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Chapter 1

Introduction

Parts of this chapter are based on: H.M. Stellingwerf, A. Kanellopoulos, and J.M. Bloemhof
(2019), Sustainable Food Supply Chains: Planning, Design, and Control through Inter-
disciplinary Methodologies (Eds: Riccardo Accorsi and Riccardo Manzini), Ch. 11: Using
vehicle routing models to improve sustainability of temperature-controlled food chains,
Elsevier, Amsterdam, The Netherlands.

1.1 Background
Food supply chains are challenged to reduce both costs and emissions to improve eco-
efficiency and studies have suggested that logistics cooperation can help to achieve this
aim. Therefore, the Netherlands Organisation for Scientific Research (NWO) has funded
a project called Capitalising on cooperation in sustainable logistics in food chains (CapsLog),
which involves Wageningen University, Vrije Universiteit (VU) Amsterdam, ArgusI (a sup-
ply chain advisory) and a group of Dutch retailers that consider to implement logistics
cooperation in order to reduce costs and emissions. This thesis focuses on developing
decision support tools that can help designing eco-efficient logistics cooperation in food
supply chains.

Food supply chains
Public awareness about global environmental changes such as air pollution caused by
intensified economic activity has increased the need to reduce of environmental impact
(Garnett, 2008; Hariga et al., 2017). Road transportation generates significant costs for
firms that deliver and collect products but it is also responsible for a large part of global
CO2 emissions (Dekker et al., 2012; Palmer, 2007). Food supply chains are more pollut-
ing compared to regular supply chains because food is often perishable and temperature
control is needed, which requires extra energy, resulting in additional fuel use and emis-
sions (Adekomaya et al., 2016; Tassou et al., 2009). Moreover, food specific properties such
as perishability and seasonality make efficient planning of the supply chain more chal-
lenging because there is not always a stable supply and shelf life is limited (Van Der Vorst
et al., 2009). Food supply chains are challenged to improve economic performance with
less environmental impact; they need to become eco-efficient (Banasik et al., 2018).
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Chapter 1. Introduction

Eco-efficiency

Eco-efficiency was first described by Reijnders (1998) as the reduction of environmental
impact of economic activities. In later studies, the definition of eco-efficiency has become
more quantitative. For example, in the study of Glavič and Lukman (2007), it is described
as the ratio between economic and environmental performance. In this thesis, we adopt
a more recent definition of eco-efficient solutions, i.e. solutions for which it is impossible
to improve the environmental objective without worsening the economic objective, and
vice versa (Neto et al., 2009). Since economic and environmental objectives can be con-
flicting, multiple alternative eco-efficient solutions may exist (Banasik et al., 2018). How-
ever, since our study is focused on food supply chains, food quality is also an important
indicator. Food quality can be considered both an economic and an environmental indi-
cator, since quality affects price, but also food waste. Improving costs, emissions and food
quality are thus all part of an eco-efficient food supply chain and this thesis will focus on
all three indicators when testing eco-efficiency.

Logistics cooperation

Logistics cooperation has been defined as the situation where two or more autonomous
firms work together to plan and execute supply chain operations (Simatupang and Sridha-
ran, 2002). Logistics cooperation between firms of the supply chain has been proposed
as a concept that can substantially improve the eco-efficiency of the chain as a whole.
This is mainly because firm specific management decisions, like transportation planning
and inventory management decisions can be aligned and resources can be used more
efficiently (Ramanathan et al., 2014; Vanovermeire et al., 2014; Bloemhof et al., 2015). Estab-
lishing effective cooperation between firms is a challenging process. Competition and
synergies have to be evaluated and decision support models are required to quantify the
potential benefits but also the risks of cooperation in food supply chains. Moreover, the
cooperative benefits need to be allocated in a way that is considered fair and acceptable
by all partners. Despite the benefits, companies are often hesitant to participate in a co-
operation because it might bring advantages to competitors and they find it difficult to
agree on gain sharing (Cruijssen et al., 2007a).

Problem definition and research questions

Food supply chains are challenged to reduce both costs and emissions to improve eco-
efficiency. The concept of logistics cooperation is promising but its effects on eco-efficiency
in the food supply chain have not been evaluated quantitatively. It is hard to obtain quan-
titative evidence because of complexity related to food specific aspects such as perisha-
bility. Also, there are different forms of cooperation, multiple actors are involved, bene-
fits need to be allocated in a fair way, and economic and environmental objectives can be
conflicting. Therefore, decision support models that are able to capture the complexity
of establishing effective food logistics cooperation in supply chains need to be developed.

The main question that this thesis aims to answer is: Which decision support models can be
used to design eco-efficient logistics cooperation in food supply chains?
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1.2. Literature and methodological challenges

1.2 Literature and methodological challenges

Eco-efficiency in food supply chains
Vehicle and inventory routing problems have been modelled in Operations Research (OR)
to optimise logistics decisions in supply chain management. Traditionally, vehicle rout-
ing models aim to minimise costs or distance. Recently, green logistics research has also
studied how to minimise emissions (Bektaş and Laporte, 2011). However, these green lo-
gistics models have not been used to establish a trade-off between cost and emissions
(Cheng et al., 2017). As the eco-efficiency objectives can be conflicting, multi-objective
models can be used. Those models are designed to comply with multiple objectives si-
multaneously. Also, they are useful to capture the inherent complexity that characterises
temperature-controlled food supply chains (Banasik et al., 2018).

Moreover, to accurately quantify the economic and environmental effects of cooperation
in food supply chains, the characteristics of food supply chains need to be considered. Of
all foods, 40% needs refrigeration to guarantee quality. This results in additional energy
use, and consequently, fuel and emissions. Moreover, refrigerant leakage causes extra
emissions (Adekomaya et al., 2016). Therefore, it is important to consider the effects of
temperature control on the costs and emissions.

The first sub question is thus: How to quantify eco-efficiency in temperature-controlled food
logistics?

Food quality in cooperative logistics
In food supply chains, it is important to guarantee food quality. Cooperation is generally
expected to reduce costs and emissions but a possible disadvantage is a negative influ-
ence on product quality caused by the temperature fluctuations resulting from the in-
creased number of stops on a joint route. Also, transporting multiple products with dif-
ferent optimal temperatures together could negatively affect food quality. In logistics
modelling studies, quality decay has been incorporated using different approaches, for
example by quantifying remaining shelf life (Amorim and Almada-Lobo, 2014; Soysal et al.,
2018), or by using a chance-constrained decay function to mimic quality decay (Ambrosino
and Sciomachen, 2007; Osvald and Stirn, 2008; Chen et al., 2009), or by using a temperature-
dependent decay function to approximate quality decay (Aung and Chang, 2014; Hsu et al.,
2007). However, these studies do not base the decay rate on empirical studies on the
temperature-dependency of reactions that cause quality decay. Using a decay function
that is related to temperature-dependent reaction speeds in foods could provide more
realistic estimations of the reaction rates and consequent quality decay.

The second sub question is thus: How to model temperature-dependent food quality decay in
logistics models?

Comparing logistics cooperation concepts
In literature, different forms of cooperation have been proposed as logistics solutions
with promising prospect to improve economic and environmental performance of the
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Chapter 1. Introduction

chain. Different forms of cooperation have been compared qualitatively. Table 1.1 sum-
marises different forms of cooperation and describes their advantages and disadvantages.

Table 1.1: Logistics Cooperation Concepts (LCC), with a description of the cooperation mechanisms,
as well as their advantages and disadvantages according to literature.

LCC Mechanism Advantages Disadvantages References
Joint Opening a Reduction of inventory Investment Aydin and Porteus (2008)
ware- new joint DC Less pick-ups New planning Chopra and Meindl (2007)
housing or sharing one Less vehicles Higher response Cruijssen et al. (2007a)

Increased drop size time

Vendor- Vendor manages Better resource utilisation Requires Disney and Towill (2003)
managed inventory and trans- Improved inventory advanced Coelho et al. (2013)
inventory port to buyer(s) management IT facilities Bazan et al. (2015)

Higher service levels
Reduced bullwhip

Transport Node exchange More vehicle load Increased opera- Kreutzberger (2010)
bundling to enable combining Higher delivery frequency tional time and

vehicle loads Higher service levels handling costs

Joint route Jointly optimising More reliable Increased schedu- Cruijssen et al. (2007b)
planning daily routing Less slack time ling complexity Gonzalez-Feliu et al. (2010)

decisions Less vehicles Necessity stand-
Better vehicle utilisation by vehicles

A qualitative comparison of different forms of logistics cooperation can provide insight,
but without a quantitative comparison, it is hard for partners to choose a form of cooper-
ation. Also, quantification of benefits can help to convince partners to cooperate. How-
ever, in quantitative studies, authors often compare cooperation to a non-cooperative
scenario. Multiple forms of cooperation are possible, and should be compared to each
other based on different multiple indicators, such as costs and emissions.

In order to quantify the eco-efficiency of a cooperative logistics systems, multiple indi-
cators should be considered. For example, costs, emissions and food quality. Nonethe-
less, minimising costs does not always yield the same solution as minimising emissions
and trade-offs exist. For partners to be able to make a decision on a cooperative transport
plan, it is thus important to clarify if there are trade-offs between the different objectives,
and to quantify these trade-offs.

The third sub question is thus: What are the effects of different forms of cooperation on eco-
efficiency?

Gain allocation for eco-efficient food supply chain cooperation
Cost savings are an important reason for partners to cooperate. However, when a form of
cooperation is chosen, and partners agree on a cooperative logistics plan, they also need
to decide how to divide the resulting benefits in a fair way. Agreeing on a fair gain division
is generally hard for partners and research shows that this is one of the most common
impediments to cooperation (Cruijssen et al., 2007c). It is thus important to find a gain
allocation that is considered fair by all participants.
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1.3. Outline of thesis

Gain allocation methods have been used to identify potential coalitions and to fairly allo-
cate the benefits of the coalitions to all cooperating partners (Nagarajan and Sošić, 2008).
Tijs and Driessen (1986) have summarised different gain allocation methods. In most gain
allocation methods, the benefits or cost allocated to a partner are related to the partner's
contribution to the group's cost savings (Guajardo and Rönnqvist, 2016). Recent case stud-
ies that compare different cost allocation methods are, for example, Frisk et al. (2010),
Vanovermeire et al. (2014), and Wang et al. (2017). Some studies (Frisk et al., 2010; Vanover-
meire et al., 2014; Jonkman et al., 2019) conclude that cooperation can also result in envi-
ronmental benefits. However, in these studies the contribution of the partners to CO2
emissions saving is not taken into account in the allocation of the cooperative benefits.
To stimulate eco-efficient forms of cooperation, partners should not only be rewarded for
reducing cooperative costs, but also for improving performance of other indicators such
as emissions.

The fourth sub question is thus: How can gain allocation be applied such that eco-efficient
forms of logistics cooperation are stimulated?

1.3 Outline of thesis
The problems and the concepts addressed in the research questions, are linked to each
other and this can be visualised as shown in Figure 1.1, which summarises the modelling
framework used in this thesis. It shows that we aim to build models that can be used to
evaluate logistics cooperation concepts based on their eco-efficiency, while considering
supply chain characteristics, and that we aim to allocate gains based on the contribution
of the cooperative partners to eco-efficiency.

In order to study how cooperation can be used to improve eco-efficiency, we need meth-
ods to quantify the eco-efficiency of food supply chains. Therefore, in Chapter 2, a green
vehicle routing problem is extended to account for the costs and emissions caused by
temperature control. Cooperation in food supply chains can result in significant savings
in costs and emissions. However, cooperative routes can result in more door openings,
and temperature fluctuations, which could have a negative effect on the quality of the
temperature sensitive products delivered. Therefore, in Chapter 3 we extend the model
of Chapter 2 such that it can be used to quantify the effects of door openings and tem-
perature fluctuations on the quality of the food transported. Also, we study the effects of
transporting different products with different optimal temperatures (i.e. not all products
are transported at their optimal temperature) on the quality of the products.
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Chapter 1. Introduction

Figure 1.1: Modelling framework used in the thesis.

In Chapter 4, we quantify and compare the economic and environmental benefits of dif-
ferent forms of cooperation (JRP and vendor-managed inventory, VMI) with a non-coop-
erative scenario in a case study in frozen food logistics. We study eco-efficiency of VMI
cooperation, as well as the trade-off between emissions and product age. One of the im-
pediments to cooperation is how to share the resulting gains. In Chapter 5, we propose
a methodology to turn this impediment into an opportunity to stimulate eco-efficient
forms of cooperation. Gain allocation is generally based on each partner's contribution
to saving costs, and we show how it can be used to base the allocation on each partner's
contribution to costs as well as to emissions. Building on the insights from the previous
chapters, Chapter 6 is used to draw general conclusions, discuss implications and limita-
tions of this work, put it in a broader perspective, and suggest future research directions.
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Chapter 2

Reducing CO2 emissions in
temperature-controlled road
transportation using the LDVRP model

Temperature-controlled transport is needed to maintain the quality of products such as
fresh and frozen foods and pharmaceuticals. Road transportation is responsible for a
considerable part of global emissions. Temperature-controlled transportation exhausts
even more emissions than ambient temperature transport because of the extra fuel re-
quirements for cooling and because of leakage of refrigerant. The transportation sector
is under pressure to improve both its environmental and economic performance. To ex-
plore opportunities to reach this goal, the Load-Dependent Vehicle Routing Problem (LD-
VRP) model has been developed to optimise routing decisions taking into account fuel
consumption and emissions related to the load of the vehicle. However, this model does
not take refrigeration related emissions into account. We therefore propose an extension
of the LDVRP model to optimise routing decisions and to account for refrigeration emis-
sions in temperature-controlled transportation systems. This extended LDVRP model is
applied in a case study in the Dutch frozen food industry. We show that taking the emis-
sions caused by refrigeration in road transportation can result in different optimal routes
and speeds compared with the LDVRP model and the standard Vehicle Routing Problem
model. Moreover, taking the emissions caused by refrigeration into account improves
the estimation of emissions related to temperature-controlled transportation. This mo-
del can help to reduce emissions of temperature-controlled road transportation.

This chapter is based on: Stellingwerf, H.M., Kanellopoulos, A., van der Vorst, J.G.A.J., Bloemhof, J.M. (2018).
Reducing CO2 emissions in temperature-controlled road transportation using the LDVRP model. Transportation
Research part D: Transport and Environment, 65, 178–193, 2018
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Chapter 2. Temperature-controlled road transportation

2.1 Introduction

Transportation of goods results in substantial economic and environmental consequences
(Palmer, 2007). The percentage of CO2 emissions caused by vehicle transportation in the
European Union has increased from 5.6% in 1990 to 9% in 2014; worldwide, transporta-
tion causes 14% of the global CO2 emissions Dekker et al. (2012). Greenhouse gas emis-
sions from conventional diesel engine vapour compression refrigeration systems can be
as high as 40% of the vehicle's emissions Tassou et al. (2009). In general, current trans-
portation systems are far from efficient and the problem is more severe in temperature-
controlled transportation systems of, for example, frozen food and pharmaceuticals, for
which additional energy is needed to regulate temperature and ensure quality, product
safety and shelf-life (Adekomaya et al., 2016; Ketzenberg et al., 2015). It is therefore impor-
tant to keep the temperature at the appropriate level. A survey showed that the thermal
energy requirement is around 15% to 25% of the motive energy requirement of vehicles
(Tassou et al., 2009) and therefore temperature-controlled transportation is more pollut-
ing than ambient transportation.

To improve the efficiency of current temperature-controlled transportation systems, we
need appropriate decision support tools to compare different options to eliminate inef-
ficiencies. Models based on the Vehicle Routing Problem (VRP) have been proposed to
optimise operational routing decisions for transportation systems of various commodi-
ties. The basic variants of these models minimise transportation costs or transportation
distance and provide an optimal route to deliver or collect commodities (Toth and Vigo,
2002). Some variants of VRP models, known as Green Vehicle Routing Problem (GVRP)
models (Lin et al., 2014) have also been used to minimise environmental impact, most of-
ten expressed as carbon dioxide (CO2) emissions. Demir et al. (2014) summarise different
approaches to the GVRP. The Load-Dependent VRP (LDVRP) model can be considered as a
special case of a GVRP model that takes the load and the order of unloading into account
when calculating fuel consumption (Bektaş and Laporte, 2011; Zachariadis et al., 2015). Ex-
isting green logistics VRP models do not account for the substantial emissions exhausted
as a result of temperature control. Accurate quantification of the emissions of tempera-
ture controlled transportation requires not only to consider emissions caused by fuel use
needed for driving, but also emissions caused by fuel use for refrigeration and refriger-
ant leakage. Consequently, existing green logistics VRP models need to be extended be-
fore they can be used to optimise operational decisions for temperature-controlled trans-
portation systems.

The objective of this Chapter is to propose an extension of the LDVRP model to minimise
emissions in temperature-controlled transportation systems. We propose a metric of
CO2 emissions that, next to emissions caused by fuel use for moving the vehicle, also con-
siders emissions caused by fuel use for cooling the vehicle as well as emissions caused by
leakage of refrigerant. To that aim, a Load-Dependent VRP is extended to account for
emissions caused by fuel used for temperature control and for refrigerant leakage. This
model is applied to a case study in frozen food transportation in the Netherlands. In Sec-
tion 2.2, we present the methodology, in which we describe an LDVRP model and the ex-
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2.2. Methodology

tensions required to take emissions caused by refrigeration into account. The case study
and the calculations are presented in Section 2.3 and the results in Section 2.4. We con-
clude with the discussion and conclusions in Section 2.5.

2.2 Methodology
This section first gives a review of relevant LDVRP literature and describes the LDVRP mo-
del. Then, characteristics of temperature controlled transportation are described these
characteristics are translated into a LDVRP extension. In the appendix, all nomenclature
used is summarised (Table A.1), as well as the decision variables (Table A.2) the values
used to run the model (Table A.3) and all parameters are defined there as well (Table A.4).

The green vehicle routing problem: review of relevant literature
VRP models are used to find optimal routes for delivering or collecting products, mostly
by minimising total distance (Toth and Vigo, 2002). However, different objective functions
have been used. For example, to minimise environmental impacts caused by the distance
travelled, green VRPs have been developed (Demir et al., 2014; Lin et al., 2014; Jaehn, 2016).
In ambient temperature transport, CO2 emissions are linearly related to fuel consump-
tion, which in turn is linearly related to the loaded distance (i.e. weight multiplied by
distance) travelled. Because the fuel consumption and thus the emissions are directly
related to the weighted distance, the order of unloading can have a significant impact
on the pollution caused by a route (Kara et al., 2007; Xiao et al., 2012; Molina et al., 2014;
Zachariadis et al., 2015). The recently proposed LDVRP model considers the load and the
order of unloading when comparing routes, for example, by minimising total CO2 emis-
sions and transportation costs (Kara et al., 2007; Bektaş and Laporte, 2011; Xiao et al., 2012;
Bing et al., 2014; Zachariadis et al., 2015).

Kara et al. (2007) use the LDVRP to minimise energy use on a route, and they provide two
examples to show that the LDVRP model gives different results than a distance minimis-
ing model. Xiao et al. (2012) consider the load into account in a fuel consumption optimi-
sation model. Like Kara et al. (2007), they show that their model gives a different result
than distance minimisation. Also Ahn and Rakha (2008) describe show that taking the
load into account can change the best route from an environmental and an energy per-
spective: the fastest route is no longer the best.

Zachariadis et al. (2015) use the LDVRP model proposed by Kara et al. (2007) and extend
it to account for pickup and delivery time in order to analyse the influence of the maxi-
mum cargo to empty weight ratio. The authors state that the LDVRP model is suitable
for optimising transportation operations when the weight of the transported cargo has
a significant contribution to the gross vehicle weight, such as logistics operations for su-
permarkets. In this case, the LDVRP model generates a more sensible transportation plan
compared with basic VRP models (Zachariadis et al., 2015). For a sensitivity analysis, the
authors compare the objective function values of two different routes with loads of vary-
ing weight.
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Chapter 2. Temperature-controlled road transportation

Most LDVRP studies use one objective function. For example, Kara et al. (2007) and Xiao
et al. (2012) both add the weighted distance (which they translate to energy and fuel con-
sumption, respectively) into a cost function. Molina et al. (2014) combine three different
objectives (i.e. to minimise internal costs, CO2 emissions, and NOx emissions) into one
function. The Pollution Routing Problem is an example of an LDVRP that takes both the
economic and environmental impact of different routes into account (Bektaş and Laporte,
2011). That study takes a broader view than the standard VRP by analysing routes based
on four indicators: costs, emissions, distance, and time.

