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Propositions 

 

1. Answering complex quantitative genetic questions is rarely possible in long-term 
studies of wild populations as these studies are simply not designed for it.  
(this thesis) 
 

2. Field experiments can only allow us to draw conclusions about the natural world 
when carried out over a sufficient length of time to cover the whole range of 
environmental conditions. 
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3. Providing p-values to substantiate the importance of a scientific claim is nonsense 
if not accompanied by effect sizes and imprecision estimates.  
 

4. The higher the impact factor of a journal, the more suspicious one should be of its 
content. 
 

5. Science education should convey that scientific philosophy is incompatible with 
religious beliefs, but should do so without becoming dogmatic itself. 
 

6. It is morally inconsistent to strongly support anti-abortion movements while not 
equally supporting fights for the lives of innocent animals in industry. 
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dapt or perish, now as ever, is Nature’s inexorable imperative” (H.G. Wells in Mind 

at the End of its Tether, 1945). Although Wells’ counsel particularly pertained to 

changes in the sexual standards and dogmas in modern human societies, it 

could easily apply to all life on our planet. Life evolves (Darwin 1859) and has done so 

since its origin. In its most simplistic definition, adaptive evolution is the outcome of 

natural or sexual selection on (genetically) heritable traits (that is, leaving aside mutation, 

dispersal or random genetic drift). Already Darwin realised that most scope for macro-

evolutionary processes is present during episodes of strong environmental change. As an 

example, during the Great Oxygenation event approximately 2.3 billion years ago, aerobic 

respiration evolved in clades of unicellular organisms in response to the massive rise in 

oxygen levels by cyanobacteria during photosynthesis (Soo et al. 2017). Mammalian life 

forms radiated explosively during Early to Middle Jurassic and at the end of the Mesozoic 

Era as novel ecological niches previously vacated by dinosaurs became available 

(Archibald 2011; Close et al. 2015). Such examples of ‘macroevolution’, i.e. above the level 

of the species, typically occur at ‘evolutionary timescales’ (i.e. spanning many thousands 

to millions of years) and can only be studied retrospectively using fossil records or 

phylogenetic ‘trees of life’ (Pace 2009). Importantly, evolutionary forces also operate at 

‘ecological timescales’ (decades to centuries)—and can be studied ‘live in action’ (although 

the distinction between the two timescales is not necessarily clear;  Hendry and Kinnison 

1999). A well-known example of rapid evolution in the wild is the morphological changes 

in a translocated population of a wall lizard (Podarcis sicula); within 36 years, the 

introduced islet population showed distinct head and digestive system morphology and 

a concordant dietary shift compared to the source population on a nearby islet (Herrel et 

al. 2008). Even faster evolutionary change can be studied in laboratory conditions in small 

(often unicellular) organisms with generation times as short as a couple of hours (e.g. 

Lenski et al. 1991). The study of evolutionary processes (adaptation, selection and (changes 

in) genetic variation) has become a central topic in evolutionary ecology in the context of 

global environmental change (Parmesan 2006; Reusch and Wood 2007; Merilä and Hendry 

2014). 

 

Studying evolution in the wild: concepts and tools 

 

Variation is everywhere 

In evolutionary ecology, it is of particular interest to understand how organisms interact 

with their environment and how this environment can shape evolutionary processes (i.e. 

are drivers of selection)—and vice versa (eco-evolutionary dynamics; Hendry 2017). 

Understanding these eco-evolutionary dynamics is important to infer rates of 

(micro)evolutionary change, which are necessary, for instance, to make predictions about 

the consequences of human disturbance on population viability and persistence (Hendry 

and Kinnison 1999). Key to the study of evolution is variation in phenotypes and how this 

mediated by genetic effects (Lynch and Walsh 1998). Genetic variation underlying

“Ä 
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Box 1.1. Quantitative genetics, variance components and selection 
 
In its most simplistic form, the phenotype (z) of a given individual (i) is composed of a genetic and 
environmental component: 

 
𝑧𝑖 = 𝑔𝑖 + 𝑒𝑖. 

 
Similarly, at the population level, phenotypic variation can be partitioned into a genetic and non-
genetic component: 

𝑉𝑧 = 𝑉𝐺 + 𝑉𝐸 
 
(Lynch and Walsh 1998). In words, this means that phenotypic variation at the population level is 
the sum of genetic variation and ‘environmental’ variation. 𝑉𝐺 is in fact a composite of additive 
genetic variance (𝑉𝐴: variance attributable to breeding values, i.e. the additive effect of 
independent loci), dominance variance (𝑉𝐷: variance attributable to deviations from the breeding 
value due to within-locus allelic interactions) and epistatic variance (𝑉𝐼: variance attributable to 
epistatic interactions between loci). When studying the short-term evolutionary potential of the 
population, we are mainly concerned with the additive effect of different alleles (𝑉𝐴). The 
environmental variance, 𝑉𝐸, in turn is a composite of general environmental variance (𝑉𝐸,𝑔: among-

individual variance) and specific environmental variance (𝑉𝐸,𝑠: within-individual variance). The 
former, 𝑉𝐸,𝑔, is often denoted as ‘permanent environment’ variance (𝑉𝑃𝐸) and represents the 

variation between individuals that cannot be attributed to (additive) genetic effects but rather 
(unmeasured) environmental effects that are constant across repeated measures of the individual; 
the latter, 𝑉𝐸,𝑠, is often denoted as residual variance (𝑉𝑅). In most practical situations, then, 
phenotypic variance is partitioned as 
 

𝑉𝑧 = 𝑉𝐴 + 𝑉𝑃𝐸 + 𝑉𝑅 
 
(note that 𝑉𝐷 and 𝑉𝐼 are usually ignored for simplicity). This is because for short-term evolutionary 
change, we are mainly concerned with the additive effect of genes as the hereditary units of 
transgenerational transmission. The amount of genetic variation relevant for selection is then 
expressed as the proportion of additive genetic information relative to total phenotypic variation: 
 

ℎ2 = 𝑉𝐴/𝑉𝑧, 
 
where ℎ2 is the heritability of the trait. The heritability is used in animal and plant breeding to 
predict the evolutionary response to selection, using the ‘breeder’s equation’: 
 

𝑅 = ℎ2𝑠, 
 
where R is the change in the mean trait value from one generation to the next and s is the selection 
differential, i.e. the covariance between relative fitness and the trait value, also expressed as the 
difference in the mean phenotype between the parental and offspring generation (Falconer and 
Mackay 1996; Lynch and Walsh 1998). In its multivariate form (Lande 1979; Lande and Arnold 
1983), i.e. when estimating the expected response in two (correlated traits), this can be rewritten 
as  
 

Δ𝑧 = 𝑮𝛽, 
 continued 
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phenotypic variation has been found to be omnipresent in nature across life history, 

behaviour, morphology, and physiology (Postma 2014). 

To understand how evolutionary dynamics operate at the population level, we first 

need a thorough understanding of phenotypic variation among as well as within 

individuals (or genotypes). The field of quantitative genetics, which is specifically 

concerned with understanding the genetics of quantitative, polygenic traits, has long been 

used in animal and plant breeding to understand the consequences of selection on not only 

mean, but also variation in quantitative trait values (Falconer and Mackay 1996; Lynch 

and Walsh 1998). It is therefore of particular use in studying selection responses in 

breeding programmes as it allows population-level phenotypic variation to be partitioned 

into heritable and non-heritable components (Box 1.1; Falconer and Mackay 1996; Lynch 

and Walsh 1998). With the increased number of long-term, wild population studies of 

individually marked animals, the field of quantitative genetics is increasingly applied in 

studies of evolution in wild populations (Charmantier et al. 2014). 

Aside from genetic and environmental differences among individuals, evolutionary and 

behavioural ecologists alike are increasingly aware of and interested in variation within 

individuals (Piersma and Drent 2003; Dingemanse et al. 2010; Westneat et al. 2015). For 

example, animals are believed to exhibit ‘behavioural syndromes’ or personality, 

expressing similar behaviour across time and contexts (Réale et al. 2007); different 

individuals have different personalities, and behaviour thus varies between individuals. 

However, both behavioural and life-history traits are known to be often phenotypically 

plastic (Scheiner 1993; Schlichting and Pigliucci 1998; Pigliucci 2001), meaning that 

phenotypes respond to fluctuating environmental conditions; the same individual thus 

expresses (within-individual) variation in its phenotypes (Box 1.2). 

 

The importance of understanding environmentally induced variation in phenotypes 

When we study ecological and evolutionary processes in animals in the wild, we need to 

understand why and how the environment shapes variation in phenotypes. The 

environment can shape the phenotype of a particular individual in a reversible way in 

Box 1.1 (continued) 
 
… where Δ𝑧 is a vector of responses in the traits, G is the genetic variance-covariance matrix of the 
traits, and 𝛽 is the selection gradient, i.e. the partial regression coefficient of fitness on a trait. 
Variance can be partitioned statistically by measuring phenotypes in carefully designed full-
sib/half-sib experiments (Lynch and Walsh 1998). Alternatively, when pedigree information is 
available, variance can be partitioned using so-called ‘animal models’ (Henderson 1988; Kruuk 
2004), i.e. mixed-effects models that allow for the inclusion of relatedness matrices (pedigrees). 
See Lynch and Walsh (1998) and Falconer and Mackay (1996) for a complete account for 
quantitative genetic approaches in animal and plant breeding. Importantly, the application of the 
breeder’s equation to predict evolution in natural populations has been discommended on 
grounds of uncertainty of having fitness effects of correlated (unmeasured) traits appropriately 
accounted for (Morrissey et al. 2010). 
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(labile) traits that are phenotypically plastic with respect to that environment (Box 1.2). 

Phenotypic plasticity is generally thought of as an adaptive mechanism to cope with 

varying phenotypic optima in fluctuating environments (Scheiner 1993). In avian timing 

of breeding, for example, the optimal laying date varies from year to year because food 

availability also varies from year to year (Visser and Both 2005; Verhulst and Nilsson 

2008). The optimal timing can be predicted by birds with a reasonable accuracy because 

the phenology of the food (e.g. emergence of insect prey) is driven by temperature (Embree 

1970; Danks 1987). The temperatures in the part of the reproductive season that drive 

insect emergence correlate well with the temperatures in the part of the season that drive 

the onset of egg laying in birds, making temperature a reliable environmental cue 

(Gienapp et al. 2005; Schaper et al. 2012; Gienapp et al. 2014). 

At this point I need to make the side note that phenotypic plasticity is a broad term that 

extends beyond the simple (adaptive) case that we have discussed here (Box 1.2). 

Phenotypic responses to a variable environment may be maladaptive in certain situations 

if, for example, individuals get exposed to novel, ‘non-preferred’ conditions because this 

novel environment impairs development and/or homeostasis (Ghalambor et al. 2007). In 

this view, phenotypic plasticity in seasonally breeding birds may be viewed as a result of 

the physical or physiological constraints of breeding in cold conditions in early spring 

(Perrins 1970; Stevenson and Bryant 2000), rather than an adaptive response to 

temperature fluctuations, although this notion is generally not well supported (Visser and 

Both 2005; Charmantier et al. 2008; Visser 2008). Also, there may be several plasticity-like 

mechanisms that simultaneously determine the phenotype. For example, female great tits 

(Parus major) will change their laying date in response to experiences in the previous 

seasons (Grieco et al. 2002; Gienapp and Visser 2006), and maternal (nongenetic) effects 

may determine the offspring’s development with lasting effects on their phenotype as 

adults (Mousseau and Fox 1998; Räsänen and Kruuk 2007). Chapter 8 explores this special 

case of ‘developmental plasticity’ induced by maternal effects.  

Understanding how phenotypic plasticity, as well as its (additive) genetic 

underpinnings, operates within populations is crucial in evolutionary ecology studies 

because it determines the precision with which patterns of individual consistency in 

behaviour or life history (permanent-environment effects or repeatability, i.e. the relative 

contribution of between-individual effects to the total phenotypic variability (Lessells and 

Boag 1987)) can be detected (Dingemanse et al. 2010; Van de Pol et al. 2016; Gienapp 2018; 

see page 13). If one, for example, were to estimate between-individual variation in avian 

 

 

 

Box 1.2. Phenotypic plasticity 
 
Phenotypic plasticity in labile traits describes the situation in which an individual (or genotype) 
expresses different phenotypes as a function of the environment (Schlichting and Pigliucci 1998; 
Pigliucci 2001). Adaptive plasticity arises because individuals can track phenotypic optima varying 
with environments, thereby maximising fitness across environments (Scheiner 1993; Ghalambor et 
al. 2007). The function describing phenotypic plasticity is called a reaction norm (Woltereck 1909; 
Scheiner 1993). In its most simplistic form, this reaction norm is a linear function, described by … 
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Box 1.2 (continued) 
 
… an intercept or elevation (i.e. the trait value in the average environment) and a slope (the 
sensitivity of the trait to the environment) (Fig. B1.2.1). For example, many phenological traits, such 
as the timing of flowering or breeding, respond plastically to temperatures, with warmer springs 
leading to earlier phenological events (e.g. Nussey et al. 2005c; Brommer et al. 2008; Charmantier 
et al. 2008; Phillimore et al. 2010; 2012) (Figs. B1.2.1b and c): 
 

𝑧 = 𝑎 + 𝑏𝑥, 
 
where z is the trait, a and b are the intercept and slope of the reaction norm, respectively, and x is 
the (mean-centred) environment. In the phenology example, b is a negative number. This linear 
function is often assumed to adequately describe the thermal reaction norms of phenological traits, 
but may be over-simplistic in other contexts (e.g. Brommer et al. 2012; Carter et al. 2017), in which 
case some higher polynomial (e.g. a quadratic term) may be more suitable. This requires, however, 
(many) more than two observations per individual, a requirement seldom met in typical empirical 
(natural) systems. 

Reaction norms of different individuals can run in parallel (Fig. B1.2.1a and b); this means that 
different individuals exhibit the same degree of plasticity with respect to the environment. In 
addition, the vertical position of each individual’s reaction norm relative to that of its conspecific 
reveals the similarity in performance across all environments (in the examples of panels a and b, 
one individual (dotted line) consistently has a higher trait value than the other (solid line), 
regardless of the degree of plasticity). If reaction norms do not run in parallel (Fig. B1.2.1c), this 
indicates—in this particular case—that one of the individuals is less responsive to the environment 
than the other (sometimes leading to crossing reaction norms). As a result, the variation in 
phenotypes along the vertical axis differs among environments, a process known as individual-by-
environment interaction or I×E (note that I×E can take many more shapes than merely the depiction 
in panel c). If I×E has a genetic basis, we term this a gene-by-environment interaction or G×E. The 
presence of G×E means that genetic trait variation is not constant across environments, which may 
have consequences for the ability of a population to respond genetically to selection (Merilä et al. 
2001b; Turelli and Barton 2004; Kokko and Heubel 2008). 
 

 
Figure B1.2.1. Three (non-exhaustive) scenarios for phenotypic plasticity described by linear 
reaction norms; the dotted and dashed lines represent different individuals/genotypes. In a, neither 
individual responds plastically to the environment. In b, both individuals respond plastically to the 
environment to a similar degree (i.e. in this particular case the trait value decreases as the 
environmental value increases). In both a and b, individuals differ in their mean response across 
environments (difference in the intercepts). In c, both individuals respond plastically to the 
environment, but differ in their sensitivity (I×E) as well as the intercept (height) of the curve. 
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timing of breeding without accounting for the effect of temperature, the relative 

contribution of between-individual to the total phenotypic variation would be strongly 

downwardly biased. This is because temperature-induced variation in laying dates would 

be ‘consumed’ by the residual variance component, reducing the relative contribution of 

the permanent environmental (and additive genetic) variance (Box 1.1). This has direct 

implications for the reliability of estimates of ‘evolutionary potential’ or ‘evolvability’ of a 

population (Houle 1992; Hansen and Houle 2004) and may lead to estimated responses to 

selection that do not concur with observations in the wild (Merilä et al. 2001b; see below). 

In the laying dates example, including a fixed effect of temperature in the model, i.e. fitting 

a reaction norm for each female, may reveal that although there is between-individual 

variation in laying dates, each individual also responds plastically to temperature, 

accounting for a substantial amount of the total phenotypic variation (Fig. B1.2.1b; Chapter 

10). In addition to getting more accurate estimates of between-individual variation, 

recognising the role of the environment in shaping the phenotype through phenotypic 

plasticity helps explain how many populations have adjusted their phenology in response 

to global warming, as a population-wide shift in phenotype may sometimes mistakenly 

be interpreted as an evolutionary response (Gienapp et al. 2008; Merilä 2012; Charmantier 

and Gienapp 2014; Merilä and Hendry 2014). 

 

Contemporary climate change as a driver of selection 

 

Much like past major episodes of selection, the natural world is currently subjected to a 

plethora of selective pressures in the Anthropocene era (Rockström et al. 2009; Steffen et 

al. 2015; Scheffers et al. 2016), with humans now being considered the largest driver of 

evolutionary change in natural populations (Palumbi 2001). Among the anthropogenic 

drivers, habitat loss and climate change through greenhouse gas emissions are expected 

to have the strongest impact on biodiversity loss. A changing climate is projected to be 

accompanied by higher mean temperatures as well as more frequent extremes in 

temperatures (Beniston et al. 2007; Field et al. 2014). This puts selective pressures on 

populations that need to cope with this by adapting locally or by dispersing to more 

favourable habitat (Parmesan 2006). 

One of the most recorded effects of climate change is the change in the timing of 

phenological events such as migration and reproduction (Parmesan and Yohe 2003; Root 

et al. 2003). In most cases, across taxa and ecosystems, increased temperatures in recent 

decades have led to an advancement in phenology. Most notably, this increase has been 

strongest in higher trophic levels (Thackeray et al. 2010; Thackeray et al. 2016), creating a 

mismatch between consumer and resource phenology in a wide range of study systems 

(Kharouba et al. 2018). Birds, for example, need to change their timing of breeding to 

maintain synchrony with the phenology of their food (e.g. plants or invertebrates). Many 

avian species, however, have not been able to keep up with the change in the phenology 

of their food (e.g. Visser et al. 1998; Both and Visser 2001; Thomas et al. 2001; Both et al. 

2006; Nielsen and Møller 2006; Schultz et al. 2009; McKinnon et al. 2012). Chapter 2 in this 
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thesis deals in more detail with the reported effects of climate change on bird biology in 

general. 

How does climate change lead to selection on phenology? To comprehend this, we need 

to understand the relationship between the timing of the phenological trait of interest 

(considering here the onset of egg laying) and the time when natural selection acts, i.e. the 

time when the nestlings’ food requirements are highest. The former we refer to as the 

environment of decision-making (1), and the latter as the environment of selection (2) 

(Visser et al. 2010). Both environments, as described above, are affected by spring 

temperatures, but in a different manner (Visser et al. 2006; Gienapp et al. 2014). In great 

tits, females need to time their reproduction about a month ahead of the time the main 

food source for their nestlings—mainly caterpillars—abound (Visser et al. 2004a; Chevin 

et al. 2015). Successful reproduction can therefore only be achieved if the onset of laying 

was well timed (Visser et al. 2006; Visser and Gienapp in press), but simulations have 

shown that if one of the two environments (1 and 2) changes due to climate change, this 

will put selective pressure on consumer phenology (Gienapp et al. 2014). This is partly 

because the relationship between environment (1) and (2) is disrupted and temperatures 

in environment (1) can no longer be used as a reliable cue to predict conditions in 

environment (2) (with the additional, more fundamental reason that temperature cues are 

never perfectly reliable (Gienapp et al. 2014)). Chapter 10 deals in detail with the selective 

pressures on reaction norms. 

 

The challenges of predicting evolution in the wild 

 

When the breeder’s equation fails 

When (additive) genetic variation in a trait in the population and selection acting on this 

variation are quantified, we can predict the evolutionary response to selection from one 

generation to the next (Falconer and Mackay 1996; Lynch and Walsh 1998). Traditionally, 

in animal breeding, this is achieved using the breeder’s equation (Box 1.1). In essence, the 

selection differential (S) can be considered the strength of selection, as it is the difference 

in the mean trait value between the generations (i.e. the original and the selected 

population). To calculate the response (R), however, S has to be multiplied by the 

heritability of the trait (h2), as only part of the observed phenotypic variation can be 

attributed to additive genetic effects. This equation yields fair estimates of selection 

responses in animal breeding because not only can h2 be quantified with reasonable 

accuracy in controlled conditions (Weigensberg and Roff 1996), selection (S) is always 

exactly known (the animal breeder determines who breeds with whom and how many 

offspring result from this). In the wild, however, the use of the breeder’s equation, in its 

univariate or multivariate form (Box 1.1), is generally not recommended (Morrissey et al. 

2010). This is because its application relies on strong assumptions about the causation of 

variation in fitness. We may estimate the phenotypic selection differential (S) for a given 

trait at a given time, e.g. laying date in wild birds in a particular breeding season, and 

conclude that early-breeding birds have a selective advantage. This conclusion, however, 
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is potentially flawed if the underlying assumptions are violated (Morrissey et al. 2010). 

There may well be a second trait correlated with fitness, e.g. clutch size or nutritional state, 

which is causing a covariance between the focal trait and fitness. To circumvent this issue, 

it has been proposed to estimate selection at the genetic, rather than the phenotypic, level 

(Rausher 1992; Stinchcombe et al. 2002), using the Robertson–Price Identity, or Secondary 

Theorem of Selection, for the additive genetic covariance between trait value and relative 

fitness in a simple quantitative genetic model (Robertson 1966; Price 1970). This approach 

is, however, far more data-hungry and hence often unfeasible when one is interested in 

annual estimates of selection (see discussion in Chapter 9). Reassuringly, phenotypic 

estimates of selection are not necessarily inferior to genetic estimates in every situation 

(Morrissey and Ferguson 2011; Reed et al. 2016b). 

Inaccurate estimates of selection will lead to biased estimated responses to selection 

(Kruuk et al. 2003). The same is obviously true if the other component of the breeder’s 

equation, heritability, is inaccurate. Phenotypic plasticity—as one of the several potential 

causes for apparent ‘evolutionary stasis’ (Merilä et al. 2001b)—may have a genetic basis 

(Box 1.2); non-parallel reaction norms will therefore lead to changes in genetic variation 

across the environmental gradient (Scheiner 1993). Environmental heterogeneity in 

additive genetic variance may lead to variability in true heritability if the other 

(environmental) sources of variation do not change at an equal rate. Failure to take these 

changes in (additive) genetic variation into account may lead to biased estimates of 

selection response (Hoffman and Merilä 1999). In Chapter 9, we expand on the issue of 

having selection and genetic variation (co)vary with the environment. Besides the 

environmental variability of genetic variance (and of selection: Wade and Kalisz 1990; 

Siepielski et al. 2009, 2013) there are numerous reasons why h2 times s does not equal the 

observed evolutionary responses (R). I refer the reader to more comprehensive work for 

more information on this subject (e.g. Merilä et al. 2001b; Hansen and Houle 2004; Postma 

2006; Morrissey et al. 2010). 

 

The difficulties of interpreting phenotypic changes in the wild 

In the face of global climate change, it is imperative to understand how populations will 

cope with these changing conditions (Visser and Both 2005; Tylianakis et al. 2008; Visser 

2008). It starts, however, with the need for a clear picture of the underlying processes 

affecting putative responses, which Merilä and Hendry (2014) summarised in three 

categories. First, it has proven to be difficult in many long-term population studies to 

separate observed phenotypic responses (through phenotypic plasticity) from genetic 

change (Gienapp et al. 2008; Merilä 2012). Many phenological traits, for example, exhibit 

strong plasticity (see Box 1.2); when the climate warms and selection favours individuals 

to time their events earlier in the season, phenotypic plasticity often largely accommodates 

the observed population-level phenological changes (Gienapp et al. 2008). We have 

discussed above that such phenological adaptations will not be sufficient if the 

environment of selection changes at such a rate that the cue environment is no longer 

reliable (Visser 2008; Gienapp et al. 2014), leading to selection on the consumer reaction 

norm (cf. Chapter 10). 
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Second, if there is a phenotypic response to climate change (independent of whether 

this response has a (partly) genetic basis) it is not always clear whether the response is 

adaptive (i.e. leading a phenotypic shift towards the optimum). For example, an alpine 

snow vole (Chionomys nivalis) population has seen an increase in body mass in the past 

decade or so, whereas breeding values for body mass have decreased (Bonnet et al. 2017). 

Although over-winter survival was highest for heavy individuals, suggesting phenotypic 

selection for higher mass, the predicted survival from selection in recent short-summer 

years—when late-born juveniles are still growing when the snow-free season ends—in fact 

decreased with mass. This counterintuitive pattern could be explained as an adaptive 

response to viability selection in these juveniles for faster development into smaller adults 

(Bonnet et al. 2017). Importantly, Bonnet et al. (2017) showed that both evolution and 

selection (at the genetic level) opposed the direction of selection at the phenotypic level, 

warranting due care when inferring selection and adaptive change in natural populations. 

Several complementary ways exist that can be deployed to reliably infer the adaptiveness 

of a response (Merilä and Hendry 2014). In short, one can (1) perform reciprocal 

transplants and assess the fitness of ‘novel’ genotypes in simulated novel or past 

environments; (2) retrospectively estimate phenotypic selection and assess whether the 

change in mean trait value occurred in the expected direction; (3) estimate genetic selection 

(see previous section); (4) comparison to predictions of null-models of evolution (e.g. 

genetic drift) and (5) QST–FST comparisons, i.e. comparison of the divergence in 

quantitative traits (QST) with divergence in neutral molecular markers (FST) (Leinonen et 

al. 2013). Naturally, each of these methods in and of itself can seldom provide a reliable 

picture of whether phenotypic or genetic change is adaptive, and a combination of 

methods is therefore preferred (Merilä and Hendry 2014). Most importantly, perhaps, the 

researcher should know their study species and its ecology well and use common sense. 

In some bird species, for example, we know a fair deal about the ecological interactions 

with prey (Chapter 5), phenotypic and genetic correlations between life-history traits (e.g. 

laying date and clutch size; Sheldon et al. 2003; Postma 2005), and the adaptive landscape 

within which selection on laying date and clutch size operates (Chevin et al. 2015; 

Gamelon et al. 2018). 

Lastly and briefly, changes in phenotypes and concomitant selective pressures are 

sometimes attributed to climate change where in reality a different actor is operating, such 

as habitat degradation, overexploitation (e.g. fishing), pollution, and more (see Merilä and 

Hendry 2014). Identifying the right environmental driver of selection is therefore crucial 

not only for targeted conservation measures, but also accurate evolutionary predictions. 

This is, however, beyond the scope of this thesis. 

 

This thesis 

 

General aims of this thesis 

In this thesis, I use a combination of field experiments and state-of-the-art statistical 

modelling approaches to explore the evolutionary potential in wild, vertebrate 
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populations. The ecology and evolution literature generates a multitude of hypotheses, for 

example as to which environmental factors drive selection, how genetic variation varies 

with the environment, and which other (ecological) factors determine the accuracy of 

predictions of evolution in the wild (e.g. Merilä et al. 2001b). Outstanding questions posed 

in this context more generally could revolve around the question of which of these factors 

put(s) a (apparent) constraint on adaptation, whether we can identify it (or them) and how 

we can improve our (statistical) methodology to generate better evolutionary predictions. 

Using the great tit (Parus major) as my main modelling system (Box 1.3), I aim to answer 

a broad range of questions all tightly revolving around the central question: How are wild 

populations coping with environmental change and which ecological processes affect 

the rate of genetic adaptation? A central approach to answering this question is 

quantifying the parameters that affect evolutionary dynamics (selection, plasticity, genetic 

variation) and predict quantitatively the course of microevolution against the backdrop of 

climate change. Although the great tit population of the Hoge Veluwe (Box 1.3) will be the 

main point of focus in this thesis, I will occasionally depart from this species and 

population to explain general concepts, simulate eco-evolutionary processes, and in one 

case use a multi-taxa approach to answer eco-evolutionary questions beyond single study 

systems. 

Rather than attempting to provide an all-inclusive, clear-cut answer to the general 

question posed above, which will be impossible, I used different, complementary 

approaches to unravel the processes underlying (genetic) adaptation to novel 

environmental conditions. To this end, this thesis is divided into three main parts: Part I 

gives an overview of what we know about the ecological and biological consequences of 

climate change on birds. Part II explores, using experimental and observational 

approaches, the fitness consequences of reproductive timing in great tits. An Intermezzo 

will focus on some methodological aspects in study of ecology and evolution. Finally, Part 

III combines quantitative genetic and other statistical and simulation approaches to 

unravel patterns of adaptation in wild populations more generally. 

 

Thesis outline 

Part I. In Chapter 2 of this thesis, I explore the ecological and biological consequences of 

climate change in birds. In an extensive (but non-exhaustive) review, we outline the 

known causes and consequences revolving around the geographical distribution of birds, 

their phenology (breeding time and migration), morphology and demography under a 

changing climate. We conclude with an outline of possible impacts of climate change in 

the (near) future. 

 

Part II. Climate change is affecting phenology of consumer and prey at different rates 

(Thackeray et al. 2010, 2016; Kharouba et al. 2018) but we still know little about the 

mechanism underlying seasonal timing of reproduction and how this timing is 

constrained by external (a)biotic factors. To this end, Part II of this thesis aims to  
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Box 1.3. Main study system: the great tit (Parus major L.) 
 
General research procedures 
The majority of the work in this thesis takes place in the Hoge Veluwe National Park (52°02′07″ N, 
5°51′32″ E, central Netherlands). The 171-ha study area consists of mixed stands of deciduous and 
coniferous woodlands, surrounded by a matrix of suitable habitat facilitating from and into the 
study area. The main species that make up the deciduous forest stands are pedunculate oak 
(Quercus robur), red oak (Quercus rubra), beech (Fagus sylvatica), and birch (Betula sp.). The 
coniferous stands consist of scots pine (Pinus sylvestris), spruce (Picea abies), Douglas fir 
(Pseudotsuga menziesii) and larch (Larix sp.). Situated on poor sandy soils, undergrowth in the Hoge 
Veluwe area is typical for nutrient-poor sandy systems, including heather (Calluna vulgaris) on the 
poorest soils and purple moor-grass (Molinia caerulea) on the richer parts. The forested area of the 
entire Hoge Veluwe park is interspersed with heathlands and sand dunes. Although the breeding 
bird populations have been monitored continuously since 1955, it is since 1973 that c. 400 nest 
boxes (+ c. 50 extra for smaller passerines) are permanently available. With few natural nesting 
cavities present in the study area, several hole-breeding species readily accept these boxes, leading 
to annual densities of roughly 120 pairs of great tit, 85 pairs of blue tit (Cyanistes caeruleus), 90 
pairs of pied flycatcher (Ficedula hypoleuca), 15 pairs of nuthatch (Sitta europaea), and 1–2 pairs 
of coal tit (Periparus ater). The laying date and clutch size and the number of fledged chicks is 
recorded for each breeding pair and both the parents and their nestlings are equipped with a leg 
ring with a unique identifier. This allows us to follow individuals over their lifetime and to construct 
a ‘social’ pedigree (as opposed to a genetic pedigree, since a significant portion of offspring in an 
average brood is sired by a different male (Van Oers et al. 2008; Brommer et al. 2010). 

 
The great tit as central species in ecology and evolution 
The great tit (P. major) has been the main study species of many ecological, evolutionary, and 
behavioural studies, so a lot is known about its biology. Since the Hoge Veluwe population, as well 
as other populations within (e.g. Vlieland, Liesbosch, Oosterhout; Van Balen 1973; Postma 2005) 
and outside the Netherlands (e.g. Wytham Woods, UK; Cresswell and McCleery 2003; Charmantier 
et al. 2008) have been monitored for several decades, they provide an invaluable source of data to 
answer outstanding questions in ecology and evolution (Clutton-Brock and Sheldon 2010). The 
central focus of research in the Hoge Veluwe population has been to understand variation in 
seasonal timing of reproduction (laying date of the first egg) and its proximate and ultimate causes 
(e.g. Van Balen 1973), and more recently, its evolutionary potential within the context of global  
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 

     
    Figure B1.3.1. Female incubating great tit 

climate change (Visser et al. 1998; Gienapp et 
al. 2006; Visser et al. 2006; this thesis). Great 
tits rely strongly on the abundance of 
Lepidopteran caterpillars to raise their 
offspring (Lack 1950; Betts 1955; Royama 
1966; Van Balen 1973). Two main prey species 
are the winter moth (Operopthera brumata) 
and oak-leaf roller (Tortrix viridana), with 
penduncate oak as one of their main hosts. 
The abundance of these caterpillars is sampled 
every year, starting late April and ending early-
to-mid June, using frass nets deployed 
underneath several oak trees across the study 
area (see Visser et al. 2006 for details). The 
reliance on caterpillars, as well as the obligate 
cavity-breeding behaviour, render old oak … 
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Box 1.3 (continued) 
 
… woodlands the typical and most suited habitat for the great tit, although the species has adapted 
well to other, less-than-ideal habitats (Gosler 1993). 

Laying date and clutch size are heritable traits (Van Noordwijk et al. 1981; Sheldon et al. 2003; 
Postma and van Noordwijk 2005b) and have therefore the potential to respond to selection. 
Importantly, as described in previous sections, both traits can be expressed several times within 
the lifetime of an individual and is responsive to an environmental cue (i.e. temperature—and 
photoperiod—for laying date and breeding density or food availability for clutch size (e.g. Both et 
al. 2000)). Despite its relatively short generation time of about two years (Garant et al. 2004a; Kvist 
et al. 2007) and its concomitant short lifespan (about half of the great tits in the Hoge Veluwe 
population only breeds once in their lifetime), it has been a central topic in studies of phenotypic 
plasticity (Nussey et al. 2005c; Charmantier et al. 2008; Husby et al. 2010, 2011; Chapter 10). Like 
other long-term monitored populations, it has a central place in the prediction of evolution in 
response to climate change (for some examples including other species than great tit, see e.g. 
Visser et al. 1998, 2006; Réale et al. 2003b; Both et al. 2004b; Brommer et al. 2005, 2008; Gienapp 
et al. 2006; Charmantier et al. 2008; Plard et al. 2014). 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

 
Figure B1.3.2. Standardized selection differentials 
(based on the number of recruiting offspring) for 
laying date against mismatch between peak 
dates in food demand and caterpillar availability 
in the Hoge Veluwe. Negative mismatch means 
birds bred too early; positive values indicate that 
birds bred too late. Shown are 23 years between 
1994 and 2017 (i.e. years that had a complete 
caterpillar distribution; see Chapter 5). Line and 
shading are estimates and 95% bootstrapped 
confidence interval of a regression weighted by 
the number of recruits (coefficient: –0.015 [–
0.032, –0.005]; r2 = 0.181 [0.016, 0.418]). Symbol 
sizes, small: ≤ 20 recruits; medium; > 20 and 40 
recruits; large: > 40 recruits. 

 

Climate change as an environmental driver 
of selection in great tits 
Climate change is altering selection 
pressures on great tit phenology via a 
phenological mismatch (Visser et al. 1998; 
Reed et al. 2013b). Compared to the 1970s 
and early ’80s, caterpillar phenology (egg 
hatch date of the winter moth) than the 
rate at which the timing of bud burst of the 
oaks advanced (Visser and Holleman 
2001). This fast change in caterpillar hatch 
date, which led to a concomitant shift in 
the peak date of caterpillar availability, was 
not tracked fast enough by great tits, who 
now started laying eggs increasingly late 
with respect to this peak date in food 
abundance (Visser et al. 1998). This 
‘mismatch’ with food abundance has 
severe fitness consequences, as offspring 
from mismatched parents are in poorer 
physical shape and have a lower 
recruitment probability than those from 
well-matched parents (Visser et al. 2006; 
Reed et al. 2013b). As mismatch increases 
due to global warming, selection for earlier 
egg-laying intensifies (Fig. B1.3.2). Models 
of extreme climate scenarios predict that 
sustained direction selection without 
concomitant evolutionary response may 
have long-term population consequences 
(Gienapp et al. 2013a; Reed et al. 2013a). 
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understand why birds are not advancing their reproduction in response to selection for 

earlier breeding (Visser et al. 1998; Gienapp et al. 2006). In Chapter 3, we specifically aim 

to test the constraints hypothesis of reproduction posed by Visser et al. (2012) (i.e. that 

fitness costs of breeding too early prevent a response to selection for earlier breeding) in 

great tits by means of a supplemental feeding experiment. Food supplementation prior to 

egg-laying is known to advance laying date in a variety of contexts (Verhulst and Nilsson 

2008; Ruffino et al. 2014). When (pre-laying) breeding conditions are poor, then, we would 

expect birds that breed too early to pay a fitness cost once food supplementation ceases at 

the start of laying. Individual females vary in quality, however, and some of them may be 

genetically predisposed to breed earlier and in that way suffer less major fitness costs or 

be less sensitive to food supplementation. In this experiment, we thus combine an 

experimental feeding approach with quantitative genetics to obtain a comprehensive 

insight into the proximate causes of laying date. 

Despite the usefulness of feeding experiments, they do have a major disadvantage, 

namely that they change the physical condition of the females, with potential carry-over 

effects to subsequent breeding stages (Verhulst and Nilsson 2008). The ideal experiment, 

therefore, would be to manipulate laying ‘cleanly’ and subsequently assess fitness costs. 

One decent approach would be to genetically manipulate birds into breeding either earlier 

or later through strong artificial selection on (genomic breeding values for) laying date 

and assess the causal fitness consequences of laying date in the wild. Such a selection 

experiment is being undertaken at the moment. Briefly, about 2000 birds from the Hoge 

Veluwe population were genotyped and their genomic breeding values for laying date 

calculated; based on these breeding values, extreme genotypes were selected and mated 

in aviaries to produce extreme-genotype offspring (details are given in Gienapp et al. 

(2019) and Verhagen et al. (in review)). The aim of Chapter 4 is, first, to assess the 

immediate fitness consequences of genomic selection on laying date in foster-reared 

selection-line offspring in the wild. Eggs produced by birds in aviaries from the selection 

lines were experimentally fostered with wild breeding pairs and the fitness of these 

offspring were subsequently monitored. Second, we monitored the recruiting offspring 

from the eggs of the selection lines that were taken to the wild to determine their realised 

laying date in the wild and understand the fitness effects resulting from this. Chapter 4 

provides the first, tentative results of this experiment, as it is still ongoing. 

Ultimately, breeding success in great tits is determined by the match with caterpillar 

phenology (Visser et al. 2006; Reed et al. 2013b), but the best way to describe phenological 

match is still a matter of debate. It has been suggested that rather than looking solely at 

the match between peak dates in consumer and prey phenology, greater care must be 

taken to incorporate the full phenological distributions to accurately estimate ecological 

interactions between trophic levels and hence the evolutionary and demographic 

consequences of climate change (Miller-Rushing et al. 2010; Lindén 2018). So far, studies 

that have incorporated this comprehensive measure of synchrony are rare, most likely due 

to the lack of appropriate data. In Chapter 5 we uniquely make use of long-term data on 

great tit and caterpillar phenology to quantify phenological synchrony in the two ways 

outlined above. We specifically aim to test whether the more complex measure of 

synchrony (i.e. the degree of overlap between the distributions) outperforms the simpler 
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version of the match in peak dates, and give recommendations for researchers of long-

term study populations as to how to go about studying phenological mismatch in species 

in similar, highly seasonal environments. 

 

Intermezzo. To push the science of ecology and evolution forward, we continuously need 

to seek for better concepts and better tools. One of the novel developments in the field is 

the use of open data to (1) conduct data-driven meta-analysis (as opposed to traditional 

meta-analysis on reported effect sizes) and to (2) answer novel outstanding questions with 

available data that were not originally collected for the purpose of these questions 

(Whitlock et al. 2010; Hampton et al. 2013). In Chapter 6, we present a how-to paper in 

which we combine both aspects and explain how data freely available from online data 

repositories can be used to answer novel biological questions in a meta-analytic 

framework. We make us of a previously published guideline for how to find open data 

(Culina et al. 2018) and outline all procedures that need to be undertaken to successfully 

perform a meta-analysis. We make us of a concrete example, which we will address in 

Chapter 9. 

One major tool in ecology and evolution, and one recurring in this thesis, is the random 

regression model to infer among-individual variation in plasticity (I×E and/or G×E; 

Nussey et al. 2007; Dingemanse and Dochtermann 2013). A powerful tool, it can 

sometimes give misleading results because of an inherent property in many traits 

sometimes overlooked: heterogeneity in residual variance. As we will see later in this 

thesis, in at least the particular case of the great tit, comparison between studies and 

populations reveals a lack of consistency with respect to the reported I×E and G×E, 

which—at the Hoge Veluwe—can be mostly attributed to the way residual variance was 

treated in the random regression model. As there seems to be no consensus on how 

residual variance in random regression models should be treated, and students of ecology 

and evolution may not be fully aware of its impact, we conducted a simulation study in 

Chapter 7 to specifically test the effect of heterogeneity in residual variance on estimates 

of I×E and the statistical ‘power’ to detect it. 

 

Part III. In the final part of this thesis, we use quantitative genetic methods to make 

evolutionary predictions in wild populations. In Chapter 8, we depart from laying date 

and use clutch size as the focal life-history trait. Clutch size is a heritable trait that has a 

strong environmental component, most notably breeding-pair densities and concomitant 

competition for food (e.g. Both et al. 2000). Constraints in food availability may cause 

nestlings from larger broods to attain a poorer physical condition and, if this carries over 

to the adult stage, thus render their own clutch size smaller. In this chapter, we explore 

the ecological mechanisms underlying this negative maternal effect and use an individual-

based model to test whether this effect has the potential to slow down or speed up the rate 

of (phenotypic and genetic) adaptation to novel environmental conditions. 

Quantitative genetic analysis is a useful tool to predict evolutionary change, but has 

been proved to be difficult in the wild (see previous sections). This may sometimes be 
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inferred as evolutionary stasis (Merilä et al. 2001b), but the reason for differences in 

expected and observed evolutionary responses may in fact be rooted in the failure to 

recognize the presence of an underlying environmental coupling between heritability and 

selection (Hoffman and Merilä 1999; Wood and Brodie III 2016). In Chapter 9 we 

specifically address the question of whether (1) such an environmental coupling is 

ubiquitous in wild, vertebrate populations and (2) whether this affects the rate of expected 

evolutionary change. We do this using a unique open data approach (see Chapter 6), 

collecting phenotypic data and pedigrees from a range of (mainly avian) species and 

populations and a variety of traits. The aim of this chapter, with its broad spectrum of 

species and traits, is to contribute to the general debate about the role of an environmental 

coupling between genetic variation and selection as a putative force for constraints in 

adaptation. 

Phenotypic plasticity is an important mechanism by which organisms can respond to 

environmental conditions, but the question remains whether this plasticity is sufficient to 

keep track of a directionally changing environment (Visser 2008) and whether evolutionary 

rescue is necessary to safeguard populations from extinction (Carlson et al. 2014). In the 

final research chapter, Chapter 10, we investigate whether selection acts on either 

component (elevation and slope) of the thermal laying-date reaction norm in great tits. We 

aim to understand (1) how individuals differ in their reaction norm and whether this 

difference has a genetic basis, (2) whether there is selection on the reaction norm, rather 

than the trait (laying date) in a given environment, and (3) whether selection on the 

reaction norm has led to evolutionary change under a changing climate. In this chapter we 

use an integrated approach where we identify the underlying source of selection (i.e. 

changes in the timing of maximal caterpillar biomass reaction norm) and use rigorous, 

hitherto little-used statistical tools to quantitatively predict the evolutionary potential of a 

key life-history trait in a reaction norm context. 

 

In Chapter 11 I synthesise the results and patterns found in this thesis in a general 

discussion. 
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Chapter 2  

 

Climate change impacts: birds 

 

Barbara M. Tomotani, Jip J.C. Ramakers & Phillip Gienapp 

 

 

ABSTRACT 

 

Climate change can affect populations and species in various ways. Rising temperatures can shift 

geographical distributions and lead to (phenotypic or genetic) changes in traits, mostly phenology, 

which may affect demography. Most of these effects are well documented in birds. For example, the 

distribution of species has shifted polewards, and birds are nowadays breeding or migrating earlier. An 

important aspect of the observed phenological changes is whether species are thereby able to maintain 

synchrony with phenological changes in their environment, e.g. the phenology of their prey species. 

Disrupted synchrony, for example between predator and prey, can lead to reduced reproductive success 

or survival, which can negatively affect demography. Evidence for this happening in birds is – so far – 

limited but theoretical models predict that extinction risks could arise through insufficient adaptation 

to such phenological mismatches. 
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Introduction 

 

Over the past 100 years the global climate has warmed considerably, mainly from the 

1980s onwards. This increase in temperature is not globally uniform but differs between 

regions and within seasons. For example, winter temperatures have increased more than 

summer temperatures, and temperatures in the northern hemisphere have increased more 

than in the southern hemisphere (Walther et al. 2002). This spatial and temporal 

heterogeneity can have important consequences for species and populations. Numerous 

studies covering a wide range of taxa have shown biological responses to global warming 

and a 'coherent fingerprint of climate change' is visible (Parmesan and Yohe 2003; Root et 

al. 2003; Parmesan 2006). For example, insects, birds and even fish have extended their 

geographical distribution poleward because the geographic distribution of their 

'bioclimatic envelopes' shifted.  

Climate can affect any species in two fundamentally different ways. First, ambient 

temperature can directly affect the organism itself. The rates of cellular processes are 

temperature dependent: a temperature increase of 10°C doubles it. Therefore all 

physiological processes in ectotherm organisms, as e.g. insects, fish or reptiles, are strongly 

dependent on ambient temperature. Endotherm organisms, i.e. mammals and birds, keep 

their body temperature constant and consequently their physiological processes are 

independent of the ambient temperature. However, to achieve this they have to spend 

energy on thermoregulation, which can be substantial under extreme conditions. 

Second, ambient temperatures affect the organism’s biotic environment by effects on 

interacting species, i.e. predators, prey or competitors. Rising temperatures can disrupt 

the phenological synchrony between species, for example between the time when great 

tits, an insectivorous passerine, breed and need abundant prey to raise their large broods 

and the time when this prey is most abundant (Visser et al. 1998; Visser et al. 2006). Such 

indirect climatic effects can also be more complex and have a more dramatic impact: the 

regularly occurring El Niño atmospheric phenomenon causes a shift in the cold Humboldt 

Current in the Pacific Ocean. This current brings nutrients to surface waters where they 

sustain rich algae growth, which in turn sustains abundant fish populations. During an El 

Niño the fish populations crash, which leads to complete breeding failure and even 

increased adult mortality among seabirds along the West-Coast of North- and South-

America (Barbraud and Weimerskirch 2003). 

Birds are generally well studied and many bird populations have been monitored for a 

long time, sometimes even for more than half a century. This presents a unique 

opportunity to study the impact of climate change since it is possible to combine extensive 

data sets with comparably good knowledge about relevant biological effects and 

mechanisms. 

 



Climate change impacts 
 

27 
  

Observed impacts of climate change on birds 

 

Geographical distributions 

The current distribution of bird species can be mapped as a function of their environment 

using so-called ‘bioclimatic envelopes’ (e.g. Howard et al. 2015). Under global warming 

these ‘envelopes’ are expected to shift, leading to latitudinal or elevational shifts in species’ 

distributional ranges (e.g. Huntley et al. 2008). Various bird species in Great Britain and 

North America, for example, have shifted their northern range margins toward higher 

latitudes, with southern birds moving at a rate of 0.95 and 2.35 km/year, respectively 

(Thomas and Lennon 1999; Hitch and Leberg 2007). Not every species, however, is 

expected to shift its distribution at the necessary rate expected from changing abiotic 

conditions. For example, migratory birds are likely to suffer increased competition for 

resources with resident birds under increased winter temperatures, as these more benign 

winter conditions increase the survival probability of residents and may enhance their 

dispersal and colonisation of new sites (Schaefer et al. 2008). Conversely, if temperatures 

and resource availability increase in spring, migrants may benefit because they can 

colonize new breeding sites previously too cold or resource-limited. As another example, 

montane birds, confined to mountains, may be inhibited in their dispersal abilities and 

therefore be susceptible to extinction due to global warming (Sekercioglu et al. 2008). 

Species may further be limited in their dispersal ability if this will result in decoupling of 

crucial trophic interactions, for example, if birds’ dispersal abilities exceed that of their 

resources (Van der Putten et al. 2010). Ultimately, a species’ propensity to change its 

distributional range over decadal scales will depend, amongst others, on the life history of 

the species, average climate conditions, geographical context, and human land-use 

practices (Bradshaw et al. 2014; Lehikoinen and Virkkala 2016). See also DOI: 

10.1038/npg.els.0003238 

 

Phenology: breeding time 

One of the first reported impacts of climate change on avian biology was the advancement 

in breeding time (Crick et al. 1997; Dunn and Winkler 1999). Avian breeding time is 

strongly plastic in response to ambient temperatures with birds breeding early under 

warmer temperatures. As climate change has increased spring temperatures in recent 

decades, avian breeding time has advanced along with it, with the magnitude of the 

response differing between species or populations within a species (Both et al. 2004a; Torti 

and Dunn 2005). 

One exceptionally well-studied example of changes in avian phenology and arising 

mismatches between trophic levels comes from a Dutch long-term study on great tits 

(Visser et al. 1998; Visser et al. 2006). The great tit is the secondary consumer in the great 

tit–winter moth–oak food chain. The phenology of great tits needs to be well timed with 
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that of lower trophic levels as the birds rely heavily on caterpillars as the main food source 

for their nestlings. Caterpillars of the winter moth (Operophtera brumata) hatch in April and 

have to feed on the fresh leaves of oaks, as they grow less rapidly and attain lower 

fecundity if they feed on older leaves (Van Asch and Visser 2007). They develop through 

all instar stages in May to pupate in late May or June. These caterpillars thus show a clear 

biomass peak generally around mid-May but depending on spring temperature this can 

vary by about two weeks. Great tits use this biomass peak to provision their nestlings, 

whose energy demands are highest when they are nine to twelve days old (Visser et al. 

2006; Both 2010b) and brood success is highest when this energy demand coincides with 

biomass peak date (Visser et al. 2006; Reed et al. 2013b; see left-hand side in Fig. 2.1). Due 

to warming springs, however, the caterpillar biomass peak has advanced by about two 

weeks, whereas the time of peak nestling energy demand has advanced by about five days 

(Visser et al. 1998; Visser et al. 2006; see right-hand side of Fig. 2.1). Consequently, there is 

now asynchrony between nestling food demand and food availability. 

Figure 2.1. Schematic representation of the great tit–caterpillar phenology in the Hoge Veluwe. 
Three important life-history events in the great tit reproduction cycle are denoted with the red line 
and nestling peak food need with a green line in the top half of the schematic; the caterpillar 
phenology is indicated with the green line in the lower half. Before the effects of climate change 
were apparent, peak food demands and availability coincided (left-hand side of the schematic); due 
to increasingly warmer springs, the caterpillar biomass peak has advanced by ~2 weeks, whereas 
the timing of nestling peak food need has advanced at a slower rate, leading to ‘phenological 
mismatch’ (right-hand side). 
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Why is there a mismatch between the caterpillar and great tit phenology? The lack of 

an adequate response to warming springs has been related to two, mutually non-exclusive 

theories (Visser et al. 2012). First, birds may be constrained in the advancement of their 

reproduction in early spring simply because they cannot obtain enough resources to meet 

the physiological demands associated with egg production (the constraint hypothesis). 

This means that birds either cannot lay eggs in early spring or, if they can, they will incur 

high survival costs. This hypothesis is unfortunately very difficult to test as it requires 

experimentally advancing breeding time without providing the birds with additional 

resources (which would lift the very constraint one aims to test; Verhulst and Nilsson 2008; 

but see Gienapp et al. 2006). 

A second hypothesis states that the cues that birds use to time their reproduction are 

no longer adaptive (the cue hypothesis). Great tits have to plan their reproduction about a 

month in advance of the caterpillar biomass peak. By the time this peak occurs, the birds 

should have built the nest, laid and incubated the entire clutch of eggs, and raised the 

chicks up until the moment when their energy requirements are highest. Thus, the birds 

make their reproductive decision (i.e., when to lay eggs) in a different environment to 

where selection (i.e., nestling survival) takes place (Visser et al. 2004b). The phenology of 

both caterpillars and great tits depends on temperature. However, due to imperfect cue 

reliability, consumer (e.g. great tit) phenology tends to be always less plastic than the 

resource (e.g. caterpillar) phenology; this means that even under homogeneous 

environmental change phenotypic plasticity of the consumer phenology will be 

insufficient and this will inevitably lead to selection on consumer phenology (Gienapp et 

al. 2014). Ultimately, therefore, birds will only be able to keep their phenology in 

synchrony with that of their prey through a genetic shift (advance) in their average 

breeding time (See Plastic versus Genetic Changes). Not all species or populations have 

become maladapted to these novel environmental conditions. Great tits in UK forest 

systems, for example, now breed too early but maintain their synchrony with the food 

peak by increasing the incubation period (Charmantier et al. 2008). 

 

Phenology: migration 

The annual cycle of a temperate-zone migrant, which comprise the most studied species, 

can be divided into four main phases: a) “wintering”, when no breeding activity occurs, 

b) spring (or vernal) migration, the movement from the wintering to the breeding grounds, 

c) breeding, and d) autumn migration, the movement from the breeding to the wintering 

grounds. A number of studies focus on the spring migration and, more specifically, on the 

arrival time of migratory birds, particularly passerines (Both and Visser 2001; Ahola et al. 

2004; Kristensen et al. 2015). Similarly to the breeding stage, there is an optimal time to 

migrate and arrive at the breeding sites (Jonzen et al. 2007; Alerstam 2011). On one hand, 

arriving too early can be costly when environmental conditions are still harsh or 

unpredictable. On the other hand, late arriving individuals can face stronger competition 
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for mates or territories and may also experience reduced reproductive success due to rapid 

decline of resources in summer. For example, in 1996 five days of exceptionally cold and 

rainy weather during the main arrival time caused mortality of about 50-70% in North 

American Cliff Swallows (Brown and Brown 2000). Such cold spells happen regularly 

during the arrival time of this species imposing a high cost of early arrival. However, 

selection for early arrival seems to be the general case in migratory birds (Bêty et al. 2004; 

Smith and Moore 2005; Rubolini et al. 2010; Gienapp and Bregnballe 2012; Arnaud et al. 

2013). 

Since the optimal arrival time varies among years depending on the progress of spring, 

avian migration time also shows phenotypic plasticity similar to avian breeding time. It 

has been shown that birds adjust timing of their migration to climate and arrive earlier in 

warmer springs and after milder winters. So an expected effect of climate change on bird 

migration would be the earlier arrival of migrants to their breeding grounds (Walther et 

al. 2002). 

However, the observed pattern was not uniform and while advancements were 

reported for some species (Marra et al. 2005), in others there was very little change (Both 

and Visser 2001). For example, long- and short-distance migrants could differ in the degree 

of phenotypic plasticity expressed in arrival time. Short-distance migrants are likely to 

show more flexible responses since climatic conditions at their wintering areas are more 

closely related to the ultimately important conditions at the breeding areas. Thus, more 

reliable cues may be available for them than for long-distance migrants. For long-distance 

migrants (e.g. those wintering south of the Sahara) climatic conditions at the wintering 

areas correlate less closely with climatic conditions at the breeding areas. They are 

therefore supposed to rely mainly on internal rhythms and photoperiod to time their 

departure from the wintering areas (Gwinner 1996). This would mean that their departure 

time is more or less constant among years, which in turn means that these species may be 

too inflexible to adjust to climate change. Alternatively, by adjusting their migration speed 

to environmental conditions en route would be a way for long-distance migrants to 

express some degree of phenotypic plasticity and be able to adjust their arrival time 

accordingly (Both 2010a). Another way of compensating would be the shortening of 

migration distances observed in some species. This not only reduces the distance needed 

to be covered by the migrant but also potentially allow cues to be more correlated and 

predictable (Visser et al. 2009b). 

A meta-analysis combining data on 249 species from 18 studies found that arrival time 

of migratory birds has advanced, with birds arriving earlier after milder winters and in 

warmer springs (Gienapp et al. 2007). However, in this case no clear differences between 

European long- and short-distance migrants were found, which indicates that also long-

distance migrants have been able to respond to climate change. The remaining question is 

whether the observed advancements in migration time match the supposed shifts in the 

optimal arrival time. Unfortunately, almost no study has reported data on reproductive 
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success or survival in relation to arrival date, mainly due to the difficulties in getting such 

information for most species.  

The majority of studies on climate change effects on birds have been conducted on 

passerines. However, similar patterns are observed in other avian orders, with variable 

responses according to species characteristics. For example, earlier arrival time at the 

breeding grounds in Iceland has been reported for several non-passerine taxa (gulls, 

waders, geese; Gunnarsson and Tomasson 2011). Arctic-breeding geese are an interesting 

example as they present marked differences from passerines: their northward migration 

is related to the timing of vegetation growth, their main food source, and if a bird is able 

to fatten enough during migration it will also be able to breed earlier upon arrival (Van 

der Graaf et al. 2006; Van der Jeugd et al. 2009). Similarly to passerines, geese such as the 

brent goose seem to also suffer from mismatches: climate-related changes in timing of 

vegetation growth mean the birds are now late in relation to their food, which means less 

fattening opportunities for themselves or their offspring (Clausen and Clausen 2013). 

Analysis of long-term datasets also shows that some populations of the barnacle goose 

shortened their migration distance and/or became resident in the temperate wintering 

location. This change in breeding location, however, may also make the birds more 

mismatched, as their chicks are born too late in relation to the onset of vegetation growth 

in the new location (Van der Jeugd et al. 2009). 

The complex annual cycle of migrants that makes the animals experience climatic 

conditions from several portions of the world brings the challenging task of assessing the 

impact of climate change with respect to their entire annual cycle (Marra et al. 2005; Visser 

and Both 2005). For example, some studies argue that conditions experienced in the 

wintering grounds or during migration can be even more important than those 

experienced at the breeding environment to explain fitness differences or population 

declines (Small-Lorenz et al. 2013). 

Most studies focus on the (spring) migration from the wintering to the breeding 

grounds, mostly based on arrival dates at the breeding ground or passage dates at a given 

point close to the breeding grounds. Departure dates from the breeding (Europe) to the 

wintering grounds (Africa) are also changing. The pattern, however, differs between short 

and long distance migrants: while advancements have been observed for long distance 

migrants, delays have been observed in short distance migrants (Jenni and Kery 2003). 

The recent development and miniaturization of better tracking devices now also allows 

following individuals of small species, such as most passerine long-distance migrants, 

throughout the annual cycle (Stutchbury et al. 2009; Bridge et al. 2011; McKinnon et al. 

2013). This will enable much more detailed studies on timing, movements, and site 

selection of migratory birds and thereby, hopefully, shed new light on our understanding 

of the impacts of climate change on migratory birds. See also DOI: 

10.1002/9780470015902.a0005450.pub2. 
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Morphology 

Temperature is known to correlate with body size of different groups, with 

paleontological (Smith et al. 2009) and recent (Sheridan and Bickford 2011) evidence that 

warmer temperatures correlate with smaller body sizes. For homeotherms, Bergmann`s 

rule predicts that body size is adjusted to climate and animals would be larger in higher 

latitudes (i.e. colder climates) as an energetic adaptation to the colder temperatures. 

Although originally proposed for different species inhabiting distinct latitudes, it was later 

also applied to differences among populations of the same species (Salewski et al. 2010). If 

higher temperatures predict smaller body size, then climate change should lead to smaller 

body size in birds and mammals (Sheridan and Bickford 2011). 

Although a number of studies have reported changes in avian body size correlated to 

temperature changes, the relation to temperature may, however, be indirect and a true 

adaptive response to changing climate is still lacking (Teplitsky and Millien 2014). This 

was investigated in depth in at least two species: red-billed gulls (Teplitsky et al. 2008) and 

great tits (Husby et al. 2011a). In both cases, a plastic rather than microevolutionary body 

size adjustment was detected (see Plastic versus genetic changes). The correlation between 

body size and temperature is particularly difficult, since body size is also affected by other 

factors than heat-dissipation capability that also co-vary with temperature as, e.g., food 

availability, which may determine the growth at young age and also resistance to 

starvation (Teplitsky et al. 2008; Sheridan and Bickford 2011; Teplitsky and Millien 2014). 

 

Demography 

Climate change can affect reproductive success and survival directly or indirectly. 

Extreme weather events can have strong direct effects; for example, unexpected cold spells 

can induce mass mortality in migrants as pointed out above. Most effects, however, will 

work indirectly by changing abundances or synchrony of interacting species. For example, 

winter climate in Antarctica affects krill (Euphausia superba) abundance, which in turn 

affects reproductive success and thereby population numbers in Adélie and chinstrap 

penguins (Trivelpiece et al. 2011). 

Climate change has also disrupted the synchrony between interacting species, which 

could, for example, mean that a predator now does not encounter the maximum prey 

abundance anymore because the phenology of the predator has advanced less (or more) 

than that of its prey. Such disruptions have often been reported and are also predicted to 

be common (Gienapp et al. 2014). The demographic consequences of disrupted synchrony 

between predator and prey have been well studied in great tits and caterpillars. The 

disrupted synchrony has led – as expected – to selection on the birds’ breeding time (Visser 

et al. 1998). The corresponding reduced reproductive success (the ‘demographic load of 

selection’) can drive populations to extinction if selection becomes too strong or the rate 
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of evolutionary change of the population is too small (Bürger and Lynch 1994; Lynch and 

Lande 1998). 

Using a theoretical modelling approach, Gienapp et al. (2013a) could show that climate 

change would increase the mismatch between the great tits and their caterpillar prey too 

strongly for the birds to adapt by microevolution and that this would lead to a non-

negligible extinction risk. However, the expected negative relationship between the 

strength of selection and population growth rate has not been observed in this population 

due to density-dependent juvenile winter survival (Reed et al. 2013b). Incorporating this 

effect of density-dependence into the theoretical model by Gienapp et al. (2013a) showed 

that density-dependence can buffer populations against reduced reproductive success due 

to disrupted synchrony and thereby reduce extinction risk (Reed et al. 2015). 

 

Plastic versus genetic changes 

 

As described above, changes in the phenology of birds have frequently been observed. 

Such consistent trends over time could be the results of phenotypic plasticity or an 

evolutionary response to selection. Phenological traits show large year-to-year 

fluctuations mostly driven by ambient temperature and the observed advancements could 

hence be a phenotypically plastic response to increasing temperatures. As also pointed out 

above, climate change is likely to lead to selection on phenology (Gienapp et al. 2014) and 

these observed changes could therefore also be an evolutionary response to this selection. 

Disentangling phenotypic from genetic changes is difficult when a genetic change cannot 

be directly tested because no suitable molecular genetic markers are available. One 

possibility is to predict ‘breeding values’ of individuals using quantitative genetic 

approaches (Wilson et al. 2010) but these require a known pedigree. These fairly high 

demands on data quality are likely the explanation why, so far, no study reported a genetic 

change in phenology in response to climate change (Charmantier and Gienapp 2014). This 

lacking evidence does, however, not mean that populations will not be able to adapt to 

climate change by phenotypic plasticity but only that we have no suitable data or methods 

to show this. See also DOI: 10.1002/9780470015902.a0022545 and DOI: 

10.1038/npg.els.0001789. 

 

Possible impacts in the future 

 

Global temperatures are predicted to rise at least by 1.5°C until 2100, with the most 

extreme scenario predicting increases by from 3.5 to 6°C (Field et al. 2014). Consequently, 

the whole biosphere will be confronted with on-going climate change and observed 

changes are very likely to continue or increase. There are three ways for populations to 
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survive: 1) they can evade by dispersing to suitable habitats elsewhere, where climatic 

conditions are still favourable; 2) they can stay put and adjust to the changed conditions 

by means of phenotypic plasticity without altering their genetic constitution; 3) they can 

adapt to the changed conditions by means of genetic changes through the process of 

evolution. Of course, it is also possible – and even likely – that all three processes happen 

simultaneously and the relative importance of these three different ways to cope with 

climate change depends on the time scale considered, the species’ life history, the rate and 

the extent of (predicted) climate change, the availability of alternative habitats, and the 

dispersal ability of the species.  

Moving along with the shifting ‘bioclimatic envelope’ is obviously only possible for a 

species if suitable habitat is available and the dispersal ability of the species is sufficient. 

In this respect habitat degradation and loss become doubly relevant since they not only 

directly threaten population persistence but may also cut off populations from suitable 

habitat elsewhere. Thomas and co-workers (2004) used the observed ‘bioclimatic 

envelopes’ and climate change projections to predict the future distributions of a number 

of species. Then they used these predicted distributions to assess the likelihood for 

extinction and found that many species in mountain habitats in the tropics are prone for 

extinction. The rising temperatures will simply shift the suitable habitat as defined by the 

‘bioclimatic envelopes’ to the mountain tops until no suitable habitat will be left. Since the 

tropics are biodiversity ‘hot spots’ this process is predicted to lead to a loss of about 25 % 

of global biodiversity. One important assumption behind these models is however, that 

whole species communities will be able to shift at the same rate and that climate zones 

simply will move northwards without further changes. Unfortunately, both assumptions 

are unlikely to be true. First, the dispersal ability of species can differ substantially. For 

example, distances of natal dispersal, i.e. dispersal to the place of (first) breeding after 

independence, typically range from hundreds of meters to a few kilometres in small 

passerines as Great Tits, but large predatory birds as Goshawks easily cover tens of 

kilometres. Second, climate change induced warming trends differ between seasons 

(Easterling et al. 1997) and regions (Høgda et al. 2001; Giorgi and Lionello 2008). 

