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Abstract 1 

The use of neuroimaging tools, especially functional magnetic resonance imaging 2 

(fMRI), in nutritional research has increased substantially over the past two decades. 3 

Neuroimaging is a research tool with great potential impact on the field of nutrition, 4 

but to achieve that potential appropriate use of techniques and interpretation of 5 

neuroimaging results is necessary. In this paper, we present guidelines for good 6 

methodological practice in fMRI studies and flag specific limitations in the hope of 7 

helping researchers to make the most of neuroimaging tools and avoid potential 8 

pitfalls. We highlight specific considerations for food-related studies such as how to 9 

statistically adjust for common confounders such as hunger state, menstrual phase, 10 

and body mass index as well as how to optimally match different types of food 11 

stimuli. Finally, we summarize current research needs and future directions such as 12 

the use of prospective designs and more realistic paradigms for studying eating 13 

behavior. 14 

 15 

Keywords: functional magnetic resonance imaging, neuroimaging, good practice, 16 

data sharing, food viewing, food choice, taste, aroma, satiation 17 
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1. Current state of the field of nutritional neuroimaging  50 

 51 

1.1 Introduction  52 

The brain plays a central role in the regulation of food intake. It integrates many 53 

different state and trait-related neural and hormonal signals that affect eating 54 

behavior. Understanding how normal and maladaptive eating behaviors emerge and 55 

are maintained is crucial for developing effective eating interventions or treatments, 56 

such as weight loss or maintenance programs. Thus, studying the brain structures 57 

and processes underlying eating behavior has great potential significance, especially 58 

when combined with information on other aspects of physiology and psychology. 59 

Since the late 1990’s functional neuroimaging techniques have been increasingly 60 

used to study food-related brain activity in humans. Among the first studies were 61 

taste/flavor positron-emission tomography (PET) studies (1) and functional magnetic 62 

resonance imaging (fMRI) (2) and PET studies on the effects of extreme hunger in 63 

healthy (3) and obese (4) individuals. Since then, fMRI in particular has become a 64 

widely used neuroimaging technique that is often employed to study food-related 65 

neural correlates in health and disease. We focus here on task-based fMRI, but many 66 

of the issues addressed apply similarly to resting state fMRI, PET and perfusion fMRI 67 

as well as structural MRI studies.  68 

We present a set of guidelines for good practice in the use of neuroimaging with the 69 

hope of helping researchers make the most of these powerful, but readily 70 

misinterpreted or even misused techniques. We view the establishment of a widely 71 

accepted set of guidelines as critical at this point in the development of the field, in 72 

part because, although simple visual and motor tasks yield large, robust, and readily 73 

replicable brain responses in primary visual and motor cortex, higher order tasks 74 
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often produce smaller, more variable responses that are harder to replicate. For 75 

example, the most commonly used type of fMRI task in the food domain is the 76 

presentation of food images. Meta-analyses have shown that even the brain regions 77 

most consistently shown to differentially respond to food vs non-food images are 78 

significantly active in less than 40% of studies (5). Although brain responses to visual 79 

food cues in fasted overweight/obese participants have been found to have relatively 80 

good mean-level reproducibility, they had poor within-subject test-retest reliability (6). 81 

Another example are fMRI studies that examined the functional significance of the fat 82 

mass and obesity-associated gene FTO. Individuals with the “high-risk” AA FTO 83 

variant have been found to show less responsivity to high-calorie food images in a 84 

fasted state compared to “low-risk” TT individuals reward-related brain regions (7). 85 

Also, adults with versus without the AA genotype showed less food cue activation in 86 

the prefrontal cortex 30 min after ingesting 75 g of glucose, but no differences in a 87 

fasted state (8). In contrast, individuals with the AA or AT genotypes showed greater 88 

responsivity to food- (9) and high-calorie food images (10, 11) in reward-related brain 89 

areas than “low-risk” TT individuals. 90 

This variability in findings is also due, in part, to divergent characteristics of the 91 

individual study designs, highlighting the current scarcity and strong need for direct 92 

replication studies. Studies of food stimulus responses and eating behavior differ in 93 

many important ways including the structure, timing and stimuli of the fMRI task; 94 

software, strategy and parameter settings used for processing and statistical analysis 95 

of the data; and individual characteristics like age, gender and eating-related traits 96 

and state variables like current hunger level and weight status. In addition, the effect 97 

size of food-related brain activation is often modest and isolating specific effects of 98 

interest can be challenging because there are many confounders and interacting 99 
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factors. For example, in a food viewing task caloric content may well covary with 100 

palatability and therefore responses to high versus low calorie foods cannot be 101 

attributed to caloric content per se. Further, there are clear individual differences in 102 

food preferences and familiarity that introduce additional variance (12). Thus, there is 103 

a need for better standardization of the food stimuli and fMRI task designs used and 104 

the additional data that is collected on participant’s state (hunger, mood) and 105 

personal characteristics that may be used to control for confounding effects in the 106 

analyses. 107 

In addition to the variability between studies and infrequent replication attempts, a 108 

lack of sufficient power and rigor in individual experiments is a key factor. Just as in 109 

other fields investigating higher cognitive processes, many of the earlier fMRI studies 110 

on eating behavior are underpowered (13, 14). Although there is a clear trend 111 

towards larger sample sizes in fMRI over the past decade, only recently have tools 112 

for better power calculation  become available (15, 16). The need for informed study 113 

planning is further highlighted by recent empirical demonstrations stressing the 114 

importance of appropriate, vaIidated statistical thresholding approaches (17).  115 

Despite previous shortcomings, there is reason to be optimistic that this situation will 116 

improve in the near term. This optimism stems from the ongoing development of 117 

neuroimaging hardware and analysis software, and especially the adoption of higher 118 

quality standards in the field. We believe that replication studies and open data 119 

sharing will play a central role in the ongoing efforts to advance the utility and 120 

reliability of food-related neuroimaging findings. The current lack of replication efforts 121 

means that it remains unknown how robust many of the original findings in the field 122 

are, and although meta-analyses can give some initial indications, the accuracy of 123 

meta-analytic studies is limited by the number and quality of the primary studies they 124 
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aggregate over and is reduced by publication bias and lack of access to primary data 125 

(14). The aim of this paper is to foster good practice in food-related neuroimaging by 126 

presenting guidelines for good methodological practice, outlining potential pitfalls and 127 

providing recommendations for food-related fMRI task implementation. 128 

 129 

1.2 What can we learn from fMRI? 130 

FMRI usually refers to blood-oxygen level dependent (BOLD) fMRI. This popular form 131 

of fMRI exploits the fact that at a site of increased neuronal firing (brain activation), 132 

increased local blood flow leads to a decreased concentration of deoxygenated 133 

hemoglobin in the capillaries. This reduces the local distortion of the magnetic field by 134 

the para-magnetic deoxy-hemoglobin, which leads to a small increase in the fMRI 135 

signal (~0.5 – 4 %). Thus, BOLD fMRI provides an indirect vascular measure of 136 

(changes in) neuronal activity. Most fMRI studies use cognitive or sensory tasks in 137 

which different task conditions are contrasted to assess neural activation differences 138 

of interest (e.g. viewing food images versus viewing non-food images or tasting 139 

chocolate milkshake versus a control solution). This provides information on which 140 

brain regions become more or less active during a certain task (functional 141 

localization) and whether this differs between study conditions such as hunger and 142 

satiety or different groups of participants.  143 

In recent years, there is increasing focus on (differences in) functional connectivity, 144 

that is, the degree to which task-related brain activation in a specific brain region co-145 

varies with activation in other brain regions (functional interactions) (18). Also, 146 

‘resting-state’ fMRI, which examines the spatio-temporal networks of correlated 147 

activity in the absence of a specific task (lying still with eyes closed, or mere visual 148 
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fixation) has become a popular and promising means of assessing individual 149 

differences in neurobiology (19, 20). 150 

Brain findings per se can be useful, but often their combination with other measures 151 

creates synergy and aids the interpretation of fMRI findings; fMRI results become 152 

more meaningful when associations with physiological signals and subjective ratings 153 

or individual characteristics can be established and when they are linked to relevant 154 

outcomes such as food intake (21, 22) and weight change (23-27). Because the brain 155 

is so central in the regulation of food intake and body weight, fMRI is well-suited for 156 

connecting different levels of understanding. 157 

Many brain imaging studies of neural response to food stimuli seek to make 158 

inferences regarding the role of neural responsivity in the development of adverse 159 

physical or mental health problems such as obesity or eating disorders. For instance, 160 

it had originally been suggested, based on the evidence that obese versus lean 161 

individuals have lower D2 receptor binding as measured by positron emission 162 

tomography, that low responsivity of reward circuitry increases the risk for overeating 163 

and consequential obesity (28, 29). However, this is an example of the complexity 164 

involved in drawing inferences from cross-sectional studies because they are unable 165 

to differentiate neural vulnerability factors from neural consequences of these 166 

physical and mental health problems.  167 

Prospective studies that can show that the putative neural vulnerability factor 168 

predates and predicts future emergence of the adverse public health outcome permit 169 

stronger inferences than cross sectional studies. However, they do not rule out the 170 

possibility that some omitted third variable explains both the neural response and the 171 

emergence of the public health outcome. Indeed, a larger study spanning the full 172 

adult age range concluded that there was no relation between D2 receptor levels and 173 
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BMI in young adults, and a positive relationship in older individuals (30), casting 174 

doubt on the reward deficiency interpretation. Furthermore, a recent meta-analysis 175 

failed to find support for the reward deficiency interpretation as well (31). Together 176 

this work highlights the importance of prospective studies, meta-analysis, and 177 

replication in establishing reliable links between brain structure or function and eating 178 

behavior or health outcomes.  179 

Prospective neuroimaging studies in the domain of eating behavior can vary in their 180 

breadth and duration. The most basic prospective design is to assess neural 181 

responses to experimentally manipulated stimuli or measures of brain morphometry 182 

at baseline and then test whether individual differences in these variables predict 183 

future increases in, or onset of, the health issue of interest, e.g. future weight gain or 184 

onset of obesity among initially non-obese participants. Prospective designs that 185 

include repeated-measurements of neural responses at multiple time-points provide 186 

information on biological and behavioral trajectories that can capture behavioral and 187 

neural plasticity that occurs in response to weight gain or weight loss over time (or 188 

vice versa with behavioral or neural interventions). Prospective repeated-measures 189 

neuroimaging studies of food-related behavior and health are, thus, useful for 190 

studying the mechanisms of action for prevention and treatment interventions.  191 

Overall, neuroimaging has exciting potential to contribute to our understanding of the 192 

causes of obesity. The significant increase in the incidence of obesity over the past 193 

50 years has been attributed to an interaction of individual vulnerability and an 194 

obesogenic environment replete with inexpensive high-calorie foods (32). 195 

Considerable evidence suggests that substantial individual vulnerability to this 196 

obesogenic environment resides in the brain. As in the mental health literature (33), 197 

the search for endophenotypes, that is, neural, cognitive or personality measures that 198 
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correlate with weight gain and BMI, has the potential to: (1) provide intermediate 199 

measures for gene discovery (2) provide explanatory mechanisms for the neural 200 

computations that lead to over-eating, and thus potentially inform the development of 201 

therapies. Moreover, the combination of endophenotype research and genetics, 202 

performed in different age-groups may allow us to disentangle the two-way 203 

relationship between body mass composition and the brain, as it is known that 204 

visceral obesity itself also causes brain changes (34), which may favor further weight 205 

gain. However, as with any measurement technique, the ultimate utility of MRI and 206 

other neuroimaging methods depends directly on the experimental designs and 207 

analysis strategies it is combined with. In the subsequent sections we highlight the 208 

importance of and aim to provide initial guidance on good practice and minimal 209 

standards in neuroimaging research with a particular focus on its application to 210 

questions surrounding dietary behavior, nutrition, and obesity. 211 

 212 

2. Methodological aspects – good practice & minimal standards 213 

2.1 Good practice guidelines 214 

A carefully compiled and commonly agreed upon set of good practice guidelines is 215 

essential for maximizing the utility of the complex and ever-growing set of 216 

neuroimaging techniques available to researchers. Such guidelines facilitate the 217 

design, execution, and interpretation of original research studies, and moreover, 218 

allow for testing reproducibility, accurate replication (13, 35) and better meta-219 

analyses. In light of the need for such guidelines, the Organization for Human Brain 220 

Mapping (OHBM) initiated the Committee on Best Practice in Data Analysis and 221 

Sharing (COBIDAS) which set out to define best practices for data analysis and 222 

results reporting as well as algorithm and data sharing to promote transparency, 223 
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reliability and collaboration. This resulted in a position paper (36) and the COBIDAS 224 

report (http://biorxiv.org/content/early/2016/05/20/054262) which provides details for 225 

proper reporting and specific good practices. 226 

Two of the most important issues for any fMRI study are: 1) Power in terms of both 227 

the number of participants included as well as the task design (e.g. number of trials 228 

per condition), and 2) The threshold used for assessing statistical significance and 229 

how that was determined, appropriately controlling for multiple comparisons. These 230 

comparisons include the testing of multiple voxels and/or regions of interest, but also 231 

extend to tests of neuroimaging measures against multiple measures of individual 232 

differences in cognition or health status. The following sections will cover multiple 233 

aspects of how these general guidelines can be applied to neuroimaging studies of 234 

dietary behavior, nutrition, and obesity. After briefly summarizing general good 235 

practice guidelines for neuroimaging, we discuss specific experimental design and 236 

analysis features for studies using visual, olfactory, or physical foods/liquids as 237 

stimuli. We would like to note that the AJCN is committed to the COBIDAS standard 238 

and encourages authors to follow the recommendations of that report. Upon 239 

submission, authors will be asked to complete a checklist based on Appendix D of 240 

the COBIDAS report. All items flagged as mandatory need to be satisfied as a 241 

minimal standard. This checklist is available as Supplemental Checklist S1. 242 

 243 

2.2 Power calculation and study planning 244 

The prevalence of underpowered studies in neuroimaging, as well as many other 245 

scientific disciplines, is one of the biggest, but also most concretely addressable 246 

issues we face (14, 37, 38). Power analysis is important not simply to avoid 247 

performing a futile study, but also to ensure that any positive findings are likely to be 248 

http://biorxiv.org/content/early/2016/05/20/054262
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true positives; as noted by (37), low power increases the likelihood that any positive 249 

findings are false positives and thus reduces the likelihood that findings from 250 

underpowered studies are replicable. To date, sample size calculations based on 251 

realistic power analyses have been made only rarely during the planning stages of 252 

fMRI studies. At least, such calculations are rarely reported in literature. This 253 

shortcoming is by no means specific to the use of fMRI for nutrition research, but is 254 

nonetheless a serious limitation and often results in inconclusive, non-replicable, or 255 

even misleading findings. We now know that common rules of thumb about statistical 256 

power for fMRI studies (e.g. 20-30 participants per group) do not hold in many cases 257 

and often result in underpowered studies, particularly when the goal is to examine 258 

individual differences (39). Underpowered studies are most often a waste of funding 259 

as well as the time and effort of both researchers and study participants (38, 40). 260 

