS-57 sensor

in this study. Although sensor simulation with RTMs is not new, below canopy sensor

simulations have been restricted to DHP (Gonsamo and Pellikka, 2009) or TLS (Grau et al.,

2017; North, 1996). Another advantage of DART was the option to simulate heterogeneous

canopies, which is crucial for forest radiative transfer modelling.

Next to considerations concerning the retrieval principle, thoughts should be given to

practical instrument design choices. For instance, the power supply with batteries is

a good choice for remote sites and proved to provide electricity for ∼1 year. However,

close to field stations constant power could be supplied via the electricity grid or from

centrally organised solar cells to prevent power loss and missing observations. A permanent

data-link to the logger and upload to cloud servers could help to identify sensor problems
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and monitor results in real-time. Furthermore, the contamination of the sensors with

water, falling leaves or needles, or with insects should be taken care of in a long-term

deployment. In sites with substantial understorey, sensors could be deployed at different

heights and below understorey plants to sample the vertical profile. In addition, sensors at

larger heights might be able to focus on the foliage and prevent large stems to be in the

FOV.

In the context of a set-up in larger, permanent sample sites, the representative area of

PASTiS-57 should be considered to determine the number of required devices. In this

respect, PASTiS-57 is comparable to other below-canopy sensors such as DHP and Licor

LAI-2000 that measure τ at the hinge angle. Therefore, the diameter of the measurement

area is 2× canopy height / tan(57.5◦). This results in a diameter of 32m for a 25m high

canopy, as is the case for Speulderbos. Considering geo-location error of 1 pixel (Drusch

et al., 2012) this would be representative for Sentinel-2 10m resolution bands. However,

replicates need to be installed per plot to improve precision in the case of LAI validation

(Fernandes et al., 2014). In the case of Sentinel-3 — when considering geo-location error —

a footprint of 1000m would need to be covered. Locations should be sampled to account

for the site heterogeneity, i.e. number of species, differences in canopy structure and

presence/variability of understorey.

Furthermore, low-cost, passive sensors such as PASTiS-57 can be combined with light-

independent monitoring. For instance, Culvenor et al. (2014) presented a monitoring lidar

system that samples the hinge angle, similar to the TLS used in this study. These systems

are more cost and maintenance intense, but offer opportunities for inter-comparison and

benchmarking, also with traditional manual sampling methods. Such a combination of

sensors would offer the option of high precision light-independent sensors for site central

areas and low-cost sensors for covering larger areas. This would provide the instrument

infrastructure necessary for continuous validation of LSP and LAI products, as required

by validation Stage 4 of the GCOS LPV group (Fernandes et al., 2014).

2.5 Conclusions

Robust tracking of the phenological cycle and thereby connected canopy biophysical

conditions requires sampling techniques with high temporal resolution. This study assessed

the ground-based, automatic, cost-efficient PASTiS-57 instrument in both field and RTM

experiments for its performance in forest SOS, EOS and LAI estimation. The instrument

design supported acquisition of yearly time series at up to 1min raw data resolution with low

maintenance effort. The choice of the blue spectral region and a viewing angle of 57.5◦ was

found to be robust for a range of canopy biochemical and illumination conditions, thereby

focussing on changes in canopy structure, mainly LAI. However, clumping assessment

in irregular canopies was limited by the low number of sensors per instrument and the

sensors’ pointing measurements. In addition, the restriction to a viewing angle of 57.5◦
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alone does not allow retrieval of LAD together with LAI, as is possible with DHP. Future

studies should compare PASTiS-57 with other phenology monitoring devices and develop

combinations of instruments as site concepts. Other sensor designs could be tested, i.e.

based on imaging sensors.
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Abstract

ESA’s Sentinel-2A (S2A) mission is already providing time series that allow the character-

isation of dynamic vegetation, especially when combined with the NASA/USGS Landsat

7 (L7) and Landsat 8 (L8) missions. Hybrid retrieval schemes combining non-parametric

Machine Learning Regression Algorithms (MLRAs) and vegetation Radiative Transfer

Models (RTMs) were proposed as fast and accurate methods to infer biophysical parame-

ters such as Leaf Area Index (LAI) from these data streams. However, the exact design of

optimal retrieval schemes is rarely discussed. Additionally, studies focused on agricultural

applications, thereby ignoring forest areas.

In this study the impact of five retrieval scheme features on LAI prediction performance

of MultiSpectral Instrument (MSI), Enhanced Thematic Mapper Plus (ETM+) and

Operational Land Imager (OLI) observations was analysed over a Dutch beech forest

site for a one year period. The retrieval scheme features were the (1) addition of prior

knowledge of leaf chemistry, (2) the choice of RTM, (3) the addition of Gaussian noise

to RTM produced training data, (4) possibility of using Solar Zenith Angle (SZA) as

an additional MLRA training feature, and (5) the choice of MLRA. The features were

varied in a full grid resulting in 960 inversion models in order to find the overall impact

on performance as well as possible interactions among the features. A combination of

a Terrestrial Laser Scanning (TLS) time series with litter-trap derived LAI served as

validation of the temporal LAI development. Results showed that the most important

feature was the addition of absolute noise, which improved the median prediction Root

Mean Square Error (RMSE) by 1.09m2 m−2 when 5% noise was added compared to

inversions without noise. The best inversion model achieved an RMSE of 0.90m2 m−2 and

explained 86.3% of the variance of the reference time series. The available observations for

the test site also showed that combined observations of multiple missions are required to

capture dynamic vegetation in order to generate an LAI product at decametric resolution.

The results presented here show that more investigation of noise in hybrid retrieval schemes

is necessary to optimise model performance.
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3.1 Introduction

Vegetation represents a primary component in Earth’s terrestrial carbon cycle, with respect

to its role both as a source of CO2 through respiration and as a sink of CO2 through

photosynthesis (Beer et al., 2010). Its photosynthetic capacity is a function of available

leaf area, which can be quantified in terms of LAI. LAI is the leaf area per horizontally

projected ground area (Chen and Black, 1992) and it was acknowledged as an Essential

Climate Variable (ECV) with high priority in the European Space Agency (ESA)’s Global

Monitoring for Environmental Security (GMES) program (Malenovský et al., 2012) and is

a focus area of the Committee on Earth Observing Satellites (CEOS) Working Group on

Calibration and Validation (WGCV) Land Product Validation (LPV) subgroup (Morisette

et al., 2006).

The Sentinel-2 mission was awaited for the purpose of estimation of biophysical parameters

such as LAI. Its higher spatial resolution, higher revisit frequency and additional red

edge bands are emphasised as potentials for performance advances when compared to the

Landsat missions. Agricultural preparation campaigns such as SEN3Exp and SicilyS2EVAL

offered measurements to gain insight in its spectral opportunities (Delegido et al., 2011;

Frampton et al., 2013; Richter et al., 2012; Verrelst et al., 2012). The SPOT5 Take5

campaign delivered a dataset with a 5-day revisit time to explore the temporal domain

(Campos-Taberner et al., 2016). The domain of forest remote sensing has not seen this

extent of targeted preparation campaigns. Nevertheless, approaches are advancing to make

use of the Sentinel-2 open data in terms of biophysical parameter estimation (Korhonen et

al., 2017). All these campaigns underlined that Sentinel-2 has high potential for estimation

of LAI and Chlorophyll a and b (Cab) in diverse canopies.

In parallel with the advances in sensor technology and data availability, MLRAs were

introduced as retrieval techniques (Baret et al., 2007; Durbha et al., 2007; Lazaro-Gredilla

et al., 2014; Verrelst et al., 2015a; Verrelst et al., 2012). Their main advantage is their

ability to map the non-linear relationship between canopy parameters and the reflectance

signal, and their fast mapping speed compared to look-up tables (Verrelst et al., 2015a).

Especially Gaussian Process Regression (GPR) – a kernel-based MLRA – showed good

results and could achieve the 10% precision for Cab retrieval required by the Global Climate

Observing System (GCOS) (Verrelst et al., 2012). Like traditional retrieval techniques,

MLRAs require a database of biophysical parameters and their associated reflectance

signal to learn the mapping. This database can originate from field observations, but also

from vegetation RTMs. RTMs encode the parameter-reflectance relationship based on

physical laws, which makes them universally applicable. Verrelst et al. (2015a) conclude

that MLRAs and RTMs combined in training schemes have potential for implementation

in operational processing chains for retrieving biophysical parameters. These schemes are

referred to as hybrid training schemes.
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Turbid medium RTMs, which approximate the vegetation canopy as one homogeneous

layer, dominate all kinds of inversion schemes (e.g. Baret et al., 2007; Haboudane et al.,

2004). Among these RTMs, PROSAIL – a combination of the PROSPECT leaf and

the SAIL canopy model (Jacquemoud et al., 2009) – is one of the most widely used.

The main reasons for the use of turbid medium models are their fast processing speed

and the low number of input parameters. However, PROSAIL does not agree well with

geometrically explicit RTMs in the case of heterogeneous scenes (Widlowski et al., 2007).

As modelling capabilities have outrun means to collect ground truth for complex canopies,

a final evaluation of the differences remains open (Widlowski et al., 2015). On the other

hand, so-called emulators make it possible to build fast surrogates for complex models

(Verrelst et al., 2016). For that, a complex physical model is replaced with a statistical

learning model that was trained on input-output combinations of the physical model. This

makes it practically possible to exploit heterogeneous RTMs in operational contexts.

Considering these developments together – decametric observations from Sentinel-2 and

Landsat, fast mapping with MLRA algorithms and fast radiative transfer modelling with

emulators – a decametric LAI product would be possible. Such a product would offer better

opportunities to monitor ecosystems in fragmented landscapes than comparable products

on hectometric scale like the MODerate-resolution Imaging Spectroradiometer (MODIS)

(Myneni et al., 2011) and CYCLOPES (Baret et al., 2007) LAI products.

The aim of this study was to compare different hybrid retrieval schemes that make

combined use of S2A MSI, L7 ETM+ and L8 OLI observations for forest LAI retrieval.

Features in the retrieval scheme were altered in a fully-factorised way to explore their

effects. Performance statistics for the realisations were derived to identify which features

influence performance most. Apart from this, features were analysed in terms of their

extrapolation potential and interactions with other features.

Section 3.2 describes the available field and space-borne data used for prediction and

validation. Section 3.3.1 introduces the training ensembles and the remaining of Section 3.3

elaborates the training choices. In Section 3.4 all results are presented and discussed. The

conclusions derived can be found in Section 3.5.

3.2 Data

3.2.1 Study Site

This study focussed on the Speulderbos Fiducial Reference site in the Veluwe forest area

(N52◦15.15′ E5◦42.00′), The Netherlands (Brede et al. 2016, www.wur.eu/fbprv). In an

earlier forest inventory the site was equipped with a 40m spaced wooden pole grid, which

was geo-located with Real Time Kinematic (RTK) GPS and land surveying methods. This

grid served to define the five plots A to E (Figure 3.1). The plot locations were chosen

www.wur.eu/fbprv
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Figure 3.1: Speulderbos study site with TLS scan positions and polygons representing the

five plots. Background image is an airborne false-colour composite of 2013. The inset shows

the location of the study site within the Netherlands.

with a distance of at least 80m between them. This distance is four times the image

registration error according to S2A mission definition (Drusch et al., 2012).

The stand is predominantly composed of European beech (Fagus sylvatica). A few

specimens of pedunculate oak (Quercus robur) and sessile oak (Quercus petraea) can

be found as well. In the understorey few specimens of evergreen European holly (Ilex

aquifolium) can be found with heights of <7m: 1 each in plots A, B, and E. The stand

was created as a plantation in 1835 and left unmanaged from then on, so that dominant

trees are of even age. Recruitment took only place in canopy openings caused by falling

trees as was the case in plot D. This was reflected by the total number of stems, which was

1059 ha−1 in plot D compared to 280 ha−1, 250 ha−1, 280 ha−1 and 202 ha−1 in plots A, B,

C and E, respectively, as determined in a forest inventory in 2013/2014. Basal area was

43.0m2 ha−1, 42.5m2 ha−1, 31.4m2 ha−1, 34.8m2 ha−1 and 37.2m2 ha−1 for plots A, B, C,

D, and E, respectively.

3.2.2 Field Data

During a field campaign with temporally dense sampling a TLS time series was acquired.

The five plots were revisited 28 times with a RIEGL VZ-400 scanner (RIEGL LMS GmbH,

Horn, Austria). Sample dates were chosen in an opportunistic way with an increased

intensity during leaf flush and senescence. Rain events and wet canopy conditions were

avoided as wet canopy elements tend to absorb the laser pulses thereby introducing a bias in
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the estimation of gap fraction. In each plot the same five positions were scanned resulting

in a total of 25 positions per field visit. The positions were arranged in a star shape with a

centre position determined according to the wooden poles and four positions at the corners

of imaginary squares with 20m edge length. For each position the tripod was levelled. The

individual point clouds were processed with the PyLidar package (http://pylidar.org)

based on the methodology developed by Calders et al. (2015c). This includes the derivation

of gap fraction by counting pulses that exited the canopy versus all pulses fired in the

hinge angle region, which was approximated by the zenith angle region between 50◦ and

60◦. Terrain correction for vertical profiles as proposed by Calders et al. (2014) was not

used because only total canopy Plant Area Index (PAI) values were required, which is

indifferent to the terrain. Finally, PAI was derived as follows:

PAI = −1.1 log(Pgap(57.5
◦)) (3.1)

where Pgap(57.5
◦) is the gap fraction at the hinge angle. PAI is defined as the one sided

surface area of all plant material per unit area ground surface (Calders et al., 2015c). This

is different from LAI, which only includes foliage material.

Additionally, 25 litter traps were installed in the area to directly measure LAI per season.

In each plot five traps were positioned close to the TLS sampling points. Their construction

was based on recommendations of the CTFS Global Forest Carbon Research Initiative

Litterfall Monitoring Protocol, version March 2010 (http://www.ctfs.si.edu/data/

documents/Litter_Protocol_20100317.pdf). Each trap consisted of a PVC pipe bent

to a circle with an area of 0.7m2 and holding a plastic net. The net allows water to drain

and prevent decomposition of the litter content. For each trap the pipe circles were levelled

to assure correct surface area and are held in place 1m over the ground with four wooden

poles.

Litter was collected six times in 2016 over the course of the season. Litter was collected

with paper bags; sorted by species and components, i.e. leaves, twigs, and husks; dried for

at least 24 h at 65 ◦C; and weighted. Specific Leaf Area (SLA) – the unit area of leaf per

unit mass – was estimated based on sub-samples of 100 leaves of each litter collection. The

total leaf area per trap for the whole season was then inferred from the total collected dry

leaf weights taking into account the litter trap surface area. Plot level LAI was estimated

as the mean of the single traps.

Apart from these canopy structural measurements, the leaf chemistry was monitored over

the course of the year. For this purpose two beech trees between plot A and B were rigged

with ropes and climbed four times at different points of leaf development. On each tree five

branches were cut off at each sampling event from near the crown top. From each branch

five leaves were sampled randomly when no differences in development stage were visible.

Especially during the last sampling event, the leaves showed different stages of senescence.

In that case the leaves were sampled to represent the abundance of the respective senescence

http://pylidar.org
http://www.ctfs.si.edu/data/documents/Litter_Protocol_20100317.pdf
http://www.ctfs.si.edu/data/documents/Litter_Protocol_20100317.pdf
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stage on the branch. Leaf reflectance spectra were acquired with a Fieldspec Pro 3 (ASD

Incorporated, Boulder, CO, USA) equipped with an integration sphere. Additionally,

the same leaves were sampled with a Minolta SPAD-500 chlorophyll meter (Spectrum

Technologies, Inc., Plainfield, IL, USA). For this four SPAD measurements per leaf were

averaged. The sampling resulted in a total of 173 reflectance spectra.

3.2.3 Sentinel-2A MSI, Landsat ETM+ and OLI

S2A MSI was primarily designed for land cover and disaster monitoring, but also for

retrieval of biophysical parameters like Fraction Absorbed Photosynthetically Active

Radiation (FAPAR), LAI and Fractional vegetation cover (FCover) (Drusch et al., 2012).

Operational products incorporate the Top Of Atmosphere (TOA) Bidirectional Reflectance

Factor (BRF) and recently the Surface Reflectance (SR) BRF for Europe. Table 3.1 gives

an overview of the MSI spectral bands.

S2A MSI TOA BRF products for tile T31UFT were downloaded from the Copernicus

Open Access Hub (https://scihub.copernicus.eu/) for the period of January 2016

until December 2016. The relative orbits R008 and R051 both include the Speulderbos

site, thereby doubling the number of observations compared to single orbit observation.

TOA BRF products were further processed with sen2cor 2.4.0 (http://step.esa.int/

main/third-party-plugins-2/sen2cor/) to derive SR BRF products. During further

processing 60m bands (B01, B09, B10) were excluded, because they are heavily affected

by atmospheric conditions and therefore were not provided in surface reflectance products.

Cloud and quality screening was performed manually under consideration of the scene

classification delivered with sen2cor. For this Normalised Difference Vegetation Index

(NDVI) time series for the extracted observations were inspected. Potentially cloud free

dates were identified as high values in the time series and the respective images were

checked.

Since the opening of the Landsat Archive in 2008, Landsat products experienced a steady

growth in range of studies and applications (Wulder et al., 2012). In particular the provision

of atmospherically corrected data made physical-based and time series approaches feasible

with the potential to scale up to a global dimension. This included retrieval of biochemical

leaf properties (Houborg et al., 2015), canopy biophysical parameters (Ganguly et al.,

2012; Li et al., 2015a), and time series based deforestation monitoring (Dutrieux et al.,

2015; Reiche et al., 2015). However, specific application to forest LAI retrieval has been

limited.

For this study, L7 ETM+ and L8 OLI SR BRF products at Worldwide Reference System

(WRS) row 24 and WRS path 197 and 198 were obtained as on-demand download

products provided by the USGS Earth Resources Observation and Science (EROS) Center

Science Processing Architecture (ESPA) On Demand Interface (https://landsat.usgs.

gov/landsat-surface-reflectance-high-level-data-products). Both Landsat time

https://scihub.copernicus.eu/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products
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Table 3.1: Spectral band specifications for bands and missions used in this study (band

centres and widths in nm), bands used for atmospheric correction were omitted (Drusch et al.,

2012; Irons et al., 2012).

Domain Landsat 7 ETM+ Landsat 8 OLI Sentinel-2A MSI

Name Center Width Name Center Width Name Center Width

VIS B1 485 70 B2 482 60 B2 490 65

B2 560 80 B3 561 57 B3 560 35

B3 660 60 B4 654 37 B4 665 30

NIR B4 835 13 B5 864 28 B5 705 15

B6 740 15

B7 783 20

B8 842 115

B8A 865 20

SWIR B5 1650 20 B6 1608 84 B11 1610 90

B7 2220 260 B7 2200 187 B12 2190 180

series profited from two orbits from which Speulderbos can be observed. Clouds and cloud

shadows were identified in the same manner as for MSI and with the support of the pixel

quality layer delivered with Landsat Collection 1 products.

All space-borne observations were extracted from the SR products based on polygons

representing the plots. These polygons were produced considering the circular field of

view of the TLS at the five scan positions within each plot (Figure 3.1). Each position

was buffered with a circle of 14.4m radius, which corresponds to the top of canopy of the

approximated tree height of 25m. The combined area of the circles represented the plots.

For each plot and SR product, pixels overlaying each plot were averaged with weights

according to their overlap with the plot polygon.

3.3 Methods

3.3.1 Ensemble Overview

The inversion in this study generally followed a hybrid scheme (Verrelst et al., 2015a;

Verrelst et al., 2015b):

1. A vegetation RTM was run in forward mode to create a database of training samples,

i.e. biophysical parameters served as input for the RTM to predict spectral BRFs.

These parameters were varied to cover multiple canopy conditions.

2. A specific amount of Gaussian noise was added to the spectra to prevent the MLRA

from over-fitting and simulate observation noise.
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3. Multiple MLRAs were trained on the database to learn the inverse mapping, i.e.

from spectral bands to biophysical parameter. Model tuning was performed on a

part of the generated database, while the rest was used for testing of the trained

model.

4. The MLRAs were applied to the observed spectra to predict the desired biophysical

parameter. MLRAs performance was compared.

In this study, features in the training scheme were altered to test their impact on the

prediction performance. The following list gives an overview and introduces reference

terms under which the feature domains were treated:

• Biochemical Prior: Using leaf biochemical parameters inferred from field spectroscopy

observations to restrict the RTM input parameter space (label: prior knowledge)

versus using a free range (label: free) (2 alternatives).

• RTM: Two underlying, structurally contrasting RTMs were tested: turbid medium

PROSAIL (SAIL 4 coupled with PROSPECT 5) and structurally-explicit Discrete

Anisotropic Radiative Transfer (DART) (with PROSPECT 5) (2 alternatives).

• Noise scenario: Using multiple noise levels for two types of noise each (4 and 5

alternatives).

• SZA: Using the SZA as an additional learning feature (label: SZA) or not (label: no

SZA) (2 alternatives).

• MLRA: Using multiple MLRAs: Ordinary Least Squares (OLS), Multi-Layer Per-

ceptron (MLP), Regression Tree (RT), Support Vector Regression (SVR), Kernel

Ridge Regression (KRR), GPR (6 alternatives).

Each unique combination of these features is referred to as a realisation in the following,

while realisations with the same feature were summarised as ensembles. For example, a

realisation may have used biochemical prior knowledge, DART, specific levels of noise,

SZA and OLS. And all realisations that implement DART make up the an ensemble. All

possible combinations of the list above were tested, resulting in 960 realisations. Training

was performed independently for each mission and predictions were combined later to

form one time series per realisation. An independent per mission performance assessment

was not conducted, because effective number of observations varied strongly between the

missions and thus would not allow fair comparison.

3.3.2 Leaf Biochemical Parameter Estimation

For retrieval of leaf chemical properties, the collected field spectral samples (Section 3.2.2)

were inverted with a gradient descent approach utilising the PROSPECT 5 model as

implemented in the R package hsdar (https://cran.r-project.org/web/packages/

hsdar) (Feret et al., 2008; Lehnert et al., 2016). The quasi-Newton method after Byrd

https://cran.r-project.org/web/packages/hsdar
https://cran.r-project.org/web/packages/hsdar
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et al. (1995) that allows box constraints was chosen. The parameter ranges given in

Table 3.2 were chosen as constraints. Results were inspected to identify biochemical

compounds whose abundance was stable over the season and could be assumed fixed over

the course of the year.