The Load Dependent Vehicle Routing Problem
An LDVRP is formulated based on the studies described above. Bektaş and Laporte (2011)
used the LDVRP model to minimise environmental impacts, such as energy use. The mo-
del was adjusted to account for multiple vehicles. The total energy use in ambient tem-
perature transportation systems is the motive energy. The motive energy requirement
depends on the distance driven, the weight transported over that distance, the steepness
of the road (θ) and the air density (ρ). The first objective function (Equation 2.1) min-
imises motive energy and is based on that study:

Minimise{Pm =
∑
i∈V

∑
j∈V

∑
k∈K

αijw
k
ijcij +

∑
i∈V

∑
j∈V

∑
k∈K

βkxk
ijv

2
ijcij}, (2.1)

wherePm is the total motive energy requirement of a route (kWh),xk
ij is a binary variable

that equals 1 if and only if the route between node i and node j is taken with vehicle k,
ykij is the weight of vehicle k, including the load that is transported from node i to node
j, cij is the distance between node i and node j (m) and vij is the speed at which the
distance between i and j is traversed (m/s), and αij is the arc-specific constant, and β
is the vehicle-specific constant. Equations (2.2) and (2.3) show how these constants are
calculated:

αij = a+ gsinθij + gCrcosθij , (2.2)
where a is the acceleration of the vehicle (m/s2), g is the gravitation constant (m/s2), θij
refers to the average slope on arc ij (°), Cr is the rolling resistance (dimensionless). The
vehicle-specific constant is calculated as

β = 0.5CdAρ, (2.3)

whereCd is the drag coefficient (dimensionless),A is the frontal area of the vehicle (m2),
and ρ is the air density (kg/m3).

In (2.4) fuel use for ambient (motive) transport (fm) is calculated by summing up the
power requirements for all routes and converting those into fuel use. This is achieved
by dividing the power by 3.6 × 106 to convert Joule (J) to kilowatt-hour (kWh), by the
chemical to motive energy conversion efficiency (ηm), and by the energy content of the
fuel (Pf ):

fm =

∑
i∈V

∑
j∈V Pij

3.6× 106 Pf ηm
. (2.4)
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The emissions from ambient (motive) transport are linearly related to fuel use:

Em = fmef , (2.5)

where ef is the emissions factor which converts fuel use into CO2 emissions (kg/L), and
Em are the CO2 emissions of ambient transport (kg). Equation 2.5 shows that motive en-
ergy and motive emissions are linearly related. This means that in case of ambient trans-
port (no thermal energy), minimising motive energy and minimising emissions will give
the same results (Palmer, 2007).

To also analyse the economic consequences of using different VRP-based model, an op-
erational cost function is constructed (Equation 2.6). From an operational perspective,
fuel costs and wage costs are the most important costs. Fuel costs depend on energy use
and wage costs depend on the time that a driver spends on a route.

The total cost can be calculated as follows by adding wage cost and fuel cost:

C =
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cwcijx
kt
ij

vij
+

∑
i∈V ′

∑
j∈V

∑
k∈K

∑
t∈T

cwx
kt
ij s+ (fa + fr)cf , (2.6)

where C refers to the total cost (e), cw is the driver wage per time unit (e/s), cf is the
unit fuel cost (e/L), and cw is the unit wage cost (e/s).

We formulate the LDVRP constraints based on (Kara et al., 2007) and extend them such
that they fit the requirements of transportation with multiple vehicles. Constraints (2.7)
— (2.14) were adjusted to account for multiple vehicles and constraint (2.15) was added to
limit the maximum driving time per vehicle, such that the proposed solutions are in line
with the regulations for driver's working times (Molina et al., 2014). Because of the explicit
vehicle numbering, explicit sub-tour elimination constraints were needed, so constraints
(2.16) and (2.17) were added (Miller et al., 1960). Constraint (2.18) ensures that no vehicles
drive to locations without demand. As a result of accounting for multiple vehicles, it was
necessary to add constraints (2.19) -– (2.21). Explanation of all constraints is given after
their formulation.
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subject to ∑
k∈K

∑
i∈V ′

xk
0i ≤ K, (2.7)∑

k∈K

∑
i∈V

xij = 1 qj > 0, j ∈ V ′, (2.8)∑
k∈K|qi>0,

∑
j∈V

xij = 1 i ∈ V ′, (2.9)

∑
i∈V

wk
ji −

∑
i∈V |i 6=j

wk
ij = qki j ∈ V ′, k ∈ K, (2.10)

wk
i0 = Lk

0x
k
i0 i ∈ V ′, k ∈ K, (2.11)

wk
i0 ≤ (Lk + Lk

0 − qi)x
k
iji ∈ V, j ∈ V, k ∈ K,

(2.12)

wk
ij ≥ (Lk

0 + qj)x
k
ij i ∈ V, j ∈ V, k ∈ K,

(2.13)

xk
ij ∈ {0, 1} i ∈ V, j ∈ V, k ∈ K,

(2.14)∑
i∈V

∑
j∈V ′

cijx
k
ij

vij
+

∑
i∈V

∑
j∈V ′

xk
ijsi ≤ d k ∈ K, (2.15)

ui − uj + Lkxk
ij ≤ Lk − qj i ∈ V ′, j ∈ V, k ∈ K

(2.16)

qi ≤ ui ≤ Lk i ∈ V ′, k ∈ K (2.17)∑
j∈V

xk
ij = 0 qi = 0, i ∈ V ′, k ∈ K,

(2.18)∑
i∈V

∑
j∈V

∑
k∈K

xk
ij = 0 i = j, (2.19)

∑
i∈V ′

∑
k∈K

xk
i0 =

∑
i∈V ′

∑
k∈K

xk
0i, (2.20)∑

j∈V

xk
0j ≤ 1 k ∈ K, (2.21)

Constraint (2.7) ensures that no more than the maximum number of vehicles available
(K) leave the CDC. Constraints (2.8) ensure that each node with demand (qi) is visited
once and constraints (2.9) cause each node with demand to also be left once. Constraints
(2.10) are balance constraints; after a node has been visited, the load of the vehicle di-
minishes with the demand of the node just visited. Constraints (2.10) force the vehicles
to return to the depot empty (Lk

0 is the tare, i.e. the empty weight of the vehicle). Con-
straints (2.12) and (2.13) put boundaries on the minimum and maximum weight (Lk is
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the total weight of vehicle k) that can be transported over an edge, and connect the de-
cision variables xk

ij and ykij such that the objective functions remain linear. Constraints
(2.14) forcesxk

ij to be integer; a path is either taken or it is not. Constraints (2.15) limit the
maximum working time per driver (d); s is the time needed for unloading. Constraints
(2.16) and (2.17) are Miller-Tucker-Zemlin sub-tour elimination constraints (Miller et al.,
1960). Constraints (2.18) ensure that there are no routes to locations without demand.
Constraints (2.19) do not allow the model to suggest routes between the same location.
Constraint (2.20) states that the number of vehicles leaving the depot should equal the
number of vehicles returning. Constraints (2.21) force the model to use a new vehicle for
a new route from the depot.

Temperature controlled road transportation: a review of relevant literature
Food transport refrigeration causes additional emissions compared to ambient transport
(Adekomaya et al., 2016). Most refrigeration systems for food transportation use diesel
driven vapour compression (Tassou et al., 2009). The chemical energy from the diesel is
converted to electrical energy and the constant ηe is used to describe the efficiency of
this conversion. Then the electrical energy is used to drive the transport of heat from the
inside to the outside of the vehicle. This heat transport can be described with the Coef-
ficient of Performance (COP). The COP describes the ratio of heat removed as function
of energy supplied, is generally between 0.5 and 1.5 for refrigerated transport of chilled
food (at 2°C) (Tassou et al., 2009). The COP can be above 1 because the electric power is
used to transport energy (heat) instead of converting it. In frozen food, where the COP
is generally below 1, there are thus two conversions (from chemical to electrical to ther-
mal) in which energy is lost, which increases the energy demand for cooling. In the field
of thermal engineering, some studies use thermodynamics to estimate how much heat
(energy) should be removed in order to keep the temperature in the vehicle stable (Kond-
joyan, 2006; Pham, 2006). These studies however require detailed knowledge of the val-
ues of many technical parameters, including the dimensions and the direction of the air-
flow, the composition of the air and the composition of the products. In daily route plan-
ning practice, these data are often unavailable. In this Chapter, we propose a more oper-
ational approach to the amount of energy that needs to be removed from the vehicle for
a stable temperature. Thermal energy is needed to compensate for the heat that enters
through the vehicle wall during the trip (Tassou et al., 2009; James and James, 2010), and for
the heat that enters through the door when the vehicle is opened (Tso et al., 2002). Tassou
et al. (2009) described the heat entering the vehicle wall as a function of conductivity, the
difference between the temperature inside and outside the vehicle wall, and the surface
area. Tso et al. (2002) measured how much the temperature of the vehicle air increases
when the door opens.

The refrigeration system produces emissions because of fuel usage but it also does so
by leaking refrigerant (Adekomaya et al., 2016). The vapour compression system used for
refrigeration of the vehicle load slowly leaks refrigerant to the environment, at a rate of
between 10 to 37% of the refrigerant charge per year (Spence et al., 2004). This refrigerant
leakage can cause the emissions that are caused by using fuel for temperature control to
increase with 21% (Koehler et al., 1997).
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An overview of types of temperature controlled vehicles, cooling technologies, and fu-
ture improvements for cooling technologies can be found in Tassou et al. (2009). Adeko-
maya et al. (2016) also focus on different technologies to improve energy consumption,
and they discuss worldwide energy use for cooled transport. However, these papers do
not study the impact of routing decisions on refrigeration emissions. If temperature con-
trol is taken into account in routing decisions, it could already help to reduce tempera-
ture control emissions. Moreover, when a company considers using a new technology for
cooling, a Temperature Controlled LDVRP could help to estimate the effects on costs, fuel
and emissions from an operational perspective. Therefore, we propose an extension of
the LDVRP model to account for both emissions caused by motive energy requirements
and emissions caused by refrigeration energy requirements and leakage of refrigerant.

The Temperature Controlled LDVRP model
The standard LDVRP model does not account explicitly emissions caused by refrigera-
tion systems in road transportation. For that reason, it underestimates the environmen-
tal impact of temperature-controlled transportation systems. Minimising carbon diox-
ide emissions is a way to minimise environmental impact. The objective function (2.22)
describes total emissions from refrigerated road transportation.

Minimise{E = Em + Et}, (2.22)

whereE represents the emissions (kg CO2),Et represents the emissions because of ther-
mal energy and refrigerant leakage and Em represents the motive emissions, which are
the total emissions in ambient transport. Em is given in Equation (2.5).

Together with constraints (2.7) – (2.21), objective (2.22) is an extended version of the LD-
VRP model for temperature-controlled road transportation, which is why we call it the
temperature-controlled LDVRP (TCLDVRP). Thermal emissions and the components that
make up those emissions are given in Equations (2.23) – (2.28).

Et = Ft × ef × er, (2.23)

whereFt represents fuel use for thermal energy (L), ef is the conversion factor from fuel
to emissions caused by fuel, and er is a factor that converts emissions caused by thermal
energy use to emissions caused by thermal energy use and refrigerant leakage.

Ft =
Qc

ηe × COP × Ed
(2.24)

whereQc is the thermal energy (i.e. heat removed from the inside of the vehicle, in kWh),
ηe is the conversion efficiency from chemical energy of the diesel to electrical energy that
drives the cooling engine; COP is the Coefficient of Performance, which is a measure for
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how much thermal energy can be removed with the electrical energy supplied, andEd is
the energy content of the diesel (in kWh/L). The COP is given in Equation (2.25).

COP =
Qc

Wg
(2.25)

where Qc is the net heat absorbed at the cold side of the cooling device, and Wg is the
electrical power applied to do so (Tassou et al., 2009).

Combining the work of (Tso et al., 2002) and (Tassou et al., 2009), we describe the thermal
energy requirement (Qc) as sum of the heat entering through the vehicle wall (HW ) and
the energy from the heat coming in when the door is opened at a stop (HS) in Equation
(2.26).

Qc = HW +HS (2.26)

HW andHS are calculated in Equations (2.27) and (2.28), respectively.

HW =
∑
i∈V

∑
j∈V

∑
k∈K

UkSk∆Tij
cijxij

vij
(2.27)

where Uk is the heat transfer coefficient of vehicle k (W/m2/K), Sk is the mean section
of the vehicle body in m2 (which is the square root of the product of the inside and the
outside area of the vehicle),∆Tij is the average air temperature difference between the
inside and outside of the body on arc ij (K), and with cijx

m
ij

vij
, the arc crossing time is cal-

culated.

HS =
∑
i∈V ′

∑
j∈V ′

∑
k∈K

xk
ijhi (2.28)

where hi is the amount of heat entering the vehicle when the door is opened during a
stop at location i (kWh) and summing overxij

k results in the number of stops when the
depot is excluded.

2.3 Case study
This case study focuses on frozen food road transportation in the Netherlands. More
specifically, we focus on optimising the daily routing decisions of a large supermarket
consortium that is responsible for 30% of the market share of supermarkets, i.e. nine
supermarket chains in the Netherlands. These supermarket chains order their products
together. The products then have to be transported from the central distribution centre
(CDC) to the distribution centres (DCs) of the different supermarket chains. Some DCs
want a delivery almost every day; others prefer less frequent deliveries. On a daily basis,
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a routing plan is made according to the demand. Currently, the CDC tries to minimise the
total distance, but it is also interested in minimising total fuel consumption.

Data and assumptions
Case study data
In this case study, the analysis is based on the orders of the main distribution centres
(DCs, numbered 1 to 9) of the nine supermarket chains in October 2014, which are de-
livered from the CDC (numbered 0). On each day except Sundays, the CDC sends frozen
products to the DCs in temperature-controlled vehicles. Note that not every DC has de-
mand on every day and demand varies per day for each retailer. DCs without demand on
a certain day are not visited on that day.

Distances
The distances between the locations are estimated based the road distances between the
postal codes of the locations using the ESRI ArcGIS software. The distances between the
nodes are shown in Table 2.1.

Table 2.1: Distances (in km) between the depot (0) and the DCs (1–9).

0 1 2 3 4 5 6 7 8 9
0 0 91 6 134 82 117 74 192 129 120
1 91 0 91 75 134 43 20 155 59 122
2 6 91 0 134 84 117 75 194 129 123
3 134 75 134 0 168 46 94 90 29 118
4 82 134 84 168 0 158 140 180 169 90
5 117 43 117 46 158 0 59 117 18 128
6 74 20 75 94 140 59 0 174 77 128
7 192 155 194 90 180 117 174 0 99 110
8 129 59 129 29 169 18 77 99 0 137
9 120 122 123 118 90 128 128 110 137 0

Driving speed
To estimate the average speed between nodes, we took the traffic situation in the Nether-
lands into account. In general, the west of the Netherlands is more densely populated
than the east. Therefore, travelling to the west is generally slower than travelling to the
east. This is especially the case in the morning, when most of the traffic jams occur. More-
over, most of the transportation in this case study occurs in the morning. To generate the
speed matrix in Table 2.2, we assumed that the speed of arcs going eastwards follow a
normal distribution with a mean of 62.5 km/h and a standard deviation of 3 km/h, while
the speed of arcs going westwards follow a normal distribution with a mean of 47.5 km/h
and a standard deviation of 3 km/h (cf. Bektaş and Laporte (2011)).

Slope
Between the west and the east of the Netherlands, there is a very small incline of 0.01°
(assuming an altitude difference of 52 m at a horizontal displacement of 300 km). With
Equation 2.2, we use this slope to calculateαij for the arcs going to the west (0.0964) and
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Table 2.2: Speeds (in km/h) between the depot (0) and the DCs (1–9).

0 1 2 3 4 5 6 7 8 9
0 45.9 50.7 51.4 63.4 65.9 50.5 46.7 65 52.9
1 59.1 42.9 48.1 60.2 65.3 44.5 46.9 66.9 41.9
2 64.2 60.3 60.2 66.4 63.6 59.1 50.5 57.2 60.1
3 61 64.7 44.2 67.9 58.9 51.3 52.3 61 44.5
4 41.8 49.7 50 50.4 65.5 48.2 48.1 63.2 46.8
5 50.7 52.1 46.8 47.8 42.3 42.5 50.2 50 44.7
6 62.5 63.1 44.9 65.3 65.2 61.1 50.7 62 64.3
7 62.8 56.8 59.7 59.8 59.3 59.2 60.9 60.6 54.9
8 43.1 51.3 45.3 40.1 44 62 50.9 51.3 46.3
9 62.7 57 48.7 57.5 61.7 62 50.5 48 57.3

αij for the arcs going to the east (0.0998).

Vehicle
The LDVRP described in Section 2.2 was adjusted to account for multiple vehicles. How-
ever, our goal was to use this extension to be able to set a limit to the maximum driving
time per vehicle (driver) per day. We do not assume a heterogeneous fleet as the ma-
jority of refrigerated food road transport is conducted with semi-trailer with insulated
rigid boxes. Therefore we assume this type of vehicles. The internal and external di-
mensions of the vehicle are assumed to be (l×w×h, in meters): 13.56 × 2.6 × 2.75 and
13.35×2.46×2.5, respectively (Tassou et al., 2009). The empty weight of each of the ve-
hicles is 10,000 kg and the maximum load is 30,000 kg. Equation (2.3) is used to calculate
of the vehicle-specific constantβm, we assume the coefficient of drag (Cd) is 0.7, the air
density (ρ) is 1.2041 kg/m3 (Bektaş and Laporte, 2011), and the frontal area of the vehicle is
7.15 m2, which results in a β value of 3.013. We assume the heat transfer coefficient (U)
of the vehicle wall to be 0.7 W/m2/K (Tassou et al., 2009).

Temperature
We assume the ambient temperature is 30°C and the temperature inside the vehicle when
transporting frozen goods is -18°C (Tassou et al., 2009). When the door opens, we assume
the air temperature increases by 8◦ C (Tso et al., 2002; Estrada-Flores and Eddy, 2006); which
translates into an extra cooling requirement of 4 kWh every time a vehicle with a frozen
load visits a DC. In the model, it is possible to use variable temperature differences for
the different locations. But because our case study is in The Netherlands which is a small
country (surface area 41,543 km2) with small temperature differences, we assume that
the temperature in all locations is 30° C. This is warmer than the average Dutch temper-
ature, but it is the same as assumptions that were made for previous research (McKinnon
et al., 2003; Tassou et al., 2009), such that the results of this Chapter are more convenient
for comparison with previous research.

Motive and thermal efficiency
For the vehicles, we assume that the cooling system is powered by a diesel engine built
into the refrigeration unit (Tassou et al., 2009). In a diesel-driven cooling system, chemical
energy from the diesel is converted to electrical energy, which is converted to thermal en-
ergy (Bell, 2008). For the conversion from chemical to electrical energy (ηe), we assume a
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conversion rate of 30%, the same as for conversion from chemical to motive energy (ηm)
(Bektaş and Laporte, 2011). The Coefficient of Performance (COP), which describes the ra-
tio of heat removed as function of energy supplied, is generally between 0.5 and 1.5 for
refrigerated transport of chilled food (at 2°C) (Tassou et al., 2009). The COP can be higher
than 1 because the electric power is used to transport energy (heat) instead of converting
it. McKinnon et al. (2003) describe that the fuel needed for frozen food transport is 33%
higher than fuel use of chilled food transport. Therefore, if we assume an average COP of
1 for chilled food transport, it is reasonable to assume a COP of 0.67 for frozen food trans-
port. However, data on COPs, or on the efficiency of diesel driven refrigeration systems
is hard to find and other authors also state that there is a lack of such data (James et al.,
2009).