Making realistic power calculations requires careful thought and effort, but the 261 

necessary tools for doing so are available. Most statistical software packages include 262 

dedicated functions for power analyses. Moreover, in recent years, more accessible 263 

and fMRI-specific tools, e.g. (15, 41), have been developed to help researchers make 264 

appropriate power calculations that incorporate both within and between subjects 265 

factors. It is important to remember that power is a function of the number of 266 

participants, but also the heterogeneity of the study population and the amount and 267 

quality of data collected per participant. In conjunction with sample size calculations, 268 

it is important to optimize the design of fMRI tasks in terms of the number, temporal 269 

distribution, and duration of different trial types (for general guidelines see 270 

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency; for an example tool for 271 

testing efficiency of an fMRI task design see http://www.neuropowertools.org/). 272 

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://www.neuropowertools.org/
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The ever-growing number of studies in the literature and the move toward open data 273 

sharing means that in many cases, data are readily available for use in making 274 

estimates of power and requisite sample sizes for new studies. However, it should be 275 

noted that effect sizes based only on published studies are likely to be inflated due to 276 

publication bias. Therefore, the use of existing data should generally be 277 

complemented by piloting the exact experimental procedures. In many cases, 278 

researchers and funding agencies will still need to invest significant time and 279 

resources into collecting more specific pilot data to make realistic power calculations. 280 

However, the returns on such initial investments are worthwhile, and the cost of not 281 

conducting appropriate study planning is far greater. 282 

Lastly, we note that collecting more data (trials or subjects) is not the only way to 283 

improve statistical power in fMRI research. The traditional method for analyzing fMRI 284 

data (i.e., the mass univariate approach) involves the repeated testing of a regression 285 

model in tens or hundreds of thousands of individual voxels. These multiple tests 286 

require corrections for multiple comparisons that reduce statistical power. These 287 

corrections are necessary for valid inference and cannot be avoided for mass 288 

univariate analyses. However, mass univariate analyses are only one means of 289 

analyzing fMRI data (42). Multivariate analyses (43) and data reduction or 290 

aggregation techniques such as independent or principle components analyses, or 291 

predefined regions of interest (ROIs) reduce the number of comparisons conducted 292 

and thus the degree of correction required (e.g. p/10 rather that p/50,000). Beyond 293 

simply increasing power, there is ample reason to believe that multivariate and 294 

network-level analyses (44, 45) provide additional insight into brain function and the 295 

application of such techniques to the domain of food choice and nutrition represents 296 

an important, and as yet, relatively under-exploited opportunity.  297 



 
 

14 
 

 

 298 

2.3. Proper experimental and task design 299 

Eating behavior and nutritional decisions are determined by a plethora of factors. In 300 

order to draw strong conclusions from neuroimaging results, we have to know 301 

precisely which factors were controlled and which were manipulated. The nature of 302 

the scientific question will determine exactly which geno- and phenotypic information 303 

is most appropriate to measure or manipulate and report. It is now standard to report 304 

body mass index (BMI) as an anthropometric measure, age of the participants and 305 

sex. However, for many specific questions a deeper phenotyping may be necessary. 306 

For example, it is clear that BMI does not provide enough information concerning 307 

body composition (46). Better methods to describe the body composition are bio-308 

impedance measures, DEXA, MRI, or BOD POD® assessment of body composition. 309 

However, the method used for a given study should be appropriate for the aims of the 310 

study and justified in terms of costs and benefits to both researchers and participants. 311 

Ideally, however, there should be overlap in the measures used to allow better 312 

accumulation of evidence. Accordingly, a set of high-priority measures, including 313 

MRI, has been proposed to achieve common usage and thereby increase the 314 

breadth and impact of obesity research (47).  315 

 316 

2.3.1 Hunger state and related factors 317 

An important factor to control in nutritional studies is hunger state and caloric 318 

deprivation because they affect food wanting and food-related brain responses (3, 319 

48-51). In addition, the quantification of food intake is especially important for 320 

intervention studies, because nutritional composition can also affect neuronal 321 

processes. For example, fasting state studies generally require a 12-hour fast and try 322 
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to control for the subjective hunger state using visual analog scale measures of 323 

appetite. However, it has been established that macronutrient composition of even a 324 

single meal can affect hormonal responses extending beyond 12 hours (52). Thus, 325 

there is added value in the assessment, and inclusion as covariates in analyses, of 326 

major hormonal factors related to nutrition. E.g. glucose, insulin, leptin and ghrelin 327 

could be included for nutritional studies of neural responses in specifically induced 328 

feeding states such as hunger versus satiety. This would allow researchers to 329 

disentangle physiological and subjective factors related to eating processes. 330 

Another issue is that nutritional preferences are culturally and individually 331 

determined, and therefore, the creation and use of standardized food stimuli can be 332 

difficult. Moreover, these evaluations are time of day, season and (hunger) state-333 

dependent. For example, a heavy breakfast with savory components is very 334 

uncommon in many parts of the world and if studies are performed during the 335 

morning hours this has to be taken into account. Thus, acquiring individual 336 

evaluations of the experimental stimuli is another standard operating procedure that 337 

should be incorporated into neuroimaging studies of nutrition-related behavioral or 338 

physiological responses. In addition, it is advisable to use a standardized meal e.g. 339 

on the evening before the measurement or at least to request participants in a 340 

repeated measurements design to consume the same meal preceding all 341 

measurements. 342 

Finally, an important challenge in all nutritional studies, including those using 343 

neuroimaging, is that the assessment of nutritional intake is difficult to quantify in 344 

normal daily life. Currently, most studies use diaries for nutritional intake. However, 345 

such self-reports are unreliable (53). There are several ongoing efforts to measure 346 

nutritional intake using smartphone applications. However, an assessment of the 347 
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validity and degree of advantage or disadvantage of smartphone-based methods 348 

relative to traditional diary methods and the doubly-labeled water method for 349 

assessing habitual caloric intake will require further study. 350 

 351 

2.3.2 Personal characteristics 352 

In addition to physiological factors, care must be taken to account and, whenever 353 

possible, control for psychological factors in studies of the neurobiology of eating 354 

behavior. Personality or cognitive traits may modulate food-related brain responses 355 

(12). 356 

Most studies test for eating disorders, to exclude clinically relevant diseases. 357 

However, it would be advisable to statistically control for subclinical scores on eating 358 

disorder scales.  359 

 360 

2.3.3 Choosing and matching food-related stimuli 361 

Eating engages all of our senses. The extra-oral sensations of vision and olfaction 362 

provide information about food availability to guide food acquisition. The oral 363 

sensations of somatosensation (e.g. texture and temperature), chemesthesis (e.g. 364 

astringency, spiciness) gustation (sweet, sour, salty, bitter, umami and possibly fat 365 

and starch taste) and retronasal olfaction provide information to guide consumption 366 

once the food is acquired and in the mouth. For example, one uses oral 367 

somatosensation to localize a bone in a bite of fish that needs to be extracted before 368 

swallowing while the taste of sweetness produces a metabolic cascade to facilitate 369 

glucose metabolism (54). The choice of stimulus will depend upon the particular 370 

goals of the study. An in-depth discussion of relevant factors to consider for visual, 371 
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olfactory and oral food-related stimulation is provided as Online Supporting Material 372 

S2. 373 

 374 

2.4 fMRI data analysis 375 

2.4.1 Statistical thresholding for whole-brain and region of interest (ROI) fMRI 376 

analyses can be performed at several levels. When using common mass univariate 377 

approaches that take all voxels in the brain into account, appropriate corrections for 378 

multiple comparisons must be implemented. This has been noted early on (55) but 379 

was highlighted several years ago by a conference paper reporting on scans of a 380 

dead salmon who was instructed to perform an emotion recognition task (56). When 381 

appropriate correction techniques were not applied, there appeared to be task-382 

related brain activation in the salmon. Naturally, these false-positive activations were 383 

no longer seen when appropriate corrections for multiple testing were used. 384 

This infamous “case study” is a salient reminder of the importance of employing 385 

appropriate statistical methodology in the analysis of neuroimaging data. In many 386 

subfields of neuroimaging, it has been commonplace to use rule-of-thumb corrections 387 

for multiple comparisons (e.g. a voxel-level threshold of p < 0.001 uncorrected 388 

combined a cluster-extent size of 10 voxels). However, it is now clear from creative 389 

examples like the salmon study and more rigorous and extensive investigations that 390 

such rules are inadequate in controlling false-positive rates. Recent comparisons of 391 

correction methods for multiple testing in fMRI data indicate that permutation-based 392 

procedures are the best choice and that cluster-based methods should be used 393 

correctly (17, 57). Specifically, when Gaussian random field theory is used for cluster-394 

based inference, the cluster-forming threshold should be P = 0.001 to avoid inflated 395 

false-positive rates (17). More stringent cluster forming thresholds also help to avoid 396 
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problems in interpreting the very large activation clusters that often result from low 397 

cluster forming thresholds (57). Note that cluster-based corrected findings indicate 398 

that there is likely to be significant activity somewhere within the cluster rather than 399 

indicating that all voxels within the cluster are significant. Thus, if we only show that 400 

somewhere within a very large cluster there is probably a significant difference 401 

between conditions or groups, then we cannot infer or conclude much at all. 402 

In addition to whole-brain analyses, the current literature on the neurobiology of 403 

nutrition is substantial enough to justify region of interest (ROI) analysis for certain 404 

brain regions or connections between regions. However, in order to be valid, ROI 405 

analyses must be planned a priori, ideally preregistered, and the hypotheses about 406 

the region must be clearly stated. To avoid biased results, both anatomical and 407 

functional ROIs should be defined based on independent datasets or functional 408 

localizer tasks. Note that multiple comparison corrections must be applied across the 409 

ROIs when multiple ROIs are tested for a given hypothesis. Furthermore, the 410 

assumptions underlying cluster-based correction methods are rarely satisfied in small 411 

volume analyses and their use in this case should be avoided (58).  412 

 413 

2.4.2 Minimizing the influence of movement  414 

FMRI data are prone to movement-related artefacts because movement causes 415 

displacement and distortions in the data. In particular oral stimulation can be 416 

accompanied by significant movement. Movement from swallowing and other 417 

activities like breathing may be larger because of greater body mass. Additionally, 418 

there is evidence that head motion and BMI share genetic influences, suggesting that 419 

movement is a neurobehavioral trait that is greater in obesity (e.g. (59)). These 420 
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movements can be counteracted in real time or modeled post-hoc during data 421 

analysis. 422 

a) Real time. Movement can be minimized physically by the use of cushions 423 

around the head, a personalized head case from a two-part foam mold or a bite bar. 424 

Movement can also be minimized through behavioral training or feedback. One way 425 

is to provide the participant with a stationary reference, which has been done by 426 

using a cloth strap or tape across the forehead that attaches to the head coil. When 427 

the participant moves they can clearly feel this by the friction on their forehead. This 428 

feedback works well, and leads to substantial improvement because movement from 429 

swallowing mostly results in small movement in the z-plane which is hard to feel in 430 

most head coils. Again, training is important to improve comfort and ability to lie still. 431 

Training will also allow participants to learn to swallow with minimal movement of the 432 

head, by isolating movement to the jaw and tongue during swallowing. The use of 433 

real time feedback with a head motion tracker in a mock scanner may be most 434 

efficient (available for example at Psychology Software Tools https://pstnet.com/). 435 

Scanners with newer software may include real time monitoring of movement and 436 

allow experimenters to immediately redo runs that invoked too much movement. 437 

Another solution is to remove the need to swallow altogether by suctioning out liquids 438 

(60) or instructing participants to hold the liquid in their mouth until they receive a cue 439 

to swallow (61). The downside of these methods, as elaborated in Supplemental 440 

Material S2, is that a large area of stimulation is overlooked, that aromas in flavors 441 

cannot be perceived and that an important part of the process of ingestion is omitted. 442 

b) Post-hoc analysis. Correction for head motion via image registration is 443 

performed as a standard part of the fMRI preprocessing pipeline, but it is clear that 444 

this is not sufficient to remove the residual effects of head motion on image 445 
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intensities (62); for this reason, motion parameters and their derivatives (which 446 

quantify change from time point to time point) are often included as nuisance 447 

regressors in the statistical model. However, these too may be insufficient to address 448 

large amounts of motion, and it is common to reject data from individual participants, 449 

runs, or time points based on motion estimates. The state of the art techniques for 450 

motion detection and cleaning have been developed in the context of resting state 451 

fMRI, where head motion is a critical problem (63). In addition to use of motion 452 

estimates and their derivatives as nuisance regressors, it is common to compute a 453 

measure of “frame wise displacement”, which measures the overall displacement of 454 

the images between each pair of subsequent time points, and a measure called 455 

DVARS which quantifies the mean change in image intensity between time points. 456 

These measures may be used to “scrub” time points with motion that exceeds a 457 

particular threshold (varying from 0.2 to 0.5 mm frame wise displacement (64)) along 458 

with surrounding time points; in the context of task-based fMRI analysis, this 459 

scrubbing can be performed as part of the statistical model by including single time 460 

point regressors for each excluded time point in the model (65). Individual runs or 461 

subjects exceeding a threshold level of scrubbed volumes may be dropped; the use 462 

of faster imaging with multi slice acquisition can improve the handling of motion by 463 

reducing the relative amount of data that needs to be removed. 464 

An estimate of vigor of swallowing and exact timing of swallowing may be obtained 465 

with expanding bellows and a spirometer (66, 67), which will allow using swallowing 466 

as either the onset of an event-of-interest or, alternatively, as a nuisance regressor to 467 

be covaried out. Similarly, movement from breathing can be estimated with most 468 

standard scanner equipment and incorporated into the single-subjects analysis. 469 