3.3.3 RTMs and Training Database Creation

Two contrasting canopy RTMs were used to represent different levels of canopy complexity.

One was PROSAIL, which is a turbid medium model, i.e. it treats the canopy as a

homogeneous medium. It is a combination of the PROSPECT leaf and the SAIL canopy

bidirectional reflectance model (Jacquemoud et al., 2009). It has been widely used in

the fields of agriculture, plant physiology and ecology, including estimation of biophysical

parameters (Atzberger and Richter, 2012; Baret et al., 2007; Campos-Taberner et al., 2016;

Lauvernet et al., 2008). In this study PROSAIL 5B as implemented in the R package

hsdar was used.

On the other hand, the DART model is a voxel-based flux-tracing model that allows

building complex 3D scenes including vegetation canopies (Gastellu-Etchegorry et al., 1996;

Gastellu-Etchegorry et al., 2017). DART contains a PROSPECT module to simulate leaf

reflectance and transmission. Applications of DART can be found in the fields of surface

energy budget studies (Gastellu-Etchegorry et al., 2004) and forest biophysical parameter

retrieval (Banskota et al., 2015; Demarez and Gastellu-Etchegorry, 2000; Malenovský

et al., 2013), where its advantages of explicitly modelling 3D structure were exploited.

DART can be obtained from CESBIO with free licences for publicly funded research and

teaching.

As both RTMs use PROSPECT 5 as underlying leaf model, they have many common

parameters. Table 3.2 gives an overview of the used parameter ranges. In case of free

realisations, ranges were adopted from the literature (Verrelst et al., 2015b). In case of

prior knowledge realisations, the values were estimated with field spectroscopy as described

in Section 3.3.2. The range of sun zenith angles is based on the geographic location of the

Speulderbos site. Since ETM+, OLI and MSI have narrow fields of view of 15◦, 15◦ and

21◦, respectively, view zenith angle and relative azimuth angles were assumed 0. This was

found a reasonable assumption for mid and high latitudes (Nagol et al., 2015). Soil spectra

were estimated from MSI barren, winter observations. BRFs were extracted as described

above and averaged over all sites. Sensor spectral response curves were approximated as

Gaussian with centre wavelength and Full Width at Half Maximum (FWHM) according

to published specifications (Table 3.1). In this way, in fact three models were trained, one

for each sensor.

The DART scene was built of five trees as squared, repetitive scene with 10m edge length

and grid size of 1m horizontal and 0.5m vertical cell size. This means the scene was

duplicated along the edges. The trees’ heights and diameters were roughly approximated
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Figure 3.2: Nadir view of DART sample scene that is used to represent the heterogeneous

canopy. The centre scene with 5 trees is replicated along the edges. Colour is reflectance with

low values black and high values white.

with TLS point clouds (Table 3.2, Section 3.2.2). However, the trees were based on generic

forms consisting of 8-faceted stems and ellipsoidal crowns. The stems had a diameter

of 0.5m below and 0.25m within the crown. The crown leaf volume was simulated as

turbid medium cells. TLS was not used to build 3D tree models in order to keep the

number of input parameters minimal. For fast computation an emulator was built to

replace actual DART simulations (Verrelst et al., 2016). For this, 2500 samples of DART

input parameters were drawn with Latin hypercube sampling according to the free option

in Table 3.2. Then, the same MLRAs as for the inversion were trained to predict the

single spectral bands of ETM+, OLI and MSI. The best performing MLRA was identified

according to the lowest RMSE in a five-fold cross-validation. The application of this

emulator decreased the computation speed from approximately 33 s to 0.005 s per sample.

On the other hand, PROSAIL required 0.003 s per sample.

In total, 2500 parameter samples were drawn with Latin hypercube sampling using

uniform distributions to evenly cover the parameter space for all parameters with range

specifications. Of these 2500, 30% were modified to represent barren, winter conditions.

This means all leaf chemical parameters and LAI were set to 0.

3.3.4 RTM Sensitivity Analysis

In order to assess the importance of the RTM input parameters (Table 3.2) on the

single spectral outputs, a global sensitivity analysis of the RTMs was conducted. Such
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Table 3.2: RTM parameters with their symbols, units, ranges (in case of free realisations)

and estimated values (in case of prior knowledge realisations; based on PROSPECT inversion

of sampled leaf spectra, Section 3.3.2).

Model parameter Unit Free Best estimate

Leaf parameters: PROSPECT-5B

N Leaf structure index - 1 - 2.5 1.27

Cab Leaf chlorophyll content µg cm−2 0 - 80 -

Car Leaf carotenoid content µg cm−2 0 - 20 8.60

Cm Leaf dry matter content g cm−2 0.001 - 0.025 0.00263

Cw Leaf equivalent water thickness cm 0.002 - 0.025 0.0053

Cbrown Brown pigment content - 0 - 1 -

Canopy parameters: SAIL4 and DART

LAI Leaf area index m2 m−2 0 - 8 0 - 8

θs Sun zenith angle ◦ 27.5 - 80 27.5 - 80

θo View zenith angle ◦ 0 0

φ Sun-sensor azimuth angle ◦ 0 0

LAD Leaf angle distribution - Plagiophile Plagiophile

Canopy parameters: SAIL4

αsoil Soil wet/dry factor - 0 0

hspot Hot spot parameter - 0 0

Canopy parameters: DART

TreeHeight Tree height m 20 -

CrownDiameter Tree crown diameter m 5 - 9 -

CrownHeight Tree crown height m 7 -

an approach also helps to gauge how good input parameters can be estimated from

spectral outputs. The approach here generally followed the approach of Verrelst et

al. (2016) based on Sobol’ sensitivity indices (Jansen, 1999; Sobol’, 1990) modified

by Saltelli et al. (2010) and as implemented in the R package sensitivity (https:

//cran.r-project.org/web/packages/sensitivity). Here, only the total effect indices

were considered that describe the sensitivity of the model output to an input parameter

and its interactions with other parameters. The sum of the sensitivity indices with respect

to all input parameters varies per spectral band output. Therefore, indices were normalised

to sum up to 1 to ease comparison across spectral band outputs. Furthermore, only bands

of MSI were taken into account, because they cover the same spectral domains as ETM+

and OLI (Table 3.1).

https://cran.r-project.org/web/packages/sensitivity
https://cran.r-project.org/web/packages/sensitivity
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3.3.5 Noise Scenarios

The addition of noise to the RTM-generated spectral bands has multiple purposes: it

simulates errors of radiometric calibration, atmospheric noise and residuals from the atmo-

spheric correction, but to some extent also bridges between the simplified representation

of the RTM and the actual radiometric behaviour of the canopy (Baret et al., 2007).

Generally, noise prevents the inverse model from over-fitting on the training database.

However, an accurate quantification of all error terms in the sensing process remains

difficult (Baret et al., 2007). Verrelst et al. (2014) added up to 20% Gaussian noise to the

reflectance spectra in a look-up table approach to find optimal performance results.

In this study two types of noise were tested: multiplicative wavelength-independent (MI)

and additive wavelength-independent (AI) noise (Weiss and Baret, 2016). MI is dependent

on the BRF. Its term is larger for NIR compared to red spectral bands for typical vegetation

spectral responses. MI and AI were added to the RTM spectral bands:

ρ′ = ρRTM + ρRTM · εMI + εAI (3.2)

where ρ′ is the noise contaminated spectral band, ρRTM is the RTM spectral band

output, εMI the MI noise term with εMI ∼ N (0, σMI) and εAI the AI noise term with

εAI ∼ N (0, σAI). Apart from noise free, realisations with MI noise of 0.05, 0.1, 0.2 and

0.3, and AI noise of 0.05, 0.1 and 0.2 were tested. The additional MI noise level of 0.3

was added after analysis showed an increasing performance up to 0.2. The 0.05 noise level

was motivated by the Sentinel-2 mission requirement for SR BRFs of 5% error (Drusch

et al., 2012), and the other were pessimistic variations. However, as mentioned before

the noise term has multiple purposes, so that the mission requirements can only be an

indication.

3.3.6 Solar Zenith Angle

Illumination conditions greatly affect the reflectance of canopies (Brede et al., 2015;

Jacquemoud et al., 2009; Morton et al., 2014). As the SZA changes over the course of

the year, the internal canopy shadowing varies. Furthermore, SZA is an easy to obtain

feature as it is solely a function of location and time. Therefore, SZA was incorporated

in the training scheme to test if it improves LAI prediction. SZA was calculated for

local overpass times of the respective missions with the R package RAtmosphere (Teets

(2003), https://cran.r-project.org/web/packages/RAtmosphere). For the respective

realisations, it was treated as an extra training feature next to spectral bands.

3.3.7 Machine Learning Regression Algorithms

Studies on MLRA typically test a range of algorithms to explore their respective (dis)̄ad-

vantages and cross-comparison results. This was adopted in this study as well. All

https://cran.r-project.org/web/packages/RAtmosphere
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models were trained to predict LAI, while the independent variables depended on the

learning realisation. Multi-variate OLS regression was chosen as a benchmark method. For

neural networks the classic MLP was used (e.g. Baret et al., 2007). In particular this was

the implementation of the Stuttgart Neural Network Simulator in the R package RSNNS

(https://cran.r-project.org/web/packages/RSNNS). Networks with n+ 1 neurons in

a single hidden layer were trained, where n corresponded to the number of independent

variables. Random Forest was selected as a RT algorithm (Belgiu and Drăgu, 2016;

Breiman, 2001) and used as implemented in the R ranger package (https://cran.r-

project.org/web/packages/ranger). The forests were grown with 500 trees.

Furthermore, three kernel-based methods were used. This type of regression methods

translates the – possibly non-linear – regression problem from the parameter space into

a higher dimensional feature space, where it can be solved linearly. Kernel functions

implement a notion of similarity function. SVR, KRR and GPR with Radial Basis

Function (RBF) kernels were tested here. The kernel σ hyperparameter was estimated

with the sigest function from the kernlab package. Although developed to estimate σ

for SVR, results in initial tests were promising for KRR and GPR. For further reading

on MLRAs in biophysical parameter estimation the reader is referred to Verrelst et al.

(2015a).

The general work-flow for MLRA application typically involves splitting of the feature

database to tune model parameters. Here, five-fold cross-validation was performed during

the tuning process. This was based on the training dataset, which held 2500 samples of

the RTM-based database. Next, the model performance for the best tuned parameters was

evaluated with the test dataset, which held 500 samples of the RTM based database. This

set was never seen by the models during training. Finally, the models were applied on

the actual sensor observations and compared with the validation dataset (Section 3.3.8).

However, as we inverted observations of three different sensors, in fact for each realisation

three separate models were trained.

3.3.8 Ensemble Analysis & Validation

In order to analyse how well the MLRAs were able to learn the RTM-produced band-

LAI relationships the test error was consulted. However, this error represents only the

theoretical performance in case the RTM produces true results for the scene and the

induced noise properties correspond to the noise of the actual spectral observations.

For validation purposes the advantages of the TLS time series – i.e. high precision due

to independence of illumination conditions (Calders et al., 2018b; Jupp et al., 2009) –

was combined with the direct estimation of LAI with the litter-traps. Litter-traps are

considered among the most accurate methods in terms of absolute LAI for forest canopies

(Jonckheere et al., 2004). This approach follows the suggestion of Woodgate et al. (2015)

to calibrate TLS with other techniques. Specifically, the TLS time series was scaled with

https://cran.r-project.org/web/packages/RSNNS
https://cran.r-project.org/web/packages/ranger
https://cran.r-project.org/web/packages/ranger
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the litter-trap total LAI separately for each plot:

LAIi =
PAITLS,i −min(PAITLS)

max(PAITLS)
· LAILT (3.3)

where LAIi is the LAI at time i, PAITLS is the TLS derived PAI time series and LAILT
is the litter-trap LAI. The observations were averaged per plot and linearly interpolated

to obtain a continuous time series.

For each realisation the time series of predicted LAI was compared with this validation

time series. The performance metric was the RMSE:

RMSE =

√√√√1

t

t∑
i=1

(LAIrealisation,i − LAIvalid,i)
2 (3.4)

where t is the length of the time series, and LAIrealisation,i and LAIvalid,i the realisation

and validation LAI at time i, respectively.

3.4 Results & Discussion

3.4.1 Validation Time Series

Figure 3.3 shows the derived validation time series. The seasonal pattern with a fast spring

leaf flush in May and autumn leaf falling in November dominated the temporal behaviour.

Calders et al. (2015c) observed this speed in spring leaf flush for a mixed oak forest in the

Netherlands. Maximum LAI of 6.1m2 m−2 was reached on May 26 in plot A. Plot B and

E showed LAI values just below 6.0m2 m−2. Plot C had a larger gap in its centre so that

overall LAI was lower there. Measured LAI for plot D was about 2 units lower with a peak

of 3.2m2 m−2. This was due to the age composition of this plot, which was dominated

by younger trees. The maximum LAI compares well with the results of Leuschner et al.

(2006), who measured LAI by litter-traps in 23 mature Beech stands in Germany. They

found an average LAI of 7.4m2 m−2 with a range between 5.6 to 9.5 m2 m−2.

Another feature is the slow decrease in LAI starting in August that could be observed

in all plots. After the 2016 growing season few, brown leaves were still remaining on the

trees until new leaves flushed in 2017. Overall, the obtained time series show the expected

dynamic behaviour of the canopy during spring and autumn.

With respect to the uncertainty of the validation data, the standard deviation of the

mean for the litter-trap samples was calculated as 0.43m2 m−2, 0.25m2 m−2, 0.41m2 m−2,

0.32m2 m−2 and 0.24m2 m−2 for plots A to E, respectively. GCOS specified an accuracy of

0.5m2 m−2 as a target for LAI products for local and regional applications (Fernandes et al.,

2014). However, this is the requirement for the final LAI products, so that the achieved



54 Impact of Retrieval Scheme Features on Forest LAI Prediction

●
●●●

●●●
●

●

●

●

● ● ● ● ● ● ●
● ●●●

●

●

●

●
●

●

0

2

4

6

Dec
2015

Feb
2016

Apr
2016

Jun
2016

Aug
2016

Oct
2016

Dec
2016

Feb
2017

LA
I

Plot
● A

B

C

D

E

Figure 3.3: Speulderbos LAI time series for 2016 derived from TLS, points are observations.

Lines are linear interpolations. Interpolations for outside of the measurement campaign were

performed with the values from the previous and next year, which are added to the graph for

clarity.

uncertainties are rather high for a validation measurement. This affected especially the

realisation evaluations in terms of RMSE.

Nonetheless, the used TLS-based approach was found to be very suitable from an acquisition

point of view. The active illumination source leads to independence of cloud and sun

conditions, which is useful when frequent acquisitions have to be made. Passive devices

are restricted to operations under full cloud cover or clear sky (Jonckheere et al., 2004).

On the other hand, sampling was restricted by rain and wet canopy conditions, because

liquid water absorbs the laser energy, which leads to overestimation of gap fraction and

ultimately underestimation of LAI.

3.4.2 Leaf Biochemical Parameters Retrieval

The leaf chemistry assessment indicated that some leaf components remained stable over

the course of the season, while others showed a dynamic behaviour, resulting in multi-modal

distributions (Figure 3.4). The static ones were the N parameter, the dry matter content

Cm, and to some extent the equivalent water thickness Cw. The mean of the carotenoids

remained stable, but its variance was increasing at the last sampling day. Cab showed clear

dynamics, with a strong decrease during the last sampling day. When compared to the

readings of the SPAD meter, Cab retrievals showed a quadratic relationship (Figure 3.5),

which is confirmed by other studies (Buddenbaum et al., 2015; Percival et al., 2008). This

strong relationship supports the validity of the Cab retrievals, and thereby the retrieval of

the other biochemical constituents since they were inverted simultaneously. On the basis
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Figure 3.4: Leaf chemical properties based on PROSPECT inversions of 173 leaf samples.

Stacks are coloured by acquisition date. Solid lines are fitted probability density functions.

Ordinate axis is kernel density.

of these results it was decided to constrain the training with fixed, central values of the N

parameter, Car, Cw and Cm, but vary Cab and Cbrown as given in Table 3.2.
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same leaf samples. Solid line, R2, p-value and formula correspond to the quadratic fit. Dates

correspond to the leaf sampling dates.
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3.4.3 Satellite-based Spectral Observations

Of the 64 dates in 2016 when MSI observations of the Speulderbos site were available, 21

dates yielded usable observations, which is 32.8% of all. Figure 3.6 shows the bands B04

and B8A, which are the red and NIR spectral bands (Table 3.1) and hold most information

on change in canopy characteristics. The automatic scene classification could identify

most of the cloud affected conditions with an accuracy of 91.6%. Overall, the time series

depicted the start of season in April and May: the red reflectance decreased over all plots

from 0.059± 0.003 on May 1 to 0.022± 0.001 on May 11 due to absorption by chlorophyll.

At the same time, reflectance in band B8A increased from 0.188± 0.008 to 0.406± 0.014,

which can be attributed to the leaves’ characteristic scattering behaviour. During late

summer, the overall temporal course remained stable with a slightly decreasing trend.

This trend could also be observed in the validation time series (Figure 3.3). An exception

was July 17, when B8A reflectance jumped to 0.526± 0.023. There were no clouds over

the plots on that day, but clouds close-by probably caused adjacency effects.

In case of the two Landsat missions, 41 and 42 observation dates were available of which

8 (17.1%) and 9 (15.8%) were usable for ETM+ and OLI, respectively (Figure 3.7).

The pixel quality bits for cloud occurence indicated at least medium confidence, which

appeared to indicate clear sky conditions after checking the corresponding images. As for

MSI, these could mostly be found during the spring green-up and late summer periods.
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Figure 3.6: Observed BRFs for S2A MSI red and NIR band over the year 2016 for the five

Speulderbos plots (see Figure 3.1). Points represent average BRF over the five sites, error bars

one standard deviation. Colour codes the number of plots for which the observations were

useful (clear sky). SCL class refers to the mode of all Scene Classifications given by sen2cor

over the five plots.
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Figure 3.7: Same as Figure 3.6, but for Landsat 7 ETM+ and Landsat 8 OLI. Pixel QA

refers to the pixel quality bits. Six observations were discarded, because they exceeded a

reflectance of 1.

Cloud conditions, represented by bits set to high confidence cloud, were identified with an

accuracy of 85.9%.

In September, when multiple observations of MSI and OLI were available, they produced

comparable SR BRFs when excluding September 5. Only the SWIR bands produced small,

but significant differences. This gives confidence in comparable behaviour of SR BRFs

and to combine observations from these sensors. However, for a detailed comparison the

spectral response functions of the sensors and the used atmospheric processors need to be

taken into account e.g. Doxani et al., 2018. In fact, for optimal inter-operability the S2A

and Landsat products should be harmonised before combined processing.

3.4.4 RTM Sensitivity

PROSAIL’s and DART’s sensitivity to their input parameters is depicted in Figure 3.8.

In case of PROSAIL, BRFs in the visible bands were primarily driven by Cab with a

contribution of 74.8% and 49.4% in B03 and B04, respectively. This extended into the

first red edge band B05, but strongly decreased to 6.1% at B06. In the red edge and

NIR bands LAI was the most important parameter with a relative contribution of 68.5%

for bands B06 to B8A on average. This sensitivity is the reason why LAI retrieval relies

on the NIR domain. The SWIR bands were mostly dependent on leaf water content Cw,

which had 52.8% and 46.2% contribution in B11 and B12, respectively. These results are

in line with those of Jacquemoud et al. (2009).
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Figure 3.8: Global sensitivity of S2A MSI spectral bands to PROSAIL and DART input

parameters. Total Sobol’ Indices were normalised per band to sum up to 1. For band

specifications see Table 3.1.

On the other hand, DART’s output sensitivity was dominated by canopy structural

parameters (LAI and CrownDiameter) in the NIR spectral outputs. The contribution of

LAI was maximal in B04 with 64.1%, while that of crown diameter was maximal in B06

with 52.2%. Their combined contribution was minimal in B12 with 12.7%. In contrast to

PROSAIL, DART showed some sensitivity towards SZA, which was 5.1% on average in

bands B05 to B8A. This reflects the effect of shadowing and DART’s vertical heterogeneous

character.

3.4.5 Impact of Training Scheme Features on Prediction Performance

This section presents the single inversion scheme features and their role for predicting

LAI. Since the RMSE results were not normal distributed, the median was calculated

for all realisations that implemented the specific feature. In this way the feature’s role

can be evaluated. It should also be noted that per default RMSE refers to the validation

error. Only in some cases the training error was evaluated, but this is always explicitly

mentioned.

Table 3.3 summarises the effects of all features on the validation RMSE. The feature with

the strongest influence on performance in terms of RMSE was the adding of AI noise to the

RTM generated spectral outputs. Adding 5% AI noise decreased the median RMSE from

2.32m2 m−2 for no noise to 1.23m2 m−2. Realisations with 5% AI noise also achieved the

overall lowest RMSE. The second-most important feature was the choice of MLRA. Here,

realisations varied between RMSE of 1.95m2 m−2 for MLP, and RMSE of 1.50m2 m−2
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Table 3.3: Validation median RMSE for training features. Per feature all realisations were

summarised that implement that feature.

Feature Realisation Median RMSE

Leaf chemical prior Free range 1.48

Prior 2.09

RTM PROSAIL 1.93

DART 1.48

MI Noise 0% 1.71

5% 1.69

10% 1.71

20% 1.65

30% 1.63

AI Noise 0% 2.32

5% 1.23

10% 1.37

20% 1.75

SZA Without SZA 1.69

With SZA 1.65

MLRA OLS 1.72

MLP 1.95

RT 1.57

SVR 1.50

KRR 1.65

GPR 1.59

for SVR. Restraining the training database with prior information on leaf biochemical

contents generally decreased prediction performance.

The following sections present the performance results of all training features in more

detail and elaborate on their first order interactions, whereas typically only the strongest

interaction is discussed. Interactions were investigated by comparing the respective groups

of realisations that implement the features. For example, if feature A has two realisations

A1 and A2, and its strongest first order interaction feature B has B1 and B2, all realisations

that implement them (A1/B1, A1/B2, A2/B1, A2/B2) were compared to each other.