Consequently, even species with a good dispersal ability that could track their ‘bioclimatic 

envelope’ will (very) likely face a change in their biotic and abiotic environment even after 

shifting along with their bioclimatic envelope. 

Phenotypic plasticity generally enables populations or species to cope with novel or 

changed environments. As pointed out above, the current phenotypic plasticity will, 

however, unlikely to allow perfect tracking of shift in the species’ biotic environment 

(Gienapp et al. 2014). Consequently, neither ‘evasion’ nor phenotypic plasticity alone 

seems to be sufficient mechanisms: adaptation by microevolutionary change(s) is 

necessary to cope with climate change. Unfortunately, while the evidence for climate 

change-induced changes in wild populations is indisputable, it is mostly unclear whether 

these changes are phenotypic plastic responses or microevolution (see Plastic versus 

Genetic changes). Our general understanding of microevolutionary adaptation to climate 
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change has hence not advanced very much from the statement by Holt (1990) that “There 

is almost no species for which we know enough relevant ecology, physiology and genetics 

to predict its evolutionary response to climate change”.
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Fitness consequences of reproductive timing 
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Chapter 3  

 

Testing constraints on the timing of breeding in great tits (Parus 

major) by manipulating pre-breeding food availability 

 

Jip J.C. Ramakers, Phillip Gienapp & Marcel E. Visser 

 

 

ABSTRACT 

 

Timing of reproduction has crucial fitness consequences for seasonal breeders. In some bird species, 

temperature rises due to global warming have led to a mismatch between timing of breeding and food 

abundance, leading to apparent selection for earlier breeding. Yet evidence of a response to selection is 

rare. One explanation for this is that physiological (food-related) constraints experienced by birds 

breeding (too) early result in fitness loss, for example due to decreased survival under these harsh 

conditions. We tested this hypothesis in free-living great tits (Parus major) through supplementary 

feeding prior to egg laying, where females were fed until the first egg (partly fed), fed up until clutch 

completion (fully fed), or not fed (control). We predicted that fed birds would advance their laying date 

compared to control birds, and that partly fed birds would suffer reduced fitness compared to both fully 

fed and control birds as they were manipulated into laying at times where egg production is still too 

costly to outweigh the fitness benefits of having chicks earlier in the nest. We also predicted that this 

effect would be mitigated by genotype (predicted breeding values (PBVs) for laying date) since the effect 

of supplemental feeding was expected to be less strong for with early breeding values. We found that 

treatment did not affect laying date, nor did it interact with PBV. We found no effect of treatment or 

PBVs on brood size or chick mass, but control females fledged on average fewer young and had higher 

brood failures. Lastly, treatment had no carryover effect on feeding activity in the chick-rearing phase. 

The results suggest that supplemental feeding was ineffective at advancing breeding time and, 

consequently, that birds are not constrained in the timing of their egg production, although this may 

have been a direct result of the timing between the onset of feeding and egg-laying. However, both full 

and partly feeding conferred a fitness advantage in an overall poor breeding season showing that the 

additional food was affecting the birds in other aspects. 
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Introduction 

 

Timing of life-history events like reproduction is crucial for fitness, especially when such 

events are seasonal and highly dependent on the timing of other species in the ecosystem. 

Seasonally breeding birds face a trade-off between offspring survival value on the one 

hand, which is achieved by breeding early because of a higher availability of food available 

to offspring, and their own survival on the other hand, which is benefited by breeding 

later to allow for sufficient attainment of body condition as environmental conditions 

improve over the breeding season (see Rowe et al. 1994; Lof et al. 2012). To ensure the 

maximum amount of food available for their offspring, birds need to time their 

reproduction so as to match the food peak with the time at which nestling demands are 

highest (Durant et al. 2007; Reed et al. 2013b). Increasing spring temperatures due to 

climate change have induced advances in the timing of the food peak maximum but less 

so in the timing of the resource needs of secondary consumers, resulting in increased 

mismatches between food availability and resource needs in recent decades (Stenseth and 

Mysterud 2002b; Visser et al. 2004a; Durant et al. 2007; Thackeray et al. 2010; Thackeray et 

al. 2016). 

To restore the match, birds should advance their breeding at the same rate as the food 

they use for their offspring (Visser et al. 2010). Phenotypic plasticity (Schlichting and 

Pigliucci 1998; Pigliucci 2001) is an important mechanism by which birds can adjust their 

laying date to fluctuating temperatures between years (Brommer et al. 2005; Nussey et al. 

2005b; Charmantier et al. 2008). For the great tit (Parus major) in the Hoge Veluwe 

population, however, we know this is not sufficient to restore the match (Visser et al. 2006; 

Chapter 10); these birds need to genetically alter their mean response to temperature 

(Visser 2008; Carlson et al. 2014; Chapter 10). Genetically based adaptations, however, 

have been proven difficult to detect in wild populations in general (Gienapp et al. 2008; 

Merilä 2012; Gienapp and Brommer 2014; Merilä and Hendry 2014). 

One hypothesis as to why some populations do not advance their mean laying date as 

much as their food relates to the constraints hypothesis originally posited by Perrins (1970). 

As early spring (pre-laying) temperatures have not changed as much as the (post-)laying 

temperatures, advancing breeding may simply not be possible because females would risk 

death from costly egg production (Stevenson and Bryant 2000; Visser and Lessells 2001) in 

harsh conditions with a scarcity of animal protein. Birds that do not breed earlier may 

therefore be ‘adaptively mismatched’, as the fitness benefits of breeding early are 

outweighed by the benefits of breeding at a time when a sufficient body condition has 

been attained (Lof et al. 2012; Visser et al. 2012). Studies show that alleviating the harsh 

conditions through experimental food supplementation will improve laying conditions 

for females but ultimately not increase their fitness when incubation or chick-rearing 

conditions are still unfavourable upon termination of the food supplementation (Nilsson 

1994; Nager et al. 1997; Ramsay and Houston 1997; cf. Harrison et al. 2010). These studies, 

however, are likely to be inconclusive for several reasons. First, they cannot distinguish 

between the effects of reducing the fitness costs of laying and the effect of receiving a 

threshold cue (e.g. amount of food), as posited under the alternative, cue hypothesis 
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(Visser et al. 2012). Second, they provide no direct comparison between birds that 

encounter continuous advantageous food conditions and birds that encounter such 

conditions only up to the onset of laying (cf. Nilsson 1994). A third potential drawback is 

that different genotypes may respond differently to supplemental feeding. For example, 

the earliest genotypes may advance their laying date in response to extra food to a lesser 

extent than later genotypes. This would create an interaction between food availability 

and genotype and this effect may carry-over to subsequent breeding stages. Therefore, 

particularly small effects of supplemental feeding on laying date and subsequent breeding 

success may not be detected if the genotype of the focal bird is not accounted for in the 

analysis. 

Fitness costs of breeding too early may arise through reduced survival or nest 

abandonment during the nest-building or egg-laying phase, but may also carry over to the 

chick-feeding stage as a delayed cost, since chick provisioning is energetically costly (Te 

Marvelde et al. 2011). Energetic costs of provisioning increase as food availability 

decreases (Te Marvelde et al. 2011) and therefore, reduction in body condition incurred 

from breeding too early may be partly compensated by reducing chick-provisioning rates. 

It may therefore be insightful to measure chick-provisioning rates as it may explain why 

broods may ultimately fail. 

In this study, we aimed to explore the constraints hypothesis on the timing of breeding 

in a free-living population of great tits, using experimental manipulation of the birds’ food 

availability and estimation of their breeding value for laying date. Female great tits were 

assigned to one of three groups: (1) fed until first egg is laid, (2) fed until the clutch is 

complete, and (3) an unfed control. Potential effects on local survival and other 

components of fitness were compared among groups and related to their genotype 

(predicted breeding values or PBVs). Specific questions addressed were: (RQ1) What is the 

interactive effect of (pre-)laying food supplementation and PBV on laying date? (RQ2) 

How is female great tits’ breeding success affected by (pre-)laying food supplementation? 

(RQ3) Does (pre-)laying food supplementation affect workload during chick 

provisioning? We expected (RQ1) that supplemental feeding prior to egg laying would 

advance laying date in both fed groups compared to the control group, but that this effect 

may wane in birds with low PBVs (Fig. 3.1a). As a result of laying too early when food 

supplementation ceased, we expected (RQ2) that the reproductive success of the partly fed 

group would decline more steeply with PBVthan the control group, whereas in the fully 

fed group all birds would do equally well (Fig. 3.1b). Finally, with respect to provisioning 

rates during the chick phase (RQ3), we envisaged two scenarios. As food conditions 

improve over the breeding season, the partly fed group may increase provisioning rates 

during the late chick phase to compensate for losses in brood vitality caused by breeding 

too early. More likely, however, provisioning rates may decrease because the female (and 

not the male, since he does not produce and incubate the eggs) is in poor shape. Increased 

provisioning rates may then be reflective of either improved food availability, since there 

is more food available, or reduced availability, necessitating more frequent foraging trips 

to reach the energy demands by the chicks. 
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Methods 

 

Field procedures 

The study took place at the Hoge Veluwe National Park in the Netherlands (52°02′07″ N, 

5°51′32″ E). The 171-ha study area consists of mixed pine–deciduous woodland on poor 

sandy soils with ~400 nest boxes. The reproductive biology of great tits has been studied 

here since 1955, with systematically recorded family relationships since 1973. In early 

March 2015, an evening nest-box check was carried out and all female great tits captured 

for which pedigree information was available (i.e., excluding immigrants without known 

breeding phenotypes) were fitted with a leg ring carrying a passive integrated transponder 

(PIT). This was done to identify individuals that could be included in our experiment and 

to be able to track down these individuals from the start of nest building later that season. 

In total, we equipped 53 females with a PIT. 

From mid-March onward, nest-building activity was monitored twice a week; once 

nesting material in a given nest box was found covering the bottom by ≥ 50%, a 

transponder reader (Dorset ID, Aalten, The Netherlands), set to record birds entering or 

exiting the nest box with a 1-s interval, was fitted around the entrance of the nest box. 

These boxes were then visited daily to monitor building progress and determine the 

‘owner’ of the box; if nest building had progressed but no readings had been recorded, we 

assumed that the box was not being used by a PIT-fitted bird and removed the 

transponder reader. Once the bird had been identified, it was assigned to one of three 

experimental groups through random block allocation in three consecutive birds: fed until 

first egg was laid (the partly fed group), fed until the clutch was complete (the fully fed 

group), and not fed (the control group). Supplementary feeding started as soon as birds 

Figure 3.1. Schematic of expected outcomes of supplemental feeding. (a) Birds that were fed prior 

to laying will advance their laying date, but possibly only birds with a high predicted breeding value 

for laying date (dashed line). (b) Fitness (reproductive success) was expected to decrease with 

increasing breeding value for laying date, and but this effect was expected to be strong in the partly 

fed group and weaker in the fully fed group.  
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were assigned to their respective groups. Fed birds were provided daily with ~10 g of 

mealworms in small, transparent feeding trays suspended within the nest box. This 

amount should correspond roughly to 100% of their daily energy expenditure, assuming 

a rough average of 90 kJ d-1 throughout the reproductive phase (Te Marvelde et al. 2011; 

te Marvelde et al. 2012b; Williams 2012) and assuming an energetic content of mealworms 

of 8.6 kJ g-1 (Finke 2002). All birds eventually consumed the mealworms, but we could not 

quantify the amount eaten by each female reliably as other birds occasionally fed from the 

mealworms (personal observation). Transponder readers were removed upon the onset of 

incubation. 

All eggs were individually numbered and weighed on the day they were laid. Hatch 

date was determined by checking the nest daily from the 12th day of incubation onward. 

Chicks were weighed and ringed at age = 7d (day 0 = hatch date). On day 8, both parents 

were captured using a spring-loaded trap. Standard biometric measurements (weight, 

tarsus length, and length of third primary) and blood samples (for a long-term pedigree 

dataset) were taken and the males were fitted with a PIT. A transponder was installed at 

the nest box to record feeding activity of both parents up until day 15. On day 15, 

biometrics and blood samples were taken from the chicks. Nests were checked from a 

week afterwards to assess the number of fledged young. 

 

Predicting breeding values 

For all non-immigrant birds, we estimated their predicted breeding value (PBV) for laying 

date using our long-term (1973–2014) great tit breeding database for the Hoge Veluwe 

study population (including only first, unmanipulated clutches in each breeding season). 

We built an ‘animal model’ (Henderson 1988; Kruuk 2004) through REML estimation 

using ASReml-R (Butler et al. 2009; Gilmour et al. 2009). Laying date was the response 

variable, female age (first-year breeder or older) and year (as a factor) were the fixed 

effects, and female identity (permanent environment) and a social pedigree were the 

random effects, following previous model exercises in our population (Husby et al. 2011b; 

Reed et al. 2016b). We obtained individual point estimates (best linear unbiased 

predictions: BLUPs) from this model as estimated, ‘genetic’ deviations from the 

population-average laying date. We are fully aware that PBVs can come with substantial 

and potentially non-random prediction errors (Hadfield et al. 2010) but including the 

additive genetic component directly in our models, by fitting an ‘animal model’, would 

have been impractical due to too small sample sizes of this experiment for quantitative 

genetic analyses. 

 

Statistical analysis 

All analyses were done in R 3.3.1 (https://cran.r-project.org/). Throughout, we relied on 

bootstrapping methods to identify the best models and simulated confidence intervals 

(CIs) or to calculate p-values for likelihood-ratio tests (mixed-effects models). For 

(generalized) linear models ((G)LMs), we used the package ‘boot.stepAIC’ (Rizopoulus 

2009) to perform an iterative, backward stepwise model selection based on the Akaike 
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Information Criterion (AIC). This procedure uses sampling with replacement from rows 

in the data to refit the (G)LM and perform a stepwise AIC selection in each iteration (n = 

1000). We identified variables that were selected in > 90% of the iterations as ‘candidate’ 

variables. Although this is an arbitrary number, it allows us to explore a set of likely 

important variables. For models that required inclusion of a random term, we fitted 

(generalized) linear mixed-effects models ((G)LMMs) in package ‘lme4’ (Bates et al. 2018) 

using Maximum Likelihood estimation to allow for calculation of the log-likelihood. We 

performed a likelihood-ratio test for competing models (i.e. differing in their fixed effects) 

by parametric bootstrapping (n = 1000) to obtain robust p-values and 95% CIs. From 

candidate models (i.e. those selected at a rate of > 0.9 in the stepwise procedure or those 

based on bootstrapped p-values), we simulated posterior estimates 𝛽 (nsim = 1000) of each 

variable using the sim function in the package ‘arm’ (Gelman et al. 2016). This procedure 

simulates the residual standard deviation 𝜎 through random draw from the 𝜒2 

distribution and, based on that draw, simulates 𝛽 coefficients from a multivariate normal 

distribution with mean �̂� (i.e. 𝛽 predicted from the model) and variance matrix 𝜎2𝑉𝛽 (see 

pp. 142–143 in Gelman and Hill (2006) for details). Note that these simulations are not 

intended to assess statistical significance, but merely to provide reliable measures of 

uncertainty. 

 

RQ1: To test the combined effect of treatment and PBV on laying date (RQ1), data were 

restricted to females with a known PBV and those that started laying at least five days 

after the treatment allocation (to cover the window between decision making and actual 

egg laying; C: n = 9; PF: n = 10; FF: n = 10). The reason for the exclusion of data was that, 

since it takes around five days from the decision to start laying and the actual laying date 

(Williams 2012), supplemental feeding within these four days would likely not have 

affected the decision making of the female. Both factors and their interaction term were 

added as fixed terms in a linear model (LM), in addition to the date of treatment allocation 

to account for variance in exposure to the treatment.  

RQ2: To test the effect of supplemental feeding on fitness, measures of brood success 

were analysed using (generalized) linear models ((G)LMs) or (generalized) linear mixed-

effects models ((G)LMMs). We analysed the effect of treatment×PBV, as well as observed 

laying date as a covariate, on clutch size (LM with Gaussian errors) and fledging success, 

analysed in two ways: the probability of fledging at least one chick (GLM with binomial 

errors with a logit link) and the proportion of fledged chicks from the total original clutch 

size (GLMM with binomial errors and an observation-level random term to account for 

overdispersion). As we may expect cascading effects of supplementary feeding on the 

viability of eggs, we would expect chick weight and growth rates to differ among 

treatments. We therefore modelled the log-transformed difference in chick weight 

between d7 and d15 in interaction with treatment in an LMM with brood ID as a random 

effect. Sample sizes for each of these analyses are given in the results section. 

RQ3: To test for a carry-over effect of supplementary feeding (or a lack thereof) on food 

provisioning in the late nestling phase, we recorded feeding activity from day 8 to 15 post-

hatching; the first and the last day with recordings were removed as they provide 
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incomplete feeding records. The number of nest-box visits of each parent was determined 

by plotting a frequency histogram of the time difference between consecutive recordings; 

all data before the end of the first peak (at 17 s intervals) were considered non-independent 

visits and were therefore discarded. This method was validated using visit data from pied 

flycatchers (Ficedula hypoleuca) in the same study area and using the same equipment for 

which also video recordings were available (Tomotani et al. 2017). In that study, the cutoff 

point visually determined in the frequency histogram was the one with the strongest 

correlation with video-recorded visit rates for both males and females (r2 = 0.91). We 

predicted daily feeding activity for both males and females first by constructing an LMM 

with treatment, sampling day (individual-centred), sex, and their three-way interaction as 

fixed effects; day number×parent ID (nested within brood ID) was added as a random 

slope effect to reduce heteroskedasticity in the residuals. As the number of chicks in the 

nest may a better predictor for parental feeding activity, we then replaced day number in 

the fixed and random effects structure with the estimated number of chicks (individual-

centred). Because we had no daily count of the number of chicks, we estimated it through 

linear interpolation between the number of chicks present on the first and the last 

recording day (i.e. on day 15 or earlier when parents abandoned the nest prematurely). 

The response variable, feeding rate, was log-transformed before analysis to improve 

normality of residuals and to relax the assumption that, in case of an interaction between 

treatment and sex, the effect of one in presence of the other is multiplicative. 

 

Results 

 

Effects of food supplementation on laying date 

Supplementary feeding prior to egg-laying did not affect laying date, nor did it interact 

with PBV (appearance rate in bootstrapped AIC model selection procedure: 

treatment×PBV: 0.40, treatment: 0.52, start date of treatment: 0.71). Laying date, as 

expected, was affected by PBV (appearance rate: 0.99; posterior estimate of slope [95% 

CI]: 1.79 [0.43, 3.09]). 

 

Effect of food supplementation on breeding success 

Treatment did not affect clutch sizes; that is, receiving food prior to laying and up to 

incubation did not result in an increased clutch size relative to not receiving any food 

(GLM: appearance rate for all variables < 0.45; n = 13 (C), 11 (PF), 12 (FF); Fig. 3.2a). 

Treatment did not affect chick weight at day 7 (LMM: bootstrapped likelihood-ratio test: 

laying date, pboot = 0.47; treatment, pboot = 0.31; nchicks/nest = 55/9 (C), 70/11 (PF), 63/11 (FF)) or 

day 15 (laying date, pboot = 0.028, treatment, pboot = 0.16; nchicks/nest = 15/4 (C), 42/9 (PF), 47/10 

(FF); Fig. 3.2b). Interestingly, only 3 out of 13 nests from the C group reached fledgling, 

compared to 8 out of 11 (PF) and 8 out of 12 (FF) from the fed birds (GLM: variable 

appearance rate: treatment×PBV: 0.44; laying date: 0.26, PBV: 0.56, treatment: 0.91; Fig. 

3.2c). Likewise, the proportion of fledged chicks from the total clutch size was lowest for 
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the control group compared to the two fed groups (GLMM, bootstrapped likelihood-ratio 

test: treatment×PBV, pboot = 0.78; PBV, pboot = 0.61; laying date, pboot = 0.27; treatment, pboot = 

0.013), with no difference between the two fed groups (Fig. 3d).  

 

Effect of food supplementation on parental workload 

The parents’ visiting rates during chick feeding (d9–d14) was not affected by treatment 

(LMM: pboot > 0.27; nbroods = 5 (C), 10 (PF), 9 (FF)). The number of visits was, however, related 

to both the age of the chicks (day number) and the number of chicks estimated to be 

present in the nest (estimated from different models) in a sex-dependent manner (chick 

age×sex: pboot = 0.002; number of chicks×sex: pboot = 0.003). In both models (Fig. 3.3a and b), 

male feeding activity declined with chick age and increased with chick number (slope, on 

a log scale, for chick age: –0.05 [–0.07, –0.02]; for number of chicks: 0.13 [0.05, 0.22]), 

whereas female feeding activity was unaffected by either (chick age: 0.01 [–0.01, 0.03]; 

number of chicks: 0.02 [–0.07, 0.11]). A model with a threey-way interaction between chick 

age, sex and treatment was not supported (pboot = 0.25). There was a marginally significant 

Figure 3.2. Different fitness proxies (posterior medians and 95% CIs resulting 

from simulation of coefficients) as a result of supplemental feeding of female 

great tits. (a) Clutch size; (b) chick weight at day 7 and day 15; (c) probability of 

fledging at least one chick; (d) proportion of chicks fledged relative to the total 

clutch size. 
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interaction between number of chicks, sex and treatment (pboot = 0.065), but this did not 

lead to different slopes of feeding activity against the number of chicks between treatments 

in either sex (slopes difference males, PF: –0.019 [–0.354, 0.299]; FF: –0.044 [–0.328, 0.231]; 

slpe difference females, PF: –0.001 [–0.145, 0.177]; FF: 0.075 [–0.080, 0.233]). 

 

Discussion 

 

We used supplemental feeding to test whether food availability prior to egg-laying can act 

as a constraint in the advancement of reproduction in a seasonally reproducing passerine 

bird. Great tits that were fed inside their nest boxes only prior to laying were expected to 

advance their egg-laying date compared to control birds and thereby pay fitness cost once 

these benign food conditions were removed (i.e. when the clutch still had to be laid and 

incubated). We also expected that this fitness cost would be lessened in birds with an early 

genotype (PBV). We found that treatment did not affect laying date and could not verify 

the prediction that birds manipulated into laying earlier would pay fitness costs. In fact, 

birds that received any food (either prior to laying or up to and including incubation) had 

a higher reproductive success than birds that did not receive any food at all, meaning that 

partial supplemental feeding increased, rather than reduced, the fitness of the brood. This 

Figure 3.3. Daily feeding activity (log transformed) of male and female great tits against centred 

chick age (a) and the centred estimated number of chicks in the nest (b). Lines are posterior 

estimates (+ 95 CIs) resulting from simulating coefficients of a LMM with Day×Sex (a) and 

Chicks×Sex (b) as fixed effects, and Day×Individual ID (a) and Chicks×Individual ID (b) (both nested 

within brood ID) as random effects. Data points represent daily, individual feeding frequencies 

(large symbols: females; small symbols: males). Different symbols and their colour denote the 

different feeding treatments (red circles: control; blue squares: partly fed; green triangles: fully fed). 
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could indicate that many birds were constrained to successfully reproduce due to overall 

poor food conditions but that this constraint was not related to the timing of egg-laying. 

Demonstrating any effect of supplementary feeding on breeding success was 

conditional on laying date being shifted as a result of supplementary feeding in the first 

place. Achieving this proved to be logistically challenging because it required the 

identification of females well before the onset of laying to be able to assign them to a 

treatment. Although we captured females in their night roosts in early March (to provide 

them with a PIT), females rarely use their exact same roosting box as their breeding nest 

box, so we had to rely on nest-building activity (automatically recorded using transponder 

readers) to identify where birds would be likely to breed. This, however, limited the 

amount of time we had between treatment allocation and the onset of laying. We allocated 

treatments as soon as we knew which female was building a nest, which in the bulk of the 

population occurred relatively close to actual laying, as temperatures rose rapidly in the 

week prior to the first egg. Food supplementation therefore started likely too close to the 

onset of laying to have an effect (mean ± SD days between treatment allocation and laying: 

9.36 ± 7.83 days; median 7 days), seeing as the decision to start laying is made around five 

days prior (Williams 2012). Alternatively, if birds were genuinely not constrained by food 

availability early in the season, we would not expect any advance in laying date to take 

place in the first place, although advancement is a quite general outcome of supplemental 

feeding experiments (e.g. Verhulst and Nilsson 2008; Ruffino et al. 2014). Nevertheless, 

even if laying date was significantly affected by our treatment, the effect size would 

necessarily have to be small, too small to affect subsequent reproductive performance in 

the predicted direction. 

Our prediction was that, if providing supplemental food during egg production lifted 

energetic constraints, cessation of supplemental feeding upon the start of incubation in the 

‘partly fed’ group would lead to reproductive costs (with potential nest desertions) in 

females with high breeding values for laying date. Contrary to this prediction, birds in the 

control group (regardless of their PBV for laying date) had lower reproductive success, i.e. 

abandoned nests more often and fledged—proportionately—the fewest offspring (Fig. 

3.2c and d). Supplemental feeding is known to be of particular benefit when conditions 

are poor (Ruffino et al. 2014). Although we have no sufficient data as of yet to quantify 

food conditions during the laying period, the availability of caterpillars later that season 

(during the chick-feeding stage) was exceptionally poor (see Chapter 5). The lower 

reproductive success in females in the control group was then most likely a result of 

overall poor breeding conditions, and any additional food (whether up until the onset of 

laying or up until completion of the clutch) would confer a benefit to females, potentially 

by compensating energy expenditure associated with food-searching bouts during the 

chick-feeding stage (e.g. Grieco 2002; Te Marvelde et al. 2011). 

Supplemental feeding did not affect feeding frequencies in the parents. However, in 

contrast to females, males appeared to decrease feeding activity as the estimated number 

of chicks in the nest declined (Fig. 3.2b). Although it is not certain why, males have been 

shown to be more likely than females to decrease provisioning efforts or even abandon 

nests under unfavourable conditions (Sasvari 1986; Sanz et al. 2000; Griggio and Pilastro 
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2007). Although sample sizes are too low to officially test, the observed decrease in 

breeding activity in males seems to be not only a between-brood but also a within-brood 

effect. This means that males may anticipate brood failure as the number of chicks in their 

nests declines and therefore steadily reduce their feeding efforts. We need to interpret the 

lack of a treatment effect with caution since only 3 out of 13 control broods reached 

fledging. However, the near-significant three-way interaction between treatment, sex and 

number of chicks (pboot = 0.065) is suggestive of such an effect. The less steep slopes 

estimated for the PF and FF groups compared to the controls could reflect the fact that 

supplemental feeding (irrespective of the feeding regime) indeed conferred a benefit to 

females (and potentially males) and negated the energetic costs associated with breeding 

in an overall poor environment by enabling (or motivating) them to feed more frequently 

regardless of the number of chicks in the nest.  

The timing of breeding of organisms in seasonal environments has been a topic of great 

interest among (evolutionary) ecologists (Durant et al. 2007; Visser 2008; Both et al. 2009b; 

Thackeray et al. 2010; Kharouba et al. 2018). Whether a population’s capacity to adapt to 

climate change is limited by energetic constraints (Perrins 1970; Stevenson and Bryant 

2000) or lack of shift in the cues that are used to time reproduction (see Visser et al. 2012), 

or a combination of both, remains a relevant question. To test this, we first need rigorous 

experiments to unveil the causal effects of timing of breeding on parameters of fitness, but 

achieving this is not straightforward (Verhulst and Nilsson 2008). For this, experiments 

are required that are able to manipulate the timing of breeding (e.g. avian laying date) 

without carry-over effects on e.g. body condition during subsequent reproductive stages 

(Verhulst and Nilsson 2008), which have been shown to be associated with high energetic 

and fitness costs (Visser and Lessells 2001; Te Marvelde et al. 2011). A potentially useful 

way is to create experimental strains of birds genomically selected for their laying date, 

release them into the wild, and study their reproductive behaviour. An experiment of this 

kind is currently in progress (Verhagen et al. in review) and the first, tentative results from 

the wild are presented in Chapter 4. Feeding experiments like the one discussed in this 

chapter and elsewhere (e.g. Verhulst and Nilsson 2008) may provide useful insights into 

the causal effect of food on fitness, but only when carried out over multiple seasons and 

hence environments; yet still there will be potential carry-over effects that cannot be 

accounted for. For now, therefore, the answer to the question posed in this paper remains 

an elusive one.  
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Chapter 4  

 

Offspring viability and laying dates in the wild of great tits 

selected for seasonal timing of reproduction 

 

Jip J.C. Ramakers, Phillip Gienapp & Marcel E. Visser 

 

 

ABSTRACT 

 

Seasonal timing of avian reproduction is an important determinant of reproductive success. Climate 

warming has led to directional selection on timing in great tits (Parus major), but the (phenotypic) 

response has been small. Two (non-mutually exclusive) hypotheses state that (1) birds are constrained 

to breed earlier due to high fitness costs, and (2) birds are missing the relevant cues to start breeding 

earlier. To distinguish between both hypotheses we need to manipulate egg-laying date in the wild to 

estimate the causal effect of laying date on reproductive success and whether this reproductive success 

is increased or reduced for birds manipulated to breed earlier than the natural population. We 

manipulated laying date by releasing birds from selection lines for early and late reproduction (through 

genomic selection) into the wild. Here, we report the first results of the effects of this selection on early-

life fitness in the offspring and on their subsequent laying dates as adults when they recruit into the 

breeding population. Great tits from early and late selection lines produced eggs in aviaries, which were 

fostered in our wild study population using a randomized clutch-swapping experiment in 2017 and 

2018. Eggs from the early and late line did not differ in quality: neither fledgling success nor fledgling 

weight differed between these lines. However, both fledging success and fledgling weight differed 

between the foster nests and control (unmanipulated) wild nests. These differences were, however, 

likely too small to be biologically meaningful, meaning that offspring from selection lines do not differ 

in early-life fitness from birds from the natural population. Only 11 nestlings in 2017 recruited to the 

breeding population in 2018, of which five were female (two from the early and three from the late 

selection line). Although we could not statistically test the difference in mean realised laying dates 

between lines, early-line females bred earlier than the late-line females, following expectations. We 

conclude that offspring originating from the selection lines had a similar start of their lives compared 

to the natural population, and tentatively conclude that genomic selection for extreme laying dates 

resulted in the expected phenotypes. Multiple years of data collection are, however, necessary to draw 

conclusions as to the causal effect of laying date on reproductive success, as well as which mechanism(s) 

constrain(s) birds in advancing their timing of breeding.  

 

Unpublished results
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Introduction 

 

Timing of reproduction is key for reproductive success in seasonally breeding birds. 

Generally, late reproducers have lower reproductive success, either because they lay 

smaller clutches or have fewer fledglings due to deteriorating food conditions (Rowe et al. 

1994; Dalhaug et al. 1996; Winkler and Allen 1996). Breeding too early, on the other hand, 

may also bear fitness consequences due to increased costs of laying (and incubating) under 

harsh conditions (Rowe et al. 1994; Bêty et al. 2003) (see below). Seasonally breeding 

organisms are thus under selective pressure to breed at the right time to maximise their 

lifetime reproductive success (Rowe et al. 1994; Chevin et al. 2015; Gamelon et al. 2018). 

As an important ecological driver, climate change is altering environmental conditions 

globally (Root et al. 2003; Parmesan 2006). One important ecological effect is on phenology 

(Chapter 2), with unequal shifts between trophic levels leading to a mismatch between 

consumer and resource phenology (e.g. Thackeray et al. 2010; Thackeray et al. 2016; 

Kharouba et al. 2018). In seasonal birds, this has led to the disruption of the needs of 

offspring (nestlings) and their main (often invertebrate) prey (Both and Visser 2001; 

Thomas et al. 2001; Both et al. 2006) and concomitant (apparent) selection for earlier 

breeding (Visser et al. 1998; Reed et al. 2013b; Marrot et al. 2018). Although many 

populations advance their laying date under warmer conditions through phenotypic 

plasticity (Crick et al. 1997; Cresswell and McCleery 2003; Nussey et al. 2005b; Porlier et 

al. 2012), evidence for an adaptive genetic change in laying date (i.e. an advancement in 

the reaction norm describing phenotypic plasticity; see Chapter 10) remains scarce 

(Charmantier and Gienapp 2014; Merilä and Hendry 2014). Such an advancement would 

be essential for population persistence under increasing mismatch due to further global 

warming, because the current level of plasticity is not sufficient to bring the population to 

the new optima (Visser 2008). 

One hypothesis as to why some populations do not advance their mean laying date in 

the first place relates to the availability of food in the pre-laying season (Perrins 1970; see 

also Chapter 3). Advancing breeding may simply not be possible because conditions are 

too harsh to survive costly egg production (Stevenson and Bryant 2000; Visser and Lessells 

2001). This constraints hypothesis therefore suggests that birds that do not advance 

breeding may be ‘adaptively mismatched’, as the fitness benefits of breeding at a time 

when a sufficient body condition has been attained may outweigh the benefits of breeding 

in synchrony with the food peak if this means they have to breed under adverse conditions 

(Lof et al. 2012; Visser et al. 2012). A second hypothesis, the cues hypothesis, states that 

birds cannot breed adaptively earlier because the essential cues to do so have become 

inaccurate due to climate change (Visser et al. 2012). For example, if the temperatures later 

in spring that drive the timing of food availability—which is when selection via nestling 

survival takes place (Visser et al. 2006; see also Chapter 5)—increase consistently, but those 

in early spring that determine the onset of laying do not, the mismatch between predator 

and prey phenology will increase. Genetic adaptation is necessary to adapt to these novel 

conditions (Visser 2008), either by changing the trade-off between early laying and costs 

of reproduction (allowing birds to somehow better cope with harsh conditions) or by 
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adjusting cue sensitivity. Whichever the route adaptation should or will take, it will be a 

slow process (Gienapp et al. 2006; Charmantier and Gienapp 2014; Chapter 10). 

To gain insight into the likely processes underlying adaptation in breeding time to 

novel environmental conditions, we first need a thorough understanding of how the 

timing of breeding determines reproductive success. Many food-supplementation 

experiments have been conducted in avian populations during the pre-laying phase, and 

the general outcome of these studies is that supplemental feeding has the potential to 

advance laying (Ruffino et al. 2014). Importantly, however, supplemental feeding changes 

the physiological state of an individual (Verhulst and Nilsson 2008) and therefore the 

effect of advancing laying on reproductive success is not straightforwardly decoupled 

from the effect of changing the physical condition of females (see also Chapter 3). A clean 

manipulation of laying date has been undertaken In Dutch great tits, where the 

expectations of the birds in the current year were manipulated through food 

supplementation during the chick-feeding phase in the previous year (Gienapp and Visser 

2006). Although this experiment effectively advanced laying date in one of the two studied 

populations, sample sizes were too low to draw safe conclusions about the fitness effects 

of advancing. Leptin implantation experiments to manipulate females’ perceived body 

condition (Te Marvelde and Visser 2012) and photoperiodic manipulation to stimulate 

follicle growth (Te Marvelde et al. 2012a) were not successful at manipulating laying dates 

in the wild. A clean, hitherto untested method to cleanly manipulate laying date is to 

artificially select on laying date using genomic selection tools, and use their progeny to 

measure phenotypes (laying date) and reproductive success in the wild. This is possible 

because laying date is a heritable (polygenic) trait (Van der Jeugd and McCleery 2002; 

Gienapp et al. 2006). Such a selection experiment was recently completed in great tits 

(Parus major) originating from the Dutch Hoge Veluwe population (see Gienapp et al. 2019; 

Verhagen et al. in review for details of this selection experiment). Female offspring of birds 

that were selected to breed either early or late in outdoor aviaries exhibited extreme 

genomic breeding values and concomitant different phenotypes between early- and late-

line birds in captivity (Verhagen et al. in review). When offspring from these lines are 

released into the wild and survive to breed, they will thus likely exhibit extreme 

phenotypes, providing a ‘clean’ test of the causal effect of laying date on reproductive 

success (but see Results and discussion for potential caveats). 

In this study we give an overview of the first tentative results of the effects of the 

selection experiment on parameters of fitness and phenotypes (laying dates) in the wild. 

Eggs from the F3 generation of both the early and late selection lines, which constitute the 

most extreme genotypes from the selected population, were translocated and fostered 

with breeding pairs in the wild in the breeding seasons of 2017 and 2018. These eggs were 

incubated and raised by foster parents, and a portion of the fledged chicks were expected 

to recruit into the breeding population the following year. We therefore have data on 

‘early-life fitness’ (i.e. the proportion of eggs from the selection lines ending up as fledged 

chicks) for both years, and have phenotypic data (laying date) and reproductive success 

for 2018 (i.e. recruits from the 2017 eggs). The objectives of this (ongoing) study are to test 

(i) whether eggs from selection lines have different fitness compared to eggs from the wild 

population during early life (up to fledging) and whether there are between-line 
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differences in this respect, and (ii) whether recruits from the two lines had distinctly 

different phenotypes and reproductive success when breeding in 2018. With respect to the 

first objective, we expected that the selection experiment had no effect on the ‘vitality’ of 

the eggs and that experimental and wild eggs and fledglings had an equal start in their 

lives. With respect to the second objective, we first predicted that early-line recruits 

exhibited laying dates at the lower extreme end of the laying date distribution, whereas 

we expected the opposite for late-line recruits. Second, among early-line recruits, we had 

two different expectation with respect to reproductive success, related to the constraints 

and cues hypothesis (see Visser et al. 2012). If the constraints hypothesis was true, birds that 

were ‘genetically forced’ to breed early would pay a fitness cost (Fig. 4.1, left). That is, if 

conditions were harsh (cold, little food) they would be more prone to desert or die in the 

process of nest-building or egg-laying. To this end, we monitored nest-building using 

automated transponder readers to track down recruited females (who carried a 

transponder, see Methods) during the pre-laying period. If the cues hypothesis was true, 

we may expect an increase in fitness as birds advanced their laying date, because they 

would be in better synchrony with the food peak later that season (Fig. 4.1, right). 

Ultimately, however, we will need multiple years of observations (with concomitant 

variation in environmental conditions) before we can answer the question of which of the 

two hypotheses most likely explains the observed lack of a shift in laying dates in great 

tits. 

 

Methods 

 

Selection experiment aviaries 

A full and detailed description of the selection experiment is given in Verhagen et al. (in 

review) and Gienapp et al. (2019). Briefly, nestlings from a wild population of great tits at 

the Hoge Veluwe national park, central Netherlands (52°02′07″ N 5°51′32″ E), were 

collected in 2014 from the extreme ends of the laying-date distribution from parents (P, 

parental generation) with low and high pedigree-derived breeding values for laying date 

Figure 4.1. Schematic of the prediction of the effect of experimentally advancing 

laying date (arrow) on the fitness of individual females. If physiological 

constraints inhibit advancement in natural conditions, an experimental 

advancement will decrease fitness; if the lack of appropriate cues inhibit 

advancement, an experimental shift will increase fitness. Schematic from Visser 

et al. (2012). 



Fitness consequences of genomic selection 
 

55 
  

(i.e. ‘early’ and ‘late’ birds). The nestlings (F1 generation) were hand-raised at the institute 

and served as the parental generation for the next generation (F2; 2015), who in turn served 

as the parental generation for F3 (2016), which in turn produced F4 (2017 and 2018). 

Nestlings from each generation, as well as ~2000 birds from the original population, were 

genotyped on a 650 kSNP chip, which allowed the estimation of genomic breeding values 

(GEBV). These GEBVs were used to select amongst the most extreme genotypes with 

respect to laying date in each generation, which were paired up disassortatively within 

selection lines (early vs. late) to maintain genetic variation. Every breeding season, we had 

approximately 100 breeding pairs in outdoor and climate-controlled aviaries. Selection on 

GEBVs was moderately strong (Kingsolver et al. 2001), with standardized selection 

differentials ranging from –0.554 to –0.703 in the early line from the parental through to 

the F2 generation, and from 0.528 to 0.658 in the late line (Verhagen et al. in review).  

 

Field sites 

Fieldwork mainly took place at the Hoge Veluwe national park (HV). The 171-ha study 

area consists of a mixture of coniferous and deciduous woodland and has ~400 nest boxes 

with ~100–150 great tit breeding pairs each year. The remainder of the fieldwork was done 

on a great tit population in a nearby deciduous woodland in Bennekom (BE; 52°00'02" N 

5°41'30" E), which has ~200 boxes and is regularly used as foster population for incubation 

and chick rearing. 

 

General field experimental procedures 

In the spring of 2017 and 2018, eggs from the selection lines were brought to the wild to 

study (i) the effect of the selection experiment on early life fitness and (ii) the reproductive 

consequences of early or late breeding in recruiting females. 

In both years, breeding activity in both selection lines was monitored in the aviaries 

from March onward. Breeding pairs (F3, producing the F4 generation) were provided with 

moss and hairs, and nest-building activity was monitored initially, weekly, then twice per 

week and more frequently as nest building progressed. Eggs were collected daily from the 

nest boxes in the aviaries and individually marked. Simultaneously, nest-building and 

egg-laying activity was monitored in both field sites. Eggs from aviaries were brought to 

the wild as soon as complete clutches were available. When possible, eggs from the two 

selection lines (early and late) were combined into a single clutch such that a given clutch 

contained an equal number of early and late eggs. However, when eggs from only one of 

the lines were available (for example, early in the breeding season most available eggs 

came from the early line, whereas in the tail of the breeding season mostly late-line eggs 

were available), we created single-line clutches (24% and 6% of the clutches in 2017 and 

2018, respectively). The composite clutches were fostered with wild breeding pairs in BE, 

whose original clutch was removed (and whose eggs were used in another project on egg 

yolk hormones). BE foster parents incubated the eggs for a minimum of five days, after 

which we could determine the viability of eggs (i.e. through visibly developing blood 

vessels) before moving them to their final nest box in HV. 
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Fostering of F4 clutches from the selection lines with breeding pairs in HV was done 

experimentally in 2017 and 2018, with slight differences between the two years. In 2017, 

incubating females at HV were randomly allocated to one of four experimental groups, 

consisting of two experimental nests and two control nests (Fig. 4.2). Grouping was done 

in blocks of four to ensure each treatment was equally represented throughout the 

breeding season. When a brood had been incubated for a minimum of five days, eggs were 

removed and replaced with an approximately equally sized composite clutch from the BE 

foster pairs, which also had been incubated for five days. The reason we swapped after 

HV females had been incubating for a minimum of five days was that birds were prone to 

nest desertion at very early stages of incubation (personal observations in 2016). The 

control nests in HV were not swapped and left alone, aside from standard fieldwork 

procedures (see below; no swaps were performed between control nests because these 

nests were to remain undisturbed for the long-term population study). In 2017, 43 clutches 

were fostered in HV. 

In 2018, the procedure in HV was different. Again, broods were allocated to one of four 

treatments (Fig. 4.2), but this allocation started as soon as the female had laid the third egg. 

Nests were checked daily to ensure the date of the third egg could be reliably determined. 

Upon finding the third egg, four dummy eggs were placed into the two treatment nests; 

this was done to advance the onset of incubation to increase synchrony with the aviary 

population. As in 2017, clutches were removed and replaced with composite clutches from 

BE after at least five days of incubation; the eggs that came from foster parents in BE had 

been incubated > 5 (usually 8–10 days), to further advance the hatch date of the fostered 

clutch in HV, for the same reason. This resulted in an advancement of 1.7 (0.2, 3.2 (95% 

CI)) days. In 2018, 53 clutches were fostered in HV. 

Birds that fledged from experimental nests in 2017 and recruited into the breeding 

population were tracked from mid-March 2018 onward to monitor breeding activity, daily 

energy expenditure (still ongoing so not reported here) and reproductive success (see 

below for details). Because fledglings from experimental nests had received a passive 

integrated transponder (PIT) tag (see below), we were able to track the nesting behaviour 

Figure 4.2. Schematic of the experimental 
design. Eggs from the two selection lines (in 
aviaries) were made into composite clutches, 
which were temporarily fostered with breeding 
pairs in BE (not shown) and subsequently 
fostered with breeding pairs in the Hoge 
Veluwe. Drawing by M. Swinkels.  
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of these birds by placing automated transponder readers (DorsetID, Aalten, the 

Netherlands) at each nest box with nest-building activity, mounting the antenna around 

the entrance hole. Using activity records and the progression of nest material across time, 

we were able to identify whether a given nest belonged to one of our recruited 

experimental birds. If this was the case, this nest was exempt from the treatment allocation 

described above. The reason why we started monitoring activity at the time of nest-

building and did not wait until we could identify the breeding female on the nest was that 

females from the early line that bred too early may potentially abandon the nest or die in 

the process of building or egg-laying. We needed to identify these birds as they would 

represent a non-random portion of the breeding population and as we were specifically 

interested in the fitness effects of breeding (too) early. 

 

Brood swap experiment: measuring morphology, fledging and fitness 

Once clutches in experimental nests had been swapped, experimental and control broods 

alike were subjected to standard field procedures. Hatch date of eggs was checked daily 

around the expected date of hatching. At day 8 after hatching (day 0 = hatch date), the 

(foster) parents were captured and identified at the nest and nestlings were ringed. On 

day 15, i.e. close to fledging, nestlings were blood-sampled, weighed (to the nearest 0.1 g) 

and measured (length of third primary (P3) and tarsus). Each nestling originating from the 

selection lines (all chicks in experimental nests) was given a PIT tag to allow studying 

fledging behaviour and tracking of individual birds in subsequent breeding seasons. The 

number of fledged chicks was determined for both experimental and control nests.  

 

Identification of genetic parents fostered nestlings 

Blood samples taken from the nestlings were used to identify the aviary breeding pair that 

produced the nestling. DNA was extracted from a Queens buffer using the FavorPrep 96-

well Genomic DNA Kit centrifugation process (Favorgen Biotech Corp., 2009). PCR was 

executed using the protocol as described in Saladin et al. (2003). To dilute the PCR-

product, 190 µl MilliQ was added to the PCR-plates after PCR and 2 µl was transferred to 

an ABI-plate. 9 µl of a LIZ-Hi-Di mixture (9 µl LIZ-sizer + 1ml Hi-Di Formamide) was 

added to each sample and the plates were analyzed with the ABI 3130. Microsatellites, 

segments of repetitive DNA sequence with a high mutation rate, were marked on five 

different loci and scored with the help of GeneMapper 5®, to later determine the genetic 

parents based on similar microsatellites. 

 

Data analysis: brood swap experiment 

To test the effect of the selection lines on parameters of brood fitness (i.e. combined 

offspring vitality) we tested the effect of (i) the brood swapping per se (i.e. the between-

brood difference between control and experimental nests) and (ii) the effect of selection 

lines (i.e. the within-brood difference between ‘early’ and ‘late’ chicks). Because not all 

eggs could be retrieved, or because dead chicks were removed by the parents, we could 
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not estimate fitness components for each individual egg; we therefore viewed fitness as a 

property of the brood as a whole (between-brood effect) or of each selection line (within-

brood effect). The fitness parameters we studied were (1) the proportion of chicks fledged 

relative to the total clutch size and (2) the total number of fledged chicks. We furthermore 

investigated variation in (3) fledgling weight as an indicator of offspring vitality (see 

Chapter 8). Each trait was investigated between control and experimental nests (treatment 

‘experiment’) or between lines within experimental broods (treatment ‘selection line’). 

For each of the analyses, we constructed linear models (LMs) or generalized linear 

models (GLMs) with the following error structures: (1) binomial with logit link and (2) 

Poisson with log link and (3) Gaussian with identity link. In the analysis comparing 

between treatments (selection lines) within broods, we added a random effect of ‘brood’, 

with treatment nested within it. In analysis (2) between broods, but not within broods, the 

number of fledged chicks was underdispersed, so we fitted a Generalized Poisson GLM 

(package 'VGAM'; Yee 2010). In analysis (3) we always included a random effect of brood 

because the individual chick was the level of observation. Aviary of origin or maternal 

identity never explained variation in the traits of interest, so both random factors were 

dropped from analysis. Besides treatment, we included the covariates hatch date (to 

capture seasonal trends) and final (i.e. after swapping) clutch size. Year (2017 or 2018) was 

added as a two-level factor. In all models, we fitted an interaction between hatch date and 

year. 

We used Akaike’s Information Criterion corrected for small sample sizes (AICc; 

Burnham and Anderson 2002) to compare six models: (i) the base model excluding 

treatment (i.e. experiment (between broods) or line (within broods)), (ii) a model with 

treatment, (iii) a model with an interaction between treatment and hatch date and (iv) 

between treatment and year, (v) a model containing both interactions and (vi) and a model 

containing the three-way interaction between year, treatment and hatch date. The most 

parsimonious model within 2 AICc units from the model with the lowest AICc value was 

considered most plausible (but see discussions in Richards 2005, 2008; Burnham et al. 2011 

for caveats of using this threshold). Uncertainty in model estimates was estimated through 

bootstrapping the 95% confidence intervals with 1000 iterations. 

Finally, for 2018 only, we tested whether the number of fledglings (generalized Poisson) 

and fledgling weight in experimental vs. control nests showed a non-linear relationship 

with hatching date as a result of the experimental advancement of the start of incubation. 

Clutch size (i.e. the number of eggs a female laid, irrespective of the added dummy eggs) 

and final clutch size (i.e. the net number of eggs in the nest after egg-swapping) correlated 

strongly (r2 = 0.64), so we only tested final clutch size as an additional covariate, besides 

experiment and hatch date. We then added a quadratic term of hatch date and an 

interaction between experiment and hatch date and [hatch date]2. 
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Results and discussion 

 

Egg-swapping experiment (2017 and 2018) 

We had data for 38 experimental nests in 2017 and 42 in 2018, with 86 and 42 nests marked 

as control, respectively. The total number eggs brought to the wild was 389 in 2017 and 

461 in 2018 (including some clutches that were deserted by the foster parents after 

swapping). Of these, 207 and 315 chicks, respectively, survived until fledging.  

 

Fledgling success. Since we did not have detailed data on the number of eggs that hatched 

(but a proxy, i.e. how many chicks alive at day 8), we analysed the number of nestlings 

that fledged in proportion to the final clutch size. The proportion of fledged chicks (PFC) 

depended on both year and hatch date. AICc model selection revealed that treatment 

(control vs. experimental) in the between-nest analysis interacted with both year and hatch 

date (Table S4.1a). That is, PFC in experimental relative to control nests differed between 

years, and the dependence on hatch date differed between treatments (Fig. 4.3). In 2017, 

PFC in the control group dependent only very weakly on hatch date (slope control nests: 

0.001 [–0.018, 0.018]), whereas the slope for experimental nests deviated from this (slope 

deviation: –0.035 [–0.067, –0.004]). In 2018 there was no statistically discernible difference 

in slopes between treatments (slope control nests: –0.010 [–0.135, 0.109]; deviation slope 

experimental nests –0.141 [–0.342, 0.046]). A similar pattern was found for the absolute 

number of fledglings, although the effect of treatment did not interact with year (Table 

S4.1b). It should be noted, however, that some nests in 2017 were fostered in very late 

 

 

Figure 4.3. Proportion of chicks (of total clutch size) fledged, as a function of mean-centred hatch 

date in 2017 and 2018 in the between-brood comparison. Lines and shading are model predictions 

and 95% bootstrapped CIs (blue: control nests; orange: experimental (swapped) nests). Points 

are mean proportions, binned by 5 days in 2017 and by 1 day in 2018, for visual purposes. 
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broods (perhaps replacement clutches from birds with a failed first), where any 

disturbance at the nest on top of the swapping in some cases caused the foster parents to 

abandon the nests prematurely; this may have exacerbated the negative trend with hatch 

date in the experimental group and therefore ‘pull’ the line in Fig. 4.3 down.  

Within nests (between selection lines) we found no main effect of treatment (late vs. 

early line), nor any interactions with year or hatch date for PFC or the number of fledglings 

(Table S4.2). 

The intended advancement in hatch date in 2018 as a result of adding the dummy eggs 

during the laying phase in experimental nests did not result in fewer fledglings in the 

earliest broods (Table S4.3a). 

 

Fledgling weight. The AICc comparison of mixed-effects models of fledgling weight 

revealed, aside from an interaction between hatch date and year, an additional interaction 

between experiment (swapped vs. control nests) and hatch date in the between-nest 

analysis (Table S4.1c). That is, both the mean fledgling weight across hatch dates 

(intercepts) and the slopes of weight against hatch date differed between years and 

treatment (Fig. 4.4). The mean fledgling weight for the control group in 2017, after 

correcting for the number of hatched chicks, was 15.30 g, whereas the mean for the 

experimental group was 0.59 g higher (95% CI: 0.300, 0.806); for 2018 this was 17.10 g for 

the control group, with the experimental group having on average a 0.60 g lower weight 

(95% CI: –0.791, –0.402). Thus, average weights differed between the treatments in a 

reversed order between the two years. The slopes of weight against hatch date in 2017 and 

2018 were –0.011 (–0.025, –0.002) and –0.202 [–0.231, –0.174), respectively (Fig. 4.4). Within 

nests, i.e. between selection lines, there was no difference in weights (Table S4.2c). Again,

 

Figure 4.4. Fledgling weight (at day 15) as a function of mean-centred hatch date in the between-

brood comparison in 2017 and 2018. Lines and shading are mixed-model estimates and their 

bootstrapped 95% CIs (blue: control nests; orange: experimental (swapped) nests); data points 

are average weights for each hatch date. 
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the intended advancement in hatch dates in 2018 by adding dummy eggs to the 

experimental broods did not result in low-weight offspring in the earliest broods (Table 

S4.3b). 

So, do offspring from the selection lines have a ‘bad start’ compared to the wild 

population? The most important result from the genomic selection experiment is that 

selection-line offspring do not differ in early-life fitness. That is, offspring from early lines 

are not likely to have a higher or lower recruitment probability than those from the late 

line, nor are they more likely to have (negative) carry-over effects to their first breeding 

season. Experimental eggs/chicks in general, however, appear to perform slightly 

differently than those from the natural population; that is, experimental broods had a 

stronger decline in the proportion of fledged chicks with later hatch dates compared to 

control nests and fledgling weights differed between these groups and between years. 

Two possible explanations may underlie these results. 

First, there may be an inherent difference between the aviary-bred and ‘wild’ eggs, e.g. 

due to effects related to loss of genetic variation in the selection process. We believe, 

however, this is unlikely since birds in the aviaries were selectively bred for only four 

generations and paired up disassortatively with respect to breeding values for laying date 

within each selection line (Verhagen et al. in review), thereby maintaining genetic 

variation as much as possible. Moreover, the effects of treatment (control vs. experimental 

nests) on PFC was rather small (absent in 2018; Fig. 4.3) and fledgling weight showed a 

reversed pattern (Fig. 4.4) between years, indicating that whatever the mechanism behind 

these effects, it was not consistent (also note that for the most part the same F3 pairs were 

used to produce the eggs in both years).  

Second, and perhaps more likely, the difference between experimental and control 

nests may lie in the post-egg-laying experimental procedures, although it is difficult to 

pinpoint which event or chain of events was responsible. Eggs were kept on a turning 

device at room temperature—sometimes for more than a week—before they were moved 

to foster parents in BE and before they were translocated to HV after ≥ 5 days of incubation. 

All factors may play a role in a determining the egg viability—and therefore hatching 

success. We do not have exact data on hatching success per nest, but if we use the number 

of chicks in the nest at day 8 as a (rather coarse) proxy for the number of hatched chicks, 

the proportion of hatched eggs relative to the clutch size in a binomial model is explained 

by an interaction between treatment and year (ΔAICc = 5.72); that is, experimental (i.e. 

swapped) nests have a higher hatching success in 2017 but not in 2018 (Fig. S4.1). Although 

the cause for this difference is unclear, it has been suggested that exposing incubated eggs 

to suboptimal ambient temperature may impair embryonic development (Williams 2012). 

This effect should however only become apparent after at least a day’s worth (or more) of 

exposure to such temperatures (Veiga 1992; Arnold 1993). Most likely, experiment-

induced effects on PFC or fledgling weight occur between egg-laying and the first 

movement to the foster parents. The likelihood of embryonic development strongly 

decreased after the first week (personal observation); therefore, some eggs may not 

develop in the first five days in the foster nest and therefore only viable eggs ended up 

being moved to HV. This quality check did not take place with the ‘wild’ (control) eggs 
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and therefore a disproportionately high number of eggs may fail to hatch in these broods. 

Additionally, the hard selection on egg viability from the BE foster nests may have 

decreased the final clutch size in HV, making the per-egg odds of survival to fledging 

better due to decreased competition for food (Both et al. 2000; see Chapter 8). This was 

probably less the case in 2018, when the final clutch size was generally larger than the wild 

female’s original clutch size, potentially explaining the lower average fledgling weight in 

this year (Fig. 4.4).  

From the birds that fledged, weights differed between experimental and control nests 

and between years (Fig. 4.4). Fledgling weight is known to affect survival recruitment 

probability (Chapter 8), but the difference between treatments in both years is only about 

half a gram. This may seem a lot given the average weight of an adult great tit (~18 g), but 

overall recruitment probability in our population is generally low (~10%) and stochastic 

in nature. It remains therefore too early to conclude whether offspring resulting from the 

selection lines have different survival prospects than those from the wild population. 

 

Recruited birds in 2018 

From the selection-line fledglings in 2017, 11 birds (5.3%, vs. 11.4% of the natural 

population) recruited into the 2018 breeding population: two females and four males from 

the early selection line, and three females and two males from the late line. The recruited 

females, expectedly, laid clutches at times that matched the selection line they originated 

from; they were, however, not at the extreme end of the laying date distribution (Fig. 4.5). 

Sample sizes were too small to do statistics on them but the histogram in Fig. 4.5 shows 

that the two female recruits from the early line bred five days earlier than the first late-line 

female. The pattern for male recruits (that is, the laying date of the female wild partners of 

these males) is less clear, but not surprising given that laying date is determined by the 

female (Caro et al. 2009). That we did not observe both early and late females at the 

respective extremes of the distribution seems counterintuitive, but should in fact not be 

surprising given the small sample sizes. Our efforts to track down the females during the 

nest-building phase means that we were most likely able to identify all recruited birds 

within HV, and all identified recruits were observed breeding. Therefore, selective 

disappearance of birds breeding too early was not a likely reason for the lack of extremely 

early laying dates in the population distribution (Fig. 4.5).  

In terms of the fitness consequences of laying date, the results are too premature to 

draw conclusions. In Fig. 4.6, the distribution of fledglings of nests in which at least one 

chick fledged are depicted. Statistical analysis notwithstanding, a first glance reveals that 

there is no discernible pattern in the data. Note that all tracked recruits eventually started 

breeding and only two of these broods were omitted from Fig. 4.6 because they were 

deserted due to disturbance (measurement of daily energy expenditure; not reported 

here). There were hence no reasons to either accept or reject either hypothesis laid out in 

the introduction. Since reproductive success usually declines with the progressing season 

(Rowe et al. 1994), we would expect birds breeding early in the season to have a higher 

reproductive success due to better chick-provisioning conditions (see also Chapter 5). In 
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2018 in the HV, there was no distinct time trend (linear model of number of fledglings 

against laying date for broods that had ≥ 1 fledgling: laying date: –0.035 [–0.070, 0.005]; 

(laying date)2: –0.006 [–0.017, 0.008]). Therefore, even if the recruits of the selection lines 

had been at the extreme ends of the laying date distribution, this would not have given 

them any reproductive advantage (although, granted, the number of fledglings is an 

 

Figure 4.5. Frequency plot of first-clutch laying dates (LD) of female 
great tits at the Hoge Veluwe in 2018 (i.e. the first year in which recruits 
from the selection lines were recorded). Different colours denote the 
background of each female (red: early selection line; pink; females 
mated to males from the early line; dark blue: late line; light blue: 
females mated to males from the late line; grey: wild population). 

Figure 4.6. Frequency plot of the 
number of fledglings of non-
manipulated nests in the Hoge 
Veluwe in 2018 (i.e. the first year in 
which recruits from the selection 
lines were recorded). Different 
colours denote the background of 
each female (red: early selection 
line; pink; females mated to males 
from the early line; blue: late line 
grey: wild population). Note: two 
broods from selection-line recruits 
were prematurely deserted due to 
disturbance and are not shown here. 
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incomplete measure of fitness, further precluding us from drawing definitive 

conclusions). 

 

Concluding remarks 

To be able to understand how laying date affects reproductive success, we need 

experiments that cleanly manipulate the timing of breeding. Genomic selection on laying 

date based on genetic markers (Gienapp et al. 2019) can provide a promising step to 

achieving this because it provides an accurate and efficient way of manipulating birds at 

the genome level in a mere few generations. It is important to note, however, that selecting 

on additive genetic variation cannot create more extreme genotypes than the parents. This 

means that he most extreme genotypes emerging from the selection lines will be within 

the natural boundaries of the population with respect to their breeding values for laying 

date, and are therefore not likely to have more extreme phenotypes in any environment 

compared to the most extreme genotypes in the natural population. 

Possibly, selecting for laying date means selecting for other traits as well, for example 

because certain loci are in linkage disequilibrium and because variation in life-history 

traits is likely to be caused by many loci of small effects spread across the genome (Santure 

et al. 2013). In the wild, for example, laying date is associated with clutch size, with early 

layers having a larger clutch (e.g. Dalhaug et al. 1996; Winkler and Allen 1996), which has 

been postulated to be an adaptive response to anticipated chick-rearing conditions later in 

the season (e.g. Winkler and Allen 1996) or with variation in the quality of females laying 

at different times (e.g. Christians et al. 2001). If there is a genetic basis for this association 

between laying date and clutch size (Sheldon et al. 2003; but see Postma 2005) or female 

quality, the genomic selection on timing might cause a correlated response in these other 

traits. This is, however, difficult to measure; from three generations of egg-laying in the 

aviaries during the selection experiment (Verhagen et al. in review), clutch size could not 

be measured because some birds would lay as many as 30 eggs in ad libitum food 

conditions. 

Crucially, therefore, we depend strongly on many years of data collection on many 

individual recruits from the selection lines to be able to draw conclusions about (1) the 

causal effect of laying date on reproductive success and (2) whether selection for extremely 

early laying improves or deteriorates fitness. In particular for the latter objective, we need 

several years of observations from both ‘bad’ and ‘benign’ springs. The constraints 

hypothesis, which states that birds pushed forward in time by too much will pay fitness 

costs, can only be tested if conditions in early spring are genuinely harsh; if not, any 

advancement in laying date may have the opposite effect, i.e. that they are simply better 

matched with the caterpillar peak without having to pay survival (or other) costs early in 

the season. Additional field manipulations among the earliest of the recruits—such as food 

supplementation in early spring (see Chapter 3)—may help push birds forward in time 

even more, but this comes with the obvious disadvantage of changing the physical state 

of the females, hence possibly biasing estimates of reproductive success (Verhulst and 

Nilsson 2008). The current study, which is being continued at this moment, can therefore 
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only be successful if we continue to breed birds in captivity and foster their eggs in the 

wild. 
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Supplementary Information S4 

 

 

Table S4.1. AICc comparison of competing models explaining variation in (a) the proportion of chicks 

fledged, (b) the number of fledged chicks, and (c) individual fledgling weights between nests (i.e. 

experimental vs. control nests). 

Model AICc ΔAICc 

(a) Proportion of chicks fledged (relative to clutch size)   
HD + BS + BY + HD:BY 866.6 14.9 

Exp + HD + BS + BY + HD:BY 868.2 16.5 

Exp + HD + BS + BY + HD:BY + Exp:BY 863.7 12.0 

Exp + HD + BS + BY + HD:BY + Exp:HD 856.4 4.7 

Exp + HD + BS + BY + HD:BY + Exp:BY + Exp:HD 852.4 0.7 

Exp + HD + BS + BY + HD:BY + Exp:BY + Exp:HD + Exp:BY:HD 851.7 0 

   
(b) No. of fledged chicks (Generalized Poisson)   
HD + BS + BY + HD:BY 887.0 4.2 

Exp + HD + BS + BY + HD:BY 889.0 6.3 

Exp + HD + BS + BY + HD:BY + Exp:BY 889.8 7.1 

Exp + HD + BS + BY + HD:BY + Exp:HD 882.7 0 

Exp + HD + BS + BY + HD:BY + Exp:BY + Exp:HD 883.8 1.1 

Exp + HD + BS + BY + HD:BY + Exp:BY + Exp:HD + Exp:BY:HD 885.6 2.8 

   
(c) Fledgling weight   
BY + NH + HD + BY:HD 4921.8 2.6 

BY + NH + HD + BY:HD + Exp 4924.9 5.7 

BY + NH + HD + BY:HD + Exp + Exp:HD 4930.7 11.4 

BY + NH + HD + BY:HD + Exp + Exp:BY 4919.2 0 

BY + NH + HD + BY:HD + Exp + Exp:HD + Exp:BY 4924.8 5.5 

BY + NH + HD + BY:HD + Exp + Exp:HD + Exp:BY + Exp:HD :BY 4929.5 10.3 
Notes: HD = hatch date; BS = brood (clutch) size; BY = brood year; Exp = experiment (swapped vs. control nests). 
Best models are marked in bold. 
The models under (c) contained a random effect of ‘brood ID’. 