These variables can also be included as regressors in group analyses to address 470 
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their confounding effects. Finally, independent component analysis can be used to 471 

remove the effects of motion artifacts and physiological noise from breathing and 472 

heart beating (68-70).  473 

 474 

2.4.3 Analysis of prospective designs 475 

Although significant advances have occurred in analytic approaches for longitudinal 476 

data that better account for auto-correlation of data from the same participant over 477 

time, missing data, and nested data (71), these advances are not supported by 478 

commonly used fMRI analytic packages. The most basic approach if the data are 479 

only collected at two time points is to use change scores for the outcome (e.g., T2 480 

BMI – T1 BMI) and simply regress the change scores on BOLD response from the 481 

contrast of interest (e.g., (72)). However, it is critical to covary for baseline BMI 482 

because change in an outcome over time is typically negatively related to baseline 483 

values of the outcome (73). Ideally, we recommend using random effects growth 484 

mixture models, or other types of hierarchical linear models that use full information 485 

maximum likelihood to confirm that we model change in behavioral outcomes 486 

optimally. This is particularly important when data are collected at 3 or more time 487 

points, as there is the potential for non-linear change over time (e.g., quadratic 488 

growth). The slopes and intercepts (coded to reflect baseline values) can then be 489 

exported to any of the standard fMRI analytic statistical packages, and the slopes 490 

regressed against the BOLD response, controlling for the intercept (e.g., (27)). For 491 

repeated-measures studies, which can include natural history observational studies 492 

(e.g., (74)) or intervention trials (e.g., (75)), one can simply use repeated-measures 493 

ANOVA models to test for differential change in BOLD response in contrasts of 494 

interest over time across two or more groups. Although one might be tempted to 495 
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directly contrast BOLD response to the event of interest (e.g., taste of milkshake) 496 

from multiple assessment points, we do not recommend this approach because a 497 

number of factors can contribute to variation in BOLD signal over time (e.g., 498 

variability in physiological variables, instability of MRI hardware), which may 499 

introduce bias. Instead, the contrast of the event of interest against an appropriate 500 

control event (e.g., tasting tasteless control solution) should be used. An alternative 501 

approach is to read out parameter estimates from the contrast of interest at each 502 

assessment and use standard data analytic packages, such as SAS or R to conduct 503 

regression models or repeated measures analyses, but this requires a ROI approach, 504 

which does not make use of all the data collected and may miss important peaks that 505 

were not anticipated a priori.  506 

 507 

2.4.4 Predictive modelling 508 

One of the potential uses of MRI is the prediction of future outcomes, such as eating 509 

behavior, weight change or treatment responses. A mounting number of studies 510 

suggests neural food cue reactivity can predict outcomes like energy intake outside 511 

the lab (76), weight gain (27, 77, 78), weight variability (79) and weight loss success 512 

(23, 80). 513 

However, care must be used during model fit in order to achieve predictive accuracy 514 

on new samples. When model fit and goodness of fit estimates are obtained from the 515 

same data, the estimated goodness of fit is inflated because the data have in a sense 516 

been used twice (81). One approach to address this is to use cross-validation to 517 

assess out-of-sample predictive accuracy; in this method, the model is fit iteratively to 518 

subsets of the data and tested on the remaining data that were held out during 519 

training (https://web.stanford.edu/~hastie/ElemStatLearn/). This method provides 520 

https://web.stanford.edu/%7Ehastie/ElemStatLearn/
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more accurate estimates of how well the model can predict outcomes in new 521 

samples, however, predictive accuracies can be highly variable with small samples 522 

(82), and accuracies can be inflated if many different parameter sets are tested 523 

without proper control (83). For this reason, testing a model (e.g. regression, support 524 

vector machine, etc.) fit to one dataset against an entirely separate and independent 525 

dataset remains the gold standard for quantification of predictive accuracy. 526 

 527 

2.5 Preregistration and data sharing  528 

The importance of transparency for reproducible research is increasingly realized. 529 

Studies can be registered at accredited public trial registries like clinicaltrials.gov, but 530 

that does not preclude exploration of the data beyond the testing of the primary 531 

hypotheses, although study plans including planned analyses can also be pre-532 

registered e.g. at the Open Science Framework (osf.io). To counter publication bias 533 

there is an increasing number of journals that accepts registered reports; the study 534 

plan is peer-reviewed and if accepted, the journal will publish the results of the 535 

planned analyses regardless of their nature (see https://cos.io/rr/) 536 

Transparency and reproducibility is further aided by the sharing of research materials 537 

such as task scripts and analysis code as well as the data. There is a spectrum of 538 

data sharing, which involves a tradeoff between the ease of sharing and the utility of 539 

the data (84). On the one hand, meta-analysis has largely relied upon activation 540 

coordinates from published papers (85, 86) which are easy to obtain but limited in 541 

comparison to meta-analysis based on full statistical images (87). For this reason, it 542 

is now recommended to share the unthresholded statistical images from 543 

neuroimaging studies using a database such as Neurovault (88). At the other end of 544 

the spectrum is the sharing of complete raw datasets, via resources such as 545 

https://cos.io/rr/
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OpenNeuro, INDI/FCP, and NITRC. The sharing of raw datasets requires 546 

substantially more time and effort than sharing of coordinates or statistical results, but 547 

provides greater utility of the data, such as allowing different analyses to be applied 548 

to the same data, or allowing raw data to be combined across studies in a “mega-549 

analysis.” Recent projects such as the Human Connectome Project (89) and 550 

ENIGMA Consortium (90) have demonstrated the substantial utility of sharing large 551 

samples of raw MRI data. 552 

 553 

3. Appropriate interpretation 554 

 555 

3.1 What can be concluded from fMRI findings (and what not)? 556 

Although research on the exact meaning of changes in the BOLD fMRI signal is still 557 

ongoing, most researchers assume that differences in BOLD signal reflect 558 

differences in neuronal activity ‘averaged’ over the piece of brain tissue that was 559 

sampled (voxel). One could argue that as long as we can detect apparently 560 

meaningful differences between conditions or groups that BOLD fMRI is of use, 561 

regardless of the exact underlying neuronal and physiological correlates of these 562 

signal differences. Nevertheless, underlying processes such as coupling between 563 

neuronal and vascular response may differ between subjects, and may be affected 564 

by disease states. Notably, obesity is associated with increased cerebrovascular 565 

disease risk and this may affect neurovascular coupling (91). Studies examining 566 

cerebrovascular reactivity can be used to assess whether this might be a problem in 567 

specific study populations. 568 

 A particular point of attention for clinical and intervention studies is that baseline or 569 

‘resting state’ brain activity may differ between patients and controls or may change 570 
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due to the study treatment (e.g. meal ingestion or a diet intervention). This may 571 

explain observed differences in task-related brain activation, which is usually the 572 

main outcome parameter. In addition, because fMRI results usually rely on a 573 

comparison between two task conditions or groups the direction of the underlying 574 

BOLD signal changes should be examined by extracting cluster parameter estimates 575 

to aid interpretation. This allows one to distinguish less deactivation from greater 576 

activation, for example. Group x task condition interactions should be reported only 577 

where there is a main effect of the task in one of the groups. For example, when 578 

there is no clear activation in a region for "food versus non-food" great caution should 579 

be exercised in reporting and interpreting a group x stimulus type interaction in this 580 

area. 581 

It can be challenging to design an fMRI task such that a specific cognitive process is 582 

subtracted out by contrasting a task of interest with a control condition. First, in the 583 

food domain in particular it is inherently harder to match stimuli due to their sensory 584 

complexity and possible cognitive associations and we can only approximate control 585 

conditions by matching on as many characteristics as we can. Second, the observed 586 

differences in regional brain activation may be driven by associated but not 587 

necessarily food-specific processes like arousal, attention, emotion or motivation. 588 

This is not necessarily a drawback, but it is important to be aware of this. Third, fMRI 589 

is sensitive such that task instructions and mind set or attentional focus can alter the 590 

pattern of brain activation observed (see e.g. (92-95)). Thus, when interpreting 591 

findings and comparing with the literature it is important to take seemingly minor 592 

differences in task design and instruction into account. 593 
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As alluded to before, conclusions can be strengthened by showing that differences in 594 

BOLD signal changes correlate with relevant parameters like stimulus or personal 595 

characteristics. 596 

 597 

3.2 Reverse inference 598 

A common practice in the interpretation of neuroimaging results is the use of reverse 599 

inference (96). This refers to interpreting activation of a particular brain region as 600 

evidence for the engagement of a particular cognitive process. Although they can 601 

provide some information, such inferences are not deductively valid and need further 602 

substantiation. In particular when activation of a brain region cannot be pinpointed to 603 

a specific process or when evidence for selective engagement of that region during a 604 

specific neural process is weak, reverse inference should be done with caution. E.g. 605 

areas that are often found to be activated in many studies, also outside the food 606 

domain, are the insula, cerebellum and prefrontal cortex (97, 98). For such large and 607 

heterogeneous regions special care should be taken to consider the exact subregion 608 

found in combination with the process of interest. In conclusion, reverse inference 609 

should be used with caution and involve as much specificity as possible. 610 

 611 

3.3 Comparability of findings in ‘the same’ brain region 612 

In general, the discussion of fMRI findings often lacks accuracy. Often it is unclear 613 

whether the area being discussed is really in the same part of the larger structure, 614 

say within a 10-mm radius, and located in the same hemisphere. This may be 615 

particularly true for large areas such as the insula and long gyri, e.g. the inferior 616 

frontal gyrus. It is advisable to be as specific as possible e.g. by distinguishing 617 

between anterior, middle and posterior insula. Likewise, indicative labels such as 618 
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‘dorsolateral prefrontal cortex’ or ‘ventromedial prefrontal cortex’ may be used to refer 619 

to very different locations. Thus, in all cases comparison of findings between studies 620 

should not be done without checking the exact location to allow appropriate wording 621 

of the degree of similarity. In addition, it is important to be clear on the paradigm or 622 

other relevant aspects of the study such as the sample size or population used, 623 

which can significantly affect comparability of findings and thus the strength of the 624 

inferences made. We see the open sharing of un-thresholded group-level statistical 625 

maps, e.g. through Neurovault.org, as the most promising way to resolve such 626 

ambiguities. If these data are available for all published studies then comparing the 627 

spatial locations of new and existing findings becomes as simple as overlaying two or 628 

more maps. 629 

A useful approach to overcome regional/functional imprecision is to use meta-630 

analytical results to pinpoint functional areas. Online repositories of meta-analyses 631 

such as the ANIMA database (99) or Neurosynth (www.neurosynth.org) (86) can be 632 

queried to identify specific functional locations e.g. the vmPFC area that encodes 633 

stimulus value or the insular subregion that responds to taste stimuli. 634 

 635 

4. Research needs and future directions 636 

 637 

4.1 Fostering comparability, data pooling and meta-analysis 638 

Scientific progress can be promoted by better comparability of research findings, 639 

allowing better data pooling and more accurate meta-analyses. This requires better 640 

standardization of (neuroimaging) methods and associated measures, along with the 641 

application of advanced analysis and modelling techniques to nutritional 642 

neuroscience data (100). This would be aided by minimal standards in the field as to 643 

http://www.neurosynth.org/
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which descriptive data must be reported, in addition to common descriptives such as 644 

age and gender. This might include as a minimum handedness, BMI and a measure 645 

of hunger state but could be expanded for many studies by additional measures such 646 

as information on diet, body composition (body fat %), hormonal status (menstrual 647 

cycle phase, appetite-related hormones) and personal as well as personality 648 

characteristics (dietary restraint, food attitudes, reward sensitivity, impulsivity).  649 

Task-related fMRI studies would do well to use established paradigms with 650 

standardized stimuli adjusted for the population under study and also evaluated by 651 

the study participants to confirm e.g. familiarity. This is aided by sharing of the stimuli 652 

used in online databases (see Supplemental Table S1 in Supplemental Material S2) 653 

and sharing of the associated task paradigms and code, preferably at established 654 

repositories like the Open Science Framework (https://osf.io/) and GitHub.  655 

An excellent way to make more of existing data or achieve greater yield from studies 656 

is to employ the same paradigm and analysis pipeline across many centers. This is 657 

particularly useful when it concerns specific (clinical) populations that may be hard to 658 

recruit in sufficient numbers by a single center. An example of this are the ENIGMA 659 

(90) working groups that assess cortical thickness for different disorders by pooling 660 

results obtained from the analysis of anatomical MRI scans from many centers 661 

(http://enigma.ini.usc.edu/). While mainly focused on brain disorders so far, there is 662 

an eating disorder group as well (http://enigma.ini.usc.edu/ongoing/enigma-663 

anorexia/). 664 

Another noteworthy initiative is the use of standardized analysis pipelines for 665 

neuroimaging data analysis (101) as provided at the OpenNeuro platform 666 

https://www.openneuro.org/. This may help to reduce variation in study results and 667 

allows researchers to see how robust their outcomes are, when assessed with 668 

https://osf.io/
http://enigma.ini.usc.edu/
http://enigma.ini.usc.edu/ongoing/enigma-anorexia/
http://enigma.ini.usc.edu/ongoing/enigma-anorexia/
https://www.openneuro.org/
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different software packages. As a minimum, (neuroimaging) analysis scripts should 669 

be shared alongside data to better allow replication by others. 670 

 671 

4.2 Toward predicting future outcomes 672 

The vast majority of nutritional neuro-imaging studies are cross-sectional. As alluded 673 

to above, to learn more about the causality of obesity and eating disorders it is crucial 674 

to promote long-term follow-up studies, e.g. by adding MRI measures to adequately 675 

powered cohort studies. Adding to existing or newly formed cohorts would also 676 

ensure detailed phenotyping. Individual differences in fMRI task responses or 677 

structural data at baseline can then be used to predict future changes in relevant 678 

outcomes such as onset of a disease state or growth in symptoms (see e.g. (27)). 679 

Ideally, phenotyping including neural measures would be done repeatedly to be able 680 

to examined neural plasticity that may occur in response to (nutritional) interventions 681 

or disease conditions (e.g., onset of an eating disorder or obesity).  682 

 683 

4.3 Technological advances 684 

 685 

4.3.1 More realistic food cue exposure and choice context – potential of virtual reality 686 

Another direction for future work is the development of more realistic fMRI 687 

paradigms, which better reflect the reality of food cue exposure and choice. A supine-688 

positioned, immobile participant lying in a narrow, noisy MRI tube, located in a 689 

hospital, might reasonably be expected to behave differently than one walking 690 

around a supermarket or sitting at the dinner table. There is ample evidence that 691 

situational factors influence momentary goals and preferences and thereby food 692 

choice (102, 103). For example, in-store communication and cues at the consumption 693 
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site can trigger hedonic- or health-related goals and thereby steer choices towards 694 

goal-congruent alternatives (104-108). The abovementioned contextual cues, which 695 

are normally present at the point of purchase, are lacking in most fMRI studies. 696 