The strongest interaction was identified as the one that varies performance in terms of

validation RMSE the most after the feature under consideration.
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Leaf Biochemical Prior

Figure 3.9 summarises how the leaf biochemical prior information affected the training

results in terms of RMSE with violin plots. These plots have the advantage of not

reducing distributions to their statistical moments as box-plots do, but to display the full

distributions. This makes them particularly suitable for non-normal data, as was the case

for most of the distributions here. They are basically vertical smoothed density estimate

plots that are symmetric around the vertical axis. This means they become wider at values

where more observations occurred. The choice for a particular RTM was identified as the

strongest interaction with the leaf biochemical prior choice.

PROSAIL performance was generally more affected by introducing prior information

than DART performance: median RMSE decreased from 1.90 to 1.39 m2 m−2 when prior

information was included in the test data sets, while it increased from 1.45 to 2.37 m2 m−2

in case of the validation data. The former can be explained by the sensitivity of PROSAIL

to biochemical parameters Cab, Cm and Cw (Section 3.4.4). Using prior information

effectively decreases the parameter input space that the model has to learn, thereby
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Figure 3.9: Impact of using leaf biochemical prior information on RMSE performance for

DART and PROSAIL. All violin areas are scaled to be the same. In case of the validation results,

36 realisations were trimmed with RMSE larger than 3.5m2m−2, because they prevented

proper display.
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making it easier for the model. This also made it possible to reach testing RMSE as low

as 0.01m2 m−2. However, inversion of actual observations was impaired by the constraint

of the leaf chemical parameter space. This may be due to the fact that leaves were only

sampled from two beech trees, while oak was also present and environmental conditions

may change the chemical composition throughout the study area. Additionally, the way

the constraint was implemented — as mean estimates allowing no deviation — may also

play a role.

Contrary to this, the DART inversion performance was less sensitive to leaf biochemi-

cal parameters (Section 3.4.4). Median performance in terms of RMSE was similar at

2.31m2 m−2 and 2.16m2 m−2 for test data and improved slightly with a decrease in RMSE

from 1.51 to 1.43 m2 m−2 for the validation data set when introducing leaf chemical

information. Thus, reducing the input parameter space had a small positive effect during

training and validation.

RTM Choice

Among other features, Figure 3.10 compares the inverse model realisation in terms of

their used RTM. Both testing error, i.e. the error based on RTM produced samples, and

validation error, i.e. the error based on the validation time series for the Speulderbos site,

are shown. Overall, PROSAIL and DART achieved a median RMSE of 1.64m2 m−2 and

2.19m2 m−2, while the validation RMSE was 1.93m2 m−2 and 1.48m2 m−2, respectively.

The lower performance of DART on the testing samples can be explained with its additional

freely varying parameter, the crown diameter. However, with this parameter came the

capability to model crown gaps (Figure 3.2), which led to the better performance in terms

of validation RMSE.

Apart from the overall better median RMSE of DART, using this RTM generally decreased

spread of error for realisations that also implemented some AI noise larger than 0%. The

validation RMSE standard deviation for those realisation was 0.50m2 m−2 for PROSAIL

and 0.33m2 m−2 for DART. In case of 5% AI noise the difference was even larger

with 0.58m2 m−2 for PROSAIL and 0.17m2 m−2 for DART. This means that choosing

this combination reduced the importance for a particular choice of the other training

features.

There were realisations for which the testing RMSE was larger than the validation RMSE.

In fact, this was the case for 43.3% and 77.7% of the PROSAIL and DART cases,

respectively. Under circumstances where data of the same origin would have been used,

this would be unlikely to occur, especially in scenarios with added noise. However, training

in this study was based on RTM output and validation on field acquired data.
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Figure 3.10: Prediction performance in terms of testing and validation RMSE in dependence

of the chosen RTM, AI and MI noise level, and bio-chemical prior. RMSEmedian, σRMSE and

RMSEmin refer to the validation error in the respective panel cell. Grey line is 1:1 line. In

case of the validation results, 14 realisations were trimmed with RMSE larger than 10m2m−2

(all with 0% AI noise), because they prevented proper display.
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Noise Scenarios

Both the AI and MI noise had different effects on the testing and validation error. Generally

testing errors increased with increasing noise. In the case of AI from 1.30m2 m−2 for 0%

to 2.46m2 m−2 median RMSE for 20% AI noise, and in the case of MI from 1.88m2 m−2

for 0% to 2.07m2 m−2 median RMSE for 20% MI noise. This showed the general effect

of the noise to blur the relationship between spectral output and associated LAI, and

prevent the MLRA to learn the true RTM produced pattern.

However, AI noise was generally more successful at reducing validation RMSE (Table 3.3):

it decreased median RMSE by 1.09m2 m−2 (from 2.32m2 m−2 for 0% AI noise to

1.23m2 m−2 for 5% AI noise). MI noise reduced median RMSE only by 0.08m2 m−2 (from

1.71m2 m−2 for 0% MI noise to 1.63m2 m−2 for 20% MI noise).

Considering AI noise alone, the addition of any in comparison to no AI noise strongly

changed the distribution of realisations in terms of RMSE (Figure 3.10). This did not

only include the best, but also low performing results. More precisely, AI noise prevented

occurrence of very bad results. For the 0% AI noise level worst performance reached up to

29.29m2 m−2 and the 95% quantile lay at 10.3m2 m−2, while for 5% these statistics were

2.96m2 m−2 and 2.47m2 m−2, respectively. Here, the added noise prevented the MLRA

from over-fitting on clean RTM simulations.

Noise was also found an important training scheme element in PROSAIL-Look Up Table

(LUT)-based inversions of observations from agricultural crops by Rivera et al. (2013)

and Verrelst et al. (2014). They added up to 50% and 30% noise to PROSAIL spectra,

respectively, but did not specify how the error was implemented. However, the required

magnitude of noise corresponds to the MI noise in this study, which was optimal at 20

to 30%. Baret et al. (2007) added 0.04 absolute Gaussian white (AI) noise in a global

retrieval scheme based on PROSAIL. This is in line with the optimal 5% AI noise in this

study. Koetz et al. (2005) adopted a wavelength-dependent, relative noise term of maximal

10% in the 444 nm band. Both Koetz et al. (2005) and Baret et al. (2007) based their

choice for a specific noise level on experience of observation errors, but do not evaluate

other possibilities.

Baret et al. (2007) argued that the quantification of the error term is difficult, as it includes

errors stemming from the radiometric calibration of the sensor, Bidirectional Reflectance

Distribution Function (BRDF) normalisation, atmospheric correction, cloud residuals and

the RTM representativeness for the actual canopy. Additionally, the interaction of these

single terms plus the properties of the used MLRA in an inversion scheme complicates

the choice based on experience of errors of the sub-systems. Surely, it is more practical

to conduct a sensitivity analysis over validation samples rather than characterising the

sensor-inversion system in detail. Moreover, noise terms need to be defined properly to

compare them across studies.
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SZA

As shown in Table 3.3, realisations that made use of SZA as an extra training feature

achieved overall 0.04m2 m−2 smaller median RMSE than realisations that did not include

SZA. A Wilcoxon signed-rank test confirmed that the two groups differed significantly

(p < 0.01). This difference was most prominent with the multiple MLRAs. For example,

SVR benefited strongest with a decrease in median RMSE by 0.07m2 m−2. This can

be explained by the richer feature space that the MLRAs had available for learning.

Additionally, SZA correlated with the general phenological patterns of the study area with

low SZA in summer.

Strategies to include SZA into inversion schemes of multi-temporal observations are not

consolidated yet. Koetz et al. (2005) computed independent LUTs for different observation

dates and consequently SZAs, but they did not investigate the error that would occur if

they would not have done so. However, training separate models for multi-temporal time

series with multiple observations per year is undesirable due to computational load and the

checks that would be necessary to ensure consistent model properties. Campos-Taberner

et al. (2016) conducted PROSAIL inversions over a full season of L8 OLI, L7 ETM+ and

Satellite Pour l’Observation de la Terre (SPOT) High Resolution Geometric (HRG) sensor

data and they mention solar-sensor geometry as inputs for PROSAIL, but do not elaborate

how these parameters were dealt with in the training database. Baret et al. (2007) Weiss

et al. (2007) included SZA as a training feature in their neural network based inversion

for the VEGETATION based CYCLOPES LAI product, but again did not evaluate this

strategy. However, as the CYCLOPES product has global extents, it spans several degrees

of latitude, leading to different regimes of illumination dynamics over the year. Thus, SZA

was given importance in past studies and showed some importance here as well, but has

not been yet evaluated for global LAI products. At least adding SZA as an additional

training feature is an easy implementable option. Also, SZA is efficient to compute, as

only the location and observation time are needed to calculate it. However, interactions

with other parameters that change over the time of the year such as soil background and

LAI itself also need to be considered.

MLRA

As demonstrated in the discussion of the other training features, the choice for a specific

MLRA was not the most important factor affecting validation performance in this study

(Table 3.3). However, studies employing MLRA typically compare various algorithms e.g.

Campos-Taberner et al., 2016; Verrelst et al., 2012. Figure 3.11 gives an overview over

all realisations grouped by their used MLRA. The MLRAs reached best (and median)

RMSE of 1.03 (1.72), 0.90 (1.57), 0.90 (1.95), 0.96 (1.50), 0.92 (1.65) and 0.91 (1.59)

m2 m−2 in case of OLS, RT, MLP, SVR, KRR and GPR, respectively. Hence, even though

RT and MLP produced the best, SVR produced the overall best realisations. Maximum
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Figure 3.11: Violin plots of prediction performance for the different MLRAs. It should be

noted that 24 realisations were trimmed with RMSE larger than 5.0m2m−2 (17 for OLS and

7 for KRR), because they prevented proper display.

differences among the MLRAs in median RMSE of 0.45m2 m−2 were found between SVR

and MLP realisations. There were also 17 realisations using OLS and 7 using KRR that

exceeded RMSE of 5m2 m−2, all of which were training without noise applied to the

training spectral features.

Apart from the MLRA validation, performance processing time is an important property

especially for routine and large scale production. The time required for the training of the

described realisations in this study was on average 0.03 s, 7.18 s, 2.29 s, 3.17 s, 125.37 s and

123.81 s for the OLS, RT, MLP, SVR, KRR and GPR, respectively. This is in contrast to

Verrelst et al. (2012) who found KRR and GPR required around the tenth of the time

of a neural network or an SVR. However, their models were implemented with Matlab,

while this study used R. Additionally, the implementations of RT, SVR, KRR and GPR

in this study could make use of parallelisation. Concerning time required for prediction of

10 000 random samples the models needed 0.08 s, 0.09 s, 0.09 s, 0.15 s, 0.30 s and 0.19 s in

the case of OLS, RT, MLP, SVR, KRR and GPR, respectively. Hence, implementation

details and optimisation can play a significant role in processing time.

3.4.6 Best Performing Feature Combination

Figure 3.12 shows the best performing realisation that reached RMSE of 0.90m2 m−2. It

was built with a RT based on a DART produced database restricted with prior information

from the leaf sampling, 5% AI and 5% MI noise, and without SZA as additional training

feature. Maximum LAI of 5.68m2 m−2 was reached in plot A on July 17. LAI before

May 1 was on average (0.16± 0.34)m2 m−2, and thereafter (4.63± 0.63)m2 m−2 until
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Figure 3.12: Best performing realisation in terms of RMSE over the 2016 study period. Black

solid line is the validation time series.

end of October. The predicted LAI explained 86.3% of variation of the reference time

series.

In general these results for a single time series are in the range of previously published

results. Schlerf and Atzberger (2006) achieved 0.66m2 m−2 with a two-band combination

chosen from simulated Landsat TM bands over a Norway Spruce site. For beech canopies

within the same site Schlerf and Atzberger (2012) report 2.12m2 m−2 RMSE with a

multi-spectral, near-nadir viewing set-up. Both studies used the INFORM RTM to create

the training database (Atzberger, 2000).

However, as can be observed in Figure 3.12, the predictions showed different biases for the

single plots. In fact, summer LAI was underestimated on average by 1.07m2 m−2 in plots

A, B and E, and overestimated by 1.38m2 m−2 in plot D. The bias in plot D could result

from the structure of the plot, which consisted of more young trees compared to the other

plots. The position of the litter traps was chosen close to the TLS scan positions, which

were possibly not representative for the whole of the plot. Additionally, RMSE as the

choice of error metric during retrieval evaluation does not allow the assessment of bias. In

fact, additional error metrics would be needed to characterise the bias as well as temporal

consistency of the time series.
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3.5 Conclusions

The Sentinel-2 mission provides a new science-grade data stream for monitoring of dynamic

vegetation behaviour. Together with other missions like Landsat 7, 8 and future Landsat

9 a characterisation of temporal dynamics in biophysical parameters becomes possible at

decametric resolution. Accurate retrieval and a universal processing work-flow for potential

Sentinel-2 and Landsat harmonised biophysical products remains a challenge. Previous

studies identified MLRAs combined with RTMs in hybrid retrieval schemes as a potential

solution. This study investigated the impact of multiple properties of such schemes on the

retrieval performance for LAI over a Dutch beech forest site.

Addition of AI noise on the RTM spectral database was found to be most important for

prediction performance with a difference of 1.09m2 m−2 in median RMSE compared to

no noise. A level of 5% was optimal in this study. On the other hand, MI noise showed

less improvements. Added noise helps the MLRAs to generalise and prevent over-fitting

on the pure RTM output. Previous studies did not investigate the effect of different noise

definitions and some did not report precisely how noise was defined. With respect to its

importance, a clear definition and careful sensitivity analysis should be paramount for

future studies.

The choice for the heterogeneous DART RTM in comparison with the turbid medium

PROSAIL model resulted in a median RMSE difference of 0.45m2 m−2. An additional

advantage of DART in this study was the lower spread of performance of other inversion

scheme features, i.e. DART led to more consistent inversion schemes. The choice of a

specific MLRA was found to be less critical in terms of prediction performance. However,

MLRAs varied significantly in run-time, also depending on the implementation and code

optimisation. When choosing a particular MLRA these secondary benefits should be

weighted together with the expected accuracy.
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Abstract

In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser

Scanning (TLS) systems have shown the potential to revolutionise forest structural char-

acterisation by providing unprecedented 3D data. However, manned Airborne Laser

Scanning (ALS) requires costly campaigns and produces relatively low point density, while

TLS is labour intense and time demanding. Unmanned Aerial Vehicle Laser Scanning (UAV-

LS) can be the way in between. In this study, we present first results and experiences

with the RIEGL RiCOPTER with VUX R©-1UAV UAV-LS system and compare it with

the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both

systems over the course of two days. We derived Digital Terrain Models (DTMs), Digital

Surface Models (DSMs) and finally Canopy Height Models (CHMs) from the resulting

point clouds. UAV-LS CHMs were on average 11.5 cm higher in five plots with different

canopy conditions. This showed that TLS could not always detect the top of canopy.

Moreover, we extracted trunk segments of 58 trees for UAV-LS and TLS simultaneously,

of which 39 could be used to model Diameter at Breast Height (DBH). UAV-LS DBH

showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and Root

Mean Square Error (RMSE) of 4.24 cm. We conclude that RiCOPTER has the potential

to perform comparable to TLS for estimating forest canopy height and DBH under the

studied forest conditions. Further research should be directed to testing Unmanned Aerial

Vehicle (UAV)-borne LiDAR for explicit 3D modelling of whole trees to estimate tree

volume and subsequently Above-Ground Biomass (AGB).
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4.1 Introduction

LiDAR has become a valuable source of information to assess vegetation canopy structure.

This is especially true for complex forest canopies that limit manual and destructive

sampling. These capabilities are investigated to replace traditional forest plot inventories

(Liang et al., 2016), but even more if they can deliver additional information that is not

captured with traditional inventories (Newnham et al., 2015). One particular important

variable in this context is AGB which makes up an essential part of the forest carbon

pool. TLS has the potential to accurately measure AGB on a plot scale (Calders et al.,

2015b; Gonzalez de Tanago et al., 2018), while ALS from manned aircraft can serve

as means to up-scale plot measurements to the landscape level. This is particularly

interesting for calibration and validation activities of space-borne missions aiming at

AGB assessment like ESA’s BIOMASS (Le Toan et al., 2011) and NASA’s GEDI (https:

//science.nasa.gov/missions/gedi) missions. Another important derivative of LiDAR

point clouds is vertical forest canopy structure, which is linked to biodiversity (Eitel et al.,

2016; Wallis et al., 2016).

ALS is typically acquired from manned aircraft, thereby covering large areas, but requiring

substantial financial capital and available infrastructure. Acquisition density is typically

in the order of 1 to 10 points/m2, depending on flight altitude and scanner configuration.

A straight-forward application for ALS point clouds is the generation of DTMs and DSMs,

and derivation of canopy height by considering the difference between those two. More

advanced products take into account the waveform of the returning pulses and reconstruct

canopy attributes from that (Morsdorf et al., 2009). However, the relatively low density of

ALS point clouds forces to approach actual canopy structure from a statistical point of

view where each resolution cell contains a sample of the population of possible returns. In

this respect, ALS products can be treated as 2.5D raster layers.

On the other hand, TLS produces point clouds with such a density—millions of points

per scan position—that single canopy elements like stems and branches can be resolved.

Geometrical models serve to reconstruct the 3D tree architecture, and allow estimation

of wood volume and derivation of AGB (Calders et al., 2015b; Hackenberg et al., 2014;

Raumonen et al., 2013) and other stand characteristics. A hard requirement for this

approach is accurate co-registration of several point clouds acquired from different scan

positions in the forest, which leads to time demanding field campaigns, mostly in the order

of 3 to 6 days/ha (Wilkes et al., 2017). Therefore, it is questionable if TLS in its current

form will replace operational plot inventories, or rather supply higher quality information

for selected samples (Newnham et al., 2015).

Independent from the developments of LiDAR instruments, UAVs have found use as

platforms for various types of sensors in forestry and many other fields (Colomina and

Molina, 2014; Torresan et al., 2016). Especially the introduction of affordable, ready-to-use

https://science.nasa.gov/missions/gedi
https://science.nasa.gov/missions/gedi
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systems on the consumer market has been boosting applications and widened the user

community. Even consumer-grade RGB cameras in combination with dedicated software

packages can serve for the production of high-resolution orthomosaics and surface models

derived with Structure from Motion (SfM) techniques. More sophisticated prototype

sensors also allow the production of hyperspectral images (Suomalainen et al., 2014).

One of the most favourable aspects of UAVs as sensor platforms is their low demand in

infrastructure, high mapping speed and price advantage compared to manned aircraft.

The implementation of legal regulations for professional UAV users remains a hot topic

however (Colomina and Molina, 2014).

Recently, LiDAR sensors have been mounted on UAVs to combine the advantages of

LiDAR and UAV technology. A variety of custom build systems with different degrees

of off-the-shelf components were tested to derive forest inventory metrics. Jaakkola et al.

(2010) probably build the first UAV LiDAR system, the Finish Geodetic Institute (FGI)

Sensei, integrating an Ibeo Lux and Sick LMS151 profile scanner. During test flights the

Sensei produced point clouds with 100 to 1500 points/m2 and could be successfully used

to detect single trees. Another custom build system based on the Ibeo Lux scanner was

presented by Wallace et al. (2012). During tests it produced point clouds with up to

50 points/m2, but with a relatively low airborne time of 3 to 5min owed to the capacity

of the UAV. This same system was employed to conduct surveys of forest plots, and

terrain and under-storey height, tree location, tree height, crown area and volume could

be derived (Wallace et al., 2014b). Chisholm et al. (2013) constructed another light-weight

LiDAR UAV system that did not require any means of positioning or orientation system,

but rather used pattern-matching algorithms to produce a point cloud. However, due

to assumptions in the processing the system and the low range of the laser scanner of

30m had to be flown below canopy. They could successfully estimate DBH for their open

grove study site. Wei et al. (2017) employed the commercially available HawkScan1200,

consisting of a VUX R©-1LR scanner and Applanix AP20 Inertial Measurement Unit (IMU),

and mapped a 60 km2 area with a point density of 0.5 points/m2 to perform vegetation

filtering and DTM generation on the resulting point cloud.

Overall, these systems showcase that principal technological challenges such as component

miniaturisation and suitable post-processing have been overcome in the recent years.

Important forest inventory metrics like tree height, location and DBH could be derived.

Nonetheless, custom-build systems have not yet achieved point density counts in same the

order of magnitude as TLS. This would open up opportunities that are at the forefront

of LiDAR research in forestry, such as explicit structural modelling to precisely estimate

AGB (Calders et al., 2015b; Raumonen et al., 2013). Moreover, even though custom build

systems are low cost, at the same time they are typically not easily available for use by a

wider audience.



4.2 RIEGL RiCOPTER with VUX R©-1UAV 73

The aim of this paper is to present the commercially available RIEGL RiCOPTER system

and the work flow to process the acquired data. In a field experiment we concurrently

collected RiCOPTER and TLS data in a forest site containing different canopy architectures.

We compared the two point clouds in respect to their point distributions, different elevation

models derived from both point clouds and estimates of DBH. With this comparison we

want to test if the RiCOPTER performs comparable to TLS field acquisition.

4.2 RIEGL RiCOPTER with VUX R©-1UAV

4.2.1 System Specifications

The RIEGL RiCOPTER with VUX R©-1UAV (RIEGL Laser Measurement Systems GmbH,

Horn, Austria) is an integrated UAV and sensor system. The RiCOPTER is a battery-

driven octocopter with an empty weight (no batteries and equipment) of 9 kg that can

carry a payload of up to 8 kg. For safety reasons it has two flight controller units. In case

of system failure of the main controller, the backup takes over immediately. Together

with the VUX R©-1UAV scanner (3.75 kg), the system controller (0.9 kg), the IMU (0.7 kg)

and optional cameras the total system weights just under 25 kg; hence, it is possible to

operate it under light UAV regulations in many European countries (Torresan et al., 2016).

The batteries allow flight times of up to 30min at 30 kmh−1 maximum cruise speed. This

allows flying multiple overlapping flight lines to increase target coverage. However, during

mapping of forest plots flight time and speed need to be reduced to guarantee flight safety

and adequate point density.