 

 

 

 

 



Fitness consequences of genomic selection 
 

67 
  

Table S4.2. AICc comparison of competing models explaining variation in (a) the proportion of chicks 
fledged, (b) the number of fledged chicks, and (c) individual fledgling weights within nests (i.e. early 
vs. late selection line). 

Model AICc ΔAICc 

(a) Proportion of chicks fledged (relative to clutch size)   
HD + BY 528.5 0 

HD + BY + LI 530.0 1.5 

HD + BY + LI + LI:HD 532.1 3.6 

HD + BY + LI + LI:BY 531.6 3.1 

HD + BY + LI + LI:HD + LI:BY 533.7 5.2 

HD + BY + LI + LI:HD + LI:BY + LI:HD:BY 538.1 9.6 

   
(b) No. of fledged chicks (Poisson)   
HD + BY 741.7 0 

HD + BY + LI 745.2 3.5 

HD + BY + LI + LI:HD 743.2 1.5 

HD + BY + LI + LI:BY 746.0 4.3 

HD + BY + LI + LI:HD + LI:BY 744.5 2.8 

HD + BY + LI + LI:HD + LI:BY + LI:HD:BY 748.6 6.9 

   
(c) Fledgling weight   
BY + NH + HD + BY:HD 1784.5 0 

BY + NH + HD + BY:HD + LI 1786.7 2.2 

BY + NH + HD + BY:HD + LI + LI:HD 1794.9 10.4 

BY + NH + HD + BY:HD + LI + LI:BY 1789.5 5.0 

BY + NH + HD + BY:HD + LI + LI:HD + LI:BY 1797.8 13.3 

BY + NH + HD + BY:HD + LI + LI:HD + LI:BY + LI:HD :BY 1804.0 19.5 
Notes: HD = hatch date; BS = brood (clutch) size; NH = number of eggs hatched; BY = brood year; LI = selection line (early vs. 
late). 
Best models are marked in bold. 
All models contained a random effect of ‘brood ID’, with treatment (selection line) nested within. 
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Table S4.3. Results of the between-brood analysis for 2018 only, testing the quadratic effect of hatch 
date in experimental (swapped) nests. 

Model AICc ΔAICc 

(a) Number of fledglings   
CS + HD + Exp 353.35 1.11 

CS + HD + Exp + HD2 354.02 1.78 

CS + HD + Exp + HD2 + Exp:HD 352.23 0 

CS + HD + Exp + HD2 + Exp:HD + Exp:HD2 354.67 2.44 

   
(b) Fledgling weight   
CS + HD + Exp 2231 0 

CS + HD + Exp + HD2 2234.45 3.45 

CS + HD + Exp + HD2 + Exp:HD 2234.557 3.557 

CS + HD + Exp + HD2 + Exp:HD + Exp:HD2 2242.224 11.224 

 

 

 

 

Figure S4.1. Proportion of hatched eggs (95% 

bootstrapped CIs) for experimental and control 

nests in the between-nest comparison. The number 

of hatched eggs is a proxy (number chicks alive at 

day 8) because we have no complete tally of the 

actual hatched eggs. 
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Chapter 5  

 

Comparing two measures of phenological synchrony in a 

predator–prey interaction: simpler is better 

 

Jip J.C. Ramakers, Phillip Gienapp & Marcel E. Visser 

 

 

ABSTRACT 

 

Recent decades have seen an increasing interest in the impact of global warming on mismatch between 

consumer and resource phenology. Most studies have focussed on the temporal synchrony between the 

dates of peak consumer demands and peak resource availability (match in dates; MD). However, Lindén 

[(2018) PNAS 115(20):5057–5059] argued that a rigorous definition of phenological synchrony should 

take into account the shape and height of the temporal phenological distributions and describe 

phenological synchrony as the degree of overlap between them (match in overlap; MO). We tested 

whether phenological synchrony is better described by MD or MO using 24 years of breeding data of 

the great tit (Parus major) and the main food source for its nestlings, caterpillars. We estimated caterpillar 

availability and nest-level food requirements on a daily basis throughout the breeding season to 

determine MO. MO and MD correlated strongly: years with high matching between peak dates showed 

the highest degree of matching in overlap. However, offspring recruitment probability, a key 

demographic parameter, correlated strongly with MD but weakly with MO. Furthermore, we identified 

MD, and not MO, as a driver for selection on egg-laying date. Thus, temporal match in peak dates has 

better explanatory power than the overlap between the phenological distributions. We argue this is 

because, unlike MD, quantifying MO is not straightforward and has to be based on non-trivial 

assumptions. We conclude that a detailed, season-wide description of resource availability is not always 

essential—or even possible—to describe important demographic processes in wild populations. 
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Introduction 

 

Organisms in seasonal environments, where the phenology of resource abundance varies 

from year to year, need to adjust their timing of reproduction to match this variation to 

ensure successful reproduction (Lepage et al. 1998; Siikamäki 1998; Verboven and Visser 

1998; Kokko 1999; Réale et al. 2003a; Smith and Moore 2005; Plard et al. 2014; Reid et al. 

2018). Recent decades have seen a growing interest among biologists in the effect of 

climate warming on changes in phenology (Visser et al. 1998; Parmesan and Yohe 2003; 

Both et al. 2004a; Durant et al. 2007; Visser 2008; Singer and Parmesan 2010; Dunn and 

Moller 2014; Plard et al. 2014). Typically, warming springs lead to an advancement in 

phenological events and these advancements occur at different rates between different 

trophic levels (Thackeray et al. 2010; Thackeray et al. 2016; Kharouba et al. 2018). The 

unequal shift in phenology between consumers and their resources, referred to as 

‘phenological mismatch’ (Cushing 1990; Stenseth and Mysterud 2002a; Durant et al. 2007), 

has in some cases been linked to directional selection on consumer phenology (Visser et 

al. 1998; Reed et al. 2013b; Marrot et al. 2018) and negative effects on consumer 

demography (Plard et al. 2014).  

In a recent response to a large-scale meta-analysis on climate change-driven 

phenological mismatch (Kharouba et al. 2018), Lindén (2018) argued that to better 

understand the demographic processes mediated by phenological mismatches, a clear and 

rigorous definition of phenological synchrony is needed. This synchrony between 

consumer and resource phenology can be described as the difference between the dates 

when the phenological distributions of consumer and resource peak (match in dates; MD). 

Most studies have used this match in peak dates as a proxy to study phenological 

synchrony (Visser et al. 1998; Thackeray et al. 2010; Reed et al. 2013b; Kharouba et al. 2018). 

A number of publications (Durant et al. 2005; Durant et al. 2007; Miller-Rushing et al. 2010; 

Lindén 2018), however, have suggested that a better measure from the consumer’s 

perspective would be the ‘area of overlap’ under the intersecting distributions of 

consumer and resource phenology (match in overlap, MO). The key argument is that 

resources may be plentiful even when peak dates are out of synchrony when the resource 

peak is either high (years with plenty of food) or wide (Miller-Rushing et al. 2010; Lindén 

2018). Conversely, even if peak dates in phenologies were well matched, overall low 

resource availability would reduce consumer fitness (Cushing 1969). Although these two 

measures of phenological synchrony will often be highly correlated (Miller-Rushing et al. 

2010; Lindén 2018), it is of interest to test which of them is most relevant for demographic 

and evolutionary processes. One important caveat is that estimating absolute food 

availability to the consumer requires important assumptions that are difficult—if not 

impossible—to verify. For example, great tits (Parus major) are highly dependent on 

ephemeral abundances of caterpillars (Lepidoptera) to feed their offspring in some regions 

(Lack 1950; Betts 1955; Royama 1970; Van Balen 1973). Even if one were able to reliably 

estimate the total amount of caterpillars available in a given area at a given point in time, 

the net amount of food available to the individual nestlings would depend strongly on 

factors such as the density of the breeding population (through competition) and the 
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spatiotemporal distribution of prey, both in size and numbers, affecting the search time 

and radius of the parents. Simply quantifying overlap between resource and demand 

assumes that what is available can be effectively used by the consumer, an assumption 

that may not be true (Pyke et al. 1977). Moreover, it assumes that we can estimate reliably 

the day-to-day required amount of caterpillar biomass, which in reality will be context 

dependent (Royama 1966; O'Connor 1975; Mertens 1977). MD, on the other hand, is free 

of such assumptions as it only requires an estimation of the date at which energy 

requirements are highest (in great tits around day 10 post-hatching (Keller and Van 

Noordwijk 1994; Mols et al. 2005)) and the date at which caterpillars are likely to be most 

abundant.  

Here, we tested which of the two quantifications of phenological synchrony—the match 

of peak dates and the phenological overlap—correlated better with selection and 

recruitment in a wild population of great tits (Parus major). Great tits in this population are 

strongly (albeit not exclusively) dependent on caterpillars (mainly Operopthera brumata 

and Tortrix viridana) to raise their offspring (Van Balen 1973), which are available to them 

over a span of a few weeks during the breeding season. Egg-laying date in this population 

is under increased directional selection due to climate warming, which has been linked to 

the decreased temporal synchrony with caterpillar abundance (Visser et al. 2006; Reed et 

al. 2013b). We used our long-term (24 years) data to construct a daily food-availability and 

food-requirement profile throughout the breeding season to estimate the overlap between 

the distributions (MO) as well as the temporal match of peak dates in phenology (MD). 

We compared models containing either or both of the metrics of phenological synchrony 

to test their importance in predicting (i) the recruitment probability of great tit nestlings 

and (ii) selection on egg-laying date of the mothers. We discuss important limitations of 

constructing food-availability and food-requirement distributions as well as the 

appropriateness of using either measure of phenological synchrony to describe ecological 

interactions between trophic levels.  

 

Results and discussion 

 

We quantified food availability throughout the season for 24 years in the Hoge Veluwe 

National Park, the Netherlands, by collecting caterpillar droppings on multiple days 

during the breeding season, which we used to calculate the biomass of caterpillars (g m–2) 

on each measurement day. Similarly, we also estimated the biomass in caterpillars 

required by great tit nestlings between 10 and 15 days old and summed these requirement 

per nestling over all nests to estimate the required caterpillar biomass for all dates 

throughout the season. We used these data to estimate the phenological overlap between 

food availability and requirements. Because availability and requirements were on 

different scales (g m–2 vs g, respectively), we rescaled both such that the total area under 

each curve equalled 1 (Fig. S5.1). The intersection of the food-abundance distribution and 

the distribution of the requirements of all nestling in the population is now the 

proportional area of overlap at the population level (MOp; see Methods and the discussion 
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below for important caveats). At the individual brood level, MOb was defined as the 

within-season-standardized amount of food available to chicks from day 10 to 15 post-

hatching for a specific brood. 

  

Figure 5.1. Coefficient of match in 
overlap (MO) against the match in 
dates (MD) in phenology at the 
population level (denoted by subscript 
p) in great tits. MOp is the proportion 
of the food requirement distribution 
overlapping with the food availability 
curve. MDp is the difference between 
the average egg-laying date + 33 days 
and the peak date of caterpillar 
biomass, where positive values 
indicate that the population on 
average bred too late relative to the 
food peak, and negative values 
indicate that it bred too early (0 = 
perfect match). Line and shading 
represent estimates and 95% 
bootstrapped CI from a beta-
regression model, accounting for 
standard errors in MDp (horizontal 
lines). 
  

Figure 5.2. Nestling survival to the next breeding season as a function of (A) MDb (i.e. the date on 
which nestlings are 10 days old minus the peak date of caterpillar biomass) and (B) MOb (i.e. food 
availability to 10–15-d-old nestlings, standardized across broods within a season). Points are 
binned raw means with their standard errors, plotted for visual purposes only, with symbol sizes 
corresponding to sample sizes (small: ≤ 100 nestlings; medium: < 100 and ≤ 1000 nestlings; large: 
> 1000 nestlings). The prediction lines and 95% bootstrapped CIs (shadings) were derived from the 
2nd (A) and 3rd (B) model in Table 5.1a, keeping other variables constant at their means. Note the 
different scaling on the y-axes.  
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The proportional phenological overlap between the curves (MOp) correlated non-

linearly with match in peak dates in phenologies (MDp; average egg-laying date + 33 days 

minus the caterpillar biomass peak date) (Fig. 5.1; beta-regression coefficients 

[bootstrapped 95% CI]: MDp: –0.045 [–0.110, 0.027]; MDp2: –0.007 [–0.013, –0.002]; pseudo 

r2 = 0.59 [0.32, 0.80]). That is, the temporal, proportional overlap between food need and 

food availability was largest in years when the date of the peak food requirements (i.e. the 

average date across broods at which nestlings were 10 days old, when demand is highest 

(Keller and Van Noordwijk 1994; Mols et al. 2005)) was well matched with the date of peak 

caterpillar availability. Therefore, we would predict that MD and MO drive offspring 

recruitment and selection on breeding time to a similar degree. 

We tested whether the survival of a nestling to recruitment (i.e. being found as a 

breeding bird in later years) correlated with either or both of the two measures of 

phenological synchrony: (i) the degree of matching between the date when chicks were 10 

days old and the peak date in caterpillar biomass (MD at the brood level: MDb) and (ii) 

MOb. We constructed Generalized Linear Mixed Models (GLMMs, with binomial errors) 

that included either MDb or MOb, or both, with other important determinants of 

recruitment (breeding density and standardized fledgling weight (Reed et al. 2013b; 

Chapter 8)) as fixed effects, and random effects of year, mother and brood ID nested within 

mother. The best model explaining variation in offspring recruitment probability 

contained MDb, including its quadratic term, but not MOb (Table 5.1a). Offspring 

 

Table 5.1. Comparison of models containing the two metrics of phenological synchrony (MD and MO) 
explaining variation in (a) P. major nestling survival to recruitment (GLMMs; n = 14535 nestlings from 
2009 broods) and in (b) standardized selection differentials for P. major egg-laying date (linear models 
weighted by the number of recruits; n = 23 years). 

Model terms AICc AICc 

(a) Offspring recruitment probability   

 wt + wt2 + dens + MDb 6579.96 2.72 

 wt + wt2 + dens + MDb + MDb2 6577.24 0 

 wt + wt2 + dens + MOb 6588.89 11.65 

 wt + wt2 + dens + MDb + MOb 6580.90 3.66 

 wt + wt2 + dens + MDb + MDb2 + MOb 6579.24 2.00 

   

(b) Standardized selection differential   

 MDp 2.28 0 

 MOp 4.88 2.60 

 MOp + HCP 7.84 5.56 

 MDp + MOp 5.12 2.84 

 MDp + MOp + HCP 8.38 6.10 
Notes: (a) wt = standardized fledgling weight; dens = breeding-pair density; MDb = brood-level phenological match in dates; 
MOb = standardized food availability to a nest (day 10–15), as a proxy for brood-level match in overlap. Random effects were 
year, mother and brood ID (nested within mother).  

(b) MDp: population-level phenological match in dates; MOp = population-level phenological match in overlap; HCP = height 
of the caterpillar peak. 
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recruitment was highest when broods with 10-d-old nestlings were close to matching with 

the peak date of caterpillar availability (Fig. 5.2a; estimate MDb [bootstrapped 95% CI]: –

0.026 [–0.042, –0.011]; MDb2: –0.001 [–0.003, –0.0003]; see also Visser et al. (2006)). 

Recruitment probability correlated significantly positively with MOb in a model that did 

not contain MDb (Fig. 5.2b; 0.115 [0.053, 0.177]), but this model performed substantially 

worse than the best model that contained MDb and MDb2 (AICc = 11.65). 

Since food availability determines offspring recruitment probability (see above; e.g. 

Durant et al. 2005; Toupoint et al. 2012; Reed et al. 2013b), reproductive success should 

decline with breeding time if the population breeds too late in relation to caterpillar 

phenology (and increase if it breeds too early). We estimated standardized selection 

differentials for egg-laying date for each year and used them as a response variable in a 

weighted linear regression model to test the performance of MDp and MOp (signed to 

match the direction of MDp), whilst also fitting the height of the caterpillar distribution to 

capture a relevant dimension of its original distribution. The best model contained MDp 

but not MOp (AICc = 2.60 to 5.56; Table 5.1b). Selection for earlier breeding intensified 

significantly (became more negative) at higher values of MDp (i.e. larger mismatch of 

peaks; Fig. 5.3a; estimate [bootstrapped 95% CI]: –0.015 [–0.032, –0.005]; r2 = 0.181 [0.016, 

0.418]). MOp, on the other hand, correlated only weakly with selection differentials (Fig. 

5.3b; estimate: –0.186 [–0.392, 0.099]; r2 = 0.083 [0.000, 0.370]; note that including the height 

of the caterpillar distribution worsened model fit: AICc = 2.96). 

Our results show that the phenological synchrony of food availability and food 

requirements can be better estimated as the differences in days between the mean 

phenologies (MD) than as the relative degree of overlap of these two distributions (MO), 

even though MD and MO correlated with one another in a predictable fashion, both at the 

population level (Fig. 5.1) and the brood level (through nest-level food availability; Fig. 

Figure 5.3. Standardized selection differentials for egg-laying date as a function of (A) MDp (0 = 

perfect match) and (B) MOp, signed to match the direction of MDp (years with negative MDp are 

coloured in blue). Symbol sizes indicate the number of recruits in each year (small: ≤ 20 recruits; 

medium: > 20 and ≤ 40 recruits; large: > 40 recruits). Lines and shadings are estimates and 95% 

bootstrapped CIs from regression models weighted by the number of recruits. 
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S5.2). One important reason why MD performed better than MO may be due to the 

logistical difficulty inherent to estimating food availability; after all, to get accurate 

estimates of phenological overlap between predator and prey (Lindén 2018), sufficient 

knowledge of resource availability (e.g. total number of prey, their size, and the 

spatiotemporal distribution of both) is required but this will be challenging in natural 

systems for various reasons. For example, to construct the food abundance throughout the 

entire breeding season we needed to extrapolate the shape of the distribution outside the 

measuring period, when the values at either the first or the last measurement were > 0 (see 

Methods for how these data were treated). Similarly, to construct a food-requirement 

distribution, we had to make assumptions about age-specific energy requirements and 

food intake rates in great tit nestlings, which may vary with context (Royama 1966; 

O'Connor 1975; Mertens 1977). Even if we assume that we managed to estimate both 

distributions with reasonable accuracy, we had to transform them both to get them on the 

same scale. This means that our measure of MO was now not an absolute measure of 

overlap (MOp), which has been argued to matter most in consumer–resource interactions 

(Durant et al. 2007; Miller-Rushing et al. 2010; Lindén 2018). We attempted to get around 

this problem in our analysis of selection on egg-laying date by fitting the absolute 

maximum height of the caterpillar distribution (as a proxy for total biomass in the season) 

to correct for the lack of dimension in MOp. In our analysis of offspring recruitment, we 

standardized food availability across broods such that it became a measure of what was 

available relative to other broods in that year. The latter approach (MOb) may appear more 

useful than MOp since it provided a more direct measure of overlap and it indeed 

correlated with offspring recruitment probability in the predicted direction (Fig. 5.2b). In 

the model comparison, MOb was nevertheless statistically outperformed by temporal 

match of peaks (MDb). Importantly, while MOb does not suffer from the same scaling issue 

as MOp, it still assumes that whatever amount of food is available on a given day will be 

effectively available to the great tit nestlings, ignoring issues of parental search and 

travelling time. We therefore show that MD in our system is a better quantification of 

phenological synchrony than MO. 

Our findings echo previous work that highlight match of peak dates in phenology as 

an important factor influencing mother and offspring fitness (Vatka et al. 2011; Reed et al. 

2013b; Chevin et al. 2015). We do not argue that this will necessarily be true in all study 

systems: in species that are not highly dependent on a single food type, or whose food 

does not exhibit a well-defined, seasonal distribution, demographic processes will either 

depend more strongly on MO or on neither MD nor MO (Durant et al. 2005; Dunn et al. 

2011). However, studies reporting fitness and demographic consequences in this context 

so far have generally used (proxies of) MD to quantify phenological mismatch and 

reported reduced fitness in years when temporal mismatch was high (Plard et al. 2014; 

Regular et al. 2014; Arlt and Pärt 2017; Marrot et al. 2018). Durant et al. (2005), on the other 

hand, quantified effects of MD and food abundance on population indices of reproductive 

success in three study systems and found that in two of them food availability was a better 

predictor than MD. In one of these two systems (Soay sheep Ovis aries), however, food (i.e. 

vegetation, indicated by integrated NDVI) was weakly seasonal, whereas in the other 

system (Atlantic puffins Fratercula arctica and herring Clupea harengus) an incomplete 
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measure of fitness (i.e. the number of fledged chicks) was used (Durant et al. 2005), making 

these studies not totally comparable to ours. There is hence no a priori expectation as of yet 

that consumer–prey interactions in other highly seasonal environments should be 

critically different from that of the great tits reported here. 

Lindén (2018) ends his commentary with the recommendation that instead of focussing 

solely on temporal, phenological synchrony (e.g. of peak dates) to describe ecological 

interactions between trophic levels, we should also incorporate information on 

abundances across the season. While we agree with the underlying logic, we show that 

phenological match in peaks is in fact a reliable proxy describing demographic processes 

in a system in which the consumer is strongly dependent on highly ephemeral prey. The 

important advantage of using MD to quantify phenological synchrony is that it requires a 

comparatively straightforward way of collecting data that, in any case, will be more 

accurate than any approximation of absolute food availability. This is because MD ‘only’ 

requires sampling food (e.g. per unit area) at regular time intervals, preferably across 

multiple sites within the study area, spanning a wide enough range to be able to estimate 

when abundance peaks. As we have shown here, we can attempt to develop proxies of 

phenological overlap (MO) but our expectation is that in many contexts MD will be a more 

effective and less biased measure of phenological synchrony. 

We encourage other researchers of long-term population studies of species highly 

dependent on an ephemeral food source to start collecting the data necessary to quantify 

MD. It is these long-term data that will enable us to understand the long-term population 

consequences of phenological mismatch under a changing environment (Visser 2008; 

Clutton-Brock and Sheldon 2010). 

 

Methods 

 

Data collection 

We made use of 24 years (1994–2018, excluding 1997; see Estimating food availability and 

food requirement for justification) of data on caterpillar availability and great tit (Parus 

major) breeding data at the Hoge Veluwe National Park (HV; 52°02′07″ N, 5°51′32″ E, 

central Netherlands). In this area, approximately 400 nest boxes are available for great tits 

and other hole-breeding passerines to nest, and the whole reproductive cycle from egg 

laying to fledging of chicks is monitored. Adults are captured at the nest and identified by 

means of aluminium leg bands during the chick-provisioning stage. Chicks are banded 

and weighed on day 15 post-hatching, which is close to the date of fledging. 

During the breeding season, the caterpillar biomass are estimated by putting up two 

frass nets (cheese cloths) underneath 15 pedunculate oak (Quercus robur) trees spread 

across the 171-ha study area (see Visser et al. 2006 for details). These nets capture the 

droppings (frass) of caterpillars (mostly winter moth (Operopthera brumata) and oak leaf 

roller (Tortrix viridana)) present in the trees. Nets are usually deployed from mid-April to 

mid-June, and sampled every 3–4 days. Caterpillar droppings are collected, dried at 60˚C 
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for 24h, and sorted (i.e. debris removed). The dried droppings are then used to calculate 

the caterpillar biomass whilst correcting for daily temperatures (which affect caterpillar 

growth) using the equation in Tinbergen and Dietz (1994), which correlates well with 

biomass obtained from branch samples (Visser et al. 2006). Biomass is first averaged per 

tree and then across sampling trees to get grams of biomass per square meter for the date 

which falls in the middle of the sampling days. 

 

Estimating food availability and food requirement 

To estimate caterpillar biomass on a daily basis, we used a smooth-spline technique with 

maximal degrees of freedom to interpolate biomass between measuring days. With this 

method, biomass outside the measuring period is predicted as a linear function, adopting 

the slope estimated from the last (or first, depending on the side of the curve) interpolation 

point. In most years, predicted biomass would therefore linearly decline toward zero. In 

some years, however, the slope at the last or first interpolation point was slightly positive, 

leading to an upward prediction of caterpillar biomass at the both ends of the food curve; 

if this was the case, we arbitrarily set biomass beyond the first or last measuring point to 

zero. We believe this is a reasonable approach, since in most years the frass sampling 

scheme started and ended when apparent biomass was (close to) zero. An exception was 

1997, where sampling started when caterpillar biomass was clearly on the rise, so we 

discarded this year from our analyses.  

To estimate nestling food requirements we summed up the needs of every great tit 

nestling from first broods from age 10 to 15 days post-hatching. We chose this period for 

two reasons. First, energy requirements and intakes are highest from around day 10 

onward (Royama 1966; Keller and Van Noordwijk 1994; Mols et al. 2005). Second, since 

much of nestling mortality takes place within the first week after hatching (e.g. Nur 1984), 

restricting the dataset to day 10–15 gives us confidence that brood size on day 15 (when 

they are banded and measured) in most cases accurately reflects the number nestlings 

present from day 10 to 15. We used the observed, age-specific energy intake as estimated 

by Mols et al. (2005) and Royama (1966) as a proxy for required energy intake from day 10 

to 15 (kJ nestling–1 day–1; see Figure 1 in Mols et al. (2005)). Note that other factors than age 

(e.g. ambient temperature) may affect metabolic rates and hence the required energy 

intake (Royama 1966; O'Connor 1975; Mertens 1977), but we assume here that these factors 

average out in the estimates derived from Mols et al. (2005) and Royama (1966). We 

divided the required energy intake by the energy content of caterpillars (21.4 kJ g–1 dry 

weight (Bell 1990)) to get the dry biomass of caterpillar required per nestling per day. 

Assuming 80% wet mass in caterpillars (Bell 1990), we multiplied the dry biomass by 5 to 

get the total required biomass, which amounted to 3.97, 4.21, 4.37, 4.49, 4.51 and 4.51 g 

nestling–1 day–1 from day 10 to 15, respectively. This agrees reasonably well with the 

estimated mean caterpillar intake of 4.66 g nestling–1 day–1 in great tit broods with nine 

nestlings found by Gibb and Betts (1963). Daily estimates of food requirements were 

summed across broods to create a food requirement distribution for all great tit nestlings 

in the study area.  
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One definition of phenological match is the degree of overlap between the food 

requirement and availability distributions (Durant et al. 2007; Miller-Rushing et al. 2010; 

Lindén 2018). The idea behind it is that even when peak dates differ, the population may 

not be mistimed because food is still plentiful. However, food availability and 

requirements are on a different scale (g m–2 vs g, respectively).We therefore scaled both 

food availability and requirement as a proportion of the total in a given season, such that 

the integral under each curve equalled 1 (Fig. S5.1). Relative overlap was then determined 

as the integral of the overlapping area (Miller-Rushing et al. 2010) (see Results and 

Discussion for issues with this approach). In subsequent analysis (selection on laying date; 

see below), we corrected for the loss of dimension using the absolute maximum height of 

the caterpillar distribution. 

 

Analysis 

We compared the performance of the two main measures of phenological match—i.e. the 

temporal synchrony in days between the peak dates of the food needs and the food 

availability curves (or MD) and the amount of overlap between the food availability and 

requirement curves (MO) in explaining (a) recruitment probability and (b) the strength of 

selection.  

(a) Offspring recruitment probability. We fitted a generalized linear mixed-effects model 

(GLMM, package 'lme4' (Bolker et al. 2009; Bates et al. 2018)) with a binomial error 

structure to model nestling recruitment (survival to breed in the next year) for each brood 

that had nestlings on days 10–15 (n = 14535 nestlings from 2009 broods, excluding broods 

that failed during egg-laying, incubation or early nestling stages, and excluding the year 

2018 for the lack of recruitment data). We fitted five different models to assess the relative 

importance of MD and MO, whilst controlling for the density of breeding pairs (Reed et 

al. 2013b) and the linear and squared terms of fledgling weight, standardized across 

broods within a season (recruitment probability increases with fledgling weight but falls 

in the heaviest fledglings; Chapter 8): (i) “+ MDb” (i.e. brood-level MD: the difference 

between the date at which the chick are 10d old and the peak date in caterpillar biomass); 

(ii) “+ MDb + MDb2” (because we would expect recruitment probability to peak around MD 

~ 0); (iii) “+ MOb” (i.e. brood-level MO: the total amount of food available to a given brood 

from day 10 to 15, standardized across broods within a season); (iv) “+ MDb + MOb”; (v) 

“+ MDb + MDb2 + MOb”. Random effects were year, female and brood identity (nested 

within the female’s identity, to account for multiple breeding attempts by the same female 

across years). Variance inflation factors (VIFs) confirmed that multicollinearity was not an 

issue in our data (VIF ≤ 1.17). Since we fitted models with similar degrees of freedom, we 

compared them using Akaike’s Information Criterion corrected for small samples (AICc) 

to assess whether MDb outperformed MOb or vice versa (models within 2 AICc units from 

the top-ranked one were considered competitive (Burnham and Anderson 2002)). To 

assess ‘significance’ of MDb and MOb, we obtained the estimates from the most 

parsimonious model containing the variable of interest and calculated bias-corrected and 

accelerated (BCa) 95% confidence intervals (DiCiccio and Efron 1996) with 1000 iterations. 
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(b) Selection on egg-laying date. To test the effect of MD and MO on selection on egg-

laying date, we first estimated annual selection differentials. We used all females’ first 

broods that were not experimentally manipulated (n = 2054 broods from 23 years, 

excluding 2018 for the lack of recruitment data). Standardized selection differentials (𝑠′) 

were estimated as the covariance of individual relative fitness (w, the number of recruits 

divided by the mean number of recruits across females) with the standardized egg-laying 

date (z): 𝑠′ = 𝑐𝑜𝑣(𝑤, 𝑧)/𝜎𝑧 (Lande and Arnold 1983). 

With the standardized selection differential 𝑠′ in place, we fitted a linear model (n = 23 

years) to assess the relative importance of population-level MD (MDp) and MO (MOp) on 

𝑠′, weighting data points by the number of recruits produced in a given year to account 

for the uncertainty in the estimation of 𝑠′. We also fitted height of the caterpillar 

distribution at its peak (HCP) because the expectation was that the effect of the overlap 

coefficient (MOp) needed to be corrected for the loss of dimension in the rescaling process. 

We compared five models: (i) “MDp”; (ii) “MOp”; (iii) “HCP + MOp”; (iv) “MDp + MOp; (v) 

“MDp + MOp + HCP”. MDp is different from MDb in the GLMM in that it is the estimated, 

rather than the observed, MD. This is because females make the decision to start egg laying 

approximately a month before nestling demands peak (Visser et al. 2004a); some nests may 

fail well before that time, precisely because they mistimed their reproduction. We defined 

population MDp as the population-mean laying date in that year plus 33 days (see ref. 

Chevin et al. 2015) minus the caterpillar peak date, where negative and positive values of 

MDp indicate that the population bred on average too early or too late, respectively, with 

respect to the peak date of caterpillar biomass. The overlap coefficient (MOp) was signed 

such that it matched the sign of MDp. The reason we signed MOp is that it should matter 

for the selection differential whether overlap was in a positive or negative direction. The 

relative importance of both metrics was judged using AICc as above. Significance of MDp 

and MOp was assessed using the bootstrapped 95% CIs as above (i.e. BCa, 1000 iterations). 
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Supplementary Information S5 

 

 

 

Figure S5.1. Relative availability of caterpillars (blue dots) and food requirements of Parus major 
nestlings (orange dots) throughout the breeding season in 24 years at the Hoge Veluwe National Park. 
Values are scaled such that the area under the curve equals 1 for both curves (see main text for details). 
Black crosses indicate actual caterpillar sampling days. 
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Figure S5.2. Brood-level, within-season-standardized food availability from nestling day 10 to 15 (i.e. 
brood-level MO) plotted against the brood-level match in peak dates (caterpillar peak date – date at 
chick age 10d). Broods that were well matched with the food peak (MDb = 0) had access to most food 
relative to other broods that were either too early (MDb < 0) or too late (MDb > 0).
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Chapter 6  

 

Quantifying individual variation in reaction norms:  

mind the residual 

 

Jip J.C. Ramakers, Marcel E. Visser & Phillip Gienapp 

 

 

ABSTRACT 

 

The study of phenotypic plasticity is a central topic in ecology and evolution. Individuals may differ in 

the degree of plasticity to the environment at the phenotypic (individual-by-environment interaction or 

I×E) or at the genetic level (G×E), which has implications for the capacity of populations to respond to 

selection. The number of studies of plasticity in behavioural or life-history traits from wild populations 

is increasing with the advent of powerful random regression models (RRMs) available to ecologists. 

Evidence for the presence of I×E or G×E is however mixed, differing between species, populations, and 

even between studies on the same population. One important source of discrepancies between studies 

lies in the treatment of heteroscedasticity in residual variance. To date, there seems to be no collective 

appreciation of its influence on the estimation of I×E and G×E or a consensus on how to best approach 

it among ecologists. To this end, we performed RRMs with differing residual variance structures on 

simulated data with varying degrees of heteroscedasticity, sample size and environmental variability 

to test under which scenarios RRMs would be able to correctly identify I×E. The chosen residual 

structure in the RRMs affected the precision of estimates of I×E as well as the probability of statistically 

detecting it, with substantial overestimation and lack of precision when sample size, environmental 

variability and variance in I×E were small. We show that model comparison using information criteria 

(e.g. AIC or DIC) can be used to choose the best residual structure, and reinforce this point by analysis 

of real data of two study populations of great tits (Parus major). We stress, however, that small sample 

sizes can be problematic and RRMs with heterogeneous residual variances on such data may be prone 

to overfitting. We provide a set of guidelines that can be used by ecologists studying of I×E (and G×E) 

that, ultimately, will hopefully lead to a reduction in bias in the literature. 
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Introduction 

 

Behavioural and evolutionary ecologists have long been interested in studying within-

individual variation in animal behaviour and life history (Piersma and Drent 2003; 

Dingemanse et al. 2010). For example, the amount of parental care may be altered by 

offspring needs and explorative behaviour may depend on the time of day (Dingemanse 

et al. 2010). Similarly, life-history decisions such as clutch or litter size and timing of 

reproduction are responsive to the environment, e.g. food availability or local 

temperatures (Both et al. 2000; Réale et al. 2003b; Brommer et al. 2008; Chapter 10). Many 

labile traits are thus phenotypically plastic (Schlichting and Pigliucci 1998; Pigliucci 2001), 

and this plasticity is thought to be adaptive in many contexts because it allows organisms 

to track phenotypic optima that vary with the environment (Scheiner 1993). 

Phenotypic plasticity can be described by reaction norms (Woltereck 1909), that is, the 

function describing the phenotypic response the environment. Often, these reaction norms 

are (assumed to be) linear, meaning that they can be described by an intercept or elevation 

(i.e. the trait value in the average environment) and a slope (i.e. the sensitivity of the trait 

to the environment), although in certain cases the phenotypic response to the environment 

may be nonlinear and hence have a reaction norm with an additional component related 

to ‘curvature’ (Morrissey and Liefting 2016). Animals may differ consistently from their 

conspecifics in their mean behaviour (reaction norm elevation) across contexts 

('behavioural syndromes' or 'animal personality'; e.g. Réale and Dingemanse 2010; Dall et 

al. 2012), but they may also differ in the degree of phenotypic plasticity (individual-by-

environment interactions or I×E, caused by differences in slopes between individuals), 

leading to changing variances in phenotypic expressions across the environmental 

gradient (Nussey et al. 2007). When these variances have a genetic basis (gene-by-

environment interactions or G×E) this may impact on how populations can respond 

evolutionarily to environmental change (Merilä et al. 2001b; Turelli and Barton 2004; 

Kokko and Heubel 2008; Wood and Brodie III 2016; but see Chapter 9). It is hence 

important to study variation in reaction norms to understand ecological and evolutionary 

processes in wild populations (Piersma and Drent 2003; Dingemanse et al. 2010). 

Mixed-modelling approaches have been advocated as powerful tools to study 

individual (or genetic) sources of phenotypic variation in natural populations (Nussey et 

al. 2007; Bolker et al. 2009; Van de Pol and Wright 2009; Wilson et al. 2010; Dingemanse 

and Dochtermann 2013). Random regression models (RRMs) are a special case of mixed-

effects models that allow different individuals to have different intercepts (trait value in 

the average environment) as well as different slopes (estimate of the regression of the 

phenotype against the environment) of the reaction norm (Nussey et al. 2007; Dingemanse 

and Dochtermann 2013). Phenotypic variance in a particular environment can be 

partitioned into a component attributable to variance in intercepts and slopes (Morrissey 

and Liefting 2016). RRMs can be further extended to include an additive genetic effect (e.g. 

via a pedigree; Henderson 1988; Kruuk 2004) in a so-called ‘random regression animal 

model’ (RRAM), allowing one to partition I×E into a permanent-environment (i.e. 

phenotypic) component (PE×E) and an additive genetic component (G×E). These methods 
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have been widely used in the evolutionary literature to study the evolutionary potential 

of a variety of behavioural and life-history traits (see Gienapp and Brommer (2014) and 

appendix S1 in Van de Pol (2012) for relevant overviews). 

The advantages of RRM/RRAM notwithstanding, there are several issues that can lead 

to misleading conclusions when modelling variation in plasticity (here for simplicity 

referring to I×E, as opposed to PE×E or G×E). First, in this non-exhaustive list, statistically 

uncovering I×E greatly hinges on the sampling design of the study and the total sample 

size (Martin et al. 2011; Van de Pol 2012). Van de Pol (2012) showed that studies reporting 

evidence for I×E (mostly life-history traits) generally had large sample sizes (typically > 

1000), whereas those that did not report evidence for I×E (mostly behavioural traits) had 

low sample sizes (typically a few hundred). This means that there is quite likely a bias in 

the behavioural literature towards a lack of I×E attributable to the lack of data. Second, I×E 

can only be statistically detected if an appropriate (approximation of the) environmental 

covariate (the ‘cue’ affecting the phenotype) is studied (Gienapp 2018). For example, 

Charmantier et al. (2008) did not report I×E for phenology in response to temperature 

(‘warmth sum’) in a UK great tit (Parus major); however, a reanalysis of the same dataset 

with a different covariate (mean spring temperature) revealed the presence of I×E (Husby 

et al. 2010). In the absence of a known environmental driver, phenotypic means have been 

shown to perform well as a proxy for the environment in the animal- and plant-breeding 

literature (Lynch and Walsh 1998), and Gienapp (2018) showed by simulation that this 

method can be deployed effectively in ecology and evolution as well (see Chapter 9 for a 

practical application). Third, environmental trends in phenotypic variance may be caused 

by heterogeneity in residual variance and not by I×E. For example, Husby et al. (2010, 2011) 

reported I×E in phenology in a Dutch population of great tits, but this result could not be 

replicated by Ramakers et al. (Chapter 10), most likely attributable to the residual structure 

of the RR(A)Ms. 

In this study, we focus on the third problem, i.e. modelling residual variance. We refer 

to residual variance as the amount of within-individual phenotypic variance left 

unexplained by the statistical model. This variance is sometimes regarded as ‘nuisance’ 

hampering biological predictions, but it has been argued that the residual component in 

fact contains biologically relevant information (Cleasby and Nakagawa 2011; Nicolaus et 

al. 2013; Westneat et al. 2015) that, nevertheless, may cause erroneous inferences of 

variation in plasticity if not appropriately modelled. Nicolaus et al. (2013) found that out 

of 26 studies of I×E in behavioural and life-history traits, only 5 allowed for heterogeneity 

in the residual variances (all but one in life-history traits) and concluded for their own 

study (clutch size in great tits in response to population density) that a RRM with 

heterogeneous residual variances outperformed a model with homogeneous residual 

variance. Similarly, Ljungström et al. (2015) found that variation in plasticity in laying date 

in response to temperature in the sand lizard (Lacerta agilis) disappeared when residuals 

were allowed to vary with the environment. Although sample size in this study might 

have played a role in the apparent lack of I×E, Ljungström et al. (2015) fitted a residual 

variance for each environment (year), which may have led to severe overfitting of the 

model. In contrast, Husby et al. (2010) let residual variances only differ between three year 

groups in a RRM estimating variation in plasticity in laying date in great tits. The rationale 
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was that because phenotypic variance in laying date increased with temperature, and 

temperature increased over time due to climate change, fitting decade-specific residual 

variances would capture the heteroscedasticity in the RRM, an assumption that was later 

found to be false (see discussion in Chapter 10). Not all evolutionary ecologists may be 

aware of this issue or, if they are, may be uncertain as to how to proceed if they suspect 

their data to have heteroscedasticity. 

The ‘problem’ of heteroscedasticity has long been recognized in the field of animal 

breeding (Hill 1984). Although the biological importance of the residual variance is 

increasingly appreciated in the field of ecology and evolution (Nicolaus et al. 2013; 

Westneat et al. 2015), there appears to be no clear consensus for evolutionary ecologists 

for assessing whether and how heteroscedasticity may affect estimates of variation in 

plasticity (I×E) and how it should be dealt with within the context of random regression 

models (but see Cleasby and Nakagawa 2011). If one is interested in the evolutionary 

potential of the reaction norm in wild populations (see e.g. Gienapp and Brommer 2014), 

the main goal is usually to get unbiased estimates of I×E and G×E. To achieve this, 

behavioural and evolutionary ecologists can make use of advocated mixed-modelling 

tools (Nussey et al. 2007; Dingemanse and Dochtermann 2013) and use ‘basic’ random 

regression models in such a way that it effectively accounts for heterogeneity in residual 

variances. Alternatively, more sophisticated (and complex) tools are available, e.g. ‘double 

hierarchical generalized linear models’ (DHGLM; Lee and Nelder 2006; Rönnegård et al. 

2010), which have permeated the ecology and evolution literature to some degree 

(Westneat et al. 2012; Mulder et al. 2016b) and may be preferred for certain research 

questions. Here, however, we focus on accurate estimation of variation in reaction norms; 

fitting heterogeneous residual variances in RRMs should be effective at achieving this but, 

as pointed out above, a consensus on how to use RRMs in this context and an 

understanding of how and when heterogeneity in residual variance may affect the 

accuracy of estimates of I×E (or G×E) is lacking.  

In this study, we use a (non-exhaustive) simulation approach to investigate how 

estimates of I×E, and the statistical power to detect it, are affected by heterogeneity in 

residual variance that is not appropriately accounted for in the model, and how this effect 

is mediated by several different characterisations of the data, including the number of 

environments, the number of observations per environment, the variability in the 

environment, the amount of variation in reaction norm slopes, and the strength of the 

association between residual variance and the environment. The aim here was to illustrate 

in which contexts heteroscedasticity is likely to be problematic in the estimation of I×E and 

how different residual structures in the random-regression model deal with this 

heteroskedasticity. Next, we show by simulation how a conventional tool for model 

selection (Akaike’s Information Criterion) performs in detecting heteroskedasticity in the 

absence of I×E and vice versa. Previous simulation studies have demonstrated how 

sampling design and size (Martin et al. 2011; Van de Pol 2012) and the choice of the 

environmental covariate (Gienapp 2018) affect the statistical power and predictive 

accuracy in detecting I×E, and we therefore do not fully explore the details of these aspects 

here. Finally, we tested how the methodology applied in the simulations perform in the 

analysis of the phenology (egg-laying dates) of two long-term study populations of the 
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great tit (Parus major). We use the results of our simulations and empirical analysis to 

extend existing guidelines for students of behavioural and life-history phenotypic 

plasticity using random-regression models by shifting the focus on heterogeneity in 

residual variances. 

 

Methods 

 

Random regression models 

A univariate mixed model describing the relationship between trait z and environment x 

can be written as  

 

𝑧𝑖𝑗 = 𝑎 + 𝑎𝑖 + 𝑏𝑥𝑖𝑗 + 𝑒𝑖𝑗,         (6.1) 

 

where 𝑧𝑖𝑗 is the jth phenotype of the ith individual and the linear function of 𝑧𝑖𝑗 on 

environment 𝑥𝑖𝑗 is characterised by the population-mean intercept a plus the individual 

deviation 𝑎𝑖, the population-mean slope b and the error term 𝑒𝑖𝑗. The random intercept 𝑎𝑖 

and the error term 𝑒𝑖𝑗 are both drawn from a normal distribution, where 𝑎𝑖~𝑁(0, 𝜎𝑎
2) and 

𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2). In random regression models (RRMs), each individual is allowed to not only 

have a different intercept, but also a different slope 𝑏𝑖, so that eqn. (6.1) is rewritten as 

 

𝑧𝑖𝑗 = 𝑎 + 𝑎𝑖 + (𝑏 + 𝑏𝑖)𝑥𝑖𝑗 + 𝑒𝑖𝑗,        (6.2a) 

 

where 𝑎𝑖 and 𝑏𝑖 are assumed to be drawn from (multivariate) normal distributions such 

that  

 

[
𝑎
𝑏
]
𝑖
~𝑁([

0
0
] , [

𝜎𝑎
2  𝜎𝑎,𝑏

𝜎𝑎,𝑏 𝜎𝑏
2 ]

𝑖

). 

 

The error term in eqn. (6.2a) can be drawn from a univariate normal distribution as above, 

but may sometimes itself be described by some function of the environment such that 

 

𝑧𝑖𝑗𝑘 = 𝑎 + 𝑎𝑖 + (𝑏 + 𝑏𝑖)𝑥𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘,        (6.2b) 

 

where k denotes a group categorizing similar environments (e.g. groups of years with low, 

intermediate and high temperatures). The error term is then assumed to be drawn from 

independent, multivariate normal distributions such that 
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𝑒𝑖𝑗𝑘~𝑁([
0
⋮
0
]

𝑖𝑗

, [
𝜎𝑒,1
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑒,𝑘

2
]

𝑖𝑗

). 

 

Note that in reality, e is more likely to vary with x in a more continuous and gradual 

fashion (whether linearly or not). When error variance (𝜎𝑒
2) varies with x in a directional 

fashion (e.g. a linear increase of decrease), the model of eqn. (6.2a) will likely fail to 

estimate variation in reaction norm slopes (𝜎𝑏
2) accurately (i.e. the estimate will be inflated 

because the RRM may ‘force’ reaction norms to merge at one end of the range of x and 

expand at the other). The model of eqn. (6.2b) should in this case be more appropriate. In 

empirical datasets, however, we can measure the association between phenotypic 

variation (𝜎𝑧
2) and the covariate of interest (x) but it will be unclear from the surface 

whether this association is attributable to heterogeneity in 𝜎𝑒
2, 𝜎𝑧

2 or both. 

 

Simulation objective 1: effect of residual variance structure on estimates and detection rates of I×E 

We tested with simulated data whether the estimation of variance in reaction norm slopes, 

as well as the statistical power to detect it, differed between models with a homogeneous 

and heterogeneous residual structure. Specifically, we tested whether this difference was 

mediated by the following factors (see Table 6.1): (1) the mean number of observations per 

individual (No), (2) the total number of different environments (Nx), (3) the variability in 

the environment (𝜎𝑥
2), (4) the variation in slopes (𝜎𝑏

2), and (5) the stepwise deviations in 

environment-specific residual variances (Δ𝜎𝑒
2) from the mean 𝜎𝑒

2 across environments, 

used to create a correlation between phenotypic variance (𝜎𝑧
2) and the environment (x) due 

to heterogeneity in 𝜎𝑒
2 (see below). Every combination of parameters (Table 1) was 

simulated 2000 times. 

Environments (X) were randomly drawn from a normal distribution, 𝑥𝑗~𝑁(0, 𝜎𝑥
2). Each 

environment was grouped into one of five equal-interval classes k and received an 

associated expected 𝜎𝑒
2 using equal-interval deviations from 10 (Δ𝜎𝑒

2; Table 6.1) to create 

an association between phenotypic variance and the environment, such that 

 

𝑒𝑖𝑗𝑘~

{
 
 

 
 
𝑁(0, (10 − 2Δ𝜎𝑒

2)) if 𝑥𝑖𝑗𝑘 ∈ [min(𝑋) , 𝑁𝑥/5)

𝑁(0, (10 − Δ𝜎𝑒
2))   if 𝑥𝑖𝑗𝑘 ∈ [𝑁𝑥/5,𝑁𝑥/5 ∙ 2)

𝑁(0, (10))         if 𝑥𝑖𝑗𝑘 ∈ [𝑁𝑥/5 ∙ 2, 𝑁𝑥/5 ∙ 3)

𝑁(0, (10 + Δ𝜎𝑒
2))   if 𝑥𝑖𝑗𝑘 ∈ [𝑁𝑥/5 ∙ 3,𝑁𝑥/5 ∙ 4)

𝑁(0, (10 + 2Δ𝜎𝑒
2)) if 𝑥𝑖𝑗𝑘 ∈ [𝑁𝑥/5 ∙ 4,max(𝑋)]

 , 

 

where X is the vector containing all environments. For example, Δ𝜎𝑒
2 = 0.1 yields expected 

𝜎𝑒,𝑗
2  of 9.8, 9.9, 10.0, 10.1 and 10.2 for the five environmental groups (i.e. low heterogeneity 

in 𝜎𝑒
2), whereas Δ𝜎𝑒

2 = 2 yields expected 𝜎𝑒,𝑗
2  of 6, 8, 10, 12 and 14 (i.e. high heterogeneity 
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Table 6.1. Parameter input in the simulation testing the effect of the residual variance structure in the 
RRMs to detect variation in reaction norm slopes. 

Parameter Description Tested values 

1. No Number of observations per individual 2, 5 

2. Nx Number of different environments (years) 20, 40 

3. 𝜎𝑥
2 Variance in the environment 1, 2, 3 

4. 𝜎𝑏
2 Variation in reaction norm slopes 0.003, 0.3, 1.0 

5. Δ𝜎𝑒
2 

 

 

 

 

 

 

 

  

Equal-interval deviation of four residual variances (𝜎𝑒
2) 

from the average 𝜎𝑒
2 across environments (here 10), used 

to create a correlation between phenotypic variance (𝜎𝑧
2) 

and the environment (X). For example, if Δ𝜎𝑒
2 = 0.1, 

expected 𝜎𝑒
2 in five (k; eqn. 6.2b) groups of environments 

is 9.8, 9.9, 10.0, 10.1, 10.2, i.e. low heterogeneity in realised 
𝜎𝑒
2.  

(The tested values for Δ𝜎𝑒
2 led to mean [95% CI] realised 

correlations between 𝜎𝑧
2 and X of 0.04 [–0.53, 0.56], 0.18 [–

0.42, 0.65], 0.35 [–0.273, 0.74] and 0.56 [0.00, 0.85], 

respectively, calculated across scenarios.) 

0.1, 0.5, 1, 2  

 

 

 

 

 

 

  

 

 

in 𝜎𝑒
2). We opted for this method because the alternative, i.e. drawing 𝜎𝑒,𝑗

2  based on a given 

correlation with xj (e.g. Gienapp 2018), did not strongly drive the correlation between 𝜎𝑧
2 

and x, which is what we were ultimately interested in (see Table 6.1 for the mean realised 

correlations between 𝜎𝑧
2 and x). Each individual (N = 500) with No observations was 

randomly assigned to a breeding cohort within the range of X. Individuals randomly 

received a value for the intercept (ai) and slope (bi) (population mean = 0 for both) and their 

phenotypes in environment xj were determined following eqn. (6.2b), with 𝑒𝑖𝑗𝑘 drawn 

from the kth environmental group as described above. We varied 𝜎𝑏
2 (Table 6.1) but fixed 

𝜎𝑎
2 to 3; the covariance between a and b was assumed to be zero. The three scenarios for 𝜎𝑏

2 

were chosen based on the estimates gained from studies listed in Table 3 in Nicolaus et al. 

(2013), which we used to derive the slope variance in proportion to the intercept variance. 

That is, for all studies that fitted a model on data on the original (non-standardized) scale 

and reported estimates of �̂�𝑎
2 and �̂�𝑏

2 (20 pairs of estimates from 6 studies) we divided the 

�̂�𝑏
2 by �̂�𝑎

2 and deduced from that 0.001, 0.1 and 0.33 as small, intermediate and large 

proportions of slope variance in relation to intercept variance (resulting in input 𝜎𝑏
2 values 

of 0.001∙3, 0.1∙3 and 0.33∙3, respectively; Table 6.1). 

With simulated environments and phenotypes in place, we fitted RRMs with five 

different variance structures, using the package ‘nlme’ (Pinheiro et al. 2017). Model 1 had 

homogeneous residual variance (eqn. 6.2a); the residual structure in the next four models 

were variations of eqn. (6.2b). For Model 2 and 3, environments were categorized into Nx/5 

or Nx/10 equal-interval groups of similar environments, respectively, and estimated 

residual variance �̂�𝑒
2 was partitioned accordingly to capture environmental trends. For 

Model 4 and 5, environments were again categorized into Nx/5 or Nx/10 groups, but this 

grouping was done based on consecutive environments, rather than similar environments 
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(i.e. ignoring the association between 𝜎𝑒
2 and x); since X was drawn from a random 

distribution, the grouping thus occurred randomly. Models 4 and 5 served as ‘controls’ to 

test whether a heterogeneous residual structure per se affects model performance (note 

that the number of degrees of freedom, i.e. the difference in the number of parameters, 

increases with each additional residual variance). 

From each model we extracted the estimated variance in reaction norm slopes (�̂�𝑏
2). To 

test the significance of the variance in slopes, we compared each model to a random-

intercept model (but keeping the same residual variance structure) with a likelihood-ratio 

test with 1 degree of freedom. We extracted the proportion of tests with p < 0.05 from the 

2000 simulation runs. 

 

Simulation objective 2: distinguishing heterogeneous residual variance from I×E 

When environmental heterogeneity in phenotypic variance (𝜎𝑧
2) is present in the data, the 

question is whether RRMs can be used to disentangle whether this is caused by 

heterogeneity in 𝜎𝑒
2, I×E (fanning reaction norms), or both. In the second simulation, we 

repeated the analysis of above but focused specifically on relative model performance. We 

fixed No to 5, Nx to 40 and 𝜎𝑥
2 to 2. We simulated six scenarios, i.e. all combinations of 𝜎𝑏

2 =

0.01 or 0.7 and Δ𝜎𝑒
2 = 0.1, 1 or 2 (i.e. low to high correlation between x and 𝜎𝑧

2; Table 6.1), 

and assessed relative model performance using Akaike’s Information Criterion (AIC; 

Burnham and Anderson (2002)). The rationale was that if, for example, heterogeneity in 

𝜎𝑒
2 was present but I×E was not, a RRM with a homogeneous residual structure (eqn. 6.2a) 

may perform better (i.e. have a higher penalized likelihood) than a random-intercept 

model that incorporated a heterogeneous residual structure. In such a scenario, one would 

erroneously conclude that there was I×E while in reality there was not. Note that the 

reverse could equally be true.  

We fitted Models 1 to 3 as well as their random-intercept counterparts as described 

above. For simplicity, we regarded the best fitting model as the most parsimonious one 

(i.e. with the fewest degrees of freedom) within 2 AIC units from the model with the lowest 

AIC value (but see caveats in Richards 2005, 2008; Burnham et al. 2011). 

 

Applying RRMs with different residual structures to real data 

As a last step we aimed to illustrate how different treatments of the residual variance in 

RRMs affected estimates of I×E in real data, and how model selection criteria in this context 

can provide misleading conclusions as to the presence of I×E. We used data of egg-laying 

dates of first clutches in two of our long-term study populations of the great tit (P. major): 

that of the Hoge Veluwe (HV; 52°01'57"N 5°52'05"E) and the Dutch island of Vlieland (VL; 

53°18′N, 5°03′E). In these populations, great tit breeding has been monitored using ~400 

and ~500 nest boxes, respectively, since 1955. Briefly, every season (April–June) boxes are 

checked at least weekly to monitor laying dates, clutch sizes, and number of fledged 

chicks. Each chick is equipped with a leg ring with a unique identifier, as are the parents, 

which are captured at the nest box during chick feeding. Most birds (about half) breed 

only once in their lifetime, although many breed twice or more in subsequent years. Each 
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year, temperatures are measured in nearby whether stations of the Royal Dutch 

Meteorological Institute (KNMI; http://projects.knmi.nl/klimatologie/daggegevens/). For 

HV, this was Deelen station (52°03'N 5°52'12.0"E) throughout the study period. For VL, 

however, the Vlieland station (53°13'48"N 4°55'12"E) has only been in operation since 1995, 

so we complemented the data with the nearby Terschelling station (53°22'48"N, 5°21"E), 

whose measured temperatures correlate strongly with those from the Vlieland station (r2 

= 0.99; Bailey et al., unsubmitted manuscript). 

Since the HV study area was reorganised in 1972, we used data from 1973 to 2016; for 

VL, we used data from 1965 to 2016 (only few breeding records are available from before 

1965), with the omission of the years 1981–1985 because of a lack of temperature data. In 

both areas, brood manipulations were carried out in some years (Both et al. 2000; Postma 

et al. 2007) but we included these broods in the analyses because they took place during 

or after clutch completion. In total, we had data on 4890 broods of 3028 females in 44 years 

in HV and 5250 broods of 3131 females in 47 years in VL. We used spring temperatures 

(i.e. the mean of daily averages over a specified time window) as the environmental cue 

for laying date (Gienapp et al. 2005; Visser et al. 2009a; Schaper et al. 2012). We determined 

the relevant window using a sliding window analysis on population-average laying dates 

using the ‘climwin’ package (Bailey and Van de Pol 2017); the best predictive window was 

from March 11 to April 20 for HV (r2 = 0.74) and from March 8 to April 21 in VL (r2 = 0.65; 

Bailey et al., unpublished manuscript). 

With the data in place, we first defined the ‘basic’ linear mixed-effects model for laying 

date in our populations in package ‘lme4’ (Bates et al. 2018). The jth laying date of the ith 

female in the lth nest box and the hth year is described as 

 

𝑧𝑖𝑗𝑙ℎ = 𝑎 + 𝑎𝑖 + 𝑏(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗 + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑙ℎ    (6.3a) 

 

in the HV population and as  

 

𝑧𝑖𝑗𝑙ℎ𝑚 = 𝑎 + 𝑎𝑖 + 𝑏(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗 + village𝑚 + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑙ℎ𝑚  (6.3b) 

 

in the VL population, where 𝑎 is the population intercept, 𝑎𝑖 is the individual deviation 

from the population intercept (i.e. a random effect of female identity), b the average slope 

of the phenotype against the average temperature encountered by individual i (�̅�𝑖) and 

against the individual-centred temperature (𝑇𝑖𝑗 − �̅�𝑖), 𝑎𝑔𝑒𝑖𝑗 the female’s age (first-year 

breeder or older) at the time of breeding, 𝑛𝑏𝑙 and 𝑦𝑟ℎ the nest box and year, respectively 

(as random effects), and 𝑒𝑖𝑗𝑙ℎ(𝑚) the residual term. In VL (eqn. 6.3b), an additional fixed 

effect of ‘village’ (m) was added to denote whether the observation was done within the 

village on VL or outside of it (birds within the village breed ~5 days earlier). The models 

of eqns. (6.3a) and (6.3b) (called Model 1) were compared to five different variations on 

them (Table 6.2): Model 2: partitioning the residual variance as in eqn. (6.2b), dividing the 
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Table 6.2. Model specifications for great tit laying date (z) in the Hoge Veluwe and Vlieland populations. 

Model Equation k 

1 𝑧𝑖𝑗𝑙ℎ(𝑚) = 𝑎 + 𝑎𝑖 + 𝑏(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗  (+village𝑚) + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑙ℎ(𝑚) 1 

2 𝑧𝑖𝑗𝑘𝑙ℎ(𝑚) = 𝑎 + 𝑎𝑖 + 𝑏(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗  (+village𝑚) + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑘𝑙ℎ(𝑚) 9 

3 𝑧𝑖𝑗𝑘𝑙ℎ(𝑚) = 𝑎 + 𝑎𝑖 + 𝑏(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗  (+village𝑚) + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑘𝑙ℎ(𝑚) 4 / 5 

4 𝑧𝑖𝑗𝑙ℎ(𝑚) = 𝑎 + 𝑎𝑖 + (𝑏 + 𝑏𝑖)(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗  (+village𝑚) + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑙ℎ(𝑚) 1 

5 𝑧𝑖𝑗𝑘𝑙ℎ(𝑚) = 𝑎 + 𝑎𝑖 + (𝑏 + 𝑏𝑖)(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗  (+village𝑚) + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑘𝑙ℎ(𝑚) 9 

6 𝑧𝑖𝑗𝑘𝑙ℎ(𝑚) = 𝑎 + 𝑎𝑖 + (𝑏 + 𝑏𝑖)(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + age𝑖𝑗  (+village𝑚) + nb𝑙 + yrℎ + 𝑒𝑖𝑗𝑘𝑙ℎ(𝑚) 4 / 5 
Note. k is the number of residual variances estimated, obtained by dividing the number of years by 1 (homogeneous variance), 
5 (resulting in 9 groups) or 10 (resulting in 4 or 5 groups in HV and VL, respectively). 

 

 

number of environments by 5; Model 3: same, but dividing by 10; Model 4: adding an 

interaction between female identity and individual-centred temperature; Model 5: same 

as Model 4 but with residual variance partitioned as in Model 2; and Model 6: same as 

Model 4 but residual variance partitioned as in Model 3 (Table 6.2). 

Models were specified in the package ‘MCMCglmm’ (Hadfield 2010). We opted for this 

package because the ‘nlme’ package we used for the simulations does not allow for the 

inclusion of crossed random effects, and the ‘lme4’ package does not allow for partitioning 

residual variances. We used default normal priors for fixed effects, inverse-Wishart priors 

for the residual variance (V = diag(m) and nu = 0.002, m being the dimension of the matrix, 

which in this case is k in eqn. (6.2b)) and parameter-expanded priors for the random effects 

(V = diag(m), nu = m, alpha.mu = 0, alpha.V = diag(m)*625, following Hadfield (2018)). 

Models were run for a total of 10.1 ∙ 106 simulations, with a burn-in period of 105 samples 

and a thinning interval of 104. We report the posterior estimates of slope variance from 

models 4–6 as well as the Deviance Information Criterion (DIC) for each model as a 

measure of relative model performance (Spiegelhalter et al. 2002), since there is no 

Bayesian ‘test of significance’ like the likelihood-ratio test in a frequentist framework. 

Hadfield (2018) recommends DIC as the only information criterion for model selection in 

MCMCglmm, but issues have been raised about using DIC for model comparison in 

certain contexts (Spiegelhalter et al. 2002; Millar 2009; Hadfield 2018). We therefore used 

a conservative but reasonable cut-off point of 6 DIC units from the most parsimonious 

model (DIC). By analogy to frequentist models using AIC, this cut-off point seems to be 

effective at distinguishing plausible models from those with considerably less support 

(Richards 2005; Burnham et al. 2011; see also discussion in Spiegelhalter et al. 2002). 

 

Results 

 

Effect of residual variance structure on estimates and detection rates of I×E 

As expected, data structure and sample size mediated the effect of the residual variance 

structure on both the estimates of I×E and the probability of (falsely) detecting it using 

likelihood-ratio tests. For brevity, we describe here only the scenarios where No = 2 and 
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Figure 6.1. Estimated slope variances (median + 95% CI; left-hand axis) and proportion of significant 
(p < 0.05) models (asterisks, right-hand axis) from different random-regression analyses on different 
simulated scenarios (No = 2 and Nx = 20 in all panels; see Table 6.1). From top to bottom: the strength 
of the correlation between phenotypic variance (𝜎𝑧

2) and the environment (x) increases through 

changes in 𝛥𝜎𝑒
2 (a–c: 0.1; d–f: 0.5; g–i: 1.0; j–l: 2.0); from left to right: simulated slope variance (𝜎𝑏

2) 
increases (a,d,g,j: 0.003; b,e,h,k: 0.3; c,f,j,l: 1.0), denoted with horizontal dotted lines. The horizontal 
axis displays the environmental variability (𝜎𝑥

2); different colours and symbols display the estimates 
from models with different residual structures (blue: homogeneous residual structure; grey and 
yellow: heterogeneous residual structure based on similar environments and through random 
grouping, respectively, using groups of 5 (circles) or 10 (triangles) environments). 
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Nenv = 20 (Fig. 6.1) and No = 5 and Nenv = 20 (Fig. 6.2). This is because precision and bias in 

estimates is most affected when sample size is comparatively low (see Supplementary 

Figs. S6.1 and S6.2 for scenarios where Nenv = 40). When true slope variance is 0.003, RRMs 

Figure 6.2. Estimated slope variances (median + 95% CI; left-hand axis) and statistical power (right-
hand axis) from different random-regression models on different simulated scenarios (No = 5 and Nx 
= 20 in all panels; see Table 6.1). See Fig. 6.1 for a description of each panel and the different 
symbols. 
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consistently overestimate I×E, regardless of the RRM structure deployed (Fig. 1a,d,g,j); this 

bias decreases across contexts as the environment becomes more variable. As the true 

heterogeneity in residual variance increases (down the panels in Fig. 6.1), fitting a 

heterogeneous residual variance structure based on grouped environments reduces the 

bias in the estimates when the number of groups is low (here two groups of ten 

environments); that is, the median values move closer to the input value. Fitting more 

variances (here four groups of five environments) in fact increases the imprecision of the 

estimates. The same patterns, but less pronounced, can be observed when the input slope 

variance is of intermediate magnitude (i.e. 0.3; Fig. 6.1b,e,h,k). When input slope variance 

is substantial (i.e. 1; Fig. 6.1c,f,i,l), median slope estimates almost invariably match the 

input values reasonably well, regardless of levels of heteroscedasticity and the fitted 

model, but precision improves substantially as variability in the environment increases. 