However, possibly more problematic, situational factors in the fMRI research setting, 697 

like seeing medical equipment, might activate associated information (i.e., thoughts 698 

about disease, medical treatments) and influence current goals (e.g., prevention of 699 

disease) itself and thereby influence behavior. It is unknown how the presence of 700 

medical equipment influences food choice and underlying cognition and this is a 701 

relevant topic for further study. Further, given the strong effects of situational factors 702 

on choice and potentially on the neural processes leading to that choice, it is 703 

important that authors describe the complete study setting with a high level of detail. 704 

For example, it should minimally be mentioned whether the experiment was carried 705 

out at a hospital or at a research-dedicated MRI scanner in a non-medical facility. 706 

Aside from these situational factors, functional MRI food choice tasks are generally 707 

highly simplified, showing (cut-out) images on a plain background, and are thus very 708 

different from the real-life food choice environment (109-113). Situational and task-709 

related factors combined might result in very different choices in fMRI research than 710 

in real life. If choice behavior differs between fMRI tasks and real life how can we be 711 

confident that the cognitive process we measure during choice is the one we actually 712 

aim to measure? So far, to our knowledge only a few studies have related choices 713 

made in the scanner to a ‘real-life’ measure of eating behavior, namely intake at a 714 

subsequent ad libitum lab buffet meal (114) and intake at a buffet lunch the next day 715 

(115). In the former study, however, in-scanner choices were not related to intake at 716 

the buffet. To assess how representative food choice behavior in fMRI tasks is for 717 

real-life food choices future studies should incorporate real-life measures of eating 718 
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behavior and relate these to in-scanner behaviors. This will allow us to establish the 719 

need for more realistic fMRI food choice paradigms.  720 

One approach to develop more realistic fMRI paradigms is by using virtual reality 721 

(VR). VR provides the ultimate level of immersion, creating a sense of physical 722 

presence in the 3D virtual environment. VR has been successfully applied in a wide 723 

range of fields including psychiatry and medicine (116, 117). Moreover, in the past 724 

years, several virtual supermarkets have been developed (118-120), which enables 725 

collection of purchase data in a very controlled yet realistic environment. VR has a 726 

major potential for use in neuroimaging food choice research because individuals 727 

quickly feel ‘embedded’ in VR environments, such that the actual situation (lying in an 728 

MRI scanner) is suppressed in favor of the virtual situation (walking in the 729 

supermarket) (121). Several studies have shown that purchasing behavior in virtual 730 

supermarkets is relatively similar to actual purchase behavior (122-125). However, 731 

increased realism might come at the cost of increased noise and excessive visual 732 

stimulation which might decrease sensitivity to detect signals of interest. To our 733 

knowledge, to date only one virtual supermarket paradigm that can be used in fMRI 734 

research has been developed 735 

(http://nutritionalneuroscience.eu/index.php/resources/neuroshop-virtual-736 

supermarket). In this paradigm, participants can first freely navigate through the 737 

virtual supermarket with a joystick. This serves to embed the participant in the virtual 738 

supermarket and foster involvement in the task of grocery shopping. Subsequently, 739 

participants perform a more standardized fMRI choice task in which shelves with the 740 

same design are shown and choice blocks are interspersed with movies of walking 741 

around from shelf to shelf, in order to maintain embedding. This provides a first step 742 

http://nutritionalneuroscience.eu/index.php/resources/neuroshop-virtual-supermarket
http://nutritionalneuroscience.eu/index.php/resources/neuroshop-virtual-supermarket
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towards exploiting the potential of virtual reality to produce more ecologically valid 743 

measures of food choice and underlying neural processes. 744 

4.3.2 More realistic feeding paradigms  745 

To better mimic ingestive behavior there is need to move beyond stimulation with 746 

passive reception of small boluses of liquid. The major hurdle here has been the 747 

sensitivity of fMRI to movement. However, recent advances in hardware and software 748 

offer hope that sequences can be compiled that will be more robust and perhaps 749 

even allow us to measure responses to active sipping, swallowing, and even chewing 750 

solid foods. For example, multi-echo fMRI increases the signal to noise ratio by a 751 

factor of 4 (126), while multiband acquisition provides enhanced speed to increase 752 

the temporal resolution allowing greater ability to deconvolve the BOLD response in 753 

the context of movement. Also in development is echo planar imaging with the 754 

“keyhole technique”, which increases the signal readout even further allowing 25-755 

30% increases in either spatial or temporal resolution. These improvements in data 756 

acquisition can then be coupled to new technology enabling delivery of solid foods to 757 

participants lying in the scanner bore. Although there is some way to go and chewing 758 

poses additional risk for movement artefacts as well as aliasing of activity from the 759 

temporalis muscles, such technologies are on the horizon (127). 760 

 761 

5. Conclusions 762 

The potential of functional neuroimaging for leveraging our understanding of the 763 

drivers of eating behavior is substantial because it can elucidate the underlying 764 

neural processes and how these are affected by the diverse determinants of eating 765 

behavior. However, to maximize the yield of neuroimaging methods it is of paramount 766 
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importance to adhere to high standards in terms of experimental and task design and 767 

subsequent data analysis to ensure sufficient detection power, specificity and 768 

interpretability. To accommodate the complexity of nutrition research and to be able 769 

to distinguish noise from meaningful variability, the use of standardized methods, 770 

proper phenotyping and reporting of sufficient methodological detail are necessary to 771 

enhance data pooling and meta-analyses of nutritional imaging data. Moreover, there 772 

is a need for more prospective and repeated measures studies to elucidate etiology 773 

and establish neural markers so as to provide novel and specific targets for 774 

intervention.  775 
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Table 1. Overview of requirements and recommendations for nutritional 

neuroimaging1 

Requirement/recommendation [section] Level2 

Participant description  

Report age M 

Report gender and test for possible effects M 

Report race and ethnicity R 

Report handedness and account for non-righthandedness in analyses M 

Report socio-economic status R 

Report physical activity level R 

Report use of relevant medication, tobacco, alcohol and caffeine R 

  

Report menstrual cycle phase and how this was accounted for in the 

analysis 

HR 

Report BMI or age-adjusted BMI and test for possible effects M 

Report further adiposity measures, e.g. % body fat, waist-hip ratio R 

Report a measure of dietary restraint R 

Report a measure of stress R 

Report personality traits such as reward sensitivity and impulsivity [2.2] R 

Eating disorder scales [section 2.2] R 

Report weight history; weight lost or gained in the weeks before brain 

imaging 

HR 

  

Report time since last meal M 
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Requirement/recommendation [section] Level2 

Standardize the last meal before brain imaging R 

Report appetite ratings HR 

Report thirst ratings R 

  

Study design/procedures  

Describe the hunger state(s) and how they were achieved M 

Report food stimulus details including macronutient composition and 

energy content 

M 

For pre- versus post feeding studies motivate why fasted and fed 

conditions could not be completed on separate days to avoid order effects 

M 

  

fMRI task   

Mandatory items in the COBIDAS checklist (S1)1  M 

Provide a power calculation [2.3] HR 

Report the task instructions M 

Report the number and timing of the task events and how their order was 

randomized and/or optimized 

M 

Describe the stimuli used and how they were matched e.g. on visual 

characteristics 

M 

Report stimulus liking and where appropriate intensity [2.4] M 

For taste stimuli: report temperature, volume, flow rate, swallowing 

instructions [2.4] 

M 

For olfactory stimuli: report temperature, flow rate and sniffing instructions M 
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Requirement/recommendation [section] Level2 

  

fMRI data analysis  

Mandatory items in the COBIDAS checklist (S1)1 M 

Indicate how correction for multiple comparisons was done and how the 

threshold used was determined 

M 

Test multiple ROIs with a single combined ROI mask M 

Use appropriate covariates, such as stimulus liking, gender, menstrual 

cycle phase, BMI 

HR 

Include blood parameters as covariates, if available [2.2] R 

  

Statistical inference/interpretation  

  

Avoid reverse inference [3.2] HR 

Be as specific as possible in the degree of overlap when comparing 

activated brain regions with regions found in other studies [3.3] 

HR 

  

1 General requirements and recommendations for reporting neuroimaging methods 

can be found in the COBIDAS checklist (Online Supporting Material S1). 

2 Level: M = Mandatory; HR = highly recommended; R = recommended. 
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Appendix D. Itemized lists of best practices and reporting items 

This section contains checklists for practices and items to report. Each item has been 

included because it is an essential piece of information needed to understand, evaluate and 

reproduce an experiment. Authors should strive to include all these items, but items marked 

as “Mandatory” are particularly crucial, and a published work cannot be considered complete 

without such information. 

Authors are required to check all mandatory items that apply (Y or N/A). 

Supplemental Checklist S1

This is a PDF form version of Appendix D from http://www.humanbrainmapping.org/
COBIDASreport and the below preprint, published under a CC-BY 4.0 international license.
https://creativecommons.org/licenses/by/4.0/

Reference: 
Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., Kriegeskorte, N., 
Milham, M. P., Poldrack, R. A., Poline, J.-B., Proal, E., Thirion, B., Van Essen, D. C., White, 
T., Yeo, B. T. T. (2016). Best Practices in Data Analysis and Sharing in Neuroimaging using 
MRI. bioRxiv doi: 10.1101/054262.

Online Supporting Material S1

http://www.humanbrainmapping.org/files/2016/COBIDASreport.pdf
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Table D.1. Experimental Design Reporting 

Aspect Notes Mandatory 

Number of subjects Elaborate each by group if have more than one group. 

Subjects approached N 

Subjects consented N 

Subjects refused to participate Provide reasons. N 

Subjects excluded Subjects excluded after consenting but before data acquisition; provide reasons. N 

Subjects participated and 

analyzed 

Provide the number of subjects scanned, number excluded after acquisition, 

and the number included in the data analysis. If they differ, note the number of 

subjects in each particular analysis. 

Y 

Inclusion criteria 

and descriptive 

statistics

Elaborate each by group if have more than one group. 

Age Mean, standard deviation and range. Y 

Sex Absolute counts or relative frequencies. Y 

Race & ethnicity Per guidelines of NIH or other relevant agency. N 

Education, SES Education is essential for studies comparing patient and control groups; 

complete SES reporting less important for single­group studies, but still useful. 

Specify measurement instrument used; may be parental SES and education 

if study has minors. 

Y        N/A 

IQ Specify measurement instrument used. N 

Online Supporting Material S1
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Handedness Absolute or relative frequencies; basis of handedness­attribution (self­report, 

EHI, other tests). Important for fMRI, may be less important for structural MRI.
studies.)

Y 

Exclusion criteria Describe any screening criteria, including those applied to “normal” sample 

such as MRI exclusion criteria. 

Y 

Clinical criteria Detail the area of recruitment (in­ vs. outpatient setting, community hospital vs. 

tertiary referral center etc.) as well as whether patients were currently in treatment.
treatment.

Y        N/A 

Clinical instruments Describe the instruments used to obtain the diagnosis and provide tests of intra­ 

or inter­rater reliability. Clarify whether a “clinical diagnosis” or “inventory 

diagnosis” was used (if applicable). State the diagnostic system (ICD, DSM etc) 

that was used. 

Y        N/A 

Matching strategy If applicable. Y        N/A 

Population & 

recruitment strategy 

Population from which subjects were drawn, and how and where recruitment 

took place, e.g., schools, clinics, etc. If possible, note if subjects are 

research­naive or have participated in other studies before. 

Y 

Subject scanning order With multiple groups, information on ordering and or balance over time; 

especially report relative to scanner changes/upgrades. (Ideally, use 

randomized or interleaved order to avoid bias due to scanner 

changes/upgrades.) 

Y        N/A 

Neurocognitive measures All measures collected on subjects should be described and reported. Y 

Ethical considerations 

Ethical approval Describe approval given, including the particular institutional review board, 

medical ethics committee or equivalent that granted the approval. When data is 

shared, describe the ethics/institutional approvals required from either the 

author (source) or recipient. 

Y 

Informed consent Record whether subjects provided informed consent or, if applicable, 

informed assent. 

Y 

Online Supporting Material S1
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Design specifications 

Design type Task or resting state. Event­related or block design. (See body text for usage 

of ‘block design’ terminology.) 

Y        N/A 

Condition & stimuli Clearly describe each condition and the stimuli used. Be sure to completely 

describe baseline (e.g. blank white/black screen, presence of fixation cross, or 

any other text), especially for resting­state studies. When possible provide images 

or screen snapshots of the stimuli. 

Y        N/A 

Number of blocks, trials or 

experimental units 

Specify per session, and if differing by subject, summary statistics (mean, 

range and/or standard deviation) of such counts. 

Y        N/A 

Timing and duration Length of each trial or block (both, if trials are blocked), and interval between 

trials. Provide the timing structure of the events in the task, whether a 

random/jittered pattern or a regular arrangement; any jittering of block onsets. 

Y        N/A 

Length of the experiment Describe the total length of the scanning session, as well as the duration of 

each run. (Important to assess subject fatigue.) 

Y 

Design optimization Whether design was optimized for efficiency, and how. Y        N/A 

Presentation software Name software, version and operating system on which the stimulus 

presentation was run. When possible, provide code used to drive experiment. 

Y        N/A 

Task specification 

Condition Enumerate the conditions and fully describe and reference each. Consider using 

a shorthand name, e.g. AUDSTIM, VISSTIM, to refer to each condition, to clarify 

the distinction between a specific modeled effect and a psychological construct. 

Naming should reflect the distinction between instruction periods and actual 

stimuli, and between single parameters and contrasts of parameters. 

Y        N/A 

Instructions Specify the instructions given to subjects for each condition (ideally the exact 

text in supplement or appendix). For resting­state, be sure to indicate 

eyes­closed, eyes­open, any fixation. Describe if the subjects received any 

rewards during

Y 

Online Supporting Material S1
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the task, and state if there was a familiarization / training inside or outside the 

scanner. 

Stimuli Specifics of stimuli used in each run. For example, the unique number of 

stimuli used, and whether/how stimuli were repeated over trials or conditions. 

Y        N/A 

Randomization Describe block or event ordering as deterministic, or report manner of 

randomization, in terms of order and timing. If pseudo­randomized, i.e. under 

constraints, describe how and the criteria used to constrain the 

orders/timings. 

Y        N/A 

Stimulus 

presentation & 

response collection. 

Specify the presentation hardware (e.g. back projection, in­room display, 

goggles, etc), and the response systems (e.g. button boxes, eye tracking, 

physiology). 