The VUX R©-1UAV is a survey-grade laser scanner that is mounted underneath the

RiCOPTER. It uses a rotating mirror with a rotation axis in flight direction to direct

the laser pulses and achieve an across-track Field Of View (FOV) of 330◦ perpendicular

to the flight direction. This means that lateral flight line overlap is only restricted by

the maximum operating range of the laser. Overall its attributes are comparable to the

terrestrial VZ-400 despite its lower weight (Table 4.1). It should be noted that both

operate at a wavelength of 1550 nm, which makes them eye-safe and sensitive to the same

types of canopy elements. An Applanix AP20 IMU attached to the VUX R©-1UAV and

Global Navigation Satellite System (GNSS) antennas on top of the RiCOPTER record

flight orientation and GNSS data. Apart from these devices and sensors essential for

processing, two consumer-grade Sony Alpha-6000 system cameras can be mounted on the

VUX R©-1UAV. During later processing the point clouds can be overlaid with the RGB

colour information from these cameras. The on-board instrument controller manages all

sensors’ data streams and includes a 220GB SSD storage, which is sufficient for several

missions.

Next to the RiCOPTER system a ground station is necessary for mission planning and

in-flight coordination. Planar or spherical Ground Control Points (GCPs) should be set
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Table 4.1: VZ-400 and VUX R©-1UAV main characteristics.

Characteristic VZ-400 1 VUX-1UAV 2

Maximum Pulse Repition Rate (PRR) (kHz) 300 550

Maximum effective measurement rate (kHz) 120 500

Minimum—Maximum range (m) 1.5—350 3 3—920 4

Accuracy—Precision (mm) 5—3 10—5

Laser wavelength (nm) 1550 1550

Beam divergence (mrad) 0.3 0.5

Weight (kg) 5 9.6 3.75

1 high speed mode, incl. online waveform processing; 2 550 kHz mode; 3 at target ρ ≥ 0.9;
4 at target ρ ≥ 0.6; 5 without battery and tilt mount.

out in the field before flight to support co-registration during processing. These targets do

not necessarily need to be geolocated in case only internal point cloud registration is to be

optimised. However, they should have an adequate size of >0.5m—depending on flight

altitude and scanning speed—to be properly covered. In case sufficient planar surfaces are

available in the study area, these can also be used. However, this is typically not the case

for forest plots.

4.2.2 Operations

Necessary legal requirements for professional operations are similar to other UAV operations

and mainly involve RiCOPTER registration as an aircraft in the country of operations as

well as the training and licensing of the pilot. Both processes can partly run in parallel

and can take up to several months. Additional to regular licensing the pilot should also

become familiar with the flight behaviour of the RiCOPTER, since it is considerably larger

than typical mini-UAV. Also the proper operation of the two independent flight controllers

needs to be trained. Moreover, operation in forest areas usually requires take off and

landing in canopy openings with restricted viewing conditions and options to manoeuvre.

Another general preparation includes the identification of a source of base station data

that is necessary for processing the acquired data. Additionally, legal requirements for the

transportation of the batteries need to be investigated.

Once these general prerequisites are fulfilled, practical mission planning can begin. This

mainly involves getting access permissions to the study site especially from the landowner,

arranging transport and notifying other airspace users. Furthermore, the weather forecast

should be studied with respect to wind, visibility and humidity to identify the best suitable

days for mission execution. As for other mini-UAV the RiCOPTER has a legal limit on

wind speed up to which take off is allowed, which is 7m s−1 for the Netherlands. However,

wind limits are typically stricter in respect to data quality as crown movement hampers
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proper co-registration of point clouds from different flight lines, as is also the case for TLS

(Wilkes et al., 2017).

Initial flight path planning should be performed in preparation of the field work. The

target is a certain point density to be achieved by varying flying speed and altitude, and

overlap of flight lines. Nonetheless, not anticipated on-site conditions like single emerging

trees or lack of emergency landing locations can demand modification. Transport to the

site should take into account the size and weight of the equipment. The RiCOPTER itself

is delivered with a transport case of ∼120 cm × 80 cm × 55 cm. The ground station has

dimensions ∼55 cm × 45 cm × 20 cm. At the study site, the area should be inspected to

identify take-off and landing as well as emergency landing locations, obstacles close the

intended flight path and positions for GCPs. After completion the equipment can be set

up and the mission executed. After the mission, the raw data is downloaded from the

instrument controller.

4.2.3 Data Processing

RIEGL provides a software suite together with the RiCOPTER system to convert the

produced raw data into point clouds. Figure 4.1 gives an overview of the required steps.

While most of the work can be done in RIEGL’s software for airborne and mobile laser

scanning, RiPROCESS, the trajectory preprocessing has to be accomplished with third

party software, e.g. Applanix POSPac Mobile Mapping Suite. For this purpose additional

GNSS base station data has to be acquired. During GNSS post-processing both data

streams from the GNSS antennas and the IMU are taken into account to reconstruct the

flight trajectory.

For each flown and logged scan line, the raw scan data has to be subjected to waveform

analysis during which targets are detected within the stored flight line waveforms. Up to

four targets can be detected per pulse. During this process, Multiple Time Around (MTA)

range ambiguities have to be taken care of. MTA range ambiguity occurs when pulses are

fired before their predecessor pulses can return. MTA 1 range, where no ambiguity can

occur because a pulse always returns before the next is fired, is at around 100m range for

a Pulse Repition Rate (PRR) of 550Hz. Thus MTA range ambiguity needs to be taken

care of, but does not result in serious obstacles assuming flying heights below 120m. The

waveform processing detects targets in the scanners own coordinate system. Next, this

data is interpreted with help of the trajectory information and the scanner mounting

orientation to produce the first point clouds, one per flight line. The within and across

flight line registration is already of high quality as experienced by the authors during

several missions and would serve when registration error of below 1m is not an issue.

However, when sub-centimetre accuracy is required, point clouds need to be fine registered.

In principal this means to reduce errors in the flight trajectory as the position and

orientation error of the RiCOPTER system (cm scale) is much bigger than the range error
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Figure 4.1: RiCOPTER processing flowchart (based on RIEGL LMS GmbH (2017)).

of the scanner (mm scale). This process can include two independent steps. One is the

within flight line trajectory optimisation that is handled by the RiPRECISION package

within RiPROCESS. Similar to Multi-Station Adjustment (MSA) for TLS (Wilkes et al.,

2017) control planes are automatically searched for in the point clouds per flight line. So

far this process demands no user interaction. It can be supported by GCPs that have been

independently located to within millimetres, e.g. with Real Time Kinematic (RTK) GNSS.

However, for forest situations this is impractical as GNSS reception is typically too low

under closed canopies to achieve the required accuracy. The other possible optimisation is

across flight line optimisation that can be performed with the Scan Data Adjustment (SDA)

package within RiPROCESS. It assumes within flight line registration as optimal and

only changes the overall position and orientation of flight lines to each other. This can

be compared to linking point clouds from single scanning positions in TLS. Here, next

to automatically detected planes, also manually digitised control objects, such as planes,

spheres and points, can be included to improve the co-registration.

The point cloud processing can be finished off with removal of atmospheric noise, which is

visible as returns close to the flight trajectory with typically low reflectivity, and target type

classification. Finished point clouds can be exported from RiPROCESS in common file

formats, e.g. ASCII and LAS, to continue analysis in dedicated software packages.

4.3 Field Experiment

The field experiment took place at the Speulderbos Fiducial Reference site in the Veluwe

forest area (N52◦15.15′ E5◦42.00′), The Netherlands (Brede et al., 2016) (www.wur.eu/

www.wur.eu/fbprv
www.wur.eu/fbprv
www.wur.eu/fbprv
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fbprv). The core site is established in a stand composed of European Beech (Fagus

sylvatica) with occasional Pedunculate Oak (Quercus robur) and Sessile Oak (Quercus

petraea), and a very open understorey with only few European Holly (Ilex aquifolium)

(Figure 4.2). The stand was established in 1835 and had a tree density of 204 trees/ha. At

the time of the experiment the overstorey was in the progress of spring bud break and

leaf unfolding, so that only few trees carried a full leaf canopy. In an earlier inventory

campaign the Beech stand has been equipped with a 40m spaced wooden pole grid that

has also been geo-located with RTK GPS and land surveying techniques to an accuracy of

better than 0.5m.

Additional to the Beech stand, sections of Norway Spruce (Picea abies), Giant Fir (Abies

grandis), young beech and Douglas Fir (Pseudotsuga menziesii) have been scanned as well

with the goal to capture different forest types in terms of species composition, tree density

and canopy architecture. The Norway Spruce and Giant Fir stands were established in

1943 and 1967, respectively, and had no understorey species. However, the plots were

relatively dense with 676Trees/ha and 961Trees/ha, respectively, and many low branches.

The young beech stand was established in 1973 and had a density of 805Trees/ha. There

were no other species present in this stand, but most lower branches were carrying leaves.

The Douglas Fir stand had a very open understorey where only few saplings of up to 2m

height could be found. The stand was established in 1959 and has been thinned since then

as was obvious through the present stumps.

www.wur.eu/fbprv
www.wur.eu/fbprv
www.wur.eu/fbprv
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The total scanned area covered 100m × 180m, roughly 2 ha. In the study area, a forest

road separates the old beech and oak from the other stands, and a bike path the Giant Fir

and Norway Spruce stands. The UAV take-off area was located in an opening east of the

stands that was wide enough to allow Visual Line of Sight (VLOS) operations.

TLS data acquisition was completed in the course of two days that were both marked by

very low wind speeds (<3m s−1). During the first day the TLS scan position grid was set

up. For that the wooden poles in the Beech stand were taken as starting positions. With

the help of a theodolite the TLS positions were marked to form a grid of 40m spacing in

the Beech and 20m spacing in the Douglas Fir stands. Additional positions in the grid

centres have been added in the Beech stand. Cylindrical retro-reflective targets were set

up for later coarse co-registration of scans (Wilkes et al., 2017). The first 15 positions

have been scanned during the first day, the remaining 43 during the second day. All scans

were performed with 0.06◦ scan resolution. Due to the VZ-400’s zenithal scan angle range

of 30◦ to 130◦, an upward and tilted scan had to be performed per scan location to cover

the area directly over the scan position.

To support co-registration of RiCOPTER flight lines 4 large (120 cm × 60 cm) and 8 small

(60 cm × 60 cm) ground control panels have been distributed under the trees and next to

the take-off site. The panels consist each of 2 equally sized wooden panes connected via

piano hinges. When set up the panes form a 90◦ angle between them, which makes them

look like tents. Cars used for transport were deliberately parked on the forest road in the

scanning area to provide additional control surfaces for the co-registration. The ground

station was erected next to the take off site. The scan lines were designed to maximise

lateral overlap and efficiently use air time (Figure 4.2). The RiCOPTER was flown at an

altitude of 90m a.g.l., with a cruise speed of 6m s−1. The VUX R©-1UAV was operated

with the full FOV of 330◦, a PRR of 550 kHz and scan speed of 58 lines/s, which resulted

in an average rectangular point spacing of ∼8 cm and a point density of 140 points/m2 for

a single flight line at nadir. Mission time for active scan and non-active connection lines

was 9min to cover a distance of ∼2300m.

4.4 Methods

In case of TLS, the scans were first coarsely co-registered with automatically extracted tie-

points based on the retro-reflective cylinders. These registrations had typical registration

errors of <5 cm. Afterwards MSA was applied to refine the registration (Wilkes et al.,

2017). This approach automatically searches for tie-planes in the scans and iteratively

adjusts orientation and position of each scan position to minimise the global fitting error

of tie-planes. The resulting standard deviation of the errors over all tie-planes was 0.62 cm.

All operations were executed with RIEGL’s RiSCAN PRO R© software package.
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For processing of the RiCOPTER data the work-flow as described in Section 4.2.3 was

applied. GNSS data was obtained from 06-GPS (Sliedrecht, The Netherlands) for a virtual

base station in the centre of the study site and the period of the campaign to allow

GNSS post-processing. RiPRECSION-UAV was applied to optimise within flight line

registration. Automatic across-flight line registration with automatic search of tie-planes

continuously failed to produce good results, probably due to missing planar surfaces in

the study area. Therefore, the GCP panels were manually digitised as tie-planes and used

for fine registration. Final standard deviation of the fitting errors of 0.97 cm.

The resulting point clouds from TLS and UAV-LS were co-registered via common tie-

planes. These were the manually selected GCP panels. Then different raster products

were produced at 0.5m resolution with LAStools (https://rapidlasso.com/lastools/):

scan density by counting all hits within a resolution cell, DTMs by selecting the lowest

point in a resolution cell, DSMs with the highest, and CHMs by calculating the difference

between DTMs and DSMs.

The lower stem parts of individual trees were manually extracted from the TLS and UAV-

LS point clouds from the 5 plots (Figure 4.2). For each tree all points at a height of 120

to 140 cm were selected to represent DBH. These subsets were manually inspected for the

suitability to fit circles. In case of presence of branches at the DBH height, the corresponding

points were further manually removed. Next, circles were fitted to the horizontal coordinates

of these points separately for UAV-LS and TLS. An iterative optimisation procedure was

used to minimise the euclidean distance between points and circles according to Coope

(Coope, 1993) as implemented in R’s (http://www.r-project.org/) circular package.

Next to the geometries, the points contained information about the return number and

scan angle under which they were recorded. These were analysed to gain more insights

which scan conditions can be beneficial to record stem points.

4.5 Results

The acquired TLS and UAV-LS point clouds showed a number of differences. Figure 4.3

shows two sample transects through the Old Beech and Oak area (cf. Figure 4.2). The

UAV-LS point cloud clearly had a lower point density in the stem area, while the branch

and leaf area appeared to be of comparable density. Nonetheless, single stems as well as

larger branches could be made out. It should be noted that even though the images suggest

the trees to have a full canopy, this was not the case during the time of acquisition. The

canopy level rather has a distinctively different apparent reflectance than stem and ground

elements, because partial hits are much more likely in the crown area where branches do

not completely fill the laser footprint.

Figure 4.4 gives an overview of point density over the whole of the study site. While

UAV-LS point density was highest in tree crowns, visible as mushroom forms in the Old

https://rapidlasso.com/lastools/
http://www.r-project.org/
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(a) ALS

(b) TLS

Figure 4.3: Old Beech and Oak point clouds samples from same perspective, coloured

according to apparent reflectance (blue = low, green = medium, red high).

Beech and Oak area, TLS point density peaked at stem locations, visible as black specks

in the TLS map. Furthermore, higher density areas were created by slight horizontal

course corrections of the UAV, which are visible as stripe patterns in the density map,

especially in the forest opening in the Northwest. Also more points were observed along

the centre line of the plot in WE direction due to the higher overlap of flight lines in

that area, i.e. northern and southern flight lines contribute to the centre locations. This

can be seen when comparing Beech areas close to WE centre line and Beech in upper

right of Figure 4.4, around [160,60] and [210,110], respectively. In case of TLS fewer

points were registered around scan positions, which stems from the restriction in zenithal

scanning angle of the VZ-400 scanner. Overall, UAV-LS point density was about 2
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Figure 4.4: ALS and TLS point cloud density maps for whole study site at 0.5m resolution

in project coordinate system.

orders of magnitude lower than TLS for the given scan configurations. It was on average

5344 points/m2, 3081 points/m2, 3005 points/m2, 2965 points/m2 and 3004 points/m2 for

the Old Beech and Oak, Giant Fir, Norway Spruce, Young Beech, and Douglas Fir plots,

respectively.

Figure 4.5 shows vertical return profiles of two focus areas representing different canopy

architectures. While the Old Beech and Oak canopy had higher trees of up to 35m with

only few branches on the lower levels, the Norway Spruce canopy had trees up to 30m and

a considerable higher number of small, horizontally oriented branches below the crown

level. The distribution of UAV-LS and TLS points was similar for both canopies, but

UAV-LS hit relatively more often the upper canopy levels. This is clearly the effect of

perspective of the UAV-LS from above and TLS from below the canopy. Considering the

distribution of return order in the upper canopy, the Old Beech and Oak canopy showed

many more higher order returns than the Norway Spruce canopy. This could be explained

by the foliage coverage of the Norway Spruce: while the water in the green needles allowed

first order returns, it absorbed too much of the pulse energy to allow higher order return

from within the clumped shoots. On the other hand, the not fully developed Old Beech

and Oak canopy allowed partially intercepted beams and therefore multiple returns.

Despite the perspective of the UAV-LS above the canopy, it hit the ground level in similar

proportions as the TLS relative to all returns. This was clearly possible due to the

multi-return capabilities of the VUX R©-1UAV scanner. Returns up to 7th order could be

recorded over the whole study area. This is in contrast to the TLS that is dominated
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Figure 4.5: Vertical return density profiles smoothed with Gaussian kernel of all points in

two areas of interest (see Figure 4.2), height reference is lowest point found in sub-area.

by 1st order returns, which results from a higher proportion of hard targets like wood

and ground elements. The ground returns were spread over some range of heights due to

slightly sloped terrain and ground features like dead trees and hollows.

Figure 4.6 shows the CHM difference map. The underlying DTM, DSM and CHM maps

can be found in the supplementary material. General agreement between both maps was

very high with a dominance of small offsets of ±0.5m. However, an overall pattern can be

observed similar to relieve shading resulting in positive differences in eastern and negative

in western directions The pattern is not regular over the whole study area. For instance,

it is strong over the Douglas Fir plot in the south-west and less pronounced over the Old
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Beech and Oak plot. This pattern stems from slight mis-registration of the point clouds of

about 0.5 to 1m at the crown level. One major source of error could have been crown

movement by wind, a common problem in LiDAR field data acquisition (Wilkes et al.,

2017). This would also explain the pronounced pattern in the Douglas Fir plot with its

high trees (up to 35m) that are more susceptible to wind than the lower trees in the other

plots. Finally, the TLS did not cover a small area in the Northwest that was occluded by

a copse in the middle of the grass patch.

The mis-registration can also be found in the scatterplot of height differences in the plots

in Figure 4.7: extreme cases can be found along the x and y axes. They represent cases

when either the UAV-LS or the TLS hit the crown and the other the ground. Outliers

along the x and y axis represent mainly the western and eastern crowns sides, respectively.

Nonetheless, all scatterplots confirm the high agreement of UAV-LS and TLS. However,

similar to the vertical profiles (Figure 4.5) also in the case of the CHMs UAV-LS tended

to detect higher points in the canopy, resulting in overall higher CHM. For instance, the

UAV-LS CHM was 6.1 cm and 12.2 cm higher for the Giant Fir and Old Beech and Oak

plots, respectively. The difference for all cells over all plots was 11.5 cm.

Out of the 58 extracted tree stems, 39 were found to be suitable for DBH estimation.

Of the accepted 12 trees stems had low level branch points that had to be removed to

make the circle fitting possible. The 19 unsuitable trunks would clearly fail to form a

circle (17) or had bifurcated trunks that violated the assumption of a single, circular trunk

(2). The rejected cases were mainly found in the dense Giant Fir and Norway Spruce

plots, and in the Young Beech plot with small overall trunks and branches on the lower

canopy levels. Each UAV-LS and TLS point ring contained 40 and 5522 points on average,

respectively. Figure 4.8 shows examples of 2 trunks and the resulting fitted circles. In
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Figure 4.7: Differences in CHM per plot. Ordinary least squares regression lines in blue and

formulas. Grey lines are 1:1 lines. Points are transparent to facilitate identification of high

density clusters.

both cases there was a large number of TLS points available, while only few UAV-LS

points covered the stem at the DBH height and in the case of Douglas Fir it was also only

from one direction. However, it was still possible to approximate the stems with circles.

In Figure 4.9 the performance of UAV-LS fitted circles in comparison to TLS fits can be

seen. Both agree well with a correlation coefficient of 0.98 and RMSE of 4.24 cm, while

the range of estimated DBH was 19 to 93 cm. In comparison to TLS UAV-LS estimates

were 1.71 cm larger.

Another interesting observation concerned the scan angles and return orders of the UAV-LS

points that were available for the DBH estimation. The scan or body across angle is

the angle under which a laser pulse was shot from the scanner. It is 0◦ perpendicular

to the rotor arms when mounted, i.e. a scan angle of 0◦ would describe nadir when the

RiCOPTER flies perfectly horizontal. Large positive and negative scan angles result in low

incidence angles. Figure 4.10 shows the distribution of scan angles for the sampled points

that were used for the DBH estimation. The distributions were strongly bimodal for the

Old Beech and Oak, Norway Spruce and Douglas Fir plots with peaks between −20◦ to

−40◦ and 20◦ to 40◦. The distribution of the Young Beech points were dominated by two

trees that were hit from flight lines with the same orientation, resulting in a peak around

−30◦. Even though the RiCOPTER does not always fly perfectly horizontal, because

it has to compensate the wind direction, generally scan angles around 30◦ to 40◦ seem

to be well suited for detection of trunks. Probably self-occlusion of the observed tree
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and occlusion by other trees is minimal at these angles. Furthermore, trunk points were

constituted of 14.6% 1st, 25.8% 2nd, 29.4% 3rd, and 30.2% 4th or higher return order. This

underlines that the multi-return capability of the VUX R©-1UAV was beneficial to observe

trunks.
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4.6 Discussion

Development of LiDAR technology and algorithms in recent years has shown great potential

to support forestry practices, in particular geometric characterisation of plots up to unbiased

estimation of AGB (Calders et al., 2015b). In this context TLS yields a data source of

unprecedented detail and accuracy. However, TLS acquisition can be labour intense and

time consuming especially in challenging environments like tropical forests (Wilkes et al.,

2017). New UAV-borne LiDAR technology can possibly accelerate these field campaigns

and provide a larger coverage.

In this context, the RIEGL RiCOPTER with VUX R©-1UAV has proven useful to char-

acterise the Speulderbos forest plot. CHMs were successfully derived and showed good

agreement with TLS. Canopy height estimated by the UAV-LS were generally higher.

This could be expected by its viewing perspective from above the canopy and the known

shortcoming of TLS to not always detect the top of canopy (e.g. Hilker et al. (2010)).