Conversion of fuel and refrigerant to emissions
We assume that using 1 liter of diesel causes 2.668 kg of CO2 emissions, so a fuel-to-
emission conversion factor (ef ) of 2.668 (Tassou et al., 2009). We assume a 10% annual
refrigerant leakage, which translates into a conversion factor from emissions caused by
thermal fuel into emissions caused by thermal fuel and refrigerant leakage (er) of 1.21
(Koehler et al., 1997). We assume the energy content of the fuel to be 8.8 kWh/L (Bektaş
and Laporte, 2011).

Setup of calculations

The case study is divided into four sections. First, we demonstrate the importance of ac-
counting for vehicle load as well as thermal fuel use and refrigerant leakage. Therefore,
we compare the results of three different models: (1) the standard VRP model, which
minimises total distance, (2) the LDVRP model, which takes into account the load of the
vehicle and minimises motive emissions, and (3) the temperature-controlled version of
the LDVRP model (TCLDVRP), which minimises total emissions by accounting for both
the load of the vehicle and refrigeration. Thus, we compare the VRP, LDVRP and the TCLD-
VRP models in a realistic setting. Then, we test the effect of different scenarios on the
VRP, LDVRP and TCLDVRP models. As some of the parameters used in the models are
uncertain, we show how the TCLDVRP model responds to variations in those parameters
in a sensitivity analysis. These parameters can vary, but within a day, they are generally
stable. Lastly, we test if our model is robust to treat traffic uncertainty. Traffic uncertainty
is treated separately from the sensitivity analysis, because in general, the average speeds
on certain routes are known. However, within a day, the traffic situations can change.
Therefore, we constructed different speed matrices (with different average speeds and
standard deviations of the speeds) to represent possible traffic scenarios. Then, we min-
imised emissions for a fixed speed and then calculated the emissions related to the speed
matrices that were designed. These outcomes were compared to the results of minimis-
ing emissions considering the speed matrices a priori. This way, it is possible to test the
quality of the solutions with uncertain traffic information. The average and standard de-
viations of the speeds tested in the scenarios are presented together with the results for
a clear overview. The models were built and solved in Fico Xpress Mosel version 8.0.
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2.4 Results

Comparison of the VRP, LDVRP and TCLVRP models

Table 2.3 shows the results of the model when the total distance (VRP), the motive en-
ergy (LDVRP), and emissions (TCLDVRP; including emissions caused by refrigeration) are
minimised for one month of our dataset. The routes are optimised based on the demand
on that day. Not all locations have demand on each day. On one of the days, for example,
there is demand all locations. For each model the optimal routes are slightly different.
VRP: 1 - 3 – 7 – 2 – 6 – 9 – 4 - 8 – 1, 1 – 5 – 10 – 1; LDVRP: 1 – 3 - 1, 1 - 7 – 2 – 6 – 9 – 4 - 8 – 1, 1 –
10 – 5 – 1; and TCLDVRP: 1 - 3 – 7 – 2 – 6 – 9 – 4 - 8 – 1, 1 – 10 – 5 – 1. Total distances are not
that far apart, but in terms of emissions, the differences are more pronounced.

Table 2.3: Results of optimising the base case VRP, LDVRP and TCLDVRP for one month.

Model VRP LDVRP TCLDVRP
Distance (km) 14531 14643 14553
Emissions (kg CO2 ) 11402 11140 11119
Costs (e) 8034 8011 7970
Time (h) 225 250 244
Fuel use (L) 4028 3919 3914
Thermal emissions (kg CO2 ) 3855 4019 3976
Motive emissions (kg CO2 ) 7547 7120 7143

Table 2.3 also shows that the VRP model results in the lowest distance and the lowest
time. The LDVRP results in the lowest motive emissions. The TCLDVRP model results in
the lowest fuel consumption, total costs, and CO2 emissions. The contribution of thermal
emissions to total emissions varies between 33,8% (VRP) and 36.1% (LDVRP) which is in
line with previous research findings (Tassou et al., 2009; Adekomaya et al., 2016).

Scenarios

Here we test the effect of changing parameters that would e.g. have a different value
when the case study would be performed in a different country, a different type of com-
pany, or because of technological innovations. The results are shown for 1 month in all
tables and figures.

Slope
Table 2.4 shows the results of the different models for increasing slopes. The following
slopes variations were tested: 0.05°, 0.2°, and 0.5°. These are the slopes assumed for the
arcs directed to the east. But note that a certain positive eastward slope corresponds to
a negative slope of the same magnitude in the westwards direction (e.g. 0.1° for all east-
wards nodes corresponds to−0.1° for all westwards nodes). In a horizontal displacement
of 300 km (the approximate width of the Netherlands), the slopes tested correspond to
a maximum altitude difference of 261.7 m, 1047 m, and 2618 m, respectively. Table 2.4
shows the results for the three models and the different slopes.
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Table 2.4: Results of the VRP, LDVRP and TCLDVRP models for increasing slopes. Notation: D,
distance; E, emissions; C, costs; T, time; F, fuel; Et, thermal emissions; Em; motive emissions.

Slope 0.05° 0.2° 0.5°
Model VRP LDVRP TCLDVRP VRP LDVRP TCLDVRP VRP LDVRP TCLDVRP
D (km) 14531 14643 14610 14531 15605 14856 14531 16952 16434
E (kg CO2 ) 11479 11082 11077 11767 10905 10853 12345 9825 9705
C (e) 8074 7980 7969 8226 8135 7910 8529 7779 7609
T (h) 225 250 248 225 278 256 225 307 298
F (L) 4057 3897 3896 4165 3809 3807 4381 3384 3349
Et (kg CO2 ) 3855 4019 4006 3855 4374 4091 3855 4677 4523
Em (kg CO2 ) 7624 7062 7071 7913 6531 6762 8490 5148 5182

Table 2.4 shows that a larger slope increases the differences between the VRP model and
the LDVRP model and between the VRP model and the TCLDVRP model considerably.
Also the differences between the LDVRP model and the TCLDVRP model are larger than
in the base case. The LDVRP model results in lower costs, fuel consumption and CO2
emissions compared with the VRP model, and the TCLDVRP model lowers those outputs
even further. For example, using the TCLDVRP model instead of the VRP model for rout-
ing temperature-controlled vehicles in an area with a 0.5° slope can result in a 12% cost
decrease, a 30% fuel and a 27% CO2 emission decrease. For the LDVRP and the TCLDVRP,
a higher slope is also related to a higher relative contribution of thermal emissions to to-
tal emissions: 47% and 48%, respectively. Moreover, Table 2.4 shows that an increase in
steepness can reduce emissions, costs and fuel consumption in case of the LDVRP and
the TCLDVRP. This can be explained by Equation (2.5), which calculates motive energy.
The first term of this equation is influenced directly by parameter αij , which depends
on the slope of the arc. This constant is multiplied by the vehicle weight, including the
load, and the distance. The LDVRP and the TCLDVRP models minimise the emissions,
which are largely influenced by motive energy requirement. If there is a slope, the op-
timal routes can be chosen such that, for example, the vehicle is heavily loaded on the
downward slopes and lightly loaded on the upward slopes, which saves fuel spent on mo-
tive energy.

Cargo weight
To test the effect of transport of different cargo weights, the demand was kept at the same
level but the weight per product was varied. The effects of a changing product weight
on the total costs and emissions are shown in Figures 2.1 and 2.2. These Figures show
that changing the weight per product, and thus the resulting total cargo weight, changes
costs and emissions for all models: an increased weight causes increased fuel consump-
tion and consequently, increased costs and emissions. Still, emissions are lowest for the
TCLDVRP in all cases, followed by the LDVRP and the VRP. The TCLVDRP results in the
lowest costs in 3 out of 5 cases tested, and the VRP results in the lowest cases in the other
two cases. Zachariadis et al. (2015) showed that a higher cargo to empty vehicle weight
ratio increased the savings of the LDVRP model compared to using a VRP model. This is
not visible in our results, although the LDVRP does always outperform the VRP in terms
of emissions. This difference in results can be explained by the fact that in this study, the
emissions are not only caused by the weighted distance but also by refrigeration, which
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Figure 2.1: Emissions (kg CO2) as a
function of the weight per product (kg) for

the different models.
Figure 2.2: Costs (e) as a function of the

weight per product for the different models.

the LDVRP does not optimise for.

Temperature inside vehicle
This case study has focused on frozen food transport, but the models were also tested for
chilled transportation (2°C) and ambient transportation (no cooling). For cooled trans-
portation it was assumed that the COP was 1 (instead of 0.67 for frozen transportation) as
those cooling systems are more efficient (Tassou et al., 2009). Running the TCLDVRP mo-
del for chilled transportation, resulted in 19% less emissions than for frozen food trans-
portation. The TCLDVRP solution was still lowest for fuel consumption, CO2 emissions
and costs. As can be expected, for ambient temperature transport, the TCLDVRP solu-
tion was the same as the LDVRP solution, and that solution caused 32% less emissions
than the frozen transport.

Maximum allowed driving time
We tested the effect of allowing longer driving times. In the base case, a vehicle driver
needs to be back in the depot within 8 hours, and we tested the effects of changing that to
9 and 10 hours. We tested the effect of changing the maximum allowed driving time with
the different models (VRP, LDVRP, TCLDVRP) and different indicators (distance, emis-
sions, costs, time and fuel consumption). For all objectives, all indicators (except for the
total time) improved.

Sensitivity analysis
The sensitivity of the TCLDVRP model was tested for different road- and vehicle-specific
parameters. The results are shown for one month for all figures in this section.

Speed and coefficient of performance
To test the effect of speed and Coefficient of Performance (COP), we tested the effects of
applying the TCLDVRP model on average matrix speeds between 39.4 and 78.7 km/h for
a COP of 0.67 (base case) and a COP of 2 (technological improvement case). The results
are shown in Figures 2.3 and 2.4.
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Figure 2.3: Emissions (kg CO2) as function
of average matrix speed for a COP of 0.67

and using the TCLDVRP model.

Figure 2.4: Emissions (kg CO2) as function
of average matrix speed for a COP of 2 and

using the TCLDVRP model.

The LDVRP (motive emissions) model results in an optimal speed of around 40 km/h,
which is in line with findings from previous research (Jabali et al., 2012). However, for both
COPs, the optimum speed for the TCLDVRP is around 60 km/h. This shows that taking the
thermal energy requirement into account can not only change the optimal route, it can
also change the optimal speed. Figures 2.3 and 2.4 show that a higher COP results in a
lower total emissions. Also, the higher the COP, the more the total emissions depend on
the emissions caused by motive energy and the closer the TCLDVRP solution will be to
the LDVRP solution. Previous research suggested that there is a clear trade-off between
travel time and greenhouse gas emissions (Aziz and Ukkusuri, 2014), which can hamper
implementation of green solutions. These results show that for temperature-controlled
transportation, optimal speed increases, which may lead to a higher chance of imple-
mentation of the emission-minimising routes.

Heat transfer coefficient
The higher the heat transfer coefficient, the higher the fuel consumption as a consequence
of thermal energy. In practice, the heat transfer coefficient can increase because of age-
ing of the vehicle.

Distance
As the distance between the different nodes increases, all outputs increase, but the rel-
ative difference between the optimal solutions of the different models stays within the
same range. Generally the total distance resulting from the optimisation of the TCLDVRP
model, is in between the total distance resulting from optimising the LDVRP and the VRP
model.

Temperature outside vehicle
As the literature that we base most of our assumptions on assume an ambient tempera-
ture of 30°C, this is what this Chapter also assumes as base case situation (Tassou et al.,
2009; Bektaş and Laporte, 2011). We also tested the effects of lower ambient tempera-
tures. As can be expected, for all three models emissions, costs and fuel use improved
with a decreasing outside temperature. Lower temperatures result in smaller differences
between the LDVRP and the TCLDVRP. The VRP also shows improved results when lower-
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ing outside temperature but the improvements are smaller compared to the LDVRP and
the TCLDVRP. For example, changing the outside temperature from 30°C to 10°C results
in an emission decrease of around 30% for the TCLDVRP and the LDVRP and for a 10%
decrease for the VRP.

Traffic uncertainty
Traffic uncertainty is taken into account by letting the model minimise emissions based
on a fixed speed but still calculating the effects of different scenarios of the actual speed
matrix on emissions and costs. Table 2.5 shows the traffic uncertainty scenarios tested as
well as the difference of those scenarios with the optimal solution for emissions with full
information on the speed matrix, the optimality gap.

Table 2.5: Traffic uncertainty scenarios and resulting optimality gaps. Symbols: µ(vw), average
speed to the west;σ(vw), standard deviation speed to the west;µ(ve), average speed to the east;
σ(ve), standard deviation speed to the east.

Sensitivity Optimality gap
scenario µ(vw) σ(vw) µ(ve) σ(ve) emissions (%) costs (%)

0 47.5 3 62.5 3 0.66 0.00
1 38 3 50 3 0.10 0.51
2 42.75 3 56.25 3 0.31 0.00
3 52.25 3 68.75 3 1.72 0.00
4 57 3 75 3 2.96 1.09
5 47.5 1 62.5 1 1.11 0.00
6 47.5 5 62.5 5 1.02 0.00
7 47.5 7 62.5 7 1.64 0.00
8 55 1 55 1 0.01 0.00
9 55 3 55 3 0.09 0.00

10 55 5 55 5 0.05 0.00
11 55 7 55 7 0.27 0.00

Table 2.5 shows that traffic uncertainty can cause the TCLDVRP model to not always be
optimal in terms of emissions. For all instances tested however, the TCLDVRP solution
did not deviate more than 3% from the minimum emissions with full information on the
speed matrix. In terms of costs, the TCDLVRP at its maximum 1.1% away from the lowest
cost solution.

2.5 Discussion and Conclusions
This Chapter proposes an extended version of the LDVRP model, which considers emis-
sions caused by refrigeration into account to optimise routing for temperature-controlled
transportation, i.e. TCLDVRP. Refrigeration increases the fuel use of the vehicle and it
causes leakage of refrigerant, which both increase emissions compared to ambient trans-
portation. Minimising emissions while accounting for refrigeration emissions can re-
sult in different optimal routes compared with minimising distance (VRP) or minimising
motive energy (LDVRP). Moreover, the TCLDVRP model results in higher optimal speed
compared with previous research on fuel or emission minimisation (Bektaş and Laporte,
2011; Jabali et al., 2012; Aziz and Ukkusuri, 2014). The TCLDVRP model improves the en-
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vironmental and economic performance of temperature-controlled road transportation
by minimising both emissions caused by motive energy, thermal energy and refrigerant
leakage. We have demonstrated that the TCLDVRP model results in savings in emissions
and costs for temperature-controlled road transportation. Our case study focused on
frozen food transportation but the model can also be used to optimise cooled or ambient
transportation by adjusting the temperature and the COP. Furthermore, by changing the
area through which heat exchange takes place, the model can be used for vehicles with
compartments at different temperatures. This case study was done with frozen food but
the findings can also be used in of fresh food, medication, flowers, and other tempera-
ture sensitive products.

To calculate refrigeration emissions, we considered two types of emissions: those caused
by fuel use of the refrigeration unit, and those caused by refrigerant leakage. The fuel
use of the refrigeration unit was assumed to depend on energy requirements caused by
heat entering through the vehicle wall during driving, and heat entering when the door
opens. To improve the accuracy of the calculations, more thermal processes could be
taken into account. For example, for cooled and ambient transportation, fruit and veg-
etables can produce heat by ripening, which can increase the cooling requirement. On
the other hand, heavy cooled loads can have effects such as self-insulation, which can de-
crease the cooling requirement. Accounting for such processes will result in non-linear
models that will require advanced heuristics algorithms to be solved in an acceptable
time (Demir et al., 2014). Such algorithms might result in sub-optimal solutions and con-
sequently the gain of accuracy with refrigeration emissions can be counterbalanced.

This Chapter focuses on routing strategies to reduce emissions. Literature however also
suggests a more long term approach to reduce emissions: by logistics cooperation. For
example, if companies have the same delivery region and they decide to collaborate on
their deliveries they have the opportunity to organise their deliveries in a more efficient
way such that both costs and emissions are saved (Cruijssen et al., 2007b; Vanovermeire
et al., 2014; Guajardo and Rönnqvist, 2016). The TCLDVRP model could be of use in this re-
search area, as it can be used to quantify the benefits of collaborative refrigerated trans-
portation.

In our communication with and observation of practitioners, we found that there is prob-
ably improvement possibilities by changing ways of working. For example, the docks at
which vehicles connect to the temperature controlled distribution centres (DC) are not
always airtight. This causes warm air to enter the DC and it thus increases the energy use
in the DC. In other cases, we saw that drivers already opened their vehicle hoping that
they would have to wait less to be connected to the dock. This behaviour highly increases
the work that the cooling engine has to do and sometimes even caused the engine to
overheat. Also, this sudden temperature increase can severely influence the food quality.
For example, frozen foods that defreeze a bit and then freeze again will get a different
structure with some ice formation. This will lead to decreased sales and more waste. A
first step for companies to reduce emissions and costs in temperature controlled trans-
portation would be to critically evaluate these kind of practises.
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2.5. Discussion and Conclusions

We showed that it was necessary to account for emissions caused by refrigeration energy
as well as refrigerant leakage in the minimisation of emissions from temperature con-
trolled transportation. We extended a LDVRP model to account for these effects, and we
applied this model on a frozen food transportation case to shown the effects of apply-
ing this model in practise. Our results confirm that emissions caused by refrigeration are
responsible for around 40% of total emissions from temperature controlled transporta-
tion. Also, we show that these effects are so considerable that the can change optimal
routing decisions. An improvement in the conversion efficiency of fuel to both thermal
and motive energy is a very potent way of reducing fuel consumption, costs and emis-
sions in road transportation. Improvements in efficiency can be achieved through new
technologies that focus on improving energy efficiency in (temperature-controlled) vehi-
cles, such as cooling with liquid nitrogen (Garlov et al., 2002), using cryogenic cooling sys-
tems (Tassou et al., 2009), driving with liquefied natural gas vehicles (Kumar et al., 2011) or
with electric vehicles (Pelletier et al., 2016). The proposed model for temperature-controlled
transportation routing problem can be used to quantify the benefits of these new tech-
nologies.
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Chapter 3

The quality-driven vehicle routing
problem: Model and application to a case
of cooperative logistics

Inefficient road transportation causes unnecessary costs and emissions, especially in fresh
food transportation, where temperature control is used to guarantee product quality.
On a route with multiple stops, the quality of the transported products could be nega-
tively influenced by the door openings and consequent temperature fluctuations. In this
study, we quantify the effects of multi-stop transportation on food quality. To realisti-
cally model and quantify food quality, we develop a time-and temperature-dependent
kinetic model for a vehicle routing problem. The proposed extensions of the vehicle rout-
ing problem enable quantification of quality decay on a route. The model is illustrated
using a case study of cooperative routing, and our results show that longer, multi-stop
routes can negatively influence food quality, especially for products delivered later in the
route, and when the products are very temperature-sensitive and the outside tempera-
ture is high. Minimising quality loss results in multiple routes with fewer stops per route,
whereas minimising costs or emissions results in longer routes. By adjusting driving speed,
unloading rate, cooling rate, and by setting a quality threshold level, the negative quality
consequences of multi-stop routes can be mitigated.

This chapter is based on: Stellingwerf, H.M., Groeneveld, L.H.C., Laporte, G., Kanellopoulos, A., Bloemhof, J.M.,
Behdani, B. (under review). The quality-driven vehicle routing problem: Model and application to a case of
cooperative logistics.
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3.1 Introduction

The Vehicle Routing Problem (VRP) has been traditionally modelled for minimising dis-
tance or the costs of routing product flows to multiple locations. As a new variant of
VRP, the green VRP has been developed to also account for emissions (Bektaş and Laporte,
2011). Compared with ambient transportation, the transportation of frozen and fresh
food products is costlier and more polluting due to the energy required for cooling. To ad-
dress this, Stellingwerf et al. (2018a) have extended a model based on the VRP to account
for the effects of temperature control on costs and emissions in fresh and frozen food lo-
gistics. In fresh food logistics the temperature fluctuations resulting from the increased
number of stops on a route may further influence the quality of the products transported.
Also, transporting multiple products with a different optimal temperature, can be chal-
lenging with substantial consequences for the product's quality. Therefore, temperature
control is an essential factor in the distribution of food products (Akkerman et al., 2010).
Keeping perishable foods cooled or frozen along the food supply chain is vital to guaran-
tee food safety, manage food waste and ensure good quality of the final product. There-
fore, it is necessary to consider the influence of temperature on food quality aspects in
VRP modelling.