Note how equipment was synched to the scanner (e.g. scanner TTL, or 

manual sync.) 

Y        N/A 

Run order Order in which tasks runs are conducted in the scanner. Y        N/A 

Power analysis 

Outcome Specify the type of outcome used as the basis of power computations, e.g. signal 

in a pre­specified ROI, or whole image voxelwise (or cluster­wise, peak­wise, 

etc.). 

Y 

Power parameters Specify 

● Effect size (or effect magnitude and standard deviation separately).

● Source of predicted effect size (previous literature with citation; pilot

data with description, etc).

● Significance level (e.g. uncorrected alpha 0.05 for an ROI, or

FWE­corrected significance

● Target power (typically 80%).

● Any other parameters set (e.g., for spatial methods a brain volume and

smoothness may be needed to be specified).

Y 

Behavioral performance 

Online Supporting Material S1
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Variables recorded State number of type of variables recorded (e.g. correct button press, 

response time). 

Y        N/A 

Summary statistics Summaries of behavior sufficient to establish that subjects were performing 

the task as expected. For example, correct response rates and/or response 

times, summarized over subjects (e.g. mean, range and/or standard 

deviation). 

Y        N/A 

Table D.2. Acquisition Reporting 

Aspect Notes Mandatory 

Subject preparation 

Mock scanning Use of an MRI simulator to acclimate subjects to scanner environment. 

Report type of mock scanner and protocol (i.e. duration, types of simulated 

scans, experiments). 

N 

Special accommodations For example, for pediatric scanning, presence of parent/guardian in the room. Y        N/A 

Experimenter personnel Whether a single or multiple experimenters interacted with the subjects. N 

MRI system description 

Scanner Provide make, model & field strength in tesla (T). Y 

Coil Receive coil (e.g. “a 12­channel phased array coil”, but more details for a 

custom coil) and (if nonstandard) transmit coil. Additional information on the 

gradient system, e.g. gradient strength (if non­standard for the make and model, 

or switchable). 

Y 

Significant hardware 

modifications 

For example, special gradient inserts/sets. N 

Online Supporting Material S1
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Software version Highly recommended when sharing vendor­specific protocols or exam cards, 

as version may be needed to correctly interpret that information. 

N 

MRI acquisition 

Pulse sequence type For example, gradient echo, spin echo, etc. Y 

Imaging type For example, echo planar imaging (EPI), spiral, 3D. 

Number of shots (if multi­shot); partial Fourier scheme & reconstruction method 

(if used); 

Y 

Essential sequence & 

imaging parameters. 

For all acquisitions: 

● Echo time (TE).

● Repetition time (TR).

o For multi­shot acquisitions, additionally the time per volume.

● Flip angle (FA).

● Acquisition time (duration of acquisition).

Functional MRI: 

● Number of volumes.

● Sparse sampling delay (delay in TR) if

used. Inversion recovery sequences: 

● Inversion time

(TI). B0 field maps: 

● Echo time difference

(dTE). Diffusion MRI: 

● Number of directions.

o Direction optimization, if used and type.

● b-values.

● Number of b=0 images.

● Number of averages (if any).

● Single shell, multi­shell (specify equal or unequal spacing).

● Single­ or dual­spin­echo, gradient mode (serial or parallel).

● If cardiac gating used.

Imaging parameters: 

Y 
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● Field of view.

● In­plane matrix size, slice thickness and interslice gap, for 2D acquisitions.

● Slice orientation:

○ Axial, sagittal, coronal or oblique.

○ Angulation: If acquistion not aligned with scanner axes,

specify angulation to AC­PC line (see Slice position

procedure).

● 3D matrix size, for 3D acquisitions.

Phase encoding Specify phase encoding direction (e.g. as A/P, L/R, or S/I). 

For 3D, specify “partition encode” (aka slice) direction. 

Phase encoding reversal: Mention if used (aka “blip­up/blip­down”). 

Y 

Parallel imaging method & 

parameters 

Report: 

● Method, e.g. SENSE, GRAPPA or other parallel imaging method,

and acceleration factor.

● Matrix coil mode, and coil combining method (if non­standard).

Y        N/A 

Multiband parameters Multiband factor and field­of­view shift (only if applicable). Y        N/A 

Readout parameters Receiver bandwidth, readout duration, echo spacing. N 

Fat suppression For anatomical scans, whether it was used or not. Y 

Shimming Any specialized shimming procedures. Y        N/A 

Slice order & timing For fMRI acquisitions, interleaved vs. sequential ordering and direction 

(ascending/descending), location of 1st slice; any specialized slice 

timing. 

Y 

Slice position procedure For example, landmark guided vs. auto­alignment. N 

Brain coverage Report whether coverage was whole­brain, and whether cerebellum and 

brainstem were included. If not whole­brain, note the nature of the partial area of 

coverage. If axial and co­planar with AC­PC line, the volume coverage in terms 

of Z in mm. 

Y 
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Scanner­side preprocessing Including: 

● Reconstruction matrix size differing from acquisition matrix size. 

● Prospective-motion correction (including details of any optical tracking, 

and how motion parameters are used). 

● Signal inhomogeneity correction. 

● Distortion-correction. 

Y        N/A 

Scan duration In seconds N 

Other non­standard 
procedures 

Including: 

● Turning off the cold head(s) (e.g. during EEG/fMRI or spectroscopy 

measurements). 

● Reduce sound pressure by limiting the gradient slew rate. 

N 

T1 stabilization Number of initial “dummy” scans acquired and then discarded by the scanner. Y        N/A 

Diffusion MRI gradient table Also referred to as the b­matrix (but not to be confused with the 3×3 matrix 

that describes diffusion weighting for a single diffusion weighted 

measurement). 

N 

Perfusion: Arterial Spin 
Labelling 

MRI 

● ASL Labelling method (e.g. continuous ASL (CASL), 

pseudo­continuous ASL (PCASL), Pulsed ALS (PASL), velocity 

selective ASL (VSASL)). 

● Use of background suppression pulses and their timing. 

● For either PCASL or CASL report: 

○ Label Duration. 

○ Post­labeling delay (PLD). 

○ Location of the labeling plane. 

● For PCASL also report: 

○ Average labeling gradient. 

○ Slice­selective labeling gradient. 

○ Flip angle of B1 pulses. 

○ Assessment of inversion efficiency; QC used to ensure 

off­resonance artifacts not problematic, signal obtained over 

whole brain. 

● For CASL also report: 

Y        N/A 
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○ Use of a separate labeling coil. 

○ Control scan/pulse used. 

○ B1 amplitude. 

● For PASL report 

○ TI. 

○ Labeling slab thickness. 

○ Use of QUIPSS pulses and their timing. 

● For VSASL 

○ TI. 

○ Choice of velocity selection cutoff (“VENC”). 

 

Perfusion: Dynamic 

Susceptibility Contrast 

MRI 

Specify: 

● Number of baseline volumes. 

● Type, name and manufacturer of intravenous bolus (e.g. gadobutrol, 

Gadavist, Bayer). 

● Bolus amount and concentration (e.g. 0.1 ml/kg and 0.1 mmol/kg). 

● Injection rate (e.g. 5 ml/s). 

● Post­injection of saline (e.g. 20 ml). 

● Injection method (e.g. power injector). 

Y        N/A 

Preliminary quality control 
  

Motion monitoring For functional or diffusion acquisitions, any visual or quantitative checks for severe 

motion; likewise, for structural images, checks on motion or general image quality. 

Y        N/A 

Incidental findings Protocol for review of any incidental findings, and how they are handled 

in particular with respect to possible exclusion of a subject’s data. 

N 
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Table D.3. Preprocessing Reporting 

 

Aspect Notes Mandatory 

Software For each software used, be sure to include version and revision number. Y 

Software citation Include URL and Research Resource Identifier for each software used. N 

T1 stabilization Number of initial “dummy” scans discarded as part of preprocessing (if not already 

performed by scanner). 

Y        N/A 

Brain extraction If performed, report: 

● Name of software/method (e.g., BET, recon­all in FreeSurfer, etc). 

● Parameter choices (e.g. BET’s fractional intensity threshold). 

● Any manual editing applied to the brain masks. 

Y        N/A 

Segmentation For structural images, method used to extract gray, white, CSF and other tissue 

classes. 

Y 

Slice time correction If performed, report: 

● Name of software/method. 

● Whether performed after or before motion correction. 

● Reference slice. 

● Interpolation type and order (e.g., 3rd order spline or sinc). 

Y        N/A 

Motion correction Report: 

● Name of software/method. 

● Use of non­rigid registration, and if so the type of transformation. 

● Use of motion susceptibility correction (fieldmap­based unwarping), as 

well as the particular software/method. 

● Reference scan (e.g. 1st scan or middle scan). 

● Image similarity metric (e.g. normalized correlation, mutual 

information, etc). 

Y        N/A 
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● Interpolation type (e.g., spline, sinc), and whether image 

transformations are combined to allow a single interpolation. 

● Use of any slice­to­volume registration methods, or integrated with slice 

time correction. 

 

Gradient distortion correction (If not already described as part of motion susceptibility correction.) Y        N/A 

Diffusion MRI eddy current 

correction 

Report: 

● Name of software/method, and if integrated with motion correction 

● Image similarity / cost function. 

● Type of transformation (e.g. rigid body, affine) and whether 

constrained only along the phase encode direction. 

● Note if gradient table (b­matrix) is then re­oriented. 

● Volumetric change applied for eddy current along the phase­encode 

axis (by the Jacobian determinant). 

Y        N/A 

Diffusion estimation For all methods, report 

● Model, parameterisation and number of free parameters. 

● Estimation method. 

● Outlier handling approach. 

● Some evidence of fit quality; e.g sample of slices of diffusion 

weighted data, or residual maps. 

Items to note for particular approaches: 

● Tensor or Kurtosis. 

○ Any parameter constraints, like cylindrical symmetry. 

● Multi-compartmental models. 

○ Compartments of the model. 

● Orientation distribution function. 

○ Parametric (model) or nonparametric (basis function) model. 

○ Whether orientation distribution function or fibre orientation 

density is reported. 

○ For spherical deconvolution, note how the canonical fibre 

response function is derived (e.g. from the data themselves, or 

simulated data). 

Y        N/A 
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Diffusion processing Report: 

● Summary measures computed (FA, MD, AD, RD, MK, AK, RK, etc.). 

● Whether a track based or voxel­wise method is used. 

● Threshold used to define analysis voxels. 

● Use of population reference track atlas vs. custom atlas (specify set 

of subjects used to create atlas). 

● Standard deviation map (across subjects). 

N 

Diffusion tractography Report: 

● Name of software/method. 

● Step size, turning angle and stopping criteria. 

● For ROI based analysis, definition of ROIs (e.g. specify the images used 

to draw ROIs; manual, semi-automatic or automatic definition of ROIs). 

● For tracking, note step­size, turning angle, any anatomical constraints 

imposed, and stopping criteria. 

● If a measure of path probability / “connectivity” is extracted, clearly 

define this measure. 

Y        N/A 

Perfusion: Arterial Spin 
Labeling 

Report modelling/post­processing scheme: 

● For subtraction, specify whether simple subtraction, 

running, sinc­subtraction, etc. 

● For quantitative model, specify model used, number of free parameters. 

Y        N/A 

Perfusion: Dynamic 

Susceptibility Contrast 

MRI 

● How concentration time curves are calculated, e.g. use of T1 corrections 

(if short TR) or corrections for leakage. 

● Selection of arterial input function (e.g. manual or automatic with 

reference to method). 

● Deconvolution method (kinetic model) to estimate residue function 

(e.g. SVD or parametric model). 

● Details of parameter calculations (e.g. CBF, CBV, MTT, TTP, Tmax). 

Y        N/A 

Function­structure 
(intra­subject) 

coregistration 

Report: 

● Name of software/method. 

● Type of transformation (rigid, nonlinear); if nonlinear, type of transformation 

Y        N/A 
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● Cost function (e.g., correlation ratio, mutual information, 

boundary­based registration, etc). 

● Interpolation method (e.g., spline, linear). 

Note this step might not be necessary if direct T2* to a functional 

template registration is used. 

 

Distortion correction Use of any distortion correction due to field or gradient nonlinearity. Y        N/A 

Intersubject registration Report: 

● Name of software/method (e.g., FSL flirt followed by fnirt, 

FreeSurfer, Caret, Workbench, etc) 

● Whether volume and/or surface based registration is used (if not 

already clearly implied). 

● Image types registered (e.g. T2* or T1). 

● Any preprocessing to images; e.g. for T1, bias field correction, or 

segmentation of gray matter; for T2*, single image (specify image) or 

mean image. 

● Template space (e.g., MNI, Talairach, fsaverage, FS_LR), modality (e.g., 

T1, T2*), resolution (e.g., 2mm, fsaverage5, 32k_FS_LR), and the specific 

name of template image used; note the domain of the template if not 

whole brain, i.e. cortical surface only, cerebellum only, CIFTI 

‘grayordinates’ (cortical surface vertices + subcortical gray matter voxels), 

etc. 

● Additional template transformation for reporting; e.g., if using a template 

in MNI space, but reporting coordinates in Talairach, clearly note and 

report method used (e.g., Brett’s mni2tal, Lancaster’s icbm_spm2tal). 

● Choice of warp (rigid, nonlinear); if nonlinear, transformation type 

(e.g., B­splines, stationary velocity field, momentum, non­parametric 

displacement field); if a parametric transformation is used, report 

resolution, e.g., 10x10x10 spline control points. 

● Use of regularization, and the parameter(s) used to set degree of 

regularization. 

Y 
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● Interpolation type (e.g., spline, linear); if projection from volume to 

surface space, how were voxels sampled from the volume (e.g., trilinear; 

nearest neighbor; ribbon­constrained specifying inner and outer surface 

used). 

● Cost function (e.g., correlation ratio, mutual information, SSD). 

● Use of cost­function masking. 

 

Intensity correction Bias field corrections for structural MRI, but also correction of odd versus even 

slice intensity differences attributable to interleaved EPI acquisition without 

gaps. 

Y        N/A 

Intensity normalization Scan­by­scan or run­wide scaling of image intensities before statistical modelling. 

E.g. SPM scales each run such that the mean image will have mean 

intracerebral intensity of 100; FSL scales each run such that the mean image 

will have an intracerebral mode of 10,000. 

N 

Artifact and structured noise 

removal 

Use of physiological noise correction 

method. Report: 

● Name of software/method used (e.g. CompCor, ICA­FIX, 

ICA­AROMA, etc.). 