However, the difference of on average 11.5 cm falls within the precision of traditional field

measurements for tree height of 50 cm (Luoma et al., 2017). Concerning the estimation

of individual tree height, Wallace et al. (2014b) found good agreement with field mea-

surements of 0.35m (mean absolute error) by using point clouds of up to 300 points/m2

density.

Multi-return and side-looking capabilities proved to be important features of the VUX R©-

1UAV to scan trunks and estimate DBH for a number of trees under different canopy
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conditions (Figure 4.9). While other UAV LiDAR systems are also able to record multiple

targets per pulse, not many systems are able to acquire data under larger scan angles

(>30◦ off nadir). Nonetheless, a sufficient number of points could not be collected for all

sampled trunks, mainly in the dense, narrow spaced needle-leaf plots. Repeated flights

over the same plots with varying flight paths could result in better coverage. The average

RMSE of 4.24 cm between TLS and UAV-LS is comparable to reported deviations of TLS

and traditional methods of 0.7 to 7.0 cm (RMSE) (Liang et al., 2016). However, the DBH

estimation error is still much larger than the precision of traditional methods of ∼0.3 cm

(Luoma et al., 2017).

The scan angles that proved optimal to scan the trunk samples (Figure 4.10) have

implications for the flight preparation. The targeted plots should be always well covered,

possibly with flight lines that overshoot the plot area. For instance if the flight height is

at 90m and the optimal angle is assumed to be 30◦, the flight trajectory should overshoot

by ∼52m. However, it is difficult to say how general the optimal scan angles found in this

study are. In any way, we found that multiple flight lines, made possible through the long

air-borne time, were contributing to a better sampling from different directions. In this

respect more lines at faster speed, should be preferred to fewer at lower speed assuming

same airborne time. Maximising line crossings and multiple flights should be considered as

well. The later will be primarily restricted by the number of battery packs available.

Initial point cloud production of VUX R©-1UAV data solely relies on the on-board IMU

and GNSS post processing. This is possible because of the IMU’s accuracy, which on the

other hand results in a large weight for the scanner. This drives the weight of the whole

system, since heavier sensors also require larger payload capacity and thus larger UAVs.

Together with the system requirement of long endurance this brought the total system

weight up to just under the legal limit for mini-UAV (personal communication RIEGL,

2016). This design decision makes it unnecessary to employ algorithms that reconstruct

the trajectory in the post-processing as shown in previous studies (Chisholm et al., 2013;

Wallace et al., 2012). However, it makes the availability of GNSS base station data a hard

requirement that might be difficult to fulfil in remote areas. Also the system weight can

be a logistical challenge in such cases.

Even though this study did not aim to conduct full plot inventories, the data shows

promising attributes to extend the analysis in that direction. One important step for this

would be to detect single trees in all plots. Wallace et al. (2014a) produced detection rates

of up to 98% with point clouds of 50 points/m2 density. Therefore, detection should be

achievable with the ∼3000 points/m2 RiCOPTER point clouds. Based on the detected

trees, single tree height can be estimated. However, traditional forest inventory data would

be necessary for validation.

Apart from characterising traditional forest metrics, UAV-borne LiDAR could also be

utilised as a flexible, higher resolution alternative to manned airborne LiDAR, especially
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to study foliage. In that case several published algorithms could be employed (Detto et al.,

2015; Garćıa et al., 2015; Morsdorf et al., 2006; Tang et al., 2014) and tested if they are

applicable on higher density point clouds. Moreover, reliable and mobile systems like the

RiCOPTER are suitable for multi-temporal studies (Jaakkola et al., 2010).

4.7 Conclusions

This study presented first results and experiences with the RIEGL RiCOPTER with

VUX R©-1UAV UAV-LS with its components and processing work flow, and its performance

in estimating CHM and DBH compared to TLS. As first steps we compared the RiCOPTER

with the well tested RIEGL VZ-400 TLS by deriving CHM and estimating DBH. CHMs

showed only small differences that could be explained by the perspective of the RiCOPTER

above the canopy, resulting in different vertical detection profiles that facilitate the discovery

of highest points in the canopy, which is not always possible with TLS. Additionally, the

multi-return and side-looking capabilities of the VUX R©-1UAV scanner proved beneficial

to detect trunk elements. This feature will be valuable when more sophisticated 3D

modelling is to be applied. However, not all sampled tree trunks were sufficiently covered

with points, so that more flights or different flight patterns are necessary to achieve better

coverage. Overall, the RiCOPTER could produce comparable results to the VZ-400.

Further experiments should be directed to test explicit quantitative structural modelling

to derive AGB from the RiCOPTER point clouds as well as co-registration strategies of

multiple flights and with TLS systems.
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Abstract

Above-Ground Biomass (AGB) product calibration and validation requires ground reference

plots at hectometric scales to match space-borne missions’ resolution. Traditional forest

inventory methods that use allometric equations for single tree AGB estimation suffer

from biases and low accuracy, especially when dealing with large trees. Terrestrial Laser

Scanning (TLS) and explicit tree modelling show high potential for direct estimates of

tree volume, but at the cost of time demanding fieldwork. This study aimed to assess if

novel Unmanned Aerial Vehicle Laser Scanning (UAV-LS) could overcome this limitation,

while delivering comparable results. For this purpose, the performance of UAV-LS in

comparison with TLS for explicit tree modelling was tested in a Dutch temperate forest.

In total, 200 trees with Diameter at Breast Height (DBH) ranging from 6 to 91 cm from 5

stands, including coniferous and deciduous species, have been scanned, segmented and

subsequently modelled with TreeQSM. Direct comparison with TLS derived models showed

that UAV-LS was reliably modelling volume of trunks and branches with diameter ≥30 cm

in the mature beech and oak stand with Concordance Correlation Coefficient (CCC) of 0.85

and Root Mean Square Error (RMSE) of 1.12m3. Including smaller branch volume led to

a considerable overestimation and decrease in correspondence to CCC of 0.51 and increase

in RMSE to 6.59m3. Denser stands prevented sensing of trunks and further decreased

CCC to 0.36 in the Norway spruce stand. Also small, young trees posed problems by

preventing a proper depiction of the trunk circumference and decreased CCC to 0.01. This

dependence on stand indicated a strong impact of canopy structure on the UAV-LS volume

modelling capacity. Improved flight paths, repeated acquisition flights or alternative

modelling strategies could improve UAV-LS modelling performance under these conditions.

This study contributes to the use of UAV-LS for fast tree volume and AGB estimation on

scales relevant for satellite AGB product calibration and validation.
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5.1 Introduction

Terrestrial vegetation contains approximately 450 to 650PgC, which is on the same order

of magnitude as the atmospheric carbon pool (Ciais et al., 2013) and forests make up a

significant contribution to the vegetation carbon pool. However, the forest carbon pool

is only weakly constrained due to a low and possibly biased number of sample plots

worldwide (Houghton et al., 2009). The future ESA BIOMASS (Le Toan et al., 2011) and

NASA GEDI (https://science.nasa.gov/missions/gedi) missions aim to improve

observations of AGB on global scales with a focus on forests. This underpins the space

agencies’ commitment towards global AGB mapping capabilities.

Even though general relationships between satellite sensor signals and AGB for the

intended missions are well established — e.g. exponential relationship for Synthetic

Aperture Radar (SAR) backscatter intensity and AGB — specific retrieval models have

to be calibrated based on ground reference plots (Baccini et al., 2012; Saatchi et al.,

2011; Thiel and Schmullius, 2016). This means calibration at the scale of the satellite’s

mapping unit are required, which are typically hectometric for AGB. If best practice

for validation of geophysical products shall be followed, the observation’s geo-location

error has to be considered, which usually means to triplicate the calibration unit side

length (Fernandes et al., 2014). Additionally, a large number of plots is required to

capture the heterogeneity of stand structural characteristics across an area of interest.

For example, Saatchi et al. (2011), Baccini et al. (2012) and Mitchard et al. (2014) used

data from 4079, 283 and 413 inventory plots to build maps for (pan-)tropical forests,

respectively. Furthermore, uncertainty in traditional field inventory biomass assessment

based on allometric equations is high. Contributing to this is the limited availability

of calibration samples for allometric model generation, which need to be destructively

harvested, and wrong application of allometric models outside of the area where they have

been developed (Yuen et al., 2016).

Given above-mentioned circumstances, calibration of satellite-based AGB products is

already challenging. But in the light of systematic global AGB product validation, a

significant number of globally and temporally representative in situ sites, and systematic

re-validation of the product’s time series is required as envisaged by the Committee on

Earth Observing Satellites (CEOS) Land Product Validation (LPV) subgroup. This

requires accurate and fast techniques that cover the satellite footprint. Forest inventory

techniques can achieve the speed and coverage, but lack accuracy in tropical forests (Disney

et al., 2018).

TLS has been proposed as an alternative to traditional inventory techniques for AGB

assessment (Disney et al., 2018). Compared to the latter it has shown nearly unbiased

AGB estimates, which is particularly critical for large trees (Calders et al., 2015b; Gonzalez

de Tanago et al., 2018; Keller et al., 2001). Another advantage of TLS is that it does not

https://science.nasa.gov/missions/gedi
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require destructive sampling. Several studies have demonstrated the effectiveness of TLS

for AGB assessment (Calders et al., 2015b; Gonzalez de Tanago et al., 2018; Hackenberg

et al., 2015; Momo Takoudjou et al., 2018; Rahman et al., 2017; Stoval and Shugart, 2018;

Stovall et al., 2017) and best practices for field set-ups begin to be established (Wilkes

et al., 2017). Currently, the LPV guideline for good practices in AGB validation is being

compiled, which also includes a section on TLS.

However, a drawback of TLS-based AGB inventories is the time consuming field work.

For the acquisition of a dataset that allows reliable geometrical modelling, an experienced

team requires 3 to 6 days for a 1 ha plot (Wilkes et al., 2017). Good quality data for

geometrical modelling means low occlusion of canopy elements, which makes it necessary

to use multiple scan locations in the plot and accurately co-register them.

Recently, miniaturisation and advancement in several Unmanned Aerial Vehicle (UAV)

components has prepared the ground for the construction of UAV-LS systems. The critical

challenge in this context is the high position and orientation accuracy requirement of the

scanner at any time during data acquisition. This determines the geometric accuracy of the

produced point cloud. In the contrasting case of TLS, positioning of the scanning positions

relative to each other is provided with common targets, most often retro-reflectors, and

scan positions are limited to tens to few hundreds per plot (Wilkes et al., 2017). For

UAV-LS, the position has to be determined several times per second for flight times of up

to 30min to provide the necessary information for accurate target localisation.

Another difference of UAV-LS to TLS is the perspective above the canopy. From this

perspective trunks, which contain the largest part of biomass, are at least partly occluded

by upper branches or leaves (Brede et al., 2017). Finally, UAV-LS point cloud densities

are limited by scanner speed and flight time. Recent UAV-LS systems have produced

point clouds with densities of around 50 (Wallace et al., 2012), 1500 (Jaakkola et al., 2010;

Mandlburger et al., 2015) and 4000 points/m2 (Brede et al., 2017). TLS plot scans have

typically point densities of tens of thousands points/m2 (Brede et al., 2017; Wilkes et al.,

2017).

Recent forestry related applications with UAV-LS cover Digital Elevation Model (DEM)

generation (Wei et al., 2017), Canopy Height Model (CHM) generation, Leaf Area Index

(LAI) estimation, AGB estimation via allometric equations based on tree height and

crown area (Guo et al., 2017), DBH estimation (Brede et al., 2017; Wieser et al., 2017),

tree height estimation and localisation (Wallace et al., 2014b), and tree detection and

segmentation (Balsi et al., 2018; Wallace et al., 2014a). With these UAV-LS systems

available now, the question can be investigated how UAV-LS point clouds compare to TLS

point clouds for explicit structural tree modelling.

The aim of this study was to compare tree volume estimation performance of high density

UAV-LS (>1000 points/m2) with TLS point clouds for different canopy architectures,

including deciduous and coniferous species. Tree volume was investigated instead of AGB,
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because AGB is a product of tree volume and wood density, the latter being equal for both

laser scanning systems. The work flow strongly builds on established TLS methods. This

will make fast tree volume estimation possible at the plot scale, and support calibration

and validation of future AGB missions at hectometric scale.

5.2 Data

5.2.1 Study Site

This study was performed at the Speulderbos Reference site in the Veluwe forest area

(N52◦15.15′ E5◦42.00′), The Netherlands (Brede et al. 2016, www.wur.eu/fbprv). Five

stands were investigated (Figure 5.1, Table 5.1). The first and in terms of area largest

consisted of maturing European beech (Fagus sylvatica) and oak (Quercus robur, Q.

petraea), here referred to as old beech and oak. Crown heights of sampled trees reached

up to 32m, but were 27m on average. The understorey was sparse with only few seedlings

and young trees, and occasional European holly (Ilex aquifolium). A forest road separated

this beech and oak stand from the second stand consisting of young beech with trees of on

average 23m height. These beeches were markedly different from the old beech stand in

terms of age and consequently stem diameter (Table 5.1). Additionally, their branching

behaviour was less complex with most tree volume concentrated in the central trunk. In

contrast to this, the old beech trees showed more complex structure with major branching

occasionally occurring below 10m height.
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Table 5.1: Stand sample characteristics. Tree density was estimated based on manually

identified trees in the TLS point cloud, tree height based on segmented tress range in height,

and DBH based on optimised TLS Quantitative Structure Models (QSMs).

Giant Norway Douglas Young Old beech

fir spruce fir beech & oak

Tree density (ha−1) 588 714 231 554 142

Minimum tree height (m) 11.3 14.6 18.7 4.6 18.4

Average tree height (m) 21.1 19.9 30.6 16.4 27.2

Maximum tree height (m) 27.4 25.1 35.3 22.5 31.6

Minimum DBH (cm) 11.2 14.4 15.6 6.2 22.9

Average DBH (cm) 28.5 28.5 40.1 21.3 59.2

Maximum DBH (cm) 58.4 46.9 56.5 37.1 91.0

Located north of the young beech stand was the third stand consisting of Norway spruce

(Picea abies) with maximum tree height of 25m. Located further east was the fourth

stand, a Giant fir (Abies grandis) stand with maximum heights of 27m. Both Norway

spruce and Giant fir trees were characterised by numerous small branches along the main

stem.

The fifth stand was in the South-East of the study area and consisted of Douglas fir

(Pseudotsuga menziesii) with maximum tree heights of 35m, making up the highest trees

in the study area. This stand had only little understorey, and had been thinned in recent

years as could be recognised by tractor tracks and stumps. Additionally, the lower tree

trunks were mostly free of branches.

5.2.2 UAV-LS Data

UAV-LS data was collected with a RIEGL RiCOPTER with VUX R©-1UAV (RIEGL Laser

Measurement Systems GmbH, Horn, Austria). The VUX R©-1UAV is a survey-grade laser

scanner with an across-track Field Of View (FOV) of 330◦ (Table 5.2). UAV-LS data

acquisition was conducted in the course of 2 hours (Brede et al., 2017). The take-off site

was chosen in the western part of the study area in a clearing, which allowed operation

within Visual Line of Sight (VLOS). The study area of 100m x 180m was covered with a

total of 8 parallel flight lines (Figure 5.1) and one diagonal cross-line.

The collected raw data was processed with the VUX R©-1UAV accompanying software

package RiPROCESS. This included (i) post-processing of the Global Navigation Satellite

System (GNSS) and Inertial Measurement Unit (IMU) records to reconstruct the flight

trajectory, (ii) LIght Detection And Ranging (LiDAR) waveform analysis for target

detection in scanner geometry and (iii) translation of the detected points into global

coordinate system under consideration of the trajectory information. Additionally, single
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Table 5.2: VZ-400 and VUX R©-1UAV main characteristics

Characteristic VZ-4001 VUX R©-1UAV2

Maximum Pulse Repition Rate (PRR) (kHz) 300 550

Maximum effective measurement rate (kHz) 120 500

Minimum / Maximum range (m) 1.5 / 3503 3 / 9204

Accuracy / Precision (mm) 5 / 3 10 / 5

Laser wavelength (nm) 1550 1550

Beam divergence (mrad) 0.35 0.5

Weight (kg)5 9.6 3.75
1high speed mode, incl. online waveform processing
2550 kHz mode 3at target ρ ≥ 0.9 4at target ρ ≥ 0.6

5without battery and tilt mount

flight geometry was optimised with automatically detected control-planes in the point

cloud. Finally, all flight lines were manually fine-registered based on 12 ground control

targets, which were placed throughout the study area. A detailed description of the

acquisition and processing work-flow is described in Brede et al. (2017). The resulting

UAV-LS point cloud had densities between 2965 points/m2 and 5344 points/m2 depending

on the position of the flight lines and tree heights with an average of 4059 points/m2.

5.2.3 TLS Data

TLS data was collected with a RIEGL VZ-400 scanner from 58 scan positions during

two days (Table 5.2). This scanner was used in several studies dealing with explicit,

three-dimensional tree modelling (Lau et al., 2018) and AGB estimation (Calders et al.,

2015b; Gonzalez de Tanago et al., 2018). The scan positions were spaced on a 20m grid

across the study area, but with slightly wider spacing in the old beech and oak stand

due to good visibility (Figure 5.1). The angular scan resolution was set to 0.06◦. Due to

the limitation of the VZ-400 to a minimum viewing zenith angle of 30◦, a second scan

was performed at each position with a 90◦ tilted scanner to capture the canopy directly

above the scan position. Retro-reflective targets were placed in between scan positions to

facilitate co-registration. Fine-registration between positions was achieved with RIEGL’s

multi-station adjustment routine built into the RiSCAN PRO software (Wilkes et al.,

2017). This automatically searches for planar surfaces in the point clouds and uses them

for co-registration between the point clouds. The final TLS point cloud was co-registered

to the UAV-LS point cloud with the help of five Ground Control Points (GCPs) distributed

over the study area.
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5.3 Methods

5.3.1 Tree Segmentation

In recent years, several automatic tree segmentation algorithms for Airborne Laser Scanning

(ALS) have been proposed (Duncanson et al., 2014; Heinzel and Huber, 2016; Parkan and

Tuia, 2018). However, understorey trees are usually hard to detect (Eysn et al., 2015).

Also, methods based on the CHM potentially separate elements from trees especially when

crowns are inter-locked. This was particularly the case with the old beech and oak stand.

As tree segmentation in this study needed to be of best quality to leave tree architecture

in place, a semi-automatic procedure was chosen that took advantage of both UAV-LS

and TLS data sets.

The segmentation was essentially a marker-based inverse watershed segmentation (Koch

et al., 2006) followed by manual correction. Tree trunks were manually identified to serve

as initial markers with Quantum GIS 2.18 (QGIS Development Team, https://qgis.org)

based on 0.2m resolution TLS point density maps. The tree trunks were clearly visible in

this map as they were hit often and cover only a small ground area compared to upper

branches and crowns. A 0.2m resolution CHM was derived as the difference between DEM

and Digital Surface Model (DSM) based on the UAV-LS point cloud (Brede et al., 2017).

Then, the inverse watershed segmentation implemented in the R ForestTools package

(https://cran.r-project.org/web/packages/ForestTools/) was applied based on the

TLS markers and UAV-LS CHM. Only crowns with a height of at least 5m were considered

for the automatic segmentation. The single segmented trees were exported into single files

for inspection. UAV-LS and TLS points were exported in the same file, but marked with

different labels for later filtering.

From the range of automatically segmented trees, sample trees for later modelling were

selected. The selection took into account the tree species as given by the location in the

plots (Figure 5.1) as well as tree size indicated by the trunk and crown size. The goal

was to maximise the range of sizes to evaluate tree volume modelling with small and

large trees. Next, the single tree point clouds were manually inspected and points not

belonging to the specific tree were removed. In some cases, neighbouring trees had to

be inspected together to transfer significant branch points from one to the other. The

co-registration allowed to segment the UAV-LS and TLS point clouds together. Also, tree

and branch identification was much easier with the TLS than with the UAV-LS point

clouds. Additionally, points representing ground were removed. Finally, UAV-LS and TLS

points were separated based on their labels. All manual work was performed by the same

operator to assure comparable quality over all the selected trees. CloudCompare 2.10 was

used in this analysis (http://cloudcompare.org) to perform the 3D work.

https://qgis.org
https://cran.r-project.org/web/packages/ForestTools/
http://cloudcompare.org
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5.3.2 Point Cloud Foliage Filtering and Density Normalisation

In the next step, the point clouds were filtered and normalised. During the filtering

foliage was removed, as this was not focus of thsi study. Also, foliage is not modelled with

TreeQSM and can only be recognised by the routine to a limited extent. Filtering was

especially important for the coniferous species in the study area, but also some of the

deciduous trees already showed young leaves. Density normalisation is a necessary step

prior to 3D model fitting, as the model routines assume equal density of the point clouds

across the tree. In this study, this assumption was particularly violated by the UAV-LS

data with a much higher number of hits in the upper crown (Brede et al., 2017).

Foliage filtering was based on a supervised Random Forest classification (Belgiu and

Drăgu, 2016; Breiman, 2001; Zhu et al., 2018). For this, training samples representing

hard (trunk, branches) and soft (leaves) tissue were manually selected from the tree

point clouds. Based on the radiometric properties of these points, individual models were

trained for each plot, and separately for UAV-LS and TLS, resulting in a total of 10

models. Radiometric features were apparent reflectance, RIEGL deviation number — a

measure of pulse waveform deviation from the expected shape (Calders et al., 2017) —

and return characteristic (i.e. first, intermediate, last return). Other studies proposed to

involve additional geometric features such as local neighbourhood relationships to improve

classification results (Wang et al., 2018; Zhu et al., 2018). However, classification accuracy

based solely on radiometric features was considered sufficient for hard tissue candidate

selection in this study as these already provided good classification results.

For each Random Forest model, 2000 samples were picked for both soft and hard tissue for

training. Model performance was checked with a 5-fold cross-validation. The final models

were trained on all 4000 samples to produce the class probability rather than the class.

In the filtering step, only points with a hard tissue probability of more than 90% were

selected for each tree. During the density normalisation the class probability was utilised

as a selection criterion. The points were segmented into voxels and within each voxel the

point with the highest hard tissue probability was selected. The grid size for TLS was

2.5 cm, which closely follows Calders et al. (2018a) and recommendations by Wilkes et al.