Thus, with a moderate number of environments and 2 observations per individual (Fig. 

6.1), the precision of I×E estimates greatly depends on the variability in the environment 

and when real slope variance is small, failure to fit the proper residual structure may 

strongly over- or underestimate I×E. An increase in the number of observations per 

individual (from 2 to 5) can remedy these issues substantially (Fig. 6.2), as can an increase 

in the number of environments (Figs. S6.1 and S6.2). 

Fitting a heterogeneous residual variance structure based on similar environments 

systematically leads to a reduction in the proportion of models testing significant for I×E 

(P) when true slope variance is 0.003 (P ≪ 0.2; left columns in Figs. 6.1 and 6.2). We would 

therefore rightfully conclude that I×E was absent. Conversely, fitting homogeneous 

residual variance, or heterogeneous residual variance based on random grouping of 

environments, increases this proportion as true heterogeneity in residual variance 

increases, leading to the erroneous conclusion that there is a statistically significant I×E 

effect. When real slope variance is substantial (i.e. 1), the proportion of significant models 

is high (> 0.8) in highly variable environments (Fig. 6.1c,f,i,l) and as the number of 

observations per individual increases, the influence of environmental variability is further 

reduced (Fig. 6.2c,f,i,l). An exception is when the residual variance is partitioned into 

environmental blocks of 5: even with high input slope variance, under a low number of 

observations per individual (Fig. 6.1), ‘power’ to detect slope variance typically falls below 

0.8 when the residual variance is partitioned too excessively. Again, this issue disappears 

when we have more observations per individual (Fig. 6.2). Concluding, when true slope 

variance is small and heterogeneity in residual variance is large, fitting the right 

(heterogeneous) residual structure is crucial to correctly infer statistical evidence for I×E. 

Moreover, increasing the precision in estimates of I×E and statistical power to detect it 

when it is there is achieved more easily by increasing the number of observations than by 

increasing the number of different environments encountered by the same number of 

individuals (see Figs. S6.1 and S6.2). 

 

Distinguishing heterogeneous residual variance from I×E 

Our simulations, for a limited number of scenarios (see Methods), show that whenever 

there is an association between 𝜎𝑧
2 and the environment X, simple model comparison using 
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Figure 6.3. Frequency with which each model is chosen as the top model (based on AIC < 2 and 

parsimony determined by the total degrees of freedom) under different scenarios (all Nx = 20, No = 

2 and 𝜎𝑥
2 = 2), with simulated heterogeneity in residuals (𝛥𝜎𝑒

2) increasing from top to bottom and 

simulated slope variance (𝜎𝑏
2) increasing from left to right. Fitted models (horizontal axes) were 

random-intercept models (RIM) or random-regression models (RRM) with a homogeneous residual 

variance structure (‘1 resid’; blue bars), heterogeneous partitioned into groups of 5 (‘5-env’; grey 

bars) or groups of 10 environments (’10-env’; orange bars). Note that the meaning of the colours in 

this figure differs from that in Figs. 6.1 and 6.2. 
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AIC is effective at arriving at the qualitative conclusion of whether or not there is statistical 

evidence for I×E. That is, a combined proportion of > 0.8 of models that appeared as the 

best model in the selection processes were either RRMs when simulated 𝜎𝑏
2 was large or 

random-intercept models (RIMs) when simulated 𝜎𝑏
2 was small (see Fig. 6.3 for No = 2 and 

S6.3 for No = 5). However, particularly with few observations per individual (Fig. 6.3), 

selection of the ‘correct’ model in terms of residual variance structure—which is the one 

with a structure that matches the simulated data—was achieved at a rate ≪ 0.8. For 

example, with an intermediate heterogeneity in residual variance (Δ𝜎𝑒
2 = 1), models with a 

homogeneous residual structure were chosen most often (Fig. 6.3c,d). In the most extreme 

scenario with large slope variance and heterogeneity in residual variance (Fig. 6.3f), both 

models with and without a heterogeneous residual structure (with 5-env. or 10-env. 

groups) were selected at competing rates (note that the second blue bar is more or less 

equally high as the second grey and second orange bar combined). Thus, although 

qualitatively with respect to the presence or absence of I×E the vast majority of ‘best’ 

models was correctly defined (RRMs vs RIMs), this was not the case with respect to the 

residual structure, which may have implications for (the precision of) estimates of I×E (see 

discussion).  

As expected, increasing the number of observations per individual (Fig. S6.3) improves 

model selection. At moderate levels of heterogeneity in residual variance, the proportion 

of selected models having a homogeneous residual variance decreases at No = 5 compared 

to No = 2 (note the strong drop in the blue bars in Fig. S6.3c,d). At high heterogeneity in 

residual variance (Fig. S6.3e,f), the vast majority of selected models (≥ 0.97) were correctly 

defined as either RIM or RRMs, respectively, and additionally had a heterogeneous 

residual structure. 

 

Modelling I×E in great tit laying dates 

The two great tit populations differ in the degree of plasticity in laying date with respect 

to spring temperature (Table 6.3). In HV, the best model arising from DIC model selection 

was the random-intercept model with a heterogeneous residual structure (Model 2 in 

Table 6.2). In this population, raw phenotypic (annual) variance in laying dates correlates 

linearly and positively with mean spring temperature (coefficient + bootstrapped 95% CI: 

2.39 [0.702, 4.502]). As the estimate and 95% HPDI for �̂�𝑏
2 for Model 5 show, I×E is limited 

in this population, so the association between 𝜎𝑧
2 and temperature is not caused by 

individually differing reaction norms but to other, unmeasured (residual) factors. If we 

compare RIMs and RRMs while fitting a homogeneous residual structure (Model 1 vs. 4), 

this conclusion changes radically: now the DIC values suggest a strong preference for 

Model 4 over Model 1 (ΔDIC = 41.9) with �̂�𝑏
2 4.4 to 4.9 times the size of that of Model 5 or 

6. 

In VL, the best supported model is Model 4, a RRM with a homogeneous residual 

structure (Table 6.3). In this population, there is clear evidence for individual reaction 

norms differing in temperature sensitivity and this evidence is picked up by the RRMs 

regardless of its residual structure (see �̂�𝑏
2 and 95% HPDIs for Models 4–6), concurring 
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Table 6.3. Results of the RRMs on great tit laying dates from the Hoge Veluwe and Vlieland populations. 

 

 

Model 

Random  

effects 𝜎𝑒
2 

Envs. 

grouped 

by 

No. of 

residual 

groups DIC DIC �̂�𝑏
2 (95% HPDI) 

Hoge Veluwe       

1 Y + NB + I Ho 44 1 28871.7 159.0 - 

2 Y + NB + I He 5 9 28715.0 2.3 - 

3 Y + NB + I He 10 4 28801.1 88.4 - 

4 Y + NB + IxE Ho 44 1 28829.9 117.1 0.168 (0.018, 0.336) 

5 Y + NB + IxE He 5 9 28712.7 0 0.034 (0.000, 0.123) 

6 Y + NB + IxE He 10 4 28798.2 85.5 0.039 (0.000, 0.135) 

        
Vlieland       

1 Y + NB + I Ho 47 1 30733.4 867.4 - 

2 Y + NB + I He 5 9 30102.0 236.0 - 

3 Y + NB + I He 10 5 30258.3 392.3 - 

4 Y + NB + IxE Ho 47 1 29866.0 0 1.893 (1.428, 2.322) 

5 Y + NB + IxE He 5 9 29885.8 19.8 0.963 (0.428, 1.545) 

6 Y + NB + IxE He 10 5 29905.4 39.4 1.511 (1.032, 2.068) 
Note. Y = year, NB = nest box, I = individual, I×E = individual-by-environment interaction, Ho = homogeneous residual variance, 
He = heterogeneous residual variance. The best models (based on DIC and parsimony) are marked in bold. 

 
 

with our simulation results (e.g. Figs. 6.1 and 6.2). Importantly, however, the effect size 

critically depends on the residual structure. Unlike the HV population, raw phenotypic 

(annual) variances in laying date in VL do not correlate with temperature (–2.932 [–13.880, 

1.752] using all years; 0.961 [–1.258, 3.562] when excluding the year 2013 because of an 

extremely large variance that year). The lack of this association suggests that 𝜎𝑧
2 covaries 

nonlinearly with temperature and that this is due to crossing reaction norms and not due 

to heterogeneity in residual variance, which indeed appears to be the case (see Fig. S6.4).  

 

Discussion 

 

Random regression models are powerful tools to quantify differences in environmentally 

driven, within-individual phenotypic variation (I×E) across a variety of behavioural and 

life-history traits and study systems (Nussey et al. 2007; Martin et al. 2011; Van de Pol 2012; 

Dingemanse and Dochtermann 2013). We have shown by simulation that the precision 

with which IxE can be estimated is strongly dependent on the level of heterogeneity in 

residual variance in the data and the way this heterogeneity is subsequently modelled. 

Importantly, substantial variability in the environment is a prerequisite for reliably 

estimating—and detecting—variance in reaction norm slopes, although this effect wanes 

when individuals have observations in many (> 2) environments (cf. Van de Pol 2012). 
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When these conditions are not met, failure to deal with heteroscedasticity in residuals in 

an adequate way may strongly impair precision of estimates and the ability of statistical 

tests to correctly reject or maintain the null hypothesis. We therefore encourage due 

caution before proceeding to estimate I×E in observational studies (cf. Nicolaus et al. 2013) 

and suggest an information-theoretic approach to compare the fit of models with different 

residual structures. 

The call for attention to residual variance in (random) regression models is not novel 

per se in the ecology and evolution literature. Several studies have alluded to both the 

biological and statistical importance of heteroscedasticity (e.g. Cleasby and Nakagawa 

2011; Nicolaus et al. 2013; Westneat et al. 2015). However, in the classic mixed-model ‘how-

to’ paper by Dingemanse and Dochtermann (2013), the implications of heteroscedasticity 

on model performance and the correct application of alternative methods are not 

discussed. The same is true for Nussey et al.’s (2007) classic guideline paper for the use of 

random regression models in studies of phenotypic plasticity. Previous simulation studies 

that tested the effect of sampling design, sample size, and the choice of the environmental 

covariate on the performance of random regression models (Martin et al. 2011; Van de Pol 

2012; Gienapp 2018) simulated data under the assumption of constant residual variance. 

Our study adds to previous work by studying heteroscedasticity in a random-regression 

framework with simulated (and empirical) data with the specific aim to illustrate its effect 

on model estimates and inference from hypothesis testing. 

Cleasby and Nakagawa (2011) perhaps give the most complete practical guidance for 

ecologists on how to identify and correctly model heteroscedasticity in a standard linear-

model framework. They suggested (1) using heteroscedasticity-consistent standard error 

estimations or (2) or fitting a generalised least-squares model. In their example analysis on 

experimental data (tarsus length as a function of feeding treatment and sex in house 

sparrows Passer domesticus), the latter was achieved by fitting a residual variance for each 

treatment–sex combination. This is precisely what we did in our RRMs, with the important 

difference that the covariate (the environment) is continuous and grouping therefore has 

to be done ‘experimentally’ by varying the groups and selecting the most plausible model. 

Nicolaus et al. (2013) did this by comparing two heterogeneous residual structures when 

testing variation in plasticity of clutch size with respect to population density and found 

that partitioning residual variance by environment (i.e. year, as opposed to two groups of 

environments) yielded the most plausible model. Our simulation results suggest that 

fitting a heterogeneous residual structure with many groups will be problematic when 

sample sizes are small (see e.g. the five-environment grouping in Fig. 6.1), potentially due 

to overfitting of the model. This may also have been the case, for example, in a study on 

phenology in sand lizards, in which the residual variance in the RRM was estimated for 

each year (Ljungström et al. 2015). Fitting a homogeneous residual variance in that study 

led to an estimated slope variance of 10.4 (± 3.4 S.E.) compared to a variance of 4.6 (± 2.4) 

in intercepts, whereas it decreased to 0 when fitting heterogeneous residual variance. 

Although the log-likelihood of the model improved considerably compared to a model 

with a homogeneous residual structure, the best model may actually have been a 

compromise between the two. Fitting too few groups, on the other hand, may not 

adequately deal with heteroscedasticity and lead to overestimation of slope variance. We 

did not explore annual (i.e. for each environment) residual variances in our simulations 
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because the models were not able to fit them under certain conditions. We therefore 

strongly suggest that a ‘sensitivity analysis’ be conducted by changing the number of 

residual variances stepwise, and judge relative model performance using information 

criteria. Caution is, however, always warranted when the sample size is low, and it may 

be reasonable to assume that fitting a residual variance for each environment will result 

in severe overfitting and potentially erroneous conclusions. 

Fitting residual variance for different ‘environmental blocks’ is an effective way of 

dealing with heteroscedasticity, but obtaining reliable estimates of I×E naturally starts 

with the identification of the best ‘null’ model describing the trait of interest, including the 

fixed effects on which the variance components are conditioned. Typical reproductive 

traits such as laying date and clutch size, for example, vary with age. If the phenotypic 

response to the environment changes with age (A×E; e.g. Van de Pol et al. 2012), individual 

variation in reaction norm slopes may in fact reflect (unobserved) A×E and not I×E (see 

discussion in Van de Pol 2012); failing to fit the appropriate age structure in the model 

may lead to heteroscedasticity and, in turn, to the erroneous conclusion of I×E. Cleasby 

and Nakagawa (2011) give a comprehensive account of ecological factors generating 

changes in residual variances across environmental gradients. Their main point, and that 

of others (e.g. Westneat et al. 2015), is that heteroscedasticity is a perfectly natural 

biological component of the data that, rather than being just statistical ‘nuisance’ (Erceg-

Hurn and Mirosevich 2008), should inspire researchers to formulate new hypotheses and 

build their models accordingly. 

 

Recommendations for evolutionary and behavioural ecologists 

The results of our simulations (and our empirical data analyses) can be used to draw up a 

set of guidelines for behavioural and evolutionary ecologists interested in phenotypic 

plasticity. We acknowledge, again, that we are not the first ones to make recommendations 

on this topic, an many important recommendations revolving around random regression 

models and heteroscedasticity more generally have been made by others (Nussey et al. 

2007; e.g. Cleasby and Nakagawa 2011; Martin et al. 2011; Van de Pol 2012; Dingemanse 

and Dochtermann 2013; Nicolaus et al. 2013; Gienapp 2018). It is also important to point 

out that random regression techniques were originally developed mainly for the field of 

animal breeding (Henderson 1982; Schaeffer 2004) and developments of tools mainly takes 

place within this field. There are sophisticated statistical tools available for modelling 

heteroscedasticity (e.g. so-called 'double hierarchical generalized linear models'; Lee and 

Nelder 2006; Rönnegård et al. 2010) that may be preferred in some contexts on statistical 

grounds. We are, however, aware that ecologists may not be sufficiently trained nor have 

the time our resources to keep up to date with all the latest developments in this complex 

statistical field, and we would like to present guidelines that can be used within the R 

environment in software packages and methods that many ecologists will be familiar with 

(e.g. ‘nlme’ (Pinheiro et al. 2017), ‘MCMCglmm’ (Hadfield 2010) and ‘ASReml-R’ (Butler 

et al. 2009; Gilmour et al. 2009)). 

We assume here that researchers practicing in random regression techniques have at 

least a basic understanding of linear mixed-modelling procedures in general (see e.g. 

Dingemanse and Dochtermann 2013) and have a thorough knowledge of the study system 

so as to incorporate all relevant fixed and random effects. When it comes to random 
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regression models to estimate I×E (and/or G×E), we suggest the following steps be given 

sufficient thought: 

 

1. Plot raw phenotypic variance against the environmental covariate. Although this may 

appear trivial, plotting the data prior to analysis can sometimes be quite revealing, 

because it may give us an idea of whether and how we can expect variances to 

change with the environment, directionally (e.g. linearly) or not. This may be 

helpful in deciding if and by how many groups residual variance in the RRM may 

need to be partitioned. Furthermore, as a ‘reality check’, we can compare the plot 

to a plot of individual reaction norms drawn from RRMs (e.g. using ‘best linear 

unbiased predictors’ or its equivalents) and visually check if the patterns make 

sense. In the great tit example, I×E was absent in the HV population despite an 

association between raw phenotypic variance and temperature, whereas the 

opposite was true for the VL population. 

2. Compare RRMs with several different residual structures using information criteria. To 

our knowledge, there is no clear guideline as to how many residual variances are 

reasonable, but our simulations suggest that especially when sample size is an 

issue, more is not necessarily better. In combination with plots of raw phenotypic 

variance against the environment, the researcher can use informed judgement. A 

simple approach would be to take the total number of environments (Nx) and 

divide it by a predetermined number, e.g. by 10, 7, 5, 3, or 1 (i.e. heterogeneous), 

and by Nx (homogeneous). It should be borne in mind that the more residual 

groups, the more degrees of freedom are used and the risk of overfitting increases. 

3. Replace the environmental covariate in the RRM with environment-specific mean 

phenotypes. When the trait in question does not respond strongly to the 

environment, estimates of I×E and the power to detect it may be downwardly 

biased (Gienapp 2018). There may, however, still be undetected I×E and even G×E 

in the population, which may have implications for the ability of the population to 

genetically respond to selection. The mean phenotype in a given environment can 

be used in certain contexts as a substitute for the ‘real’ environmental driver and in 

that way serve as a ‘yardstick’ for testing whether I×E and/or G×E exists in the 

population (Gienapp 2018; Chapter 9; but see caveats discussed in General 

Discussion, Chapter 11). 

4. Do a power analysis by simulation. Whenever the RRM fails to pick up statistical 

evidence for I×E, the inevitable question arises whether this is due to a true lack of 

I×E or the lack of statistical power. Simulations can shed light on this. One can 

simulate a population with differing Nx, No, and 𝜎𝑏
2 and play around with 

parameter values to infer how likely one was to detect I×E in the real data in the 

first place. 

 

Although not all of the steps may be necessary in every situation, we believe that at least 

steps 1, 2, and 4 should be carefully considered. Importantly, the chosen residual structure 

should always be an informed one, and the reader should be informed as to why that 

particular residual structure was chosen. 
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Concluding remarks 

Random regression models are a powerful statistical tool to estimate phenotypic (and 

additive genetic) variance across an environmental gradient. Despite its wide use in 

ecology and evolution, no consensus seems to have reached the research community as to 

how to treat residual variance. We provide a simulation-informed set of guidelines that 

students of behavioural or life-history plasticity may adopt to successfully estimate 

environment-specific individual variances (I×E) and/or genetic variances (G×E). When 

samples sizes are reasonably large, a simple information-theoretic approach to selecting 

the best model should help one arrive at the best model explaining the data. We note, 

however, that when sample sizes are too small, even the most efficient model will not be 

able to estimate I×E reliably. Defining what is a decent sample size is beyond the scope of 

this study and has been elegantly demonstrated in previous studies (Martin et al. 2011; 

Van de Pol 2012). Nevertheless, we encourage researchers to always thoroughly document 

all statistical procedures (e.g. though R scripts) and report sample sizes, effect sizes and 

the precision of their estimates, which in the long run will serve the scientific field by 

enabling biological synthesis across study systems, e.g. in the form of meta-analysis. 
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Supplementary material S6 
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Figure S6.1. Estimated slope variances (median + 95% CI; left-hand axis) and proportion of 
significant (p < 0.05) models (asterisks, right-hand axis) from different random-regression analyses 
on different simulated scenarios (No = 2 and Nx = 40 in all panels; see Table 6.1 main text). From top 
to bottom: the strength of the correlation between phenotypic variance (𝜎𝑧

2) and the environment 
(x) increases through changes in 𝛥𝜎𝑒

2 (a–c: 0.1; d–f: 0.5; g–i: 1.0; j–l: 2.0); from left to right: 

simulated slope variance (𝜎𝑏
2) increases (a,d,g,j: 0.003; b,e,h,k: 0.3; c,f,j,l: 1.0), denoted with 

horizontal dotted lines. The horizontal axis displays the environmental variability (𝜎𝑥
2); different 

colours and symbols display the estimates from models with different residual structures (blue: 
homogeneous residual structure; grey and yellow: heterogeneous residual structure based on 
similar environments and through random grouping, respectively, using groups of 5 (circles) or 10 
(triangles) environments). 
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Figure S6.2. Estimated slope variances (median + 95% CI; left-hand axis) and proportion of 
significant (p < 0.05) models (asterisks, right-hand axis) from different random-regression analyses 
on different simulated scenarios (No = 5 and Nx = 40 in all panels; see Table 6.1, main text). From 
top to bottom: the strength of the correlation between phenotypic variance (𝜎𝑧

2) and the 
environment (x) increases through changes in 𝛥𝜎𝑒

2 (a–c: 0.1; d–f: 0.5; g–i: 1.0; j–l: 2.0); from left to 

right: simulated slope variance (𝜎𝑏
2) increases (a,d,g,j: 0.003; b,e,h,k: 0.3; c,f,j,l: 1.0), denoted with 

horizontal dotted lines. The horizontal axis displays the environmental variability (𝜎𝑥
2); different 

colours and symbols display the estimates from models with different residual structures (blue: 
homogeneous residual structure; grey and yellow: heterogeneous residual structure based on 
similar environments and through random grouping, respectively, using groups of 5 (circles) or 10 
(triangles) environments). 
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Figure S6.3. Frequency with which each model is chosen as the top model (based on AIC < 2 and 

parsimony determined by the total degrees of freedom) under different scenarios (all Nx = 20, No = 

5 and 𝜎𝑥
2 = 2), with simulated heterogeneity in residuals (𝛥𝜎𝑒

2) increasing from top to bottom and 

simulated slope variance (𝜎𝑏
2) increasing from left to right. Fitted models (horizontal axes) were 

random-intercept models (RIM) or random-regression models (RRM) with a homogeneous residual 

variance structure (‘1 resid’; blue bars), heterogeneous partitioned into groups of 5 (‘5-env’; grey 

bars) or groups of 10 (’10-env’; orange bars) environments. 



Quantifying variation in reaction norms 

111 
  

 

 

 

Figure S6.4. (a,b) Estimated reaction norms (posterior median estimates for each female) and (c,d) 
estimated phenotypic variance (combined permanent-environment and additive genetic effect; 
posterior medians and 95% HPDI) for great tit laying dates against individual-centred temperatures 
in HV (a,c) and VL (b,d). Estimates were obtained from Models 5 (HV) and 4 (VL) in Table 6.3 (main 

text). Temperature-specific variance estimates (i.e. in the jth environment) were estimated as �̂�𝑧,𝑗
2 =

�̂�𝑎
2 + 2�̂�𝑎,𝑏𝑇𝑗 + �̂�𝑏

2𝑇𝑗
2, with a and b representing intercepts and slopes, respectively, and T 

representing the (centred) temperature. 
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How to do meta-analysis of open datasets 

 

Antica Culina, Thomas W. Crowther, Jip J.C. Ramakers, Phillip Gienapp &  

Marcel E. Visser 

 

 

PREFACE 

 

The amount of open data in ecology and evolution is increasing rapidly, yet this resource remains 

underused. Here, we introduce a new framework and case study for conducting meta-analyses of 

open datasets, and discuss its benefits and current limitations. 
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Introduction 

 

In recent decades, the meta-analysis approach has emerged as the most valuable avenue 

for scientific progress, along with empirical studies and theoretical models (Husby et al. 

2011b; Cadotte et al. 2012; Gurevitch et al. 2018). Traditional meta-analysis combines 

results from a number of studies (ideally all) conducted on the same research question, to 

statistically summarize findings, evaluate discrepancies and detect generalizable effects 

(Gurevitch et al. 2018). The ability to detect overarching patterns makes meta-analyses 

extremely relevant to evolutionary ecology, which is characterised by highly complex 

systems, heterogeneous environments and variable methodologies (Jennions et al. 2012; 

Stewart and Schmid 2015).  

Systematic advances in the meta-analysis approach over the last decade have been 

intended to improve the transparency, replicability, reliability, and impact of data 

synthesis efforts (Bayliss and Beyer 2015; Lortie et al. 2015; Parker et al. 2016; Gurevitch et 

al. 2018). However, despite these advances, the major outstanding limitation of any 

synthesis remains the challenge of accessing a comprehensive range of available data on 

the topic (Parker et al. 2016). Conventionally, meta-analyses are conducted using effect 

sizes (i.e. measure of the strength and direction of effects) extracted from the values 

reported in published studies. These meta-analyses are often limited to studies that focus 

specifically on the topic of interest (we term these ‘target studies’). However, a wealth of 

useful data is often available in various ‘non-target studies’ that have attained relevant 

information to address different research questions. Additional data from ‘non-target 

studies’ can enhance the statistical power of meta-analyses (a fact that has been widely 

accepted and embraced in medical research; Simmonds et al. 2005), as well as considerably 

reduce current issues with biased effect sizes. These data can be used either on their own, 

or in a combination with data from targeted studies. Until now, the complex and variable 

research landscape in ecology and evolution has restricted such data ingestion from non-

target studies. However, the increase in data made openly accessible, as now required by 

many journals, is transforming our capacity to access, evaluate and use raw data from both 

target and non-target studies. Hence, our potential to survey the data-landscape and gain 

a comprehensive understanding of the available information has never been greater 

(Roche et al. 2015). Yet, unlike other scientific fields, this resource remains relatively 

unexploited in the field of ecology and evolution (Wallis et al. 2013; Evans 2016). 

 

Retrieval of primary data for meta-analysis 

 

Here, we describe how to transparently retrieve and select data, where the information 

retrieval starts from published (open) datasets, rather than from studies. Our standard is 

based on existing guidelines for the information retrieval in ecological/evolutionary meta-

analysis (Koricheva et al. 2013; Bayliss and Beyer 2015; Lortie et al. 2015; Nakagawa et al. 

2017), but adapted specifically for open data. The retrieval and selection process should 
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be highly transparent - we provide a checklist of the information that needs to be recorded 

(Table 7.1). This information should ideally supported by the PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses; Moher et al. 2009) diagram 

(Fig. S7.1).  

In the first step of the approach (Step 1), researchers need to identify the type of data 

needed to answer the meta-analysis question (or test hypothesis), set appropriate 

exclusion/inclusion criteria, and choose the search terms (used in a search for the relevant 

data). This is followed by the data search. In evolutionary ecology datasets are usually 

scattered across various repositories (e.g. Dryad, Figshare, Zenodo) or published in the 

supplementary materials associated with a paper. Thus, an effective search should be 

conducted using data-harvesting platforms that crawl through many different research 

data repositories that host research data (like Web of Science crawls through journals in a 

search for articles); some also explore supplementary materials of published papers for 

additional information. A complete overview of how to navigate the data-landscape by 

using data-search platforms can be found in Culina et al. (2018). We suggest using 

DataCite, Base search engine, and DataOne (see below). The original search terms usually 

need to be adjusted according to the output of the initial search (e.g. when some obviously 

irrelevant terms appear in the search results). After the initial search, duplicates can be 

eliminated.  

The next steps (second to fourth) describe the screening of the obtained datasets. This 

starts with screening according to the meta-data (data that describe the dataset) provided 

by the search platform (Step two); these will vary between different search platforms 

(usually keywords, dataset title, dataset description and/or subject area). Thus, it is 

important to record and report on which meta-data the screening was based. This step is 

equivalent to the initial screening of the title, abstract, and keywords in the ‘traditional’ 

meta-analysis that starts from published studies. The main difference is that the standards 

to describe data-sets are less well established than the standards to describe articles (title, 

abstract, keywords, subject areas). Thus, this screening might be more time-consuming, 

and lead to the retention of more irrelevant datasets. Next (Step three), each potentially 

relevant dataset should be opened and screened to identify whether it corresponds to 

meta-analysis requirements.  

The remaining datasets are relevant according to the dataset type, but some will be 

excluded (Step four) as they do not match the specific inclusion criteria or are not fit for 

use because information crucial to run the desired analysis (to obtain the effect sizes) is 

missing (equivalent to under-reported effects in the study-centric approach). At this stage, 

researchers might decide to contact the dataset owner(s). 

The final list of datasets is then used to calculate the effect sizes (Step five). Ideally, all 

effect sizes are calculated in the same, standardized way. This process can take several 

sub-steps. In line with the good scientific practice, and to address the issues of data 

misinterpretation (Mills et al. 2015), owners of the datasets should be contacted, at the 

latest, when analysing their data, and asked whether they agree with the way the data was 

processed (Step six). Some data owners specifically ask (in the meta-data files) to be 
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Table 7.1. The checklist of the main steps in conducting meta-analysis that starts from datasets. 
Following these steps will ensure a transparently conducted meta-analysis, which complies with the 
current scientific standards. 

Step What to record (report) 

Step 1: What type of data are needed and 

where/how to obtain them? 

 

• research question/questions 

• the exact exclusion/inclusion 

criteria 

• platform(s) used in search 

• search terms and syntax (for every 

platform; whether and how search 

terms were adjusted) 

Step 2: Screening the results according to 

the metadata provided (keywords, dataset 

title, the description of the dataset, and/or 

subject area) 

• what meta-data screening was 

based on 

• number of excluded results 

• reasons for exclusion (optional) 

 

Step 3: Open and screen remaining 

datasets 

• number of excluded results 

• reasons for exclusion (optional) 

Step 4: Detailed examination of the 

datasets. Contacting the authors of the 

dataset about missing/not clear 

information 

• number of excluded results 

• reasons for exclusion 

• whether the authors were 

contacted and with what outcome 

Step 5: Calculate the effect sizes 
• statistical procedures to calculate 

effect sizes 

Step 6: Contact the authors to check if they 

agree with the approach 

• contact letter, author responses, 

dates of contact 

• datasets excluded based on authors 

feedback and why 

Step 7: Conduct the statistical part of meta-

analysis 

• the dataset used in meta-analysis 

• exact models/formulas 

 

contacted directly if there are plans to use the data. Some datasets might be still excluded 

after this step. Statistical analyses can then be conducted using these effect sizes (Step 

seven) following the existing guidelines (choose an appropriate mode, explore the sources 

of heterogeneity, account for non-independencies, and, if considered necessary, test for 

publication bias (Koricheva et al. 2013; Nakagawa et al. 2017)). Statistical analysis can also 

be conducted using effect sizes calculated from raw data, with those calculated using 

values reported in published papers (when possible). In this case, information retrieval 
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protocol should be recorded separately for data and article selection process (Koricheva et 

al. 2013; Bayliss and Beyer 2015; Nakagawa et al. 2017), and we would further advise on 

controlling for the source of effect size (data or article) when conducting the statistical 

analysis. 

To demonstrate the information retrieval framework, in Box 7.1 we outline the search 

for pedigree datasets for the meta-analysis that aimed at evaluating the strength of the 

evidence for the environmental coupling of heritability and selection (Chapter 9). 

 

 

Box 7.1. Application of the framework: environment, heritability and selection 

 
While the environment has been shown to influence both selection and heritability of traits (see 
review in Wood and Brodie III 2016), the number of studies exploring both in the same systems is 
limited (Wilson et al. 2006; Husby et al. 2011b). As such, there were not enough published studies 
on this topic to synthesize and generalize the relationship between selection and heritability 
(Wood and Brodie III 2016). To address this question, Ramakers et al. (Chapter 9) needed data on 
a) pedigrees or additive genetic relatedness of these individuals, b) individual phenotypes, c) 
individual fitness, and d) the environment (which we defined by averaging the phenotypes across 
the population in a given year, and variance-standardizing it across years). We expected that 
pedigree data represent the limiting source of data. Therefore, we started our search for this type 
of data deposited in online databases. The details on the data search and data screening process 
are provided in Chapter 9 and its supplementary material. Here, we provide a summary of the 
search and data collection process. 

After searching through 12 different aggregators of research data repositories (Europe PMC, 
DataCite, BASE, OpenAIRE, ScienceSerach, DataOne Mercury search, Web of Science Data Citation 
Index, Scielo, Research Data Australia, DLI Service, Dryad Digital Repository, Data MED), and 
screening through the original search results (steps 1 to 3), we located 103 animal pedigreed 
datasets. Different aggregators we consulted identified different parts of the overall sample of 
datasets (Fig. B7.1.1). 

However, after a careful examination of these original 103 pedigree datasets, we were forced 
to discard 88 either because of a) embargoed data, corrupted or ‘encrypted’ files, b) insufficient 
number of individuals with pedigree or c) phenotypic information, d) lack of natural environmental 
variation in the phenotype (this excluded all laboratory populations), e) too few years included in 
the data set (at least six years), f) other issues (e.g. non-matching IDs of animals in pedigree and 
phenotype file) (see Chapter 9, Table S9.1). This left us with 15 datasets for analysis. After analysis, 
we contacted the original data owners to check whether we had misinterpreted their data, as this 
was one of the main concerns about the use of open data (Mills et al. 2015). Based on the authors’ 
feedback, we excluded another four datasets for various reasons related to non-random exclusion 
of individuals from the dataset (potentially leading to biased fitness measurements and 
quantifications of the environment). The reduction in the overall sample size, from 103 pedigree 
results obtained, to 11 that we could use in the analysis, drastically reduced a number of taxa and 
populations represented in the dataset (Amphibians, Fish, Insect, Mammal, Mollusks; Fig. B7.1.2). 

We conducted an additional literature search to identify studies that potentially also contained 
pedigree data (see Chapter 9), identifying three additional datasets yielding data on 49 traits in 15 
populations of 9 species in total. Overall, we emailed owners of 18 datasets to check if they agree 
with the way we analyzed their data. The majority (16) of them offered advice on the analysis (also 
leading to the exclusion of 4 datasets, see above) and supportive towards our efforts, while two 
were negative towards the use of their data. After conducting the analysis (including … 
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Box 7.1 (continued) 

… heterogeneity analysis), we found that any effects of the environmentally caused coupling 
between heritability and selection on expected evolutionary response were small. 

 

            

 

 

 

            

Figure B7.1.1. Diagram representing the number of pedigree datasets found by each aggregator 
(left hand side frequency diagram), and the number of datasets in intersections among 
aggregators (the main frequency diagram). For example, same 18 datasets were obtained by all: 
DCI, DLI, DataCite, BASE, DataMed and Dryad search (first horizontal bar), while Dryad search 
resulted in 9 unique datasets.  
  

Figure B7.1.2. A diagram representing loss of species and populations of different taxonomical 
groups (Molluscs, insects, Fish, Amphibians, Reptiles, Birds, Mammals) from the original 103 
pedigree datasets obtained by search for open pedigree data, to final 11 datasets used in the 
analysis. 
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Benefits of open data to evolutionary ecology meta-analysis 

 

Our case study (Box 7.1) demonstrates an obvious benefit of the information retrieval 

which starts from published data (rather than published studies): the considerable 

increase in the data available to conduct meta-analysis (and thus in the amount of research 

questions that can be addressed; Mengersen et al. 2013). These data can be used on their 

own to calculate effect sizes for the meta-analysis, or used alongside effect sizes extracted 

from published studies. In our example a traditional meta-analysis was impossible (only 

two published studies on the research question, see Box 7.1). Use of open data from studies 

that themselves addressed another question enabled us to collect enough evidence for 

meta-analysis. Given that the number of published datasets is greatly increasing across 

evolutionary and ecological fields (Roche et al. 2015; Culina et al. 2018), the scope of 

evolutionary ecology meta-analysis can be extended, and not limited only to target studies 

in the published literature. 

An additional benefit of open data is the reduced publication bias that stems from the 

selective reporting of ‘significant’ or ‘interesting’ results (Parker et al. 2016). The under-

reporting of weak, negative or unwanted effects (or ambiguous results) is common across 

scientific disciplines: two reviews showed that basic information (sample size and 

variance) was missing from generally half of otherwise relevant primary studies collected 

for meta-analysis in conservation ecology (Côté and Reynolds 2012) and evolutionary 

ecology (Cassey et al. 2004). Even more worrying is that these under-reported results 

appear to be a biased sample of all results (Cassey et al. 2004). However, datasets, and 

effect sizes calculated using published datasets, are less likely to suffer from this kind of 

issues. Datasets that support published studies can be also used to verify or supplement 

the results of the study, increasing the number of effect sizes that can be calculated 

(missing or contradictory reported results).  

Finally, meta-analyses conducted using the values reported in studies have to combine 

effect sizes calculated in a different way (as primary studies analyze their data, and report 

the results differently). Effect sizes can be calculated in a consistent manner if the original 

data are used (such as in our case study, Box 7.1), thus leading to directly compatible effect 

sizes (Mengersen et al. 2013). 

 

Limitations and drawbacks of Open Data in meta-analysis 

 

Despite the apparent benefits, our meta-analysis conducted using non-target research data 

suffers several limitations. These should not discourage data-driven meta-analysis, but 

rather be acknowledged, and if possible, adequately resolved.  

First, as our case study demonstrates, the description of datasets is often insufficient to 

enable a sensitive and targeted search. This means that data searches may retrieve a 

substantial number of irrelevant datasets, whilst also missing some relevant ones. 

However, this has always been a limitation of meta-analyses, and we believe this will only 
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improve as the scientific community continues to embrace the advised data standards (e.g. 

Wilkinson et al. 2016), supported by improvements in the data curation by research 

institutions, and scientific repositories. The second and related issue is the quality of the 

retrieved datasets, where a number of datasets might need to be excluded due to the lack 

of sufficient information. In our case, this reduced the number of species for the analysis, 

and led to loss of a number of taxonomic groups (Fig. B7.1.2). The third issue is the 

misinterpretation of data used in meta-analysis (Mills et al. 2015), especially when using 

non-target studies that addressed different questions from the proposed study. Contacting 

data owners is probably the best approach to address this issue (e.g. we excluded 4 out of 

18 datasets based on owner comments) and should thus be standard in open data meta-

analysis. The outlined issues might make meta-analysis based on data more time-

consuming compared to traditional meta-analysis, but based on our experience, this will 

depend from case to case.  

 

Conclusion 

 

The meta-analysis approach has become increasingly important across ecological and 

evolutionary research fields, having a strong impact on future research, interventions, and 

policies. Here, we introduce a new standard on how to conduct a data-driven meta-

analysis that, in contrast to the conventional meta-analysis, uses research data rather than 

published studies. This new standard is now possible given that the amount of open 

research data has been steadily increasing across evolutionary and ecological fields. We 

show that new questions can be addressed with the use of this ever-growing data-

landscape, broadening the scope of meta-analysis in evolutionary ecology. In addition, by 

embracing open data, evolutionary ecology has the potential to benefit from a spectrum 

of higher standards and reporting practices brought in the new era of Open Science. 
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Figure S7.1. PRISMA diagram for the reporting of the information retrieval in the data-centric approach 
to meta-analyses. Different sets of data (green boxes) are obtained/kept after the initial (and adjusted) 
search. The exclusion of irrelevant datasets can happen at different stages, based on the pre-
established inclusion/exclusion criteria, and/or due to issues with data. Calculating each effect size can 
require several sub-steps, comparable for all the datasets (e.g. when the raw data are first used to 
calculate summary statistics, which is then used to calculate the effect size). This diagram may be 
adjusted for each case, but should always ensure that the process of data acquisition and screening is 
transparently documented.

Datasets identified through 

search1 

Irrelevant datasets Screen using meta-data 

provided2 

Remove duplicates Duplicates 

Relevant datasets 

Open and screen each 
dataset 

Final list of datasets to 

calculate effect sizes 

Detailed examination 

of the datasets 

Datasets excluded as they don’t match 

specific inclusion criteria, or are not 

possible/straightforward to use (report 

why)  

Irrelevant datasets 

Check with the authors if 

they agree with the 

approach to their data 

Datasets excluded (report why)  

Final list of datasets (effect 

sizes) for the MA 

1Adjust search terms if needed, record the change, and the number 
of search results prior/after the adjustment 

2Meta-data provided for the dataset will vary according to the search 
platform (usually title, description/abstract, keywords, subject 
areas). Report on which meta-data screening was based. 
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PART III 

 

Exploring constraints in adaptation: a 

quantitative genetic approach 
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Chapter 8  

 

Maternal effects in a wild songbird are environmentally plastic 

but only marginally alter the rate of adaptation 

 

Jip J.C. Ramakers, Marleen M.P. Cobben, Piter Bijma, Thomas E. Reed, Marcel E. Visser 

& Philip Gienapp 

 

 

ABSTRACT 

 

Despite ample evidence for the presence of maternal effects (MEs) in a variety of traits, and strong 

theoretical indications for their evolutionary consequences, empirical evidence to what extent MEs can 

influence evolutionary responses to selection remains ambiguous. We tested the degree to which MEs 

can alter the rate of adaptation of a key life-history trait, clutch size, using an individual-based model 

approach parameterised with experimental data from a long-term study of great tits (Parus major). We 

modelled two types of MEs: (i) an environmentally plastic ME, in which the relationship between 

maternal and offspring clutch size depended on the maternal environment via offspring condition, and 

(ii) a ‘fixed’ ME, in which this relationship was constant. Although both types of ME affected the rate of 

adaptation following an abrupt environmental shift, the overall effects were small. We conclude that 

evolutionary consequences of MEs are modest at best in our study system, at least for the trait and the 

particular type of ME we considered here. A closer link between theoretical and empirical work on MEs 

would hence be useful to obtain accurate predictions about the evolutionary consequences of MEs more 

generally. 

 

 

 

 

 

 

 

 

The American Naturalist (2018) 191(5), E144–158



Chapter 8 

126 
 

Introduction 

 

There is increasing recognition among evolutionary biologists of nongenetic (Mameli 2004; 

Danchin et al. 2011) or indirect genetic (Wolf et al. 1998) mechanisms of inheritance that 

affect the dynamics of phenotypic adaptation in populations. One such example is that of 

maternal effects (Mousseau and Fox 1998). In its most general sense, a maternal effect is 

the degree to which an offspring’s phenotype is shaped by properties of the mother other 

than shared-genes effects, although these maternal properties may themselves have a 

genetic basis (Willham 1963; Mousseau and Fox 1998; Wolf et al. 1998; Bijma 2011). This 

can include effects of the maternal trait on the same trait in the offspring, such as litter size 

in mice (Falconer 1965) or age at maturity in springtails (Janssen et al. 1988), as well as the 

effect of maternal trait(s) on a different trait in the offspring, such as the effects of host-

plant choice of the mother on offspring morphology, or of egg or propagule size on 

offspring growth rate (Mousseau and Fox 1998; Räsänen and Kruuk 2007). This study is 

concerned with the former type of maternal effects. Although maternal effects are 

sometimes thought of as ‘nuisance parameters’ hampering the prediction of evolutionary 

trajectories (Räsänen and Kruuk 2007; Danchin et al. 2011), theoretical models and 

empirical studies show that the presence of such effects can have profound impacts on 

rates of adaptation (Kirkpatrick and Lande 1989; Bijma 2011; Hoyle and Ezard 2012; 

McGlothlin and Galloway 2013). 

Falconer (1965) described maternal effects, m, as a (partial) linear regression coefficient 

for offspring trait value on the same maternal trait value. An individual’s phenotype z is 

then the sum of its breeding value A, its environment ε, and the partial maternal-effects 

regression coefficient times the mother’s phenotype 𝑧𝑚 (𝑧 = 𝐴 + 𝜀 + 𝑚𝑧𝑚). The narrow-

sense heritability for the trait, i.e. the proportion of total phenotypic variance attributable 

to additive genetic effects, may now no longer adequately capture the potential for 

evolution because the maternal genotype has direct (via additive genetic inheritance) and 

indirect (via the maternal effect) effects on offspring phenotype. This concept was used by 

Kirkpatrick and Lande (1989) to devise a model that predicts evolutionary change across 

generations with the incorporation of phenotypic change due to maternal effects in current 

and previous generations. When maternal effects are absent, this model reduces to a 

standard model of additive inheritance. However, when positive maternal effects are 

present (i.e. m > 0, so that a larger maternal trait value results in a larger offspring trait 

value), the covariance between an individual’s breeding value and its trait value exceeds 

the additive genetic variance for that trait, which facilitates a more rapid change in the 

mean trait value under directional selection. Negative maternal effects (i.e. m < 0, so that a 

larger maternal trait value results in a smaller offspring trait value) can reduce the 

response, and possibly even revert it. For example, growth rate (offspring trait) can be 

impaired by the amount of maternal care (maternal trait); this may have implications for 

offspring survival and hence the distribution of phenotypes in the next generation, causing 

an evolutionary time lag (Kirkpatrick and Lande 1989; Wolf et al. 1998). 

Theoretical studies of maternal inheritance effects on fitness and rates of adaptation are 

ample (Kirkpatrick and Lande 1989; Bijma 2011; Hoyle and Ezard 2012; Prizak et al. 2014; 
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Kuijper and Hoyle 2015). Empirical work mainly comes from short-term studies testing 

the effect of experimentally manipulated maternal trait values on offspring performance 

(Schluter and Gustafsson 1993; but see e.g. Dey et al. 2016 and Plaistow and Benton 2009 

for studies with more generations; e.g. Beckerman et al. 2006; Rechavi et al. 2011), and 

some have identified a role for epigenetic effects as an important driver of phenotypic 

variation in offspring (e.g. Cubas et al. 1999; Champagne 2008). Such short-term studies 

are, however, insufficient to inform us about the magnitude of maternal effects at longer 

(micro)evolutionary time scales (i.e. at least tens of generations) in natural populations, 

for which evidence to date remains scarce (Räsänen and Kruuk 2007; McAdam et al. 2014). 

Quantitative genetic modelling in long-term observational studies of natural populations 

can provide insights into maternal sources of phenotypic variation, but require high-

quality data that are not always available (Merilä et al. 2001a; Kruuk and Hadfield 2007). 

Furthermore, if the maternal effect does not reflect a fixed maternal property but varies 

among breeding events, it is difficult to disentangle maternal from genetic effects. The 

maternal effect component 𝑚𝑧𝑚 on phenotype z (sensu Kirkpatrick and Lande 1989), as 

well as the slope and sign of m, is therefore difficult to estimate in most natural study 

systems without a highly informative pedigree (but see McAdam and Boutin 2004). 

Typically, the role of maternal effects in evolution has been regarded as fixed, i.e. 

assuming a constant value for m (Kirkpatrick and Lande 1989; Bijma 2011). Different 

scenarios can then be explored, varying m and predicting its role in adaptation and fitness 

in combination with other adaptive mechanisms such as phenotypic plasticity and grand-

maternal effects (Hoyle and Ezard 2012; Ezard et al. 2014; Prizak et al. 2014). In reality, 

however, maternal effects may not be fixed but plastic in response to environmental 

conditions and hence may change from season to season. For example, inbred Seychelles 

warbler (Acrocephalus sechellensis) mothers produce low-quality offspring, which in turn 

affects offspring survival but only in poor breeding seasons (Richardson et al. 2004). As 

offspring were cross-fostered in that study and common-environment effects could thus 

be ruled out, this suggests an environmentally plastic maternal effect mediated through 

the egg. Similarly, if offspring traits are condition dependent and offspring condition is in 

turn influenced by a maternal effect at a different rate in different environments, the net 

maternal effect will then be plastic, i.e. the coefficient m will vary with environments. The 

ability of m to vary with the environment means that there can be differential selection on 

the maternal component of the phenotype in different environments and, if the maternal 

trait is under genetic control, this may hence considerably alter evolutionary trajectories 

(Kuijper and Hoyle 2015). 

Avian clutch size, a major life-history trait, is highly variable in some species and this 

variability has a genetic basis (Postma and van Noordwijk 2005b). Stabilising selection on 

clutch size is likely to be strong as deviations from the optimal clutch size compromise 

offspring viability and recruitment and therefore maternal fitness (Pettifor et al. 1988, 2001; 

Krementz et al. 1989; Both et al. 1999, 2000; Rodríguez et al. 2016). The maternal effect of 

the mother’s clutch size on her daughters’ clutch size is a likely candidate for an 

environmentally plastic maternal effect as maternal clutch size affects offspring body 

condition, depending on the environment, and offspring condition likely affects offspring 

clutch size. Females that lay clutches larger than their individual optima produce offspring 
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of relatively poor condition (Sanz 1997; Both et al. 2000; Pettifor et al. 2001). If this poor 

condition persists through to breeding age, then these offspring in turn will lay smaller 

clutches than predicted by the genes inherited from their parents, because the number of 

eggs a bird can produce is condition dependent (e.g. Schluter and Gustafsson 1993; but see 

Merilä et al. 2001a). Their offspring (i.e. the grand-offspring of the original females), now 

born in “too small” clutches (i.e. a clutch size smaller than the number of young that could 

be successfully raised), will be relatively heavy because food is shared among fewer 

nestlings, and may in turn go on to lay (too) large clutches as adults (Haywood and Perrins 

1992; Tilgar et al. 2010; but see Haywood 2013). This effect may perpetuate through the 

generations, although it should wane quickly in stable environments as the phenotype is 

pulled toward the optimum (cf. Kirkpatrick and Lande 1989; Bijma 2011). 

The environmentally plastic nature of m becomes apparent when considering the 

environment-dependent relationship between maternal clutch size and resulting fledgling 

weight: as there is a trade-off between offspring quantity and quality, offspring fledgling 

weight will decrease more strongly with maternal clutch size under adverse than 

favourable conditions (e.g. when food is abundant; Both et al. 2000). The maternal effect 

will therefore vary with the environment and this has the potential to change the rate of 

adaptation of a population when it is under directional selection. Adaptation dynamics 

could be affected in two ways: offspring that fledge in poor condition may survive less 

well, and those that do survive may produce smaller clutches as adults. Either or both 

would therefore affect the total strength of selection on maternal clutch size. To predict 

this in a model, one would therefore need to estimate four important parameters: (i) the 

narrow-sense heritability of clutch size, (ii) the environment dependency of the clutch 

size–offspring condition relationship, (iii) survival based on offspring condition as a 

selection factor on maternal clutch size (note that for the sake of simplicity, this disregards 

viability selection operating on adults), and (iv) the effect of offspring condition on 

offspring clutch size (see Fig. 8.1). 

In this paper, we addressed the question of to what extent environmentally plastic 

maternal effects can speed up or slow down the rate of adaptation of clutch size in a wild 

population using empirically estimated parameter values. We estimated the parameters 

for an exceptionally well-studied passerine bird, the great tit (Parus major), to calculate 

both environmentally plastic and fixed maternal effects. These were then used in an 

individual-based model to predict the rate of adaptation of clutch size following an 

environmental shift. We estimated maternal effects by regressing offspring phenotype on 

maternally induced offspring condition or maternal phenotype, using a combination of 

long-term field observations and multi-year experimental manipulations (Both et al. 2000). 

In keeping with theoretical findings concerning environment-dependent maternal effects 

(Hoyle and Ezard 2012; Kuijper and Hoyle 2015), we explored two alternative, but related, 

routes toward quantifying maternal effects: (i) via fledgling weight, which itself is a result 

of maternal clutch size and the environment (making m environmentally plastic); and (ii) 

via a fixed maternal effect (i.e. using the conventional definition of m), where m is not 

environment dependent (Fig. 8.1). Although conceptually simplified, the latter effect may 

arise, for example, as a result of brood size-mediated androgen levels that may negatively 

affect offspring fecundity (Naguib et al. 2004; Rutkowska et al. 2005) or of 



Plastic maternal effects 

129 
  

transgenerational epigenetic inheritance induced by maternal malnutrition (Champagne 

2008; Jablonka and Raz 2009). We explicitly used parameters from a wild population to 

explore realistic evolutionary responses in a key life-history trait under reasonably strong 

directional selection. 

 

 

Methods 

 

Study system 

We estimated our model parameters from data from a long-term (1955–present) 

population study of great tits (Parus major), a hole-breeding passerine, at the Hoge Veluwe 

National Park in the Netherlands (52°02′07″ N 5°51′32″ E). The 171-ha study area, 

comprising a mixture of deciduous and coniferous forest stands, has ~400 nest boxes that 

are checked weekly from April–July to score life-history traits including egg-laying/-

Figure 8.1. Two alternative approaches to estimating maternal effects underlying avian clutch 
size. Maternal clutch size (CS) affects offspring condition (weight) depending on the quality of 
the environment, and this condition in turn drives selection through offspring survival (top 
row). In one scenario, offspring condition also affects their phenotype (clutch size), which, when 
regressed against the maternal CS, results in an environmentally plastic maternal effect (right-
hand panels, bottom row). Alternatively, the maternal CS directly influences offspring CS 
independent of the environment, resulting in a ‘fixed’ maternal effect (left-hand panel, bottom 
row). 
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hatching date and clutch size. When nestlings are 7–8 days old, the parents are captured 

in their nest boxes (using spring-door traps), banded and blood-sampled; nestlings are 

banded, blood-sampled, and weighed at day 15, which is close to the age of fledging. The 

banding of birds allows for carefully monitoring immigration and offspring recruitment 

and establishing pedigrees. The study area is surrounded by a matrix of potentially 

suitable breeding habitat, which facilitates dispersal from and into the focal area. The 

population has been studied continuously since 1955 and has been subjected to various 

experiments aimed at manipulating life-history traits such as egg-laying date and clutch 

size.  

 

The individual-based model 

We used an individual-based model to estimate the impact of (environmentally plastic) 

maternal effects on adaptation. Population size N was roughly 500 in every model 

generation, assuming no overlapping generations (i.e. the whole adult population is 

replaced by recruits every year). In each generation, a sex (ratio 1:1) was randomly 

assigned to individuals and both sexes were paired up randomly for mating. We simulated 

a total of 1000 generations, i.e. 500 burn-in generations to reach equilibrium conditions, 

followed by an environmental shift and 500 additional generations, and repeated the 

process 1000 times. To avoid confusion, we refer to clutch size and fledgling weight as 𝑧𝐶𝑆  

or 𝑧𝐹𝑊, respectively, throughout. Parameters requiring estimation from data are 

summarised in Table 8.1. An example script of the model for the R environment has been 

uploaded as supplementary material. 

 

(i) Generating a population, genotypes and phenotypes 

The clutch size of a given individual (i) in the initial population was defined as 

 

𝑧𝐶𝑆𝑖 = 𝜇𝐶𝑆 + 𝐴𝐶𝑆𝑖 +𝑀𝐶𝑆𝑖
+ 𝜀𝑖          (8.1) 

 

where 𝜇𝐶𝑆 is a constant (here 8.0), 𝐴𝐶𝑆𝑖  the individual’s genotype (breeding value), 𝑀𝐶𝑆𝑖
 its 

maternal component (i.e. 𝑚𝑧𝑚 as in Falconer 1965) and 𝜀𝑖 the residual component, all 

initially randomly drawn from a univariate normal distribution with mean 0 and standard 

deviations √𝑉𝐴𝐶𝑆, √𝑉𝑀𝐶𝑆 , and √𝑉𝑧𝐶𝑆 − 𝑉𝐴𝐶𝑆 − 𝑉𝑀𝐶𝑆 , respectively. For all following 

generations, 𝑧𝐶𝑆𝑖 was calculated as in eqn. (8.1), but 𝐴𝐶𝑆𝑖 and 𝑀𝐶𝑆𝑖
 were no longer randomly 

drawn but calculated from parameter values in the current generation. Offspring genotype 

was defined as 

 

𝐴𝐶𝑆𝑖 = 
𝐴𝑐𝑠𝑚𝑜𝑡ℎ𝑒𝑟𝑖

 + 𝐴𝑐𝑠𝑓𝑎𝑡ℎ𝑒𝑟𝑖

2
+ 𝑦𝑖,        (8.2) 
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where 𝑦𝑖 is the Mendelian segregation error, drawn from a univariate normal distribution 

with mean 0 and standard deviation √0.5𝑉𝐴𝐶𝑆 (Lynch and Walsh 1998). 

 

Table 8.1. Summary of input parameters for the individual-based model, estimated from the great tit 
population at the Hoge Veluwe. 

Parameter 
Mixed model 

component 
Estimate SE Notation Details 

(i) Heritability CSa  – 0.24 0.04 ℎ𝐶𝑆
2  Tbl S1 

(ii) Fledgling weight as  1988 (poor env.) 0.53 0.06 𝛼𝐹𝑊𝑗
 Tbl S2; Eqn. 5 

   a function of CS 1984 (med. env.) 0.49 0.05 𝛼𝐹𝑊𝑗
  

   and the environment  1986 (good env.) 0.81 0.05 𝛼𝐹𝑊𝑗
  

   (year)abc 1988:CS –0.30 0.06 𝛽𝐹𝑊𝑗
  

  1984:CS –0.08 0.01 𝛽𝐹𝑊𝑗
  

  1986:CS –0.06 0.01 𝛽𝐹𝑊𝑗
  

(iii) Offspring survivalb Intercept –19.06 2.92 𝛼𝜙 Tbl S3; Eqn. 6 
  Fledgling weight 1.62 0.33 𝛽𝜙  

  [Fledgling weight]2 –0.04 0.01 𝛾𝜙  

(iv.i) Maternal effect via  Intercept –0.25 0.06 𝛼𝑝 Tbl S4; Eqn. 3 
   fledgling weightcd Fledgling weight 0.13 0.05 𝛽𝑝  

    Coefficient for 𝑀𝐶𝑆𝑖
  –0.13  𝑚𝑝 (poor)  

      against 𝑧𝐶𝑆𝑚𝑖
 –0.04  𝑚𝑝 (med.)  

    –0.03  𝑚𝑝 (good)  

(iv.ii) Maternal effect via Intercept –0.25 0.06 𝛼𝑓 Tbl S5; Eqn. 4 

    maternal CSac Maternal CS –0.21 0.03 𝑚𝑓   

       

       

Additional model input parameters for the initial population     

Description Notation Estimate Details 

Phenotypic variancee 𝑉𝑧𝐶𝑆 3.91  

Additive gen. variance 𝑉𝐴𝐶𝑆  (= ℎ𝐶𝑆
2 × 𝑉𝑧𝐶𝑆) 0.94  

Relative maternal effect variancef    

  For mp modelg: 𝑀𝐶𝑆 
2  0.006 Tbl S4 

  For mf model: 𝑀𝐶𝑆 
2  0.027 Tbl S5 

Maternal effect variance    

  For mp modelh: 𝑉𝑀𝐶𝑆  (= 𝑀𝐶𝑆
2 × 𝑉𝑧𝐶𝑆)

h 0.02  

  For mf model: 𝑉𝑀𝐶𝑆  (= 𝑀𝐶𝑆
2 × 𝑉𝑧𝐶𝑆) 0.11  

Note: Shown are estimates of intercepts and slopes (and their standard errors) from mixed-effects models detailed in the 
supplementary tables. 
a CS = clutch size 
b Estimates are on a logit scale 
c Continuous predictor variables were centred around their annual mean before analysis and decentred in the individual-
based model 
d Implicit maternal-effects coefficient 𝑚𝑝 is derived by regressing the maternal component 𝑀𝐶𝑆𝑖  (eqn. 3) on environment-

specific maternal clutch size 𝑧𝐶𝑆𝑚; 𝛽𝑝  = 0.10 (0.04 SE) in the model combining fixed and plastic maternal effects 
e Estimated from the Hoge Veluwe population 
f Calculated using Nakagawa and Schielzeth’s (2013) marginal R2 for mixed-effects models 
g In the model combining fixed and plastic maternal effects, this value was 0.003 (Table S5) 
h In the model combining fixed and plastic maternal effects, this value was 0.01 
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(ii) Maternal effect 

Here, we assumed two types of maternal effects: (i) an environmentally plastic effect via 

fledgling weight, determined by maternal clutch size in interaction with the environment, 

and (ii) a fixed effect that only depends on maternal clutch size. In the case of the 

environmentally plastic maternal effect, 𝑀𝐶𝑆𝑖
 is calculated as follows: 

 

𝑀𝐶𝑆𝑖
= 𝛼𝑝 + 𝛽𝑝𝑧𝐹𝑊𝑖

,          (8.3) 

 

where 𝛼𝑝 and 𝛽𝑝, the subscript p referring to a plastic maternal effect, are the intercept and 

slope (i.e. partial regression coefficient), respectively, from a regression of offspring clutch 

size on offspring fledgling weight 𝑧𝐹𝑊𝑖
 (estimated whilst controlling for additive genetic 

effects; see ‘Estimating model parameters from data’). 

The ‘fixed’ (f) maternal effect is calculated from the maternal clutch size 𝑧𝐶𝑆𝑚𝑖
 as follows: 

 

𝑀𝐶𝑆𝑖
= 𝛼𝑓 +𝑚𝑓𝑧𝐶𝑆𝑚𝑖

,          (8.4) 

 

where 𝛼𝑓 and 𝑚𝑓 are the intercept and slope (i.e. a partial regression coefficient) from a 

regression of offspring clutch size against maternal clutch size (estimated whilst 

controlling for both fledgling weight and additive genetic effects; see ‘Estimating model 

parameters from data’). Both types of maternal effects were run in separate models (i.e. 

containing either only the plastic or only the fixed type), where their effect on the rate of 

adaptation was determined by keeping 𝑀𝐶𝑆𝑖
 in or removing it from eqn. (8.1). 

As eqn. (8.3) models 𝑀𝐶𝑆𝑖
 as a function of fledgling weight, 𝛽𝑝 has to be positive. To 

intuitively compare both types of maternal effect, we regressed 𝑀𝐶𝑆𝑖
 resulting from eqn. 

(8.3) on maternal clutch size 𝑧𝐶𝑆𝑚𝑖
 for each environment to obtain a negative (partial) 

regression coefficient 𝑚𝑝 associated with each environment. Note that 𝑚𝑝 was merely 

estimated for illustrative purposes; in the model, 𝑚𝑝 was incorporated implicitly via the 

effect of fledgling weight as in eqn. (8.3). 

The combined effect of both maternal effects, both represented by partial regression 

coefficients (see ‘Estimating model parameters from data’), was tested in a third model 

that was defined by extending the maternal-inheritance component in eqn. (8.1) as 𝑀𝐶𝑆𝑖
 

(eqn. 8.3) + 𝑀𝐶𝑆𝑖
 (eqn. 8.4) (i.e. combining both the plastic and the fixed type in a single 

model). 

 

(iii) Fledgling weight, survival, and fitness 

Offspring fledgling weight 𝑧𝐹𝑊𝑖
 is a function of maternal clutch size 𝑧𝐶𝑆𝑚𝑖

. Since fledgling 

weight is in nature bounded between a minimum and a maximum, it was modelled as a 

linear function of maternal clutch size assuming a logit scale; this allowed for back-
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transformation to get a naturally sigmoidal, asymptotic relationship (see ‘Estimating 

model parameters from data’). Fledgling weight before back-transformation was defined 

as 

 

𝑧′𝐹𝑊𝑖
= 𝛼𝐹𝑊𝑗

+ 𝛽𝐹𝑊𝑗
𝑧𝐶𝑆𝑚𝑖

,         (8.5) 

 

where 𝛼𝐹𝑊𝑗
 and 𝛽𝐹𝑊𝑗

 are the intercept and slope related to the jth environment. Fledgling 

weight 𝑧𝐹𝑊𝑖
 (calculated as 𝑒𝑧′𝐹𝑊𝑖/[1 + 𝑒𝑧′𝐹𝑊𝑖] × [𝑚𝑎𝑥 −𝑚𝑖𝑛] + 𝑚𝑖𝑛, with max and min 

indicating predefined boundaries) affects offspring survival (recruitment) probability, 𝜙𝑖, 

according to the logistic function  

 

𝜙𝑖 =
1

1+𝑒
−(𝛼𝜙+𝛽𝜙𝑧𝐹𝑊𝑖

+𝛾𝜙𝑧𝐹𝑊
2 )

,         (8.6)

  

where 𝛼𝜙 and 𝛽𝜙 are the fledgling weight-related intercept and slope; 𝛾𝜙 is the negative 

slope associated with the quadratic term, as survival was expected to level off and 

eventually decrease at extremely high fledgling weights (Mulder et al. 2016b). A mother’s 

fitness, Wi, is the product of her clutch size and offspring survival probability, yielding 

 

𝑊𝑖 = 𝑧𝐶𝑆𝑖  𝜙𝑖.            (8.7) 

 

Note that the index i for offspring survival probability 𝜙𝑖 is still useful here as all offspring 

from the same brood are expected to have the same value for 𝜙𝑖. 𝑊𝑖 is then scaled up to 

match the number of recruits that need to be produced to reach N: 

 

𝑊′𝑖 = 𝑊𝑖

�̅�𝐸𝑖

�̅�
,           (8.8) 

 

where �̅�𝐸𝑖 is the expected mean number of recruits produced per brood pair and �̅� is the 

average fitness over all broods. The actual number of recruits produced by each brood, 𝑛𝑖, 

is then determined by randomly drawing from a Poisson distribution with 𝜆𝑖 = 𝑊′𝑖. To 

quantify the strength of selection, the standardised selection differential (s) for a given year 

(j) was calculated following Lande and Arnold (1983): 

 

𝑠𝑗 =
𝐶𝑜𝑣[

𝑛𝑖𝑗

�̅�𝑗
, 𝑧𝐶𝑆𝑖𝑗]

𝜎𝑧𝐶𝑆𝑗

,          (8.9) 
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where �̅�𝑗 is the average number of recruits per brood and 𝜎𝑧𝐶𝑆𝑗
 the standard deviation of 

 𝑧𝐶𝑆𝑗. 