● If using a nuisance regression method, specify regressors used; for 

each type, include key details, as follows: 

○ Motion parameters. 

■ Expansion basis and order (e.g. 1st temporal 

derivatives; Volterra kernel expansion) 

○ Tissue signals. 

■ Tissue type (e.g., whole brain, gray matter, white 

matter, ventricles). 

■ Tissue definition (e.g., a priori seed, 

automatic segmentation, spatial regression). 

■ Signal definition (e.g., mean of voxels, first singular vector, 

etc.). 

○ Physiological signals 

■ e.g., heart rate variability, respiration. 

Y        N/A 
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■ Modeling choices (e.g. RETROICOR, cardiac and/or 

respiratory response functions) and number of 

computed regressors. 

 

Volume censoring Remediation of problem scans, also known as “scrubbing” or “de­spiking”. 

Report: 

● Name of software/method. 

● Criteria (e.g., frame-by-frame displacement threshold, percentage 

BOLD change). 

● Use of censoring or interpolation; if interpolation, method used (e.g., 

spline, spectral estimation). 

Y        N/A 

Resting state fMRI feature Creation of summary measure like ALFF, fALFF, ReHo. 

For ALFF, fALFF report: 

● Lower and upper band pass frequencies. 

For ReHo, report: 

● Neighborhood size used to compute local similarity measures (e.g. 6, 18 or 

26). 

● Similarity measure (e.g. Kendall’s coefficient of concordance). 

Y        N/A 

Spatial smoothing If this preprocessing step is performed, report: 

● Name of software/method. 

● Size and type of smoothing kernel. 

● Filtering approach, e.g., fixed kernel or iterative smoothing until fixed 

FWHM. 

● Space in which smoothing is performed (i.e. native volume, native surface, 

MNI volume, template surface). 

Y        N/A 

Quality control reports Summaries of subject motion (e.g. mean framewise displacement), image 

variance (e.g. DVARS), and note of any other irregularities found (e.g. motion or 

poor SNR not sufficiently severe to warrant exclusion). Should be included with 

any publically shared data. 

N 
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Table D.4. Statistical Modeling & Inference 

 

Aspect Notes/Ontology Mandatory 

Mass univariate analyses 
  

Dependent variable: Data 

submitted to statistical 
modeling 

Report the number of time points, number of subjects; specify exclusions of 

time points / subjects, if not already specified in experimental design. 

Y        N/A 

Dependent variable: 

Spatial region modeled 

If not “Full brain”, give a specification of an anatomically or functionally defined 

mask. 

Y        N/A 

Independent variables For first level fMRI, specify: 

● Event­related design predictors. 

○ Modeled duration, if other than zero. 

○ Parametric modulation. 

● Block Design predictors. 

○ Note whether baseline was explicitly modeled. 

● HRF basis, typically one of: 

○ Canonical only. 

○ Canonical plus temporal derivative. 

○ Canonical plus temporal and dispersion derivative. 

○ Smooth basis (e.g. SPM “informed” or Fourier basis; 

FSL’s FLOBS). 

○ Finite Impulse Response model. 

● Drift regressors (e.g. DCT basis in SPM, with specified cut­off). 

● Movement regressors; specify if squares and/or temporal derivative used. 

● Any other nuisance regressors, and whether they were entered as 

interactions (e.g. with a task effect in 1st level fMRI, or with group 

effect). 

● Any orthogonalization of regressors, and set of other regressors used 

to orthogonalize against. 

For second level fMRI or general group model, specify: 

● Group effects (patients vs. controls). 

Y        N/A 
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● Clearly state whether or not covariates are split by group (i.e. fit as 

a group­by­covariate interaction). 

● Other between subject effects (age, sex; for VBM, total GM or ICV). 

For group model with repeated measures, specify: 

● How condition effects are modeled (e.g. as factors, or as linear trends). 

● Whether subject effects are modeled (i.e. as regressors, as opposed 

to with a covariance structure). 

 

Model type Some suggested terms include: 

● “Mass Univariate”. 

● “Multivariate” (e.g. ICA on whole brain data). 

● “Mass Multivariate” (e.g. MANOVA on diffusion or morphometry tensor 

data). 

● “Local Multivariate” (e.g. “searchlight”). 

● “Multivariate, intra­subject predictive” (e.g. classify individual trials 

in event­related fMRI). 

● “Multivariate inter­subject predictive” (e.g. classify subjects as patient vs. 

control). 

● “Representational Similarity Analysis”. 

Y 

Model settings The essential details of the model. For mass­univariate, first level fMRI, these 

include: 

● Drift model, if not already specified as a dependent variable (e.g. 

locally linear detrending of data & regressors, as in FSL). 

● Autocorrelation model (e.g. global approximate AR(1) in SPM; 

locally regularized autocorrelation function in FSL). 

 
For mass­univariate second level fMRI these include: 

● Fixed effects (all subjects’ data in one model). 

● Random or mixed­effects model, implemented with: 

○ Ordinary least squares (OLS, aka unweighted summary 

statistics approach; SPM default, FSL FEAT’s “Simple OLS”). 

○ weighted least squares (i.e. FSL FEAT’s “FLAME 1”), 

using voxel­wise estimate of between subject variance. 

Y 
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○ Global weighted least squares (i.e. SPM’s MFX). 

With any group (multi­subject) model, indicate any specific variance structure, e.g. 

● Un­equal variance between groups (and if globally pooled, as in SPM). 

● If repeated measures, the specific covariance structure assumed (e.g. 

compound symmetric, or arbitrary; if globally pooled). 

 
For local­multivariate report: 

● The number of voxels in the local model. 

● Local model used (e.g. Canonical Correlation Analysis) with 

any constraints (e.g. positive weights only). 

 

Inference: Contrast/effect ● Specification of the precise effect tested, often as a linear contrast of 

parameters in a model. When possible, define these in terms of the task 

or stimulus conditions instead of psychological concepts (See Task 

Specification in Experimental Design Reporting). 

● Provide tables/figures on main effects (e.g. in supplement), not just 

differences or interactions. For example, an inference on a difference 

of two fMRI conditions, A­B, doesn’t indicate if both A & B induced 

positive 

changes; likewise, to fully interpret an interaction requires knowledge of the 

main effects. 

● Indicate any use of any omnibus ANOVA tests. 

● All contrasts explored as part of the research should be fully described 

in the methods section, whether or not they are considered in the 

results. 

● If performing a two­sided test via two one­sided tests, double the 

one­sided p­values to convert them into two­sided p­values. For example, 

if looking at both a contrast [­1 1] and [1 ­1] together, each with 

cluster­forming threshold p=0.001, double the FWE cluster p­values from 

each contrast to obtain two­sided inferences. 

Y 

Inference: Search region ● Whole brain or “small volume”; carefully describe any small 

volume correction used for each contrast. 

● If a small-volume correction mask is defined anatomically, provide 

named anatomical regions from a publicly available ROI atlas. 

Y 
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● If small-volume correction mask is functionally defined, clearly describe 

the functional task and identify any risk of circularity. 

● All small-volume corrections should be fully described in the 

methods section, not just mentioned in passing in the results. 

 

Inference: Statistic type Typically one of: 

● Voxel­wise (aka peak­wise in SPM). 

● Cluster-wise. 

○ Cluster size. 

○ Cluster mass. 

○ Threshold­free Cluster Enhancement 

(TFCE). For cluster size or mass, report: 

● Cluster-forming threshold. 

For all cluster­wise methods, report: 

● Neighborhood size used to form clusters (e.g. 6, 18 or 26). 

For TFCE, report: 

● Use of non­default TFCE parameters. 

Y 

Inference: P­value computation Report if anything but standard parametric inference used to obtain 

(uncorrected) P­values. If nonparametric method was used, report method (e.g. 

permutation or bootstrap) and number of permutations/samples used. 

Y        N/A 

Inference: Multiple testing 

correction 

For mass­univariate, specify the type of correction and how it is 

obtained, especially if not the typical usage. Usually one of: 

● Familywise Error. 

○ Random Field Theory (typical). 

○ Permutation. 

○ Monte Carlo. 

○ Bonferroni. 

● False Discovery Rate. 

○ Benjamini & Hochberg FDR (typical). 

○ Positive FDR. 

○ Local FDR. 

○ Cluster­level FDR. 

Y 
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● None/Uncorrected. 

If permutation or Monte Carlo, report the number of permutations/samples. If 

Monte Carlo, note the brain mask and smoothness used, and how 

smoothness was estimated. 

 

Functional connectivity 
  

Confound adjustment & 
filtering 

Report: 

● Method for detecting movement artifacts, movement­related variation, and 

remediation (e.g. ‘scrubbing’, ‘despiking’, etc). 

● Use of global signal regression, exact type of global signal used and how 

it was computed. 

● Whether a high­ or low­pass temporal filtering is applied to data, and at 

which point in the analysis pipeline. Note, any temporal regression 

model using filtered data should have it’s regressors likewise filtered. 

Y        N/A 

Multivariate method: 

Independent 

Component Analysis 

Report: 

● Algorithm to estimate components. 

● Number of components (if fixed), or algorithm for estimating number of 

components. 

● If used, method to synthesize multiple runs. 

● Sorting method of IC’s, if any. 

● Detailed description of how components were chosen for further analysis. 

Y        N/A 

Dependent variable definition For seed­based analyses report: 

● Definition of the seed region(s). 

● Rationale for choosing these regions. 

For region­based analyses report: 

● Number of ROIs. 

● How the ROI’s are defined (e.g. citable anatomical atlas; auxiliary 

fMRI experiments); note if ROIs overlap. 

● Assignment of signals to regions (i.e. how a time series is obtained 

from each region, e.g. averaging or first singular vector) 

● Note if considering only bilateral (L+R) merged regions. 

Y        N/A 
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● Note if considering only interhemispheric homotopic connectivity. 
 

Functional connectivity 

measure/ model 

Report: 

● Measure of dependence used, e.g. Pearson’s (full) correlation, 

partial correlation, mutual information, etc; also specify: 

○ Use of Fisher’s Z-transform (Yes/No) and, if standardised, 

effective N is used to compute standard error (to account for any 

filtering operations on the data). 

○ Estimator used for partial correlation. 

○ Estimator used for mutual information. 

● Regression model used to remove confounding effects (Pearson or partial 

correlation). 

Y        N/A 

Effectivity connectivity Report: 

● Model. 

● Algorithm used to fit model. 

● If per­subject model, method used to generalize inferences to population. 

● Itemize models considered, and method used for model comparison. 

Y        N/A 

Graph analysis Report the ‘dependent variable’ and ‘functional connectivity measure’ used (see 

above). 

Specify either: 

● Weighted graph analysis or, 

● Binarized graph analysis is used, clarifying the method used for 

thresholding (e.g. a 10% density threshold, or a statistically­defined 

threshold); consider the sensitivity of your findings to the particular 

choice of threshold used. 

Itemise the graph summaries used (e.g. clustering coefficient, efficiency, etc), 

whether these are global or per­node/per­edge summaries. In particular with 

fMRI or EEG, clarify if measures applied to individual subject networks or group 

networks. 

Y        N/A 

Multivariate modelling & 

predictive analysis 
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Independent variables Specify: 

● Variable type (discrete or continuous). 

● Class proportions in classification settings. 

● Variable dimension. 

o For whole­brain prediction, this is a voxel count. 

o For searchlight analyses, the exact number of voxels in the 

search region, not just a radius. 

o Provide dimension before and after any feature selection and/or 

dimension reduction. 

If available, report on population stratification: 

● Information on how the target values relate to the population (e.g. 

male/female frequency or age distribution by group). 

● Specify how this is taken into account in the predictive model. 

Y        N/A 

Features extraction and 

dimension reduction 

Specify the use of any: 

● Feature transformation. 

● Feature selection. 

● Dimension reduction. 

When these techniques are data­driven, specify the procedures used to learn the 

parameters involved. 

Y        N/A 

Model For traditional multivariate analyses, report: 

● Type of model, e.g. MANOVA. 

● Assumptions made on the covariance structure, e.g. independence, or a 

common arbitrary covariance between groups. 

● Statistic used to assess significance, e.g. Wilk’s lambda, 

Hotelling­Lawley trace, etc. 

For predictive models, report: 

● Type of model, e.g. Linear discriminant analysis, support vector 

machines, logistic regression, etc. 

● For kernel­based methods (i.e. SVM) report type of kernel used, type and 

number of parameters needed to be estimated. 

Y        N/A 

Learning method Report: Y        N/A 
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● Figure-of-merit optimised. 

● Fitting method. 

● Parameter settings, those fixed and those estimated; specify how fixed 

parameter values were chosen. 

● How the convergence of the learning method is monitored. 

 

Training procedure Describe: 

● Pipeline structure applied uniformly to all cases (e.g. that could 

be independently applied to a new case). 

● Method for hyper­parameter setting. 

● Data splitting (cross validation). 

Y        N/A 

Evaluation metrics: Discrete 

response 

Describe the evaluation metrics that are to be computed. Always compute: 

● Accuracy. 

● If group sizes unequal, balanced (or average) accuracy. 

When there are only 2 classes, and one can be labeled “positive”: 

● Precision (1 − false discovery rate). 

● Recall (sensitivity). 

● False positive rate (1­specificity). 

● F1 (incorporates both precision and recall). 

● Receiver operating characteristic (ROC) curves, e.g. summarised by 

area under the curve (AUC); AUC for only high specificity (e.g. false 

positive rates no greater than 10%) are also useful. 

When there are 3 or more classes: 

● Report the confusion matrix. 

Y        N/A 

Evaluation metrics: Continuous 

response 

“Prediction R2”, the percentage of variance explained by prediction, computed 

as one minus the ratio of prediction sum­of­squares to total sum­of­squares. 

(Note this is not the squared correlation coefficient between true and predicted 

values). 

Y        N/A 

Evaluation metrics: 

Representational 

similarity analysis 

Report the Kendall Tau statistic for each candidate model considered. Y        N/A 
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Evaluation metrics: 
Significance 

When possible use formal test to obtain P­value to assess whether evaluation 

metric is “significant” or consistent with noise. 

Y        N/A 

Fit interpretation Procedure used to interpret the fit of the classifier, identifying the relative 

importance of the features (e.g. the weight vector in linear discriminant). 

N 

 

 

 

Table D.5. Results Reporting 

 

Aspect Notes/Ontology Mandatory 

Mass univariate analysis 
  

Effects tested Provide a complete list of tested and omitted effects. Y        N/A 

Extracted data ● Define how voxels/elements were selected; if region is based on the 

same data, clarify how circularity was accounted for. 