This Chapter introduces a VRP that explicitly considers the quality decay in transporta-
tion planning, both in the constraints and in the objective function. Using the presented
model, we compare several objectives including minimising costs, emissions, and quality
loss. We then study the effect of transporting different products with different optimal
temperatures in one vehicle on the resulting product quality. We also test the effect of
other parameters.

We illustrate the model using the case of seven Dutch supermarket chains that cooper-
atively buy their products in order to obtain a lower price. The supermarket chains con-
sider intensifying their cooperation by also transporting their products together, in order
to save transportation costs and emissions. The partners wish to have a quantification
of the potential risks and benefits related to quality decay, costs and emissions to decide
whether it compensates for the information that they need to share with each other in
a cooperative context. Logistics cooperation has been shown to be a feasible methodol-
ogy to decrease both cost and emissions during transportation of food products (Vanover-
meire et al., 2014; Pérez-Bernabeu et al., 2015; Quintero-Araujo et al., 2017; Mittal et al., 2018).
Most of these studies found that cooperation can result in cost reductions (Cruijssen et al.,
2007b; Quintero-Araujo et al., 2017), and some have also identified emission reductions
in addition to cost reductions (Pérez-Bernabeu et al., 2015; Stellingwerf et al., 2018b). For a
recent overview of the optimisation of different forms of cooperation, we refer to Defryn
and Sörensen (2018). However, a cooperative route will result in an increased number of
stops, which may negatively affect food quality. With our Quality Driven VRP (QDVRP),
we can also assess the effect of logistics cooperation on food quality, costs, and emissions.

The remainder of this Chapter is structured as follows. In Section 3.2 we discuss food qual-
ity and how it has been modelled, in Section 3.3 we mathematically formulate the prob-
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3.2. Modelling food quality

lem, in Section 3.4 we show and discuss the results, and in Section 3.5 we conclude this
Chapter and suggest future research directions.

3.2 Modelling food quality
In the logistics literature, quality decay has been modelled using several approaches. We
categorise these and discuss each of the categories in the following subsections.

Modelling quality considering product age and remaining shelf life

A common method to handle product quality in logistics modelling is to consider a fixed
shelf life for perishable items. To approximate freshness, Amorim and Almada-Lobo (2014)
have quantified the remaining shelf life as a percentage of the initial shelf life in a multi-
objective VRP. They compared two objective functions: cost minimisation and maximisa-
tion of the an average shelf life. Stellingwerf et al. (2018b) proposed an inventory-routing
problem (IRP) model that minimises costs, emissions, or a linear combination of both
objectives, and applied it to a case of temperature-controlled food distribution. After
finding the optimal routing and inventory plan, the resulting average product age upon
leaving the distribution centres (DCs) was calculated in days. Likewise, Soysal et al. (2018)
proposed a green IRP for perishable products. Each product was assumed to have a fixed
shelf life, after which it would go to waste, incurring a penalty cost.

These studies provide a way of integrating shelf life or food quality into routing models,
but they do not consider how external factors, such as temperature, affect the products
during transportation. Modelling quality decay (which is dependent on external factors)
instead of shelf life (which often is a predetermined date) should yield a more realistic
way of modelling food quality.

Modelling quality with temperature-independent quality decay

To model quality decay, some studies have used a temperature-independent decay func-
tion. Thus Ambrosino and Sciomachen (2007) accounted for quality in their VRP by impos-
ing a maximum number of stops on the routes of the vehicles if they carried frozen prod-
ucts. A binary variable was used to decide whether a certain vehicle would move only
dry products or also frozen products. If frozen products were transported, a constraint to
limit the maximum number of stops was activated.

Osvald and Stirn (2008) studied decay during transportation using a VRP with time win-
dows and time-dependent travel times. They assumed that quality is linearly related to
time and assigned a quality starting level that decreases over time for each load. They
considered the effect of delays on quality and compared a standard cost-minimisation
model with a cost-minimisation model including a penalty cost for product loss due to
quality decay. Their study showed that by considering quality decay in the optimisation
model, up to 40 % of cost savings could be realised.

31
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Chen et al. (2009) considered a quality decay function in their production scheduling and
vehicle routing problem, where total profit was maximised. The study showed that a
higher decay rate leads to a lower profit, and that deterioration could be reduced by using
more vehicles. However, the latter also leads to an increase in transportation cost.

Modelling quality with temperature-dependent quality decay
Hsu et al. (2007) modelled the expected loss of inventory due to quality decay in a stochas-
tic VRP with time windows. They considered decay to be stochastic: the higher the de-
mand per stop, the longer the door-opening time, the higher the temperature in the ve-
hicle, and the higher the chance of spoilage of the products transported. The goal of the
model was to minimise cost, in which spoilage was part of the inventory cost. Aung and
Chang (2014) used a similar model with a different objective function to determine the
optimal temperature for a range of products.

The studies just discussed show that shelf life and food quality have been considered in
supply chain and logistics literature. However, they do not consider external factors such
as temperature in the quality decay function.

Modelling quality with kinetics
Kinetic modelling is used to describe the direction and speed of different kind of reac-
tions and it is often used to model changes in food products, for example as a function of
temperature. This method is the basis for modelling quality in this paper; therefore, we
now describe the main principles of kinetics modelling for quality decay of perishable
products.

According to Van Boekel (2008) there exist four main types of reactions that can cause
quality-related changes in food products: (i) chemical reactions, which often relate to ox-
idation reactions; (ii) microbial reactions; (iii) biochemical reactions, caused or catalysed
by enzymes naturally present in foods; and (iv) physical reactions, such as coalescence,
sedimentation and texture changes. These changes can be captured by mathematical
models containing kinetic parameters. For reactions in food, zero and first order reac-
tions are relevant. Zero order reactions happen at a constant speed, while in first order
reactions, the speed changes linearly over time. In a zero order reaction, decay happens
linearly over time. In a first order reaction, decay happens exponentially over time. This
order type can be empirically derived, but in general degradation of quality attributes of
fruits and vegetables follow a zero order reaction (Rong et al., 2011). Quality degradation
that is mainly dependent on microbial growth (e.g. meat and fish) generally follow a first
order reaction rate.

For temperature-dependent reaction kinetics, the Arrhenius law (Van Boekel, 2008) is very
often used to predict the rate constantκ of a reaction based on absolute temperatureT :

κ = κ0 exp
−Ea

RT
, (3.1)
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where κ is the rate constant (s−1 for a first order reaction and mol/L/s for a zero order
reaction), κ0 is the pre-exponential factor (s−1 for a first order reaction and mol/L/s for
a zero order reaction), Ea is is the activation energy (Joule/mol), R is the gas constant
(8.3145 Joule/mol/K), andT is the temperature in degrees Kelvin (K). Different quality at-
tributes at different temperatures for a certain type of food can be empirically estimated
for the Arrhenius equation.

Mishra et al. (2016) empirically estimated the parameters in the Arrhenius equation for
the quality indicators appearance, wilting, browning, and off-odour for fresh-cut iceberg
lettuce, fresh-cut romaine lettuce, and fresh-cut chicory. In their study, the decay was
modelled as a percentage of initial quality lost.

Rong et al. (2011) focused on integrating a food quality model in a logistics model. They
used the Arrhenius equation to describe an ad hoc overall quality (not related to a specific
real quality attribute), which they set at 100 at the beginning of the supply chain and then
lowered as the product moved down the chain. They modelled food quality degradation
through a mixed integer linear programming (MILP) model by combining existing food
quality decay models and logistics models. Quality was modelled using

dq

dt
= κqn, (3.2)

where dq is the change in quality (dimensionless), dt is the change in time (days), κ is
the degradation rate (days−1), which was approximated using the Arrhenius equation
(Equation 3.1), andn indicates the order or the reaction (1 for a first order reaction, and 0
for a zero order reaction).
In the model of Rong et al. (2011), products deteriorate by a given amount in each period
such that the model can track the quality degradation over time. Each product starts with
a given quality which decreases each period based on the time and temperature expo-
sure. When the quality level is lower than the predetermined minimum, the product goes
to waste.
Table 3.1 summarises the literature on modelling quality in food logistics, as described in
this section.
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3.3. Formal problem description and mathematical formulation

3.3 Formal problem description and mathematical formulation
In order to model the effect of cooperative routing of the quality of fresh products, we
use the temperature-controlled load dependent VRP model of Stellingwerf et al. (2018a).
The objective functions of this model are cost and emissions minimisation. Here we add
a quality decay minimisation objective. We extend this model to account for quality de-
cay at each stop and on each arc. We measure quality decay as in Rong et al. (2011) and
we make the service time demand-dependent based on the study of Hsu et al. (2007). We
adjust it to account for multiple products, with their own optimal temperature and their
own Arrhenius parameters, based on Mishra et al. (2016). In addition, we use the total cost
and total emissions calculations of Stellingwerf et al. (2018a).

The problem under consideration is NP-hard since it encompasses the VRP which is known
to be NP-hard. Here, we provide the formulation of a quality driven VRP, which is used to
model cooperative routes and the effect on food quality, cost and emissions. A summary
of all notations (including the units of all variables and parameters) used is given in the
Appendix (Tables A.1 – A.4).

Let G = (V,A) be a directed graph in which V = {0, 1, ..., n} is the set of nodes. The
CDC is located at vertex 0, V \{0} is the set of DCs, and A = {(i, j) : i, j ∈ V, i 6= j} is
the set of arcs. With every arc (i, j) is associated a non-negative distance cij . We define
p as an index for the set P of products with rate constant κp

0, activation energy Ep
a , and

optimal temperatureT p
ref .

The demand of product p at each DC i is given by qpi . The load inside every vehicle has a
changing quality level denoted asQkp

ij . At the starting CDC, all loads have an initial qual-
ity ofQp

0. There exists a set ofK identical vehicles indexed byk of capacityLk with a curb
(empty) weight of Lk

0 . The speed driven on arc (i, j) is denoted by vij . We denote by d
the maximum travelling time of one driver, and by si the service time the vehicle spends
at node i.

The following decision variables are used:
• xk

ij is a binary variable equal to 1 if and only if vehiclek drives from node i to node
j

• wkp
ij is the total weight of product p carried, from node i to node j by vehicle k

• the binary decision variable zkij is used in a set of constraints to control the maxi-
mum cooling time on an arc

• Dkp
ij is the total decay at an arc

• Dkp
ij,v is the decay during cooling time (at a variable temperature) at an arc

• Dkp
ij,f is the decay at a fixed temperature on an arc

• Qpm
ij is the quality level arriving at node j from node i of product pwith vehicle k

• sckij is the cooling time of vehicle k on arc ij
• Z is a variable to minimise the maximum quality decay
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Calculation of quality decay
Over time, fresh food products decay in temperature-dependent fashion. When fresh
food is transported, the temperature in the vehicle is set to the optimum. When there
are products with different optimal temperatures, a temperature that is acceptable for
all products is chosen. We assume that the outside temperature is higher than the tem-
perature set in the vehicle, which means that the load needs to be cooled to reach the de-
sired temperature. We also assume that the products need to be cooled but not frozen.
After precooling, the temperature of the product inside transportation vehicles remains
quite stable. However, temperatures can rise up to 10°C in just minutes during operations
such as loading and unloading the vehicle (Mercier et al., 2017). A cooled food product
can be subjected to up to fifty door openings per transportation run (James et al., 2006).
For fresh food (unfrozen), the closer the product is to its optimal temperature, the slower
it decays. In reality, when the temperatures becomes lower than the optimal tempera-
ture, freezing damage can occur. However, this freezing temperature is not considered
in this model. When a vehicle visits a delivery point, the vehicle door opens, and con-
sequently the temperature of the air in the vehicle and the products in the vehicle will
increase. When there are multiple stops, the products that are still in the vehicle after a
delivery has been made, are faced with this temperature increase. The cooling engine of
the vehicle will start working to cool the vehicle again.

To include quality in a VRP model, we model two decays in the chain; the quality decay in
the links and quality decay in the nodes. Both decay processes are influenced by temper-
ature variations. We define quality decay of a product on a route as the sum of both types
of decay: the quality decay at the arcs it traversed and the quality decay at the nodes it
passed before arriving at its destination:

D =
∑
i∈V

∑
k∈k

∑
p∈P

Dkp
i +

∑
i∈V

∑
j∈V

∑
k∈K

∑
p∈P

xk
ijD

kp
ij , (3.3)

where D is the total quality decay, Dkp
i is the quality decay of product p at node i in ve-

hicle k,Dkp
ij is the quality decay of product p at arc ij in vehicle k.

Quality decay at a node

The quality at a node is calculated using the Arrhenius equation (Tsironi et al., 2017) as-
suming a zero order reaction for the products:

Dkp
i = κp

0si exp[
−Ep

a

R
(

1

T kp
i

− 1

Tref,i
)], (3.4)

where si is the demand-dependent service time at node i,T kp
i is the temperature of the

products in vehicle k at node i,Ep
a is the activation energy of product p.

The service time at a node is calculated as follows:
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si =
∑
p∈P

qpi ts, (3.5)

where qi is the demand at node i, and ts is the unloading rate. We use an approxima-
tion based on the study of (Tso et al., 2002) to calculate the temperature change of the
products caused by the opening of the door during service time. The temperature change
happens in a two-step process described in (3.6)–(3.8).
First, the air temperature of the vehicle is calculated:

T k
i = min{Ta; 0.5sif(Ta − T0) + T0}i ∈ V ′, k ∈ K, (3.6)

T k
0 = T0 k ∈ K, (3.7)

whereT k
i is the air temperature of vehiclek at the end of the service time at node i,T k

0 is
the air temperature of vehicle k when it leaves the CDC, Ta is the ambient temperature,
f is the speed of the temperature increase, which is assumed to be 0.0027 K/s based on
the measurements of Tso et al. (2002), T0 is the temperature that is set, which is called
the goal temperature in the rest of this Chapter. The factor of 0.5 is used to account for
the first step of a two-step heating process.

Then, the product temperature is calculated:

T kp
i = min{T k

i ; 0.5sif(T
m
i − T0) + T0}, (3.8)

where T kp
i is the temperature of the products in vehicle k at the end of the service time

at node i. The factor of 0.5 is used to account for the second step of a two-step heating
process. For the CDC, we assume no unloading time, and consequently, the air and prod-
uct temperature will equal the goal temperature.

Quality decay at an arc

After visiting a node, the vehicle closes and the engine can start cooling the load. When
the goal temperature is reached, the engine keeps the temperature at the goal tempera-
ture. The quality decay at an arc can thus be divided in two sections: first, there is decay
while the temperature decreases from the after-opening temperature, and then there is
decay during the rest of the arc traverse, at a fixed temperature:

Dkp
ij = Dkp

ij,v +Dkp
ij,f , (3.9)

where Dkp
ij is the decay at an arc, Dkp

ij,v is the decay during cooling time at an arc (v for
variable temperature), and Dkp

ij,f is the decay during the rest of the arc crossing time (f
for fixed temperature). The decay is dimensionless.

The decay of product p during cooling time at the arc is calculated as
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Dkp
ij,v = κp

0sc
k
ij exp[

−Ep
a

R
(

1

0.5(T k
i + T0)

− 1

T p
ref

)], (3.10)

where sckij is the cooling time of vehicle k on arc ij,T p
ref is the reference (optimal) tem-

perature of product p. Since the cooling time is dependent on the weight of the load,
which is a decision variable, its calculation is given together with the other constraints
(see Equations (3.47) – (3.51)).

When the vehicle temperature is down to its optimal level, the rest of the arc is crossed at
a stable, i.e. the goal or optimal temperature. The decay at the arc when the temperature
is stable is calculated as

Dkp
ij,f = κp

0(
xk
ijcij

vij
− sckij) exp[

−Ep
a

R
(
1

T0
− 1

Tref
)], (3.11)

whereκ0 is the rate constant, and xk
ijcij
vij

is used to calculate the time spent on arc ij.

Minimising the maximum decay

For one company delivering food to multiple outlets, it makes sense to minimise total
decay. However, for a cooperative, the different partners might find it more important
that there is not too much difference between the quality they receive.
Therefore, we also calculate the maximum decaym as

∑
i∈V,j∈V,k∈K,p∈P

Dkp
ij,r = Qp

0 −
Qkp

ij

Qp
0

, (3.12)

Dkp
ij,r ≤ Z , (3.13)

whereDkp
ij,r is the relative decay of a productpon arc ij in vehiclek. In constraint (3.13)Z

is defined as the maximum level of decay of all products arriving at all nodes. Objective
(3.29) minimises the maximum decayZ .

Fuel and emissions calculation in ambient transportation
Studies have shown that the fuel use in ambient transport is linearly related to the mo-
tive power requirement (Barth and Boriboonsomsin, 2009; Bektaş and Laporte, 2011). The
latter depends on the weight carried, the slope of the road, the distance travelled and
the vehicle speed. The motive powerPij on arc (i, j) can be approximated as

Pij = αij(w
kp
ij + Lk

0)cij + βv2ijcij , (3.14)

where αij is the arc-specific constant, Lk
0 is the curb weight of vehicle k, and β is the

vehicle-specific constant. Equations (3.15) and (3.16) show how these constants are cal-
culated:

αij = a+ gsinθij + gCrcosθij , (3.15)
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where a is the acceleration of the vehicle (m/s2), g is the gravitation constant (m/s2), θij
refers to the average slope on arc ij (degrees), Cr is the rolling resistance (dimension-
less). The vehicle-specific constant is calculated as

βm = 0.5CdAρ, (3.16)

whereCd is the drag coefficientA is the frontal area of the vehicle andρ is the air density.

In (3.17) fuel use for ambient transport (fm) is calculated by summing up the power re-
quirements for all routes and converting those into fuel use. This is achieved by dividing
the power by3.6× 106 to convert a Joule (J) to a kilowatt-hour (kWh), by the chemical to
motive energy conversion efficiency (ηm), and by the energy content of the fuel (Pf ):

fm = (
∑
i∈V

∑
j∈V

∑
k∈K

∑
p∈P

α(wkp
ij + L0)cij+

∑
i∈V

∑
j∈V

∑
k∈K

βcijx
kt
ij v

2
ij)

1

3.6× 106 Pf ηm
.

(3.17)
The emissions from ambient transport are linearly related to fuel use:

Em = fmef , (3.18)

where ef is the emissions factor which converts fuel use into CO2 emissions,Em are the
CO2 emissions of ambient transport, and wkp

ij is the weight of product p carried from
node i to j with vehicle k.

Fuel and emissions calculation in refrigerated transportation
Stellingwerf et al. (2018a) have approximated the cost, the fuel consumption and the emis-
sions of refrigerated transport, so that the impact of temperature controlled transport
can be estimated in route optimisation models. In refrigerated transport, fuel is used
both for motive power and for keeping the temperature of the load at the right level. The
energy used for temperature control depends on the heat that enters through the vehi-
cle wall while it drives, and on the heat that enters the vehicle when the door opens. The
heat entering through the wall is calculated as

Hw =

∑
i∈V ′

∑
j∈V ′

∑
k∈K xk

ijcijUSk∆T

3.6× 106vij
, (3.19)

where xk
ijcij/vij is used to calculate the total driving time, U is the heat transfer coef-

ficient, Sk is the surface area of vehicle k, and ∆T is the difference in temperature be-
tween the inside and the outside of the vehicle. The heat entering when the door opens
is calculated as

Hs =
∑
i∈V

∑
j∈V ′

∑
k∈K

xk
ijhi, (3.20)

wherehi is the heat entering during service time at stop i, which is calculated as

hi =
V kcp,a(T

k
i − T0)

3.6× 106
, (3.21)
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where V k is the volume of vehicle k, cp,a is the volumetric heat capacity of air, and the
factor 3.6× 106 is used to convertJ to kWh.