 

(iv) Environmental change 

To allow model parameters to equilibrate before the stepwise change in the environment 

we ran the model in an intermediate environment for 500 generations. After this ‘burn-in’ 

period, the environment switched to either a poor or a good environment by either 

increasing (good environment) or decreasing (poor environment) 𝛼𝐹𝑊𝑗
 and 𝛽𝐹𝑊𝑗

 in eqn. 

(8.5) (note that because 𝛽𝐹𝑊𝑗
 is negative, a higher value means a shallower slope). This 

means that the population moved to different fitness optima, as the relationship between 

maternal clutch size and offspring fledgling weight (eqn. 8.5) differed among different 

environments. The environmental shift was abrupt (i.e. during one generation) and was 

kept constant for another 500 generations. 

 

Estimating model parameters from data 

Four analyses were performed to estimate four parameters necessary for our individual-

based model: (i) heritability of clutch size, (ii) the environment-dependent effect of 

maternal clutch size on fledgling weight, (iii) the effect of fledgling weight on offspring 

recruitment, and (iv) the maternal effect, i.e. the effect of fledgling weight and/or maternal 

clutch size on offspring clutch size. All relevant parameters are summarised in Table 8.1; 

data have been deposited in Dryad Digital Repository (Ramakers et al. 2017). 

 

(i) Heritability of clutch size 

To estimate heritability, we used all unmanipulated, first clutches from all birds from 

1956–2013 with known identity (n = 5394 observations from 3328 females). We modelled 

clutch size in an ‘animal model’ (Henderson 1988; Kruuk 2004) with Gaussian errors, 

based on restricted maximum likelihood estimation using ASReml-R v. 3 (Gilmour et al. 

2009). Fixed effects were age (first-time breeder or older), egg-laying date (centred on the 

mean value for that year) and year of breeding (as a factor); random effects were female 

identity (‘permanent environment’), maternal identity, nest box identity, and the additive 

genetic component based on the pedigree. Males do not express a clutch size phenotype 

but it was assumed here that they carry the genes for clutch size, and hence paternal links 

were included in the analysis. In the construction of the pedigree, the female’s social 

partner was assumed the genetic father. Molecular analysis in a nearby great tit population 

has revealed that the proportion of extra-pair young ranges from 6.5 to 12.5% (Van Oers 

et al. 2008). Such rates are common for tit species (Brommer et al. 2010), but have been 

found to only marginally affect heritability estimations when sample sizes are sufficiently 

large (i.e. >100; Charmantier and Réale 2005). 
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All fixed and random variables contributed significantly to variation in clutch size, with 

the exception of maternal identity (Table S8.1). Narrow-sense heritability (ℎ𝐶𝑆
2 ) was 

estimated at 0.24 (± 0.04 SE). 

 

(ii) Fledgling weight vs. maternal clutch size 

To estimate the environment-dependent effect of clutch size on fledgling weight, we 

cannot rely on observational data since different females likely have different, individually 

optimised clutch sizes (Pettifor et al. 1988, 2001). We therefore made use of eight years 

(1983–1990) of brood size manipulations at our study site (Both et al. 2000) to estimate 𝛼𝐹𝑊𝑗
 

and 𝛽𝐹𝑊𝑗
 in eqn. (8.5). Briefly, each year triplets were formed of nests with the same clutch 

size and hatching date, within which broods were randomly chosen to be either enlarged 

or reduced by approximately a half or to remain the same size when chicks were 1–3 days 

old. The year 1988 differed somewhat in that three broods of different sizes were 

manipulated to one common brood size. Our aim was to find year-dependent trade-offs 

between a female’s clutch size and her offspring’s body condition. Different years are here 

assumed to represent different environments, i.e. in terms of food availability or breeding-

pair densities, with poor years exhibiting the steepest negative slope of fledgling weight 

versus clutch size and a comparatively low average body condition. We therefore 

modelled fledgling weight (n = 2145 nestlings) as a function of manipulated brood size, 

Figure 8.2. Great tit fledgling mass at the Hoge Veluwe as a function of maternal clutch size for 
three representative (good, intermediate and poor) years. Dots are means ± SE and random 
horizontal spacing was added between years, done for visual purposes only. Trend lines are back-
transformed estimates from a linear mixed-effects model with fledgling weight on a logit scale 
(Tables 1 and S2). Brood sizes are centred values plus the mean for the respective years. Note that 
data come from experimental brood-size manipulations; 1988 had few manipulated brood sizes 
compared to other years because in this year the manipulation procedure was slightly different 
(Both et al. 2000). 
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year, and the interaction between the two, as well as original clutch size and hatching date, 

in linear mixed-effects model using the R package lme4 (Bates et al. 2018); brood identity 

(n = 309) nested within female identity (n = 251) served as a random effect. All continuous 

predictor variables were centred around their mean value for that year; fledgling weight 

was transformed to a logit scale before analysis (𝑧′𝐹𝑊𝑖
= 𝑝/[1 − 𝑝], where 𝑝 = [𝑧𝐹𝑊𝑖

−

5.5]/[22.5 − 5.5]) to allow for realistic asymptotes at both extremes of the weight spectrum 

(i.e. 5.5 g < 𝑧𝐹𝑊 < 22.5 g) after back-transformation. Manipulated brood size, year, and their 

interaction were highly significant (Table S8.2): years differed in both elevation and slope 

of the clutch size–fledgling weight relationship (Fig. S8.1). We chose three particular years 

to represent a ‘good’, ‘intermediate’, and ‘poor’ environment (Fig. 8.2) based on the values 

for 𝛼𝐹𝑊𝑗
 (the weight in the average environment) and 𝛽𝐹𝑊𝑗

 (the steepness of the curve, 

with the shallower slopes indicating better environments). We chose 1988 to represent the 

poor environment; note that although the experimental procedure in this year differed 

somewhat from other years and 1988 might thus be an oddity, its steep slope renders it a 

suitable ‘extreme’ scenario. 

 

(iii) Offspring survival probability 

We modelled offspring survival probability ϕ based on recruitment probability (which 

approximates survival) as a function of fledgling weight and the square of fledgling 

weight. We thus ran a generalised linear mixed-effects model with a logit link to estimate 

𝛼𝜙, 𝛽𝜙, and 𝛾𝜙 (eqn. 8.6). Fledglings could either return or not return to the breeding 

 

Figure 8.3. Recruitment probability of great tits at the Hoge Veluwe as a function of their 
fledgling weight (see Tables 1 and S3). Means and their standard errors are given; note that 
grouping was done for visual purposes only and extreme fledgling weights (at both ends of the 
spectrum) were disregarded due to too few observations. 
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population (1/0 response). Brood identity nested within year of breeding was added as a 

random effect. We used data from 1973–2013 because of few observations in earlier years 

(n = 24320 nestlings from 3600 broods). Recruitment probability showed a highly 

significant, quadratic response to fledgling weight (Table S8.3) and was approximately 

constrained below 0.1 (Fig. 8.3). We also tested whether fledgling weight interacted with 

year (i.e. whether 𝛽𝜙 varied among years) but found no statistical evidence for this (results 

not shown). 

 

(iv) Maternal effect on offspring clutch size 

To estimate the maternal effect on offspring clutch size we explored two routes: one that 

acts through offspring fledgling weight and where it is environmentally plastic (eqn. 8.3), 

and one that acts through maternal clutch size and is not environmentally plastic (eqn. 

8.4). From the 1973–2013 data set, we extracted all first-year breeding attempts of females 

with known fledgling weights and known mothers (n = 510). As clutch size is partly under 

genetic control, we needed to account for this effect when estimating effects of fledgling 

weight or maternal clutch size on offspring clutch size. To do this, we used the predicted 

breeding values (PBVs) extracted from the previous animal model (i.e. BLUPs) based on 

the complete data set. We are fully aware that PBVs can come with substantial and 

potentially non-random prediction errors (Hadfield et al. 2010), but the data set used to 

estimate the maternal effect was too small to estimate additive genetic variance reliably, 

and we are convinced that this approach gives more reliable results. Note that, 

consequently, our estimates of negative maternal effects are likely somewhat conservative 

(i.e. show an upward bias) given the positive association between maternal and offspring 

phenotypes expected from genetic inheritance. 

In the first model, maternal clutch size affected offspring clutch size via fledgling 

weight, which makes it an environmentally plastic effect since the effect of maternal clutch 

size on fledgling weight varies with the environment (Fig. 8.2 and Fig. 8.4b). Fledgling 

weight and PBV significantly contributed to variation in offspring clutch size, the former 

explaining 0.6% of variation and having an estimated slope (𝛽𝑝) of 0.13 eggs g-1 (Table 8.1 

and S8.4; Fig. 8.4a). To obtain 𝑚𝑝, which is only implicitly modelled, we subsequently 

regressed 𝑀𝐶𝑆𝑖
 against maternal clutch size, which led to three different, environment-

dependent values for 𝑚𝑝 approximately corresponding to –0.13, –0.04, and –0.03 for poor, 

intermediate, and good environments, respectively (see Fig. 8.4b; note that these curves 

are nonlinear). 

In the second model, the maternal effect was estimated as the partial regression 

coefficient for offspring against maternal clutch size (𝑚𝑓) and was not environmentally 

plastic (eqn. 8.4). A similar mixed-effects model was run, but maternal clutch size 𝑧𝐶𝑆𝑚 

(centred around the annual mean value) was added, as well as its interaction with mean 

population fledgling weight in the current breeding year t (𝑧�̅�𝑊𝑡), as a measure of 

environmental quality, to assess whether the effect of maternal clutch size on offspring 

clutch size depended on the environment. Besides PBV and individual fledgling weight 

(𝑧𝐹𝑊𝑖
), maternal clutch size was highly significant and explained 2.7% of variation (Table 
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8.1 and S8.5; Fig. 8.4b); the maternal-effects coefficient was estimated at 𝑚𝑓 = –0.21 (note 

that in this model the effect of fledgling weight (𝛽𝑝) was reduced to 0.10 eggs g-1, 

explaining 0.3% of variation). There was no significant effect of 𝑧�̅�𝑊𝑡, nor was there an 

interaction between 𝑧𝐶𝑆𝑚 and 𝑧�̅�𝑊𝑡, reinforcing the view that 𝑚𝑓 is not environmentally 

plastic. 

 

 

 

Figure 8.4. Maternal effect on offspring clutch size in great tits at the Hoge Veluwe. The 
environmentally plastic maternal effect operates through fledgling weight (a); plotting the resulting 
centred maternal clutch size (i.e. the maternal-effects component 𝑀𝐶𝑆) against the maternal 
phenotype in the mother’s environment leads to three environment-specific maternal effects 𝑚𝑝 

(b). The fixed maternal effect 𝑚𝑓 is the effect of maternal clutch size on offspring clutch size 

independently of fledgling weight and is not environmentally plastic (c). Points are means and their 
standard errors, corrected for PBVs, which was done for visual purposes only. Lines are estimates 
from linear mixed-effects models, keeping PBVs constant at their mean (Tables S8.4 and S8.5).  
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Results 

 

Environmentally plastic maternal effects (𝑚𝑝) 

Environmentally plastic maternal effects only marginally affected the rate of adaptation 

following an environmental shift to new phenotypic optima, relative to the situation 

where maternal effects were absent (Fig. 8.5a,b; see Fig. S8.3 for changes in mean maternal 

effects component �̅�𝐶𝑆, phenotypic variance 𝑉𝑧𝐶𝑆
̅̅ ̅̅ ̅, fledgling weight 𝑧�̅�𝑊, and selection 

differential �̅�). 

Under selection for a larger clutch size, offspring survival probability increased after 

the environmental shift—regardless of maternal clutch size. This is because fledgling 

weight was little compromised when clutches were large in the new, good environment 

(Fig. 8.2; see also 𝑧�̅�𝑊 in Fig. S8.3). Surviving offspring in the first generation following the 

environmental shift, many of them in relatively good condition, laid relatively large 

clutches that did not result in a reduction of offspring weight. Therefore, a negative 𝑚𝑝 

coefficient slightly favoured adaptation in the first 100 years following the burn-in. As the 

new optimum trait value was approached, selection decreased (Fig S8.3), hence 

diminishing the response in 𝑧�̅�𝑆 compared to the scenario without a maternal effect from 

~70 years onward. 

Under selection for smaller clutch size in the poor environment, which was much 

stronger than the selection for larger clutch size because of the narrower fitness peak (Fig. 

S8.2, S8.3, and S8.6), the initially enhancing effect of a negative 𝑚𝑝 coefficient was more 

pronounced but lasted much shorter. After the environmental shift selecting for smaller 

clutch size, individuals laid too large clutches, resulting in a low average fledgling weight 

in generation t and, consequently, a drop in 𝑧�̅�𝑆 in year t + 1. The fixed weight–survival 

curve (Fig. 8.3) ensured that only the heaviest offspring survived (Fig. S8.3), which in turn 

would lay relatively large clutches—hence the slight upward tilt following generation t + 

2. Again, the negative 𝑚𝑝 coefficient pushed 𝑧�̅�𝑆 in the wrong direction, resulting in a 

lagged response compared to the scenario without a maternal effect from generation 7–8 

onward (insets Fig. 8.5a). 

The overall effect of the environmentally plastic maternal effect, however, remained 

small at <0.1 eggs under selection for both larger and smaller clutches compared to the 

situation without the maternal effect. To illustrate the nature of the environmentally 

plastic maternal effect more clearly, we ran another set of models where we set the 

regression coefficient for offspring clutch size against fledgling weight (𝛽𝑝) to a less 

realistic 0.5 (resulting in an implicit regression coefficient 𝑚𝑝 of –0.52, –0.16, or –0.09 in 

poor, intermediate, and good environments, respectively; see Methods), whilst keeping 

the intercept  𝛼𝑝 the same. These parameter settings clearly show the potential capacity of 

the environmentally plastic maternal effect to drive 𝑧�̅�𝑆 and �̅�𝐶𝑆 (Fig. S8.5a,c). 
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Figure 8.5. Predicted mean phenotypic (a, c, e) and genetic (b, d, f) change in avian clutch size 
(modelled after the great tit at the Hoge Veluwe) in response to selection when considering a 
realistic environmentally plastic (i.e. via fledgling weight; a, b), fixed (i.e. via maternal clutch size; 
c, d) or combined (e, f) maternal effect (solid lines), or no maternal effect at all (dashed lines). 
Phenotypic responses in the first 25 years are magnified in the insets in panels a, c, and e. The 
vertical line denotes the pre-burn-in period, after which selection moves from an intermediate 
clutch size to either a large (good environment) or small (poor environment) clutch; the blue dotted 
lines in panels a, c and e denote the ‘optimal’ phenotype, i.e. 𝑧𝐶𝑆 at Wmax. Lines are the means of 

population averages over 1000 simulation runs. Input parameters are 𝑉𝑧𝐶𝑆= 3.91, ℎ𝐶𝑆
2  = 0.24, 𝑀𝐶𝑆

2  

= 0.006 (panel a and b) or 0.003 (panel e and f) for the model with the plastic maternal effect, 𝑀𝐶𝑆
2  

= 0.027 for the model with the fixed maternal effect; 𝑚𝑝 ≈ –0.13, –0.04 and –0.03 (depending on 

the environment; panel a and b) or –0.10, –0.03 and –0.02 (panel e and f), 𝑚𝑓 = –0.21 (see text and 

Table 8.1 for details). 
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Fixed maternal effects (𝑚𝑓) 

In the models in which the maternal effect was fixed, offspring clutch size was 

independent of fledgling weight, yet the effect of the fixed maternal effect was stronger 

than that of the environmentally plastic maternal effect (Table 8.1 and S8.5). In the first 

generation following the environmental shift that selected for larger clutch size, the 

negative impact of the fixed maternal effect was alleviated as there was little cost to an 

intermediate clutch size; this ensured that the next generation (t + 1) could lay large 

clutches that were immediately penalised in the subsequent generation (t + 2; Fig. 8.5c; see 

also Fig. S8.4). Note that this pattern is reminiscent of an effect of offspring condition on 

phenotype as in the scenario of the environmentally plastic maternal effect, yet the fixed 

maternal effect acted independently of the effect of fledgling weight (Table S8.5). Under 

selection for smaller clutches the negative maternal effect led to a decreased response (i.e. 

too large clutch sizes), resulting in a lag effect from the first or second generation onward. 

Note that the initial, adaptive effect of the environmentally plastic maternal effect was less 

pronounced here, as the strong weight-dependent selection did not affect the phenotype. 

The immediate effect of the fixed maternal effect compared to the model without the 

maternal effect was around 0.6 eggs in the first generation under selection for larger 

clutches but this effect waned after a few generations and never exceeded 0.6 eggs in 

subsequent generations. Like in the environmentally plastic maternal effect model, 

therefore, also the overall effect of a fixed maternal effect remained small. Again, an 

exaggerated decrease of the coefficient 𝑚𝑓 (eqn. 8.4) from –0.21 to –0.5 (but keeping the 

intercept 𝛼𝑓 the same) in an additional set of model runs led to a more distinct effect on 

adaptation (i.e. adaptive under selection for larger clutches in the short run and 

maladaptive under both selection scenarios in the long run) and magnified the oscillations 

observed in the first few generations under selection for larger clutches (Fig. S8.5b,d). 

 

Combining environmentally plastic and fixed maternal effects (mp + mf) 

As the most likely scenario in our great tit study population, the third model that we 

considered used 𝑚𝑝 and 𝑚𝑓 as two separate, additive maternal effects, with parameters 

for both effects taken from Table S8.5 (implicit 𝑚𝑝 ≈ –0.10, –0.03, or –0.02 for poor, 

intermediate, and good environments, respectively; 𝑚𝑓 = –0.21). This model combined the 

relatively strong, initially enhancing effect of 𝑚𝑓 under selection for larger clutches and 

the relatively strong, initially enhancing effect of 𝑚𝑝 under selection for smaller clutches. 

Combined, the overall effect of m on 𝑧�̅�𝑆 and �̅�𝐶𝑆 under selection for smaller clutches was 

slightly increased (Fig. 8.5e,f) compared to the model with the fixed maternal effect only, 

but the likely effect in our study population would remain small, making <0.5 eggs 

difference in the average phenotype between models with and without maternal effects in 

any generation. 
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Discussion 

 

Using an individual-based model, parameterised with experimental data from a long-term 

population study of great tits, we investigated how a specific type of maternal effects—a 

maternal trait affecting the same trait in the offspring—could affect the rate of adaptation 

in a population experiencing an environmental shift. We found that the presence of 

environmentally plastic or fixed (negative) maternal effects in avian clutch size can speed 

up phenotypic adaptation in the short run and slow it down in the long run, but their 

effects in real populations are likely very small. This is because the real maternal-effects 

coefficients—and hence explained variation—were small (Tables 8.1, S8.4, and S8.5). 

Indeed, the use of higher values for the strength of the maternal effect showed that the 

model we used resulted in the familiar oscillating pattern in 𝑧�̅�𝑆 over time (Fig. S8.5), as 

predicted from earlier models that incorporated negative maternal effects (Kirkpatrick and 

Lande 1989; Bijma 2011). Had we included a realistic adult survival rate (for great tits circa 

0.5) in the model, the effect of the maternal effect on the evolutionary response would have 

been even more reduced due to increased generation time, indicating even more strongly 

that the evolutionary consequences of the maternal effect on clutch size in our population 

are negligible. Indeed, had we used extreme parameter values used in theoretical model 

exercises (e.g. Ezard et al. 2014; Hoyle and Ezard 2012; Prizak et al. 2014), the effects would 

have been more profound (Fig. S8.5). 

A key parameter in our stochastic model was the experimentally derived relationship 

between clutch size and fledgling weight, as (i) this determined the environmentally 

plastic maternal effect and (ii) selection on clutch size was largely driven by this 

relationship. Predicting these environmental scenarios would not have been possible with 

observational data, as individual optimisation of clutch size (Pettifor et al. 1988, 2001) will 

render the among-individual relationship of fledgling weight against clutch size flat or 

even positive. The different relationships depicted in Fig. 8.2 are likely the direct result of 

population density-dependent food availability in the respective years (Both et al. 2000). 

By its nature, therefore, the negative slope of the relationship is steepest in poor 

environments, resulting in strong directional selection for smaller broods as the 

environment shifts from intermediate to poor (Fig. S8.3 and S8.4); in the good 

environment, the relationship is much shallower and selection is much weaker (see Fig. 

S8.6). This imbalance in the strength of selection ensures that, in our model, adaptation is 

always faster toward smaller vs larger clutches. An initially increased response under 

selection for smaller clutches in the presence of the environmentally plastic maternal 

effects (Fig. 8.5a,e and Fig. S8.5a) is then merely a result of selection acting against heavy 

individuals laying too large clutches, which, indeed, is rapidly counteracted in subsequent 

generations. 

The best (empirical) model included both environmentally plastic (𝑚𝑝) and fixed (𝑚𝑓) 

maternal effects (Table S8.5), the latter being the more important source of variation in 

clutch size (0.3% vs 2.7%). Whereas 𝑚𝑝 is linked to offspring condition, we have no clear 

hypothesis as to which mechanism underlies 𝑚𝑓 in our population. Non-genetic maternal 

inheritance has been linked to transgenerational epigenetic effects in several contexts, 
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including parental care and nutritional stress (Champagne 2008; Jablonka and Raz 2009). 

In mammals, for example, maternal post-conception protein restriction and prenatal 

famine induce DNA methylation corresponding to impaired offspring development, with 

potential consequences for metabolic phenotypes later in life (Tobi et al. 2014; Holland et 

al. 2016). Rats receiving little grooming as pups show increased stress response and 

methylation patterns of genes associated with glucocorticoid stress response, setting the 

stage for their own maternal grooming behaviour as adults (Weaver et al. 2004; Szyf et al. 

2005). Such epigenetic mechanisms are likely to reset in every generation (Feng et al. 2010). 

While this mechanism could theoretically underlie both 𝑚𝑝 and 𝑚𝑓 in our case, they would 

be a more likely candidate for 𝑚𝑓 as they can be reset in every generation, but more 

empirical work is needed to elucidate the evolutionary importance of epigenetic 

inheritance in natural populations (Verhoeven et al. 2016). 

We had no indication from our long-term data set that 𝑚𝑓 was in any way dependent 

on the environment, despite a considerable year-to-year variation in clutch size (Table 

S8.1). Kuijper and Hoyle (2015) have argued that maternal effects are in reality not likely 

fixed, but have the ability to evolve positive or negative signs depending on the stability 

of the environment. Interestingly, our empirical estimate of 𝑚𝑓 (–0.21) is congruent with 

Hoyle and Ezard’s (2012) derived value for m (–0.2) at which mean population fitness is 

predicted to be maximised given a moderate degree of autocorrelation (𝜌 = 0.25) between 

the environment of development and selection. Using an intuitive measure of the quality 

of the environment, i.e. population-average fledgling weight (see Table S8.2), we find a 

significantly positive lag-1 autocorrelation of 𝜌 = 0.36 (p < 0.05). Thus, 𝑚𝑓, in our 

population, is close to what we would expect to evolve in an environment that, although 

varying from year to year, exhibits a reasonable degree of predictability. Such a negative 

maternal effect, whatever the underlying mechanism, is expected to evolve as it tends to 

reduce phenotypic variance and enhance mean fitness in the population (Hoyle and Ezard 

2012; Kuijper and Hoyle 2015). 

The trait variation explained by the maternal effect found here as well as in previous 

studies seems to be small to modest (Räsänen and Kruuk 2007; McAdam et al. 2014). This 

has obvious implications for their potential consequences for evolutionary change but also 

raises the question as to why maternal effects seem to be generally weak. If we viewed a 

maternal effect as an adpative plastic effect to ‘prime’ offspring optimally for expected 

environmental conditions, then low predictability of the expected environmental 

conditions would lead to a reduced or absent maternal effect (Uller 2008), analoguous to 

non-transgenerational plasticity (Gienapp et al. 2014). We may also expect small maternal 

effects if adjusting them to varying environmental conditions is costly, analoguous to the 

costs of phenotypic plasticity (e.g. DeWitt et al. 1998), but our current understanding of 

costs of plasticity is still limited (Auld et al. 2010). So, maternal effects may be constrained 

in the same way as other plastic traits and this may explain their small to modest sizes. 

Furthermore, for maternal effects to evolve to their optimal values, genetic variation in 

them is required, but our understanding of the (quantitative) genetics of maternal effects 

in wild populations is even more limited, partly because the necessary data are scarce 

(McAdam et al. 2014). 
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In our model, the effects of 𝑚𝑓 and 𝑚𝑝 on adaptation were projected over a few hundred 

generations. Realistically, given the transient nature of our empirical approximations, this 

is the maximum predictive window across which we can endeavour to make projections. 

Theoretical models that operate at evolutionary time scales predict that environmental 

shifts are followed by evolution of the maternal effect itself (Kuijper and Hoyle 2015). To 

complicate matters further, novel environments may release ‘cryptic’ genetic variation 

(Lédon-Rettig et al. 2014) as well as increase residual variances (Rowiński and Rogell 

2017), affecting the speed with which adaptation can take place (Wilson et al. 2006; cf. 

Wood and Brodie III 2016; Husby et al. 2011b). These issues, among others, make 

predicting adaptation at evolutionary time scales (i.e. beyond hundreds of generations) a 

senseless exercise when the goal is to use ‘real’ parameters, as these very parameters 

originate from a mere snapshot of the environment. 

This brings us to the question of whether we can quantify real evolutionary responses 

resulting from maternal effects in wild populations. Indeed, several papers have shown 

the potential evolutionary importance of maternal effects in wild populations (McAdam 

and Boutin 2004; e.g. Badyaev 2005; Wilson et al. 2005; McFarlane et al. 2015), corroborated 

by laboratory studies (e.g. Yanagi and Tuda 2010; McGlothlin and Galloway 2013; Munday 

et al. 2017). Note that the maternal effects addressed in these studies are the type that in 

some way represent a female quality or investment (identified as variance components; 

but see McAdam and Boutin 2004) and therefore differ from our estimated 𝑚𝑝 or 𝑚𝑓. The 

studies cited, making use of past or present selection regimes, showed that the 

population’s capacity to evolve at least partly bears on the presence of maternal effects, 

but none of the studies has endeavoured to make predictions about future evolutionary 

trajectories. A way to overcome this would be to make use of estimates originating from 

populations undergoing substantial directional selection (Kuijper and Hoyle 2015), 

preferably in combination with long-term cross-fostering experiments (e.g. Postma et al. 

2007), which, to date, are rare (Merilä et al. 2001b; Kruuk and Hadfield 2007). The outcome 

of such long-term studies could serve as input for state-of-the-art models to predict—or 

hindcast—how a population might evolve in the presence of maternal effects. Combined, 

these methods may be of use in answering this outstanding question in ecology and 

evolution. 

Our world is changing rapidly, with climate change posing an important threat to 

populations’ persistence (McLaughlin et al. 2002; Thomas et al. 2004). To forecast the 

viability of populations in the long run, we need to understand the rate at which species 

can adapt to these novel selection pressures (Visser 2008). We observe apparent 

evolutionary stasis in several populations (Merilä et al. 2001b), possibly due to the 

importance of non-Mendelian inheritance systems such as maternal effects. These 

inheritance systems may greatly affect evolutionary dynamics (Räsänen and Kruuk 2007; 

Danchin et al. 2011); yet to quantify this in wild populations we need long-term 

observations of populations under sustained directional selection (Kuijper and Hoyle 

2015; cf. McGlothlin and Galloway 2013). Theoretical models can aid in understanding 

how such inheritance mechanisms can act at evolutionary timescales (Cobben and van 

Oers 2016) when they are rooted in reality. Basing ourselves on real data, we show that 

the potential for environmentally plastic maternal effects to alter the rate of adaptation is 
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limited even under strong, sustained directional selection. To further our understanding 

of the adaptive potential of non-genetic inheritance, we therefore strongly encourage a 

closer link between theoretical and empirical work on maternal effects, e.g. through 

collaboration between research groups with access to real data, to achieve accurate 

predictions about the evolutionary consequences of maternal effects. 
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Supplementary Information S8 

 

 

Table S8.1. Results of the linear mixed-model (‘animal model’) analysis on clutch size in great tits at 

the Hoge Veluwe (1956–2013; n = 5394 observations from 3328 females). 

Variable   Estimate SE F/χ2 a df p 

Fixed effects       

  Age mother 1st-timer 9.24 0.05 40.96 1, 4260.6 < 0.0001 
 older 9.53 0.05    

  Laying date 

    (centred) 
 -0.08 0.00 250.9 1, 5278.7 < 0.0001 

  Year of breeding 1956 9.54 1.19 23.57 57, 4755.4 < 0.0001 
 1957 8.85 0.54    

 1958 9.95 0.74    

 1959 10.25 0.37    

 1960 9.98 0.33    

 1961 9.96 0.21    

 1962 10.43 0.44    

 1963 10.30 0.36    

 1964 11.07 0.32    

 1965 10.04 0.24    

 1966 10.37 0.22    

 1967 9.37 0.18    

 1968 9.89 0.16    

 1969 9.97 0.16    

 1970 10.09 0.17    

 1971 8.78 0.15    

 1972 9.36 0.15    

 1973 9.35 0.17    

 1974 8.91 0.17    

 1975 7.94 0.14    

 1976 8.35 0.15    

 1977 9.17 0.13    

 1978 9.99 0.17    

 1979 10.00 0.19    

 1980 10.15 0.16    

 1981 8.41 0.16    

 1982 8.26 0.16    

 1983 8.73 0.16    

 1984 7.98 0.15    

 1985 9.61 0.23    

Continued 
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Table S8.1 (continued) 

Variable   Estimate SE F/χ2 a df p 
 1986 10.61 0.18    

 1987 9.97 0.16    

 1988 7.40 0.14    

 1989 9.22 0.17    

 1990 9.47 0.17    

 1991 7.97 0.15    

 1992 10.01 0.16    

 1993 8.49 0.16    

 1994 9.06 0.16    

 1995 9.58 0.18    

 1996 9.20 0.15    

 1997 10.28 0.18    

 1998 10.33 0.18    

 1999 9.22 0.17    

 2000 9.57 0.19    

 2001 8.12 0.15    

 2002 8.89 0.18    

 2003 9.16 0.14    

 2004 9.30 0.19    

 2005 8.84 0.15    

 2006 9.21 0.21    

 2007 8.69 0.16    

 2008 8.94 0.15    

 2009 10.52 0.18    

 2010 10.19 0.17    

 2011 10.64 0.16    

 2012 8.41 0.14    

 2013 8.10 0.19    

       

Random effectsb 

  Female identity (permanent 

environment) 
0.50 0.14 13.29 1 0.0003 

  Additive genetic 

effect 
 0.76 0.14 35.54 1 <0.0001 

  Nest box identity  0.05 0.02 10.22 1 0.0014 

  Mother identity (maternal 

effect) 
0.16 0.11 2.19 1 0.14 

  Residual   1.80 0.06       
aConditional Wald F tests were used to test significance of fixed effects; likelihood-ratio tests were used for random effects. 
bLikelihood-ratio tests and parameter estimates based on models excluding non-significant term.  
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Table S8.2. Results of the linear mixed-effects model analysis on the effect of experimentally 
manipulated brood size on fledgling weight in great tits at the Hoge Veluwe (1983–1990; n = 2145 
observations from 309 broods). Marginal and conditional R2 of the final model (Nakagawa and 
Schielzeth 2013) were 0.25 and 0.59, respectively. 

Variable   Estimateb SE F dfc p 

Fixed effectsa             

  Brood size  –0.10 0.02 102.79 1, 287.7 <0.0001 

  Year of breeding 1983 0.35 0.06 7.45 7, 233.6 <0.0001 

 1984 0.49 0.05    

 1985 0.67 0.07    

 1986 0.81 0.05    

 1987 0.79 0.06    

 1988 0.53 0.06    

 1989 0.85 0.09    

 1990 0.62 0.07    

  Brood size × year  BS:1983 –0.09 0.02 3.31 7, 260.7 0.0021 

 BS:1984 –0.08 0.01    

 BS:1985 –0.06 0.02    

 BS:1986 –0.06 0.01    

 BS:1987 –0.05 0.01    

 BS:1988 –0.30 0.06    

 BS:1989 –0.07 0.03    

 BS:1990 –0.05 0.02    

  Orginal clutch size    3.32 1, 288.6 0.07 

  Hatching date    0.42 1, 284.9 0.52 

       

Random effects  Variance SD    

  Brood ID: mother ID  0.07 0.26    

  Mother identity  0.04 0.21    

  Residual  0.13 0.36       
aFixed terms expressed in boldface appeared in the final model; continuous variables are centred around their mean for each 
year. 

bParameter estimates are on a logit scale and given only for significant terms. 

cDenominator degrees of freedom estimated using Kenward–Roger approximation.  
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Table S8.3. Results of the mixed-effects logistic regression analysis on offspring recruitment 
probability in great tits at the Hoge Veluwe (1973–2013; n = 24320 observations from 3600 
broods). 

Variable Estimate SE 𝜒2 df pa 

Fixed effects          

  Intercept –19.06 2.92    

  Fledgling weight 1.62 0.33 171.33 1 0.0006 

  [Fledgling weight]2 –0.04 0.01 20.74 1 0.0005 

      

Random effects Variance SD    

  Year of breeding 0.43 0.66    

  Brood identity: year of breeding 0.32 0.57      
Note: area under ROC curve: 0.80 (95% CI: 0.79–0.81) 
ap-values of the likelihood-ratio test were simulated using parametric bootstrapping with 2000 simulations 

 

 

 

 

Table S8.4. Result of the linear mixed-effects analysis on centred clutch size (𝑀𝐶𝑆𝑖) estimating the 

environmentally plastic maternal effect in first-time breeding great tits at the Hoge Veluwe (1973–
2013; n = 510).  

Variable Estimate SE F dfb p R2 c 

Fixed effectsa             

  Intercept –0.25 0.06     

  Fledgling weight 0.13 0.05 8.16 1, 498.6 0.0045 0.006 

  Breeding value 2.95 0.09 1007.39 1, 504.4 <0.0001 0.640 

       

Random effectsd Variance SD     

  Year of breeding 0.01 0.12     

  Residual 1.27 1.13         
aFixed terms expressed in boldface appeared in the final model; fledgling weight was centred around its mean for each 
year. 
bDenominator degrees of freedom estimated using the Kenward–Roger approximation. 
cMarginal R2 for fixed effects based on Nakagawa and Schielzeth (2013), termed 𝑀𝐶𝑆 

2 for the maternal effect in Table 8.1 
(main text); conditional R2 of final model: 0.646. 
dBrood of origin was left out to allow for comparison of relative clutch size among members of the whole population.  
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Table S8.5. Result of the linear mixed-effects analysis on centred clutch size (𝑀𝐶𝑆𝑖) estimating the fixed 

maternal effect in addition to the plastic maternal effect in first-time breeding great tits at the Hoge 
Veluwe (1973–2013; n = 510). 

Variable Estimate SE F dfc p R2 d 

Fixed effectsa             

  Intercept –0.25 0.06     

  Breeding value 3.17 0.10 1101.40 1, 504.6 <0.0001 0.692 

  Maternal clutch size (𝒛𝑪𝑺𝒎)b –0.21 0.03 42.83 1, 488.5 <0.0001 0.027 

  Fledgling weight (𝒛𝑭𝑾𝒊
)b 0.10 0.04 5.21 1, 497.7 0.0228 0.003 

 Mean fledgling weight (𝑧�̅�𝑊𝑡)   2.41 1, 23.8 0.13  

  𝑧𝐶𝑆𝑚× 𝑧�̅�𝑊𝑡   0.02 1, 422.6 0.90  

       

Random effectse Variance SD     

  Year of breeding 0.02 0.14     

  Residual 1.17 1.08         
aFixed terms expressed in boldface appeared in the final model.  
bValues were centred around the mean for each year. 
cDenominator degrees of freedom estimated using the Kenward–Roger approximation. 
dMarginal R2 for fixed effects based on Nakagawa and Schielzeth (2013), termed 𝑀𝐶𝑆 

2 for the maternal effect in Table 8.1 
(main text); conditional R2 of final model: 0.726. 
eBrood of origin was left out to allow for comparison of relative clutch size among members of the whole population. 
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Figure S8.1. Fledgling weight as a function of maternal clutch size, resulting from eight years of 
experimental brood size manipulations. Lines are back-transformed regression estimates from a linear 
mixed-effects model with a logit-transformed response variable. 

 

 

 

Figure S8.2. Fitness curves associated with clutch size given different environments (solid line: poor 
environment; dashed line: intermediate environment, dotted line: good environment). Vertical lines 
denote the optimum phenotype for each environment.  
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Figure S8.3 (continued on next page). Environmentally plastic maternal effect-dependent (solid lines) 
or -independent (dashed lines) changes in mean phenotype 𝑧�̅�𝑆 (avian clutch size), genotype �̅�𝐶𝑆, 
additive maternal component �̅�𝐶𝑆, phenotypic variance �̅�𝑧𝐶𝑆 , fledgling mass 𝑧�̅�𝑊, and standardised 

selection differentials �̅� over a time span of 500 years in an avian population modelled after the biology 
of the great tit at the Hoge Veluwe. The maternal effect is the effect of maternal clutch size on offspring 
clutch size via fledgling weight. The vertical line denotes the pre-burn-in period, after which selection 
moves from an intermediate clutch size to either a large (good environment) or small (poor 
environment) clutch; the blue dotted line in the 𝑧�̅�𝑆 panel denotes the ‘optimal’ phenotype, i.e. z at 
Wmax. In the 𝑧�̅�𝑊 panel, wide-dashed lines indicate fledgling weight before selection in presence of 
maternal effects (with solid lines indicating weight after selection), whereas dotted lines indicate 
weight before selection in absence of maternal effects (with narrow-dashed lines indicating weight 
after selection). Lines are the means of population averages over 1000 simulation runs. Input 

parameters are �̅�𝑧𝐶𝑆  = 3.91, ℎ𝐶𝑆
2  = 0.24, 𝑀𝐶𝑆

2  = 0.006, 𝑚𝑝 ≈ –0.13, –0.04 or –0.03 (see main text and 

Table 8.1 for details). 
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Figure S8.3 (continued). Snapshot of the model simulation covering the first 30 years following the 
environmental shift. 
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Figure S8.4 (continued on next page). Fixed maternal effect-dependent (solid lines) or -independent 
(dashed lines) changes in mean phenotype 𝑧�̅�𝑆 (avian clutch size), genotype �̅�𝐶𝑆, additive maternal 
component �̅�𝐶𝑆, phenotypic variance �̅�𝑧𝐶𝑆 , fledgling mass 𝑧�̅�𝑊, and standardised selection differentials 

�̅� over time span of 500 years in an avian population modelled after the biology of the great tit at the 
Hoge Veluwe. The maternal effect is the direct effect of maternal on offspring clutch size. The vertical 
line denotes the pre-burn-in period, after which selection moves from an intermediate clutch size to 
either a large (good environment) or small (poor environment) clutch; the blue dotted line in the 𝑧�̅�𝑆 
panel denotes the ‘optimal’ phenotype, i.e. z at Wmax. In the 𝑧�̅�𝑊 panel, wide-dashed lines indicate 
fledgling weight before selection in the presence of maternal effects (with solid lines indicating weight 
after selection), whereas dotted lines indicate weight before selection in absence of maternal effects 
(with narrow-dashed lines indicating weight after selection). Lines are the means of population 

averages over 1000 simulation runs. Input parameters are 𝑉𝑧𝐶𝑆  = 3.91, ℎ𝐶𝑆
2  = 0.24, 𝑀𝐶𝑆

2  = 0.027, 𝑚𝑓 = –

0.21 (see main text and Table 8.1 for details). 
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Figure S8.4 (continued). Snapshot of the model simulation covering the first 30 years following the 
environmental shift.  
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Figure S8.5. Exaggerated maternal effects: predicted mean phenotypic (a, b) and genetic (c, d) change 
in avian clutch size (modelled after the great tit at the Hoge Veluwe) in response to selection when 
considering an exaggerated, environmentally plastic (i.e. via fledgling weight; a, c) or fixed (i.e. via 
maternal clutch size; b, d) maternal effect (solid lines), or no maternal effect at all (dashed lines). 
Phenotypic responses in the first 25 years are magnified in the insets in panels a and b. The vertical line 
denotes the pre-burn-in period, after which selection moves from an intermediate clutch size to either 
a large (good environment) or small (poor environment) clutch; the blue dotted lines in panels a and b 
denote the ‘optimal’ phenotype, i.e. z at Wmax. Lines are the means of population averages over 1000 

simulation runs. Input parameters are 𝑉𝑧𝐶𝑆  = 3.91, ℎ𝐶𝑆
2  = 0.24, 𝑀𝐶𝑆

2 = 0.006 (panel a and c) and 0.027 

(panel b and d); 𝑚𝑝 ≈ –0.52, –0.16 or –0.09, 𝑚𝑓 = –0.5 (see main text and Table 8.1 for details). 
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Figure S8.6. The effect of maternal clutch size on fitness in a good (a) and poor (b) environment. Shown 
are the number of recruits (mean ± SE from 100 simulations; primary y axis) in three different 
generations following the environmental shift (year 5, 12, and 20), with the horizontal lines denoting 
the mean number of recruits associated with each year. Note that the heights of the ‘curves’ have no 
inherent meaning, as the total number of recruits was more or less equal in any given year. The red line 
denotes the fitness curves for the optimal trait value (eqn.(8.7) in main text; secondary y axis).
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Chapter 9  

 

Environmental coupling of heritability and selection is rare and 

of minor evolutionary significance in wild populations 

 

Jip J.C. Ramakers, Antica Culina, Marcel E. Visser & Phillip Gienapp 

 

 

ABSTRACT 

 

Predicting the rate of adaptation to environmental change in wild populations is important for 

understanding evolutionary change. However, predictions may be unreliable if the two key variables 

affecting the rate of evolutionary change, heritability and selection, are both affected by the same 

environmental variable. To determine how general such an environmentally induced coupling of 

heritability and selection is, and how this may influence the rate of adaptation, we made use of freely 

accessible, open data on pedigreed wild populations to answer this question at the broadest possible 

scale. Using 16 populations from 10 vertebrate species, which provided data on 50 traits (body mass, 

morphology, physiology, behaviour and life history), we found evidence for an environmentally 

induced relationship between heritability and selection in only 6 cases, with weak evidence that this 

resulted in an increase or decrease in expected selection response. We conclude that such a coupling of 

heritability and selection is unlikely to strongly affect evolutionary change even though both heritability 

and selection are commonly postulated to be environment dependent. 
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Introduction 

 

In the face of global environmental change, it is imperative to understand whether and 

how fast populations can adapt to novel conditions to be ‘rescued’ by evolution (Carlson 

et al. 2014). Despite evidence of genetic variance and selection in many wild populations, 

genetic response to selection (adaptive micro-evolution or rate of adaptation) in natural 

populations is rarely observed (Gienapp et al. 2008; Merilä and Hendry 2014). An apparent 

lack of a response to selection may have a variety of biological and/or methodological 

causes (Merilä et al. 2001b; Kruuk et al. 2003). One potential reason is an environmentally 

induced coupling between selection and additive genetic variation, which can mask the 

true evolutionary potential of a population if not recognised. By its definition, selection is 

mediated by the environment (Darwin 1859; Wade and Kalisz 1990) and has been shown 

to vary from season to season and between geographical regions, depending on resource 

availability (including mating opportunity) and predation pressure (e.g. Hairston and 

Dillon 1990; Grant and Grant 2002; Gosden and Svensson 2008a; Siepielski et al. 2009; 

Weese et al. 2010; but see Morissey and Hadfield 2012). Genetic variation is, however, also 

known to vary with the environment (known as genotype-by-environment interaction), 

being sometimes increased and sometimes reduced under benign conditions (e.g. when 

mean fitness in the population is high; Hoffman and Merilä 1999; Lédon-Rettig et al. 2014; 

Wood and Brodie III 2016), although the ecological drivers of changes in the genetic 

variance–covariance matrix remain largely unknown (Wood and Brodie III 2015). 

Although the environmental dependency of both selection and genetic variation has 

been thoroughly documented, our knowledge on how they may interact to result in 

evolutionary change in natural populations is very limited. In their recent review, Wood 

and Brodie (2016) identified 23 studies that measured environmental effects on selection 

and 28 studies that measured environmental effects on additive genetic variation. Overall, 

reviewing a great variety of taxa, environments and traits, they found that environmental 

effects on selection and genetic variance were broad and inconsistent. Importantly, most 

studies on environment-dependent genetic variation were done in laboratory settings (and 

those on selection mostly in wild populations) and extrapolating laboratory findings to 

natural conditions is not necessarily straightforward. To date, only two studies of natural 

populations have measured how both genetic variation and selection within the same trait 

covaried across environments. A study on Soay sheep (Ovis aries) demonstrated increased 

selection for a higher birth weight in harsh environments, whereas total genetic variance 

was highest in benign environments (Wilson et al. 2006). The opposite was found in the 

great tit (Parus major), where warmer springs, which are associated with increased 

mismatch between offspring energetic demands and food availability, were associated 

with stronger selection for early egg-laying as well as high additive genetic variance for 

that trait (Husby et al. 2011b). Thus, in the former example, selection and genetic variance 

covaried with the environment in opposite directions, whereas in the latter example they 

did so in the same direction. The negative covariance between selection and genetic 

variation in Soay sheep led to an 21% decrease in expected response to selection as 

opposed to a situation where genetic variance was assumed to not vary with the 
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environment (Wilson et al. 2006). In the great tit, the positive association between additive 

genetic variance and selection gradients resulted in a 20% increase in predicted response 

to selection as compared to a situation where heterogeneity in both selection and genetic 

variance was ignored (Husby et al. 2011b). A more recent study investigated the 

environmental dependency of genetic variance and selection in several morphological 

traits in the Soay sheep population, but did not explicitly address the relationship between 

them, presumably since environment-dependent genetic variance was found to be absent 

(Hayward et al. 2018). The environmental coupling of selection and genetic variance (or 

heritability) may therefore provide an important explanation for the discrepancy between 

observed and expected responses to selection in some natural populations, but the 

prevalence of this mechanism—and how it may alter the expected response to selection—

in wild populations remains largely unknown. 

We investigated the prevalence and strength of an environmentally induced correlation 

between heritability and selection—and its expected evolutionary consequence—in a 

variety of wild populations. We searched for multiannual, pedigreed datasets on wild 

populations freely accessible from online data repositories and used these data to quantify 

environment-dependent additive genetic variation (using random regression animal 

models) and standardised selection gradients for a suite of life-history, morphological, 

behavioural, physiological and body mass traits. We then regressed heritability against 

selection for 50 traits from 16 populations and compared expected selection responses 

with and without considering environmental heterogeneity in heritability. We had no 

specific expectation as to the prevalence of a correlation between heritability and selection 

but, if anything, expected it to be more common in life-history and morphological traits, 

since selection in these traits tends to be strong and variable (Kingsolver et al. 2001). Our 

approach using open data (Culina et al. 2018) speaks to recent recommendations to use 

available data to address novel, outstanding questions in ecology and evolution that 

transcend a single study system (Whitlock et al. 2010; Hampton et al. 2013). 

 

Results 

 

Data acquisition and author response 

We performed a search in online data repositories (see Methods) for multiannual (≥ 6 

years) datasets containing pedigrees of wild populations accompanied by phenotypic 

measures on individually marked animals. From 106 acquired pedigreed datasets 

(Supplementary Table 9.1), we used 14 that were suitable for our analysis (see Methods). 

We added one unpublished dataset from our own database (pied flycatcher, Ficedula 

hypoleuca). These 15 datasets comprised 16 different populations, spanning ten species, 

eight of which were avian species, one a lizard, and one a mammal (Table 9.1). 

Authors were generally supportive of the use of their data. We contacted 14 authors (of 

18 datasets) about our use of their data and found that 4 datasets were not usable. This 

was mainly related to a bias in our approximation of the environment, i.e. the population- 
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Table 9.1. Overview of studies used in the gene-by-environment and selection analyses. The studies 
and traits listed are the ones that met inclusion criteria and could be successfully analysed (see Table 
S9.1 for an untrimmed overview of datasets). 

Species Refs.  Locality Aim of original study Trait Nobs Nind Nyear h2 (s.e.) 

Select-

ion? 

Cinclus cinclus 1,2 ZU Estimate biases in 

inbreeding depression 

Wing length 

(mm) 

1132 672 18 0.464 (0.066) F 

Chyonomis nivalis 3 CW Predict genetic changes 

in body mass 

Body mass (g) 3382 931 9 a: 0.188 (0.064) F 
      

j: 0.069 (0.056) V 
   

Body length 

(mm)* 

2761 791 8 a: 0.139 (0.062) – 
      

j: 0.093 (0.070) V 
   

Tail length 

(mm)* 

3382 931 9 a: 0.281 (0.079) – 
       

j: 0.101 (0.054) V 

Cyanistes 

caeruleus 

4,5 TA Estimate the 

developmental stability 

of behavioural 

syndromes 

Nestling 

handling 

aggression 

6149 6149 8 0.235 (0.043) V 

 
 

 
Adult handling 

aggression 

1633 1103 8 0.283 (0.057) V 

 
 

 
Nestling breath 

rate (breaths/s) 

5863 5863 7 0.266 (0.037) V 

 
 

 
Adult breath 

rate (breaths/s) 

1526 1031 7 0.194 (0.063) V 

 
6,7 DR Investigate spatial 

variation in G-matrix in 

populations with 

contrasting population 

history and selective 

environment 

Incubation 

duration (d) 

1104 740 24 0.195 (0.074) V 

   
Laying date 1104 740 24 0.214 (0.094) V 

   
Clutch size 1104 740 24 0.345 (0.104) V 

   
Wing length 

(mm) 

2916 1597 24 0.374 (0.040) V 

   
Body mass (g) 2916 1597 24 0.347 (0.038) V 

  
EP As above Incubation 

duration (d) 

997 637 35 0.011 (0.102) V 

   
Laying date 997 637 35 0.043 (0.148) V 

   
Clutch size 997 637 35 0.108 (0.145) V 

   
Wing length 

(mm) 

2260 1187 26 0.287 (0.065) V 

   
Body mass (g) 2260 1187 26 0.332 (0.065) V 

 
8,9 EB Quantify selection on 

parental care to explain 

stasis in evolution of 

offspring body size 

Wing length 

(mm) 

1677 847 8 0.448 (0.151) V 

   
Body mass (g) 1677 847 8 0.262 (0.117) V 

Falco tinnunculus 10,11 SP Quantify multivariate 

heredity of colouration, 

mass and immunity 

Tail-band 

width (mm) 

688 444 17 0.699 (0.086) F 

Ficedula hypoleuca 12 HV None (published for the 

purpose of this paper) 

Laying date 3044 2211 39 0.149 (0.072) F 

Hirundo rustica 13,14 SP Estimate genetic 

correlation between 

arrival date and life-

history traits 

Spring arrival 

date 

2337 1407 17 0.131 (0.076) F 

Lacerta agilis 15,16 AS Test for trade-off 

between offspring size 

and number 

Clutch size 472 288 10 0.294 (0.066) F 
 

 
 

Laying date 370 236 9 0 F 
 

 
 

Mean offspring 

mass (g)† 

452 279 10 0.384 (0.064) F 

Continued 
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Table 9.1. Overview of studies used in the gene-by-environment and selection analyses (continued) 

Species Refs.  Locality Aim of original study Trait Nobs Nind Nyear h2 (s.e.) 

Select-

ion? 

Parus major 17,18 WW Estimate genetic variance 

in colour expression 

across the visual 

spectrum 

Plumage 

reflectance at 

349 nm‡ 

2904 1618 6 0.015 (0.035) V 

   
Plumage 

reflectance at 

449 nm‡ 

2901 1616 6 0.194 (0.051) V 

   
Plumage 

reflectance at 

549 nm‡ 

2901 1616 6 0.098 (0.043) V 

   
SWS ratio 

(plumage 

reflectance) 

2901 1616 6 0.336 (0.051) V 

   
Double cone 

(plumage 

reflectance) 

2901 1616 6 0.092 (0.044) V 

   
Wing length 

(mm) 

2892 1614 6 0.478 (0.054) V 

   
Body mass (g) 2878 1613 6 0.357 (0.052) V 

 
19,20 WW Investigate the genetic 

architect of a suite of 

parameters in two 

populations 

Adult body 

mass 

2919 1358 12 0.004 (0.034) V 

   
Offspring 

fledgling 

weight (g)† 

3162 328 13 0.022 (0.107) V 

   
Wing length 3206 1408 12 0.055 (0.042) V 

  
HV/WH As above Adult body 

mass (g) 

1543 477 16 0.472 (0.027) F§ 

   
Clutch size 1585 943 17 0.058 (0.181) F§ 

   
Offspring 

fledgling 

weight (g)† 

8569 744 17 0 F§ 

   
Wing length 1908 1275 17 0.158 (0.140) F§ 

 
21,22 HV Test for bias in selection 

on life-history traits 

Clutch size 4054 2861 57 0.318 (0.055) F 
   

Laying date 4054 2861 57 0.157 (0.052) F 
  

VL As above Clutch size 3700 2368 52 0.306 (0.044) F 
   

Laying date 3700 2368 52 0.277 (0.048) F 
 

23,24 HV Estimate heritability of 

within-family variance in 

fledgling weight 

Fledgling 

weight (g) 

17535 17535 36 0.235 (0.027) V 

   
Clutch size 2175 1598 36 0.282 (0.082) F 

Perisoreus 

infaustus 

25,26 OB Disentangle plastic and 

genetic changes in body 

mass 

Body mass (g) 1619 1025 30 0.408 (0.058) F 

   
Wing length 

(mm) 

1453 1016 28 0.516 (0.056) F 

Passerculus 

sandwichensis 

27,28 KI Investigate the 

relationship between 

heritability/evolvability 

and selection 

  

Day-8 to Yr-1 

wing length 

(mm) 

2839 2469 20 a: 0.353 (0.072) F 

      
j: 0.430 (0.063) F 

   
Day-8 to Yr-1 

tarsus length 

(mm)* 

1913 1615 20 a: 0.398 (0.070) – 
      

j: 0.292 (0.080) V 
   

Day-8 to Yr-1 

body mass (g) 

  

2469 2362 20 a: 0.064 (0.018) F 

            j: 0.330 (0.059) V 

Note. Locality: AS = Asketunnan, Sweden; CW = Churwalden, Switzerland; DR = D-Rouvière, France; EB = Edinburgh, UK; EP = E-Pirio, France; 
HV = Hoge Veluwe, NL; KI = Kent Island, Canada; OB = Ostrobothnia, Finland; SP = Spain; TA = Tammisaari, Finland; VL = Vlieland, the 
Netherlands; WH = Westerheide, NL; WW = Wytham Woods / Bagley Woods, UK; ZU = Zürich, Switzerland. References: 1,2 (Becker et al. 
2016b, a); 3 (Bonnet et al. 2017); 4,5 (Class and Brommer 2015b, a); 6,7 (Delahaie et al. 2017a, b); 8,9 (Thomson et al. 2017b, a); 10,11 (Kim 
et al. 2013b, a); 12 (Ramakers et al. 2018); 13,14 (Teplitsky et al. 2011b, a); 15,16 (Ljungström et al. 2016b, a) ; 17,18 (Evans and Sheldon 
2015a, b); 19,20 (Santure et al. 2015b, a); 21,22 (Reed et al. 2016b, a); 23,24 (Mulder et al. 2016b, a); 25,26 (Gienapp and Merilä 2014b, a); 
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27,28 (Wheelwright et al. 2014b, a). Selection: F = fecundity; V = viability; ‘–’ = disregarded due to fixed nature of trait in adults. Nobs/Nind/Nyear: 
number of observations/individuals/years (environments); h2: narrow-sense trait heritability (a: adult; j: juvenile; significant values in 
boldface). 

*‘Fixed’ trait: may change from juvenile to adult stage but are assumed to be relatively constant within adult lifespan. 

†Trait considered maternal. 

‡Trait consitutes one out of a range of 198 2-nm bands; three bands equally spaced apart and spanning most of the gradient were chosen 
for analysis. 

§Fecundity based on number of fledglings, not recruits. 

 

 

mean trait value (see Methods) and selection in a given year when a non-random portion 

of the population was not represented in the dataset. Only in two cases authors were 

initially reluctant to cooperate, but all authors eventually informed us about the 

appropriateness of our analyses of their data (see Chapter 7 for a full account on author 

correspondence associated with this article). 

 

Estimating environment, heritability and selection 

From the included datasets, we extracted a total of 50 morphological, behavioural, 

physiological, life-history and body mass traits. We used these traits first to estimate a 

standardised measure of the environment, the standardised annual population-mean trait 

value (Yates and Cochran 1938; Finlay and Wilkinson 1963; Lynch and Walsh 1998; James 

2009). We estimated the heritability (ℎ2, the relative additive genetic variation) of the traits 

and found that the majority showed significant heritable variation within the population 

(Table 9.1). We then fitted random regression animal models (RRAMs) with an interaction 

between the additive genetic effect and the standardised measure of the environment. We 

extracted environment-dependent heritability estimates resulting from these RRAMs (as 

heritability determines the short-term evolutionary change) and regressed them against 

annual standardised selection gradients (Lande and Arnold 1983; Hereford et al. 2004; 

Morrissey and Sakrejda 2013) (𝛽′; Fig. S9.2), while accounting for uncertainty in both 

predictor and response. In 6 out of 50 cases (all in bird species), this led to a statistically 

significant relationship between selection and heritability (Fig. 9.1; Table S9.2). None of 

the 14 life-history traits exhibited such a relationship, despite considerable variation in 

both selection and heritability. We found a positive, significant relationship in nestling 

body mass in Passerculus sandwichensis, based on viability selection on nestlings (slope 

[95% bootstrapped confidence interval] = 0.102 [0.045, 0.191], r2 = 0.369 [0.089, 0.596]). As 

the only morphological example, nestling tarsus length in P. sandwichensis showed a 

significantly negative correlation based on viability selection (slope = –0.057 [–0.118, –

0.023], r2 = 0.148 [0.038, 0.340]). Finally, four avian physiological and behavioural traits 

exhibited a significant association between heritability and selection, all based on viability 

selection: P. major plumage reflectance at 349 nm (slope = 0.018 [0.009, 0.037], r2 = 0.284 

[0.052, 0.507]), 549 nm (slope = –0.190 [–0.440, –0.040], r2 = 0.467 [0.054, 0.949]) and spectral 

sensitivity (double cone; slope = –0.055 [–0.173, –0.010], r2 = 0.248 [0.027, 0.751]), and 

Cyanistes caeruleus adult handling aggression (slope = 0.001 [0.0004, 0.003], r2 = 0.009 [0.002, 

0.021]). 
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Figure 9.1. Heritability as a function of the standardized selection gradient. Standard errors (SEs) are 
omitted when 𝑆𝐸ℎ2  > 0.5 and 𝑆𝐸𝛽′ > 1 for visual aid. Regression lines result from weighted least-squares 

regression models (weights: 1/[(𝑆𝐸ℎ2)
2]), with bootstrapping to account for uncertainty in 𝛽′, shown 

only when the 95% CI did not include zero. Colours denote different trait classes (red: life history; green: 
body mass; blue: morphology; orange: miscellaneous), whereas shapes indicate selection based on 
survival (circles) or based on number of fledglings or recruits (triangles). Dotted horizontal lines denote 
the constant heritability as estimated from a standard animal model. Duplicate traits (from same 
population but different dataset) are not shown. Data sources by panel: 1,2,6,7 (Reed et al. 2016a); 
5,11,26 (Ljungström et al. 2016a); 3,4,8,9,13–15,17,30,31 (Delahaie et al. 2017b); 10 (Ramakers et al. 
2018); 12 (Teplitsky et al. 2011a); 15,32 (Thomson et al. 2017a); 18,19,35,36,38 (Wheelwright et al. 
2014a); 20,37 (Gienapp and Merilä 2014a); 21 (Mulder et al. 2016a); 22–25,33,34 (Santure et al. 2015a); 
27,28,39,40 (Bonnet et al. 2017); 29 ref. (Becker et al. 2016a); 41–45 (Evans and Sheldon 2015b); 46 
(Kim et al. 2013a); 47–50 (Class and Brommer 2015a). 
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A formal meta-analysis on the correlation coefficient r from each heritability–selection 

regression, correcting for independence of traits within studies (weighted linear mixed-

effects model with random effect ‘study’), reaffirmed that the overall correlation was weak 

and not dependent on the class of trait (Fig. 9.2). We found similar results when we 

disregarded non-avian traits. 

 

Comparing expected responses to selection 

Environmental coupling of (additive) genetic variance and selection can affect the 

predicted response to selection (Wilson et al. 2006; Husby et al. 2011b). We therefore 

predicted for the six datasets identified above the standardised selection response for each 

environment j (𝑅𝑗
′), assuming either constant or environment-dependent heritability (𝑅𝑗

′ =

ℎ2𝛽𝑗
′ or ℎ𝑗

2𝛽𝑗
′). When we calculated the mean difference in response across environments 

between the two approaches (accounting for uncertainty in estimates), we found that 

environmental variation in heritability significantly affected the mean expected response 

in all six cases, but this effect was not in a consistent direction (i.e. either reduced in case 

of a negative association or increased in case of a positive association; Table 9.2). Finally, 

we modelled the directional difference in expected response as a function of the correlation 

coefficient between ℎ2 and 𝛽′ for all datasets (cf. Wood and Brodie III 2016), and found 

that the difference in expected response was not affected by this correlation coefficient 

(slope = 0.002 [–0.001, 0.004]; Fig. 9.3). 

 

Figure 9.2. Meta-analysis on the 
heritability–selection correlation 
coefficients. Coefficients r were 
standardised using Fisher’s Z 
transformation prior to analysis. 
Estimates and bootstrapped 95% 
CIs are shown, predicted from a 
linear mixed-effects model and 
unconditioned on the random 
term ‘study area’. The summary 
statistic results from a model that 
included only the intercept as a 
fixed term. Estimates from an 
analysis excluding non-avian 
traits are shown for comparison. 
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Table 9.2. Predicted selection response assuming constant vs. environment-dependent heritability. 
Predicted response (𝑅′) differed in absolute terms from year to year under the two approaches for all 
six cases where a correlation between heritability and selection was found; in none of these cases the 
difference was in a consistent direction. 

Species Trait 𝛥𝑅′𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  [95% CI] 
𝛥𝑅′𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  [95% 

CI] 

Cyanistes caeruleus Adult handling 

aggression 

0.031 [0.015, 0.049] 0.005 [–0.026, 0.031] 

Parus major Plumage refl. (at 349 nm) 0.007 [0.003, 0.012] 0.005 [–0.001, 0.011]  
Plumage refl. (at 549 nm) 0.012 [0.005, 0.021] 0.005 [–0.007, 0.016]  
Double cone plumage 

refl. 

0.008 [0.003, 0.014] –0.001 [–0.010, 0.007] 

Passerculus sandwichensis Nestling tarsus length 0.059 [0.038, 0.085] 0.005 [–0.034, 0.046] 

  Nestling body mass 0.072 [0.046, 0.101] –0.019 [–0.062, 0.024]  
Note. 𝑅′ is measured in phenotypic standard deviations. Estimates of differences were calculated using bootstrapping 
procedures. 

 

Discussion 

 

Little evidence for environmental coupling of heritability and selection 

We investigated the prevalence of an environmentally induced relationship between 

heritability and selection across traits and study systems by using open data available in 

data repositories. Our study extends the limited evidence for this phenomenon (Wilson et 

al. 2006; Husby et al. 2011b) to 50 traits from 10 species in 16 populations. Relying on 

Figure 9.3. No effect of a correlation 
between heritability and selection on 
differences in selection response. 
Correlation coefficients (r ± standard 
errors) result from WLS regressions of 
heritability against standardised selection 
gradients; 𝛥𝑅′ (± standard errors) is the 
mean, directional difference between 
expected responses to selection assuming 
varying vs. constant heritability. Each data 
point represents a single trait–species–
population combination.  
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robust statistical methods to (i) quantify the relationship between heritability and 

selection, (ii) synthesise results of different studies using meta-analysis, and (iii) infer 

expected evolutionary response, we conclude that, despite being a current topic in ecology 

and evolution (Hoffman and Merilä 1999; Garant et al. 2004b; Garant et al. 2005; Lédon-

Rettig et al. 2014; Wood and Brodie III 2016), its evolutionary importance in natural 

populations is small—at least for the range of species for which we have data. 

So far, only two studies have investigated this relationship within the same trait and 

population (Wilson et al. 2006; Husby et al. 2011b). Reanalysis of egg-laying date in the 

Hoge Veluwe great tit population (Husby et al. 2011b) yielded different results, potentially 

linked to the different approximation of the environment (see below), although the 

environment in that population, i.e. mean spring temperature, explains much of the 

variation in the trait (r2 = 0.66) (Visser et al. 2006). The correlations between selection and 

heritability or additive genetic variance found by Husby et al. (2011b), however, were 

marginally or non-significant, respectively, and were not subjected to rigorous correction 

for uncertainty like our bootstrapping methods. Thus, even in a population with (i) a 

strong link between the environment (temperature) and a life-history trait (laying date) 

and (ii) demonstrated increases in selection and additive genetic variance under increased 

temperatures, evidence for an environmental link between heritability and selection was 

modest at best. Heritability of life-history traits is generally found to be low (Houle 1992; 

Lynch and Walsh 1998; Charmantier et al. 2014), potentially due to high environmental 

variance (Price and Schluter 1991) or genetic canalisation (Stearns and Kawecki 1994), but 

life-history traits are inherently likely to exhibit gene-by-environment interactions 

whenever selection pressures vary with the environment, because of their close association 

with fitness (Price and Schluter 1991). It is, then, remarkable that heritability was not 

related to selection in any of the life-history traits investigated here (Fig. 9.1), even though 

substantial variation existed in the strength of selection (Fig. S9.2). 