● For any summary reported, give units. Ideally these are as interpretable 

as possible (e.g. percent change). 

● If reporting R2 (coefficient of determination) clarify how nuisance 

variability is considered. For instance, in task fMRI the vast majority of 

variance is explained by slow temporal drift, and R2 values for an effect of 

interest will be vastly different if computed with or without counting drift in 

the total variance. 

Y        N/A 

Tables of coordinates Provide one table of coordinates including: 

● Contrast / effect to which it refers. 

● XYZ coordinate (with coordinate system, MNI, Talairach, noted in 

caption; also clarify whether peak or center­of­mass location). 

● Anatomical region (in caption or body text, describe source of labels, 

e.g. subjective, atlas, etc). 

Y        N/A 
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● P­value forming basis of inference (e.g. voxel­wise FWE corrected P; 

or cluster­wise FDR corrected P). 

● T/Z/F statistic (with degrees of freedom in table caption) 

● In caption, state whether coordinates are from whole brain, or from 

a specific constrained volume. 

● If cluster­wise inference is used, the cluster size. Report in mm3 or, if in 

voxels, be explicit about the size of voxels. If a cluster statistic other 

than size is used (e.g. mass) it should be listed as well. 

● In caption or body text, note criterion for peak per cluster reporting; e.g. 

“one peak per cluster listed”, or “up to 3 per cluster that are at least 

8mm apart” (SPM default), etc. 

 

Thresholded maps For each effect, provide images of maps of significant regions, ensuring that 

each caption describes: 

● Type of inference and the correction method, as well as form of any 

sub-volume corrections applied when computing corrected significance. 

● Include color bars; when presenting multiple maps in a figure, use a 

common color bar to ensure the results are comparable. 

N 

Unthresholded maps Share, via supplementary material or repository: 

● Unthresholded statistic maps. 

● Optionally, the thresholded statistic maps. 

● Optionally, the effect size map (e.g. % BOLD change, % GM change). 

Y        N/A 

Extracted data State whether data extracted from an ROI (e.g. to compute an effect size) 

is defined based on independent data, as otherwise it is susceptible to 

bias. 

If ROIs are circularly defined, best not to provide any statistical summary 

(i.e. P­values, R2, etc). 

Y        N/A 

Spatial features Report the 

● Size of the analysis volume in voxels, mm. 

● Spatial smoothness of noise (e.g. FWHM) and Resel count (if using 

Random Field Theory). 

Y        N/A 
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Functional connectivity 

ICA analyses Report the total number of components (especially when estimated from the 

data and not fixed). Report the number of these analyzed and the reason for 

their selection. 

Y        N/A 

Graph analyses: Null 
hypothesis 

tested 

For graph­based methods, carefully state what is the null hypothesis of the 

test and how the statistic distribution under the null is computed. 

Y        N/A 

Multivariate modelling & 

predictiveanalysis 

Optimised evaluation metrics Report the values obtained for the evaluation metrics chosen (see Evaluation 

Metrics, above), as well as any P­values to justify above­chance performance. 

Y        N/A 

Table D.6. Data Sharing [[Propose to omit for AJCN]] 

Aspect Notes Mandatory 

Reporting a data 

sharing resource 

Material shared List types of images and non­imaging data provided. 

Report on the completeness of the data (e.g., number of subjects where all types 

of imaging, demographic, and behavioral data is available). 

Y 

URL, access information Provide: 

● Stable URL or DOI.

● Specific instructions on how to gain access. Specifically mention whether

application must be vetted for particular intended research use (e.g. to

preclude multiple users investigating the same question), or whether a

research collaboration must be established.

Y 
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● Cost of access. 
 

Ethics compliance Confirm that the ethics board of the host institution generating the data approves 

the sharing of the data made available. 

Clarify any constraints on uses of shared data, for example, whether users 

downloading the data also need ethics approval from their own institution. 

Y 

Documentation Provide URL to documentation, and specify its scope (e.g. worked examples, 

white papers, etc). 

N 

Data format Report the format of the image data shared, e.g. DICOM, MINC, NIFTI, etc. Y 

Ontologies Data organization structures, including Data Dictionaries and Schemas. Is the 

software using an established ontology? 

N 

Visualization Availability of in­resource visualization of the imaging or non­imaging data. N 

De-identification How, if at all, data are de­identified. N 

Provenance and history Availability of detailed provenance of preprocessing and analysis of shared data. N 

Interoperability Ability of a repository to work in a multi­database environment, availability of 

API’s and ability to connect to analysis pipelines. 

N 

Querying Mechanisms available for constructing queries on the repository (e.g. SQL, 

SPARQL). 

N 

Versioning How users can check version of downloaded data and compare it to the current 

version at a later time. 

N 
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Table D.7. Reproducibility 

Aspect Notes/Ontology Mandatory 

Documentation 

Tools used Tool names, versions, and URLs. Y 

Infrastructure Machine CPU model, operating system version, any use of parallelization. Y 

Workflow Use of a workflow system, its version and URL. N 

Provenance trace State whether detailed provenance information is available. N 

Literate program 

implementing results 

Provide a URL linking to the relevant resource; for example, an ipython notebook 

implementing key analyses. 

N 

English language version As the scientific lingua franca, documentation should be provided in English in 

addition to any other languages. 

N 

Archiving 

Tools availability Note if tools are publically available. N 

Virtual appliances Note if a virtual environment to facilitate a repeated analysis is available. N 

Citation 

Data Provide permanent identifier if possible. N 

Workflow Provide permanent identifier if possible. N 

   N/A 
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SUPPLEMENTAL MATERIAL S2 

 

Choosing and matching food-related stimuli 

 

1. Visual Stimulation   

The most frequently employed method for assessing brain response to food is the 

display of food images on a screen. This approach has several advantages. First, 

unlike oral and olfactory stimulation, the paradigms are relatively simple to create 

and require no specialized delivery systems. Second, outside of the scanner the 

sight of food is an indication of food availability and an important exogenous catalyst 

for promoting behaviors to acquire the food. Learning about the neural systems 

supporting these behaviors and the variables influencing these systems is important 

for understanding food choice, food craving and incentive motivation. However, in 

the scanning environment it is difficult to visually present actual food items. Food 

pictures provide a reasonable proxy but it is recommended that the pictures be made 

relevant to food availability and that the participant be made aware of this 

association. For example, responses in appetitive circuits (e.g. amygdala, 

orbitofrontal cortex and striatum) are enhanced when participants understand that 

the observed items will be made available for consumption after the scan (1, 2). 

Further, the anticipation of eating may interact with many variables of interest. For 

example, restrained eaters show increased food intake at a taste test when 

anticipating eating a subsequent meal (3).  

A third advantage of using food pictures is the ease with which variables can be 

manipulated such as portion size, energy density, macronutrient content etc. This 

flexibility results from a greater ability to acquire and manipulate the images and from 

faster trial times, allowing greater number of presentations for inter-trial averaging 

and consequently the assessment of a greater number of factors. This advantage 

also promotes the creation of parametric designs and greater generalization because 

the researcher is not limited to the number of “channels” available in liquid and odor 

delivery devices (typically between 2 and 10). Ease and speed of image presentation 

also facilitates more involved designs where behavior is manipulated in the scanner, 

such as bidding for, or choosing between items.  
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Fourth, using food pictures avoids complications related to nutrient metabolism, 

satiation and post-ingestive signals that occur when participants are asked to 

repeatedly taste and ingest liquid stimuli over the course of the fMRI task.  

Importantly, many factors that can be manipulated to create advantage can also be 

disadvantageous if not properly considered and controlled. For example, noise can 

be introduced by collating images that vary in macronutrient content, portion size, 

caloric load, familiarity, or healthfulness, because many neural circuits of interest are 

strongly affected by these variables. Likewise, a researcher might be interested in 

the influence of liking on brain response and sort responses by liking ratings. 

However, if all liked images are carbohydrate and all disliked images fat then it is 

impossible to determine whether macronutrient or liking drives differential brain 

response (see e.g.(4)) . Care should also be taken to equate images on visual 

perceptual parameters such as contrast, size, color etc.   

Finally, it is imperative to use images of foods that are representative of the 

participants’ diet. This is because the value of foods and their ability to recruit brain 

circuits is strongly tied to their nutritional properties (5-7), which are conveyed by 

metabolic signals to the brain. As such, foods that have been previously consumed 

by participants become calorie/nutrient-predictive stimuli capable of eliciting 

conditioned brain responses, whereas unfamiliar food images will not. 

 

1.1 What should the control stimulus be? 

It is also critical to choose an appropriate visual control stimulus. In comparisons of 

food with nonfood stimuli, low level visual features, such as luminance and contrast 

should be matched as should stimulus liking and familiarity. In making comparisons 

between food stimuli it is also important to consider whether one should match 

portion size, macronutrient content, actual or estimated energy density, actual or 

estimated cost and perceived healthiness. The appropriate control stimulus may 

depend on the research question, but generally contrasting high- versus low-calorie 

food images would provide the best comparison for studies interested in food 

reward. 

 

1.2 Online resources for various image sets 
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There are several (food image) sets available online and it is recommended to use 

these if possible. Examples are the Food-pics database 

(http://eat.sbg.ac.at/resources/food-pics, (8)) and the Full4Health Image collection 

(http://nutritionalneuroscience.eu/index.php/11-resources/32-f4h-image-collection, 

(9)). A more detailed overview is given at the end of this document in Table S1. 

 

2. Olfactory stimulation 

Food aromas are potent cues, as anyone who has passed a French bakery on an 

empty stomach can attest. A meta-analysis comparing visual, olfactory and oral 

food-cue paradigms found that visual stimulation led to the most extensive and 

robust activations, with olfactory and oral stimulation as shared runner-ups (10). 

Surprisingly few studies have directly compared the impact of visual versus olfactory 

food stimulation. The olfactory cortex is in the limbic system and highly integrated 

with regions involved in valuation, interoception, drive and memory (11), and as such 

may have a privileged role in driving food seeking behavior (12). In addition, there 

are receptors for gut peptides, such as ghrelin, on neurons in the olfactory bulb and 

evidence that manipulation of these peptides influences olfactory perception (13-16). 

Hence, the olfactory system is more tightly integrated with physiology regulating 

metabolism than the visual system and an important target of investigation in relation 

to food seeking and consumption.   

Another attractive feature of the olfactory system is that odors not only indicate food 

availability, but also food receipt, as olfaction is an integral part of the flavor percept 

(17). This means that one can use the same physical stimulus as a distal cue of food 

availability and a proximal cue of food receipt, which is important given the evidence 

for distinct circuits for anticipatory versus consummatory food reward (18). Further, 

unlike food pictures, which provide a representation of a food, food aromas, like the 

sight of real food, indicate availability. This is important because, while presentation 

of actual food items in the scanner is difficult, olfactometers enable precise delivery 

of odorants so that sensation can be time-locked with the BOLD response (19-22).  

With all of these advantages, the primary reason that aromas are not used more 

frequently is that odor delivery in the scanner is expensive and requires a significant 

level of expertise to run and maintain odor delivery devices (i.e. olfactometers). 

Moreover, the few commercial olfactometers that are available are prohibitively 

expensive and the assembly of one’s own device requires a high level of engineering 

http://eat.sbg.ac.at/resources/food-pics
http://nutritionalneuroscience.eu/index.php/11-resources/32-f4h-image-collection
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expertise. However, if one is considering taking on these challenges, olfactometers 

can be found for purchase here: http://www.burghart-mt.de/en/, 

http://www.osmicenterprises.com/index.html. There are also several published 

papers describing the steps and equipment necessary to make your own 

olfactometer (19-22). Several special considerations for odorant delivery are 

discussed below. 

 

2.1 To sniff or not to sniff  

Olfactory sensation depends upon breathing and sniffing (23). Thus, it is important to 

instruct subjects to sniff in concert with odorant delivery. This is often accomplished 

with a “count-down cue” to time the sniff (“three, two, one, sniff”) with the 

olfactometer programmed to deliver the odorant at the end of countdown (18). 

Another method is to use an airflow sensor at the nostrils and trigger delivery based 

on sniff initiation or breath inhalation at the nose (24). Although it has been argued 

convincingly that sniffing is a necessary part of the olfactory percept (25), sniffing is 

not strictly necessary for olfactory stimulation. Passive diffusion of volatiles to the 

olfactory epithelium has also been achieved by asking participants to effectively 

eliminate airflow from breathing in the nasopharynx by practising velopharyngeal 

closure (26). However, it has been noted that olfactory stimulation during 

velopharyngeal closure might not effectively activate all brain areas involved in 

processing olfactory information. This may be due to the fact that sniffing is an 

integral part of olfactory perception (7, 8). If sniffing is employed, it is an important 

factor to control, as sniffing itself results in neural activity in olfactory cortex (27), and 

may be accompanied by movement (if a participant interprets sniffing as a big inhale 

of breath, rather than small short inhalation). This can be done by measuring sniff 

vigor and volume with an olfactory mask coupled to a spirometer (28) and standard 

MRI equipment for measuring breathing rate.  

 

2.2 Orthonasal versus retronasal stimulation 

Orthonasal olfaction is associated with sensing foods at a distance and is dependent 

upon the odorant entering the external nares and flowing across the olfactory 

epithelium from front to back. In contrast, retronasal olfaction is associated with 

sensing foods being consumed and is dependent upon volatiles entering the 

nasopharynx from the oral cavity and flowing across the olfactory epithelium from 

http://www.burghart-mt.de/en/
http://www.osmicenterprises.com/index.html
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back to front (29). This is an important consideration because the direction and 

dynamics of odorant flow across the epithelium is thought to play a role in olfactory 

coding (30). In addition, orthonasal and retronasal olfaction map on to different 

aspects of ingestive behavior (anticipation versus consumption). Direct comparison 

of ortho and retronasal olfaction is complicated because eating is associated with 

other sensations (e.g. taste, temperature) and mouth movements. However, Hummel 

and colleagues created a delivery device where tubes are inserted into the nose with 

one ending at the external nares and another at the nasopharynx to simulate 

retronasal delivery (31). In so doing, the same physical stimulus can be used to 

stimulate both orthonasal and retronasal olfaction and differential BOLD response 

measured to the same odorant (32). 

 

2.3 Design efficiency 

A single presentation of an odor in an event-related design requires, at minimum, 

about 13 seconds, which limits the total number of events that can be presented. 