The total fuel used for refrigeration of the load can then be calculated as

fr =
Hw +Hs

ηeηpPf
, (3.22)

where fr refers to the fuel used for refrigeration of the load of the vehicle, ηe is the ef-
ficiency by which the chemical energy from the fuel is converted to electricity to drive
the refrigeration system, and ηp is the coefficient of performance, which measures how
much thermal energy can be removed with a certain amount of electrical energy. The co-
efficient of performance is also often referred to as COP (Tassou et al., 2009) but we useηp
for the formulation.

The emissions related to refrigerated transport are a function of fuel used for motion,
fuel used for refrigeration, and refrigerant leakage. Refrigerant leakage emissions can
be approximated by multiplying the emissions needed for refrigeration by a given factor.
Equation (3.23) shows the calculation of emissions caused by refrigeration of the load and
Equation (3.24) gives the total emissions for refrigerated transport:

Er = frefer, (3.23)

whereEr are the emissions of refrigerated transport, and er is the emissions factor that
converts emissions caused by fuel use into emissions caused by both fuel use and refriger-
ant leakage. The total emissions associated with temperature controlled transportation
are then

E = Em + Er

= fmef + frefer

=

∑
i∈V

∑
j∈V

∑
k∈K αwkp

ij cij +
∑

i∈V

∑
j∈V

∑
k∈K βcijx

k
ijv

2

3.6× 106 Pf ηm
ef

+

∑
i∈V ′

∑
j∈V ′

∑
k∈K xk

ijcijUSk∆T

3.6× 106vijηeηpPf
efer

+

∑
i∈V

∑
j∈V ′

∑
k∈K xk

ijhi

ηeηpPf
efer.

(3.24)

Cost calculation
The total transportation cost can be calculated as follows by adding wage cost and fuel
cost:

C =
∑
i∈V

∑
j∈V

∑
k∈K

cwcijx
k
ij

vij
+

∑
i∈V ′

∑
j∈V

∑
k∈K

cwx
k
ijsi + (fm + fr)cf , (3.25)

whereC refers to the costs, cw is the driver wage per time unit, cf is the unit fuel cost, cw
is the unit wage cost, and si is the unloading time at node i. Note that fuel is used both
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for driving (fm, see Equation 3.17) and for temperature control (fr , see Equation 3.22).

Formulation of objectives and constraints

For the quality driven VRP model, we consider the three objective functions of minimis-
ing product decay (3.26), minimising CO2 emissions (3.27), minimising cost (3.28), and
minimising the maximum decay (3.29), which have been defined in terms of the model
parameters and variables in Equations (3.3), (3.13), (3.24), and (3.25):

Minimise D (3.26)
Minimise E (3.27)
Minimise C (3.28)
Minimise Z (3.29)

subject to

∑
i∈V ′

∑
k∈K

xk
0i ≤ K (3.30)∑

j∈V

∑
k∈K

wkp
ji −

∑
j∈V

∑
k∈K

wkp
ij = qpi i ∈ V ′, p ∈ P (3.31)

wkp
i0 = 0 i ∈ V ′, k ∈ K, p ∈ P (3.32)

wkp
ij ≤ (Lk − qpi )x

k
iji ∈ V, j ∈ V, k ∈ K, p ∈ P

(3.33)

wkp
0j ≤ Lkxk

0j j ∈ V, k ∈ K, p ∈ P (3.34)

wkp
ij ≥ (qpj )x

k
ij i ∈ V, j ∈ V, k ∈ K, p ∈ P

(3.35)∑
i∈V

∑
j∈V ′

cijx
k
ij

vij
+

∑
i∈V

∑
j∈V ′

xk
ijsi ≤ d k ∈ K (3.36)

∑
i∈V

∑
j∈V

∑
k∈K

xk
ij = 0 i = j (3.37)

∑
i∈V

xk
ij =

∑
j∈V

xk
ji j ∈ V, k ∈ K (3.38)

∑
i∈V

∑
k∈K

xk
i0 =

∑
i∈V ′

∑
k∈K

xk
0i (3.39)
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∑
j∈V

xk
0j ≤ 1 k ∈ K (3.40)

Qkp
0i = Qp

0x
k
0i i ∈ V ′, p ∈ P, k ∈ K (3.41)∑

j∈V

Qkp
ji −

∑
j∈V

Qkp
ij = Dkp

i +
∑
j∈V

Dkp
ij i ∈ V ′, p ∈ P, k ∈ K (3.42)

Qkp
ij ≤ Q0x

kp
ij i ∈ V ′, j ∈ I, p ∈ P, k ∈ K (3.43)

Qkp
ij ≥ Qmin i ∈ V, j ∈ I, p ∈ P, k ∈ K (3.44)

xk
ij ∈ {0, 1} i ∈ V, j ∈ V, k ∈ K (3.45)∑

i∈V

∑
j∈V

∑
k∈K

xk
ij = 0 i = j, (3.46)

sckij ≤
∑
p∈P

wkp
ij tc(

Ti − T0

Ta − T0
+ 0.001) +Mzkij i ∈ V ′, j ∈ V, k ∈ K, (3.47)

−sckij ≤ −
∑
p∈P

wkp
ij tc(

Ti − T0

Ta − T0
+ 0.001) +Mzkiji ∈ V ′, j ∈ V, k ∈ K, (3.48)

sckij ≤
xk
ijcij

vij
+Mzkij i ∈ V ′, j ∈ V, k ∈ K, (3.49)

−sckij ≤ −
xk
ijcij

vij
+Mzkij i ∈ V ′, j ∈ V, k ∈ K, (3.50)

zkij ∈ {0, 1} i ∈ V ′, j ∈ V, k ∈ K, (3.51)

where M is a very large number. Constraints (3.30) specify that no more than the maxi-
mum number of vehicles available (K) leave the CDC. Constraints (3.31) are balance con-
straints; after a node is visited, the load of the vehicle diminishes with the demand deliv-
ered to that node. Constraints (3.32) force the vehicle to return to the CDC empty. Con-
straints (3.33) – (3.35) set boundaries on the minimum and maximum weight transported
over an edge and connect decision variablesxk

ij andwkp
ij such that the emission-minimising

objective function can remain linear. Constraints (3.36) limit the maximum working time
per driver. Constraints (3.37) forbid routes between the same location. Constraints (3.38)
enforce that if a node is entered by a vehicle, it should leave from the same node. Con-
straints (3.39) state that the number of vehicles leaving the CDC should be equal to the
number returning. Constraints (3.40) force the model to use a new vehicle when a new
route from the CDC is started. Constraints (3.41) set the initial quality level. Constraints
(3.42) are the quality balance constraints. Constraints (3.43) ensure that the quality can-
not exceed the initial quality. Constraints (3.44) define the minimum quality level. Con-
straints (3.45) are binary constraints. Constraints (3.46) do not allow the model to sug-
gest routes between the same location. Constraints (3.47) – (3.51) define the cooling time.
They ensure that the cooling time is either equal to a function of the load, the cooling
speed, and the difference in temperature of the vehicle, and the goal temperature, or
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equal to the total arc crossing time.

3.4 Computational results and discussion
In the computational experiments, we first test the effect of using different objective
functions (minimising cost, emissions, total decay, and maximum decay) on a number
of key performance indicators: decay, emissions, cost, distance, travelling time and com-
putation time. In terms of quality decay, we measure total decay, which is the sum of the
decays of the different products at the different locations; average quality, which is the
quality that the partners receive on average; and minimum quality, which is the lowest
quality received by (one of the) partners. We also show how quality changes along a de-
livery route. Then, in our sensitivity analyses we test the effects of different parameters
in the QDVRP on the KPIs when decay is minimised. We test the effects of using a quality
threshold level, different unloading rates, outside temperature, driving speed, cooling
rate, and different optimal product temperatures.

The model was coded and solved exactly using Fico Xpress Mosel version 8.0 on a PC with
Intel Core i5 processor (2.6 GHz) and eight GB of memory.

Data and assumptions
We base our study on demand data of three types of vegetables for the different super-
market chains. Of those products, the optimal temperatures, and parameters that de-
scribe the degradation rate for different quality attributes have been studied (Tsironi et al.,
2017). The distances between the cooperative's central distribution centre (CDC) and the
distribution centres (DC) of each supermarket chain are given in Table 3.2.

Table 3.2: Distances (in km) between the DCs of the supermarket chains (denoted by 1–9) and the
CDC (denoted by 0).

0 1 2 3 4 5 6 7 8 9
0 0 91 6 134 82 117 74 192 129 120
1 91 0 91 75 134 43 20 155 59 122
2 6 91 0 134 84 117 75 194 129 123
3 134 75 134 0 168 46 94 90 29 118
4 82 134 84 168 0 158 140 180 169 90
5 117 43 117 46 158 0 59 117 18 128
6 74 20 75 94 140 59 0 174 77 128
7 192 155 194 90 180 117 174 0 99 110
8 129 59 129 29 169 18 77 99 0 137
9 120 122 123 118 90 128 128 110 137 0

The kinetic parameters of the three products and demands of the three products for the
DCs can be found in Table 3.3. The following assumptions are also made for the base case:
For all products, the optimal temperature is 275 K (2 °C), and the vehicle's goal tempera-
ture is 275 K (2 °C) as well. The ambient temperature is 293 K. The unloading time is 0.8
seconds per kg of load. The cooling time is 0.4 seconds per kg of load in the truck. Since
the products in the case are fresh cut vegetables it was assumed that the order reaction
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of the Arrhenius equation was a zero order reaction (Tsironi et al., 2017). There is a three-
vehicle fleet available. Each vehicle has an empty weight of 10000 kg and a capacity of
30000 kg.

Table 3.3: Kinetic parameters and demand (kg) of each product for all DCs.

Kinetic parameter Product 1 Product 2 Product 3
k0 (s−1) 3.08 × 10−6 3.84 × 10−6 1.96 × 10−6

Ea (J/mol) 77900 76304 88521
DC

1 432 432 216
2 2160 648 648
3 648 216 432
4 792 403 432
5 1080 432 648
6 979 86 259
7 864 432 432
8 432 108 216
9 144 86 101

Base case: comparing different objective functions
We run the model with different objectives and different numbers of vehicles to better
understand how food quality changes in a cooperative route. We also show the model
results for individual routing to compare cooperative and individual route planning. The
results are summarised in Table 3.4. In this Table, the total decay is the (dimensionless)
sum of the decays of all products of all customers, while the minimum and the average
decay are percentages of the original quality that the customers receive.

Table 3.4: KPIs resulting from minimising the different objectives for different numbers of vehicles.

Minimisation objective
Indiv. Cost Total and maximum decay Emission

Available vehicles 7 2 3 4 2 3 4 2 3 4
Total decay 4.7 4.53 4.47 4.47 4.53 4.47 4.43 4.53 4.53 4.53
- Minimum quality (%) 85 58 58 58 58 58 71 58 58 58
- Average quality (%) 92 81 83 83 81 83 88 81 81 81
Emission (kg CO2 ) 1695 886 888 888 886 888 1074 886 886 886
Cost (e) 1074 570 562 562 570 562 676 570 570 570
Distance (km) 1393 639 644 644 639 644 808 639 639 639
Travel time (h) 13.4 10.0 8.7 8.7 10.0 8.7 9.4 10.0 10.0 10.0
Used vehicles 7 2 3 3 2 3 4 2 2 2
Computation time (s) 3 7 30 574 27 480 1231 11 24 24

Table 3.4 shows that cooperation results in lower total decay, emission, costs, distance,
travel time, and vehicle use. The average quality that is delivered to the customer is higher,
as well as the minimum quality. However, the average and the minimum quality that
is received in the non-cooperative scenario are higher. Table 3.4 also shows the results
for different objective functions for different fleet sizes. It shows that the solution is the
same for all objectives when two vehicles are used. For one vehicle, the model becomes
infeasible because the maximum driving time constraint is violated. For three vehicles,
decay and cost minimisation result in the same solution, which is not that different from
the emission-minimising solution in terms of decay, costs and emissions. When using
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four vehicles, the cost and emission solution are the same as in the three-vehicle cost
and emission minimising scenarios, but the decay-minimisation is quite different with
a lower decay, and significantly higher emissions and costs. Allowing for more than four
vehicles with the different objectives gives the same results as the four-vehicle scenarios
for those objectives. Minimising total decay and minimising the maximum decay results
in the same solutions. In our case, minimising the maximum decay does not help to in-
crease the quality that the partners receive.

Sensitivity analyses
In this section we test the effect of a threshold value for a minimum quality level, unload-
ing rate, outside temperature, driving speed, cooling rate, and optimal temperature on
the results of the quality decay minimisation model.

Threshold for minimum quality level

Since total decay minimisation can result in some customers receiving a rather low prod-
uct quality (reflected in the minimum product quality in Table 3.4), we test the effect of
quality thresholds (Table 3.5).

Table 3.5: Effect of quality threshold on quality delivered based on order in a route, and on the other
KPIs.

Thres- Order visited Total Travelling Computa-
hold (%) Vehicles 1 2 3 4 5 decay Emissions Cost time tion time

80 4 91 85 4.6 1268 801 12.4 120
≤ 71 4 91 87 75 4.4 1074 676 9.4 132

0 3 92 89 80 73 64 4.5 888 562 8.7 480
0 2 91 85 80 73 64 4.5 886 570 10.0 27

Table 3.5 shows the average product quality received based on the order at which a cus-
tomer is visited, as well as the total decay, emissions, cost, travelling time and computa-
tion time. Since we expected quality thresholds to result in shorter routes, we allow for
four vehicles instead of three. Allowing for more than four vehicles gives the same re-
sults as allowing for four vehicles, so those results are not shown. As a comparison, also
the three- and two-vehicle results without threshold level are shown. Testing a threshold
of 85% or higher results in infeasible solutions since at some individual routes there is al-
ready 15% quality loss for some products, and a threshold level of lower than 71% results
in the same solution as having no threshold since the minimum quality level when there
is no threshold is 71%. Table 3.5 shows that a higher quality threshold results shorter
routes; in the 80% threshold route, only two customers are visited per route. Also, it
shows that using four vehicles instead of three results in a lower total quality decay as
it allows for shorter routes. However, the highest threshold (80%) causes an increase in
decay, as well as in cost and emissions.

Unloading rate

In the model, an unloading rate is assumed based on communication with practise. We
test different unloading rate to test how influential it is in terms of quality decay (Table
3.6).
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Table 3.6: Effect unloading rate on KPIs and routes.

Rate(s/kg) 0.4 0.8 1.2
Total decay (-) 2.7 4.5 6.3
- Minimum quality (%) 74 58 61
- Average quality (%) 90 83 80
Emission (kg CO2 ) 888 888 1071
Cost (e) 553 562 696
Distance (km) 644 644 803
Travelling time (h) 7.7 8.7 12.2
Computation time (s) 120 480 542

Table 3.6 shows that the door opening time is higher and the temperature increase at a
stop is higher when the unloading rate is lower. When unloading happens twice as fast
(which can be caused by automation in loading/unloading), total decay can reduce with
40% and the minimum received quality and the average quality increase with 16 and 7
percentage points, respectively. When increasing unloading rate, costs and emissions
stay the same, or improve.

Outside temperature

Table 3.7 the effect of the outside temperature on the KPIs when decay is minimised.

Table 3.7: Effect outside temperature on KPIs and routes.

Outside temperature (°C) 2 10 20 30
Total decay (-) 1.0 1.8 4.5 11.9
- Minimum quality (%) 92 84 58 18
- Average quality (%) 96 93 83 62
Emission (kg CO2 ) 729 801 888 1164
Cost (e) 501 524 562 724
Distance (km) 639 644 644 803
Travelling time (h) 10.0 8.7 8.7 10.7
Computation time (s) 3 27 42 883

As the results imply, the outside temperature is an important factor in quality decay. When
we combine this with the effect of unloading rate, we can see that in warmer countries,
it is especially important to unload quickly. Also, at a temperature of 30 °Celsius, the
minimum quality reaches a level (18%) that will probably be unacceptable for most cus-
tomers.

Driving speed

We varied the speed matrix to test different average driving speeds (Table 3.8). The base
case (scenario 1.0) has an average driving speed of 55 km/h, and the other scenarios (de-
noted 0.6 – 1.4) define by which number the speed matrix is multiplied to obtain the new
speed matrix. The base case speed matrix can be found in the Appendix (Table A.5).
Table 3.8 shows that a higher driving speed can reduce total quality decay, while for emis-
sions and cost, the intermediate driving speeds give better results. However, in terms of
minimum and average decay level, a lower driving speed (up to 0.8 times the base case
speed matrix) results in better solutions. This is because the lower driving speeds result
in two two-destination routes and one three-destination route, while the faster scenarios
(0.9 times the base case speed and up) result in two one-destination routes and one five-
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Table 3.8: Effect of driving speed on KPIs and routes.

Scenario 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Route 1 (0, 2, 4, 0) (0, 2, 4, 0) (0, 2, 0)
Route 2 (0, 3, 7, 0) (0, 5, 3, 7, 0) (0, 4, 0)
Route 3 (0, 6, 1, 5, 0) (0, 6, 1, 0) (0, 6, 1, 5, 3, 7, 0)
Total decay (-) 5.0 4.8 4.7 4.6 4.5 4.4 4.3 4.3 4.3
- Minimum quality (%) 74 69 70 57 58 59 59 60 60
- Average quality (%) 86 85 86 83 83 83 84 84 84
Emission (kg CO2 ) 1024 1003 1020 867 888 913 941 972 1006
Cost (e) 744 694 684 561 562 567 575 585 598
Distance (km) 844 803 803 644 644 644 644 644 644
Travelling time (h) 16.3 14.0 12.6 9.5 8.7 8.1 7.6 7.2 6.9
Computation time (s) 198 120 39 325 480 685 976 577 1314

destination route. In terms of emissions and costs, a speed close to the base case results
in the best performance.

Cooling rate

Different cooling rates were tested and the results are presented in Table 3.9.

Table 3.9: Effect of cooling rate on KPIs and routes.

Scenario Fast Base Medium Slow
Cooling rate (s/kg) 0.2 0.4 0.6 0.8
Total decay (-) 4.4 4.5 4.6 4.6
- Minimum quality (%) 73 58 57 56
- Average quality (%) 83 83 83 83
Emission (kg CO2 ) 1073 888 888 888
Cost (e) 684 562 562 562
Distance (km) 802 644 644 644
Travel time (h) 10.5 8.7 8.7 8.7
Computation time (s) 28 480 1699 7656

Table 3.9 shows that only a very fast cooling rate changes the optimal route and conse-
quently, the cost and emissions. However, the effect of cooling rate is much smaller com-
pared with the effect of unloading rate. As a consequence of the different route at the
fastest cooling rate, the minimum quality level does improve significantly.

Optimal temperature

So far, we have assumed that all products had the same optimal temperature (275 K, 2 °C).
Here, we test the effect of different optimal temperatures, while minimising quality de-
cay. Table 3.10 shows that a higher average optimal temperature significantly decreases
decay. This implies that considering quality decay is very important for temperature-
sensitive products with a low optimal temperature, especially if they are transported in a
warm environment. In the scenario with three different optimal temperatures, the prod-
ucts are transported at the average optimal temperature. This causes product 1 to be
transported above its optimal temperature, but still, the average and minimum decay
are better than in the scenario where all products need a low temperature.
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Table 3.10: Effect optimal product temperature on KPIs and routes. T0 is the goal temperature in
the vehicle. T1–T3 are the optimal temperatures of product 1 to 3.

Optimal temperature Low Medium Variable
T0 (K) 275 280 280
T1 (K) 275 280 275
T2 (K) 275 280 280
T3 (K) 275 280 285
Total decay (-) 4.5 1.4 2.3
- Minimum quality (%) 58 76 62
- Average quality (%) 83 90 89
Emission (kg CO2 ) 888 845 845
Cost (e) 562 543 543
Distance (km) 644 644 644
Travelling time (h) 8.7 8.7 8.7
Computation time (s) 480 405 326

3.5 Conclusions
We have introduced, modelled and solved the Quality Driven Vehicle Routing Problem
(QDVRP), which is an extension of the traditional VRP, that explicitly considers the qual-
ity aspects of food and perishable transportation. Our model was applied to a cooper-
ative setting to study the effects of multi-stop routing on food quality, but also on cost
and emissions. Compared with cost and emission minimisation, decay minimisation re-
sulted in using more vehicles and driving sorter routes. When driving longer routes, the
product quality arriving at locations visited later in the route is lower. This difference in
quality level could be corrected by setting a threshold quality level for all locations. This
however results in higher costs and emissions. In our case study, we also tried to minimise
the maximum decay to reduce the quality difference between locations but this did not
result in other solutions compared with total decay minimisation. However, in a setting
with more alternative routes, this approach may yield different solutions. Our sensitivity
analyses showed that faster unloading (e.g., by automation in loading/unloading pro-
cess) or faster cooling (i.e. equipping the vehicles with better cooling engines) can reduce
total quality decay. Also, technical improvements to prevent heat from entering the vehi-
cles when unloading could reduce decay. The outside temperature is also very influential
on the decay rate. However, this is hard to influence, but one could choose to transport
food products very early in the morning or at night to benefit from a lower outside tem-
perature, and to avoid traffic jams. Also, faster driving can decrease total decay. However,
in our case study, a lower speed resulted in a higher minimum and average quality. More-
over, an intermediate speed results in better costs and emissions.