Finding a significant relationship between heritability and selection requires sufficient 

statistical power. Although the number of years and individuals varied considerably 

between study systems (Table 9.1), significant relationships were not exclusively found in 

the largest datasets (Fig. 9.1). A visual inspection of the components that make up this 

relationship, as well as the relationship between selection and the environment, suggested 

that statistical significance was neither influenced by the variance in the predictor and 

response variables nor by the number of years or the total number of observations 

available (Fig. S9.3). Given the larger statistical power associated with larger datasets, the 

lack of the sought correlation in our largest datasets suggests that the effect size is likely 

too small to be biologically meaningful. 

Using an analytical model informed by data from a literature review, Wood and Brodie 

III (2016) predicted that the strength of the relationship between selection and genetic 

variance would impact the mean and, to a greater degree, variance in responses to 

selection across hypothetical populations. Yet even in the few cases in which we 

demonstrated a reasonably strong relationship between heritability and selection (Fig. 9.1; 

cf. Wilson et al. 2006), this was not sufficient to fuel a change in the rate of expected 

response to selection (Table 9.2). This is partly because both components of the 
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relationship came with prediction error that needed to be accommodated in the estimation 

of the response. From the studies investigated here, we therefore conclude that even when 

we find environmental coupling between heritability and selection, its net effect on the 

predicted evolutionary change is small and is hence an unlikely explanation for potential 

discrepancies between observed and expected responses to selection in natural 

populations (Merilä et al. 2001b). 

 

Methodological considerations 

An important aspect in analysis of genotype-by-environment interactions, i.e. testing 

whether genetic variance and heritability differ among environments, is the choice of the 

environmental variable. However, in most of the analysed datasets no such environmental 

variable was included. Instead of obtaining such data from other sources and testing 

whether the chosen variable was predictive for the trait in question, we used environment-

specific, population-mean trait values as the environmental variable (covariate) in our 

analyses, an accepted practice in animal and plant breeding (Lynch and Walsh 1998; James 

2009). This approach has three major advantages. First, the daunting task of searching 

environmental data relevant to each trait becomes unnecessary. Second, it enables the 

inclusion of traits for which it is difficult to conceive and collect environmental data 

(compare, for example, breeding time in great tits, which is strongly temperature 

dependent (Visser et al. 2009a), with a physiological trait like handling aggression in blue 

tits C. caeruleus, for which no clear environmental component has been identified, despite 

substantial year-to-year and residual variation (Class and Brommer 2015b)). Third, 

because the population-mean phenotype encompasses all unmeasured or unobserved 

components of the environment, it will generally be an accurate representation of the 

environment for the trait of interest (Lynch and Walsh 1998), circumventing the problem 

of misidentifying the relevant environmental component and, consequently, erroneously 

inferring the presence or absence of variation in reaction norm slopes. For example, in a 

population of collared flycatchers (Ficedula albicollis), Brommer et al. (2005) found 

significant between-individual variation in breeding-time reaction norms in response to 

average temperatures in spring, but not to rainfall or North Atlantic Oscillation, even 

though these variables correlated well with breeding time. Similarly, Husby et al. (2010) 

could show between-individual variation in reaction norms for breeding time in great tits 

while Charmantier et al. (2008) did not find this in the same population when using a 

different environmental variable. Indeed, simulations have shown that random regression 

models with ‘mean trait’ as the environment yielded similar variation in reaction norm 

slopes to models with a ‘real’ environmental driver of the trait (Gienapp 2018). In contrast, 

using other environmental measures that did not drive the trait but correlated with the 

‘real’ environment to a decreasing degree (r = 0.9 to 0.1) yielded increasingly downwardly 

biased estimates of both the slope and the variance in the reaction norm. This is an 

important finding because it shows that environment-specific mean phenotypes can serve 

as a ‘yardstick’ when testing for gene-by-environment interactions (Gienapp 2018).  

Ideally, heritability should be estimated at the same level as where selection operates, 

because the correlation at this level is what ultimately matters. Since selection is generally 
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estimated at an annual level (where each year captures all components of the 

environment), heritability should be estimated at this level too. This would, however, 

require an enormous number of individuals in each year to estimate the annual genetic 

variances reliably—and hence generally not be feasible. Using (continuous) environmental 

covariates instead to estimate genetic variance along an environmental gradient (Schaeffer 

2004; Nussey et al. 2007) is the next best option, and the best way to do this is to choose a 

metric that captures most features of the environment in a given year (which annual mean 

phenotypes do). This alleviates the need to establish a link between an environmental 

covariate and selection, which will not necessarily be informative when investigating the 

correlation between heritability and selection—in particular when statistical power is 

limited. 

A concern when estimating selection in natural populations is to identify the real target 

of selection (Lande and Arnold 1983; Hereford et al. 2004; Hadfield 2008). The use of the 

Breeders’ Equation to predict evolutionary change in natural populations has therefore 

been advised against, and the Robertson-Price identity has been suggested as an 

appropriate alternative (Hadfield 2008; Morrissey et al. 2010). However, estimating the 

genetic covariance between a trait and fitness at an annual basis to estimate variation in 

selection is rarely, if ever, possible, due to the large datasets required to reliably estimate 

genetic covariances. Furthermore, Reed et al. (2016b) showed that in a wild population of 

great tits, environmental bias in phenotypic selection estimates for egg-laying date and 

clutch size is small at best. A similar conclusion was reached by Morrissey and Ferguson 

(2011), who showed for brook charr (Salvelinus fontinalis) that estimates of phenotypic 

selection on body size are highly congruent with estimates of genetic selection. 

 

Benefits and limitations of open data 

One important development in ecology and evolution in recent years has been the 

requirement to make the data used to produce the results of studies (usually published 

studies) publicly available (Whitlock et al. 2010; Mills et al. 2015), leading to a surge in data 

output onto online data repositories. The potential advantages of open data archiving in 

revolutionising the natural sciences are now increasingly recognised (Hampton et al. 2013; 

Culina et al. 2018). Yet Evans (2016) showed that data from long-term population studies 

archived in Dryad Digital Repository are never used by third parties. Our multi-study 

approach makes extensive use of such long-term data to address an outstanding question 

in evolutionary ecology. Indeed, the use of open data comes with important logistical and 

ethical issues (Mills et al. 2015, 2016; Whitlock et al. 2016) that need to be addressed before 

biological conclusions can be safely drawn. Our study, however, shows that it can be done 

successfully (see also Chapter 7).  

From the 106 initially considered datasets in our example, we could eventually use only 

14 (plus the previously unpublished pied flycatcher dataset), due to various reasons such 

as small and/or biased sample sizes, a lack of appropriate fitness data, unusable pedigrees 

(e.g. relatedness matrices, which we were unable to use after data manipulation because 

they required a specific ordering of the individuals in the phenotype file), and a low 

number of years. Moreover, the data were heavily biased towards birds and mammals (50 
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and 31 datasets, respectively). We therefore need to make the cautionary note that we 

cannot necessarily extrapolate the evolutionary importance of an environmental 

correlation between selection and genetic variance across a wider range of taxa. The 

general taxon bias in quantitative genetic studies of wild populations toward birds and 

mammals can be explained by the fact that linking individual offspring to their parents, 

necessary to construct a pedigree, is comparably straightforward (Clutton-Brock and 

Sheldon 2010). Relatedness matrices based on genomic markers may make pairwise 

relatedness estimates a less stringent requirement in evolutionary studies in the future and 

in that way greatly augment the taxonomic scale at which important evolutionary 

questions can be addressed (Gienapp et al. 2017). Time will resolve issues like samples 

sizes and number of years, but whether or not a dataset is suitable will ultimately depend 

on the type of analysis and the type of data required. In the era of Open Science that 

encourages publication of datasets while increasing their quality, it is but a matter of time 

before taxon biases in multi-annual meta-studies similar to ours may dissipate. Such long-

term datasets of individually marked animals are invaluable tools in ecology and 

evolution and will inevitably serve to elucidate the ecological and evolutionary 

consequences of environmental change (Visser 2008; Clutton-Brock and Sheldon 2010). 

 

Methods 

 

Data acquisition 

In May and July 2016 we conducted a search for datasets that contained pedigree 

information on a wild species through twelve different aggregators of research data 

repositories (Europe PMC, DataCite, BASE, OpenAIRE, Science Research, DataOne 

Mercury search, Web of Science Data Citation Index, Scielo, Research Data Australia, DLI 

Service, Dryad Digital Repository, DataMED). These aggregators collect information on 

datasets (e.g. title, keywords, abstract and description) that have been deposited in 

different data repositories, and allow for search through multiple data sources in one 

search interface. Datasets were tracked using fixed search terms (see Supplementary 

Methods SM9.1); search results were screened based on title, abstract, dataset description, 

and/or keywords, if available. Remaining datasets were further checked for relevance by 

opening the data files and/or reading the related publication if necessary, leaving only 

datasets containing pedigree information for a wild or captive animal population. 

Recording of datasets was done according to PRISMA guidelines (Moher et al. 2009; 

Chapter 7). 

Next, we screened and filtered this data subset (103 datasets) to keep those where: (i) 

the pedigree file could potentially be used (i.e. when the file was not embargoed, 

corrupted or otherwise unsuitable for our particular analysis, e.g. relatedness matrices 

lacking the specific links between parents and offspring); (ii) the pedigree contained a 

sufficient number of individuals (final datasets had, on average, >40 

observations/individuals per year); (iii) individuals in the pedigree also had information 

on a phenotype on which selection could act; (iv) there was natural environmental 
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variation in the phenotype (this excluded all laboratory populations); (v) the associated 

phenotype file contained at least six years of data; and (vi) there were no additional issues 

(e.g. non-matching IDs of animals in pedigree and phenotype file). In addition to these 103 

datasets, we did an additional search in Web of Science (on 9 September 2017; see 

Supplementary Methods SM9.1) and from the resulting 396 studies, we discovered three 

additional suitable datasets overlooked by the initial search, using the inclusion criteria 

above. Lastly, we added our own, previously unpublished data from the long-term study 

of pied flycatchers (Ficedula hypoleuca (Ramakers et al. 2018); see Visser et al. (2015) for 

more information on that population), totalling 107 retrieved datasets (Table S9.1). 

The total number of datasets included in the analysis amounted to 15, covering 10 

species from 16 populations and a variety of life-history, morphological, physiological, 

behavioural and body mass traits (Table 9.1). This excludes datasets that initially appeared 

suitable to us but whose suitability for our analysis was refuted by the original authors 

(see ‘Enquiring with original authors’; Table 9.1). 

 

Quantifying the environment 

None but two of the final datasets provided information about the environment. 

Therefore, we used a standardised protocol to quantify the environment. For each year, 

we calculated the population-mean trait value (�̅�) as a measure of the general environment 

and mean- and variance-standardized it across seasons/sites: 

 

𝐸′𝑗 =
�̅�𝑗−𝜇�̅�

𝜎�̅�
,            

 

where j denotes the jth season, and 𝜇 and 𝜎 the grand mean and standard deviation, 

respectively. Note that this measure does not identify any specific environmental 

parameter but captures the environment as a whole in a specific season. The method is 

commonly used in animal and plant breeding studies in a process called ‘joint-regression 

analysis’, where genotype-specific interactions are partitioned into a component explained 

by mean population performance and a residual component (Lynch and Walsh 1998, pp. 

672–678). It was first proposed by Yates and Cochran (1938) and later brought into 

prominence in a barley yield experiment by Finlay and Wilkinson (1963), and has now 

become widely accepted in the plant- and animal-breeding literature (Lynch and Walsh 

1998; James 2009). It has the advantage that all of the complex (and potentially 

unobserved) features of the environment are integrated into a single measure, allowing 

for the ranking of seasons in terms of overall environmental quality. Note that this method 

disqualifies traits that do not vary at the annual level (i.e. fixed adult traits were not used 

in our analyses). 

One complication with our measure of the environment is that such a measure is 

potentially biased when a non-random portion of the population in a given season is 

removed from the dataset (e.g. because certain individuals are never sampled), or when 

changes in the demographic structure of the population strongly affect the mean trait 
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value. When this was the case (see ‘Enquiring with original authors’; Table S9.1), the 

dataset was dropped from further analysis. 

 

Standard trait heritability 

For each of the traits in our full data (Table 1), we tested for evidence of additive genetic 

variance following a standardized protocol. First, we constructed ‘minimum adequate’ 

mixed-effects models (MAMs) with the trait of interest as response variable (all with 

Gaussian errors) using restricted maximum likelihood (REML) estimation in ASReml-R 

(Butler et al. 2009; Gilmour et al. 2009). This method provides a fast and efficient away of 

estimating variance components and allows for the inclusion of additive genetic effects. 

Note, however, that we used a Bayesian approach to estimate environment-dependent 

heritability estimates, as this allows for estimation of posterior confidence regions, which 

we needed to reliably account for uncertainty in our environment-dependent heritability 

estimates in subsequent analysis (see ‘Genotype-by-environment analysis’). Fixed effects 

were the environment (𝐸′), as continuous variable, and additional effects provided in the 

dataset, based on mixed-effects models in the associated original paper. Significance of 

these effects, as well as that of interactions between effects, was tested with conditional 

Wald F tests, removing non-significant (p > 0.05) terms in a backward stepwise manner 

(but always keeping 𝐸′). Random effects were those identified in the original papers 

(always containing a ‘permanent environment’ effect, i.e. individual ID, when there were 

multiple observations of the same individual), but sometimes we constructed our own 

additional effects when deemed biologically appropriate (e.g. in nestling traits, ‘nest-box 

ID’ and ‘year’ were combined to identify common-environment effects within a single 

brood). Significance of random effects was tested using likelihood-ratio tests (𝐷 =

2[log(𝐿𝑚1) − log (𝐿𝑚0)], where D is asymptotically 𝜒2 distributed with one degree of 

freedom). The MAM was extended to an ‘animal model’ (Henderson 1988; Kruuk 2004) 

(AM) by adding a random additive genetic effect based on the pedigree with maternal and 

paternal links (see references in Table 1 for how pedigrees were constructed). Thus, the 

AMs took the form 

 

𝒚 = 𝑿𝟏𝜷𝐸′ +⋯+ 𝑿𝒏𝜷 + 𝒁𝟏𝒑𝒆 + 𝒁𝟐𝒂 +⋯+ 𝒁𝒏𝑢 + 𝜀,      

 

where 𝒚 is a vector of phenotypes, 𝑿𝟏…𝒏 and 𝒁𝟏…𝒏 are the design matrices relating the fixed 

(𝜷) and random effects (𝒑𝒆, permanent environment; 𝒂, additive genetic; 𝑢, other) to 𝒚 and 

𝜀 is the error term. The narrow-sense heritability was calculated as ℎ2 = 𝜎𝒂
2/𝜎𝑃

2, where 𝜎𝑃
2 

represents the total phenotypic variance comprising all variance components, conditioned 

on the fixed effects (Table 9.1). 

 

Genotype-by-environment analysis 

To model the interaction between additive genetic variance and the environment (G×E), 

we extended the AM to a random regression animal model (RRAM) using the 
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‘MCMCglmm’ package (Hadfield 2010; Hadfield 2018) (ignoring years with <8 

observations). In the RRAMs, we allowed the environment to interact with both the 

permanent environment (if present) and the additive genetic effect: 

 

𝒚 = 𝑿𝟏𝜷𝐸′ +⋯+ 𝑿𝒏𝜷 + 𝒁𝟏(𝒑𝒆, 𝐸′, 𝑛1) + 𝒁𝟐(𝒂, 𝐸′, 𝑛1) + ⋯+ 𝒁𝒏𝑢 + 𝜀,    

 

where 𝑛1 is the first-order polynomial of the regression function. Fixed and random terms 

were those identified from the (M)AMs; note that because 𝐸′ explains most of the variation 

related to seasonal effects, it replaced the random effect of year in most analyses. We 

constructed two 2×2 unstructured variance–covariance matrices for the intercept and the 

slope of the permanent environment and the additive genetic effect: 

 

P = [
𝜎𝒑𝒆𝑖𝑛𝑡
2 𝜎𝒑𝒆𝑖𝑛𝑡,𝒑𝒆𝑠𝑙

𝜎𝒑𝒆𝑠𝑙,𝒑𝒆𝑖𝑛𝑡 𝜎𝒑𝒆𝑠𝑙
2 ] and G = [

𝜎𝒂𝑖𝑛𝑡
2 𝜎𝒂𝑖𝑛𝑡, 𝒂𝑠𝑙

𝜎𝒂𝑠𝑙,𝒂𝑖𝑛𝑡 𝜎𝒂𝑠𝑙
2 ].      

 

In cases where there was no permanent-environment effect but only a maternal or 

common-environment effect (in juvenile-only traits), only the G matrix was fitted. To 

avoid artificial inflation of slope variance estimates in the P and G matrices due to 

heterogeneity in residual variance across the environmental gradient, we partitioned the 

residual component 𝜀 into ‘environmental blocks’(Lillehammer et al. 2009), following 

categorisation of environments into n equal-interval groups. Thus, we fitted the residual 

matrix as an n×n matrix with independent variances, 

 

R = [

𝜎𝜺1
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝜺𝑛

2
],           

 

where n was the number of environments divided by 5, but was always ≥3 (e.g. in a dataset 

with 20 environments n = 4, but with 10 environments n = 3).  

To illustrate that our environmental metric (E′) was valid in this context, Gienapp (2018) 

ran random regression models on simulated data using several different quantifications 

of the environment related to a ‘true’ environmental driver of the phenotype, as well as 

the annual trait mean. He found no evidence that variance estimates of reaction norm 

intercepts and slopes were biased by the annual trait mean (relative to the ‘true’ 

environmental driver) and showed that this metric outperformed environmental 

correlates. Although we concur that additive genetic variance may not only be affected by 

current environmental conditions but also be the outcome of past selection processes, it is 

evident from many quantitative genetic studies of wild populations that year-to-year 

variation in phenotypes is mostly attributable to phenotypic plasticity and that the share 

of genetic change from year to year is generally very small and undetectable (Gienapp et 
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al. 2008; Merilä and Hendry 2014). Consequently, we believe that using environment-

specific mean trait values will lead to more reliable results than an environmental variable 

that correlates too weakly with the real driver of plasticity, thereby underestimating 

variation in (genetic) reaction norm slopes. 

To obtain independent samples in the MCMC sampling process, we used a thinning 

interval of 20,000 in all models, with a burn-in period of 200,000 samples and a total 

effective sample size of 250 (i.e. 5,200,000 samples). In exploratory stages of the analysis, 

we found that a larger effective sample size (1000) did not affect the posterior estimates, 

but these models take substantially longer to complete. Effective sample size in all models 

included never fell substantially below 250 and autocorrelation between samples was 

almost always <0.1 but never exceeded 0.2 for any variance component; models that did 

not meet these criteria were discarded (not listed in Table 1). For the residual term, we 

specified Inverse-Wishart (IW) priors (V = diag(x) and nu = 1.002, where x is the dimension 

of the matrix). For the random terms we explored two alternative priors: the IW prior 

(specifications as above) and parameter-expanded (PE) priors (V = diag(x), nu = x, 

alpha.mu = 0, alpha.V = diag(x)*500). Although both priors yielded similar results in most 

cases, the posterior variances tended to be smaller when real variance was close to zero 

under the PE compared to the IW prior. This is in agreement with previously voiced 

concerns that the IW prior may behave poorly when true variance is close to zero (Gelman 

2006; Schuurman et al. 2016; Hadfield 2018). We therefore only present posterior estimates 

from the models based on PE priors. We refrained from ‘significance’ testing of the G×E 

interaction, because—issues concerning model-selection criteria such as DIC aside 

(Spiegelhalter et al. 2002; Millar 2009; Hadfield 2018)—of potentially limited power in the 

smaller datasets and our main interest in testing the covariance between ℎ2 and selection. 

We instead opted for a pragmatic approach and used the highest posterior density 

intervals (HPDIs) to account for uncertainty in all subsequent analyses. The rationale 

behind this was that if we had excluded all ‘non-significant’ G×E interactions, of which 

some may have been false negatives, we may have overlooked a potentially strong 

covariance between ℎ2 and selection (see below). By accounting for the uncertainties in 

environment-specific ℎ2 estimates, the true negatives in G×E will not lead to a spurious 

covariance between ℎ2 and selection. 

The posterior mean variance for each variance component in environment j was derived 

from the estimated G and P matrix as (De Jong 1990) 

 

𝜎𝑗
2 = 𝜎𝑖𝑛𝑡

2 + 2𝜎𝑖𝑛𝑡,𝑠𝑙𝜷𝐸′𝑗 + 𝜎𝑠𝑙
2𝜷𝐸′𝑗

2 .          

 

The 95% HPDIs were likewise derived from the upper and lower HPDI matrices. 

Environment-dependent heritability was defined as the mean of posterior variance 

estimates, ℎ𝑗
2 = 𝜎𝒂𝑗

2 /(𝜎𝒂𝑗
2 + 𝜎𝒑𝒆𝑗

2 +⋯+ 𝜎𝜺𝑗
2 ), with 95% HPDIs estimated from the lower and 

upper HPD limits of each variance component. Standard errors of ℎ𝑗
2 were then calculated 

as half the 95% HPDI divided by 1.96. 
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Selection 

To quantify selection on the trait in a given environment, we made use of provided 

reproductive fitness data (number of offspring or recruits) or survival data (Table 9.1). 

When such data were not provided, we inferred (annual) reproductive success by linking 

animals to sires and dams in the pedigree using their birth year (when available). If we 

could not infer annual recruits from the pedigree, we determined survival from one year 

to the next by identifying reappearance of individuals in the dataset in subsequent years, 

assuming the last year of appearance was the last year the individual was alive. As with 

quantifying the environment (see above), inferring fitness is problematic if a non-random 

portion of the population appears in the dataset (aside from the non-random 

disappearance due to selection; see also Hadfield 2008). When this was likely to be 

problematic (see ‘Enquiring with original authors’; Table S9.1) the dataset in question 

forewent inclusion in the analysis. 

To estimate annual, standardised selection gradients (𝛽′), we constructed general(ised) 

additive models (GAMs, package ‘mgcv’ (Wood 2017)), where the fitness component was 

the response variable following either a Gaussian, Poisson or negative binomial 

distribution for fecundity measures (number of offspring produced or recruits), 

depending on the distribution of the data, or a binomial distribution for survival (1/0 

response). As fixed effects, we initially included an interaction between year and the trait 

of interest and used it as a null model to identify additional significant fixed effects (using 

F or 𝜒2 tests) that influenced the fitness measure (e.g. age or sex and additional 

quantitative traits). Based on these findings, we ran annual GAMs (without ‘year’) and 

calculated annual 𝛽′ using the ‘gam.gradients’ function from the ‘gsg’ package (Morrissey 

and Sakrejda 2015). This procedure estimates 𝛽′s as 

 

𝛽′ =
𝐶𝑜𝑣(𝑤,𝑧)

𝜎𝑧
,            

 

where the numerator is the covariance between the trait and relative fitness, i.e. the partial 

regression coefficient after taking into account the effect of traits potentially 

simultaneously under selection, and the denominator is the standard deviation of the trait, 

following Lande and Arnold (1983; Morrissey and Sakrejda 2013). Standard errors of 𝛽′ 

were estimated through parametric bootstrapping (1000 iterations). 

 

Covariance between selection and heritability: a meta-analysis 

As we were interested in studying the effect of environmental variation in selection and 

genetic variance on selection response, we examined the (linear) relationship between 

heritability and selection. We refrained from making this analysis conditional on the 

presence of an underlying correlation between 𝛽′ and E′, because in cases where statistical 

power may be an issue, such a two-step approach would decrease the likelihood of 

detecting a real relationship between ℎ2 and 𝛽′ if datasets were omitted based on this 

criterion. A similar reasoning applied to testing for an underlying relationship between ℎ2 
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and E′ (see above). For each dataset, we regressed ℎ2 against 𝛽′ in linear weighted least-

squares (WLS) regressions, weighting data points by 1/[(standard error of ℎ2)2]. To account 

for uncertainty in the predictor, 𝛽′, we substituted each of its values (j) with a randomly 

drawn value from a random normal distribution (n = 1000, 𝜇 = 𝛽𝑗
′ and 𝜎 = standard error 

of 𝛽𝑗
′) and iterated the entire process 1000 times. We obtained the mean and the 0.025 and 

0.975 quantiles (i.e. the 95% bootstrapped confidence interval CI) of the model estimates 

(intercepts and slopes) resulting from these iterations; estimates were considered 

statistically significant if the 95% CI did not include 0. Note that in reality, estimates of 𝛽′ 

are not entirely independent because some individuals are included in multiple estimates, 

potentially affecting the estimates from (W)LS regression models. We believe, however, 

that this issue was sufficiently accounted for by our pragmatic bootstrapping approach. 

When estimating the covariance between selection and heritability we took the sign of 

the estimated selection gradients into account, i.e. we did not correlate heritability with 

the absolute strength of selection (cf. Wood and Brodie III 2016). The rationale was that (1) 

it is biologically relevant whether there is selection for larger or smaller trait values and 

(2) using absolute or signed selection gradients has different implications for evolutionary 

change. If a correlation between absolute strength of selection and heritability exists, the 

overall selection response will not be altered because episodes of strong selection in either 

direction are always coupled with either high or low heritability. This is, however, not the 

case when signed selection estimates are used, because in this case strong selection in one 

direction is coupled with low heritability, whereas strong selection in the other direction 

is coupled with high heritability. 

To examine the overall correlation coefficient across studies and trait types, we 

performed a meta-analysis using the mean correlation coefficients (r) and their standard 

errors (𝑆𝐸𝑟, i.e. half the 95% CI divided by 1.96) resulting from each bootstrapped 

regression model. Following Nakagawa and Cuthill (2007), we transformed coefficients 

prior to meta-analysis to Fisher’s Z,  

 

𝑍𝑟 = 0.5 × ln (
1+𝑟

1−𝑟
).           

 

Variance in 𝑍𝑟 was calculated as (Niemelä and Dingemanse 2018) 

 

𝜎𝑍𝑟
2 = 𝑆𝐸𝑟

2 × (
1

[1+𝑟]×[1−𝑟]
)
2

.          

 

We estimated the (weighted) mean correlation coefficient (n = 50) in a linear mixed-effects 

model (REML, package ‘lme4’ (Bates et al. 2018)) with trait type (life history, body mass, 

morphology, or other) as a fixed effect, study area (i.e. by species; n = 16) as a random 

effect, and 1/𝜎𝑍𝑟
2  as weights. We initially included a random effect of species, which 

explained 0 variance and was therefore removed from the model (note that the bias toward 

passerine birds in the acquired datasets precluded phylogenetic analysis). Mean 𝑍𝑟 and 
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95% CI, predictions unconditioned on the random term, were calculated for each trait type 

and from a null model excluding the fixed term (i.e. intercept only) through bootstrapping 

with 1000 iterations. The procedure was repeated on a subset of the data that excluded 

non-avian traits (n = 43 coefficients, 14 studies). To quantify the consistency among studies, 

we estimated for both sets of analysis (all data or avian-only) the heterogeneity (𝐼2, the 

proportion of variance that cannot be explained by chance) in the random-effects 

components for the random-only models (see Nakagawa and Santos 2012 for details). 

Residual variance in 𝑍𝑟 was estimated at 1.55 and 1.76, respectively, whereas ‘study’ 

variance was 0.002 in both cases. Error variance (𝜎𝑚
2  in Nakagawa and Santos (2012)) was 

small (0.016 and 0.014, respectively) and 𝐼2 was estimated at 0.99 in both cases. 

  

Expected response to selection 

To quantify the consequence of a covariance between ℎ2 and 𝛽′ on the response to 

selection, we predicted the absolute response to selection under the assumption of 

constant vs varying heritability following the Breeder’s Equation (Lande and Arnold 1983; 

Falconer and Mackay 1996), i.e. 𝑅𝑗
′ = 𝑅𝑗𝜎𝑧

−1 = ℎ2𝛽𝑗
′ vs. ℎ𝑗

2𝛽𝑗
′. Note that the expected 

response is in units standard deviation (Lande and Arnold 1983; Hereford et al. 2004) 

(hence 𝜎𝑧), indicated by the apostrophe. The standard error for 𝑅𝑗
′ was derived by adding 

up the relative standard errors of ℎ2 (or ℎ𝑗
2) and 𝛽𝑗

′. We then calculated the mean absolute 

(1) and directional (2) difference in response between the two approximations (Δ𝑅′), with 

the assumption that non-constant heritability does affect the response from any one year 

to the next (1) and that this difference is directional (2), i.e. positive when the correlation 

between ℎ2 and 𝛽′ is positive and vice versa (Wilson et al. 2006; Husby et al. 2011b). We 

estimated mean Δ𝑅′ across seasons in a linear model without an intercept and with a fixed 

effect of ‘study’. As a response variable, Δ𝑅′ in each environment (j) was determined as 

the difference between two randomly drawn (absolute) values for 𝑅𝑗
′ from two random 

normal distributions (n = 1000, 𝜇 = 𝑅𝑗
′ and 𝜎 = standard error of 𝑅𝑗

′). Mean Δ𝑅′ was derived 

as the mean, study-specific intercept from 1000 iterations, along with the 0.025 and 0.975 

quantiles (i.e. 95% CI). 

Loosely based on Wood and Brodie III (2016), we estimated whether the strength of the 

relationship between heritability and selection affected expected (difference in) selection 

response. We repeated the procedure above for all the datasets (except those for which 

ℎ2 = 0) and calculated the expected, mean directional difference (± standard error) in 

expected response to selection assuming varying vs. constant heritability (Δ𝑅′). We also 

extracted the correlation coefficients, r, along with their 95% CIs, from each WLS 

regression model described in the previous section and calculated standard errors of r as 

half the 95% CI divided by 1.96. We ran a WLS regression model with Δ𝑅′ as a response 

variable and 1/[(standard error of Δ𝑅′)2] as weights. The correlation coefficient r was the 

predictor, randomly drawn from a random normal distribution (n = 1000, 𝜇 = 𝑟 and 𝜎 = 

standard error of 𝑟); the procedure was iterated 1000 times and mean estimates and the 

0.025 and 0.975 quantiles (95% CI) were extracted. We also tested this relationship with 

‘study area’ as a random effect in a linear mixed-effects model, but found that this factor 

explained 0 variance.  
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Enquiring with original authors 

A potential danger of using open data is that the investigator may not be familiar with the 

study system and therefore make false assumptions about the data (Mills et al. 2015, 2016; 

Whitlock et al. 2016). Hence, for every dataset potentially suitable for analysis, we wrote a 

letter to the leading author and/or principal investigator of the associated paper, informing 

them about the general project aim, as well as a description with specifics regarding the 

use of their dataset (see Supplementary Methods SM9.2). The description contained 

information about which data files we used, what our study aim was using their datasets, 

how we went about preparing the data for analysis (e.g. combining multiple files, 

(re)construction of the pedigree, calculation of the environment based on the population-

mean trait value, identification of reproductive performance or survival), how we 

analysed the data (including which variables we included in the (M)AMs and RRAMs) 

and a brief overview of tentative findings. We were specifically interested in the authors’ 

verdict on our quantification of the environment and fitness. All analyses presented here 

are based on datasets that were deemed ‘appropriately used’ by the original authors. A 

common concern with discarded datasets was that reproductive success or survival could 

not be reliably inferred, for example because a non-random portion of recruits disperse 

away from the study area, or because surviving individuals were not included in the 

dataset because they had no phenotype. Similarly, non-random dropping of individuals 

was likely to affect the estimation of the environment (𝐸′), in which case the dataset 

forewent inclusion in the analysis. We refer the reader to Table S9.1 for a full list of 

considered datasets and the reason for their exclusion. We report on the author 

correspondence in more detail in Chapter 7. 

 

Data availability and code availability 

 

Raw data used in the analyses can be found in the references listed in Table 9.1; DOIs for 

each dataset can be found in Table S9.1 (online). Data used for the weighted regression 

analysis, estimating predicted response to selection, and meta-analysis can be found in 

Tables S9.2 and S9.3 (online). R code examples for each analysis are available as a 

supplementary text file (online). 
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Supplementary Information S9 

 

 

Contents: 

 

Supplementary Tables (not presented here) 

These tables can be found in the online version of this paper at: 

https://doi.org/10.1038/s41559-018-0577-4 

• Table S9.1.1. This table contains all considered datasets that met initial screening 

criteria. It lists 107 datasets: 103 found during the initial search using aggregators 

of research data repositories; 3 found during an additional search on Web of 

Science; and 1 (previously unpublished) dataset from our own database. 

• Table S9.1.2. Data repositories associated with each dataset in Table S1.1. 

• Table S9.2. Data necessary to reproduce Figure 1 in the main text (heritability–

selection regressions) and to calculate expected response to selection. 

• Table S9.3. Data necessary to replicate the meta-analysis on the correlation 

coefficient of the relationship between heritability and selection.  

 

Supplementary Methods (SM) and Figures 

This file describes the methods used to acquire the datasets used in the analyses (1) and 

the correspondence with the original owners of the data to ensure validity of our analyses 

(2), as well as the supplementary figures referenced in the main text (3). 

1. Acquiring data 

2. Correspondence with the authors of the datasets 

3. Figures 

 

Supplementary Codes (not presented here) 

The code can be found in the online version of this paper at: 

https://doi.org/10.1038/s41559-018-0577-4 

• This text file contains all codes necessary to replicate the analyses in R. Note that 

Supplementary Code (SC) 1–4 provide examples for a specific trait from a specific 

dataset; SC5–7 can be used to run all analyses using the data in Table S9.2 and S9.3. 
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SM9.1: Acquiring data 

 

General methods, search criteria, and dataset selection process 

We conducted a search for datasets that contained pedigree information on a wild species (either wild or captive 

population) through 12 different aggregators of research data repositories and Dryad Digital Repository 

(http://datadryad.org/) (between May and July 2016): Europe PMC (http://europepmc.org/); DataCite 

(https://search.datacite.org/); BASE (https://www.base-search.net/); OpenAIRE 

(https://www.openaire.eu/search/find/); Science Research (http://scienceresearch.com/scienceresearch/); DataOne 

Mercury search (https://cn.dataone.org/onemercury/); Web of Science Data Citation Index 

(http://apps.webofknowledge.com); Scielo (http://www.scielo.org/php/index.php); Research Data Australia 

(https://researchdata.ands.org.au/); DLI Service (https://dliservice.research-infrastructures.eu/index.html#/); and 

Data MED (https://datamed.org/). These aggregators collect information on datasets (e.g. title, keywords, abstract, 

description) that are deposited in different data repositories, and allow for search through multiple data sources in 

a single search interface. 

Our inclusion terms were [“pedigree” OR “relatedness matrix”]. Based on the results of this initial search, we 

decided to use several exclusion terms in a refined search: “dog food”, cultivar*, “family tree”, “family pedigree”, 

“middle age”, “middle aged”, nation, child*, medicine, medical, adolescent, adolescence, autism, diagnosis, 

“family health”, “risk factor*”, patient, pancer, wheat, schizophrenia, poplar, maize, “mental health“, soya bean, 

soya beans (all connected with OR). These were the most common terms that appeared in the description of 

datasets that relate to plants and to humans (e.g. mental health, autism, diagnosis, maize, soya beans). Because 

the functionality of search differs between different aggregators, we adjusted search terms and search syntax 

accordingly (see below). If the aggregator allowed for results filtering (e.g. based on the scientific area) we used 

this option to filter out the irrelevant datasets from the initial list of datasets. Datasets were then screened based 

on Title, Abstract, Dataset description, and/or Keywords, if available (different aggregators provide all or some of 

these). Remaining datasets were then further checked for the relevance by opening the data files and/or reading 

the related publication if necessary, leaving only datasets containing pedigree information for an animal 

population (wild or captive). 

Next, we screened and filtered this data subset (106 datasets, Supplementary Table 1) to keep those where:  

(i) the pedigree file could potentially be used (i.e. when the file was not embargoed, corrupted or 

‘encrypted’); 

(ii) the pedigree contained a sufficient number of individuals (final datasets had, on average, >40 

observations/individuals per year); 

(iii) individuals in the pedigree also had information on a phenotype on which selection could act; 

(iv) there was potential, natural environmental variation in the phenotype (this excluded all laboratory 

populations); 

(v) the associated phenotype file contained at least six years of data; 

(vi) there were no additional issues (e.g. non-matching IDs of animals in pedigree and phenotype file).  

In addition to these datasets, we did an additional search in Web of Science (on 9 September 2017) using the 

following key words: “("animal model" OR "quantitative genetic*" OR pedigree*) AND ("natural population*" OR 

"wild population*") NOT (plant OR experiment)”, disregarding studies published before 2010 (because data 

publication was not a standard journal policy before that time, and none of the previously retrieved datasets were 

from before that year). From the resulting 396 studies, we discovered three additional suitable datasets overlooked 

by the initial search, using the inclusion criteria above.  

Overall, we located 106 datasets containing animal pedigree/phenotype data (Table S9.1, excluding Pied 

flycatcher Ficedula hypoleuca, which makes 107 datasets). After we applied the above screening, we ended up with 

the 18 datasets for the final analysis (excluding the Pied flycatcher dataset; see main text), 4 of which were 

omitted after correspondence with the original authors. The reasons for the exclusion of the pedigreed dataset 

from the final analysis are given in Table S9.1. 
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Details of the search (exact search terms, date of search), and search result screening process for each data aggregator 

 

1. Europe PMC 

http://europepmc.org/ 

Europe PMC is primary aggregator of scientific journals and their publications. However, it provides links to 

datasets related to these publications. Thus we used our main search syntax to search the full text of publications, 

and added that only articles with appendix, supplement, or tables that contained the words ‘pedigree’ or 

‘relatedness matrix’ be included. 

 

Date searched: 24-05-2016 

Used the ‘Advanced search’ option (with synonyms on) 

 

Search syntax: 

All Bibliographic Fields ("pedigree*" OR "relatedness matrix" NOT "Cultivar* " NOT "family tree" NOT "family 

pedigree" NOT "dog food" NOT "Nation" NOT "Child" NOT "Medicine" NOT "medical" NOT "Adolescent" NOT 

"Autism" NOT "family health" NOT "risk factors" NOT "patient" NOT "diagnosis" NOT "cancer" NOT "clinical" 

NOT "wheat" NOT "schizophrenia" NOT "poplar"  

 

NOT "maize") Article Sections: AND (APPENDIX:"pedigree*" OR SUPPL:"pedigree*" OR TABLE:"pedigree*" OR 

APPENDIX:"relatedness matrix" OR SUPPL:"relatedness matrix" OR TABLE:"relatedness matrix") 

 

Initial results: 304 

Screened by title: leaves 64 

Screened by abstract: leaves 34 

Further check for relevance: leaves 6 pedigree datasets 

Used in the final analysis: 1 

 

2. DataCite 

https://search.datacite.org/ 

Date searched: 24-05-2016 

Used the ‘Advanced search’ option 

 

Search syntax: 

Search in all fields: (pedigree*" OR "relatedness matrix") -Cultivar* -"family tree" -"family pedigree" -"dog food" -

Nation -Child -Medicine -medical -Adolescent -Autism -"family health" -"risk factors" -patient -diagnosis -cancer -

clinical –wheat –schizophrenia –poplar -maize 

 

Initial results: 409 

Screened by title: leaves 148 

Screened by abstract: leaves 101 

● Some of these belonged to the same data package, and we combined these to obtain final 64 datasets 

Further check for relevance: leaves 59 pedigree datasets 

Used in the final analysis: 7 

  

3. BASE 

https://www.base-search.net/ 

Date searched: 7-06-2016 

 

Search in all fields the search syntax: 
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(pedigree "relatedness matrix") -(cultivar* nation child medicine medical adolescent autism patient diagnosis 

cancer clinical wheat schizophrenia poplar maize "family tree" "family pedigree" "dog food" "risk factors") with 

document type ‘Primary data’ 

 

Initial results: 355 

Remove duplicated results: leaves 239  

Screened by title: leaves 173 

Screened by abstract: leaves 144 

● Some of these belonged to the same data package, and we combined these to obtain final 91 datasets 

Further check for relevance: leaves 65 pedigree datasets 

Used in the final analysis: 8 

 

4. OpenAire 

https://www.openaire.eu/search/find/ 

Date searched: 25-05-2016 

 

Search for ’Research Data’ with search terms: pedigree, pedigrees (as it does not allow use of “”, thus cannot 

search for “relatedness matrix”) 

Gives 3 results, 1 of which is relevant, but excluded after contacting the authors 

  

5. Science Research  

http://scienceresearch.com/scienceresearch/ 

Date searched: 16-6-2016 

 

Search syntax: 

(Pedigree* OR "relatedness matrix") NOT cultivar* NOT nation NOT child NOT medicine NOT medical NOT 

adolescent NOT adolescence NOT autism NOT patient* NOT diagnosis NOT cancer NOT clinical NOT wheat 

NOT schizophrenia NOT poplar NOT maize NOT "family tree" NOT "family pedigree" NOT "risk factors" NOT 

"risk factor" NOT "dog food" NOT "middle aged" NOT "middle age" NOT "family health" NOT "mental health" 

NOT "soya bean" NOT "soya beans" 

  

Include the additional results (this option appears after the search starts)  

 

Initial results: 426 

Result filtering: leaves 123 

● Select publications in Topics: 

      Genetics (59) 

Populations -> tick all in inbreeding (12), Wild (10), Natural population (6), genetic variability (2), small 

populations (2),  

Pedigree analysis -> tick all in Study (5), pedigree data (28), 

Large pedigrees -> tick all in Study (3), Genetic Pedigree (2), Animal (11), inbreeding depression (10) 

Structure -> tick all in population structure (5), Seleciton (2),quantitative trait (9),potential (7) 

● Topics excluded: Molecular (11), Markers (10), Method (10), Genomic (8), Cattle (6), Check library (40), 

Estimation (40), breeding (26), Complex (9), Analysese (8), Human Pedigree (7), chemistry (5), region (5), 

E coli (4), Regulation (4), University (4), role (4) 

 

Screened by abstract and title: leaves 28 

Further check for relevance: leaves 5 pedigree datasets 

Used in the final analysis: 0 
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6. DataOne, Mercury search 

https://cn.dataone.org/onemercury/ 

Date searched: 15-06-2016 

 

Search syntax: 

Pedigree* or ”relatedness matrix” 

cultivar* nation child* medicine medical adolescent adolescence autism patient* diagnosis cancer clinical wheat 

schizophrenia poplar maize "family tree" "family pedigree" "risk factors" "risk factor" "dog food" "middle age" 

"middle aged" "family health" "mental health" "soya bean" "soya beans" 

• untick the ’Direct access data available’ 

 

Initial results: 69 

Screened by title and abstract: leaves 33 

● Some of these belonged to the same data package, and we combined these to obtain final 29 datasets 

Further check for relevance: leaves 22 pedigree datasets 

Used in the final analysis: 4 

 

7. Web of Science Data Citation Index (DCI)  

http://apps.webofknowledge.com/ 

Date searched: 19-05-2016 

 

Two searches: 

a)   by TITLE: 

(pedigree* OR "relatedness matrix") NOT Cultivar* NOT “family tree” NOT “family pedigree” NOT “dog food” 

NOT Nation NOT Child NOT Medicine NOT medical NOT Adolescent NOT Autism NOT “family health” NOT 

“risk factors” NOT patient NOT diagnosis NOT patient NOT diagnosis NOT cancer NOT clinical NOT wheat 

NOT schizophrenia NOT poplar NOT maize 

 

Initial results: 145 

Result filtering:  

a) By Data Type: leaves 134 

● Exclude: NUCLEOTIDE SEQUENCING INFORMATION (9); EXPRESSION PROFILING BY ARRAY (2); 

METHYLATION PROFILING BY HIGH THROUGHPUT SEQUENCING (1) 

b) By Source Title: leaves 128 

● Exclude: ARRAYEXPRESS ARCHIVE (4), SCHOLARSARCHIVE OSU (1), EUROPEAN NUCLEOTIDE 

ARCHIVE (1) 

Screened by title: leaves 86 

 

Screened by abstract: leaves 63 

  

b)   by TOPIC: 

(pedigree* OR "relatedness matrix") NOT Cultivar* NOT “family tree” NOT “family pedigree” NOT “dog food” 

NOT Nation NOT Child NOT Medicine NOT medical NOT Adolescent NOT Autism NOT “family health” NOT 

“risk factors” NOT patient NOT diagnosis NOT patient NOT diagnosis NOT cancer NOT clinical NOT wheat 

NOT schizophrenia NOT poplar NOT maize 

 

Initial results: 782 

Result filtering: 

a) By WoS Category: leaves 663 

● Excluded BIOCHEMISTRY MOLECULAR BIOLOGY (119) 

b) By Source Title: leaves 555 
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● Excluded: EUROPEAN NUCLEOTIDE ARCHIVE (65); ARRAYEXPRESS ARCHIVE (27); GWAS 

CENTRAL (9); DATABASE OF GENOTYPES AND PHENOTYPES DBGAP (7) 

c) By Data Type: leaves 469  

● Excluded: APPLICATION OCTET STREAM (11); TEXT PLAIN (8); VIDEO X MSVIDEO (2); 

APPLICATION X BZIP2 (1); IMAGE TIFF (71) 

Screened by title: leaves 276 

Screened by Abstract : leaves 99 

 

Further check for relevance of both searches: leaves 33 pedigree datasets 

Used in the final analysis: 4 

 

8. SCIELO  

http://www.scielo.org/php/index.php 

Date Searched: 16-06-2016 

(pedigree*) AND NOT (child*) AND NOT (cultivar*) AND NOT (nation) AND NOT (medicine) AND NOT 

(medical) AND NOT (adolescent) AND NOT (adolescence) AND NOT (autism) AND NOT (patient*) AND NOT 

(diagnosis) AND NOT (cancer) AND NOT (clinical) AND NOT (wheat) AND NOT (schizophrenia) AND NOT 

(poplar) AND NOT (maize) AND NOT ("family tree") AND NOT ("family pedigree") AND NOT ("risk factors") 

AND NOT ("risk factor") AND NOT ("dog food") AND NOT ("middle age") AND NOT ("middle aged") AND 

NOT ("family health") AND NOT ("mental health") AND NOT ("soya bean") AND NOT ("soya beans") AND 

NOT soybeans 

  

Initial results: 154 

Filtered by ‘ Scielo Subject Areas’ - results in Biological Science: leaves 57 

 

Screened by title/abstract: leaves 0 

  

9. Research Data Australia 

https://researchdata.ands.org.au/ 

Date Searched: 16-06-2016 

Search for: pedigree* OR ”relatedness matrix”  

Initial results: 11  

Screened by title: leaves 0 pedigree datasets 

  

10. DLI Service 

https://dliservice.research-infrastructures.eu/index.html#/ 

Date Searched: 14-09-2016 

Search for: 

pedigree – 99 results 

pedigrees – 4 results 

Screened by Title/Abstract: leaves 48 

Further check for relevance: leaves 41 pedigree datasets 

Used in the final analysis: 5 

  

11. Data MED 

https://datamed.org/ 

Date Searched: 15-09-2016 
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Search Syntax: 

Pedigree OR Pedigrees OR "Relatedness Matrix" OR "Kinship Matrix" NOT Cultivar NOT Cultivars NOT "Family 

Tree" NOT "Family Pedigree" NOT "Dog Food" NOT Nation NOT Child NOT Children NOT Medicine NOT 

Medical NOT Adolescent NOT Autism NOT "Family Health" NOT "Risk Factors" NOT Patient NOT Diagnosis 

NOT Cancer NOT Clinical NOT Wheat NOT Schizophrenia NOT Poplar NOT Maize 

Initial results: 346  

Result filtering (by Source): leaves 303 

● Included: Dryad (300); PeerJ (2); Zenodo (1) 

● Excluded: BioProject (91); OmicsDI (41); ArrayExpress (28); dbGaP (17); GEO (2); GEMMA (1) 

Screened by Title/Description/Keywords: leaves 184 

●  depending on the record, some record contain information on all three elements, and some miss one or 

two elements 

● some of these belonged to the same data package, and we combined these to obtain final 126 datasets 

 

Further check for relevance: leaves 84 pedigree datasets 

Used in the final analysis: 9 

 

Dryad Digital Repository  

http://datadryad.org/ 

Date Searched: 15-09-2016 

 

Search Syntax: (Pedigree OR Pedigrees OR "Relatedness Matrix" OR "Kinship Matrix") NOT Cultivar NOT 

Cultivars NOT "Family Tree" NOT "Family Pedigree" NOT "Dog Food" NOT Nation NOT Child NOT Children 

NOT Medicine NOT Medical NOT Adolescent NOT Autism NOT "Family Health" NOT "Risk Factors" NOT 

Patient NOT Diagnosis NOT Cancer NOT Clinical NOT Wheat NOT Schizophrenia NOT Poplar NOT Maize 

 

Initial results: 185 

Screened by Title/Abstract: leaves 134 

Further check for relevance: leaves 87 pedigree datasets 

Used in the final analysis: 11 
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Figure SAD9.1. PRISMA diagrams for search for pedigreed datasets, and data screening process for 
different research data aggregators consulted. The reasons for the exclusion of pedigree datasets 
from the final analysis can be found in Supplementary Table 9.1.1. 

 

 

SM9.2: Correspondence with the authors of the datasets 

 

A) General letter used to approach authors: 

 

Dear author(s), 

 

At the Netherlands Institute of Ecology (NIOO-KNAW) we are running a number of long-term studies 

on individually marked birds, including several population studies on hole-breeding passerines 

initiated in 1955. We now regularly deposit part of our data in Open Data repositories when journals 

require us to do so. This has led to the question as to what extent such data can be properly used for 

answering different questions. To study this we have started a large-scale study on Open Access Data 

(OAD) on individually marked animals stored in online data depositories by authors upon publication 

of their scientific papers. The overarching aim of this project, led by Prof. Marcel E. Visser and run by 

Dr. Antica Culina, is to investigate the usefulness of OAD for answering biological questions, for 

example by combining data to estimate overall effect sizes of biological phenomena (as opposed to 

traditional meta-analysis) or by simply testing new hypotheses. Within this project, several 

investigators are attempting to address certain specific hypotheses (please see the project 
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website, https://nioo.knaw.nl/en/meta-analysis-meets-open-science, for more information on this 

subject). 

As a participant in this project, I am specifically interested in the prevalence of gene-by-environment 

(GxE) and selection-by-environment (SxE) interactions across populations and species. For this purpose, 

we have acquired a number of multi-annual data sets of wild populations containing morphological, 

physiological, behavioural or life-history trait measurements and pedigree information to tackle this 

problem. Note that although most data sets lack information about the environment (because the data 

are not intended for answering these questions), we refrained from enquiring with the authors as this 

exercise particularly dictates the use of what has already been made available by them. Your data set 

[reference to dataset and paper] is one of the selected data sets. To answer our research questions, we have 

had to make certain assumptions about your data and, where necessary, reformatted them to make 

them fit for our analysis. 

One concern about the use of OAD for testing new hypotheses is that the data may be misinterpreted, 

therefore leading to wrong conclusions (see Mills et al. 2016: Solutions for Archiving Data in Long-Term 

Studies: A Reply to Whitlock et al., Trends in Ecology & Evolution, 31(2), 85-7. DOI: 

10.1016/j.tree.2015.12.004). We are therefore writing to all authors (from whom we used OAD) to check 

whether this is the case; we will report on the frequency of misinterpretation in our manuscript to inform 

future investigators wishing to embark on similar projects and stress the importance of getting into 

contact with the original owners of the data. I would like to ask you if you could check whether what 

we have done makes sense to you—that is, have we made any false assumptions about your data or 

adapted them in a way that does not concur with your knowledge of the system? For this purpose, I 

kindly refer to the attached document, which gives a concise description as to how we went about 

preparing and analyzing your data. 

I would very much appreciate your input in this to make sure we can draw sensible conclusions. I 

would like to point out that your original work will be duly acknowledged in our manuscript. The 

resulting paper will contain a table with all the data sets used, we shall provide a description of the aim 

of each original study and both your data and associated paper will be properly cited. I would also like 

to stress that we are not interested in replicating your original results or verifying the rigorousness of 

your original analyses. Lastly, I would like to point out that we shall be discreet with respect to your 

response and report any issues in the manuscript anonymously. 

  

Thank you very much for your cooperation. 

  

Kind regards, on behalf of the whole team, 

 

Jip Ramakers 

------------------------------------------------------- 

PhD student 

Netherlands Institute of Ecology (NIOO-KNAW) 

Droevendaalsesteeg 10 

6708 PB Wageningen 

The Netherlands 

J.Ramakers@nioo.knaw.nl / Jip.Ramakers@gmail.com 

--------------------------------------------------------------------- 
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B) Specific letter addressing the use of the data 

 

Addressee(s) 

Dr. X 

Their.names@emailaddress.com 

 

Data 

Paper: [paper associated with the dataset] 

Data source: [link to repository from which data were retrieved] 

Datasets used: [file names] 

 

Aim of our study 

To test for evidence of heritability × selection interaction (via GxE and environment-dependent 

selection) on trait(s) X in species Y. 

 

Data preparation 

As environmental data were not available, we used our own measure of environment to keep analysis 

across datasets and studies comparable. As the environment, we considered the population-average 

trait value in a given year (‘av.z’); these values were standardized across seasons: av.zstd = (av.zi – 

mean(av.z))/sd(av.z), where i denotes a given year. Note that our chosen measurement of the 

environment does not identify any specific environmental parameter; rather, it captures the overall 

environmental ‘quality’ by looking at the average X of individuals in that year (see addendum for 

rationale behind this approach). 

 

GxE analysis 

We first determined the minimum adequate mixed models (Gaussian errors) for each trait in ASReml-

R. Using conditional Wald F tests, we identified as fixed effects [relevant fixed effects], plus our newly 

derived measure for the environment (av.zstd). Likelihood-ratio tests were used to identify important 

random effects: [statistically important random effects]. GxE was then estimated using random regression 

analysis in MCMCglmm (i.e. by modelling an interaction between the additive genetic effect and 

av.zstd, as well as an interaction between individual ID and av.zstd). 

 

Selection analysis 

[Here we explained how we derived annual recruits and/or survival from the dataset and what assumptions we 

used to determine selection]. 

 

Tentative results 

[Here we provided tentative results of the analysis, if any] 

 

 



Coupling of heritability and selection 

193 
  

Addendum: Rationale behind using mean trait value as a measure of the environment 

Given the lack of a suited variable most datasets describing the environment affecting each trait of 

interest, the mean performance of individuals with respect to the trait of interest in a given environment 

(year) was used instead. The method is commonly used in animal and plant breeding studies in a 

process called ‘joint-regression analysis’, where genotype-specific interactions are partitioned into a 

component explained by mean population performance and a residual component (Lynch and Walsh 

1998, pp. 672–678). The method was first proposed by Yates and Cochran (1938) and later brought into 

prominence by Finlay and Wilkinson (1963), who applied it to yields of varieties of Barley, where the 

site mean yield was a predictor of individual variety yields. This approach became widely accepted in 

the plant- and animal-breeding literature (Lynch and Walsh 1998, James 2009). The method has the 

advantage that all of the complex (and potentially unobserved) features of the environment are 

integrated into a single measure. This has two important implications for our analyses: (1) the daunting 

quest for potentially important environmental variables becomes unnecessary, and (2) the 

environmental fixed component in our statistical models, now substituting a random effect of ‘year’ or 

‘season’ to explain environmental variance, can now be used to rank years in terms of overall 

environmental quality. This approach obviously cannot reveal any detailed links between phenotypes 

and components of the environment. Note, however, that this is not the purpose of our study. We 

therefore feel that our use of the population-average trait value in a given year adequately deals with 

the environmental conditions faced by members of the population, provided that this average is based 

on the entire population or at least a random portion of it. 

 

References 

Finlay, K. W., and G. N. Wilkinson. 1963. The analysis of adaptation in a plant-breeding programme. 

Australian Journal of Agricultural Research 14:742–754. 

James, J. W. 2009. Genotype by envionment interaction in farm animals.in J. van der Werf, H.-U. 

Graser, R. Frankham, and C. Gondro, editors. Adaptation and fitness in animal populations: 

Evolutionary and breeding perspectives on genetic resource management. Springer, 
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SM9.3: Supplementary Figures 

 

      

Figure S9.1. Additive genetic variance (posterior mean and 95% HPDI) as a function of the environment 
(standardised mean trait value). Colours represent different trait types (red: life history; green: body mass; blue: 
morphology; orange: miscellaneous). Note that the increase in the width of the HPDIs at higher environmental 
values is due to uncertainty in the covariance (off-diagonal) estimate in the G matrix. Also note that this figure 
has fewer panels than Figure S2 and Figure 1 (main text), because G×E was estimated using the whole population 
(conditioned on the age of individuals), whereas adults and juveniles were separated in subsequent analyses. See 
main text for details. 
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Figure S9.2. Standardised selection gradients plotted against the environment (i.e. the standardised mean trait 
value). Colours represent different trait types (red: life history; green: body mass; blue: morphology; orange: 
miscellaneous), whereas shapes indicate selection based on survival (circles) or based on number of fledglings or 
recruits (triangles). Standard errors (SEs) are given for the selection gradient (shown only when SE < 0.5). 
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Figure S9.3. Evaluating statistical power for the heritability–selection relationship (a, c, g, e) and for the selection–

environment relationship (b, d, f, h). a Weighted variation in heritability estimates; b weighted variation in the 

environment; c, d weighted variation in selection gradients; e, f the number of years available; g, h the total 

number of observations for each analysis. The bottom axes denote whether the sought correlation was significant 

(1) or not (0; n = 6 vs. 44 [a, c, g, e] and n = 7 vs. 43 [b, d, f, h]). Note that although g and h were added for 

completeness, they are not wholly informative for statistical power, which really is a balance between total 

sample size, number of years (the statistical units in the regression models) and the quality of the pedigree (to 

estimate heritability reliably).
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Chapter 10  

 

Phenological mismatch drives selection on elevation, but not on 

slope, of breeding time plasticity in a wild songbird 

 

Jip J.C. Ramakers, Phillip Gienapp & Marcel E. Visser 

 

 

ABSTRACT 

 

Phenotypic plasticity is an important mechanism for populations to respond to fluctuating 

environments, yet may be insufficient to adapt to a directionally changing environment. To study 

whether plasticity can evolve under current climate change, we quantified selection and genetic 

variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long-term 

(1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak 

date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal 

RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg-laying 

date in the second third of the study period; this selection subsequently waned, potentially due to 

increased between-year variability in optimal laying dates. We found individual and additive genetic 

variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and 

observed evolutionary change in RNE were, however, marginal, due to low heritability and the sex 

limitation of laying date. We conclude that adaptation to climate change can only occur via micro-

evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in 

phenotypic optima. 

 

 

 

 

 

 

 

 

Evolution (2018) 73, 175–187
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Introduction 

 

Phenotypic plasticity is an important mechanism by which an individual can adapt its 

phenotype in response to fluctuating environmental conditions (Schlichting and Pigliucci 

1998; Pigliucci 2001). For example, life-history traits such as phenology (e.g. timing of 

breeding or migration) or litter size are often phenotypically plastic, and this plasticity is 

adaptive as it tracks the environmental variability in the optimal phenotype (Scheiner 

1993). Timing of avian seasonal reproduction (or laying date) is an illustrative example in 

this respect; since laying date is an important determinant of reproductive success and its 

optimal timing varies from year to year (Visser and Both 2005; Verhulst and Nilsson 2008), 

it is often phenotypically plastic to environmental conditions, usually spring temperatures 

(Brommer et al. 2005; Nussey et al. 2005b; Charmantier et al. 2008; Avilés et al. 2014). 

Similarly, avian clutch size can be phenotypically plastic with respect to population 

density, such that birds maximize the number of successfully raised, high-quality 

offspring under varying levels of food availability and competition (Ricklefs 1980; Both et 

al. 2000; Sæther et al. 2016). More generally, many forms of animal behaviour are highly 

context dependent in a wide range of taxa (Dingemanse et al. 2010), making phenotypic 

plasticity ubiquitous in nature (Pigliucci 2001). 

Phenotypic plasticity can be described by a reaction norm (Woltereck 1909; Scheiner 

1993); that is, the (often assumed to be linear) function of the phenotype against the 

environment, characterised by the intercept or elevation (i.e. the phenotype in the average 

environment) and slope (i.e. the sensitivity of the phenotype to the environment). The 

degree of plasticity may vary among individuals (individual-by-environment interaction 

or I×E) and this variance may have a partly genetic basis (genotype-by-environment 

interaction or G×E), making phenotypic plasticity itself an evolvable trait (Scheiner 1993; 

Van Tienderen and Koelewijn 1994; Via et al. 1995). In a directionally changing 

environment, evolution of the reaction norm may be necessary because the environmental 

driver of the trait no longer accurately predicts future environmental conditions, 

rendering plasticity alone insufficient to respond to environmental change (Visser 2008). 

Quantifying variation in reaction norms is therefore imperative for understanding 

evolutionary processes because it can elucidate whether populations are capable of 

responding to such directional selection. Predicting such responses may be difficult when 

G×E leads to nonlinear changes in genetic variation across environments (Tomkins et al. 

2004; Turelli and Barton 2004; Kokko and Heubel 2008), or when genetic variation and 

selection are negatively correlated with one another (Wood and Brodie III 2016; but see 

Chapter 9). Ultimately, the extent to which phenotypic plasticity modulates evolutionary 

processes will be highly context dependent (Hoffman and Merilä 1999). 

A largely unexplored aspect in the light of directional environmental change is how 

selection on consumer phenology translates to selection on the reaction norm (Visser 

2008). If the optimal reaction norm—i.e. the relationship between resource phenology and 

the environment driving phenology of the consumer (the ‘cue’)—does not change over 

time, selection on neither the elevation nor the slope of the consumer reaction norm should 

occur. If, on the other hand, the sensitivity of the optimal reaction norm to the 
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environmental cues changes over time, this may lead to two scenarios: selection for 

increased phenotypic plasticity to track the plasticity of the resource (Nussey et al. 2007; 

Lande 2009; Gienapp et al. 2014), or selection for reduced plasticity when the cue 

environment changes to such an extent that the consumer can no longer accurately predict 

the resource phenology (De Jong 1999; Reed et al. 2010). Alternatively still, if the elevation 

of the optimal reaction norm changes over time, selection on the elevation, rather than the 

slope, of the consumer reaction norm should occur. Global climate warming has led to the 

disruption of phenological synchrony between trophic levels (Visser and Holleman 2001; 

Both et al. 2006; Durant et al. 2007; Both et al. 2009a; Schultz et al. 2009; Thackeray et al. 

2010; Thackeray et al. 2016; Visser and Gienapp in press) and in some cases to directional 

selection on consumer phenology (Van Noordwijk et al. 1995; Visser et al. 1998). It is 

unclear whether selection on phenology reflects selection on the elevation, the slope or 

both components of the reaction norm. Most of what we know about the evolutionary 

dynamics of the reaction norms stems from theoretical work or laboratory experiments 

(see Scheiner 1993; De Jong 1999; Van Asch et al. 2007; Lande 2009) or from phylogenetic 

and population comparisons of reaction norms (Murren et al. 2014), with very few 

empirical examples of how selection as well as (additive) genetic variation led to an 

evolutionary change in the reaction norm in wild populations (Van Asch et al. 2013; cf. 

Carter et al. 2017). 

Several long-term, vertebrate study populations have been shown to exhibit phenotypic 

plasticity in phenology (e.g. Réale et al. 2003b; Brommer et al. 2005; Nussey et al. 2005a; 

Nussey et al. 2005b; Charmantier et al. 2008). Evidence for I×E and G×E, however, is overall 

mixed. For example, phenotypic plasticity of laying date against spring temperature in 

Dutch great tits (Parus major) was shown to vary between individuals (I×E), with part of 

this variation being heritable (G×E; Nussey et al. 2005b). In a UK great tit population, on 

the other hand, there was no I×E (Charmantier et al. 2008). In a re-analysis for both 

populations, phenotypic, but not genetic, variation was found to be present in the 

elevation as well as the slope of the reaction norm in both populations (Husby et al. 2010).  

In general, heritable variation in phenological traits is widespread (e.g. Van Noordwijk 

et al. 1981; Blondel et al. 1990; Réale et al. 2003b; Sheldon et al. 2003), which in the absence 

of variation in plasticity slopes should reflect variation in the elevation of the reaction 

norm. Evidence for G×E in wild populations is, however, rare (Wood and Brodie III 2016; 

Hayward et al. 2018; but see Chapter 9), and estimates of selection on reaction norms are 

even scarcer. This is because it requires estimating selection on both the elevation and the 

slope, which is a statistically challenging procedure (see discussion in Weis and Gorman 

(1990) and in Brommer et al. (2012)). Several studies used random regression techniques 

to get individual estimates (best linear unbiased predictions, or BLUPs) for reaction norm 

elevation and slope and performed a separate analysis on these components to quantify 

selection on them (e.g. Brommer et al. 2005; Nussey et al. 2005b). Such a two-step approach 

is now considered inappropriate (Hadfield et al. 2010; Morrissey and Liefting 2016) and 

an alternative method has been suggested to use random regression models to estimate 

variation in reaction norms as well as selection thereon in a single analysis (Brommer et 

al. 2012). Application of this method to estimate selection on reaction norms in general has 

been rare (Brommer et al. 2012; Hayward et al. 2014). Thus, quantitative estimates of both 



Chapter 10 

202 
 

(genetic) variation in and selection on reaction norms in wild populations are rare or 

ambiguous, and there is a clear need to empirically quantify the evolutionary dynamics of 

reaction norms in the light of environmental change (Visser 2008). 