(2017). The UAV-LS grid size was set to 10 cm, which is in line with the lower density of

the UAV-LS point clouds.

5.3.3 Tree Modelling with TreeQSM

Explicit 3D cylinder models of trees were produced with TreeQSM in this study. TreeQSM

was introduced as a way to effectively fit cylinder models to detailed TLS point clouds,

taking into account tree inherent structure like connectivity, branching and branch tapering

(Raumonen et al., 2013). Additionally, TreeQSM neither makes assumptions based on tree

species nor distinguishes between deciduous and coniferous tree architectures. TreeQSM

was used in several studies to automatically produce 3D tree models, and estimate
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tree volume and subsequently AGB (Calders et al., 2015b; Gonzalez de Tanago et al.,

2018).

The TreeQSM fitting procedure is extensively explained in Raumonen et al. (2013),

Calders et al. (2015b) and Gonzalez de Tanago et al. (2018). Essentially, tree modelling

is performed in two main steps. First, the point cloud is segmented into trunk and

individual branches. The segmentation uses small subsets or patches in two phases. In

the first phase large constant size patches with radius PatchDiameter1 are used across

the tree. This segmentation serves to identify the tree’s coarse architecture and branches.

In the second phase, a finer cover with patch size varying from PatchDiameter2Min to

PatchDiameter2Max determines the final branch topology. In the second main step, the

branch geometry is reconstructed by least squares fitting of cylinders.

PatchDiameter2Min (PD2Min) plays a central role in the TreeQSM tuning, as it defines

the smallest possible features that will be modelled. Hence, it has to be adapted to the

smallest features that can be resolved with the data available. Additionally, there is a

random component in the initialisation of the patches. This makes it necessary to run the

same parameter settings multiple times for each tree and aggregate the produced models,

which provides a measure of modelling confidence.

In this study, PatchDiameter1 (PD1) was kept constant for all trees. In the case of

UAV-LS and TLS, it was chosen as 20 cm and 18 cm, respectively. PD2Min was varied

from 2 to 31 cm in steps of 2 cm for UAV-LS and 2 to 11 cm in steps of 0.5 cm for TLS.

PatchDiameter2Max (PD2Max) was varied from 10 to 70 cm in steps of 10 cm for UAV-LS

and between 10 to 14 cm for TLS. The variation was conducted in a full-grid approach and

each parameter combination was run 10 times, to derive statistics about the modelling

uncertainty of the respective parameter set.

5.3.4 Best Fit QSM Identification

Although TreeQSM produces inherently valid models with respect to topology and tapering

for a range of input parameters, the best fitting model for a given point cloud has to be

identified independently. Calders et al. (2015a) proposed an automatic framework for

parameter tuning that was successfully applied to TLS data in Calders et al. (2015b) and

Calders et al. (2018a). This framework is based on selecting segments along the trunk

and fitting circles to each via least squares optimisation. These circles provide a robust

measure of the trunk diameter at the respective height. Then, the QSM is selected that

matches the circle radii best. This procedure has the advantage that the circles deliver

measures of the trunk that are independent from the QSM. However, in a previous study

circle fitting at DBH height for 19 out of 58 trees (33%) was unsuccessful for the dataset

used in this study due to too low point density (Brede et al., 2017).
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Therefore, the procedure of Calders et al. (2015a) was adapted to use cylinders instead,

which are the extension of circles into the third dimension. This has the advantage to take

more space and potentially more points into account, thereby overcoming the problem of

low point density at specific positions at the trunk for the UAV-LS data. For the purpose

of cylinder fitting, three to six straight parts of the trunk or big branches were manually

selected from each tree. The parts had to contain at least 10 returns to be taken into

consideration for cylinder fitting. Cylinders were fitted in two steps: first, the orientation of

each cylinder was estimated based on point normals and Hough transformation (Rabbani

and Heuvel, 2005). Then, the points were projected onto the plane that was orthogonal

to the cylinder central axis. This allowed to estimate radius and central axis with least

squares circle fitting.

Based on the radii of these derived control cylinders the tuning followed the framework of

Calders et al. (2015a) per tree, and independently for UAV-LS and TLS. For all QSMs,

the QSM cylinders that were closest to the control cylinder centres were identified. The

maximum allowed angle and distance between QSM and control cylinder were 15◦ and

50 cm, respectively. Per TreeQSM parameter combination, the QSM model cylinder radii

rQSM were related to the control cylinder radii rcontrol: ∆r = 1− (rcontrol − rQSM )/rcontrol.

The absolute average over all control cylinders was defined as cmatch. Subsequently, the

mean cmatch, standard deviation σc and coefficient of variation CVc were derived. Then the

parameter combination with the largest PD2Min was chosen where CVc < CVthreshold and

cmatch > cconformity, where cconformity = 5 × min(CVc) and cconformity = 0.95. If no such

parameter set existed, the parameter set with the lowest CVc was selected. If no control

cylinders could be derived from the segments, the model with the parameter set with the

lowest standard deviation in volume was chosen.

5.3.5 QSM Comparison

For the assessment of UAV-LS correspondence to TLS QSMs total volume across samples

in a stand, CCC — a measure for the agreement of two methods measuring the same

quantity (Lin, 1989) — was used. RMSE was used to quantify the magnitude of the

deviation of modelled volume and Mean Signed Difference (MSD) to assess the bias. The

averaged Coefficient of Variation (CV) across samples of a stand gave an indication of the

model uncertainty.

In order to get further insights into how the estimated volume was distributed over the

vertical dimension of QSMs, vertical volume distribution profiles were computed. For this,

volume was summed up across 30 height layers relative to the maximum height and to

the total volume of each individual tree. The height layers were defined by the minimum

and maximum height coordinate of each segmented TLS tree point cloud. This allowed

comparison across all trees within the same stand as well as across stands.
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5.4 Results

5.4.1 Tree Segmentation

The CHM was segmented based on 767 manually selected markers (Figure 5.2). Some of

the sampled tree point clouds also included additional non-dominant understorey trees,

especially in the old beech and oak plot. These trees were also considered for the further

processing. In total, 40 trees per stand were selected, summing up to a total of 200.

5.4.2 Foliage Filtering

Table 5.3 summarises the foliage identification performance for the UAV-LS and TLS point

clouds. All models achieved classification accuracies ≥ 0.71, while all except UAV-LS

in the Norway spruce stand and in the young beech stand achieved accuracies ≥ 0.91.

The Norway spruce trees seemed to provide challenges due to their high number of small

branches close to the trunks, which resulted in only few trunk returns. These were prone

to be higher order returns, which could lead to degradation in the reflectance signal in

the selected training data. In the case of the young beech trees, the trunks were small

in diameter even though they were more sparsely covered by branches than for example

the Norway spruce. However, the small trunk surfaces might have led to partial returns

at the trunk edges, which also could have effects on the reflectance signal. Nonetheless,

classification accuracy was generally high, and UAV-LS and TLS showed comparable

results.

0 5025 mSeeds for segmentation Selected trees

Figure 5.2: Manually selected seeds for watershed segmentation, segmented CHM and selected

trees for 3D modelling in project coordinate system. Some selected segments contained more

than one tree and some contained none.
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Table 5.3: Classification performance for point cloud filtering from 5-fold cross-validation.

Stand Accuracy UAV-LS Accuracy TLS

Douglas fir 0.96 0.95

Giant fir 0.91 0.95

Norway spruce 0.71 0.93

Old beech and oak 0.94 0.92

Young beech 0.82 0.88

5.4.3 Control Cylinders

Cylinder fitting was successful for at least one cylinder for all TLS-based tree point clouds

and in 185 out of 200 cases (92.5%) for the UAV-LS. Figure 5.3 summarises the estimated

cylinder diameters compared with TLS. Generally, cylinders could be fitted best for the

old beech and oak trees with CCC of 0.99 and RMSE of 2.3 cm in diameter. Foliage was

least developed in this stand, exposing trunks, so that they could be sampled well from

above.

Giant fir and Norway spruce control cylinders were estimated about equally with CCC

of 0.96 and 0.93, and RMSE of 2.38 cm and 2.26 cm, respectively. However, for 6 and 5

trees no control cylinders could be successfully fitted, respectively. The foliage and small

branches of these species shielded their trunks, which made already the cylinder selection

in the TLS point cloud difficult during manual segmentation.

In the case of young beech trees, four individuals could not produce acceptable control

cylinders. UAV-LS fitting performance compared to TLS was lower with CCC of 0.88

and RMSE of 3.69 cm when compared to the old beech trees. The young beech stand was

relatively open, but tree diameters were small, so that the chance of trunk hits was much

lower than for larger trees. Additionally, UAV-LS estimated cylinders were on average

1.18 cm larger compared to TLS. This was due to cylinders only partially covered with

points.
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Figure 5.3: UAV-LS estimated cylinder diameter compared to TLS. Grey lines are 1:1.
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The effect of partial coverage was even stronger in the Douglas fir stand due to its position

in the corner of the plot. This position prevented good visibility of the trunks from the

last diagonally crossing flight line (Figure 5.1). In combination with the relatively large

trunks this led to the largest RMSE of all plots of 7.90 cm and on average 4.71 cm larger

cylinder diameters compared to TLS.

5.4.4 QSM Comparison

Figure 5.4 and 5.5 compare acquired (segmented) point clouds, normalised point clouds

and QSM samples for the largest beech tree found in the study area and a Douglas fir,

respectively. In both cases, UAV-LS delivered sufficient points to visually delineate the

lower part of the trunk, i.e. the volume of the trunk could be delineated clearly on all

sides. The normalisation with foliage filtering typically removed a significant part of points,

especially in the upper crown area. For TLS, this were 92.7% and 94.9% of the points in

case of the beech and the Douglas fir, respectively. For UAV-LS, 77.6% and 88.8% of the

points were removed, respectively. However, the identification of foliage in the UAV-LS

point clouds seemed to be less effective, despite high cross-validation classification accuracy

between 0.71 and 0.96 (Table 5.3). Also, the UAV-LS normalised point clouds did not

show upper branches as clearly, compared to the TLS normalised point cloud. This means

branches could be recognised, but only after careful checking and turning of the point

cloud. Also, some branch surfaces were not sampled completely, so that guessing the

occupied volume visually was more difficult. A consequence of this incompleteness is that

the QSM derived from UAV-LS resulted in a much less coherent upper crown modelling:

cylinders did not follow natural growth directions and a much higher number of cylinders

was fitted than seemed necessary, when compared to TLS.

Considering all sampled trees, UAV-LS tree volume estimation in comparison to TLS

volume varied markedly across the different stands in the study area (Figure 5.6). As was

the case in the control cylinder diameter estimation (Section 5.4.3), UAV-LS based old beech

and oak QSMs showed overall the closest correspondence to TLS based QSMs in terms of

volume with CCC of 0.51. Additionally, the modelling uncertainty expressed as mean CV

was lowest among all stands with a value of 0.10. The structural characteristics of this

stand were probably the most favourable for UAV-LS sampling of all the considered stands.

The relatively wide spacing between individuals, the large trunks with reconstructed DBH

of up to 91.0 cm and the comparably low shielding of lower canopy elements by upper

branches and foliage when seen from above had a positive effect on volume estimation.

However, UAV-LS volume estimates for large specimen in this stand were positively

biased as indicated by the MSD of 3.44m3. This bias in combination with the fact that

the old beech and oak stand contained the largest trees in the study area produced the

largest RMSE among all stands of 6.59m3. Inspecting the distribution of the volume over

differently sized cylinders gave further insights how this could be traced to differently sized

branches (Figure 5.8): Considering only large cylinders with diameter ≥30 cm resulted
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(a) Segmented UAV-LS

(P = 1 088 317)

(b) UAV-LS normalised

(P = 243 680)

(c) UAV-LS QSM

(C = 2464)

(d) Segmented TLS

(P = 4 626 368)

(e) TLS normalised

(P = 337 326)

(f) TLS QSM

(C = 3471)

Figure 5.4: Tree segmentation, point density normalisation and QSM example for beech.

Point cloud colour represents reflectance (blue = low, green = intermediate, red = high), QSM

colour refers to branching order. Scale bar in metre. Number of points P or cylinders C in

caption.
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(a) Segmented UAV-LS

(P = 197 484)

(b) UAV-LS normalised

(P = 22 012)

(c) UAV-LS QSM

(C = 141)

(d) Segmented TLS

(P = 1 613 021)

(e) TLS normalised

(P = 81 888)

(f) TLS QSM

(C = 588)

Figure 5.5: Same as Figure 5.4, but for a Douglas fir.
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CCC = 0.44

RMSE = 1.13
MSD = 0.38

CV = 0.24
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Figure 5.6: Tree volume reconstruction for UAV-LS compared to TLS. Error bars represent 1

standard deviation of the 10 QSM realisations. Grey lines are 1:1 match. CV is mean UAV-LS

coefficient of variance. Positive MSD means overestimation by UAV-LS. RMSE and MSD in

m3.

in high correspondence between UAV-LS and TLS with CCC> 0.85, RMSE as low as

0.65m3 and MSD as low as 0.1m3. But taking smaller cylinders into account, considerably

degraded UAV-LS volume estimates for this stand in terms of all performance metrics.

CCC of minimum 0.42, and RMSE and MSD of maximum 6.70m3 and 3.57m3, respectively,

were reached. Furthermore, it was possible to trace the differences between UAV-LS and

TLS volume estimates to the vertical distribution of cylinder volume (Figure 5.7). It could

be seen that UAV-LS overestimated volume in the upper half of trees with an average

contribution of this part of 41.3% to the total tree volume for UAV-LS compared to 27.6%

for TLS. The reason for this could be observed in the sample (Figure 5.4), but also in all

other old beech and oak trees’ QSMs. The upper crown was modelled as a large number

of small cylinders that were apparently not corresponding to real branches. Probably the

quality of the point clouds was not sufficient in terms of point count and point registration

accuracy.

Apart from these general observations for the old beech and oak stand, an outlier could be

observed when only considering large cylinders (Figure 5.8). This specimen was located at

the southern edge of study area. Inspecting the point cloud together with QSM realisations

revealed that the stem was not modelled with cylinders as large as those of the TLS

QSM, but with many smaller cylinders. The UAV-LS point cloud mainly contained

points from one side of the tree and trunk, which were not sufficient to model the whole

circumference. The most southern UAV-LS flight line was nearly directly over this tree

effectively preventing registration of points on the southern trunk sites. The corresponding

UAV-LS point cloud covered only the trunk surfaces facing into the plot, which resulted

in a QSM with undersized trunk cylinders.

The Douglas fir comprised the second largest trees in the study area with DBH of up to

56.5 cm diameter. It was most similar to old beech and oak stand with respect to canopy

opennesses. Nonetheless, UAV-LS reconstruction was less successful here with lower CCC
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Giant fir Norway spruce Douglas fir Young beech Old beech & oak
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Figure 5.7: QSM volume aggregated over height. Solid centre lines represent the mean

volume contribution of a height layer to the total tree volume. Relative tree height was based

on the TLS point cloud height range. Coloured ribbons indicate 1 standard deviation from the

mean. Each panel summarises all modelled trees of the corresponding stand.

of 0.37 and higher CV of 0.22. The bias in terms of MSD was with 0.71m3 substantially

lower than for the old beech and oak. However, this stemmed mainly from the cancelling

effect of two groups, for which volume was over- and underestimated, respectively. The

overestimation could be traced to the same mechanism as in the old beech and oak stand.

The crown tended to be modelled with a high number of small cylinders. The effect on the

vertical distribution of volume was even stronger than in the old beech and oak stand, with

49.1% of the total volume in the upper half of the tree in the case of UAV-LS compared

to 25.7% in the case of TLS (Figure 5.7). The group of underestimated trees turned out

to be positioned at the southern and south-western edges of the study area. Here, the

effect was the same as for the single outlier in the old beech and oak stand. This means

due to the location of the flight lines, the trees’ southern sides could not be sensed from
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Figure 5.8: Accumulative tree volume for different diameter bins reconstruction for UAV-LS

compared to TLS for old beech and oak trees. Error bars represent 1 standard deviation of

the 10 QSM realisations. Grey lines are 1:1 match. Positive MSD means overestimation by

UAV-LS. RMSE and MSD in m3.
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the UAV resulting in incomplete point clouds and QSMs with many small instead of few

properly sized cylinders for trunks.

In the case of giant fir, UAV-LS agreed with TLS reconstructed models with CCC of

0.44 and RMSE of 1.13m3. Outliers could not be explained by their position within the

stand as was the case for the Douglas fir trees. In fact, this stand could be observed from

a UAV-LS flight line outside of the plot in the North plus from the diagonal cross line

(Figure 5.1), which provided better observations from multiple directions. The vertical

distribution of volume indicated a similar bias as was the case for old beech, oak and

Douglas fir, but with a much lower magnitude across the tree vertical profiles (Figure 5.7).

The upper halves of trees contained 35.5% in the case of UAV-LS, while this was 25.6%

for TLS.

Despite the similar levels of agreement of UAV-LS modelled control cylinders with TLS

control cylinders between giant fir and Norway spruce (Section 5.4.3), Norway spruce

modelled QSMs showed less agreement in terms of QSM volume with CCC of 0.36 and

RMSE of 1.32m3. Also, Norway spruce QSM models showed less modelling confidence

than giant fir QSMs in terms of a higher CV of 0.33 for Norway spruce and 0.24 for

giant fir. The denser tree coverage of the Norway spruce could be an explanation for

that (Table 5.1), as it results in mutual shielding of trees from above canopy view points

and therefore observation of lower and larger tree elements by UAV-LS. Additionally, the

higher tree density leads to a lower number of points per tree.

The young beech stand showed the lowest comparability between UAV-LS and TLS QSMs

with CCC of 0.01. Especially the RMSE of 2.14m3 indicated low modelling performance

with respect to the maximum individual TLS QSM volume of 0.84m3. In particular, volume

was generally overestimated with a MSD of 1.62m3. When inspecting the corresponding

point clouds, it became clear that the point density on the trunk and branch surfaces

was too low to actually represent the volume of the individuals, i.e. points formed lines

for trunks instead of covering them on multiple sites. In contrast to the old beeches, the

young beech trees were positioned much denser (Table 5.1) and had already almost flushed

all their leaves, which hindered visibility of the lower canopy elements.

5.5 Discussion

5.5.1 Tree Segmentation

Overall, UAV-LS point clouds show potential in combination with semi-automatic segmen-

tation of trees. Even young trees in the understorey of the old beech and oak could be

identified. If a fully automatic approach is desired to achieve fast plot scale results, it can

be said that recent automatic algorithms have moved away from incremental adaptation

of initial algorithms and make more use of the characteristics of LiDAR data (Duncanson
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et al., 2014; Eysn et al., 2015; Zhen et al., 2016). Algorithms exploit more and more

the full vertical profile of high density ALS point clouds (Str̂ımbu and Str̂ımbu, 2015)

and can even deliver segmentation uncertainty (Parkan and Tuia, 2018). Wallace et al.

(2014a) achieved detection rates of up to 98% with another UAV-LS system that produced

point clouds with 50 points/m2. This suggests that automatic detection and segmentation

with the dataset underlying this study has the potential to achieve excellent segmentation

results. These approaches should be targeted in the future.

5.5.2 Foliage Filtering

The foliage classification cross-validation with UAV-LS based on manually selected training

samples generally produced high accuracies in this study (Table 5.3). However, a certain

extent of foliage points remained that were subsequently modelled as small branches

(Figure 5.4 and 5.5). This portion was larger for UAV-LS than for TLS and led to a

much higher number of small cylinders in the upper crown for UAV-LS. Previous TLS-

based studies using TreeQSM have skipped leaf-wood separation, but still achieved high

correspondence with destructively measured AGB (Calders et al., 2015b; Gonzalez de

Tanago et al., 2018; Lau et al., 2018). Together this suggests that foliage filtering prior to

wood volume assessment with TreeQSM based on UAV-LS will require a higher attention

in the future.

For improved classification of foliage, new classification approaches based on geometric

features, e.g. local cluster orientation, have been proposed to overcome the ambiguity

of radiometric LiDAR features (Vicari et al., 2019; Wang et al., 2018; Zhu et al., 2018).

However, these methods rely on high density TLS point clouds and tests with lower density

point clouds are still to be performed (Vicari et al., 2019). This is especially relevant for

UAV-LS as observation geometry, point registration accuracy and point cloud density

markedly differ from TLS. Another alternative for the whole volume estimation work-flow

for coniferous species could be a hybrid approach as suggested by Stovall et al. (2017):

they model stems of coniferous Pinus contorta explicitly with cylinders and make use

of allometric relationships to estimate branch and needle biomass. Unfortunately, such

an approach would require the establishment of an extensive database for foliage density

allometric relationships.

5.5.3 QSM Modelling

The tree modelling performance of UAV-LS compared to TLS in this study needs to be

regarded in the context of the challenges to produce accurate point clouds from a UAV

platform. Four principal mechanisms come into question that have a stronger affect on

UAV-LS point cloud accuracy than on TLS. First, the overall LiDAR sensor ranging

accuracy and precision is lower for the VUX R©-1UAV than the VZ400 (Table 5.2). This is

likely to be the general case for miniaturised LiDAR sensors. However, LiDAR ranging
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accuracy is typically the smallest error source in the whole point cloud production chain,

both for UAV-LS and TLS. It can only be improved by exchanging the LiDAR sensor with

a higher quality device.

Second, the larger beam divergence of the VUX R©-1UAV additionally decreases point

cloud accuracy. For example, at an average canopy height of 20m and a flight height of

90m the VUX R©-1UAV produces an effective footprint of 3.5 cm at the top of the canopy,

while this is 1.4 cm for the VZ400. This larger footprint leads to larger ambiguity in the

point registration, hence lower spatial accuracy. As for the LiDAR ranging accuracy, beam

divergence is bound to the system in use. Nevertheless, the effective divergence can be

reduced by flying at lower altitudes. In forest set-ups, the flight height lower limit is

restricted by the tree height and UAV observing opportunities from openings for VLOS

operation.

Third, the free moving mounting of the LiDAR on a UAV produces many more degrees

of freedom for the scanner positioning and orientation. In this study, the trajectory was

sampled at 200Hz for a flight time of approximately 20min, resulting in roughly 240 000

positions. For the TLS only 118 positions — 58 upright and 58 tilted — had to be

estimated. For accurate co-registration of scan lines and scan positions, planar features

extracted from the point clouds are usually used to achieve the fine registration (Wilkes

et al., 2017). TLS point clouds with higher point density provide more opportunities to

find those features, such as even trunk surfaces or ground patches. These have to be larger

in size for UAV-LS with a lower point cloud density and are therefore rarer in forests.