The QDVRP model can be applied to gain insights into quality decay on a multi-stop route.
Also, possible cooperative partners can use this model to measure the impacts of food
logistics cooperation on costs, emissions and quality decay. Moreover, the model can be
used to test the effect of technological improvements to reduce quality decay during road
transportation.
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Chapter 4

Quantifying the environmental and
economic benefits of cooperation: A case
study in temperature-controlled food
logistics

Inefficient road transportation causes unnecessary costs and polluting emissions. This
problem is even more severe in refrigerated transportation, in which temperature con-
trol is used to guarantee the quality of the products. Organising logistics cooperatively
can help decrease both the environmental and the economic impacts. In Joint Route
Planning (JRP) cooperation, suppliers and customers jointly optimise routing decisions
so that cost and emissions are minimised. Vendor Managed Inventory (VMI) cooperation
extends JRP cooperation by optimising routing and inventory planning decisions simul-
taneously. However, in addition to their economic advantages, VMI and JRP may also
yield environmental benefits. To test this assertion, we perform a case study on coop-
eration between a number of supermarket chains in the Netherlands. The data of this
case study are analysed to quantify both the economic and environmental benefits of
implementing cooperation via JRP and VMI, using vehicle routing and an inventory rout-
ing models. We found that JRP cooperation can substantially reduce cost and emissions
compared with uncooperative routing. In addition, VMI cooperation can further reduce
cost and emissions, but minimising cost and minimising emissions no longer result in
the same solution and there is a trade-off to be made.

This chapter is based on: Stellingwerf, H.M., Laporte, G. Cruijssen, F.C.A.M., Kanellopoulos, A., Bloemhof, J.M.
(2018). Quantifying the environmental and economic benefits of cooperation: A case study in temperature-
controlled food logistics. Transportation Research part D: Transport and Environment 65: 178–193.

51



Chapter 4. Quantifying environmental and economic benefits of cooperation

4.1 Introduction

Road transportation generates significant costs for firms that deliver and collect prod-
ucts, and it is also a source of negative environmental impacts such as CO2 emissions
(Palmer, 2007). The transportation of frozen and fresh food, pharmaceuticals and flowers
cause additional polluting emissions because more fuel is required to control the vehicle
temperature during transportation (Hariga et al., 2017). Moreover, extra emissions are
associated with the leakage of refrigeration fluid (Stellingwerf et al., 2018a). Also during
storage, temperature control can result in additional costs and emissions (Bozorgi et al.,
2014; Bazan et al., 2015). For fresh food, temperature control is needed to keep high prod-
uct quality and to ensure a longer shelf life. A literature review has shown that there are
very few papers that have considered sustainability in the transportation of perishable
products (Vrat et al., 2018). Cooperative logistics has been suggested as a way of reduc-
ing carbon emissions and of improving sustainability in supply chains (Ramanathan et al.,
2014; Vanovermeire et al., 2014; McKinnon, 2016; Chen et al., 2017), especially in food supply
chains (Bloemhof et al., 2015). Apart from saving cost and reducing emissions, cooperative
logistics also offers other advantages such as an improved utilisation rate of vehicles and
an increased transportation capacity (Cruijssen et al., 2007a).

This research focuses on two types of logistics cooperation: Joint Route Planning (JRP)
and Vendor-Managed Inventory (VMI). In JRP, firms aim to save cost by organising trans-
portation more efficiently, either by cooperating or by outsourcing part of their logistics
planning to a logistics service provider. JRP research has traditionally focused on eco-
nomic indicators (Cruijssen et al., 2007b). To enable JRP, cooperative firms need to share
information on their transportation needs. In VMI, the vendor manages its own inven-
tory as well as the inventory of its customers by taking decisions on how much and at
which frequency to replenish; the vendor is responsible for keeping the stock level of the
customer within agreed limits (Nagarajan and Sošić, 2008; Bazan et al., 2015). VMI is of-
ten described as a win-win situation: vendors save on distribution cost as they are able to
combine and coordinate shipments for different customers, and customers save by not
allocating efforts in controlling and managing inventories (Coelho et al., 2013). Often, VMI
is seen as a cooperative relation between a supplier and its customers. However, it is also
possible for multiple suppliers to cooperatively implement VMI from a joint warehouse.
Another possibility is that a group of customers hire a logistics service provider to store
and distribute the products for them. Thus, VMI is a logistics concept that can enable dif-
ferent forms of cooperation. It requires a higher level of information sharing compared
with JRP since in addition to information on transportation needs, information on the
inventories also needs to be shared. Research has shown that firms see the reduction of
emissions as one of the reasons to implement VMI (Makaci et al., 2017). However, to our
knowledge there is no research quantifying the environmental effects of implementing
cooperation via VMI. Indeed, most research on VMI based-cooperation focuses on the ef-
fects on economic indicators such as cost or profit (Borade and Sweeney, 2015; Chakraborty
et al., 2015; Cai et al., 2017).

The goal of this Chapter is to quantify the environmental and economic benefits of imple-
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menting cooperation via VMI and JRP for a fresh food supply chain in the Netherlands.
In order to quantify both the environmental and economic effects of implementing VMI
and JRP, we need a model that not only considers distance, but also vehicle load, the or-
der of deliveries and vehicle speed (Bektaş and Laporte, 2011; Zachariadis et al., 2015). It
is also necessary to consider the effects of using temperature-controlled transportation
which can have significant effects on both cost and emissions. Therefore we apply the
temperature-controlled Load Dependent Vehicle Routing Problem model (Stellingwerf
et al., 2018a) to compute optimal routes in a JRP setting. For the VMI, we also need to
consider inventory decisions for a supplier and multiple clients, delivery frequency, and
delivery quantities. Therefore, the green Inventory Routing Problem (IRP) is an appropri-
ate modelling tool for estimating the environmental and economic benefits of cooper-
ative VMI (Cheng et al., 2017). It is an inventory routing model that can be used both for
minimising emissions and for minimising costs by jointly optimising inventory and rout-
ing decisions. Here we extend the green IRP to include the effects of temperature control
and to test the effect of IRP decisions on average product age.

We apply these models to study a case of cooperative fresh food logistics between seven
supermarket chains in the Netherlands, a form of buyer cooperation. Both cost and emis-
sions are quantified as indicators of economic and environmental benefits. JRP and VMI
are compared with each other, as well as with the current situation in which transporta-
tion is planned individually by each supermarket chain. The remainder of the Chapter is
structured as follows. In Section 4.2 we introduce the case study, in Section 4.3 we math-
ematically formulate the problem, in Section 4.4 we show and discuss the results, and in
Section 4.5 we conclude this Chapter and suggest future research directions.

4.2 Case study: cooperative VMI to reduce cost and emissions in
Dutch supermarket chains

In the Netherlands, several smaller supermarket chains have opted to cooperate by form-
ing a buying organisation. By jointly purchasing their products, they can negotiate a lower
unit price. The supermarket chains currently hire different logistics service providers to
pick up their orders from the buying organisation's central distribution centre (CDC) and
bring them to their own distribution centre (DC). From their DC, they distribute the prod-
ucts to their supermarket outlets. These supermarket chains consider the possibility of
intensifying their cooperation to further reduce cost and emissions, not only by using
their alliance as a buying organisation, but also by cooperatively managing their rout-
ing and inventory decisions.

Each supermarket chain owns between 30 and 300 supermarket outlets. We focus on the
cooperation between the CDC and the DCs. The supermarket chains use three main tem-
perature categories for their foods: (i) frozen, (ii) chilled, and (iii) ambient. Frozen prod-
ucts should be kept at around−18°C, and generally have a long shelf life (a few months).
Chilled products should be kept at around 2°C, and are generally characterised by a short
shelf life (a few days). Ambient temperature products do not need temperature control,
and can either have a long shelf life, in the case of dry products like biscuits, or a medium
shelf life (several days to several weeks), in the case of fresh products such as fruits and
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vegetables.

Currently, the supermarket chains arrange their logistics individually, but they are con-
sidering to cooperate. There exist two options to this end: Joint Route Planning (JRP) and
Vendor Managed Inventory (VMI), and they would like to measure the effects of these
forms of cooperation on their economic and environmental performance. They would
also like to know whether the effects vary for the different temperature categories. More-
over, they wish to assess the effects of the different scenarios on other key performance
indicators such as emissions, driving distance, cost, total travelling time, and average
product age upon leaving the DC. We use a green IRP model to quantify these key perfor-
mance indicators in order to analyse cooperation via JRP and VMI, as well as individual
routing (the current situation).

4.3 Formal problem description and mathematical formulation
The problem under consideration is NP-hard since it encompasses a Vehicle Routing Prob-
lem (VRP) which is known to be NP-hard. Here, we provide the formulation of a green IRP,
which is used to model cooperation via VMI. After the model formulation, we add con-
straints so that cooperation via JRP and individual routing (the current situation) can be
modelled as well. A summary of all notations and values used is given in the Appendix
(Tables A.1 – A.4).

Let G = (V,A) be a graph in which V = {0, 1, ..., n} is the set of nodes. The CDC is
located at vertex 0, V \{0} is the set of DCs, and A = {(i, j) : i, j ∈ V, i 6= j} is the
set of arcs. With every arc (i, j) is associated a non-negative distance cij . We define t
as an index for the set of time periods {1, ..., T}, where T is the length of the planning
horizon. The demand at each DC i in each period t is given by qti , and Ci is the capacity
of DC i. There exists a set of identical vehicles K = {1, ..., k} of capacity L with a curb
(empty) weight ofL0 (kg). We denote by vij the speed driven on arc (i, j).

The following decision variables are used:
• xkt

ij is a binary variable equal to 1 if and only if vehiclek drives from node i to node
j in period t;

• wkt
ij is the total weight carried, including the vehicle weight, from node i to node

j by vehicle k in period t;

• ykti is the weight of the products delivered to DC i by vehicle k in period t;

• Iti is the inventory level of DC i in time period t.

Fuel and emissions calculation in ambient transportation
Bektaş and Laporte (2011) have shown that the fuel use in ambient transport is linearly re-
lated to the motive power requirement. The latter depends on the weight carried, the
slope of the road, the distance travelled and the vehicle speed. The motive powerPij on
arc (i, j) can be approximated as

Pij = αijw
kt
ij cij + βv2ijcij , (4.1)
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where αij is the arc-specific constant, and β is the vehicle-specific constant. Equations
(4.2) and (4.3) show how these constants are calculated:

αij = a+ gsinθij + gCrcosθij , (4.2)

where a is the acceleration of the vehicle (m/s2), g is the gravitation constant (m/s2), θij
refers to the average slope on arc ij (degrees), Cr is the rolling resistance (dimension-
less). The vehicle-specific constant is calculated as

β = 0.5CdAρ, (4.3)

whereCd is the drag coefficient (dimensionless),A is the frontal area of the vehicle (m2),
and ρ is the air density (kg/m3).

In (4.4) fuel use for ambient transport (fm) is calculated by summing up the power re-
quirements for all routes and converting those into fuel use. This is achieved by dividing
the power by 3.6 × 106 to convert Joule (J) to kilowatt-hour (kWh), by the chemical to
motive energy conversion efficiency (ηm), and by the energy content of the fuel (Pf ):

fm = (
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

αwkt
ij cij +

∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

βcijx
kt
ij v

2
ij)

1

3.6× 106 Pf ηm
.

(4.4)
The emissions from ambient transport are linearly related to fuel use:

Em = fmef , (4.5)

where ef is the emissions factor which converts fuel use into CO2 emissions (kg/L), and
Em are the CO2 emissions of ambient transport, i.e. the motive emissions (kg).

Fuel and emissions calculation in refrigerated transportation
Stellingwerf et al. (2018a) have approximated the cost, the fuel consumption and the emis-
sions of refrigerated transport, so that the impact of temperature controlled transport
can be estimated in route optimisation models. In refrigerated transport, fuel is used
both for motive power and for keeping the temperature of the load at the right level. The
energy used for temperature control depends on the heat that enters through the vehi-
cle wall during driving time, and on the heat that enters the vehicle when the door opens.
The heat entering through the wall (kWh) is calculated as

Hw =

∑
i∈V ′

∑
j∈V ′

∑
k∈k

∑
t∈T xkt

ij cijUSk∆T

3.6× 106vij
, (4.6)

wherexkt
ij cij/vij is used to calculate the total driving time (s),U is the heat transfer coef-

ficient (W/m2/K),Sk is the surface area of vehiclek (m2), and∆T is the difference in tem-
perature between the inside and the outside of the vehicle (K). The heat entering when
the door opens (kWh) is calculated as

Hs =
∑
i∈V

∑
j∈V ′

∑
k∈K

∑
t∈T

xkt
ij hi, (4.7)
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wherehi is the heat entering during service time at stop i (kWh).

The total fuel used for refrigeration of the load can then be calculated as

fr =
Hw +Hs

ηeηpPf
, (4.8)

where fr refers to the fuel used for refrigeration of the load of the vehicle, ηe is the ef-
ficiency by which the chemical energy from the fuel is converted to electricity to drive
the refrigeration system (dimensionless), andηp is the coefficient of performance, which
measures how much thermal energy can be removed with a certain amount of electrical
energy (dimensionless). The coefficient of performance is also often referred to as COP
(Tassou et al., 2009) but we use ηp for the formulation.

The emissions related to refrigerated transport are a function of fuel used for motion,
fuel used for refrigeration, and refrigerant leakage. Refrigerant leakage emissions can
be approximated by multiplying the emissions needed for refrigeration by a given factor.
Equation (4.9) shows the calculation of emissions caused by refrigeration of the load and
Equation (4.10) gives the total emissions for refrigerated transport:

Er = frefer, (4.9)

where Er are the emissions of refrigerated transport (kg CO2), and er is the emissions
factor that converts emissions caused by fuel use into emissions caused by both fuel use
and refrigerant leakage (kg/kg). The total emissions associated with temperature con-
trolled transportation are then

E = Em + Er

= fmef + frefer

=

∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T αwkt

ij cij +
∑

i∈V

∑
j∈V

∑
k∈K

∑
t∈T βcijx

kt
ij v

2

3.6× 106 Pf ηm
ef

+

∑
i∈V ′

∑
j∈V ′

∑
k∈k

∑
t∈T xkt

ij cijUSk∆T

3.6× 106vijηeηpPf
efer

+

∑
i∈V

∑
j∈V ′

∑
k∈K

∑
t∈T xkt

ij hi

ηeηpPf
efer.

(4.10)

Cost calculation
The transportation cost can be calculated as follows by adding wage cost and fuel cost:

Ct =
∑
i∈V

∑
j∈V

∑
m∈M

∑
t∈T

cwcijx
kt
ij

vij
+

∑
i∈V ′

∑
j∈V

∑
k∈K

∑
t∈T

cwx
kt
ij s+(fm+fr)cf , (4.11)

where Ct refers to the transportation cost (e), cw is the driver wage per time unit (e/s),
cf is the unit fuel cost (e/L), andcw is the unit wage cost (e/s). Note that fuel is used both
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for driving (fm, see Equation 4.4) and for temperature control (fr , see Equation 4.8).

The inventory cost is calculated as

CI =
∑
i∈V

∑
t∈T

Iti cI , (4.12)

where CI refers to the inventory cost (e), Iti refers to the inventory level at location i in
period t (kg), cI are the unit inventory cost(e/kg/day).
The total costC is then

C = Ct + CI

=
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cwcijx
kt
ij

vij
+

∑
i∈V ′

∑
j∈V

∑
k∈K

∑
t∈T

cwx
kt
ij s+ (fm + fr)cf

+
∑
i∈V

∑
t∈T

Iti cI

=
∑
i∈V

∑
j∈V

∑
m∈M

∑
t∈T

cwcijx
kt
ij

vij
+

∑
i∈V ′

∑
j∈V

∑
k∈K

∑
t∈T

cwx
kt
ij s

+

∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T αwkt

ij cij
∑

i∈V

∑
j∈V

∑
k∈K

∑
t∈T βcijx

kt
ij v

2
ij

3.6× 106 Pf ηm
cf

+

∑
i∈V ′

∑
j∈V ′

∑
k∈k

∑
t∈T xkt

ij cijUSk∆T

3.6× 106vijηeηpPf
cf

+

∑
i∈V

∑
j∈V ′

∑
k∈K

∑
t∈T xkt

ij hi

ηeηpPf
cf

+
∑
i∈V

∑
t∈T

Iti cI .

(4.13)

A green IRP formulation for temperature-controlled food transportation

For the green IRP model (Cheng et al., 2017), we consider the two objective functions of
minimising CO2 emissions (4.14) and minimising cost (4.15), which have been defined in
terms of the model parameters and variables in Equations (4.10) and (4.13):

Minimize E (4.14)
Minimize C (4.15)
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subject to

It0 = It−1
0 −

∑
i∈V ′

∑
k∈K

ykti t ∈ {2, ..., T} (4.16)

I10 =
∑
i∈V ′

∑
t∈T

qti (4.17)

Iti = It−1
i +

∑
k∈K

ykti − qti i ∈ V ′, t ∈ T (4.18)

I1i = 0 i ∈ V ′ (4.19)

Iti ≥ 0 i ∈ V ′, t ∈ T (4.20)

Iti ≤ Ci i ∈ V ′, t ∈ T (4.21)∑
k∈K

ykti ≤ Ci − It−1
i i ∈ V ′, t ∈ {2, ..., T} (4.22)

qkti ≤ Ci

∑
j∈V

xkt
ij i ∈ V ′, k ∈ K, t ∈ T (4.23)

wkt
ij ≤ (L+ L0)x

kt
ij i ∈ V, j ∈ V, k ∈ K, t ∈ T (4.24)

wkt
ij ≥ L0x

kt
ij i ∈ V, j ∈ V, k ∈ K, t ∈ T (4.25)∑

j∈V

xkt
ij ≤ n

∑
j∈V ′

xkt
0j i ∈ V, k ∈ K, t ∈ T (4.26)

∑
k∈K

∑
i∈V

xkt
ij ≤ 1 j ∈ V ′, t ∈ T (4.27)∑

j∈V

xkt
ij =

∑
j∈V

xkt
ji i ∈ V, k ∈ K, t ∈ T (4.28)

∑
i∈V |i 6=j

wkt
ij −

∑
i∈V |i 6=j

wkt
ji = ykti j ∈ V ′, k ∈ K, t ∈ T (4.29)

∑
j∈V ′

xkt
0j ≤ 1 k ∈ K, t ∈ T (4.30)

xkt
ij + xkt

ji ≤ 1 i ∈ V ′, j ∈ V ′, k ∈ K, t ∈ T (4.31)

xkt
ii = 0 i ∈ V, k ∈ K, t ∈ T (4.32)

wkt
ij ≥ 0 i ∈ V, j ∈ V, k ∈ K, t ∈ T (4.33)

ykti ≥ 0 i ∈ V ′, k ∈ K, t ∈ T (4.34)

Iti ≥ 0 i ∈ V, t ∈ T (4.35)

xkt
ij ∈ {0, 1} i ∈ V, j ∈ V, k ∈ K, t ∈ T . (4.36)

Constraints (4.16) – (4.17) define the inventory at the CDC, while constraints (4.18) – (4.21)
define the inventories at the DCs. Constraints (4.22) are the maximum level inventory
policy constraints. Constraints (4.23) ensure that no delivery can be made at DC i in pe-
riod t when there is no vehicle visiting that node in that period. Constraints (4.24) and
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(4.25) are the vehicle capacity constraints. Constraints (4.26) restrict the number of ve-
hicles used per day. Constraints (4.27) restrict the number of visits to each DC to at most
one per day. Constraints (4.28) are the flow conservation equations. Constraints (4.29)
eliminate sub tours. Constraints (4.30) ensure that at most one vehicle per day visits each
location. Constraints (4.31) state that a vehicle leaves from the same DC as the one it en-
tered. Constraints (4.32) eliminate impossible arcs. Constraints (4.33) – (4.35) are non-
negativity constraints, while constraints (4.36) are binary constraints.
In the IRP model (Equations (4.14) – (4.36)), the routing, the frequency and quantity of
delivery are optimised. In the VRP model, only the routing is optimised. To model coop-
erative JRP, the IRP model had to be transformed into a VRP model. This is achieved by
adding constraints (4.37) which limit the quantity delivered to a DC on each day to the DC
demand on that day: ∑

k∈K

ykti ≤ qti i ∈ V ′, t ∈ T . (4.37)

To quantify the effect of individual routing, we extend the VRP model by adding con-
straint (4.38) that allows the model to at maximum bring the demand of one destination
from the CDC, such that it chooses individual daily routes:

wkt
0j ≤ L0 + qktj j ∈ V ′, k ∈ K, t ∈ T . (4.38)

Average product age calculation

For fresh products, the time required to move from the CDC to the supermarkets is an in-
dicator of freshness and quality. We refer to this time as product age. The shorter the total
shelf life, the more important it is to deliver the products to the supermarket as quickly
as possible. We can calculate the average product age by using the demand data and the
model outputs on the quantity delivered and on the inventory on all time periods. To this
end, we assume that all DCs apply a FIFO (first in, first out) policy, and that all products
arrive at the DC with an age of one day. We take the outputs of the IRP, VRP and individ-
ual routing models defined by (4.14) – (4.38) and use them as an input for the average
product age calculation.