To address this gap, we quantified selection on and predicted evolution of the reaction 

norm of timing of breeding (laying date) in response to temperature (an important 

environmental cue; Visser et al. 2009a; Schaper et al. 2012) in a Dutch long-term (1973–

2016) study population of the great tit (Parus major) at the Hoge Veluwe (HV). Laying date 

is a labile trait that can be expressed several times by an individual; this means that each 

female has her own reaction norm. Timing of breeding is under increased directional 

selection (for earlier dates) in this population due to a climate change-driven mismatch 

with the caterpillar food peak (Visser et al. 1998; Reed et al. 2016b). We tested (i) whether 

the optimal (linear) reaction norm—determined by regressing the caterpillar biomass peak 

date against the temperature used by great tits to time laying date—changed over time, 

both in its elevation and slope; (ii) whether a change in the optimal reaction norm over 

time led to selection on the phenotypic reaction norm of the consumer (great tit); and (iii) 

whether there was genetic variation in great tit reaction norms. Based on the results, we 

used a quantitative genetic model to predict quantitatively the amount of expected change 

in the population reaction norm (elevation and slope) due to years of selection, and 

verified the outcome by comparing the predicted reaction norms with those observed in 

the wild. Combined, these results should elucidate whether the breeding-time reaction 

norm can evolve given sustained directional selection. 

 

Methods 

 

Data collection and preparation 

Data were collected from a long-term great tit (Parus major) population at the Hoge Veluwe 

National Park (HV; 52°02′07″ N, 5°51′32″ E, central Netherlands). The HV population is 

situated within a matrix of natural habitat, facilitating dispersal from and into the study 

area, and has been monitored continuously since 1955. Nest boxes are provided in excess 

(~400) in suitable habitat. Each breeding season from April to July, boxes are checked at 

least once a week to monitor the breeding activity of hole-breeding passerines. Clutch size 

is noted and laying date (i.e. the date when a female’s first egg of her first clutch in that 

season is laid) is calculated based on the number of eggs in the nest, assuming that one 

egg is laid per day. During the chick-feeding phase, parents and chicks are captured at the 

nest box and ringed, allowing for establishing a ‘social’ pedigree. Extra-pair paternity in 

the neighbouring population of Westerheide ranges from 6.5% to 12.5% of all chicks (Van 

Oers et al. 2008), a common rate for tit species (Brommer et al. 2010) that has been found 

to only marginally affect the accuracy of heritability estimates when sample sizes are 

sufficiently large (Charmantier and Réale 2005; Firth et al. 2015). 

Temperature data were retrieved as daily averages from a nearby weather station of 

the Royal Dutch Meteorological Institute (KNMI; Deelen station: 52°05′N, 5°87′E; 

http://projects.knmi.nl/klimatologie/daggegevens/). Temperature data were averaged 
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over the period from March 11 to April 20, which is the time window yielding the strongest 

correlation between annual mean daily average temperature and annual mean laying date 

(r2 = 0.74). This was done using a sliding-window approach in the ‘climwin’ R package 

(Bailey and Van de Pol 2017); details of the analyses are given elsewhere (Bailey et al. in 

prep.). We used these mean daily average temperatures as proxies for the environmental 

cues great tits use to time their reproduction, which in reality is an intricate interplay 

between day length and changes in temperature over time (Gienapp et al. 2005; Schaper 

et al. 2012). 

The peak date of food availability has been estimated since 1985, using frass samples 

(see Visser et al. 2006 for details). The most common caterpillars are of the winter moth 

(Operophtera brumata) and the oak leaf roller (Tortrix viridana), although other species are 

present. Caterpillar peak date correlates very well with the mean temperature from March 

22 to May 16 (r2 = 0.81, resulting from a sliding window analysis); we used this relationship 

to hindcast the caterpillar peak date from 1973 to 1984 (all temperatures fell within the 

analysed range). 

Here, we consider brood data from 1973 to 2016, as the study area was reorganised 

following a major storm in 1972, and the latest data on recruitment of fledged offspring 

(our fitness measure) was available for 2017. During the study period, a number of broods 

were manipulated in brood size. None of the broods that we considered were affected in 

their laying date, but brood size manipulations could affect the reproductive success of a 

brood. We therefore included broods whose size was manipulated in the laying date 

analyses, but removed them from annual selection analysis (but not for analysis of 

selection on the reaction norm; see below). Sample sizes per analysis are given in Table 

10.1. 

 

Table 10.1. Sample sizes used in all analyses. 

Analysis Year span Nyears Nfemales Nbroods 

1. Optimal laying date vs. environment 1973–1987 15 - - 

 1988–2001 14 - - 

 2002–2016 15 - - 

2. Selection on plasticitya 1969–1987 19 456 1272 

 1988–2001 14 365 953 

 2002–2012 11 280 691 

3. Quantifying G-matrix 1973–2016 44 3028 4890 

4. Selection (𝛽𝑧) on laying dateb  1973–2016 44 >2347 3662 

5. Observed reaction norms 1973–1987 15 1026 1650 

 1988–2001 14 993 1551 

  2002–2016 15 1126 1689 
aYear span here indicates cohort span; birds with incomplete lifetime reproductive success (LRS) at the end of the dataset 
were omitted, whereas LRS of birds breeding in 1973 were complemented with brood data from previous years, hence making 
the cohort span 1969–2012 (see text). Only birds with ≥ 2 breeding events were included here. 
bReduced dataset without manipulated broods; exact Nfemales is unknown because this analysis includes broods whose mother 
could not be identified. 
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Change in the relationship between optimal phenotype and the environment 

If the optimal egg-laying date (ELDθ, i.e. the laying date at which fitness is maximised) 

advanced at a faster rate over time than the observed laying date, this could lead to 

selection on (1) the reaction norm elevation, if the sensitivity of the optimal reaction norm 

to temperature (i.e. plasticity) remained constant over time, or (2) the slope, if the 

sensitivity of ELDθ to temperatures changed over time. We therefore determined ELDθ in 

each year and regressed it against the temperature cues used by the birds (i.e. the mean 

temperature across March 11 – April 20). ELDθ was defined as the peak date of caterpillar 

biomass minus 33 (see Chevin et al. 2015). The rationale behind this was that it takes 

approximately 33 days from the laying date to the moment when chicks’ food 

requirements are highest, assuming a clutch size of 9–10, followed by 12–13 days of 

incubation, and a peak in food demands at chick age 9–11 d (e.g. Keller and Van 

Noordwijk 1994; Mols et al. 2005). 

To test whether the optimal reaction norm changed over time, we divided the datasets 

into three equal-interval time periods (spanning 14–15 years: 1973–1987, 1988–2001, 2002–

2016; Table 10.1). We then fitted a linear model with LDθ as a function of temperature and 

time period. We assessed statistical significance of model terms by bootstrapping (1000 

iterations, bias-corrected and accelerated confidence intervals) estimates for each period, 

as well as the temperature slope. We then ran a model that contained an interaction 

between temperature and period and bootstrapped the change in the slope of the optimal 

reaction norm between periods to determine whether the slope changed over time. The 

year 1991 was excluded from this analysis as an exceptionally late frost spell in that year 

damaged all fresh oak leaves and hence the food peak was exceptionally late (see also 

Visser et al. 2002; 2006). 

 

Selection on the slope and elevation of the great tit reaction norm 

To estimate period-specific (fecundity) selection on plasticity, we assigned each female 

with at least two breeding attempts to a breeding cohort (based on the first year a bird was 

observed breeding) and split the phenotypic dataset into three time periods as above. A 

female’s lifetime reproductive success (LRS) was the sum of all recruits she produced over 

her lifetime. To avoid truncation of LRS of birds breeding in 1973, we added broods from 

earlier years (before 1973) to complete each individual’s LRS. For the same reason, we 

removed all observations of birds from the 2013 breeding cohort or later, as some birds 

from these cohorts were still known to be breeding in 2017 and therefore had incomplete 

LRS. Hence, the periods in this analysis were 1969–1987, 1988–2001 and 2002–2012 (Table 

10.1). 

As pointed out above, some broods had been manipulated, likely affecting the female’s 

fitness. Since we were interested in the lifetime fitness consequences of being more or less 

phenotypically plastic with respect to temperature, as well as having a higher or lower 

mean response (i.e. the elevation of the reaction norm), we opted to include manipulated 

broods in this analysis. The reason for this was that because the probability of having any 

of her broods manipulated increases with a female’s age, discarding data from 
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manipulated females would lead to a biased subset of shorter-lived individuals. 

Consequently, the inclusion of manipulated broods in our analysis may create some noise 

in the selection estimates, but we nevertheless believe it is a superior approach to 

removing a non-random subset of individuals from the data. 

For each of the three periods, we fitted a bivariate random regression model (RRM) in 

‘MCMCglmm’ (Hadfield 2010; Hadfield 2018) with laying date as a Gaussian and LRS as 

a (overdispersed) Poisson trait. Breaking down this bivariate model in scalar notation, the 

laying date (z) of the ith individual in the jth year in the kth nest box within the lth 

‘environmental block’ was modelled as 

 

𝑧𝑖𝑗𝑘𝑙 = 𝛼𝑧 + 𝑎𝑖 + 𝑏𝑖(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + 𝑎𝑔𝑒𝑖𝑗 + 𝑛𝑏𝑘 + 𝑦𝑟𝑗 + 𝑒𝑧,𝑖𝑗𝑙,    (10.1) 

 

where 𝛼𝑧 is the overall mean laying date (intercept), 𝑎𝑖 and 𝑏𝑖 are the individual intercept 

and slope, respectively, related to temperature (T) and b is the population-level slope, 𝑎𝑔𝑒𝑖𝑗 

is the female’s age (first-year breeder, older, or unknown), 𝑛𝑏𝑘 and 𝑦𝑟𝑗 are the kth nest box 

and jh year, respectively (treated as random effects with estimated variance 𝑛𝑏𝑘~𝑁(0, 𝜎𝑛𝑏
2 ) 

and 𝑦𝑟𝑗~𝑁(0, 𝜎𝑦𝑟
2 )) and 𝑒𝑧,𝑖𝑗𝑙 is the residual term. This residual term was estimated as 

𝑒𝑧,𝑖𝑗𝑙~𝑁(0, 𝜎𝑒,𝑙
2 ), where l is one of two equal-interval groups of years with similar 

temperatures, which was done to accommodate changes in residual variance along the 

temperature gradient (Lillehammer et al. 2009; Nicolaus et al. 2013). Temperature was 

divided into a within-individual (𝑏𝑖(𝑇𝑖𝑗 − �̅�𝑖)) and a between-individual (𝑏�̅�𝑖) component, 

following Van de Pol and Wright (2009). This method disentangles any effect of 

temperature on laying date caused by having observed certain individuals only under 

certain temperatures and others under different temperatures (a between-subject effect of 

T on z) from a real, within-subject effect (but note that for the purpose of estimating 

variance in intercepts, centring may not be desired in all context; see Kreft et al. (1995)). 

A female’s LRS (W) is described as 

 

log(𝐸[𝑊]𝑖) = 𝛼𝑊 + 𝑐𝑖 + 𝑒𝑊,𝑖,        (10.2) 

 

where 𝛼𝑊 is the overall mean LRS, 𝑐𝑖 is the individual intercept and 𝑊𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸[𝑊]𝑖). 

We set the residual term, 𝑒𝑊,𝑖, to a fixed small variance (0.01) since LRS is a repeated 

measures trait and laying date is not; ideally, we would constrain variance to 0 (Brommer 

et al. 2012; Morrissey et al. 2012a), but since the MCMC chain does not mix well under 

these conditions a minimum non-zero value needs to be assigned.  

Variance in intercepts (a) and slopes (𝑏) of the reaction norm (eqn. 10.1), as well as in 

intercepts of LRS (𝑐; eqn. 10.2) were jointly fitted as the random effect ‘female identity’, 

such that individual values were estimated as 
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]

𝑖

), 

 

i.e. drawn from a 3×3 unstructured, phenotypic covariance matrix with the variance 

components on the diagonals and the covariances between them on the off-diagonals. 

To obtain independent samples from the MCMC sampling process, we used a thinning 

interval of 104, a burn-in period of 105 and a total sample size of 10.1×106 (i.e. an effective 

sample size of 1000). We used default normal priors for the fixed effects and parameter-

expanded priors for the random terms (V = diag(n), nu = n, alpha.mu = 0, alpha.V = 

diag(n)*25^2, n being the dimension of the matrix), following Hadfield (2018). For the 

residual variance in eqn. (10.1), we used inverse-Wishart priors with V = diag(2) and nu = 

0.002.  

 

Predicting changes in the reaction norm 

We used a multivariate version of the breeder’s equation to predict changes in the reaction 

norm as a result of selection across the three time periods (Table 10.1). The evolutionary 

response to selection from one year to the next is defined as the trait heritability times the 

selection differential (R = h2S, i.e. the breeder's equation; Falconer and Mackay 1996). Even 

in its multivariate form (Lande 1979), however, this would require estimating the 

heritability of both components of the reaction norm (elevation and slope), which is not 

straightforward (Hadfield et al. 2010). We therefore used a derivation of the breeder’s 

equation for reaction norms (Van Tienderen and Koelewijn 1994). In their Appendix 1, 

Van Tienderen and Koelewijn (1994) show that the selection gradients on reaction norm 

components, i.e. intercept and slope in our case, can be calculated from environment-

specific—here hence annual—selection gradients: 

 

𝜷𝑔 = 𝚽
𝑡𝜷𝑧,           (10.3) 

 

where 𝜷𝑔 is the vector of selection gradients on intercept and slope, 𝚽𝑡 is the transposed 

matrix of vectors consisting of the environmental values in environments i...k with a 

leading 1, and 𝜷𝑧 the vector of selection gradients in environments i...k. The (expected) 

genetic change in the breeding values for intercept and slope is given by the multivariate 

breeders’ equation: 

 

Δ�̅� = 𝑮𝜷𝒈,           (10.4) 

 

where Δ�̅� is the change in intercept and slope breeding values, and 𝑮 the additive genetic 

variance-covariance matrix for intercept and slope. Substituting eqn. (10.3) and (10.4) 



Selection on reaction norm 

207 
  

allows the change in reaction norm components (Δ�̅�) as a result of selection in year j 

following 

 

Δ�̅� = 𝑮[1, 𝑥𝑗]
𝑡𝛽𝑧𝑗,              (10.5a) 

 

where [1, 𝑥𝑗]
𝑡 is a transposed vector characterising the environment in a given year (𝑥𝑗), 

and 𝛽𝑧𝑗  the selection gradient. We then only need to accommodate generation time by 

multiplying the response by the proportion of the breeding population in environment j+1 

represented by recruits (𝑝𝑟𝑒𝑐𝑟𝑗+1) and further halve the response because laying date is only 

expressed by females (following Gienapp et al. 2006): 

 

Δ�̅� = 𝑮[1, 𝑥𝑗]
𝑡𝛽𝑧𝑗 × 𝑝𝑟𝑒𝑐𝑟𝑗+1 × 0.5.            (10.5b) 

  

To estimate G, we fitted a univariate RRM on the entire dataset (i.e. all years and all 

observations) that included an additive genetic term (‘animal model’, RRAM; Henderson 

1988; Kruuk 2004) in ‘MCMCglmm’. Random effects were as in eqn. (10.1), with the 

addition of an additive genetic term (via the pedigree) to estimate additive genetic 

variance in laying date. The difference was that we allowed both the permanent 

environment term (i.e. female identity) and the additive genetic term to vary with grand-

mean-centred, as opposed to individual-mean-centred, temperature. Thus, the RRAM 

took the form: 

 

𝑧𝑖𝑗𝑘𝑙 = 𝛼𝑧 + 𝑎𝑖 + 𝐴𝑖 + (𝑏 + 𝑏𝑖 + 𝐵𝑖)(𝑇𝑖𝑗 − �̅�) + 𝑎𝑔𝑒𝑖𝑗 + 𝑛𝑏𝑘 + 𝑦𝑟𝑗 + 𝑒𝑧,𝑖𝑗𝑙,  (10.6) 

 

where definitions and indices are as for eqn. (10.1), but where the individual intercepts 

and slopes of the laying date–temperature reaction norm are now estimated on the grand-

mean-centred temperature (�̅�) and partitioned into a permanent environment (𝑎𝑖 and 𝑏𝑖) 

and additive genetic component (𝐴𝑖 and 𝐵𝑖; breeding values). Phenotypic and additive 

genetic variance in these components was estimated using two separate, 2×2 unstructured 

phenotypic and additive genetic (G) variance–covariance matrices containing 𝜎𝑎
2 and 𝜎𝑏

2 

or 𝜎𝐴
2 and 𝜎𝐵

2, respectively, as well as the covariance between each component. The residual 

term was estimated from a 4×4 matrix to allow for independent and heterogeneous 

variance as in eqn. (10.1), where 4 is the rounded number of years divided by 10, grouped 

based on temperature. We extracted posterior medians from G, along with 95% HPDIs 

(note that because variance estimates are constrained to be positive, they have a skewed 

posterior sample distribution when close to 0, hence making the median a more 

appropriate point summary than the mean). We applied the same prior structure and 

sampling procedures as for eqn. (10.1). Estimates resulting from the RRAM were robust to 

excluding individuals with only one or only two breeding records. 
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To estimate the selection gradient, 𝛽𝑧𝑗 , we ran annual Generalized Additive Models 

(GAMs; package ‘mgcv’; Wood 2017) on unmanipulated broods, with annual reproductive 

success (ARS; number of recruited offspring) as response variable with a negative 

binomial distribution and laying date as the predictor variable. We then used the 

‘gam.gradients’ function from the ‘gsg’ package (Morrissey and Sakrejda 2015) to calculate 

𝛽𝑧𝑗  (see Lande and Arnold 1983) along with the standard error through parametric 

bootstrapping (1000 iterations). Females with unknown identity were included in these 

analyses as they comprise a potentially biased subset of individuals that laid their eggs too 

early or too late, in some cases leading to brood desertion before the nestling stage when 

adults could be identified. 

With G and 𝛽𝑧 in place, we could predict the evolution of the reaction norm throughout 

the study period. Since the reaction norm has to be estimated across years (because each 

year has only one temperature average and one breeding event), we could not predict 

change from the first year onward. Instead, we estimated the observed population reaction 

norm across years in period 1 (see Table 10.1) using a slightly modified version of eqn. 

(10.1) (𝑧𝑖𝑗𝑘𝑙 = 𝛼𝑧 + 𝑎𝑖 + 𝑏(𝑇𝑖𝑗 − �̅�𝑖) + 𝑏�̅�𝑖 + 𝑎𝑔𝑒𝑖𝑗 + 𝑛𝑏𝑘 + 𝑦𝑟𝑗 + 𝑒𝑧,𝑖𝑗𝑙, a random-intercept 

model) and predicted the evolutionary outcome of selection in all subsequent years (i.e. 

excluding years in period 1) using eqn. (10.5b). Note that the predicted reaction norm after 

selection is then a property of a single year and will hence never accurately match the 

observed reaction norm, which is necessarily estimated across multiple years. We 

therefore view the predicted change as the upper limit of possible change within the 

studied period.  

Since both G and 𝜷𝒛 came with estimation errors, we accommodated uncertainty in 

predicted cumulative change in the following way. We used the upper and lower 95% 

HPDI of 𝑮 to calculate the variance (V) for 𝑮[1, 𝑥𝑗]
𝑡
 in each year by squaring its standard 

error (half the 95% HPD range divided by 1.96); similarly, we squared the standard error 

of 𝛽𝑧𝑗  to get its variance. The standard error of the full product was then calculated 

following simple error-propagation rules (Taylor 1997): 

 

𝑆𝐸Δ�̅� = √(𝑮[1, 𝑥𝑗]
𝑡
)
2

𝑉𝛽𝑧𝑗
+ 𝛽𝑧𝑗

2𝑉
𝑮[1,𝑥𝑗]

𝑡,       (10.7) 

 

which, in the case of eqn. 10.5b, was in turn multiplied by 𝑝𝑟𝑒𝑐𝑟𝑗+1 × 0.5. We calculated the 

cumulative difference across years (Δ�̅�𝑐𝑢𝑚.) by summing Δ�̅� of each year; the 95% CI was 

calculated as Δ�̅�𝑐𝑢𝑚. ± 1.96 × (𝑆𝐸Δ�̅�1
2 +⋯+ 𝑆𝐸Δ�̅�𝑛

2)0.5, where n is the number of years in 

period 2 and 3 combined. We need to make the cautionary note that although this way of 

calculating of errors should work satisfactorily when posterior distributions approximate 

normality, it may cause upward bias (i.e. be conservative) for variance estimates that are 

skewed because they are bounded at 0. 

We visually compared the predicted reaction norm with the observed reaction norms 

in each of the three periods, which we estimated in ‘MCMCglmm’ using a trimmed 
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version of eqn. (10.6) as described above and using the same priors and MCMC sampling 

procedures as described for eqn. (10.1). Although we cannot compare the predicted and 

observed reaction norms quantitatively for the reasons given above, we do present them 

alongside one another as the latter serves as an empirical validation of the former. 

 

Results 

 

Change in optimal reaction norm over time 

We found that the optimal reaction norm for laying date (estimated as the date of the 

caterpillar biomass peak versus the temperatures in the time window as used by great tits 

to time their reproduction) changed to earlier dates over three distinct periods (Figure 

10.1a); the optimal phenotype (ELDθ) advanced by 7.72 days (95% CI: [–10.89, –4.79]) from 

the first to the second period, and by 8.45 days (95% CI: [–12.75, –5.13]) from the first to 

the third period. There was, however, no interaction between temperature and time period 

(change in slope coefficient from first to second period: –1.54 [–4.19, 2.15]; from the first to 

the third period: 0.58 [–2.10, 3.31]), indicating that the response of LDθ to temperature did 

not change over the three periods (slope coefficient across all years: –3.15 [–4.36, –1.76] 

days/°C). Besides the mean, inter-annual variance in optimal laying date changed across 

the three periods (24.31 [10.82, 50.36], 29.98 [15.09, 64.27] and 63.70 [30.56, 149.37], 

respectively). 

 

Table 10.2. Posterior medians (and 95% HPDIs) of the phenotypic (co)variance matrix resulting from an 
analysis of selection on the reaction norm of egg-laying date (ELD) against temperature (via lifetime 
reproductive success (LRS); eqns. 10.1 and 10.2) for three distinct cohort periods in the HV great tit 
population, excluding females with only one observation (see Table 10.1 for sample sizes). Variance 
estimates are given on the diagonals, whereas covariance estimates are on the off-diagonals. 
Covariance estimates whose HPDI did not include zero are marked in bold. 

  ELDintercept ELDslope LRS 

Period 1       

ELDintercept 6.48 (4.78, 8.09)   
ELDslope 0.29 (–0.26, 1.11) 0.15 (0.00, 0.77)  
LRS –0.32 (–0.74, 0.11) –0.02 (–0.25, 0.20) 1.12 (0.89, 1.40) 

    
Period 2    
ELDintercept 9.88 (7.67, 12.62)   
ELDslope 1.00 (–0.32, 2.80) 0.43 (0.00, 1.61)  
LRS –0.98 (–1.58, –0.32) –0.24 (–0.76, 0.15) 1.51 (1.14, 1.97) 

    
Period 3    
ELDintercept 7.92 (5.52, 10.70)   
ELDslope –0.24 (–1.04, 0.55) 0.21 (0.00, 0.69)  
LRS –0.53 (–1.15, 0.13) –0.22 (–0.46, 0.05) 1.23 (0.85, 1.62) 
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Selection on the great tit reaction norm 

Along with a change to earlier dates in the elevation of the optimal reaction norm, we 

found statistical evidence for directional selection on the elevation of the great tit reaction 

norm in period 2; that is, lifetime reproductive success (LRS) covaried negatively with the 

elevation, indicating selection for a lower reaction norm (Table 10.2). Despite 

overwhelmingly negative annual selection gradients (Table S10.1), this selection on the 

intercept weakened in period 3, potentially related to the high variability in phenotypic 

optima in that period. We found no evidence for directional selection on slopes, and 

estimates of slope variation were overall small and zero-bound (Table 10.2). This low slope 

variance was also found when we used the entire 1973–2016 dataset (Table 10.3; see 

Discussion).  

 

Table 10.3. Model estimates resulting from the RRAM (eqn. 10.6) quantifying the G matrix for great tit 
laying date in the HV population between 1973 and 2016 (see Table 10.1 for sample sizes). The 
permanent-environment and additive genetic (co)variance components are marked in bold. 

Parameter Posterior median 95% HPDI 

Fixed effects    

 Intercept 21.84 20.82 22.77 

 Age (old) - - - 

 Age (unkn.) 1.27 0.42 2.13 

 Age (young) 1.78 1.51 2.05 

 Temperature (Tc) –3.28 –3.92 –2.68 
    

Random effects    

 𝑉𝑦𝑒𝑎𝑟 9.65 5.92 14.45 

 𝑽𝑷𝑬 3.24 0.88 5.68 

 𝑪𝒐𝒗(𝜷𝟎𝑷𝑬, 𝜷𝟏𝑻𝒄) 0.06 –0.16 0.47 

 𝑽𝑷𝑬×𝑻𝒄 0.02 0.00 0.15 

 𝑽𝑨 4.38 1.98 6.70 

 𝑪𝒐𝒗(𝜷𝟎𝑨, 𝜷𝟏𝑻𝒄) 0.07 –0.20 0.43 

 𝑽𝑨×𝑻𝒄 0.02 0.00 0.15 

 𝑉𝑁𝐵 1.22 0.85 1.66 

 𝑉𝑅3.64–5.16℃ 11.09 9.40 13.05 

 𝑉𝑅5.16–6.68℃ 13.63 12.20 14.99 

 𝑉𝑅6.68–8.20℃ 19.21 17.35 21.17 

 𝑉𝑅8.20–9.72℃ 19.27 16.32 21.90 
Note. 𝑇𝑐 = mean-centred temperature; 𝑉𝑥  = variance component associated with each random effect (PE = permanent 
environment, A = additive genetic, NB = nest box; R = residual); 𝐶𝑜𝑣(𝛽0, 𝛽1) = intercept–slope covariance.  

 

 

Predicted and observed great tit reaction norms 

There was ample additive genetic variation in the elevation, but not the slope, of the great 

tit reaction norm (Table 10.3). Based on selection patterns in Table 10.2, we may expect the 
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reaction norm to evolve toward an earlier average over time, but its slope to change only 

marginally because of the weak selection on it. Using the quantitative genetic model (eqn. 

10.5b), we found that both the elevation and the slope of the reaction norm were expected 

to evolve only marginally over time (Figure 10.1b; cumulative change in elevation across 

years in period 2 and 3: –2.34 [–4.20, –0.48] days; in slope: –0.04 [–0.09, 0.02]; see Table 

S10.1 for annual predicted responses). The small predicted response in the elevation—

compared to the change in the optimal reaction norm—despite strong selection in period 

2 was due to the generation time of about two years and the sex limitation of the trait; 

when we disregarded these factors (eqn. 10.5a), the predicted response in elevation was 

substantially stronger (cumulative change in elevation: –10.30 [–18.63, –1.98] days; in 

slope: –0.16 [–0.40, 0.08]; Table S10.1). 

In close agreement with the predicted reaction norms, the observed reaction norm 

showed no distinct advancement over the three periods (Figure 10.1c), with largely 

overlapping 95% HPDIs for the intercepts (posterior medians and 95% HPDIs for period 

1–3: 41.80 [33.40, 49.29], 41.27 [30.72, 53.50] and 42.73 [35.85, 50.81]). 

 

 

 

 

 

Figure 10.1. Optimal (a), predicted (b), and observed (c) reaction norms of laying date against 
spring temperature in three consecutive periods (blue: 1973–1987; black: 1988–2001; orange: 
2002–2016) in the HV great tit population. (a) The optimal laying date for each year was the 
caterpillar peak date minus 33 days. Lines are estimates from linear regressions, excluding 1991 
(marked by an asterisk) because late frost damaged the oak leaves in that year. (b) The black and 
orange dashed lines are the predicted evolutionary deviation from the observed reaction norm in 
period 1 (solid blue line) by the end of the second (2001) and third (2016) time period, respectively, 
based on cumulative change due to annual selection (eqn. (10.5b); see Methods for interpretation). 
(c) Observed laying dates are yearly averages (± 1 s.e.m.); solid lines and shadings are the 
regression lines and 95% HPDI regions from a univariate mixed-effects model of laying date against 
temperature (i.e. the mean individual-level slope). 
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Discussion 

 

We studied whether the optimal reaction norm of great tit laying date against temperature 

changed over three consecutive time periods in a long-term study population and whether 

this resulted in intensified directional selection on—and an evolutionary response in—its 

two components (elevation and slope, i.e. the sensitivity to the environmental variable). 

We found that, whereas the optimal laying date (as predicted by spring temperatures and 

determined by the timing of the caterpillar peak) across the temperature range (the 

elevation of the optimal reaction norm) advanced over the past decades, the sensitivity of 

the optimal laying date to temperature (the slope of the optimal reaction norm) did not 

change. In agreement with this, there was selection on the great tit reaction norm elevation, 

but not on the slope, in the second third of our time series, but this selection waned in the 

third period, potentially due to the increased variability in phenotypic optima (Fig. 10.1a). 

Despite directional selection, we predicted quantitatively that the elevation of the reaction 

norm would shift only marginally over time (a maximum of a few days), simply because 

of the low heritability, the generation time of about two years (Garant et al. 2004a; Kvist et 

al. 2007) and the sex limitation of laying date (Caro et al. 2009). Indeed, the actual 

(observed) reaction norm did not change over time, neither in slope nor elevation. Our 

results suggest that, despite the apparent lack of an evolutionary response in our 

population, adaptation of timing of breeding to climate change can only occur through 

evolution of the elevation of the reaction norm, as evolution of increased (or decreased) 

phenotypic plasticity is not possible. 

Selection on plasticity in our study population was limited because the slope of the 

optimal reaction norm did not change over time. However, even if there had been 

substantial directional selection on the slope, the response to selection would have been 

weak as there was very little variation in individual reaction norm slopes, both 

phenotypically and additive genetically (Tables 10.2 and 10.3). This qualitative statement 

can be quantified by comparing the variances in environment-specific expected values of 

laying date attributable separately to variation in reaction norm elevations (i.e. the 

estimates from Table 10.3) and slopes (i.e. estimated variance multiplied by the variance 

in centred temperatures; see Appendix 7 in Morrissey and Liefting 2016). This was 3.24 

[0.88, 5.68] and 4.38 [1.98, 6.70] for the phenotypic and additive genetic intercepts, 

respectively, whereas it was only 0.05 [0.00, 0.34] and 0.04 [0.00, 0.34] for the respective 

slopes. Thus, the contribution of variance in slopes to variance in expected laying dates in 

a given environment was negligible. 

The lack of variation in (phenotypic) plasticity slopes (I×E) contradicts previous work 

on our study population (Nussey et al. 2005b; Husby et al. 2010, 2011). The source of this 

discrepancy lies in the residual variance structure of the random regression models. 

Besides the problems inherent to using BLUPs in this context, Nussey et al. (2005b) fitted 

homogeneous residual variance, thereby forcing any heterogeneity in residual variance 

caused by the environment (i.e. temperature) to be estimated by the phenotypic covariance 

matrix and hence inflating estimates of I×E. Husby et al. (2010; 2011b), on the other hand, 

fitted a heterogeneous residual structure but grouped years by decade, assuming that 
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variance in laying date increased over the years because temperature increased over time. 

This assumption does not hold up, however, as we found that the variance in laying date 

in HV correlated very weakly with year (slope = 0.001 [–0.22, 0.22]; r2 = 0.00 [0.00, 0.001]), 

whereas it correlated reasonably well with temperature (2.40 [0.70, 4.49]; r2 = 0.13 [0.01, 

0.36]). In general, it would make more sense to partition residual variance based on years 

with similar environments rather than based on decades. Indeed, when we fitted the 

model of eqn. (10.6) (but dropping the G×E term for efficiency) on the same data subset 

(1973–2006) as in Husby et al. (2010, 2011) and partitioned residual variance into three 

groups by decade, we found substantial individual variation in slopes (posterior median 

slope variance and 95% HPDI: 0.91 [0.36, 1.53]). When we refitted the model on the same 

data subset (1973–2006) with residual variance partitioned into three groups based on 

temperature, however, the slope variance decreased substantially (0.25 [0.00, 0.87]). These 

results were confirmed by simulations; when we simulated a population with a small 

slope variance, specifying the incorrect residual structure in the random regression model 

led to upward bias in the variance estimate and a high false-positive rate (Supplementary 

Methods SM2, Fig. S10.1). Thus, we conclude that variation in plasticity in HV really is 

limited, reinforcing the notion that, despite previous studies (Nussey et al. 2005b), there 

can be only limited response to selection on plasticity in this population (cf. e.g. Brommer 

et al. 2012; Hayward et al. 2014). 

Although we can only speculate about the reasons for an apparent lack of I×E and G×E 

in our population, previous simulation studies suggest it is unlikely that we had limited 

statistical power (or precision in our case) to detect either (Martin et al. 2011; Van de Pol 

2012). Illustrative in this respect are the narrow 95% HPDIs for slope variances (Table 10.3), 

which seem to indicate that the RRAM was able to estimate I×E (strictly speaking PE×E 

and G×E) with a fair amount of precision. To put this in perspective, when we applied a 

version of the model of eqn. 10.6 (that included individual-mean-centred temperatures) to 

another of our long-term great tit study populations on the Dutch island of Vlieland (VL), 

we found substantial evidence for I×E in laying date (posterior median slope variance and 

95% HPDI: 1.32 [0.53, 1.89]), but not G×E (0.10 [0.00, 0.67]; unpublished results), both 

estimated with substantially lower precision (the zero constraint of the estimates 

notwithstanding). The HV and VL datasets are quite similar in terms of the number of 

individuals and observations and we should therefore have been able to detect I×E in HV 

if it was really there. Since the pedigree in VL is more informative (‘deeper’) than the one 

in HV because of limited immigration from the mainland (Postma and Van Noordwijk 

2005a; Gienapp et al. 2013b), the VL data may be better suited to test for G×E, but even 

there G×E appeared to be limited. (No caterpillar biomass data are available for that 

population, making it an unsuitable dataset for the purpose of this paper.) This apparent 

absence of G×E is consistent with the notion that G×E in general is hard to detect in wild 

populations when not in an experimental setting (Gienapp and Brommer 2014; Wood and 

Brodie III 2016; Hayward et al. 2018; Chapter 9). Nevertheless, since I×E is the upper limit 

of G×E (Gienapp and Brommer 2014), the absence of I×E in our study system in HV 

suggests that G×E is absent. The reason for this absence may be that early-spring 

temperatures have historically been highly predictive of the food peak and selection for 

being well matched with this peak has been strong (Visser et al. 2006; Reed et al. 2013b), 
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possibly eroding (genetic) variation in plasticity in laying date over time (cf. Tomkins et 

al. 2004; Turelli and Barton 2004). 

Despite selection on, and ample additive genetic variation in, the elevation of the 

reaction norm (Tables 10.2 and S10.1), the observed, period-specific reaction norms 

changed only marginally over the course of time, as was also predicted from the 

quantitative genetic model (eqn. 10.5b). A close look at Figure 10.1c reveals that the 

population is ‘sliding’ up and down the same reaction norm; that is, the observed 

temperature range has become wider and individuals are still using these temperatures to 

time the onset of reproduction (see also Visser et al. 2006). Clearly, given the increase in 

mismatch with the caterpillar peak in this population, this is not an adaptive strategy 

(Thomas et al. 2001; Reed et al. 2013b); the population needs to evolve a lower elevation to 

become better matched with the caterpillar peak. The apparent lack of such a shift is most 

likely explained by the low heritability of elevation, the generation time and the sex 

limitation of laying date, as shown by our quantitative genetic model (eqn. 10.5b). 

Additionally, increased variability in phenotypic optima in the last third of the study 

period may further hamper adaptation as early-breeding genotypes no longer consistently 

have a reproductive advantage. 

In the quantitative genetic model, we used annual phenotypic selection gradients to 

predict the change in the reaction norm from one year to the next. One concern with using 

phenotypic (annual) selection gradients is that estimates of selection in reality reflect an 

environmental covariance between the trait and fitness or selection on a correlated trait 

(Lande and Arnold 1983; Price et al. 1988; Hadfield 2008). In our population, however, we 

know that such environmental bias in selection is limited and that estimates of selection 

at the phenotypic and genetic level are very similar (Gienapp et al. 2006; Reed et al. 2016b). 

Thus, the necessary ingredients for genetic adaptation—genetic variation and selection—

are real and present in HV, but evolutionary change is simply too small to be detected due 

to the large environmental variation in laying date among years (see also discussion in 

Gienapp et al. 2006). Such small rates of adaptation can put a strain on population 

persistence in the longer run as adaptation continues to be outpaced by climate change 

(Gienapp et al. 2013a; Carlson et al. 2014; Visser and Gienapp in press; but see Reed et al. 

2013a,b).  

Many populations have thus far responded to the increased mismatch with the 

phenology of their food through phenotypic plasticity (Charmantier and Gienapp 2014; 

Merilä and Hendry 2014), but it has been predicted that this cannot be sufficient in the 

long run as climate change continues to disrupt synchrony between trophic levels (Visser 

et al. 2004a; Visser 2008; Thackeray et al. 2010; Carlson et al. 2014; Thackeray et al. 2016; 

Visser and Gienapp in press). Consequently, we need to know whether an absence of G×E 

in phenology as reported here is the general case or an exception. As pointed out above, 

such studies in natural populations are rare (but see Chapter 9), which is likely due to the 

logistical challenges of obtaining the necessary pedigree, so far constraining these studies 

to mainly birds and mammals. Replacing the observational, social pedigree by relatedness 

estimated from genetic markers has earlier been suggested (Ritland 1996; Moore and 

Kukuk 2002), but applications of this approach remained unsuccessful (Coltman 2005; 
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Garant and Kruuk 2005; Csilléry et al. 2006). However, with the advent of high-

throughput, high-density genotyping to ‘non-model’ species, ‘genomic’ relatedness 

estimates should have become sufficiently reliable to replace pedigrees (Gienapp et al. 

2017) and thereby allow us to study genetic variation in and selection on phenotypic 

plasticity both in labile and fixed traits in a broader range of taxa. 

To date, evidence for successful evolutionary rescue through a genetic shift in the 

reaction norm remains rare (Merilä and Hendry 2014). One textbook example of successful 

evolutionary rescue is that of the great tit’s most important food source, caterpillars of the 

winter moth (O. brumata); three Dutch populations have now restored the match of their 

hatching date with oak (Quercus robur) bud burst through a genetic shift in the elevation 

of the reaction norm (Van Asch et al. 2013). It remains unclear whether such a change will 

be also observable in vertebrate populations, as the methods thus far deployed have been 

largely insufficient to infer evolutionary change (Merilä and Hendry 2014). We provide an 

important step to this discussion by using rigorous statistical tools to reveal the 

evolutionary potential of a key life-history trait in a reaction norm context. 
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SM1 – Predicting evolution of the reaction norm 

 

Table S10.1. Annual selection gradients (𝛽𝑧), absolute (T) and mean-centred (Tc) mean spring 
temperature, and the predicted annual evolutionary changes (𝛥) in the reaction norm elevation 
(intercept, Int) and slope (Slp), along with standard errors (SE), as a result of annual selection on great 
tit laying date from the second time period onward (i.e. excluding 1973–1987 because the ‘initial’ 
reaction norm was estimated over these first 15 years). Predicted changes were estimated while 
accounting for generation time and the sex limitation of laying date (a) and when not accounting for 
these factors (b). See main text and eqn. (10.5a) and (10.5b) for details. 

Year 𝛽𝑧 SE𝛽𝑧 T (°C) Tc 
(a) Generation time and sex 

limitation included 
  

(b) Generation time and sex 

limitation not included 

         Int SEInt Slp SESlp  Int SEInt Slp SESlp 

1973 0.007 0.049 5.05 –1.84 - - - -  - - - - 

1974 –0.010 0.028 8.65 1.76 - - - -  - - - - 

1975 0.025 0.036 4.18 –2.71 - - - -  - - - - 

1976 –0.018 0.021 5.96 –0.93 - - - -  - - - - 

1977 –0.045 0.035 5.11 –1.78 - - - -  - - - - 

1978 0.010 0.048 5.62 –1.27 - - - -  - - - - 

1979 –0.006 0.022 5.84 –1.05 - - - -  - - - - 

1980 –0.067 0.041 6.06 –0.83 - - - -  - - - - 

1981 –0.028 0.040 8.84 1.95 - - - -  - - - - 

1982 –0.074 0.034 6.43 –0.46 - - - -  - - - - 

1983 0.000 0.073 6.47 –0.42 - - - -  - - - - 

1984 0.037 0.744 4.71 –2.18 - - - -  - - - - 

1985 –0.204 0.084 6.53 –0.36 - - - -  - - - - 

1986 –0.036 0.109 4.79 –2.10 - - - -  - - - - 

1987 –0.165 0.060 6.14 –0.75 - - - -  - - - - 

1988 –0.191 0.132 7.10 0.21 –0.070 0.130 –0.001 0.003  –0.792 1.470 –0.013 0.038 

1989 –0.032 0.043 7.30 0.41 –0.024 0.030 0.000 0.001  –0.153 0.192 –0.003 0.007 

1990 –0.079 0.031 7.60 0.71 –0.068 0.033 –0.001 0.003  –0.358 0.176 –0.006 0.016 

1991 0.006 0.043 8.69 1.80 0.007 0.023 0.000 0.001  0.056 0.174 0.001 0.005 

1992 –0.059 0.074 6.58 –0.31 –0.041 0.200 –0.001 0.003  –0.205 0.992 –0.003 0.015 

1993 –0.165 0.081 7.52 0.63 –0.131 0.078 –0.002 0.006  –0.693 0.413 –0.012 0.030 

1994 –0.200 0.349 6.42 –0.47 –0.228 0.551 –0.003 0.010  –0.878 2.122 –0.011 0.040 

1995 –0.078 0.073 6.05 –0.84 –0.048 0.062 –0.001 0.002  –0.239 0.309 –0.003 0.008 

1996 –0.118 0.089 5.31 –1.58 –0.146 0.121 –0.001 0.004  –0.524 0.435 –0.004 0.013 

1997 –0.075 0.088 6.75 –0.14 –0.086 0.277 –0.001 0.005  –0.309 0.994 –0.004 0.018 

1998 –0.188 0.075 7.55 0.66 –0.203 0.274 –0.004 0.010  –0.827 1.119 –0.015 0.040 

1999 –0.052 0.087 8.05 1.16 –0.050 0.550 –0.001 0.011  –0.235 2.578 –0.005 0.052 

2000 –0.092 0.026 7.18 0.29 –0.112 0.048 –0.002 0.004  –0.364 0.156 –0.006 0.014 

2001 –0.114 0.037 5.72 –1.17 –0.096 0.038 –0.001 0.003  –0.466 0.185 –0.005 0.013 

2002 –0.008 0.027 7.42 0.53 –0.004 0.034 0.000 0.001  –0.013 0.110 0.000 0.002 

2003 –0.151 0.063 7.26 0.37 –0.178 0.088 –0.003 0.007  –0.698 0.347 –0.012 0.028 

2004 –0.023 0.030 8.02 1.13 –0.025 0.042 0.000 0.001  –0.078 0.133 –0.002 0.004 

2005 –0.055 0.047 9.53 2.64 –0.059 0.063 –0.002 0.004  –0.223 0.240 –0.006 0.014 

Continued 
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Table S10.1 (continued) 

Year 𝛽𝑧 SE𝛽𝑧 T (°C) Tc 
(a) Generation time and sex 

limitation included 
 

(b) Generation time and sex 

limitation not included 

     Int SEInt Slp SESlp  Int SEInt Slp SESlp 

2006 –0.111 0.060 6.02 –0.87 –0.125 0.070 –0.001 0.004  –0.470 0.265 –0.005 0.014 

2007 –0.205 0.069 9.27 2.38 –0.206 0.101 –0.005 0.012  –0.918 0.450 –0.023 0.052 

2008 –0.119 0.050 5.50 –1.39 –0.127 0.067 –0.001 0.003  –0.461 0.243 –0.004 0.012 

2009 –0.044 0.052 9.30 2.41 –0.050 0.059 –0.001 0.003  –0.195 0.231 –0.005 0.012 

2010 –0.003 0.039 8.49 1.60 –0.001 0.050 0.000 0.001  –0.002 0.181 0.000 0.004 

2011 –0.082 0.032 9.05 2.16 –0.092 0.050 –0.002 0.005  –0.325 0.177 –0.008 0.018 

2012 0.011 0.045 7.45 0.56 0.012 0.039 0.000 0.001  0.062 0.203 0.001 0.004 

2013 –0.095 0.060 3.64 –3.25 –0.078 0.052 0.000 0.001  –0.392 0.260 0.000 0.003 

2014 –0.092 0.046 9.72 2.83 –0.067 0.047 –0.002 0.004  –0.359 0.253 –0.010 0.022 

2015 –0.004 0.045 6.81 –0.08 0.007 0.037 0.000 0.001  0.038 0.190 0.001 0.003 

2016 –0.057 0.032 7.60 0.71 –0.053 0.031 –0.001 0.002  –0.281 0.164 –0.005 0.012 

Total  - - -   –2.341 0.948 –0.037 0.027   –10.304 4.248 –0.164 0.122 
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S2 – Simulation: testing the effect of the residual variance structure on detecting I×E 

 

The lack of between–individual variation in reaction slopes (I×E) in the Hoge Veluwe (HV) 

population contradicts previous studies (Nussey et al. 2005b; Husby et al. 2010; Husby et 

al. 2011b). Here, we show by simulation that specifying the residual variance structure of 

the random regression model incorrectly will lead to wrong inferences about the presence 

of I×E (for simplicity, we disregard G×E here, but the same reasoning applies).  

 

The model 

We partly used the posterior estimates from the random regression animal model 

presented in Table 10.3 (main text) as basis for the simulation. We simulated a population 

of 1000 individuals with each roughly 2.6 observations (which is the mean no. 

observations per individual in HV when disregarding females that bred only once), 

distributed over 44 environments (years). We tested the effect of different residual 

structure on three scenarios, i.e. with small (0.1), intermediate (0.5) and large (1) variation 

in reaction norm slopes.  

First, we drew 44 random temperatures from a normal distribution based on real 

temperature data (mean = 6.9, sd = 1.5). We then randomly drew a number of observations 

for each individual from a Poisson distribution, such that the mean per individual 

approximated 2.6. We then randomly assigned each individual to a cohort (and hence the 

temperatures they were exposed to). We randomly assigned a reaction norm to each 

individual by drawing an intercept (𝑎𝑖) and a linear slope (𝑏𝑖) from a random, normal 

distribution with mean = 0 and 𝜎2 = 3.5 and either 0.1, 0.5 or 1, respectively. Temperature 

values were individually mean–centred (𝑇𝑖), and phenotypes (laying date or ELD) were 

derived as 𝐸𝐿𝐷𝑖𝑗 = 𝑎𝑖 + 𝑏𝑖𝑇𝑖𝑗 + 𝑏𝑇𝑎𝑣,𝑖 + 𝑒𝑖𝑗, where 𝑇𝑎𝑣,𝑖 is the average temperature 

experienced by the individual and 𝑒𝑖𝑗 is the error term. The error term was randomly 

drawn from a normal distribution with mean = 0 and 𝜎2 = 10.8, 13.4, 19.2 or 19.9, depending 

on the temperature in that environment; these values were taken from Table 10.3 (main 

text) and were used to make variance in ELD dependent on temperature, as is the case in 

our great tit population. 

For each slope variance scenario (small, intermediate, or large), we fitted three mixed–

effects models in ASReml–R (Butler et al. 2009; Gilmour et al. 2009), each a variation on 𝐿𝐷 

~ individual–centred temperature + individual–mean temperature, random = 

Individual×individual–centred temperature (i.e. 9 scenarios): (i) with residual variance 

partitioned into four temperature blocks, i.e. years equally divided based on temperature; 

(ii) residual variance partitioned into four ‘decadal’ blocks, i.e. based on consecutive years; 

and (iii) homogeneous residual structure. Each model was tested against a simpler model 

(𝐿𝐷 ~ individual–centred temperature + individual–mean temperature, random = Individual) to 

test for significance of I×E using likelihood–ratio tests with 1 degree of freedom. Starting 

values in ASReml–R were set such that they matched the input values.  
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The whole procedure was iterated 1000 times. The R script has been uploaded as a 

separate text file. 

 

Results and discussion 

As expected, slope variance estimates matched the input values nicely when we used 

heterogeneous residual variance based on temperature blocks in each of the three slope 

variance input scenarios (Figure S10.1a, c and e). When slope variance was small (Fig 

S10.1a), specifying the wrong residual structure inflated the estimates; with larger input 

values, however, this bias largely disappeared (panels c and e). Again as expected, power 

to detect I×E at a low slope variance was limited when using the appropriate residual 

structure, but strikingly, specifying the wrong residual structure led to large false positive 

rates (Fig S10.1b). Again, this discrepancy between models disappeared as true slope 

variance increased (panels d and f). 

We conclude that specifying the right residual structure is essential for making correct 

inference of the presence of I×E (or G×E). This in itself is not a new insight (e.g. Gienapp 

and Brommer 2014), but it stresses the importance of carefully assessing which parameter 

drives variation in a phenotype. In the great tit example, this is clearly temperature and 

not year as a proxy for temperature. When true variance in slopes is small, therefore, an 

incorrectly specified residual structure will lead to both quantitatively and qualitatively 

different results (i.e. whether or not there is I×E). When variance is substantial, however, 

the chance of making a qualitatively (and perhaps quantitatively) wrong inference may in 

fact be reasonably small. 
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Figure S10.1. Results of the simulation testing the effect of the residual structure of the random 
regression model on the estimate of variance in slopes (a, c, e) and the respective statistical power to 
detect this variance (b, d, f). Input values for slope variance are denoted by the horizontal, dotted lines.
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any traits of interest to evolutionary ecologists, ranging from life history and 

behaviour to more ‘tangible’ traits related to morphology and physiology, show 

heritable genetic variation (Postma 2014). This allows us to do quantitative 

predictions of evolutionary trajectories, provided that selection is acting on this 

variation—and that we are able to correctly estimate it. The step from quantifying heritable 

variation and selection to adequate predictions of evolution is, however, not 

straightforward, and many attempts to demonstrate that selection on genetic variation has 

led to evolutionary change have led to erroneous conclusions (Merilä et al. 2001b). 

Quantitative methods are, however, improving, with an increasing number of studies that 

aim to provide tangible guidelines for evolutionary ecologists (e.g. Postma 2006; Hadfield 

et al. 2010; Morrissey et al. 2010, 2012; Morrissey and Liefting 2016). But to understand 

evolutionary processes in the wild, we first and foremost need a thorough understanding 

of the system we are working on and identify the ecological factors that are the drivers of 

selection. 

In this thesis, I address how populations are coping with environmental change and 

which ecological processes potentially affect the rate of adaptation. To answer this broad 

question, I broke down my thesis into several parts. I first set out to explain the observed 

consequences of global climate change on bird biology and the possible impacts in the 

future. In the second part of my thesis, I used a combination of experiments and long-term 

data to study constraints in adaptation to climate change in a population of great tits. In 

the final part of the thesis, I used advanced quantitative genetic tools and simulations to 

study outstanding questions revolving around the evolutionary potential of wild 

vertebrate populations. Combined, these studies should improve our general 

understanding of the phenotypic and genetic variation in populations, the selective forces 

acting on this variation and how ecological factors may (or may not) modulate plastic or 

genetic responses. Related to this part, in the Intermezzo I explored existing and novel 

methodologies and provided guidelines for students of ecology and evolution to improve 

our scientific approaches to study adaptation in the wild. 

In this chapter I aim to bring all these results together and to discuss them in the light 

of what we know about the ecological and evolutionary processes not only in great tits, 

but in wild populations in general. I will also reflect on the methods that I have used and 

provide my ideas about how I think the field of ecology and evolution in long-term 

population studies should move forward from hereon. 

 

Coping with a warming world 

 

This thesis, as many of its predecessors in the field of evolutionary ecology, was sparked 

by the observation that the environment is changing in many aspects under human 

influence (Rockström et al. 2009; Steffen et al. 2015; Scheffers et al. 2016). Climate change 

is one of the most pervasive forces driving selection in natural populations on a global 

scale (Sala et al. 2000). In Chapter 2 of this thesis, I explored the particular case of birds. 

With an estimated 18,000 species on this planet (Barrowclough et al. 2016) it is impossible 

M 
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to estimate the biological, ecological and evolutionary effects of climate change on every 

species, but it will be clear that the effects—in the great variety in which they come—will 

depend strongly on geography (e.g. the degree of seasonality) and altitude, the extent of 

warming or climatic variability, ecological niche, morphology and physiology, the degree 

of (geographical) isolation, migration status, and many other factors. Importantly, non-

migratory species that cannot evade the selective pressures of the environment in which 

they reside need to cope with changing conditions by either plastically changing their 

phenotype or by adapting genetically toward the new optimum (Parmesan 2006). From 

Chapter 2 it becomes clear that what we know about the ecological and evolutionary 

consequences of climate change is still limited. We know, for example that birds can shift 

their geographical distributions as (a)biotic conditions change (Thomas and Lennon 1999; 

Hitch and Leberg 2007; Huntley et al. 2008), but the majority of data are from sightings 

reported from e.g. citizen science projects or constant-effort monitoring sites that lack 

individual-level fitness data. We still lack a clear understanding of which factors drive 

range expansion or shift, if this expansion or shift is adaptive, and how it affects 

community compositions and species interactions. When species shift ‘successfully’ they 

may be faced with a plethora of novel challenges, e.g. because temperature warming 

trends vary between seasons (Easterling et al. 1997) or their food cannot shift at a similar 

rate (Van der Putten et al. 2010). Transplant experiments, where some species are 

introduced into novel habitat, combined with long-term monitoring, may provide useful 

insights into the adaptive value of range expansion or shifts under climate change 

(Hargreaves et al. 2013). 

A general pattern in the study of the ecological and evolutionary effects of climate 

change in natural populations is that there is (1) a strong (biased) focus on phenology (the 

seasonal timing of biological events) and (2) a strong bias toward certain taxa. The focus 

on phenology is understandable for obvious reasons, such as that it is the first aspect of 

change we typically see in long-term monitoring projects: the first bird eggs found 

increasingly early in spring (Crick et al. 1997), advanced spawning dates in anurans 

(Beebee 1995), or advanced avian migration (Gienapp et al. 2007). It is also a very 

important subject of study since phenology, like other life-history traits, is closely related 

to fitness, as survival and reproductive success in seasonal organisms is often tightly 

linked to the phenology of other organisms (Cushing 1969; Durant et al. 2007). Reported 

changes in phenology due to climate warming are ubiquitous across taxa (Parmesan 2006; 

Thackeray et al. 2010; Thackeray et al. 2016; Kharouba et al. 2018). A remaining challenge, 

however, is to get a broader understanding of whether these phenological changes are 

adaptive (Merilä and Hendry 2014) and whether they are plastic or genetic changes 

(Gienapp et al. 2008; Charmantier and Gienapp 2014). Phenological mismatch due to 

differential shifts among trophic layers are often reported (e.g. Visser and Both 2005; 

Kharouba et al. 2018) but only rarely have they been directly linked to selection on 

phenology (Visser and Gienapp in press). The case study of the great tit at the Hoge 

Veluwe (Visser et al. 1998) is a classic one and is complemented by a few others (e.g. Plard 

et al. 2014; Bowers et al. 2016; Marrot et al. 2018), although some of these used mere proxies 

(e.g. spring temperature) for mismatch. One obvious reason for the lack of demonstrated 

associations between phenological mismatch and selection is the logistical challenge 
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associated with either getting decent estimates of selection (survival or recruitment of 

offspring needs be monitored) or quantifying phenological (mis)match. While the latter 

issue is a subject of discussion (Miller-Rushing et al. 2010; Lindén 2018), I aimed to provide 

a guideline in Chapter 5 for ecologists as to how measure phenological match in highly 

seasonal environments (see next section). 

The second pattern observed in studies of phenology is that there is a severe taxon bias. 

To reliably study the evolutionary consequences of climate change, we need to be able to 

separate plastic from genetic responses, and this can only be done when we have 

phenotypic data for individually marked individuals that can be tracked across multiple 

phenotypic events (Clutton-Brock and Sheldon 2010). This naturally confines long-term 

studies to mainly birds and mammals. As we have seen in Chapter 9, from the 106 datasets 

retrieved from open data repositories there was a severe bias towards birds (50) and 

mammals (31). Much of the evolutionary work on phenological shifts due to climate 

change stems from study populations that happened to have been studied for various 

purposes before the effects of climate change became apparent in the first place. These 

populations are a valuable source of information, but it is clear that if we are to truly 

comprehend the effects of phenological shifts on selection and, ultimately, demography 

and population dynamics, we need to expand our research efforts beyond the typical 

‘evolution model species’ such as great tits and include different taxonomic groups (cf. e.g. 

Phillimore et al. 2012). Such efforts, however, will be costly and take time to build up 

before they are useful for evolutionarily relevant questions (Clutton-Brock and Sheldon 

2010). 

 

Fitness consequences of avian reproductive timing 

 

Identifying constraints in adaptation 

The proximate and ultimate causes of seasonal reproductive timing in birds have long 

intrigued evolutionary ecologists. It started back in the previous century when David Lack 

(1950) postulated that seasonal timing in Europe’s birds is an adaptation to the seasonal 

availability of food for their offspring. Laying date varies, however, strongly between 

individuals and years within populations. Perrins’ (1970) seminal paper argues that the 

timing of breeding for each individual female is a result of the food conditions she 

experiences in the pre-laying period, and differences between females may reflect 

differences in ‘quality’ (e.g. body condition or physiological state) that enable high-quality 

birds to attain the best breeding territories (see discussion in Verhulst and Nilsson 2008). 

Birds can therefore not breed in early-spring harsh conditions when sufficient resources 

cannot be attained, likely not because of a ‘physiological boundary’ (Perrins 1970), but 

because of severe fitness (e.g. survival) costs of breeding under adverse conditions 

(Monaghan et al. 1998; Visser and Lessells 2001). As the climate changes and food 

availability peaks earlier (Visser et al. 1998), we need to know whether birds can advance 

with it. This was the subject of Chapters 3 and 4.  
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In Chapter 3, I specifically explored the constraints hypothesis of reproduction posited 

by Visser et al. (2012). In the Hoge Veluwe great tit population we see an increased 

mismatch between timing of the caterpillar biomass peak date and the timing of the food 

demands of the chicks (Visser et al. 1998; Visser et al. 2006; Chapter 10). Under the 

constraints hypothesis, birds cannot advance their laying date sufficiently to restore the 

mismatch, possibly because temperatures during the egg-laying period have not advanced 

as much as the temperatures relevant for the caterpillar phenology later in the season 

(Visser et al. 2006). It has therefore been suggested that it is adaptive to be slightly 

mismatched with the food peak if that entails relaxed survival costs of breeding early (Lof 

et al. 2012; Visser et al. 2012). This is, however, a difficult hypothesis to test. Numerous 

experiments have attempted to advance laying date to test the effect of female quality vs. 

timing per se on the seasonal decline of reproductive success (Verhulst and Nilsson 2008). 

An inevitable result of many methods to advance, such as supplemental feeding (to induce 

early laying) and cross-fostering clutches (to advance hatch dates), is that the condition of 

the female is likely affected. I will therefore argue in this section that feeding experiments 

alone cannot provide us with a clear-cut test of the hypothesis, nor can single years of any 

experiment. 

The idea of the experiment in Chapter 3 was to advance laying through supplemental 

feeding and cease feeding upon the start of egg-laying in a subgroup; if the treatment was 

successful and birds were laying under adverse conditions, cessation of feeding would 

confer a fitness cost, because these birds would have to complete costly laying (and 

incubation) (Visser and Lessells 2001) without sufficient resources. On the other hand, 

birds that continued to be fed would enjoy fitness benefits of being better matched with 

the food peak because supplemental feeding continued during egg-laying. There are a few 

assumptions that need to be met for experiments like this one to work: (1) supplemental 

feeding should be effective at advancing laying date substantially compared to control 

(unfed) birds, e.g. by roughly a week (since the food peak is generally a few weeks ‘wide’ 

(see Chapter 5) and therefore shifts need to be sufficient to have measurable fitness 

effects); (2) advanced birds should meet genuinely adverse conditions; and (3) there 

should be no substantial carry-over effects of the supplemental feeding into the 

laying/incubation phase. In Chapter 3, I suggested that conditions were poor regardless 

of whether birds laid early or late and showed that supplemental feeding was not 

successful at advancing birds. In fact, any supplemental feeding conferred a fitness 

advantage, likely because of a carry-over effect to the chick-feeding phase. In a way, this 

is another way of testing the hypothesis: now all birds are ‘constrained’ (the average 

number of fledglings in 2015 was 2.7 ± 0.3 SE, whereas the average over 2010–2017 was 5.0 

± 0.1 SE) and supplemental feeding lifts this constraint. This constraint is, however, not 

directly related to constraints on reproductive timing. I conclude from this that multiple 

years of experiments are necessary to (1) test whether supplemental feeding—ceased upon 

the start of egg-laying—genuinely confers a fitness disadvantage under poor (pre-)laying 

conditions, and (2) to properly judge the carry-over effects of feeding through to the chick-

rearing phase in a range of environmental conditions. 

Feeding experiments like the one in Chapter 3 are likely not sufficient to test whether 

birds are constrained to breed earlier if they fail to provide evidence for a lack of carry-
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over effects. In Chapter 4, I described the first results of a large selection experiment that 

aims to ‘cleanly’ manipulate laying date. Eggs from birds genomically selected for their 

laying date (early and late) in aviaries were fostered in the wild and the phenotype (laying 

date) of the resulting recruits in the following year were recorded. Such an experiment is 

necessary because the experimental advancement in laying date is not contingent on 

changing the condition of the female. We only have little data for these selection-line birds 

in the wild, but tentative results suggest that the early and late selection line birds differ 

in their realised laying dates in the expected direction. Sample size notwithstanding, and 

given that the fostering of selection-line eggs will continue for several more breeding 

seasons, the results are quite promising, since they suggest that the genomic selection 

experiment was effective at diverging the selection lines. Genomic selection, i.e. on 

genomically estimated breeding values (GEBV; Gienapp et al. 2019) typically results in 

faster phenotypic responses across generations than conventional selection based on the 

phenotype (Meuwissen et al. 2016). The expected phenotypic response to genomic 

selection (using the breeder’s equation) was quite substantial given the low heritability of 

laying date (typically ~0.2), leading to an expected divergence of ~2.5 days and a realised 

divergence of ~6 days in laying dates in aviaries between the selection lines over just three 

generations (Verhagen et al. in review). 

The hypothesis in Chapter 4 is that birds that breed earlier than the natural population 

have reduced fitness (e.g. through reduced survival) if there are in fact constraints to early 

reproduction, but is difficult to predict (1) by how much birds need to advance for there 

to be fitness costs and (2) whether we can reasonably expect birds to achieve that advance. 

Gienapp and Visser (2006) manipulated food availability during breeding in the previous 

year in an attempt to alter the decision of the females in the current year, and found that 

manipulated females advanced their laying date by about 6 days. Unfortunately, sample 

sizes were too small to assess the fitness consequences of this advance. Interestingly, the 

reported change of 6 days by Gienapp and Visser (2006) coincides with the reported 

difference in the aviaries discussed above (Verhagen et al. in review), as does the observed 

difference between the recruited selection-line birds in the wild (Chapter 4). Moreover, 

Visser et al. (2009a) showed that laying dates from females measured in the wild and in 

aviaries correlate well. This may suggest that the divergence of six days found in the 

aviaries is what we could reasonably expect to see as we continue to bring selection-line 

birds into the wild. Given that six days is roughly one standard deviation of the within-

year variance in laying date at the Hoge Veluwe, such a divergence could have strong 

fitness implications, but such effects would likely only become apparent in years with poor 

food conditions (e.g. Nager et al. 1997). 

I conclude this section with the realisation that (1) feeding experiments may only be 

helpful in testing the constraints hypothesis of reproduction when the manipulation of 

laying date is successful, carry-over effects are known, and the effect of multiple 

environmental conditions (years) is tested, and that (2) genomic selection for earlier (and 

later) breeding can provide a promising test provided the experiment is carried out for a 

sufficient number of years (Vaughn and Young 2010). Provisioning rates (Chapter 3) and 

measures of daily energy expenditure during chick feeding (Te Marvelde et al. 2011) will 

further help us identify the proximate causes of reproductive success. As of yet, we have 
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no clear answer to the question of whether great tits are in fact constrained to breed earlier 

because of the associated fitness costs. 