Additionally, UAV-LS registration has to be optimised within flight lines, which can be

regarded as the equivalent to scan positions in TLS. Positioning and orientation errors

can be controlled to some extent with the flight path planning, with straight flight lines

delivering best results, and by avoiding weather conditions with strong gusts that abruptly

change flight speed and orientation.

Fourth, the perspective of the TLS from below the canopy favours correct modelling of

the trunk and lower branches. UAV-LS point clouds are less dense in this region, leading

to higher uncertainty in cylinder fitting. These modelling errors at lower heights can

propagate into higher areas of the canopy. Especially the upper crown becomes very

difficult to model under these conditions.

All together, the above-mentioned factors determine a threshold on the diameter for

modelling of branches. Here, a diameter of 30 cm appeared to be the threshold for reliable

volume modelling with UAV-LS (Figure 5.8). Different thresholds have been observed in

TLS-based studies using cylinder fitting approaches: Hackenberg et al. (2015) found that

elements with diameter ≥10 cm can be modelled accurately, while elements with diameter

≤4 cm were often overestimated. Momo Takoudjou et al. (2018) modelled branches with

diameter ≥5 cm reliable. However, Lau et al. (2018) found that TreeQSM reconstructed
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actual branching architecture as opposed to cumulative volume only for branches with

diameter ≥30 cm.

Additionally, the above results showed that canopy structure as exemplified by the different

stands in this study has a significant impact on UAV-LS QSM modelling capability when

modelled with TreeQSM. UAV-LS QSMs showed higher agreement in terms of tree volume

with TLS in open stands, and decreasing agreement in denser stands or in stands with

smaller trees. The direction of this trend can also be observed when using Structure

from Motion (SfM) techniques of passive camera systems (Wallace et al., 2017). Still, the

detection of small understorey trees and the moderate modelling success even in dense

stands speak for the application of UAV-LS in complex vertically structured forests. In

comparison to TLS, UAV-LS has the advantage of fast acquisition speed and thereby

larger coverage of plot area. In this study, UAV-LS acquisition required 2 h, while TLS

took approximately 16 h, which is factor of eight difference. This should be considered

together with possible improvements to the UAV-LS processing chain.

There are some ways that possibly improve UAV-LS QSM agreement with TLS. First,

repeated flights with point cloud acquisition over the study area would increase the number

of points, which increases the chance to collect trunk returns in dense stands such as the

giant fir and Norway spruce stands or to penetrate the foliage of the young beech stand.

Second, varying flight patterns with different headings would improve the sampling of

different trunk sides and prevent edge effects such as those observed for the Douglas firs

(Section 5.4.4). Third, additional layout of ground control panels could improve the flight

line-to-flight line registration and therefore internal consistency of the point cloud, which

could improve the modelling of smaller branches. Fourth, in closed stands like the giant fir

or Norway spruce stands fitting procedures that apply more constrains could be utilised.

For instance, successful identification and modelling of the trunk as a single large cylinder

or cone in these coniferous species would capture the larger part of total tree volume. Also

slice-wise fitting as applied in Stovall et al. (2017) for the trunk could deliver more robust

results. Pitkänen et al. (2019) present another complementary procedure for coniferous

species that applies modelling and quality checking over height slices. UAV-LS control

cylinders showed acceptable agreement with CCC of at least 0.93 (Figure 5.3), indicating

that a large cylinder or cone-shaped geometry, or slice-wise fits could be successful.

5.6 Conclusions

Recent technological developments have allowed UAV-LS to produce high density point

clouds. This study compares UAV-LS explicit tree modelling with a TLS benchmark in

terms of tree volume estimation. UAV-LS point cloud acquisition was considerably faster

than TLS at scales relevant for satellite AGB calibration and validation. In total, 200 trees

of 5 stands have been segmented and automatically modelled. UAV-LS control cylinders,

which were used during model selection, generally agreed well with TLS cylinders with
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RMSE in diameter between 2.26 cm and 7.90 cm. Full tree volume based on reconstructed

QSMs showed differences between the examined stands. Mature beech and oak volumes

were reproduced best by UAV-LS with CCC of 0.51 and RMSE of 6.59m3. Young beech

trees showed lowest correspondence with CCC of 0.01 and RMSE of 2.82m3. This pointed

to the fact that canopy structure, in this case tree and branch size, branch arrangement

and foliage, plays a major role in tree volume estimation capabilities. Also, the impact of

flight path planning could be observed to some extent with improved volume modelling

when trunks were observed from multiple sites. Future studies should aim to overcome

the limitations in dense canopies by increasing the point cloud density through repeated

flights and adapting the flight path with respect to maximising viewing angles on the

trunks.





Chapter 6

Synthesis
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6.1 Main Findings

The overall objective of this thesis was to explore methods that allow efficient observations

of forest structure at scales relevant to hectometric space-borne products. For this,

Chapter 2 and 3 focussed on production of Leaf Area Index (LAI) high frequency time

series, while Chapter 4 and 5 focussed on forest inventory metrics and Above-Ground

Biomass (AGB) at hectare scale. In Chapter 1, four research questions were defined. This

section summarises the answers to these questions based on the studies performed in

Chapter 2 to 5. Section 6.2 reflects on these results in particular with respect to findings

of other studies, upcoming developments in the field and their significance for practical

validation exercises.

1. How can forest LAI be efficiently and automatically monitored over time?

Timely observations of canopy foliage are necessary in order to validate high frequency,

hectometric LAI products. The validation of the time dimension can give additional

clues on the sensitivity of the respective product to phenology, another land product

(Land Product Validation subgroup, 2019). So far, labour-intensive manual sampling

with ground instruments such as Digital Hemispherical Photography (DHP), LiCor LAI-

2000 Plant Canopy Analyzer or Tracing Radiation and Architecture of Canopies (TRAC)

is recommended for LAI validation (Fernandes et al., 2014). In Chapter 2, the PAI

Autonomous System from Transmittance Sensors at 57◦ (PASTiS-57) — a transmittance

system with six individual upward pointing sensors per device — was evaluated using a

Radiative Transfer Model (RTM) and a field experiment with respect to automatically

monitoring forest LAI and thereby tracking phenological changes.

Considering fieldwork, the PASTiS-57 proofed to be an overall robust sensor. The water-

proof housing, long battery life and relative ease of use support long-term and large scale

deployment with potentially multiple users. Regular visits were necessary every three

months when a 1minute sampling interval was chosen in order to read out the data.

Readout could be carried out for all devices in the chosen study site within 1 hour. In

comparison, the production of the Terrestrial Laser Scanning (TLS) validation time series

required approximately 4 hours fo each sampling event.

The retrieval algorithm underlying PASTiS-57 is based on the gap fraction theory, which

is also used for the manual LAI-2000 instrument. In this sense, PASTiS-57 is compatible

with recommended LAI validation practices (Fernandes et al., 2014). Compatibility with

previous standards would foster acceptance and introduction into validation campaigns.

During the field experiment, PASTiS-57 data showed very high agreement in terms of

phenological timing when compared to time series from illumination-independent TLS. LAI

magnitude differed between the instruments, but followed directions that were reported

earlier when comparing passive sensors and TLS (Woodgate et al., 2015). Future research
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should aim to establish inter-calibration procedures between different instruments. Also,

the high frequency dynamics of the derived time series in relation to illumination conditions

and rain events should be investigated.

Experimental implementation of the PASTiS-57 sensor within the Discrete Anisotropic

Radiative Transfer (DART) RTM allowed testing the general sensing principle and showed

general robustness under varying Leaf Angle Distribution (LAD), leaf Chlorophyll a and

b (Cab) and Solar Zenith Angle (SZA) for homogeneous canopies. Only planophile and

erectophile LADs produced larger deviations exceeding 20% difference from the true value.

Heterogeneous stands with explicit tree representations produced larger deviations due

to clumping effects, especially with sparse tree cover. The limited number of PASTiS-57

viewing directions prevents proper canopy clumping assessment.

Branch material was not taken into account in the RTM experiments, as trees are modelled

following a ’lollipop’ model with single straight trunks and a spherical crown. Also in

the field experiments, neither PASTiS-57 nor TLS retrievals distinguished foliage from

woody material. In fact, this is often not the case for forest LAI validation measurements

(Bréda, 2003; Fernandes et al., 2014). Still, the RTM approach proved useful in order

to assess the accuracy of the retrieval approach under various canopy configurations. In

forest settings, RTM-based approaches sometimes remain the only way of accuracy and

uncertainty assessment of biophysical variables (Adams et al., 2016; Nightingale et al.,

2018b). Detailed forest reconstructions based on TLS can provide virtual stands that can

be exploited for these purposes (Calders et al., 2018a) and foster uncertainty assessment,

including the contribution of branch material to the error.

2. How is prediction performance of hybrid RTM-Machine Learning Regres-

sion Algorithm (MLRA) forest LAI-retrieval chains affected by their individ-

ual processing chain parts?

ESA’s Sentinel-2 has been anticipated for operational production of land-cover and bio-

geophysical variable maps (Drusch et al., 2012). Retrieval of biophysical variables was

extensively tested in pre-launch field campaigns with simulated observations in particular

for agricultural areas (Atzberger and Richter, 2012; Delegido et al., 2011; Frampton et al.,

2013; Verrelst et al., 2015b). Applications in forested areas were mostly attempted post-

launch (Korhonen et al., 2017; Majasalmi and Rautiainen, 2016; Vafaei et al., 2018). Even

fewer studies investigated the usability of Sentinel-2 for forest structure and in particular

LAI (e.g. Korhonen et al., 2017). In combination with the Landsat family of missions,

high frequency observations at decametric resolution are possible that can serve to upscale

ground-reference measurements as performed in Chapter 2. Chapter 3 investigated an

LAI retrieval approach for local, multi-temporal estimation of LAI with Sentinel-2A and

Landsat 7/8, and especially how individual elements in the processing chain affect the

prediction performance.



116 Synthesis

Of the investigated elements, adding Additive Independent (AI) noise to the RTM-produced

database of spectra had the strongest positive influence on the prediction performance.

This procedure was implicitly used in previous studies, and was typically related to the

error originating from the sensor and atmospheric correction applied (Baret et al., 2007).

However, this has not been systematically evaluated. Also, a clear definition of the error

model has typically not been provided. Here, the wavelength independent terms of the noise

model of Weiss and Baret (2016) were implemented and error terms were systematically

varied. The resulting importance of added noise suggests that noise should be treated as

an additional hyper-parameter in the training of hybrid retrieval schemes employing RTMs

and MLRAs. Other elements of the inversion processing chain had less impact on the

prediction performance. In case of the insertion of a leaf chemical prior, this is particularly

important, as the corresponding collection of field data is labour-intensive.

In Chapter 3, LAI retrieval was attempted using as few assumptions on canopy architecture

and as few field data as possible. This is relevant in scenarios when only few reference

measurements are available and these have to be used for independent validation of the

retrieval. However, with an increasing amount of regularly acquired ground data as

presented in Chapter 2, data driven approaches can be applied. Additionally, detailed

forest scenes can be generated based on TLS forest reconstructions (Calders et al., 2018a),

assuming little change of forest macro structure (i.e. standing tree density, branching

behaviour) and terrain.

A particular disadvantage of the method presented in Chapter 3 is the need for a homoge-

neous area. Even though validation efforts in general should preferably be performed in

homogeneous areas with small variation in land-cover, decametric sensors such as Sentinel-2

can provide the means to assess the spatial heterogeneity across validations sites, plus

their temporal dynamics. This could be exploited to turn formerly unsuitable sites into

suitable ones by characterising their spatial characteristics in detail. For heterogeneous

sites, a rigid production of a single database for the MLRA learning restricts the approach

to a single species composition or land-cover type. Therefore, adaptation strategies to

varying macro-structure should be found.

3. What is the capability of UAV-LS to estimate canopy height and DBH?

Unmanned Aerial Vehicle (UAV) technology has evolved rapidly in the last years and

applications in forest inventories are being targeted (Torresan et al., 2016). Combining UAV

with LIght Detection And Ranging (LiDAR) into Unmanned Aerial Vehicle Laser Scanning

(UAV-LS) has been technologically challenging due to the high accuracy requirement of

LiDAR sensors with respect to the platform’s position and orientation. In Chapter 4, the

RiCOPTER with VUX R©-1UAV (VUX R©-1UAV) was tested with respect to canopy height

and Diameter at Breast Height (DBH) estimation.



6.1 Main Findings 117

For this purpose, the UAV-LS derived Canopy Height Model (CHM) and DBH estimates

were compared with TLS over a 100m × 180m area. UAV-LS produced on average

11.5 cm higher CHMs, which can be explained with TLS possibly not reaching the top of

canopy. UAV-LS DBH reached high correlation and a Root Mean Square Error (RMSE)

of 4.24 cm compared to TLS. However, DBH could not successfully be estimated for 19

out of 58 sample trees (33%), especially in dense coniferous stands.

On the one hand, UAV-LS proved to be a very fast tool for the production of the point

clouds. The fieldwork required was 2 hours for the UAV-LS acquisition, while the same area

required 2 days for the TLS work. The difference would probably be much larger in tropical

environments where TLS fieldwork is slowed by understorey and visibility requirements

for the setting of the retro-reflective targets (Wilkes et al., 2017). On the other hand, the

reduced success in DBH modelling limits the usability of UAV-LS for forest inventories.

Intensified flight patterns with larger diversity of flight directions as well as repeated flights

should be tested in future studies. Additionally, UAV are typically restricted to Visual

Line of Sight (VLOS) operations in forest environments and by aeronautical regulations.

This means UAVs can only be operated from large forest openings, where they are visible

during the whole flight time.

4. How can UAV-LS contribute to tree volume assessment?

Upcoming space-borne missions focussing on AGB estimation require calibration and

validation data, preferably at scales similar to the satellites’ footprints. TLS and tree

reconstruction is discussed as a breakthrough technology for unbiased estimation of tree

volume and subsequently AGB (Calders et al., 2015b; Disney et al., 2018), especially in the

case of large tropical trees (Gonzalez de Tanago et al., 2018; Momo Takoudjou et al., 2018).

However, fieldwork is tedious and labour-intense. Chapter 5 investigated the UAV-LS

RiCOPTER with VUX R©-1UAV with respect to explicit tree volume modelling.

In comparison to state-of-the-art TLS volume reconstruction, UAV-LS estimated volume

reliably for trunks and branches with diameter ≥30 cm in a mature beech and oak stand.

When smaller branches were to be included, UAV-LS generally overestimated total tree

volume, mainly due to an excess of small cylinders modelled in the canopies. In the upper

parts of the trees, small branches with small inter-element space led to confusion to which

branch points belong. This led to higher requirements in terms of point cloud accuracy

compared to lower parts of the trees. Additionally, volume estimation differed with stand

characteristics. For example, young beech trees that already carried a substantial amount

of foliage during the sampling could most often not be modelled correctly due to too low

number of points along the lower trunks. Coniferous species with high number of small

branches at low heights shielded their trunks and thereby prevented proper modelling.

Overall, the detailed validation of tree reconstructions beyond summarising statistics

is difficult. Some previous studies differentiated between branch diameter classes when



118 Synthesis

comparing TLS reconstruction and destructively harvested sample trees (Hackenberg et al.,

2015; Lau et al., 2018; Momo Takoudjou et al., 2018; Stovall et al., 2017). However, actual

tree architecture has rarely been validated. This means that model agreement with ground

truth was only established on a statistical basis, which is also the case for this study.

This hampers detailed analysis of the tree reconstruction accuracy, especially with small

branches, and should be addressed in future studies. Another issue that could not be

addressed with the dataset available in Chapter 5 was if the poor modelling capability of

small branch total volume was due to the lower point density or due to the most likely

lower spatial accuracy of the UAV-LS point cloud.

6.2 Reflection and Outlook

This work was motivated by the growing need for rigorous and efficient calibration/validation

data and procedures for Earth Observation (EO) land products. Rigorous validation is

relevant in the wider context of climate observations and the implementation of the

Committee on Earth Observing Satellites (CEOS) targets. Additionally, independent

validation data is helpful in the full uncertainty characterisation of land products and

validation of traceability chains (Nightingale et al., 2018a). This thesis contributes to

these topics in the domain of forest structure variables with a special focus on meeting

hectometric EO temporal and spatial resolutions.

The remainder of this section places this thesis’ findings in a wider context of developments

in the field of forest structure assessment from ground and proximal sensing techniques as

well as EO land product calibration/validation. The latter will also expand the discussion

towards non-forest vegetation types.

6.2.1 Wood-Leaf-Separation

The differentiation between woody and leaf material is particularly important in the

context of LAI estimation in forest environments, because woody material produces a

bias in LAI measurements. For example, Hu et al. (2016) found a contribution of 14 to

28% woody material to Plant Area Index (PAI) across four larch, birch and pine plots.

As briefly described in Chapter 2, the differentiation between woody and leafy material

is not made by many fast, indirect methods and instruments, such as DHP, LAI2000

plant canopy analyser or PASTiS-57. Proper measurements are therefore too complicated

and/or time consuming, and hence skipped. This leads to occasionally labelling PAI

measurements as LAI (e.g. Chen et al., 1997). However, the proper definition of the LAI

product can be a significant source of error in validation and inter-comparison (Weiss

et al., 2007).

A practical approach for deciduous species can be the combined use of litter-traps and

indirect methods, as presented in Chapter 3. On the one hand, litter-traps are among the
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most accurate direct methods for LAI estimation if spatial sampling is sufficient for the

study area (Chen et al., 1997; Jonckheere et al., 2004; Leuschner et al., 2006; Liu et al.,

2015). On the other hand, indirect methods can deliver a high temporal resolution of

the canopy development. The combination of both approaches delivers accurate, frequent

observations of LAI. The high frequency observations from the PASTiS-57 in Chapter 2

could be improved with such an approach.

Measurement of total LAI with litter-traps is not possible in evergreen forests as it is

in deciduous forests, because leaves can be exchanged throughout the year, depending

on the species. Litter-traps can be adapted to this by simultaneously monitoring leaf

growth (Wang et al., 2017). However, this is labour-intensive and requires access to leaf

material from different heights in the canopy. Furthermore, multiple species within the

plot require separate growth monitoring. This favours indirect methods. In the case of

passive sensors, imaging sensors with additional Near-Infrared (NIR) channels can help

to differentiate between wood and leaf due to the high transmittance of leaves in the

NIR. Kucharik et al. (1998) and Zou et al. (2009) present examples for such devices.

Conceptually, both devices retrieve PAI from visible and Woody Area Index (WAI) from

NIR images, and then subtract WAI from PAI to derive LAI. Nowadays, NIR-enabled

webcams for surveillance become as easily accessible as digital cameras when DHP started

to be explored. Alternatively, the transmission filters for digital cameras can be exchanged

in order to let NIR radiation pass through and enable NIR photography, as described in

several online sources (e.g. Gibson, 2019). However, despite this advantage no significant

further research has been conducted on this topic.

Developments with respect to wood-leaf-separation have been more dynamic in the field of

TLS, possibly due to relevance of foliage identification for explicit tree modelling (Vicari

et al., 2019). For the exploitation of the spectral domain with TLS, only few experimental

systems have been presented like the Salford Advanced Laser Canopy Analyser (SALCA)

(Danson et al., 2014; Mark Danson et al., 2018) and the Dual-Wavelength Echidna R©
Lidar (DWEL) (Douglas et al., 2015; Li et al., 2018a; Li et al., 2018b) systems. Both

employ lasers around 1065 nm and 1545 nm, the vegetation peak reflectance and water

absorption features, respectively (Danson et al., 2014), in order to separate wood from

foliage. These instruments are still in development and challenges in the construction of

multi-spectral LiDAR, like laser alignment, reflectance calibration and ambiguity of the

reflectance signal in case of partial returns, has to be acknowledged (Vicari et al., 2019).

Additionally, current devices have limited capabilities with respect to regular or large

scale field data acquisition, due to heavy weight, long scanning times and short range.

Single-wavelength TLS could also be employed, but the reflectance signal is typically

ambiguous and limited for use in very accurate separation of woody and leaf compartments

as required for LAI estimation. This is in contrast to the use in Chapter 5, where separation

was only targeting candidates with high chance of being wood, instead of an accurate

classification.
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Alternatively, methods can exploit the geometric domain for wood-leaf-separation. This

typically involves production of classification features based on the local point neigh-

bourhood (Ma et al., 2016; Wang et al., 2018) or analysis of the connectivity graph

that a tree point cloud represents (Vicari et al., 2019). Based on scans from DWEL

instruments, Li et al. (2018a) combine spectral and geometric features in order to highlight

the complementing advantages for classification of different canopy parts by using both

domains.

From this point in time, it looks most likely that geometric TLS approaches will be favoured

in the near future, at least for experimental plots and in the tropics. The lacking use and

demonstration of multi-spectral imagers, and relatively wide distribution of commercial

single-wavelength TLS plus the successful test of geometric separation algorithms speak

for this development. Nonetheless, operational applications like monitoring at ecosystem

network sites of for example the Integrated Carbon Observation System (ICOS) requires

probably less expensive approaches, as LAI is typically only an auxiliary measurement.

This would speak for a renewed and deeper investigation of multi-spectral imagers with

fish-eye optics.

6.2.2 Sensor Networks plus Sentinels: Towards Automated LAI Validation

The Global Climate Observing System (GCOS) has set the target to operationalise the

generation of 10-day LAI and Fraction Absorbed Photosynthetically Active Radiation

(FAPAR) products at 5 km and 50m by 2020 (WMO, 2016, action T40). The MODerate-

resolution Imaging Spectroradiometer (MODIS) LAI/FAPAR product MCD15A3H is

already now produced at 4-day interval and 500m resolution (Myneni et al., 2015). However,

Baret et al. (2006) state that validation efforts including multiple sampling events spread

over the season are expensive both with respect to time and human resources. This is in

contrast to the goal of reaching Land Product Validation (LPV)-subgroup validation stage

4 for LAI, which includes the repeated validation of products. Subsequently also temporal

accuracy should be targeted, i.e. timing of onset of growing season and senescence phase.