We first define r as an index for the set of ages{1, ..., R}. As an input for the age calcula-
tion model we use the demand qti , the quantity delivered yti and the inventory Iti , all for
each DC i ∈ V ′ and in each time period. As decision variables, we consider qtir as the de-
mand fulfilled from DC iby a product of age r in period t, ytir as the quantity delivered to
DC iof ager in period t, andItir as the inventory at DC iof ager in period t. The following
objective is then set to enforce the FIFO policy:

Minimize
∑
i∈V ′

∑
t∈T

∑
r∈R

r Itir, (4.39)
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subject to∑
r∈R

qtir = qti i ∈ V ′, t ∈ T (4.40)∑
r∈R

Itir = Iti i ∈ V ′, t ∈ T (4.41)∑
r∈1..1

ytir = yti i ∈ V ′, t ∈ T (4.42)

Itir = It−1
i,r−1 − qtir + ytir i ∈ V ′, a ∈ {2, ..., A}, t ∈ {2, ..., T}. (4.43)

Constraints (4.40) mean that for each DC in each period, the sum of the product demands
over all ages is equal to the total demand. Constraints (4.41) ensure that for each DC in
each period, the sum of the inventory of all different ages equals the total inventory. Con-
straints (4.42) state that for each DC in each period, the age of each incoming product is
one, and that the sum off all incoming products of age one equals the total of incoming
products. Constraints (4.43) describe how the inventory ages over time.

The average age (r) of the products leaving to the supermarkets is then calculated as

r =

∑
i∈V ′

∑
t∈T

∑
r∈R r qtir∑

i∈V ′
∑

t∈T qti
. (4.44)

4.4 Computational results and discussion
In our Computational experiments, we compare three scenarios: (i) no cooperation (imi-
tating the current situation in which routing is planned individually), (ii) JRP cooperation
where the supermarket chains use a common logistics service provider to reduce trans-
portation cost but do not share sensitive inventory information, and (iii) VMI cooperation
where the chains decide to share inventory information to optimise delivery frequency by
the logistics service provider. These scenarios are illustrated in Figure 4.1.

For the no cooperation scenario, we assume that there is a separate route back and forth
between the the CDC and each DC. For the JRP scenario, we assume that the supermar-
kets inform the CDC of their demand for the next day and that the CDC makes an opti-
mised route plan and hires a logistics service provider to fulfil all demands. In the VMI
scenario, the supermarkets share information on a daily basis on their inventory, and on
the minimum and maximum level of the products. The daily demand of each location is
known, and the CDC makes an optimised delivery plan based on those data.

We calculate a number of key performance indicators: distance, cost, emissions, travel-
ling time, average product age, and computation time. Note that the travelling time in-
cludes the time spent unloading at the DCs. We focus on comparing the results of the
cooperative JRP and VMI scenarios with those of the current non-cooperative situation.
We also identify trade-offs between cost and emissions, and between cost and product
age. We then perform sensitivity analyses to investigate the effect of parameter changes.
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Figure 4.1: Supply chain scenarios. The circles indicate locations, and the blocks indicate locations
for which the inventory is known.

Finally, we compare the impacts of foods held at different temperatures on the key per-
formance indicators, as well as the effect of each scenario on the average age of the prod-
ucts. The model was coded and solved exactly using CPLEX 12.7 (which uses a branch-
and-bound algorithm) on a PC with Intel Core i5 processor (2.6 GHz) and eight GB of
memory.

Data and assumptions
The CDC provided us with data on a week of fresh food orders placed by the DCs, on which
we ran our experiments. Table 4.1 gives the distance matrix, and Table 4.2 provides the
demand matrix based on that study. The distances between the locations are estimated
based on the road distances between the postal codes of the locations using the ESRI Arc-
GIS software. Note that Sunday is left out of the demand table, because the DCs and the
CDC are closed on that day and hence do not place orders. Starting inventories are as-
sumed to be 0 in the DCs and to be equal to the sum of the weekly demand in the CDC.
We assume a maximum level (ML) inventory policy, in which any quantity of products can
be delivered as long as the DC's maximum level is not exceeded. Concerning the routing,
each day the vehicles start and end at the CDC. Given that our case study is in the Nether-
lands, we assume that the slopes on all routes are zero, which means that the arc-specific
constant αij (4.2) is equal to 0.0981 m/s2 for all arcs. In countries where there are more
significant slopes, specific slope data could be incorporated in the experiments. In our
case study, deliveries are generally made between 4 am and 7 am and DCs are located
outside of densely populated areas to avoid traffic jams, which is why we apply a fixed
speed of 72 km/h (20 m/s) on all arcs.

We assume that the inventory cost is equal to one tenth of the sales price at the final out-
let, and decreases by a factor 10 with each level it moves up in the supply chain (Soysal
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et al., 2015). We assume that all products are sold at 1.00e/kg, hence at the supermarkets
the inventory cost are 0.10e/kg/day, at the DC they are 0.01e/kg/day, and at the CDC they
are 0.001e/kg/day. We use a homogeneous fleet with medium duty vehicles that have a
curb weight of 5500 kg, and a capacity of 12500 kg (Koç et al., 2016). The capacities are ex-
pressed in terms of weight and not in terms of volume because temperature–controlled
food products are generally relatively heavy and are therefore likely to reach their maxi-
mum weight before they reach their maximum volume. The three-vehicle fleet can cover
the weekly demand.

All DCs have a capacity equal to their demand for the week. Finally, we assume that the
ambient temperature is 20 °C (293 K), and that the temperature in the vehicles transport-
ing the fresh food needs to be kept at 2 °C (275 K). All parameter values are summarised
in the Appendix (Table A.3).

Table 4.1: Distances (in km) between the locations: CDC (0), DCs (1–7).

0 1 2 3 4 5 6 7
0 0 91 6 134 82 117 74 192
1 91 0 91 75 134 43 20 155
2 6 91 0 134 84 117 75 194
3 134 75 134 0 168 46 94 90
4 82 134 84 168 0 158 140 180
5 117 43 117 46 158 0 59 117
6 74 20 75 94 140 59 0 174
7 192 155 194 90 180 117 174 0

Table 4.2: Demand in kg at each DC.

DC Monday Tuesday Wednesday Thursday Friday Saturday
1 540 540 450 450 810 0
2 1890 1680 1260 2760 2220 1170
3 270 630 360 540 1440 0
4 0 1122 0 1248 0 0
5 1260 810 1350 1260 540 1080
6 1170 1524 1170 1608 2412 0
7 0 720 360 720 360 450

Comparison between current situation, JRP, and VMI
We compared the current situation, where routing and inventory are planned individu-
ally with JRP and VMI. For JRP and VMI, we compared the effects of cooperatively min-
imising cost as well as of cooperatively minimising emissions. Results are shown in Table
4.3. This table shows that JRP can yield significant savings in costs and emissions, as well
as in distance and in travelling time. By implementing VMI, these savings become even
more substantial.

Table 4.3 would thus suggest that when partners choose from JRP or VMI, they would
generally go for VMI. However, VMI requires them to share inventory information, which
is often considered as sensitive information. Implementing VMI therefore requires a cer-
tain level of trust. The results also show that for JRP the solutions for minimising cost
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Table 4.3: Key performance indicators for different fresh food cooperation scenarios for emissions
and cost minimisation.

Current JRP JRP VMI VMI
emissions cost emissions cost

Distance (km) 6715 2789 2789 808 1241
Cost (e) 2043 966 966 1158 692
- Transportation cost (e) 1920 843 843 270 408
- Inventory cost (e) 123 123 123 888 284
CO2 emissions (kg) 3718 1631 1631 522 789
Average product age (days) 1.00 1.00 1.00 3.35 1.48
Travelling time (h) 102 47 47 13 22
Computation time (s) 1 89 94 11 176

and for minimising emissions are the same. For VMI, minimising cost and minimising
emissions result in a different optimal solution and when implementing VMI, the av-
erage product age is higher. It depends on the type of product if this is important: the
shorter the total shelf life, the more important it is to move the product through the sup-
ply chain quickly.

Trade-off analysis

Table 4.3 shows that VMI can further reduce emissions and costs compared to JRP. How-
ever, when VMI is implemented, minimising cost results in a different optimal solution
than minimising emissions. Also, when minimising emissions in VMI, costs become slightly
higher than in JRP. Previous research has suggested that it would be interesting to estab-
lish a trade-off between cost and emissions in a Green IRP context (Cheng et al., 2017). To
this end, we have calculated trade-offs between cost and emissions (Figure 4.2) using the
ε-constraint method (Mavrotas, 2009), and we show the trade-off between age and emis-
sions (Figure 4.3). Minimising emissions results in a solution in which as many products
as possible are brought together to the DCs in one order to reduce the transportation ac-
tivity. However, this will generate a high inventory cost, and consequently a high total
cost. Note that transportation cost includes the cost for temperature control. In Figure
4.2 we have added a line below which all solutions are better (i.e. lower) in terms of cost
and emissions compared to JRP.

Figure 4.3 shows the trade-off between emissions and product age. Note that there is no
trade-off between cost and age since minimising cost results in a lower inventory at the
DCs and consequently in a lower average age. These trade-offs could cause a potential
obstacle to cooperation, since the different partners would need to agree on where they
want to be on the trade-off curve and which consequent cooperative routing and inven-
tory strategy they want to follow. However, if they do agree then the savings in terms of
cost and emissions are higher than when JRP is implemented.

Sensitivity analyses

In this section we test the effect of different temperature products, different inventory
capacities, different inventory holding cost, vehicle capacity, and demand and distance
data.
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Figure 4.2: Trade-off between CO2

emissions (kg) and cost (e). Below the line,
all solutions are better then JRP in terms of

both cost and emissions.

Figure 4.3: Trade-off between average
product age upon leaving the DCs (days)

and CO2 emissions (kg).

Routing and inventory optimisation: ambient and frozen food

To test the effect of different temperature products, we changed the product tempera-
ture from 2 °C to –18 °C for frozen products and to 20°C for ambient products. Table 4.4
shows the distance, cost, emissions, average product age upon leaving the DC and the
total travelling time for frozen products, under cost and emissions minimisation, and
for VMI, JRP and individual routing. Table 4.5 provides the same statistics for ambient
products. For these scenarios, we assumed the same demands and distances as in Ta-
bles 4.1 and 4.2, but we adjusted the temperature of the products. Note that minimising
emissions or cost yields the same solution under JRP. When emissions are minimised for
the frozen food VMI (Table 4.4), the optimal routing and inventory plan is the same as
when emissions are minimised for the ambient food VMI (Table 4.5). However, when cost
is minimised, the optimal solutions for frozen and for ambient food are different from
each other. For frozen food, routing is relatively more expensive because of the extra fuel
needed to provide cooling. Therefore, the cost minimising solution for frozen food VMI
results in a shorter distance, and less frequent replenishments, compared with the cost
minimising solution for ambient food. Tables 4.4 and 4.5 also show differences in aver-
age product age. Since the shelf life of frozen and ambient temperature foods is gener-
ally longer than that of fresh food, the differences in average product age are less im-
portant as they have less effect on the remaining shelf life. Also, comparing the cost and
emissions of the current situation and the cooperation scenarios for ambient and frozen
foods, we see that temperature control results in increased cost and emissions, but also
that the total saving in cost and emissions is higher in the case of frozen food when JRP
or VMI are implemented.
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Table 4.4: Key performance indicators for different frozen food cooperation scenarios for emissions
and cost minimisation.

Current JRP JRP VMI VMI
emissions cost emissions cost

Distance (km) 6715 2789 2789 808 1352
Cost (e) 2214 1037 1037 1623 865
- Transportation cost (e) 2090 914 914 291 472
- Inventory cost (e) 123 123 123 1332 393
CO2 emissions (kg) 4110 1793 1793 569 926
Average product age (days) 1.00 1.00 1.00 3.35 1.42
Travelling time (h) 102 47 47 13 24
Computation time (s) 1 13 15 12 1560

Table 4.5: Key performance indicators for different ambient food cooperation scenarios for emis-
sions and cost minimisation.

Current JRP JRP VMI VMI
emissions cost emissions cost

Distance (km) 6715 2789 2789 808 1759
Cost (e) 1890 902 902 1584 782
- Transportation cost (e) 1766 779 779 252 555
- Inventory cost (e) 123 123 123 1332 227
CO2 emissions (kg) 3366 1484 1484 479 981
Average product age (days) 1.00 1.00 1.00 3.35 1.17
Travelling time (h) 102 47 47 13 31
Computation time (s) 1 12 15 9 780

Effect of inventory capacities at the DCs

In the previous calculations, we assumed that the capacity of each DC is equal to the
weekly demand. In this section we test the effect of smaller capacities in the DC, both
for minimising cost and for minimising emissions. The results are shown in Table 4.6. For
the VMI scenario, different inventory capacities were chosen for the supermarkets. For
example, a capacity of 0.8 means that for each supermarket chain, the maximum inven-
tory level is set at 80% of the total weekly demand.

A lower inventory capacity results in a higher transportation cost and in lower inventory
cost for both objectives. For the cost minimisation objective, limiting DC capacity does
not have a strong effect on the results because the model also minimises inventory cost if
there is enough capacity. For emissions minimisation, the results of changing the inven-
tory capacities exhibits more differences: transportation cost increases, inventory cost
decreases, emissions increase, and the average product age decreases. When the inven-
tory capacity is limited, the difference between the optimal solutions for emissions min-
imisation and cost minimisation are closer to each other. The effect of inventory capacity
was only tested on VMI scenarios, since in the JRP and the individual routing scenarios,
the inventory arrives at the DC and leaves it on the same day, so that inventory capacity
is not constraining.
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Table 4.6: Key performance indicators for VMI with different inventory capacities for emissions
and cost minimisation.

Emissions minimisation Cost minimisation
Capacity (ratio total demand) 1 0.8 0.6 1 0.8 0.6
Distance (km) 808 1189 1366 1241 1454 1454
Cost (e) 1158 945 823 692 710 728
- Transportation cost (e) 270 383 442 408 468 469
- Inventory cost (e) 888 562 382 284 242 259
CO2 emissions (kg) 522 741 854 789 906 906
Average product age (days) 3.35 2.37 1.79 1.48 1.36 1.42
Travelling time (h) 13 20 23 22 26 26
Computation time (s) 11 113 71 176 299 720

Effect of inventory cost

To test the effect of inventory cost, we reduced and increased it in some runs. In the previ-
ous calculations, we assumed an inventory cost of 0.001e/kg/day for the CDC, and 0.01
e/kg/day for the DC (medium inventory cost). For the low inventory cost level, we now
assume 0.0005 e/kg/day for the CDC, and 0.005 e/kg/day for the DC. For the high in-
ventory cost level, we now assume 0.0015e/kg/day for the CDC, and 0.015e/kg/day for
the DC. We have tested the effect of these cost levels on the cost minimising VMI as well
as on the emissions minimising VMI (Table 4.7).

Table 4.7: Key performance indicators for VMI with different inventory cost levels for emissions
and cost minimisation.

Emissions minimisation Cost minimisation
Inventory cost low medium high low medium high
Distance (km) 808 808 808 950 1241 1759
Cost (e) 714 1158 1602 536 692 822
- Transportation cost (e) 270 270 270 315 408 555
- Inventory cost (e) 444 888 1332 221 284 267
CO2 emissions (kg) 522 522 522 608 789 1074
Average product age (days) 3.35 3.35 3.35 1.98 1.48 1.17
Travelling time (h) 13 13 13 17 22 31
Computation time (s) 10 11 10 2040 176 1260

Table 4.7 shows that changing the inventory cost does not impact the optimal route and
inventory when emissions are minimised, since in our case emissions are only linked to
transportation. For the cost minimisation objective, increasing the inventory cost results
in a higher delivery frequency, and hence in a higher transportation cost, higher emis-
sions and a lower average product age. Previous research confirms that it is difficult for
companies with high inventory cost to reduce their emissions (Cheng et al., 2017).

Effect of vehicle capacity

For our base case and all other scenarios, we assumed medium-duty vehicles (MDV) with
curb weights of 5,500 kg and maximum payloads of 12,500 kg (Koç et al., 2016). For indi-
vidual routing, JRP, and VMI, we tested whether it was possible to improve the results
by using different vehicle types: light-duty vehicles (LDV, curb weight of 4,500 kg, maxi-
mum payload of 7,500 kg) (Koç et al., 2016), and heavy-duty vehicles (HDV, curb weight of
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10,000 kg, maximum payload of 30,000 kg) (Tassou et al., 2009). The results are shown in
Table 4.8.

Table 4.8: Effect of vehicle capacity on key performance indicators of different cooperation scenar-
ios for emissions and cost minimisation.

Current JRP emissions JRP cost
small medium large small medium large small medium

Distance (km) 6715 6715 6715 2801 2789 2789 2801 2789
Cost (e) 1946 2043 2480 928 966 1148 928 966
- Transportation cost (e) 1823 1920 2357 805 843 1024 805 843
- Inventory cost (e) 123 123 123 123 123 123 123 123
CO2 emissions 3533 3718 4550 1558 1631 1976 1558 1631
Average product age (days) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Travelling time (h) 102 102 102 47 47 47 47 47
Computational time (s) 1 1 1 14 89 10 13 94

Table 4.8: Effect of vehicle capacity on key performance indicators (continued).

JRP cost VMI emission VMI cost
large small medium large small medium large

Distance (km) 2789 1136 808 549 1445 1241 1007
Cost (e) 1148 1138 1158 1159 702 692 767
- Transportation cost (e) 1024 352 270 250 435 408 397
- Inventory cost (e) 123 786 888 909 267 284 369
CO2 emissions 1976 680 522 481 842 789 766
Average product age (days) 1.00 3.04 3.35 3.41 1.44 1.48 1.76
Travelling time (h) 47 18 13 9 25 22 18
Computational time (s) 14 1528 11 1 281 176 479

For the individual routing scenarios of the ambient products, it is indeed possible to save
on cost and emissions (4.8% and 5.0%, respectively) by using a LDV. For the JRP scenarios,
using a LDV also resulted in the lowest cost and emissions (a saving of 3.9% and 4.4%,
respectively). For the emission-minimising VMI situation, using smaller vehicle resulted
in a cost saving of 1.7% and in an emissions increase of 30%. For the cost-minimising VMI
situation, the MDV resulted in the lowest costs, while emissions were reduced by 2.8%
when a heavy duty vehicle was used.