 

Quantifying phenological mismatch as a driver of selection: is there room for improvement? 

In the previous section I discussed constraints on adaptation to a warming climate, and 

experiments to reveal these constraints. In Chapter 5, I studied the ultimate driver of 

selection for earlier breeding, which is the advance of (peak) food availability over time. 

This principle, that consumer phenology should be matched with that of the resource, is 

formally described as the match/mismatch hypothesis (Cushing 1969; Durant et al. 2007; see 

Chapter 2). In many ecological studies of phenological mismatch, mismatch has been 

described as the difference in mean phenology or another convenient, temporal parameter 

such as the date of first occurrence (e.g. Kharouba et al. 2018), including our own work on 

the great tit (Visser et al. 1998; Visser et al. 2006; Reed et al. 2013b; Chapter 10). Durant et 

al. (2007) noted for marine study systems, however, that the temporal overlap is just as 

important because it determines whether organisms really are mistimed. Miller-Rushing 

et al. (2010) and Lindén (2018) illustrated this point nicely from a theoretical point of view. 

Chapter 5 aimed to answer the question of whether our quantification of mismatch is in 

fact appropriate. My conclusion was that, with the methods at hand, the ‘classic’ measure 

of mismatch (match of peak dates in phenology) performs better (or at least just as well) 

than a measure of temporal overlap between phenological distributions in models 

explaining variation in offspring recruitment and selection differentials for laying date.  

The conclusions from Chapter 5 deserve a mention here because they will have 

implications for how other long-term studies of predator–prey interactions may or should 

be designed. Visser and Gienapp (in press) identified only a handful of studies that have 

linked selection on phenology directly to phenological mismatch, likely because only few 

researchers have access to such data. When such data are available, they are generally not 

detailed enough to allow for a careful description of the temporal distribution of food 

resources sensu Durant et al. (2007). For the great tits in the Hoge Veluwe, we have fairly 

accurate description of season-wide food availability, as do a few other (avian) research 

groups (e.g. Cresswell and McCleery 2003; Vatka et al. 2011). As I pointed out in Chapter 

5, these data can never be sufficient to accurately estimate the phenological overlap 

between consumer needs and food availability because it requires making nontrivial 

assumptions about the interaction between consumer and prey. First, to assess whether 

the consumer-needs barrier is exceeded, we would need to know exactly how much food 

is available in space and time—which prey-density estimates such as mass per m2 cannot 

provide because it assumes that they can simply be multiplied by the total available area, 

an assumption that is unlikely to be true. More importantly, the consumer (e.g. a food-

provisioning great tit) may find and keep returning to a single tree that is teeming with 

prey, making prey availability in the remainder of the forest irrelevant. Lastly, and 

perhaps most importantly, an experiment in great tits showed that prey-encounter rates 

were not proportionate to prey densities and that these rates increased by 72% (and not 

100%) with a doubling in prey densities (Mols et al. 2004). Mols et al. (2004) showed, 

moreover, that encounter rate decreased when a caterpillar-laden tree had been previously 
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exploited by other great tits, either because the caterpillars responded to the previous 

encounter by hiding or because the most conspicuous caterpillars had already been 

removed. This shows that the relationship between prey availability and prey-encounter 

rates is far from straightforward, and therefore even the most accurate estimates of food 

availability in the wild will likely not help us quantify the temporal overlap between the 

consumer and the effectively available prey.  

Naturally, I underline the notion that the complete (temporal) interaction between 

consumer and resource is what really determines the effective phenological (mis)match 

(Miller-Rushing et al. 2010; Lindén 2018), but I caution that quantifying this interaction 

will in most cases be logistically very challenging at the very least. With funding already 

often being the limiting factor in keeping long-term population studies going (Clutton-

Brock and Sheldon 2010), I would argue that budgets and manpower may best be invested 

elsewhere, e.g. sampling different food sources at different parts of the season (e.g. in the 

pre-egg-laying period) or by studying the phenology of multiple trophic layers to gain a 

full understanding of the ecosystem that we are studying. 

 

Predicting evolution in the wild 

 

The backbone of this thesis is the quantifying of evolutionary processes in wild 

populations (Part III). The study of evolutionary parameters in wild populations has long 

intrigued evolutionary biologists since the pioneering work on heritability of avian life 

history (Perrins and Jones 1974; Van Noordwijk et al. 1980) and morphology (Boag and 

Grant 1978), and since animals models were brought into prominence by evolutionary 

ecologists in the early 2000s (Kruuk 2004), the number of heritability estimates in the wild 

have soared (Postma 2014). At the same time, evolutionary questions have become more 

complex and have gone beyond simply estimating additive genetic variation in traits to 

questions such as “How does genetic variation vary with the environment?” and “Are 

populations genetically adapting in response to global warming?”. Both questions appear 

non-trivial and the methods applied in an attempt to answer these questions have long 

been insufficient to warrant any biologically meaningful conclusions in many studies (e.g. 

Gienapp et al. 2008; Hadfield et al. 2010; Merilä and Hendry 2014). My primary aim for 

Part III of this thesis, as well as the preceding chapters in the Intermezzo, was to make 

predictions of evolutionary trajectories, not for the sake of the study species at hand, but 

with a focus on how this was achieved. In a way, these chapters therefore balance on the 

interface of evolutionary biology and statistical methodology, for the sake of making 

evolutionary predictions more reliable. 

 

Improving our predictive methods in ecology and evolution. 

A recurring problem in evolution studies of wild populations is that predictions do not 

match observations (Merilä et al. 2001b). In practice this means that the application of the 

breeder’s equation (Lande and Arnold 1983; Falconer and Mackay 1996), which was 
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originally designed in the field of animal breeding, does not yield reliable estimates of 

evolutionary response in wild populations (Morrissey et al. 2010). For the breeder’s 

equation to work, we need reliable estimates of genetic variation (or heritability) and 

selection. This may be problematic, for example, if we fail to account for the fact that 

genetic variation (Hoffman and Merilä 1999) or genetic covariances (Wood and Brodie III 

2015) change with the environment, selection varies with the environment (Hairston and 

Dillon 1990; Gosden and Svensson 2008b;  but see Morrissey and Hadfield 2012) or 

estimates thereof are misleading (Morrissey et al. 2010; Bonnet et al. 2017), or a 

combination of varying selection and genetic variation (Wood and Brodie III 2016). 

With the advent of animal models in evolutionary biology came also the realisation that 

long-term population studies can be used to quantify variation in reaction norms (e.g. 

Postma and van Noordwijk 2005b), and in some cases whether this variation has a genetic 

basis (G×E). Pioneering studies on avian and mammalian populations (Brommer et al. 

2005; Nussey et al. 2005a,b) used mixed-modelling tools to obtain individual estimates of 

plasticity but did this using methods (analysis of Best Linear Unbiased Predictors obtained 

a posteriori from the models) that are now considered inappropriate (Hadfield et al. 2010). 

The idea behind it was, however, appealing: quantify components of individual reaction 

norms, assess (phenotypic) selection on these components, and use animal models to 

estimate genetic variation therein and assess whether this genetic variation changes over 

time or an environmental gradient. We have come a long way from these studies and 

alternative methods for estimating I×E/G×E and selection on reaction norm components 

have been advocated (e.g. Nussey et al. 2007; Brommer et al. 2012). 

There are, however, two major observations that I make from the evolutionary ecology 

literature (more specifically related to I×E/G×E). First, although much attention has been 

devoted on the use of mixed-modelling approaches to quantify variation in behaviour and 

life-history in the wild (e.g. Nussey et al. 2007; Van de Pol and Wright 2009; Van de Pol 

2012; Dingemanse and Dochtermann 2013), few studies actually address the effect that the 

residual variance structure can have on the accuracy of the prediction of variation in 

reaction norms. That residual variance contains important biological information is well 

recognised (e.g. Westneat et al. 2015), but surprisingly few studies of phenotypic plasticity 

have incorporated this in their analysis (Nicolaus et al. 2013). In Chapter 6, I ran simulation 

to show that, particularly when sample sizes are limited, heteroscedasticity can lead to 

erroneous conclusions about the presence an extent of I×E (and hence also G×E). This 

analysis revealed the obvious, but surprisingly enough, not many ecologists have been 

aware of the magnitude of the problem (Nicolaus et al. 2013), nor are there any clear 

guidelines as to how to tackle this problem in an intuitive way (but see e.g. Cleasby and 

Nakagawa 2011). Likely, many (if not most) ecologists dealing with this type of 

evolutionary questions are not statisticians by training and may not naturally be exposed 

to the dense, equation-ridden animal-breeding literature from which much of the 

statistical methodology is derived. Practical guidelines will therefore be useful because 

evidently the way heteroscedasticity is treated can radically change our conclusions about 

the natural world (see Chapter 10). 
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The second observation is that some particular questions have been only very rarely 

studied, even though they are commonly postulated to be of potential evolutionary 

importance. A clear example is that of the environmental coupling between genetic 

variation and selection, which may impair or enhance adaptation depending on the 

direction and the strength of the association between them (Wood and Brodie III 2016). 

Meta-analyses allow us to synthesise the results of multiple studies in a single analysis, 

but this only works when effect sizes (along with standard errors and sample sizes) are 

available, which in this particular case was true for only two studies (Wilson et al. 2006; 

Husby et al. 2011b). Ironically, the results of these two studies probably reflected statistical 

artefacts more than any biologically meaningful phenomenon (see discussion in Chapter 

9). In Chapter 9, I specifically assessed the presence and the evolutionary implications of 

a coupling between heritability and selection in a variety of traits from 10 different species 

in 16 populations and verified indeed that, for the case of the great tit (Husby et al. 2011b), 

such coupling likely does not exist (I could not access the data for the other study, which 

involved Soay sheep Ovis aries (Wilson et al. 2006), but the results of a recent re-analysis 

on that study population suggests indeed that such a coupling does not exist in Soay sheep 

either (Hayward et al. 2018)). Chapters 6, 7 and 9 are therefore complementary to one 

another in that they, respectively, (1) provide guidelines to correctly identify I×E/G×E, (2) 

explain how outstanding questions can be answered at a (potentially very) broad 

taxonomic scale by using data that are openly available, and (3) provide a worked example 

of the use of such open data to show that the perceived evolutionary significance of a 

coupling between selection and genetic variation is likely overestimated. 

 

Towards better prediction: combining data sources and the importance of understanding the ecology 

A common feature of the chapters in Part III of this thesis is the attempt to integrate as 

many sources of information as possible to (1) achieve accurate evolutionary predictions 

and (2) gain a full understanding of the study system at hand. This is particularly useful 

in light of the observation that estimates of (phenotypic) selection may be misleading (e.g. 

Morrissey et al. 2010; Bonnet et al. 2017) and the more general finding that most 

longitudinal studies that report a phenotypic change cannot unequivocally prove that this 

change is (partly) due to micro-evolution (e.g. Charmantier and Gienapp 2014; Merilä and 

Hendry 2014). As Merilä and Hendry (2014) pointed out, we need a combination of 

methods and use common sense to be able to make reliable evolutionary predictions—and 

to understand them. Paraphrasing this, it means that we need to truly understand the 

ecology of the species and integrate as many relevant sources of information as possible. 

In Chapter 8, I ventured away from phenology and used clutch size as a trait to study 

whether a relatively understudied ecological force (Räsänen and Kruuk 2007), maternal 

effects experienced in the rearing environment (sensu Falconer 1965), could affect the rate 

of adaptation to novel environments. This chapter differed from all other chapters in that 

I used individual-based models to predict evolutionary trajectories forward at an 

ecological timescale. To achieve this, I parameterised the model with data from our long-

term study population of great tits at the Hoge Veluwe. I found that maternal clutch size 

affected offspring fledging weight, and that offspring from large clutches in turn produced 
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smaller clutches. Importantly, estimating the pathway between maternal clutch size and 

fledgling weight was possible only because we were able to link observational with 

experimental data; because each female is believed to optimise her clutch size, the decline 

in fledgling weight as maternal clutch size increases can only be demonstrated with 

experimental data (Tinbergen and Daan 1990; Pettifor et al. 2001; but see Tinbergen and 

Both 1999). Chapter 8 illustrates that in order to keep evolutionary predictions as realistic 

as possible, in certain cases a combination of correlational and experimental data, as well 

as predictive modelling exercises, is needed that can help us test and develop new 

hypotheses that are relevant to evolutionary ecologists—and not only to theoretical 

biologists (e.g. Hoyle and Ezard 2012; Ezard et al. 2014; Kuijper and Hoyle 2015). 

In Chapter 10, I quantified phenotypic selection on and additive genetic variation in 

great tit laying-date plasticity to better understand the evolutionary dynamics of reaction 

norms. I found that, although there was phenotypic and additive genetic variation in the 

elevation of the reaction norms, this was not the case for the slope. I also found that there 

has been selection on this elevation due to a shifting caterpillar peak. However, I predicted 

quantitatively that there was (or could be) no substantial response to selection on the 

elevation or slope of the reaction norm; in the case of the elevation this was because of 

large environmental variation in laying dates and in the case of slope this was because of 

lack of additive genetic variation and selection. It was possible to study selection on and 

the evolution of reaction norms largely because (the evolutionary parameters of) the 

phenologies of the great tit (e.g. Lack 1950; Van Balen 1973; Van Noordwijk et al. 1981; 

Visser et al. 1998; Cresswell and McCleery 2003; Nussey et al. 2005b; Gienapp et al. 2006; 

Visser et al. 2006; Charmantier et al. 2008; Reed et al. 2013b; Reed et al. 2016b) and that of 

other important components of the food chain (winter moth Operopthera brumata and its 

main host plant, oak Quercus robur) (Buse et al. 1999; Visser and Holleman 2001; Van Asch 

et al. 2013; Salis et al. 2018) are exceptionally well known. We know, for example, that 

estimates of phenotypic selection on laying date in the Hoge Veluwe are largely in 

agreement with those estimated at the genetic level (Gienapp et al. 2006; Reed et al. 2016b). 

We also know that the caterpillar peak date is an important driver of selection (Visser et 

al. 1998; Visser et al. 2006; Reed et al. 2013b; Chapter 5). This allowed us to get reliable 

estimates of selection on the reaction norm and at the same time, as a reality check, 

compare it to our expectations based on the association between the temperature cue and 

the peak date of caterpillars. Previous studies on this population suggested there was 

additive genetic variation in and selection on plasticity slopes (Nussey et al. 2005b; Husby 

et al. 2011b). We now know this is not the case and we can explain why it does not need 

to be the case (Chapter 10). 

 

A forward look 

 

Some thoughts and recommendations for longitudinal evolutionary studies 

Long-term population studies are a vital asset in the study of the evolutionary 

consequences of environmental change (Visser 2008; Clutton-Brock and Sheldon 2010). 
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The importance of these longitudinal studies in the field of quantitative genetics and a 

general outlook of where the field is headed is reported in great detail elsewhere (e.g. 

Charmantier et al. 2014). Specific recommendations about the quantification of 

evolutionary parameters, such as that of selection (Morrissey et al. 2010, 2012), or the use 

of predicted breeding values in evolutionary ecology (Postma 2006; Hadfield et al. 2010), 

have also been given in great detail elsewhere and are beyond the scope of my thesis. I 

have made some important observations in my thesis that are in my view helpful in 

improving our understanding of evolutionary processes and our predictive methods. 

Some of these particularly pertain to the study of (genetic variation in) reaction norms, 

which was an important component of much of the quantitative genetic analysis in this 

thesis. 

 

Studying variation in plasticity. First, in the study of variation in plasticity, I noticed that the 

treatment of residual (‘unmeasured’) variation is generally underappreciated, or at least 

guidelines as to how to effectively deal with heteroscedasticity are lacking (Chapter 6). 

When evolutionary ecologists use any type of regression technique, more care should be 

given to the potential effect of heteroscedasticity, and in Chapter 6 I have given guidelines 

as to how to approach this. Briefly, a promising route would be to first test for an 

association between phenotypic variance and the environment in question and then fit 

multiple random regression models with different residuals structures and use 

information criteria to select the best model. Statistical power (i.e. sample sizes) will often 

be an issue and it is therefore recommendable to always complement empirical analysis 

with simulations (e.g. Johnson et al. 2015). Moreover, multiple environments may need to 

be identified and tested before dismissing the presence of I×E or G×E in the population. 

This could include the population-mean phenotype as a proxy for the combined effect of 

all (unknown) environmental variables (Gienapp 2018; Chapter 9). For this method, 

however, due caution is warranted since changes in mean phenotypes between 

environments may be underlain by factors not directly related to the current environment, 

for example, a genetic change in response to selection or a cohort of juveniles growing to 

an adult body size from one season to the next. This reiterates the point that we need to 

understand our study system well before we can truly understand evolutionary processes 

in wild populations. 

More generally, phenotypic (and additive genetic) variation—and selection thereon—

should be studied in a reaction norm context whenever we have access to multiple 

observations per individual (Postma and van Noordwijk 2005b). Quantifying the 

sensitivity of traits to the environment can give important insights into why, for example, 

traits exhibit more or less genetic variation (a trait that is extremely responsive to the 

environment will likely have a low heritability because the environment is responsible for 

much of the variation in the phenotype) or whether selection on a given phenotype in a 

given environment acts on the mean value or the slope of the reaction norm (see Chapter 

10). Moreover, the slopes of individual reaction norms relative to the population-level 

reaction norm may tell us whether shifts in phenotypes over time are a plastic response to 
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a changing environment or whether there is—perhaps—evolution at work (Gienapp and 

Brommer 2014). 

 

Open data as a tool to move the science forward at high speed. The use of Open Data should and 

will greatly enhance the science of ecology and evolution (Whitlock et al. 2010; Hampton 

et al. 2013). Many important evolutionary questions, some of which may not have been 

posed yet, can be addressed at a broad scale beyond a single study system if these data are 

appropriately used (Chapter 7 and 9). They key would be to first formulate an outstanding 

question, determine which type of data are needed to answer this question, find the data 

(Culina et al. 2018) and perform the analysis. Sometimes it may help to know what types 

of data are available and let that inspire research questions. As a note of caution, however, 

the use of data always needs to be communicated with the original author to avoid 

misinterpretation and erroneous conclusions. Finally, results of the data-driven meta-

study should be synthesised using formal meta-analysis to obtain robust conclusions. 

 

Combining multiple sources of data. To make reliable (inference of) evolutionary predictions, 

it is desirable to combine as many sources of information as possible. This could be, for 

example, a combination of observational (correlational) and experimental data for the 

association between phenotypes and measures of fitness. Also, additional data about the 

environment (e.g. food availability) should help us understand selective pressures 

operating on the traits of interest without having to resort to (potentially less reliable) 

environmental proxies (e.g. Arlt and Pärt 2017; Marrot et al. 2018). Lastly, simulations can 

help us understand future evolutionary trajectories when parameterised with realistic 

values obtained from observational and experimental data. 

 

Final note: a view on using complex quantitative genetics in observational studies 

I shall complete this outlook with a short view on some aspects of the field of quantitative 

genetics in wild populations. In this thesis, I have used quantitative genetics to (1) calculate 

breeding values for laying date in great tits (Chapter 3), (2) calculate heritability of clutch 

size and make evolutionary predictions based on individual-based model (Chapter 8), and 

(3) quantify the genetic (co)variance matrix for reaction norms to facilitate the prediction 

of evolutionary trajectories (Chapters 9 and 10). When pedigrees are sufficiently 

informative and contain a large number of families (e.g. ≥ 100), animal models have proven 

to be very powerful in estimating heritabilities (e.g. Charmantier and Réale 2005) and long-

term population studies continue to produce better estimates over time (Postma 2014). 

Evolutionary ecologists are increasingly interested in complex questions that involve 

multi-dimensional (additive) genetic variance-covariance matrices, for example to 

estimate environmental variation in genetic variation (Hoffman and Merilä 1999) or the 

additive genetic covariance between two traits (e.g. Sheldon et al. 2003; Class and 

Brommer 2015b) or between a trait and fitness to measure selection at the genetic level 

(e.g. Morrissey et al. 2012a; Reed et al. 2016b). Particularly when one is interested in the 

estimation of (additive) genetic covariances, such analyses may not be helpful in many 
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situations because they typically require large samples to reach sufficient statistical power 

(Steppan et al. 2002). In Chapter 9, we regressed environment-specific heritability 

estimates against environment-specific selection. In an ideal situation, we would have 

constructed multivariate animal models that would allow us to directly estimate the 

additive genetic covariance between fitness and trait value, which would be too 

computationally heavy for most (or all) of the datasets, especially since this would have to 

be done for each environment (year), decreasing sample sizes even more. In a study on 

great tits, estimating the additive genetic covariance between fitness and two life-history 

traits (i.e. selection at the genetic level) was only possible when the entire dataset (60 years) 

was divided into three groups of years of strong, weak, and medium phenotypic selection 

(Reed et al. 2016b), because estimating genetic selection annually would require a very 

large annual sample size. The estimation of the additive genetic covariance between 

female fitness and her liability to produce extra-pair offspring in song sparrows (Melospiza 

melodia) led to weak, statistically indiscernible effects, like partly due to the lack of power 

(Reid 2012). Studies that show statistically discernible (additive) genetic covariances 

usually have a large sample size, i.e. (repeated) observations of at least a few thousand 

individuals (e.g. Morrissey et al. 2012b; Class and Brommer 2015b). 

The above might indicate that in many practical (non-experimental) situations we will 

not be able to test reliably whether genetic (co)variance matrices change over time (by 

splitting the dataset in groups of years) or whether annual selection indeed acts at the 

genetic level (by estimating matrices at the annual level). This is not to suggest that 

evolutionary biologists should not aspire to ask these intriguing questions, but they may 

have to realise that (1) observational studies may not always be suitable to ask complex 

questions (such as testing genetic maternal effects, which will be only possible when they 

can be separated from common-environment effects, which is typically only achieved in 

cross-foster experiments (Kruuk and Hadfield 2007)), and (2) more powerful methods to 

study the genetic relationships between individuals may be needed to be able to answer 

such questions. For example, relatedness matrices based on genomic markers (as opposed 

to a pedigree) are less sparse and may therefore be more powerful in detecting genetic 

variation and covariation in traits (Gienapp et al. 2017). Ultimately, the power to estimate 

such estimates will largely depend on the number of phenotypes measured, as illustrated 

by an example of the additive genetic covariance between Tau (the free-running daily 

period length under constant conditions) and laying date in great tits (Box 11.1). Despite 

an impressive number of wild birds genotyped (for the selection-line experiment; see 

Chapter 4) and a powerful ‘genomic’ pedigree, I was not able to find a genetic covariance 

between Tau measured in birds in captivity and laying dates of (different) birds in the 

wild. Although this may have been because of a genuine lack of a genetic covariance (cf. 

Verhagen et al. in review), the lack of a covariance between wild and captive laying dates 

(the same trait) suggests that statistical power was likely an additional issue (Box 11.1). 

Evolutionary biologists specifically aspiring to answer these exciting questions in 

future projects should therefore carefully consider whether available observational data 

are suitable or whether experimental evolution in the wild (which typically increases 

power to detect the sought effects) (e.g. Postma et al. 2007) may be more appropriate, as 

well as whether genomic tools may be a fruitful avenue for them. 
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Box 11.1. Quantifying the genetic covariance between laying date in the wild and Tau. 
 
Introduction 
Circadian rhythms constitute an essential part of the organisation of every-day life in many 
organisms. Many internal processes, e.g. cell division, gene expression and hormone secretion, as 
well as rest–activity cycles, are regulated through these rhythms (Takahashi et al. 2001). In birds in 
laboratory conditions, daily activity patterns have been shown to entrain to daily light–dark cycles, 
and constant darkness or dim-light conditions lead to a shift in activity onset (Kumar et al. 2000; 
De Jong et al. 2015). This shift occurs because the internal free-running period, called Tau, is not 
exactly 24h and varies between individuals. In great tits, Tau is moderately to strongly heritable (h2 
= 0.48–0.86) (Helm and Visser 2010; Laine et al. in review). Variation in Tau in general is believed 
to be coupled with variation in fitness (Vaze and Sharma 2013), such that there is selection for 
being well entrained to the natural light–dark cycle (Reppert and Weaver 2002). 

Seasonal timing of reproduction in birds is directly mediated by temperature (e.g. Visser et al. 
2009a), but the priming of the reproductive system follows a circannual clock set by photoperiod 
(Helm et al. 2013). Since photoperiod involves the measuring of day length, it has been suggested 
that the circadian clock is also involved in seasonal timing of reproduction (e.g. the clock gene). 
Associations between clock gene variation and breeding phenology have indeed been reported in 
birds (Liedvogel et al. 2009; Caprioli et al. 2012), suggesting the involvement of this gene in 
adaptation to novel environmental conditions. Hence, variation in Tau may be genetically 
correlated with phenology in great tits (but see Verhagen et al. in review). This is difficult to 
determine for wild animals because they need to be taken indoors for a longer period of time. 
Powerful quantitative genetic methods may help here when laboratory-retrieved phenotypes 
(Tau) can be linked to ‘wild’ phenotypes (egg-laying date; ELD) of relatives via the pedigree. Here I 
therefore aimed to estimate the additive genetic covariance (covA) between ELD and Tau in great 
tits.  

 
Phenotyping and constructing a genomic relatedness matrix 
A total of 154 birds (76 males, 78 females) were held in captivity in a large-scale genomic selection 
experiment for phenology (Verhagen et al. in review); these birds were more or less equally divided 
in numbers over three selection generations. Selection on ELD was done based on genomic 
breeding values for ELD, calculated based on ~2000 wild birds genotyped on a 650k SNP chip (see 
Gienapp et al. 2019 for details). For each bird, the period length (Tau) was determined using the 
methods described in Spoelstra et al. (2018). The mean period length (± SD) was 23.70 (± 0.16). For 
the wild population (Hoge Veluwe), we had 3527 ELDs from 2092 genotyped females (ELD variance: 
24.8).  

From the genotyped birds, a ‘genomic’ relatedness matrix (GRM) was constructed, based on 
the average allelic correlation across loci between two genotypes (Gienapp et al. 2017; see Laine 
et al. in review for more details). The advantage of this GRM over a pedigree-based relatedness 
matrix is that the relatedness between any individual can be calculated—and not just direct 
relatives. The GRM is hence less sparse and preserves more power and accuracy in estimating 
genetic parameters (Gienapp et al. 2017). This is necessary since the 154 lab birds, which had been 
bred in captivity for a couple of generations, had no direct wild relatives.  
 
Estimating the additive genetic covariance between Tau and ELD 
Both Tau and ELD were mean- and variance-standardized prior to analysis, to get both traits on the 
same scale. We first fitted univariate ‘minimum adequate models’ (MAM) in ASReml-R (Butler et 
al. 2009; Gilmour et al. 2009) for both Tau and ELD. Through backward elimination of non-
significant fixed effects using conditional Wald F tests, we determined that the age of the breeding 
female (first-year breeder or older) affected ELD, and that sex affected Tau. Likelihood-ratio tests 
confirmed an effect of female identity for repeated measures on ELD (�̂�2 = 0.17 ± 0.05), and … 
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 Box 11.1 (continued) 
 
… mother identity for Tau (�̂�2 = 0.27 ± 0.13). Next, we fitted univariate animal models, adding the 
inverse GRM to estimate the additive genetic effect in both traits. There was significant heritable 
variation in both traits (Table B11.1.2). When we verified there was significant additive genetic 
variation, we built bivariate models for ELD and Tau that included the fixed and random effects 
identified in the MAMs, with independent normal residual variance (i). We then added the GRM, 
constraining covA to 0 (ii). The final model included the GRM with an unconstrained covariance (iii). 
 
No additive genetic covariance between Tau and ELD 
The bivariate animal models showed no significant additive genetic correlation between Tau and 
ELD (Tables B11.1.1a and B11.1.2). The covA estimate was small with a large standard error (–0.056 
± 0.162). This was likely the result of a combination of small effects and low power, given the large 
standard error. To test this, we ran another set of bivariate models, in which Tau was replaced by 
the ELDs of these same birds in captivity (ELDlab) (Verhagen et al. in review). The expectation was 
that the model would be able to pick up the covA since the same genes are responsible for the 
same trait. The estimated covA was comparatively large (–0.188 ± 0.156), but also here the 
standard error was substantial (Tables B11.1.1b and B11.1.2). Statistical power is therefore likely 
an issue here. 

To be able to estimate covA between wild ELD and ELDlab or indeed Tau reliably, we probably 
need more than 154 individuals, as estimating covA is usually a data-hungry exercise (Steppan et 
al. 2002). Since relatedness matrices based on genomic markers contain information about the 
whole sampled population at once, the power to detect genetic correlations is most likely limited 
by the number of phenotypes available, rather than the number of ‘families’ (Gienapp et al. 2017). 
Unfortunately, although the genotyping of ~2000 wild birds and the phenotyping of the 154 birds 
in captivity is unique and impressive in its scale and the costs of genotyping are likely to decrease 
over time, it still remains an expensive exercise. The required budgets, manpower and other 
resources (e.g. bird housing and facilities) may prevent other studies on vertebrate organisms to 
phenotype as many or even more individuals in the near future. 

 
Table B11.1.1 Results of likelihood-ratio tests comparing bivariate (i) minimum adequate 
models with models with (ii) an additive genetic term fitted for both traits separately and (iii) 
the additive genetic covariance between them. 

Random-effects structure LogLik 𝜒2 df p 

(a) Wild egg-laying date (ELDW) vs. Tau        

  i.  MAM –1680.4    
  ii. MAM + inverse GRM (constrained covariance) –1670.1 20.65 2 < 0.0001 

  iii. MAM + inverse GRM (unconstrained covariance) –1670.0 0.14 1 0.35 

(b) ELDw vs ELDlab   
 

 

  i.  MAM –1687.9    
  ii. MAM + inverse GRM (constrained covariance) –1674.1 27.52 2 < 0.0001 

  iii. MAM + inverse GRM (unconstrained covariance) –1673.7 0.88 1 0.17 
MAM = minimum adequate model (in (1): MotherID for Tau and FemaleID for ELDW; in (2): FemaleID for ELDW). 

 
Table B11.1.2. Estimates (SE) of additive genetic variation 
(diagonals) and additive genetic covariance (off-diagonals). 

  ELDW Tau ELDlab 

ELDW 0.171 (0.050)   

Tau –0.056 (0.162) 0.523 (0.222)  
ELDlab –0.188 (0.156)   0.398 (0.146) 

Significant effects marked in bold. Variance estimates are relative to 1. 
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Conclusion 
 

In this thesis, I explored how populations are coping with environmental change and 

which ecological processes potentially affect the rate of adaption. I did this using a 

combination of three approaches. In Part I of my thesis, I explored how avian populations 

are affected by climate change in general, and I concluded in this chapter that there is a lot 

more that we need to learn about the adaptive value of (phenotypic) changes induced by 

climate change. In Part II, I aimed to identify the ecological constraints to adaptation in 

avian breeding time using a combination of experiments and long-term observational 

data. I concluded that it is too early as of yet to conclude whether great tits are indeed 

constrained to breed earlier, which is necessary to restore the phenological match with 

their main food source, the caterpillars. I also concluded that our current definition of 

phenological match, i.e. the match in peak dates consumer and resource phenology, 

probably adequately describes observed demographic processes. In Part III, I explored 

adaptation and evolutionary dynamics in long-term study populations using quantitative 

genetic tools. I concluded that in order for us to make reliable predictions of evolutionary 

processes and to assess the generality of our findings, we need to (1) have a thorough 

understanding of the ecology of the species under study and integrate multiple sources of 

information, (2) use quantitative genetic tools in a reaction norm context, and (3) explore 

the availability of Open Data as an opportunity to answer novel evolutionary questions at 

a broad (taxonomic or geographic) scale. 

Much is yet to be discovered about how populatons are coping with environmental 

change in general, in particular beyond the few (very) well-studied model species. The 

central question of my thesis, posed in Chapter 1 and at the beginning of this section, hence 

cannot—and should not—receive an unequivocal answer. I have, however, shown that 

major questions posed by evolutionary ecologists are best solved using a ‘bottom-up’ 

approach, where we first identify and carefully break down the ecological factors driving 

(selection on) phenotypic varation and use that knowledge as a basis for quantifying 

evolutionary dynamics. Careful consideration of the ecological and evolutionary forces at 

play have enabled me to reveal that what we initially thought might constrain adaptation 

in wild populations, may not necessarily be true. Nevertheless, I have shown that the great 

tits of the Hoge Veluwe are under selective pressure to breed earlier and suggested that 

micro-evolution might not be sufficient to evade extinction in the long run. As 

evolutionary ecologists, we need to keep inspired to ask outstanding novel questions but, 

as our methods improve and our data expand, also be willing to revisit the old ones. This 

will enable us to once more refine our methods and our basic understanding of our study 

systems, and eventually improve our predictions of evolution in the wild.
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Summary  
 

The environment is changing and this is exerting selection pressures on wild populations. 

For example, the timing of phenological events such as reproduction and migration are 

driven by temperatures and climate change is leading to a differential shift in timing of 

phenology among trophic levels, in some cases leading to selection on consumer 

phenology. Individuals are often phenotypically plastic, meaning that they can change 

their phenotype (e.g. breeding time) in response to environmental conditions. This allows 

them to track the changing environment to some degree but ultimately a genetic change 

is necessary to safeguard populations from extinction in the long run. Many wild 

populations so far, however, could not be shown to be undergoing any genetic adaptation 

(e.g. a shift in their phenology) over time. Quantitative genetics, i.e. the study of the 

genetics of quantitative (polygenic) traits, is commonly used to identify the evolutionary 

parameters (genetic variation and selection) in wild populations to predict evolution, but 

for such predictions to be successful we need to understand the ecological factors 

underlying (constraints to) adaptation. In this thesis, I aimed to get an understanding of 

how populations are coping with environmental change and which ecological processes 

affect the rate of adaptation. I did this using a combined approach of field experiments to 

identify ecological constraints and long-term observations to make evolutionary 

predictions in the great tit (Parus major) and other vertebrate species. 

In the first part of my thesis (Chapter 2), I provided a broad overview of what is known 

about the effects of climate change on the general biology of birds. Birds are affected by 

climate change in several ways: they may change (1) their geographical distribution due 

to a shifting ‘bioclimatic envelope’, (2) advance their timing of phenological events such 

as breeding and migration, (3) undergo morphological changes (e.g. in body size) as an 

energetic adaptation, and (4) undergo demographic changes as a direct result of changes 

in reproductive success or survival. There has been a strong bias in the literature on 

phenology and therefore we still have a lot to learn about the ecological and evolutionary 

consequences related to these other aspects of phenotypic change. Whether observed 

changes in phenology are due to plasticity or due to genetic change remains an open 

question. 

Dutch great tits have been under increased selection for earlier laying due to increased 

mismatch with the caterpillar peak (the main food for their nestlings), but we see little 

(phenotypic) response. The lack of a response may be caused by an energetic constraint 

associated with breeding too early under harsh conditions, such that birds that do breed 

earlier may pay fitness costs. In the second part of my thesis I aimed to test whether birds 

were constrained to breed earlier. In Chapter 3, I used experimental food supplementation 

food prior to and during egg-laying to test whether females that were tricked into laying 

early would pay fitness costs (due to brood desertion or reduced chick-provisioning 

efforts) once food supplementation ceased upon the start of laying. Food supplementation 

was not effective at advancing laying, and any food increased, rather than decreased, 

fitness. Because food supplementation alone is not sufficient to test the 
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constraints hypothesis (e.g. because it cannot distinguish whether birds are constrained by 

food or are just missing the essential cues to advance their breeding) we need an 

additional, clean manipulation of egg-laying date that does not affect the body condition 

of a female. In Chapter 4, I described the first results of a large-scale experiment in which 

great tits are genomically selected to breed early or late. Eggs produced by females from 

these selection lines were brought to the wild and raised by foster parents. I showed that 

selection lines (late vs early) did not differ in any aspect of early-life fitness (fledging 

success, nestling weight at fledging), but that the fitness parameters differed slightly 

between selection-line birds and their wild counterparts. Since only 11 birds from these 

fostered birds survived until breeding in 2018 (including 2 females from the early and 3 

from the late selection line), we could not test whether these birds indeed bred respectively 

earlier or later, or whether earlier laying indeed led to higher fitness costs. I concluded that 

multiple years (with different environmental conditions and an increased sample size) 

would be needed to conclude whether birds are indeed constrained to breed earlier. 

Ultimately, breeding success in great tits is largely determined by the match of the 

offspring needs with the caterpillar abundance. In Chapter 5, I explored the notion that to 

clearly understand phenological mismatch—and to determine whether birds really are 

mismatched—we need a thorough, temporal description of offspring needs and food 

availability to quantify the amount of temporal overlap between these distributions. I 

found that the classical way of defining mismatch, i.e. the difference in peak dates between 

great tit and caterpillar phenology, outperformed a more comprehensive measure that 

described the temporal overlap in a model explaining variation in offspring survival and 

selection for laying date. I concluded that a simple measure of mismatch in highly seasonal 

study systems is likely to be best for describing demographic processes, and that more 

complex measures are likely infeasible in most practical situations. 

In the third part of my thesis, I deployed state-of-the-art quantitative genetic modelling 

approaches to unravel patterns of selection, genetic variation, and evolutionary response 

to selection in a reaction-norm context using long-term, pedigreed datasets of wild 

populations. Some methods to achieve this were explored in the preceding Intermezzo 

(Chapter 6 and 7). In Chapter 8, I investigated whether maternal effects as a form of 

transgenerational plasticity could affect the rate of adaptation in great tits. Using 

experimental and long-term data, I was able to show that the clutch size of a great tit is 

partly dependent on her body weight at fledgling and that it is negatively associated with 

the clutch size of her own mother. Such a negative maternal effect could constrain 

adaptation to a novel environment with selection for a larger of smaller clutch. We showed 

by simulation, however, that this negative maternal effect would likely have little impact 

on the rate of adaptation. 

Phenological changes over time do not always match evolutionary predictions; one 

potential reason for this discrepancy is an unrecognised environmentally induced 

coupling between selection and the heritability of the trait. In Chapter 9, I investigated 

how general such a coupling is in wild vertebrate populations, and whether such a 

coupling affects the expected rate of adaptation. The expectation was that if heritability 

and selection are negatively associated, this constrains adaptation because little genetic 
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variation is present under strong selection and vice versa. Making use of openly available 

datasets (see Chapter 7), we managed to estimate environment-specific heritability and 

selection in 50 traits from 16 populations of 10 species. We found that heritability and 

selection are only rarely associated and that this association is an unlikely explanation for 

apparent evolutionary stasis observed in wild populations. 

Great tits respond strongly to temperature through phenotypic plasticity; this plasticity 

is described by a reaction norm, the linear function consisting of an elevation (the laying 

date in the average environment) and a slope (the sensitivity to the environment). Since 

different individuals have different reaction norms, selection on laying date may result in 

an evolutionary shift in the reaction norm. In Chapter 10, I found that individual great tits 

differ genetically in the elevation of the reaction norm, but not in its slope, and this reaction 

norm is under selection due to the advance in the caterpillar peak over time. I predicted 

quantitatively, however, that such evolution has been—and will be—too slow to be 

detected due to the high environmental variability in laying dates. 

To conclude, I investigated the evolutionary potential of populations and aimed to 

identify ecological constraints in adaptation. I found that there is still a lot we need to learn 

about the ecological and evolutionary consequences of climate change beyond the few 

well-known study systems, including effects on demography and population viability. 

Experiments aimed at unravelling the fitness costs of breeding too early are inconclusive 

and warrant further investigation (with more samples and multiple environments). 

Powerful quantitative genetic tools are available to evolutionary ecologists to quantify 

evolutionary trajectories but these models must be based on reality to obtain reliable 

predictions. I have suggested in this thesis that realistic predictions could be benefited by 

the integration of multiple data sources (i.e. long-term observational and experimental 

data) and simulations. The use of open data can aid in achieving this through the 

answering of novel research questions at a broad taxonomic or geographic scale. Most 

importantly, we need a thorough understanding of the most important components of the 

ecosystem of our study species. Only then can we make sense of our evolutionary 

predictions.  
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Samenvatting 

 

Onze omgeving is aan het veranderen en dit leidt tot veranderingen in de selectiedruk in 

wilde populaties. De timing van fenologische (ofwel seizoensgebonden) processen als 

voortplanting en migratie wordt bijvoorbeeld in belangrijke mate gedreven door 

temperatuur; klimaatverandering zorgt voor een differentiële verschuiving in de timing 

van fenologie tussen trofische lagen (bijv. tussen predator en prooi) en dit leidt in sommige 

gevallen tot een versterkte selectiedruk voor een vroegere timing bij de predator. 

Individuen vertonen vaak ‘fenotypische plasticiteit’: ze zijn in staat hun fenotype aan te 

passen aan de omgeving. Dit stelt hen in staat om tot op zekere hoogte met veranderingen 

in de omgeving om te gaan, maar deze plasticiteit zal niet altijd voldoende zijn om zich 

aan te kunnen passen aan een sterk veranderende omgeving, hetgeen noopt tot genetische 

aanpassing (micro-evolutie) om het lokaal uitsterven van de populatie te voorkomen. 

Empirisch bewijs dat populaties zich over de tijd inderdaad genetisch aanpassen (bijv. 

d.m.v. een verschuiving in hun fenologie) is echter schaars. Kwantitatieve genetica, de 

studie die zich bezigt met de genetica van kwantitatieve (polygene) eigenschappen, wordt 

vaak gebruikt in wilde populaties om de evolutionaire parameters (genetische variatie en 

selectie) te kwantificeren en voorspellingen van evolutie te doen. Echter, voor 

betrouwbare voorspellingen moeten we de ecologische factoren kennen die ten grondslag 

liggen aan adaptatie—of het belemmeren ervan. Het doel van mijn proefschrift was om te 

begrijpen hoe populaties omgaan met een veranderende omgeving en welke ecologische 

processen de snelheid van adaptatie beïnvloeden. Ik maakte gebruik van een combinatie 

van zowel veldexperimenten om deze processen te identificeren als langetermijndata om 

evolutionaire voorspellingen te doen voor de koolmees (Parus major) en andere 

gewervelde soorten. 

In het eerste deel van mijn proefschrift (Hoofdstuk 2) gaf ik een breed overzicht van 

wat er bekend is over de effecten van klimaatverandering op de algemene biologie van 

vogels. Vogels worden op verschillende manieren door klimaatverandering beïnvloed: ze 

kunnen (1) veranderingen tonen in hun geografische verspreiding omdat hun 

‘klimaatniche’ verschuift, (2) hun fenologische processen zoals voortplanting en migratie 

vervroegen, (3) morfologische veranderingen (bijv. lichaamsgrootte) ondergaan als een 

vorm van energetische adaptatie, en (4) demografische veranderingen ondergaan als een 

direct gevolg van veranderingen in hun reproductief succes en overleving. Veel van wat 

we weten over de effecten van klimaatverandering slaat op fenologie; er valt dus nog veel 

te leren over de ecologische en evolutionaire gevolgen van de andere genoemde 

processen. Of de waargenomen veranderingen in fenologie enkel een plastische of ook een 

genetische grondslag hebben blijft een open vraag. 

Nederlandse koolmezen staan onder toenemende selectiedruk voor een vroegere 

eilegdatum door een toenemend tijdsverschil (mismatch) met de rupsenvoorraad (een 

belangrijk bestanddeel van het voedsel voor hun kuikens). We zien echter een zeer kleine 

(fenotypische) respons op deze selectiedruk. Het uitblijven van een respons kan worden 

veroorzaakt door een energetische beperking die samengaat met het leggen en bebroeden 
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van eieren in het vroege voorjaar onder barre omstandigheden; vogels die wel (te) vroeg 

broeden betalen mogelijk een fitnessprijs. In het tweede deel van mijn proefschrift testte 

ik of vogels inderdaad belemmerd zijn in het vervroegen van de voortplanting. In 

Hoofdstuk 3 voerde ik vogels experimenteel bij tijdens de (voor)eilegfase om te testen of 

vrouwtjes die eerder begonnen met leggen als reactie op het voeraanbod een prijs zouden 

betalen (d.m.v. vroege nestverlating of gereduceerde voerfrequenties later in het seizoen) 

wanneer dit bijvoeren gestopt werd op het moment van aanvang van de eileg. Het 

bijvoeren leidde niet tot een vervroeging van de leg maar leidde tot een verhoogde, en niet 

een verlaagde, fitness. Omdat bijvoeren alleen geen uitsluitsel kan geven of vogels 

energetisch belemmerd worden om vroeger te leggen (omdat het moeilijk is te achterhalen 

of bijvoeren leidt tot opheffing van een energietekort of dat het simpelweg fungeert als 

een aanwijzing om te gaan leggen), is er tevens een experiment nodig dat de legdatum 

manipuleert zonder daarbij de fysieke gesteldheid van het vrouwtje te beïnvloeden. In 

Hoofdstuk 4 beschreef ik de eerste resultaten van een grootschalig experiment waarbij 

koolmezen op het genoom werden geselecteerd op een vroege of late legdatum. De eieren 

die werden geproduceerd door broedparen van de selectielijnen in volières werden naar 

het wild gebracht en de kuikens grootgebracht door pleegouders. De twee selectielijnen 

(vroeg vs. laat) verschilden op geen enkele manier in hun fitness (uitvliegsucces, gewicht 

pullen), maar de fitness parameters verschilden licht tussen de selectielijndieren en die 

van de natuurlijke populatie. Omdat slechts 11 vogels van de selectielijndieren 

overleefden tot het volgende broedjaar (2018; twee vogels van de vroege en drie van de 

late lijn) konden we niet statistisch testen of deze vogels inderdaad verschilden in hun 

legdatum en of het vroeger leggen inderdaad leidde tot verlies in fitness. Ik concludeerde 

dat meerdere jaren (met verschillende omstandigheden en een grotere steekproef) nodig 

zijn om te concluderen of vogels inderdaad belemmerd worden om hun eileg te 

vervroegen. 

Broedsucces wordt bij koolmezen uiteindelijk bepaald door de mate van synchronisatie 

(match) tussen de voedselbehoefte van de kuikens en de rupsenbeschikbaarheid. In 

Hoofdstuk 5 onderzocht ik de stelling dat als we fenologische (mis)match als fenomeen 

willen begrijpen—en willen kunnen bepalen of vogels echt uit de pas lopen met het 

voedsel—we een grondige, seizoensoverbruggende beschrijving van zowel 

voedselbehoefte als -beschikbaarheid moeten hebben om zo de mate van temporale 

overlap tussen deze twee componenten te kunnen bepalen. Ik ontdekte dat de klassieke 

manier om mismatch te beschrijven—d.w.z. het verschil in piekdatums tussen de fenologie 

van de koolmezen en de rupsen—een betere statistische verklaring geeft voor variatie in 

zowel de overlevingskansen voor de jongen als voor selectie op eilegdatum dan de 

temporale overlap tussen voedselbehoefte en -beschikbaarheid. Ik concludeerde dat een 

eenvoudige maat voor mismatch in een seizoensgebonden ecosysteem waarschijnlijk de 

beste verklaring geeft voor demografische processen, en dat complexere maten in de 

praktijk waarschijnlijk zelden betrouwbaar zijn. 

In het derde deel van mijn proefschrift paste ik vernieuwende kwantitatief genetische 

modellen toe om patronen in selectie, genetische variatie, en evolutionaire responsen bloot 

te leggen in wilde populaties waar langetermijnwaarnemingen en stamboomgegevens 

beschikbaar voor waren. Hierbij maakte ik gebruik van ‘reactienormen’ (lineaire functies 
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die fenotypische plasticiteit beschrijven). Sommige van de methodieken die ik hiervoor 

gebruikte worden in detail uitgelegd in het voorgaande Intermezzo (Hoofstuk 6 en 7). In 

Hoofdstuk 8 onderzocht ik of maternale effecten (als een vorm van plasticiteit tussen 

generaties) de snelheid van evolutionaire adaptatie kunnen beïnvloeden. Met behulp van 

experimentele en langetermijndata kon ik laten zien dat de legselgrootte (het aantal eieren 

in een nest) van een moederkoolmees deels afhankelijk is van haar eigen lichaamsgewicht 

als pul (kuiken) en dat deze legselgrootte negatief correleert met dat van haar moeder. Een 

dergelijk ‘negatief maternaal effect’ zou adaptatie aan een nieuwe omgeving (met een 

andere optimale legselgrootte) kunnen belemmeren. Met behulp van simulaties konden 

we echter laten zien dat dit negatieve maternale effect waarschijnlijk heel weinig invloed 

heeft op de snelheid van adaptatie. 

Fenologische veranderingen over de tijd komen niet altijd overeen met evolutionaire 

voorspellingen. Eén potentiële reden hiervoor is een onzichtbare onderliggende correlatie 

tussen omgevingsafhankelijke selectie en erfelijkheid van de bestudeerde eigenschap. In 

Hoofdstuk 9 onderzocht ik hoe algemeen een dergelijke correlatie tussen selectie en 

erfelijkheid is in wilde populaties van gewervelde soorten, en of deze correlatie de 

snelheid van adaptie beïnvloedt. De verwachting was dat als erfelijkheid en selectie 

negatief correleren (dus als in een bepaalde omgeving erfelijkheid laag is en selectiedruk 

hoog), adaptatie belemmerd wordt en vice versa. We maakten op een unieke manier 

gebruik van Open Data (vrij beschikbare data; zie Hoofdstuk 7) om omgevingsafhankelijke 

erfelijkheid en selectie te schatten voor 50 eigenschappen in 16 populaties van 10 soorten. 

Erfelijkheid en selectie correleerden slechts zelden, en deze correlatie is dus zeer 

waarschijnlijk niet debet aan de discrepantie tussen evolutionaire voorspellingen en 

waargenomen fenologische veranderingen in het wild.  

Koolmezen reageren in hun voortplantingsgedrag sterk op temperatuur d.m.v. 

fenotypische plasticiteit. Deze plasticiteit wordt beschreven d.m.v. een reactienorm, de 

lineaire functie die bestaat uit een intercept (de hoogte van de regressielijn, ofwel de 

eilegdatum bij een gemiddelde temperatuur) en de helling (de responsgevoeligheid van 

eilegdatum t.o.v. temperatuur); ieder vrouwtje heeft een eigen reactienorm. In Hoofdstuk 

10 ontdekte ik dat vrouwtjes genetisch verschillen in de intercept maar niet in de helling 

van de reactienorm, en dat de reactienorm onder verhoogde selectiedruk staat door de 

vervroeging van de rupsenpiek over de tijd. Ik kon echter kwantificeren dat de 

evolutionaire respons ondanks deze selectiedruk te traag is geweest om deze waar te 

kunnen nemen, en voorspelde dat dit zo zal blijven, doordat variatie in eilegdata in grote 

mate door (niet-genetische) omgevingsfactoren wordt beïnvloed. 

In conclusie onderzocht ik het evolutionair potentieel van populaties en had ik als doel 

de ecologische factoren in kaart te brengen die adaptatie belemmeren. Ik ontdekte dat we 

nog veel te weten moeten komen over de ecologische en evolutionaire gevolgen van 

klimaatverandering—waaronder de effecten op demografie en de levensvatbaarheid van 

populaties—buiten de enkele zeer goed bestudeerde soorten. Experimenten gericht op het 

blootleggen van de fitnesskosten die gepaard gaan met een te vroege voortplanting zijn 

niet eenduidig en behoeven verdere studie (met grotere steekproeven en diverse 

ecologische omstandigheden). Krachtige kwantitatief-genetische methodieken staan klaar 
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om gebruikt te worden door evolutionair ecologen om evolutionaire processen te 

kwantificeren, maar deze modellen moeten op de werkelijkheid gestoeld zijn om 

betrouwbare voorspellingen te waarborgen. Ik heb in mijn proefschrift geopperd dat 

realistische voorspellingen verwezenlijkt kunnen worden d.m.v. het integreren van 

verschillende databronnen (langetermijnobservaties en experimenten) en simulaties. Het 

gebruik van Open Data kan helpen dit te bereiken door het beantwoorden van nieuwe 

onderzoeksvragen op een zo breed mogelijke taxonomische of geografische schaal. Op de 

eerste plaats komt echter de noodzaak dat we grip hebben op de belangrijkste 

componenten van het ecosysteem van de soorten die we bestuderen. Alleen dan kunnen 

we betrouwbare—en begrijpelijke—evolutionaire voorspellingen doen.



Curriculum vitae 

271 
  

Curriculum vitae 

 

Jip Ramakers was born on April 14, 1986 in Baarlo, the 

Netherlands, and grew up on the countryside where he 

enjoyed spending time with friends in fields and 

woodlands and being in nature. Following secondary 

school he went on to study Forest and Nature 

Conservation at Van Hall Larenstein University of 

Applied Sciences in Velp, and after obtaining his 

bachelor’s degree in 2009 he continued his education at 

Van Hall Larenstein in Leeuwarden, where he studied 

International Wildlife Management and received a 

second degree in January 2012. In 2012 he started a 

voluntary assistantship at the Netherlands Institute of 

Ecology (NIOO-KNAW) in Wageningen, working with 

Dr. Kamiel Spoelstra on the effects of artificial light at 

night on wildlife. Captivated by the science at NIOO and motivated to obtain a PhD 

position, he enrolled in the Environmental Biology master’s programme at Utrecht 

University in February 2013. During this master’s he continued working with Kamiel 

Spoelstra on the effects of light at night on foraging and commuting behaviour in bats. In 

a second project, he collaborated with Dr. Teague O’Mara and Dr. Dina Dechmann (Max 

Planck Institute of Ornithology, Radolfzell, 

Germany) and Dr. Rachel Page (Smithsonian 

Tropical Research Institute, Panamá) to study 

social-information transfer in group-living fruit 

bats in Gamboa, Panamá. He obtained his Master’s 

degree in February 2015, with the distinction cum 

laude.  

In January 2015 he started his PhD on the 

evolutionary ecology and quantitative genetics of 

seasonal timing and other reproductive traits with 

Prof. Dr. Marcel E. Visser and Dr. Phillip Gienapp 

at NIOO-KNAW, the results of which are 

presented in this thesis. In March 2019 he started as 

a postdoctoral researcher statistical genetics with 

Prof. Dr. Fred A. van Eeuwijk at Biometris, part of 

Wageningen University & Research in 

Wageningen.



 

272 
 

 

  



List of publications 

273 
  

List of publications 
 

Ramakers, J.J.C., Gienapp, P., & Visser, M.E. (2018). Phenological mismatch drives 

selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. 

Evolution 73, 175–187. 

 

Ramakers, J.J.C., Culina, A., Visser, M.E., & Gienapp, P. (2018). Environmental coupling 

of heritability and selection is rare and of minor evolutionary significance in wild 

populations. Nature Ecology & Evolution 2, 1093–1103.  

 

Culina, A., Crowther, T.W., Ramakers, J.J.C., Gienapp, P., & Visser, M.E. (2018). How to 

do meta-analysis of open datasets: comment. Nature Ecology & Evolution 2, 1053–1056. 

 

Ramakers, J.J.C., Cobben, M.M.P., Bijma, P., Reed, T.E., Visser, M.E., & Gienapp, P. (2018). 

Maternal effects in a wild songbird are environmentally plastic but only marginally alter 

the rate of adaptation. The American Naturalist 191(5), E144–E158. 

 

Spoelstra, K., Ramakers, J.J.C., van Dis, N.E., & Visser, M.E. (2018). No effect of artificial 

light of different colors on commuting Daubenton's bats (Myotis daubentonii) in a choice 

experiment. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 1–5. 

 

Spoelstra, K., van Grunsven, R.H.A., Ramakers, J.J.C., Ferguson, K.B., Raap, T., Donners, 

M., Veenendaal, E.M., & Visser, M.E. (2017). Response of bats to light with different 

spectra: light-shy and agile bat presence is affected by white and green, but not red light. 

Proceedings of the Royal Society B-Biological Sciences 284(1855), 20170075. 

 

Tomotani, B.M., Ramakers, J.J.C., & Gienapp, P. (2016). Climate change impact: Birds. In: 

eLS. John Wiley & Sons, Ltd: Chichester. doi:10.1002/9780470015902.a0020484.pub2  

 

Ramakers, J.J.C., Dechmann, D.K.N., Page, R.A., & O'Mara, M.T. (2016). Frugivorous bats 

prefer information from novel social partners. Animal Behaviour 116, 83–87. 

 

Ramakers, J.J.C., Dorenbosch, M., & Foppen, R.P.B. (2014). Surviving on the edge: a 

conservation-oriented habitat analysis and forest edge manipulation for the hazel 

dormouse in the Netherlands. European Journal of Wildlife Research 60, 927-931. 

 

Smith, P., Pheasey, H., Atkinson, K., Ramakers, J., & Sarvary, J. (2012). The 

Didelphimorphia (Didelphidae) of Reserva Natural Laguna Blanca, Departamento San 

Pedro, Paraguay. Acta zoológica lilloana 56: 141–153.



 

274 
 

  



Acknowledgements 

275 
  

Acknowledgements 
 

This thesis would be non-existent if it weren’t for the numerous people who, each in their 

own way, contributed to the work presented here. 

 

First and foremost, I would like to express my deepest gratitude to my promotor, Marcel, 

who not only made this project possible financially, but who has also been a true inspirer, 

motivator, and mentor throughout my journey. You continuously inspired me when 

embarking on new projects and, while never involved with the very nitty-gritty analytical 

details, always managed to keep the bigger picture and the biology of the system in sight 

and prevented me from wandering astray. Most certainly my (future) career as a 

researcher will be owed largely to the doors that you opened for me. 

Phillip, as my co-promotor you have been the true engine of my PhD. Not only have 

your analytical skills been instrumental in my development as a quantitative geneticist, 

you were also always there to have a nice chat during the highly needed lunch or coffee 

breaks. Thank you for all the things that you have taught me, for the interesting 

discussions, and for keeping patient when being asked ignorant questions over and over 

again. I wish you the best of luck furthering your career in Bergenhusen. 

Before I continue to thank the people that have been important to me scientifically, I 

need to highlight two people in particular: my paranymphs Kamiel and Irene. At a point 

when I had no idea about what to do with my life, Kamiel took me under his wings. He 

invested time in me by teaching me everything he knew about bats, helped me believe in 

myself and develop myself as a researcher, introduced me to some very nice people 

(including his family!), helped me get enrolled in the master’s programme by putting in a 

good word and eventually tipped me about the ad for this PhD. Kamiel, this is one of the 

rare occasions where it is totally justified to state that without you this thesis would not 

have happened in the very literal sense! Irene, my ’PhD sibling’: let me start by thanking 

you for your invaluable help during my project at a time when your schedule was 

occasionally even more hectic than mine! You and I started on the same project. Although 

our ways parted soon scientifically, I have always felt a natural connection between the 

two of us. Sharing office, our long conversations about life as a PhD (tough at times), and 

the nice dinners with you and Renske have created long-lasting memories that I will 

continue to cherish. Thank you both for being my paranymphs! 

Scientific ideas never emerge out of the blue. They come from attending conferences, 

reading interesting papers, and of course having inspiring discussions with many equally 

inspiring people. In my case, the list of people is endless but I would like to list at least the 

entire Animal Ecology department; the seniors Bart, Kees, Kate, Martijn, and Arie, as well 

as the large flock of awesome PhD students and postdocs: Barbara, Lies, Lysanne, Lucia, 

Maaike, Thomas, Nina B., Rascha, Kees, Els, Nelleke, Magali, Henk Jan, Krista, Bernice, 

Melanie, Davide B., Chiel, Natalie, Götz, Antica, Davide D., Gretchen, Filipe, Liam, 

Nina M., Callum, Jenny, Lyanne, Cas, Judith, Monique, Veronika, and Marleen. Some 

of you may have been more heavily involved than others in scientific discussions, but in 



Acknowledgements 

276 
 

all cases you have been wonderful colleagues whom I enjoyed spending time with. People 

like you make NIOO a place worth returning to for a cup of coffee—or perhaps future 

collaborations? Furthermore, I want to thank Tom and Piter for their invaluable expert 

input that resulted in at least one paper. 

A big word of thanks to the supporting staff and students, without whom the scientific 

engine would come to a halt. The animal caretakers (Ruben, Marylou, Anouk, Franca, 

and Coretta), the gentlemen from the technical department (Wim, Gilles, Jeroen, and of 

course Eke), Christa, Agata, Cynthia, Manon, Martijn, Bart, and Piet: thank you for all 

your help and support and for being nice colleagues during all these years. Peter and 

Louis, ‘Buurman & Buurman’, you deserve a separate mention here because it is you two 

who I have bothered the most in these past four years; building the cages at the Hoge 

Veluwe, though virtually fruitless in the end, was particularly fun and memorable. Gerda 

and the ladies at the reception, you have made my stay at NIOO very pleasant, as have 

my chats at the coffee machine with the people from the AqE department. Henri, thanks 

for showing me (a glimpse of) what it is like to be a field ornithologist! Working with you 

in the field was as useful and informative (because you kept my students in check) as it 

was pleasant. My wonderful students prevented my projects from becoming a logistical 

nightmare. Emma, Imre, Mees, Mireille, Sylvana, Martijn and Maartje: I wish you all the 

best starting your careers as ecologists/researchers. 

Graag wijd ik een woord van dank aan mijn familie en schoonfamilie die altijd voor me 

klaar staan en mij zowel moreel als logistiek (lees: financieel) gesteund hebben bij het 

bereiken van mijn doelen. Bedankt, oom Rick, voor de mooie foto’s die in mijn boekje 

prijken en dank, zusje Maja, voor je mooie illustraties die de omslag van mijn proefschrift 

sieren. 

Ik ben veel verschuldigd aan mensen die me direct of indirect, al dan niet inhoudelijk 

gesteund hebben—en ongetwijfeld ben ik er veel vergeten. Maar de grootste steun die ik 

in de afgelopen jaren heb mogen ontvangen komt van mijn persoonlijke advocate, mijn 

maatje door dik en dun, mijn verloofde, maar bovenal mijn grote liefde Hanna. In veel 

opzichten ben jij de sleutelfactor achter zowel het behalen van mijn PhD als mijn groei als 

man. Zo heb je mijn vaak drukke werkschema moeten accepteren en heb je mij altijd—al 

ver voor de aanvang van mijn PhD—gestimuleerd om het beste uit mezelf te halen. Als de 

nood hoog was tijdens het veldseizoen, was je ook niet te beroerd om mij te helpen, in het 

veld of elders. Als ik in het buitenland was wachtte jij geduldig op me. Als ik het even niet 

zag zitten was jij er om me op te beuren. Ik noem dat liefde. Ik ben vereerd jou vanaf 5 juli 

2019 mijn vrouw te mogen noemen. 

 

De tied vluuëg, maar wat waor ut sjoeën! Haije!



 

277 
 

WIAS Training and Education Statement 
 

With the training and education activities listed 

below, the PhD candidate has complied with 

the requirements set by the graduate school for 

the Wageningen Institute of Animal Sciences, 

which comprises a minimum total of 30 ECTS 

(= 20 weeks of activities). 

 

Basic training activities (1.8 ECTS) 

WIAS Introduction Day (2015) 

Course Philosophy of Science and/or Ethics (2015) 

 

Disciplinary competences (14.2 ECTS) 

Research proposal PhD (2015) 

Course Getting started with ASREML, ABG, WUR (2015) 

Course Animal Experimentation (Art. 9), KNAW (2015) 

Course Life History Theory, RUG (2015) 

Course Genotype by environment interaction, uniformity and stability, WIAS, WUR (2015) 

Course Survival Analysis, PE&RC, WUR (2016) 

Course Bayesian Statistics, PE&RC, WUR (2017) 

 

Professional competences (4.7 ECTS) 

Course Essential skills; WIAS, WUR (2016) 

Course Career orientation; EPS, WUR (2017) 

Journal clubs (literature review) at NIOO-KNAW (2015–2018) 

 

Presentation skills (4 ECTS) 

WIAS Science Day (poster), Wageningen, NL (2016) 

Netherlands Annual Ecology Meeting (oral), NERN, Lunteren, NL (2016) 

European Society of Evolution (ESEB) congress (poster), Groningen, NL (2017) 

Joint Evolution congress of the Amer. Evol. Soc. and ESEB (oral), Portland, Oregon (2017) 

Netherlands Society of Evolutionary Biology (NLSEB) congress (poster), Ede, NL (2018) 

27th International Ornithological Congress (oral), Vancouver (2018) 

 

Teaching competences (6 ECTS) 

Supervising students’ thesis (two bachelor’s (BAS) and two master’s (MSc)) (2017-2018) 

Lecturing master course Environmental Processes, Leiden University (2016–2018) 

Examination of master students course Ecology of Life Histories, WUR (2018) 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Colophon 

 

The research presented in this thesis was conducted at the Department of Animal Ecology 

of the Netherlands Institute of Ecology (NIOO-KNAW), Wageningen. 

 

The research described in this thesis was financially supported by the European Research 

Council. 

 

This thesis is NIOO Thesis 169 

Photos of free-ranging great and blue tits by courtesy of Rick Sanders 

Cover art by Maja Ramakers 

Printed by ProefschriftMaken.nl, Wageningen, the Netherlands 





Q
uantifying evolution in w

ild populations   -
   Jip Ram

akers
2019


	Blank Page
	Blank Page
	Jip Ramakers - propositions.pdf
	Blank Page