These requirements support the idea of automated sensors within sensor networks and

automatic distribution of validation data.

Generally, sensor networks and in particular Wireless Sensor Networks (WSNs) have

found numerous applications in various fields such as animal, infrastructure, patient or

environmental monitoring (Yick et al., 2008). They consist of several sensor nodes that each

contain one or more sensors, a (micro) processor, a power supply and a radio connection.

In the context of LAI validation, three levels of networks could be distinguished that are

in line with previously agreed validation strategies (Morisette et al., 2006): first, the local

level where actual LAI measurements take place and raw data is locally transmitted to a

central server node (Figure 6.1). This local network’s footprint would correspond to the

traditional Elementary Sampling Unit (ESU) (Section 1.3 on page 5). Second, several
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Figure 6.1: Modified global LAI product validation procedure with ground sensors connected

via WSNs, and regular Sentinel and Landsat observations for local/regional upscaling. Image

credits: ESA (2005), ESA and Université Catholique de Louvain (2010).

local ESU-nodes transmit their data to a data server that represents a validation site.

Third, data packages are transmitted from site nodes to central global servers. Such an

architecture is not new to environmental monitoring. For example, within RadCalNet, local

stations observe atmospheric properties like aerosol properties and automatically produce

Top Of Atmosphere (TOA) reflectance factors, which can be accessed via a web-portal

(RadCalNet, 2019). The missing core technology to make this approach possible for LAI

validation is an accepted automatic sensor.

Such a sensor would need to fulfil certain requirements derived from the common practices

for LAI validation (Fernandes et al., 2014). This is primarily the compliance with

transmission/gap fraction theory based retrieval, which would support combined use and

inter-calibration with accepted sensors in order to produce long records of validation data.

Furthermore, such a sensor should allow understorey assessment in forests to adapt to the

field of view of space-borne missions. Additionally, wood-leaf-separation (Section 6.2.1) and

clumping appraisal (Section 2.4) should be possible to translate gap fraction measurements

into effective green LAI. These theoretical features need to be paired with a robust physical

sensor design that resists environmental stresses and is easy to handle by a wide range of

users. Easy maintenance with respect to repairs in case of physical damage and software
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update should also be targeted. Finally, (wireless) communication interfaces are needed for

the integration in a WSN, and possibly real-time sensor health and status monitoring.

In this context, the PASTiS-57 fulfils some of these criteria, namely the compliance with

accepted retrieval methods, to a limited extent clumping appraisal when operated as a

single sensor, and robustness in the field (Chapter 2). Based on the experimental devices

by Kucharik et al. (1998) and Zou et al. (2009), NIR imaging sensors could be further

explored. In this context, the rapidly developing and easy accessible Raspberry Pi micro-

computers combined with NIR-camera modules have some potential. For example, Valle

et al. (2017) tested a Raspberry Pi with Pi NoIR NIR-enabled camera module for lettuce

PAI estimation and field phenotyping. Kirby et al. (2018) examined distortion properties

of the Pi NoIR camera module and compared them with the much used Nikon Coolpix,

but did not derive LAI. Additionally, Li et al. (2015b), Bauer et al. (2016), and Fan et al.

(2018) designed sensor systems for field crop LAI monitoring, with the system of Li et al.

(2015b) including WSN features like remote server upload of data. Qu et al. (2014b) and

Qu et al. (2014a) actually designed a local sensor network for LAI and canopy clumping

retrieval, and operated it for 2 months in a larch stand. Experiences from these first trials

could be exploited to construct WSN systems for unattended data acquisition in forest

plots. In larger sites, these systems could be combined with illumination-independent

LiDAR-based monitoring systems for inter-calibration (Section 1.4 on page 9).

Based on the data-streams of ground-based WSNs, local to regional LAI maps could be

produced regularly (Figure 6.1). With a growing database of ground-based observations,

more and more data-driven approaches like MLRAs for regional upscaling can be tested

(Verrelst et al., 2012; Verrelst et al., 2015b). Yin et al. (2019) demonstrate such an

approach based on the WSN introduced by Qu et al. (2014b) and Gaussian process

regression for a 5 km×5 km study area in northern China. These approaches are supported

by regular and dense Sentinel-2 observations as well as Landsat 8. C-band Synthetic

Aperture Radar (SAR) time series from for example Sentinel-1 have also shown some

potential in picking up the phenological development of forests (Rüetschi et al., 2018) and

LAI (Manninen et al., 2013), and could support the modelling of the pheno-phases.

6.2.3 UAV for Forest Structure Assessment and Land Product Validation

Opportunities and Challenges for UAV in Forest Structure Assessment

UAVs have experienced an increase in usage in forestry, which is not only documented by

an increase in publications (Figure 1.2 on page 10), but also in review articles (Adão et al.,

2017; Pádua et al., 2017; Torresan et al., 2016). Major opportunities offered by UAV in

forestry applications are their top of canopy perspective in places where infrastructure

like scaffold towers is not available and their low acquisition costs. Especially the latter

constantly appears as an advantage of UAVs in review studies (Aasen et al., 2018; Adão

et al., 2017; Anderson and Gaston, 2013; Colomina and Molina, 2014; Stöcker et al.,
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2017; Torresan et al., 2016). Additionally, off-the-shelf software tools, in particular for

photogrammetric processing and production of Digital Surface Models (DSMs), have helped

UAVs to be explored as a tool in forest applications (e.g. Fraser and Congalton, 2018;

Lisein et al., 2013; Wallace et al., 2016; Zarco-Tejada et al., 2014). Hence, Aasen (2017)

has coined the adoption of UAVs as a ”democratisation of geospatial data acquisition”.

Of course, UAVs have strongly increased the number of self-enabled EO data producers.

But still, quality applications with high demands in terms of radiometric and geometric

accuracy require a certain investment in material as well as the respective know-how,

which translates into hiring of trained personnel, payment of external companies or time

investment in the form of training of present personnel. This also applies to the licensing

and maintenance.

Major limitations for UAVs in forestry and other scientific applications still relate to

aeronautical regulations. Compared to mature regulations for commercial air-traffic,

regulations for UAVs are still in preparation in some countries, need to take into account

latest technological developments like autonomous flight behaviour in the case of detect-

and-avoid-autopilots and are therefore changing rapidly. A particular challenge for the

governing bodies is the consideration of private and recreational UAV users. These users

are more prevalent for UAV than for manned aircraft like gliders and ultra-light aircraft

due to the low entry level costs for UAV, and can cause harm due to lack of training,

experience or knowledge. Additionally, UAV legal frameworks have been developed on

a country-level basis and still need international coordination. For example, while the

conversion of commercial licences is well regulated and formalised for manned aircraft,

conversion or acknowledgement still need to be decided on a case by case basis for UAV

licenses.

In practice, UAVs appear not to be an obvious choice for forest applications due to the

required clear take-off and landing area, in particular for fixed wing systems. Additionally,

aeronautical regulations or technical restrictions may require flights to be carried out

within VLOS, which is defined as a maximum distance of 500m from the observer in

the Netherlands for example, and can be very limited in forest environments. Therefore,

suitability for given plots has to be estimated before flight operations. In the future,

with maturing technology and legislation, these limitations might be mitigated with

communication relay systems, in which additional UAV operate as communication links

and observers for the primary, sensor-carrying system (de Alcantara Andrade et al., 2018).

Such a procedure in combination with Vertical Take-Off and Landing (VTOL) UAV could

define the limit of UAV operability in dense forests with minimal options for take-off.

Considering LiDAR-based sensors for UAV in forest structure assessments, there has only

been a limited contribution of well suited applications and their limitations to UAV-LS.

This took place for Airborne Laser Scanning (ALS) (large scale mapping, CHM and

Individual Tree Detection (ITD)) and TLS (up to plot-scale mapping, AGB and explicit
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(a) Minimal capture of

trunks, ALS-like

(b) Incomplete capture of

trunks and large branches

(c) Full 3D geometry, TLS-

like

Figure 6.2: Possible levels of detail at which different LiDAR can resolve woody canopy

elements (brown) and foliage (green).

tree structure). But it appears likely that UAV-LS will differentiate according to the

requirements for detail of the application. This is because the ability to resolve certain

canopy elements is primarily driven by the delivered point cloud density and accuracy,

which in turn is determined by the quality and price of the UAV-LS system. Custom-built

prototypes are located at the low density end of this spectrum and can produce point

clouds with densities of <100 points/m2 (Wallace et al., 2012, e.g.). Point clouds from

these systems are similar to conventional ALS and thus can resolve only large elements like

single trees and large trunks, but small branches and leaf material have to be treated as a

random medium (Figure 6.2a). Applications are oriented towards low cost substitution of

ALS for local plots like CHM production, ITD, and crown parameter estimation (Balsi

et al., 2018; Wallace et al., 2014a; Wallace et al., 2014b). In the context of AGB estimation,

the derived parameters can be used in Allometric Scaling Equations (ASEs) to derive

AGB. In this sense, low cost UAV-LS could help to expand the number of plots in the

tropics or extend the spatial footprint of traditional inventory plots. At the same time,

low-density UAV-LS could help to retrieve LAI over large plots, because LAI retrieval

often relies only on a turbid medium assumption of the canopy, which can be satisfied by

low density point clouds.

UAV-LS for Explicit Modelling, AGB and LAI Retrieval

With respect to UAV-LS systems delivering high density point clouds, the principal question

will be which level of detail of canopy elements can be resolved. This is particularly relevant

with respect to dense, evergreen tropical forests, where new AGB calibration data is most

relevant for future space-borne missions. In this context, Chapter 4 and 5 explored the use

of the RiCOPTER VUX R©-1UAV system similar to how TLS would be used, i.e. deriving

full geometric detail (Figure 6.2c), but in a temperate forest with only few foliage during
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spring. Another flight campaign took place at the Speulderbos site in the summer of 2017

using similar flight path patterns as in Chapter 4 and 5. The closed canopy did not allow

easy manual identification of the trunks in the point clouds. Recently, another campaign

with the same RiCOPTER system was conducted in different sub-tropical eucalyptus forests

in Australia and showed good penetration for canopies with gaps, but low penetration

in closed stands (Harm Bartholomeus, personal communication). Mitigating options like

repeated flights need to be tested in dense tropical forests in order to draw final conclusions

on the applicability of discrete geometric modelling. Alternatively, strategies that exploit

semi-discrete point clouds need to be explored. Semi-discrete in this context refers to point

clouds that do not capture the full 3D geometric structure of single trees, but rather random

trunks and branches, especially those that are favoured by observation opportunities like

canopy openings and sparse understorey, and do not allow to connect single elements

due to too large spaces in between (Figure 6.2b). Such a strategy could involve ASE

relationships based on branch diameters at arbitrary heights instead of only the DBH.

Calibration for those ASE would need to be extracted from TLS reconstructions, as field

techniques would be tremendously complicated. However, in practice the advantages of

high-end UAV-LS need to be weighed against their disadvantages in the field, which are

mainly related to their relatively large size, weight and costs compared to UAVs carrying

a multi-spectral camera.

Apart from explicit geometric modelling, high resolution and spatially explicit PAI/LAI

retrieval might also require high density UAV-LS. In those cases, voxel-based approaches

are needed in contrast to gap fraction approaches to retrieve per voxel Plant Area Volume

Density (PAVD) in 3D and subsequently PAI maps (Pimont et al., 2018). The 3D retrieval

requires a sufficient number of pulses to reach each voxel in the study area in order to make

unbiased and high confidence estimates of PAVD. Pimont et al. (2018) concluded that

most estimators found in the literature exhibit substantial uncertainty when the number

of pulses that reach a voxel falls below 30. Before this background, Figure 6.3 shows the

number of pulses that cross each voxel for the dataset used in Chapter 4 and 5 at two

canopy height layers with a similar map extent as Figure 4.2 on page 77. Characteristic

stripes perpendicular to the flight paths are recognisable that were produced when the

RiCOPTER performed course correction to follow the pre-programmed path. Concerning

the count of pulses that cross each voxel, a median of 530 (Q1 = 131, Q2 = 1923) pulses

could be found at 25m a.g.l., while this were only 205 (Q1 = 50, Q2 = 577) at 17.5m.

This reduced to 88 (Q1 = 23, Q2 = 239) at 2.5m and shows that even for a high density

point cloud with 4059 points/m2 on average a proper characterisation of the lower canopy

levels can become challenging when fine spatial resolution and low bias is required.

UAVs for Land Product Validation

UAVs and related sensors have been developed and tested for the estimation of various

vegetation and land surface parameters like LAI (Chianucci et al., 2016; Duan et al.,
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Figure 6.3: Number of pulses (N) crossing each voxel over Speulderbos during early spring

campaign at 1m voxel edge length at different heights above ground level. For the UAV-LS

dataset used in Chapter 4 and 5.

2014; Roosjen et al., 2018; Roth et al., 2018; Tian et al., 2017), Cab (Jay et al., 2018;

Roosjen et al., 2018), albedo (Boehmler et al., 2018), FAPAR (Tewes and Schellberg,

2018), vegetation indices (Brede et al., 2015; Capolupo et al., 2015), vegetation phenology

(Klosterman et al., 2018; Klosterman and Richardson, 2017), forest AGB (Lin et al., 2018;

Puliti et al., 2015) and Land Surface Temperature (LST) (Berni et al., 2009; Hoffmann

et al., 2016; Reineman et al., 2013; Zarco-Tejada et al., 2012). Best practices for multi-

and hyper-spectral data acquisition are being established (OPTIMISE, 2019; SENSECO,

2019). This indicates a level of readiness of UAV-related methods to become trustworthy

measurements with traceable uncertainties.

Land product validation exercises often struggle to meet the spatial footprint of the space-

borne missions under investigation. This is counteracted with a selection of large-scale

homogeneous calibration sites or upscaling with costly airborne imagery. Employing UAVs
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could permit alternative validation strategies that bridge the gap between high-quality

local point measurements and the space-borne sensor’s footprint, or provide stand-alone

observations altogether. In fact, the LPV best practice guide for AGB is planned to cover

UAV-LS and its possible future developments (Martin Herold, personal communication).

Additionally, GCOS suggests to employ UAVs to improve the spatial coverage of albedo

measurements (WMO, 2016). For other land products, UAVs applications are similarly

straight forward, like Vegetation Indices (VIs) and LST. The major challenges that have

to be tackled are the high demands in sensor accuracy and (SI-)traceability. Finally,

UAV-based methods could be integrated with automated sensors (Section 6.2.2) in order

to provide local, regularly updated products at (sub-)metric resolution.
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Eitel, J. U., B. Höfle, L. A. Vierling, A. Abellán, G. P. Asner, J. S. Deems, C. L. Glennie,

P. C. Joerg, A. L. LeWinter, T. S. Magney, G. Mandlburger, D. C. Morton, J. Müller,

and K. T. Vierling (2016). “Beyond 3-D: The new spectrum of lidar applications for

earth and ecological sciences”. Remote Sensing of Environment 186, 372–392. doi:

10.1016/j.rse.2016.08.018.

ESA (2005). Proba’s view of Barrax test site. (accessed on 23 January 2019). url: https:

//www.esa.int/var/esa/storage/images/esa_multimedia/images/2005/07/

https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2005/07/proba_s_view_of_barrax_test_site/9974271-2-eng-GB/Proba_s_view_of_Barrax_test_site.jpg
https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2005/07/proba_s_view_of_barrax_test_site/9974271-2-eng-GB/Proba_s_view_of_Barrax_test_site.jpg
https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2005/07/proba_s_view_of_barrax_test_site/9974271-2-eng-GB/Proba_s_view_of_Barrax_test_site.jpg
https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2005/07/proba_s_view_of_barrax_test_site/9974271-2-eng-GB/Proba_s_view_of_Barrax_test_site.jpg


138 References

proba_s_view_of_barrax_test_site/9974271-2-eng-GB/Proba_s_view_of_

Barrax_test_site.jpg.
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(2010). “A low-cost multi-sensoral mobile mapping system and its feasibility for tree



142 References

measurements”. ISPRS Journal of Photogrammetry and Remote Sensing 65.6, 514–522.

doi: 10.1016/j.isprsjprs.2010.08.002.
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Wang (2017). “Autonomous collection of forest field reference — The outlook and a first

step with UAV laser scanning”. Remote Sensing 9.8, 1–12. doi: 10.3390/rs9080785.

Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner,

C. François, and S. L. Ustin (2009). “PROSPECT + SAIL models: A review of use

for vegetation characterization”. Remote Sensing of Environment 113, S56–S66. doi:

10.1016/j.rse.2008.01.026.

Jansen, M. J. (1999). “Analysis of variance designs for model output”. Computer Physics

Communications 117.1, 35–43. doi: 10.1016/S0010-4655(98)00154-4.

Jay, S., F. Baret, D. Dutartre, G. Malatesta, S. Héno, A. Comar, M. Weiss, and F. Maupas
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J. Hyyppä (2017). “Assessing precision in conventional field measurements of individual

tree attributes”. Forests 8.2, 1–16. doi: 10.3390/f8020038.

Ma, L., G. Zheng, J. U. H. Eitel, T. S. Magney, and L. M. Moskal (2016). “Determining

woody-to-total area ratio using terrestrial laser scanning (TLS)”. Agricultural and Forest

Meteorology 228-229, 217–228. doi: 10.1016/j.agrformet.2016.06.021.

Majasalmi, T. and M. Rautiainen (2016). “The potential of Sentinel-2 data for estimating

biophysical variables in a boreal forest: a simulation study”. Remote Sensing Letters

7.5, 427–436. doi: 10.1080/2150704X.2016.1149251.
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Summary

Forests play a crucial role in the functioning of the Earth’s climate system, through their

role in the carbon, energy and water cycles. The accurate description and quantification

of their physical structure is essential to understand these roles, predict their behaviour

under future climate change and adapt management practices accordingly. Remote sensing

in particular from space-borne platforms is attractive for large area assessment of forest

structure due to its cost-effectiveness, repeatability and objectiveness. However, the remote

sensing signal is by nature ambiguous and needs to be interpreted with solid understanding

of the underlying radiative mechanisms and uncertainties need to be rigorously quantified

with independent ground data. The remote sensing community has produced a range of

biophysical products describing vegetation and forest structure as well as best practice

guidelines for their validation. However, the full implementation of anticipated products,

including systematic repetition of validation across multiple sites (Committee on Earth

Observing Satellites (CEOS) Land Product Validation (LPV) stage 4), is still to be

concluded. A major challenge in this context is the provision of long-term validation data

sets, which need to be cost-effective, repeatable and fast to acquire in the field.

This thesis aims to investigate new ways of validation that meet the temporal and/or spatial

scales of global forest structure products from space-borne missions with hectometric

resolution. The particular focus is on Leaf Area Index (LAI) and Above-Ground Biomass

(AGB) as metrics of physical forest structure. For the purpose of this thesis, the Speulderbos

Reference site in the Veluwe forest area (The Netherlands) was established, where ground

and Unmanned Aerial Vehicle (UAV)-borne sensors were tested.

In Chapter 2, the automatic, passive optical sensor PAI Autonomous System from Trans-

mittance Sensors at 57◦ (PASTiS-57) was tested for its suitability to monitor forest

phenology and Plant Area Index (PAI), the total one-sided area of plant material per

unit ground. For this, Radiative Transfer Model (RTM) experiments with turbid media

and heterogeneous scenes were employed. PASTiS-57 generally meets the CEOS LPV

requirement of 20% accuracy over a wide range of biochemical and illumination conditions

for turbid medium canopies. However, canopy non-randomness in discrete tree models led

to strong biases. In a field experiment, PASTiS-57 compared well in terms of phenological
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timing with Terrestrial Laser Scanning (TLS)-based PAI time series. PASTiS-57 represents

a cost-effective way to continuously monitor PAI in forests.

In Chapter 3, decametric resolution Sentinel-2 and Landsat 7/8 observations were analysed

with hybrid LAI retrieval algorithms, which combine RTMs with Machine Learning Re-

gression Algorithms (MLRAs). Several combinations of RTMs, MLRAs, and modifications

to the processing chain were tested in order to assess their performance to predict a

ground-based LAI time series, created from combined TLS and litter trap data. Most

important for the success of the processing chain was the addition of a certain level of

Gaussian noise to the RTM-produced database prior to MLRA training. With this pro-

cessing chain, decametric resolution optical missions can produce reference LAI products

for inter-comparison with hectometric products. Alternatively, the higher resolution can

help to scale up small plot-based ground validation data.

In Chapter 4, a novel Unmanned Aerial Vehicle Laser Scanning (UAV-LS), the RiCOPTER

with VUX R©-1UAV laser scanner, was used to estimate canopy height and Diameter at

Breast Height (DBH). TLS was used to derive reference datasets for both variables. Canopy

height was comparable between both sensors with a slight underestimation for TLS, which

was expected due to occlusion of the upper canopy when seen from below and hence lower

TLS canopy heights. DBH was derived for the first time from UAV-LS data and compared

well with TLS derived DBH. However, a part of the UAV-LS samples could not produce

a meaningful estimate of DBH based on the extracted point cloud segment due to low

point density. Repeated overpasses could counteract this to some degree. In this context,

UAV-LS can support fast, plot-scale assessment of these two variables.

In Chapter 5, the capabilities of UAV-LS are further explored in terms of explicit 3D

modelling in order to estimate tree volume, which is the first step to retrieve tree AGB.

For this purpose, 3D cylinder models were fitted to the segmented single trees with the

TreeQSM routine. The resulting models were compared with TLS-based models and

analysed separately for five different stands with varying architectures, including deciduous

and coniferous species. UAV-LS was generally very successful in modelling large, deciduous

trees, while coniferous trees with low branches and foliage as well as small trees proved more

difficult. If successful, UAV-LS can provide the means to produce plot-scale assessment of

woody volume and subsequently AGB at a fraction of time needed for TLS surveys.

This thesis investigates new ways of forest structure product validation with techniques

and sensors that meet the temporal and/or spatial resolution of hectometric space-borne

missions.
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Wagner, F. H., B. Hérault, D. Bonal, C. Stahl, L. O. Anderson, T. R. Baker, G. S. Becker,

H. Beeckman, D. Boanerges Souza, P. C. Botosso, D. M. J. S. Bowman, A. Bräuning,
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