Regardless of the design, odor delivery should be short and inter-trial intervals 

relatively long (ideally even 30 s) because the uniquely rapid habituation to odors is 

an important consideration, as noted by Poellinger et al. (33). Block designs have 

higher power, as inter-stimulus time can be shorter and more presentations can be 

achieved (compare trial duration of 3 s in an on-off block design (34) to between 13-

35 s in event-related designs (28, 35). Here habituation is dealt with by using an on-

off design with pauses of no odorant delivery during an odor block. In determining 

how long each block should be it is also important to keep in mind that different 

cortical areas show different habituation patterns in response to odors (33).  

 

2.4 What should the control stimulus be? 

Since sniffing is associated with activation of many regions of interest, it is important 

to measure responses to odorless sniffs. Here a critical issue is ensuring that the air 

stream (or ambient air) is not contaminated. This means that the tubes carrying the 

air to the participants must be cleaned or replaced frequently. When making 

comparisons between food and non-food odors it is important to consider whether 

odorants are purely olfactory, such as phenylethal alcohol or if they contain a 

trigeminal component. Nonfood odors can also produce taste-like sensations. For 

example, many floral aromas are described as sweet, and to some may even be 
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edible (36). For this reason, it can be useful to have participants rate odorant 

edibility. Finally, odors are notoriously difficult to name. Differences in nameability 

between food and nonfood odors may lead to unanticipated confounds. We therefore 

recommend familiarizing participants with the odorants, providing their labels and 

measuring discriminability. 

 

3. Oral stimulation 

There are several advantages of using oral, rather than (or in addition to) visual and 

olfactory stimulation. First, the experience of pleasure derived from eating depends 

heavily on flavor perception, which results from the integration of distinct oral 

sensations of taste, retronasal olfaction, oral somatosensation and possibly 

chemesthesis (37). Individual differences in sensitivity of and preference for 

particular flavors (e.g. sweet concentration preference) and textures (e.g. fat 

sensing) play an important role in ingestive behavior. Therefore, examination of oral 

sensation is critical to understanding the neural circuits regulating feeding.   

Second, oral stimulation occurs during food consumption and represents a distinct 

aspect of ingestive behavior from food acquisition. This is an important point 

because appetitive learning is driven by the generation of errors between 

predictions/actions and outcomes (38). Whereas visual and olfactory cues provide 

information important for prediction and action, oral sensory information provides 

information about outcome. As such, measuring brain response to both oral and 

extra-oral stimulation provides a more comprehensive assessment of so-called “food 

reward circuits” and can be valuable for interpreting findings. For example, response 

in the dorsal striatum to consuming small drops of milkshake is often negatively 

associated with body mass index (BMI), which has lead researchers to conclude that 

these striatal “reward” responses are hypo-responsive in obesity (39-42). However, 

striatal response to high-calorie food images correlates positively with BMI (43-48). 

This suggests that a more accurate interpretation is that BMI is associated with 

amplified prediction signals coupled with blunted outcome signals (49).   

A third, and relatively unexplored advantage of assessing oral stimulation is that 

nutrients can be consumed and metabolized. This process is associated with a 

cascade of events including gastric secretions, hormone release and gut-to-brain 

neural signaling (i.e. the generation of vagal afferent signals) that are critical for 

associating food stimuli with their nutritive value (50-53). This provides the 
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opportunity to study the dynamic gut-brain axis, which is emerging as a major factor 

in understanding metabolism and ingestive behavior in health and in disease. One 

major hurdle towards this aim is the lack of information on timing, which makes it 

impossible to time-lock post-oral or metabolic events with brain response. Moreover, 

because internal state is changing over the course of the scanning session, it is 

important to measure variables related to internal state, like hunger, fullness and 

thirst.   

Perhaps the biggest disadvantage of oral stimulation is that, to date, it has only been 

feasible to deliver liquids in the fMRI scanner. This limitation results because of 

difficulty with delivery and movement. The logistics of delivering a food item, even as 

small as a blueberry or an M&M™ to a subject lying in an fMRI scanner bore are not 

trivial. The bore is narrow and head coils often obscure or bar the mouth area. One 

could conjure an image of a reverse vacuum-like device, but this would need to be 

non-magnetic and designed so that it poses no risk of choking. However, even if one 

could successfully deliver the food item the movement caused by chewing has 

serious consequences for data quality. A basic assumption in fMRI analysis is that a 

given voxel corresponds to a given volume of brain tissue across time (54). Even 

small movements can lead to significant displacement and thereby reduce signal to 

noise, known as “partial volume effects”. However, more problematic is the fact that 

the movement associated with chewing is directly related to the event of interest. 

Thus, the data from a given voxel will be derived from two correlated sources, mouth 

movement causing displacements and BOLD response related to eating. Solving 

these issues would bring about a major step forward and is an important direction for 

research and development.  

Notably, early studies that used water bolus methodology to measure regional 

cerebral blood flow with PET did not have the same magnitude of constraint. Voxels 

were larger, making small displacements less detrimental to SNR, temporal 

resolution was poorer, making precisely timed phasic stimulus delivery unnecessary, 

and participants were only inserted into the PET camera up to their forehead. In one 

study this allowed experimenters to hand-feed subjects squares of chocolate and 

measure brain response over a 60-sec window (rather poor temporal resolution 

compared to the 1-3-sec typical of current fMRI) as participants let the chocolate 

melt in their mouths (55). This eating experience is arguably more pleasurable than 

consuming small drops of liquid. Unfortunately, PET fell out of favor because it 



8 
Online Supporting Material S2 Choosing and matching food stimuli 

 
 

requires the use of a radioligand, is extremely expensive, and the poor temporal 

resolution posed significant limitations for studies of rapid cognitive and perceptual 

operations. While the temporal disadvantage may not be as problematic for feeding 

research the cost and radiation exposure keep PET beyond the scope of most 

research programs. Although, MRI may be used to study blood-flow related 

responses to food with the use of arterial spin labeling techniques (ASL, (56)) 

delivery of solid food remains challenging. This is not an insignificant limitation given 

the importance of actions in motivated behavior and habitual responding, and 

bearing in mind the established literature documenting differences in oral sensation 

and metabolism in the consumption of liquid versus solid energy sources (57). 

Although these considerations are important, it is worth noting that liquid delivery is 

also not akin to drinking since only very small boluses of liquid are delivered at a 

time. Thus each “food” event is limited primarily to stimulation of oral sensation.  

Special considerations for oral stimulation are discussed below. 

 

3.1 To swallow or not to swallow 

Swallowing is an integral part of the act of eating, but it also introduces movement, 

which degrades data quality. Therefore, it is worth considering whether measures 

should be taken to limit swallowing or to de-correlate it from the event of interest. For 

example, if a researcher is interested in taste intensity perception then they could opt 

for a design where very small quantities of liquid are sprayed into the mouth negating 

the need to swallow (58), where the liquids are sucked out of the back of the mouth 

(59), or where participants are asked to postpone swallowing until a cue is 

presented, decoupling it from the onset of taste perception (60). One caveat 

associated with these methods is that taste buds are distributed across the entire 

oral epithelium, not only on the tongue, including the palate and pharynx (61), 

therefore taste stimulation is not comprehensive. However, if a researcher wanted to 

study the act of eating then a swallow is necessary, since only then is a food 

consumed. In addition, retronasal olfaction is a critical part of flavor (17) and is 

dependent on a swallow to move volatiles from oral to nasal cavity via the 

nasophayrnx (58, 62, 63).  

 

3.2 Choosing a taste task 
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Generally, in fMRI studies there is the risk of participants falling asleep during 

passive stimulation tasks. This is often counteracted by engaging them with a task, 

such as making a perceptual rating. With oral stimulation somnolence is less of a 

risk, as participants are engaged in managing small drops of liquids dripping into the 

mouth while in a supine position. Moreover, asking participants to engage in a task 

hinders detection of sensory responses because taste representation is sparse and 

the insular “taste” cortex is multimodal. More specifically, unlike visual, motor, 

somatosensory, and auditory cortex where most neurons are engaged by the 

sensory input or motor output, many neurons in taste cortex do not respond to taste 

(64). For this reason, this multimodal cortex has been proposed as better defined as 

ingestive cortex (65). In addition, insular cortex is engaged by attention to body 

states (66). The combination of sparse taste representation and attentional activation 

may be equal or higher than sensory activation in gustatory cortex (35, 67, 68). 

Perceptual judgments (such as rating pleasantness or intensity) also influence the 

location of activation within gustatory cortex (69-71). There is also evidence that in 

the absence of a task the flow of stimulus information differs. For example during 

passive tasting there is stronger connectivity between the amygdala and the insula 

compared to performing a detection, identification or pleasantness rating task (70). 

Therefore, if the goal of the experiment is to understand a process related to 

sensation it is best to deliver the liquids passively.   

Another important consideration is whether to deliver a cue to alert the participant to 

the impeding stimulus delivery. If no cue is provided and several different stimuli are 

used (e.g. milkshake and tasteless), the stimuli are generally unpredictable and 

subject to the generation of prediction errors. However, if a cue signals the identity of 

a forthcoming stimulus (e.g. a picture of a milkshake or water) then no error signal is 

generated. This is important because dopamine release is integral to error signal 

generation and individual variance in dopamine signaling may influence the sensory 

response (72). A similar situation occurs when no cue is used but the timing of 

delivery is random.  

Another consideration is the quality of a cue used. If information about the stimulus is 

conveyed by the cue this too can have an important influence on the response (73-

75). 

 

3.3 What should the control stimulus be? 
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Early studies made the intuitive choice to use water as a stimulus e.g. (76, 77). 

However, water has a “taste” (78) and has an important physiological significance. 

As such, comparison of taste (e.g. sweet, sour, salty, bitter) minus water, may fail to 

isolate gustatory cortex. Subsequent studies then showed that water activates 

gustatory cortex as effectively as taste (79, 80). Water can also be a reinforcing 

stimulus itself, especially under a thirsty state. Two alternatives to water have been 

proposed. First, Frey and Petrides asked participants to move their mouths and 

swallow as if they were tasting (79). This method was successful in producing 

greater response to taste vs. mouth movement in chemosensory cortex. A second 

option developed by O’Doherty et al. is to administer a solution that contains the 

main molecular components of saliva (bicarbonate sodium and potassium chloride) 

(81). Of note, it is important not to describe the solution as “artificial saliva” but rather 

as “tasteless” or “control” to avoid negative responses. Tasteless solutions have 

become the gold standard. However, they do not have the typical viscosity 

associated with saliva and many participants report that they perceive taste. For this 

reason, it is best to create individualized tasteless solutions based on a “two 

alternative forced choice” procedure with several concentrations. Here, the subject is 

asked to “choose the solution that tastes most like nothing, or has the least taste” 

(see e.g. (82)). The concentration of the chosen tasteless solution may differ 

between individuals by a factor 8, which means that a single average concentration 

should not be used, but a determination of each participant’s tasteless is important.  
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Supplemental Table S1. Online food image resources 

Name Nr images 
Food/non-
food 

Categories Culture Ratings/measures URL Publication1 

 
Databases developed for research 
F4H 
Image 
Collection 

377/41 Sweet, 
savory, high 
and low 
calorie, 
non-foods 
(office 
utensils) 

European 
(Netherlands, 
Scotland, 
Greece, 
Germany, 
Sweden, 
Hungary) 

Liking, perceived 
calories and 
healthiness 

http://nutritionalneuroscienc
e.eu/index.php/resources/f4
h-image-collection 
 

Charbonnier 
et al. 2016 
 
DOI 
10.17605/O
SF.IO/CX7T
P 

FRIDa 295/582 Natural, 
transformed
, rotten food 
+ various 
non-foods  

Mediterranean Valence, arousal,  
familiarity 
typicality ambiguity, 
perceived calorie-
content,  
perceived immediate-
edibility, perceived 
level of transformation 

https://foodcast.sissa.it/neur
oscience/ 
 

Foroni et al. 
2013 

Food.pics 896/314 sweet and 
savoury 
foods, high 
and low 
calorie, 
warm and 
cold dishes, 
processed 
and raw 
foods 

German, North-
American 

palatability, desire to 
eat, complexity, 
recognizability, 
valence, arousal 

http://eat.sbg.ac.at/resource
s/food-pics 

Blechert et 
al. 2014 

http://nutritionalneuroscience.eu/index.php/resources/f4h-image-collection
http://nutritionalneuroscience.eu/index.php/resources/f4h-image-collection
http://nutritionalneuroscience.eu/index.php/resources/f4h-image-collection
https://foodcast.sissa.it/neuroscience/
https://foodcast.sissa.it/neuroscience/
http://eat.sbg.ac.at/resources/food-pics
http://eat.sbg.ac.at/resources/food-pics
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Name Nr images 
Food/non-
food 

Categories Culture Ratings/measures URL Publication1 

OLAF 96 Sweet high 
fat, salty 
high fat, 
fruit, 
veggies 

Spanish valence, arousal, 
dominance craving 

https://zenodo.org/record/10
202 
 

Miccoli et al. 
2014 

 
Databases developed for AI learning2 
PFID  Fast food United States  http://pfid.rit.albany.edu/  

       

Food-101 101.000 1000 
categories 

  https://www.vision.ee.ethz.c
h/datasets_extra/food-101/ 

 

UEC 
FOOD 
256 

256 Food Japanese N/A http://foodcam.mobi/dataset
256.html 

 

Food-5K 
Food-11 

2500/16643 Food and 
non-food 

? N/A http://mmspg.epfl.ch/food-
image-datasets 

 

1 Blechert, J., A. Meule, N. A. Busch and K. Ohla (2014). "Food-pics: an image database for experimental research on eating and appetite." 

Frontiers in Psychology 5(617). 

Charbonnier, L., F. van Meer, L. N. van der Laan, M. A. Viergever and P. A. Smeets (2016). "Standardized food images: A photographing 

protocol and image database." Appetite 96: 166-173. 

Foroni, F., G. Pergola, G. Argiris and R. Rumiati (2013). "The FoodCast research image database (FRIDa)." Frontiers in Human Neuroscience 

7(51). 

Miccoli, L., R. Delgado, S. Rodríguez-Ruiz, P. Guerra, E. García-Mármol and M. C. Fernández-Santaella (2014). "Meet OLAF, a Good Friend 

of the IAPS! The Open Library of Affective Foods: A Tool to Investigate the Emotional Impact of Food in Adolescents." PLOS ONE 9(12): 

e114515. 
2 AI databases contain typical and less typical and noisy images, but may be a good source to select appropriate images from. 
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https://www.vision.ee.ethz.ch/datasets_extra/food-101/
http://foodcam.mobi/dataset256.html
http://foodcam.mobi/dataset256.html
http://mmspg.epfl.ch/food-image-datasets
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