Effect of demand and distance data

To test whether the results were not case study specific, we generated several data sets of
the same size as the case study problem, based on the Solomon R101 data set (Solomon,
1987), which is a VRP data set. We converted this data set to a seven-destination six-day
IRP data set. This was done by using the demand of locations 1 to 7 of the Solomon data
set as the demand of day 1 for DC 1 to 7. Similarly, the demand of locations 8 to 14 was
used for day 2 (DC 1 to 7), up to the demand of day 36 to 42 for day 6 (DC 1 to 7). Five dif-
ferent data sets were then created for the location data. For data set 1, locations 1 to 7 of
the Solomon data set were assumed up to locations 29 to 35 for data set 5. The x and y co-
ordinates from the Solomon-based locations were converted to distance matrices using
Euclidean distances. We then multiplied the distances and the demands by factors such
that the average distance was the same as the average distance in the case study, and such
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that the average demand was the same as the average demand in the case study. The de-
mand matrix and the five location matrices were run for the following cooperation set-
tings: individual routing, JRP-cost minimisation, JRP-emissions minimisation, VMI-cost
minimisation, and VMI-emissions minimisation, resulting in 25 test instances. All con-
stants were kept the same as in the case study. The test instances are summarised in the
Appendix (Table A.6). To show the results in a concise way, we averaged the results of the
five data sets for objective-cooperation scenario combination (Table 4.9).

Table 4.9: Key performance indicators different Solomon-based test instances (averaged per coop-
eration setting and objective function).

Individual JRP JRP VMI VMI
routing emission cost emission cost

Distance (km) 7931 3367 3367 926 1507
Cost (e) 2397 1197 1197 1199 856
- Transportation cost (e) 2270 1070 1070 325 508
- Inventory cost (e) 127 127 127 873 348
CO2 emissions (kg) 4396 2069 2069 621 981
Average product age (days) 1.00 1.00 1.00 3.30 1.68
Travelling time (h) 121 57 57 15 25
Computation time (s) 1 87 97 265 557

Table 4.9 shows that the results based on the Solomon R101 data set are very compara-
ble to those in Table 4.3. There are some difference in the absolute values but the relative
savings of moving from individual routing to JRP to VMI (cost and emissions minimisa-
tion) are very similar. Also, like in the case study, JRP yields the same optimal solution for
minimising costs and minimising emissions, while there is a trade-off to be made in VMI.

4.5 Conclusions and future work
This research has illustrated that logistics cooperation can yield substantial monetary
and environmental benefits, especially in temperature-controlled supply chains for fresh
and frozen food. Specifically, we found that cooperation can reduce cost and emissions
but also driving distance and travelling time. We have tested the effects of cooperation
using VMI and JRP, and we have compared these two policies with individual route plan-
ning. We found that VMI cooperation is the most beneficial but it also requires infor-
mation sharing between multiple actors. On the other hand, JRP cooperation results in
lower but still substantial benefits compared with VMI. In JRP, the same solution results
in minimised cost and emissions. In VMI, however, there exists a clear trade-off between
minimising cost and minimising emissions. Therefore, in order to implement VMI, the
cooperative partners should make a decision on which plan is preferable, based on how
important they value cost and emissions savings. We also quantified the effect of differ-
ent types of cooperation on average product age, as an indicator for food quality and we
found that the use of VMI can help in establishing a trade-off between product age and
emissions.

Our case study was conducted for seven DCs and one CDC. Cooperating and agreeing with
seven partners can be challenging, which is why most other studies on cooperative ben-
efits describe situations with only two or three partners (Cruijssen et al., 2010; Vanover-
meire et al., 2014; Vanovermeire and Sörensen, 2014; Defryn et al., 2016). However, in our
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case study there already exists some form of cooperation between the partners, so that
extending the cooperation is expected to be less problematic than starting a cooperation
from scratch. Still, research has shown that the allocation of benefits can be an important
obstacle to overcome in order to ensure a successful cooperation (Cruijssen et al., 2007c).
Significant research has focused on how to divide the gains in such a way that they reflect
each partner's contribution to the cost savings (Frisk et al., 2010). We believe that a future
research direction could be to find a benefit allocation that is fair to all partners and also
reflects their contribution to savings in costs and emissions.

Another research extension would be to consider the effect of temperature control on
inventory, and the inclusion of different temperature ranges (Bozorgi, 2016). We did not
consider this issue since it is very dependent on the source of the electricity used. The
quantification of the effect associated with different electricity sources could, however,
be an interesting future research question. Another promising development could be to
investigate whether cooperation at a multi-echelon level can further increase the coop-
erative savings, and to what extent. Also, future research on logistics cooperation and on
the resulting food quality could benefit from the use of a temperature-dependent quality
indicator (Akkerman et al., 2010). Data collection coupled with time-temperature indica-
tors could be of value in this type of research (Van Der Vorst et al., 2009). Indeed, James
et al. (2006) have shown that opening the vehicle door and consequent temporarily rais-
ing the temperature of the load does not only have an effect on the amount of energy
needed for cooling, but also on food quality.
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Chapter 5

Fair gain allocation in eco-efficient
vendor-managed inventory cooperation

Transportation is not always organised efficiently, which causes unnecessary costs and
CO2 emissions. Vendor-managed inventory (VMI) has been suggested as a form of co-
operation that can reduce economic and environmental impacts of transportation and
consequently improve supply chain eco-efficiency. Establishing viable forms of VMI co-
operation requires a fair distribution of the cooperation's economic benefits. Cooperative
game theory research is used to fairly allocate benefits. However, environmental con-
tributions of partners have often been ignored in the benefit allocation. In this chapter,
the Shapley value is used to share the monetary gains in a way that reflects the partners’
contributions to cost and emissions savings. The method is applied to evaluate the allo-
cation of economic and environmental benefits of vendor-managed inventory between
cooperating supermarket chains in the Netherlands. The findings show that there is a set
of eco-efficient solutions resulting in lower costs and emissions compared to the current
situation. For each of the eco-efficient solutions, the relative importance of saving costs
and of saving emissions was quantified, and based on the importance weights, a cost al-
location was found. For all partners that contribute to saving both cost and emissions,
this approach results in cost savings, and therefore, the approach can be considered fair
and it helps to stimulate long-term eco-efficient forms of cooperation.

This chapter is based on: Stellingwerf, H.M., Kanellopoulos, A., Cruijssen, F.C.A.M., Bloemhof, J.M. (2019). Gain
allocation in eco-efficient vendor-managed inventory cooperation, Journal of Cleaner Production, accepted for pub-
lication.
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5.1 Introduction

Public awareness about global environmental changes such as air pollution caused by in-
tensified economic activity has increased the demand for goods and services that reduce
environmental impact (Garnett, 2008; Hariga et al., 2017). To remain competitive, current
supply chains must be re-designed and become more eco-efficient. In other words, they
need to decrease the environmental impact for the same or even lower cost (Banasik et al.,
2016). A major source of inefficiency of current supply chains is related directly to trans-
portation, which is responsible for 14% of total CO2 emissions both at global and EU level
(Dekker et al., 2012). Cooperative logistics has been suggested as a way of reducing CO2
emissions and of improving sustainability in supply chains (McKinnon, 2016; Ramanathan
et al., 2014; Vanovermeire et al., 2014; Chen et al., 2017). This is mainly because cooperation
improves the utilisation rate of vehicles at it allows cooperating companies to exploit the
synergies between them (Cruijssen et al., 2007a). A report from 2012 showed that the av-
erage loading rate of vehicles is 56% in terms of weight, and combining loads could thus
decrease the number of vehicles driving around, which can help reducing costs and CO2
emissions (Cruijssen, 2012).

Vendor-managed inventory (VMI) is a form of cooperation in which a vendor manages
its own inventory as well as the inventory of its customer(s) by taking decisions on the re-
plenishment quantity and frequency. The vendor is also responsible for keeping the stock
level of the customer within agreed limits (Nagarajan and Sošić, 2008). VMI cooperation
can result in substantial economic and environmental benefits because both transporta-
tion and inventory planning decisions can be optimised jointly (Stellingwerf et al., 2018b).
Successful long term VMI that aims to improve eco-efficiency of the supply chain requires
a fair distribution of economic benefits or costs based not only on the contribution of
each participant to the shared cost savings but also to the shared environmental savings
(Stellingwerf et al., 2018b).

Cooperative game theory (CGT) methods have been used to identify a fair allocation of
the benefits of cooperation in supply chains. CGT methods generally focus on allocation
of economic benefits based on the contribution of the participants to improve the eco-
nomic performance of the cooperation (Frisk et al., 2010). Recently, a commonly used CGT
method, the Shapley value (Shapley, 1953) has been applied to allocate emissions in coop-
erative transportation (Naber et al., 2015). However, the possibility to use CGT methods to
allocate the economic benefits based on both the economic and environmental contri-
bution of participants has not been explored; CGT methods have mainly been used either
for economic or for environmental allocation (Guajardo, 2018). The objective of this Chap-
ter is to propose a methodology for allocating economic benefits of VMI based on both
the economic and environmental contributions of participants, such that both contribu-
tions are rewarded and eco-efficient forms of cooperation are stimulated. The proposed
methodology is used to distribute economic benefits of VMI cooperation in supermarket
chains in the Netherlands. The remainder of the paper is organised as follows. Section 5.2
provides the theoretical framework; Section 5.3, describes the proposed methods; Sec-
tion 5.4 describes a case study; Section 5.5 describes the results; and in Section 5.6, the
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main conclusions are presented.

5.2 Theoretical framework

Quantifying benefits of cooperation

Literature has shown that logistics cooperation can bring significant benefits to cooperat-
ing partners (Cruijssen et al., 2007a), such as cost reductions and efficiency gains (Adenso-
Díaz et al., 2014). The review of Chen et al. (2017) suggests that until recently, cooperation
studies have focused on monetary benefits but there is a trend towards measuring or es-
timating the environmental impacts of supply chain cooperation as well. For example,
Ramanathan et al. (2014) qualitatively evaluated how the environmental pressure from
different stakeholders can help to improve supply chain cooperation, which in turn can
lead to improved business performance.

Cooperative benefits have also been studied qualitatively. Stellingwerf et al. (2018b) have
evaluated different forms of cooperation and they have quantitatively shown that VMI
is an advanced form of cooperation that can provide significant cost and emission sav-
ings. In order to quantify benefits of VMI, models based on the inventory routing problem
(IRP) can be used because in these models routing and inventory decisions are optimised
simultaneously (Coelho et al., 2013). In general, IRP models minimise cost, which are cal-
culated by adding inventory, transportation, and labour cost. Stellingwerf et al. (2018b)
used an IRP model to quantify both the economic and environmental effects of coopera-
tion in fresh food logistics. This model will be used in this Chapter as well; it will be briefly
explained in the next section and completely formulated in the Appendix. It was found
that VMI can bring significant benefits to partners, since both transportation and inven-
tory are optimised. After total cooperative benefits have been quantified, they have to be
distributed among the partners, and this is the role of cooperative game theory.

Allocation of cost and CO2 emissions in supply chain cooperation

In order to ensure that a cooperation is successful in the long run, it is important that the
associated cost and the resulting gains are allocated in a way that is considered fair by all
participants (Cruijssen et al., 2007c). CGT methods have been used to identify potential
coalitions, to quantify the total benefits of these coalitions, and to fairly allocate the ben-
efits of the coalitions to all cooperating partners (Nagarajan and Sošić, 2008). In most CGT
methods, the benefits or cost allocated to a partner are related to the partner's contri-
bution to the group's cost savings (Guajardo and Rönnqvist, 2016). Different CGT methods
exist and Tijs and Driessen (1986) have summarised them. The most common methods are
the Shapley value, the nucleolus, the equal charge method, the alternative cost avoided
method, and the cost gap method. Recent case studies that compare different cost allo-
cation methods are, for example, Frisk et al. (2010), Vanovermeire et al. (2014), and Wang
et al. (2017). Frisk et al. (2010) applies different cost allocation methods (the equal profit
method that they developed themselves and the and Shapley value based methods) to a
case study on cooperative wood transportation by different forest companies. They find
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similar allocations in both methods, but they argue that the equal profit method is eas-
ier to understand. Vanovermeire and Sörensen (2014) argue that flexibility is crucial in hori-
zontal logistics cooperation, and they test different allocation methods on their ability to
reward flexibility of cooperating partners. They discuss that the Shapley value, the nucle-
olus and the equal charge method give consistent and fair incentives for flexibility. Wang
et al. (2017) allocate cooperative vehicle routing cost savings using the Shapley value.

The above-mentioned studies focus on transport cooperation. Allocation of benefits in
VMI cooperation (joint optimisation of both transportation and inventory decisions) has
only been studied in the work of Özener et al. (2013). They compare different cost alloca-
tion methods for VMI cooperation in a case study where cost-to-serve has to be split be-
tween clients. They propose different methods which perform better than proportional
allocation methods, which have often been discussed to not result in fair allocations. How-
ever, this Chapter does not consider environmental effects of VMI cooperation, and nei-
ther does it study how those environmental benefits could be used in allocation deci-
sions.

There are some gain allocation studies that conclude that logistics cooperation results in
cost savings as well as environmental benefits (Frisk et al., 2010; Vanovermeire et al., 2014;
Jonkman et al., 2019). Other recent studies have started to use gain allocation methods
to allocation CO2 emissions to cooperating partners (Kellner and Otto, 2012; Naber et al.,
2015; Zhu et al., 2016). Some authors include CO2 emissions as part of the cost function, on
which they apply different allocation methods (Özener, 2014; Niknamfar and Niaki, 2016;
Sanchez et al., 2016). Guajardo (2018) studied cooperative logistics in a cost minimising as
well as in an emission minimising setting. In a small 3-partner problem, costs and emis-
sions are minimising separately. For the cost minimising solution, costs are allocated us-
ing the proportional method, the Shapley method, and the Nucleolus. And for the emis-
sion minimising solutions, emissions are allocated using the same methods. Despite the
small problem size, the optimal solution for cost and emission minimisation is different,
a different optimal route is found.

Despite the efforts that have been done to quantify and distribute the benefits of coop-
eration, the contribution of a partner to reduce the CO2 emissions of the cooperation is
has not been translated to economic benefits, which is the gap this Chapter attempts to
address. In order to engage partners in the improvement of the eco-efficiency of their
supply chain through cooperation, the partners should not only be rewarded based on
their contribution to cost savings of the coalition but also based on their contribution to
emissions savings. Table 5.1 summarises the studies discussed in the theoretical frame-
work.

From Table 3.1, it can be seen that the Shapley value is a the most commonly used CGT
method in the discussed studies. According to Guajardo and Rönnqvist (2016), who review
gain allocation methods in cooperative transportation, this is because the Shapley value
satisfies important fairness properties. Moreover, despite the fact that the Shapley solu-
tion is not guaranteed to be in the core (i.e. the gain allocation of all players within a cer-
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Table 5.1: Overview of literature discussed. Abbreviations: JRP, joint route planning; ECM, equal
charge method; ACAM, alternative cost avoided method; EPM, equal profit method; CVMI, coop-
erative vendor-managed inventory.

Authors Form of Economic Environmental Allocation methods
cooperation quantification quantification studied

Kellner and Otto (2012) JRP no yes 15 different ones including
Shapley value

Nagarajan and Sošić (2008) CVMI yes no Nash bargaining problem
Frisk et al. (2010) JRP yes no Volume, Shapley, shadow, ECM

ACAM, nucleolus, EPM
Özener et al. (2013) CVMI yes no Duality based methods,

Shapley value
Özener (2014) JRP yes yes duality and Shapley value based

allocation mechanism
Naber et al. (2015) JRP no yes Proportional, star, Shapley

Nucleolus, Lorenz, EPM
Niknamfar and Niaki (2016) JRP yes yes dual lexicographic max-min

approach
Sanchez et al. (2016) JRP yes yes Shapley value
Zhu et al. (2016) JRP no yes Shapley, transport work based,

distance based, volume based
Palhazi Cuervo et al. (2016) JRP yes no Proportional

tain coalition is better compared to their allocation in all other possible smaller coalitions
or the non-cooperative solution) in most of the studies discussed in the review of Guajardo
and Rönnqvist (2016), the Shapley was found to be a core solution. Finally, Cruijssen et al.
(2010) propose Shapley as a practical CGT method because it is easy to interpret and com-
municate with the decision makers. In the study of Vanovermeire and Sörensen (2014), the
Shapley value was used in a case study and it was found that it gave incentives to coop-
erate. Because of the appealing properties of the Shapley value and its broad use in CGT
literature, it is attractive from a practical as well as a scientific point of view. Therefore,
this Chapter uses the Shapley value as well.

Benefit allocation using the Shapley value
The Shapley value (Shapley, 1953) is one of the most common gain sharing rules in the
literature since it provides a unique solution to the allocation problem and it satisfies ap-
pealing fairness properties (Lozano et al., 2013). Almost all studies discussed use (amongst
others) the Shapley value. The Shapley method will be used in this Chapter as it will allow
for comparison with the other studies. The Shapley value provides an allocation for all co-
operative partners based on each partner's contribution to the total costs or benefits of
the group and it is calculated as:

yj =
∑

S⊆N\{j}

(|S| − 1)!(|N | − |S|)!
|N |!

[c(S)− c(S − {j})], (5.1)

where N is the group in which all partners participate, which is called grand coalition.
S is any sub-coalition by the partners of the grand coalition, and yj is value allocated to
partner j. C(S) is the value (e.g. costs or CO2 emissions) of coalitionS, c(S−{j}) is the
value of coalition S without partner j. Therefore, c(S) − c(S − {j}) is the amount by
which the value of coalition c(S −{j}) increases when participant j joins the coalition,
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i.e. the marginal value of participant j. The Shapley value allocated to a partner (Eq. 5.1)
can be interpreted as the average marginal contribution that partner brings to the group
(Shapley, 1953). In order to calculate the Shapley value, it is necessary to know the value
of all possible sub coalitions that can be formed from the grand coalition. These values
are called the characteristic function. For more information on the Shapley value, the
interested reader is referred to Shapley (1953).

5.3 Methodology
In order to establish an allocation based on both cost and CO2 emissions, a three-step
methodology is proposed, summarised in Figure 5.1. In the first step, the set of eco-efficient
solutions is calculated using the green IRP model proposed by Stellingwerf et al. (2018b)
because it optimises inventory and routing decisions simultaneously by minimising ei-
ther the environmental impact or the costs of a potential coalition. The IRP is an exten-
sion of the better-known Vehicle Routing Problem (VRP). In the basic VRP model, the
objective is to identify the shortest route for visiting a set of individual customers. Gen-
erally, travelling distance is minimised given (a) vehicle(s) that has to leave and return to
a depot and deliver demand to a number of customers. Constraints are used to limit the
carrying capacity of the vehicles. Lately, variants of the VRP have been developed where
the objective function is formulated such that costs and/or emissions can be minimised
instead of distance. A VRP can be used to solve one-period routing problems. In the IRP,
not only routing, but also inventory decisions are optimised simultaneously. The con-
straints of the IRP are the same as the VRP, but constraints that define the inventory at
the depot and the demand locations are added, as well as inventory capacity constraints.
The IRP can be used for multi-period routing and inventory problems: if there is enough
inventory in the demand locations, less frequent routing with higher volumes could be
considered.

In order to estimate emissions E (kg CO2) using an IRP model, the fuel use is calculated
since it is assumed to be linearly related to CO2 emissions. Fuel use in road transport de-
pends on the weight carried, the slope of the road, the distance travelled, the air density,
and the vehicle speed (Bektaş and Laporte, 2011). The cost C (e) is calculated by adding
wage cost, fuel cost, and inventory holding cost.

3. Calculate Shapley 
cost and emission-

based benefit 
allocation

2. IRP to calculate cost 
and emissions of all 
possible coalitions

1. IRP to calculate eco-
efficient solutions

Price of emissions 
for each eco-

efficient solution

Cost and 
emissions for each 

sub coalition

Figure 5.1: Summary of the methodology used in this Chapter to arrive to a cost and CO2 emissions
based Shapley allocation.

The IRP constraints can be subdivided in three main types: (i) inventory constraints: they
impose minimum and maximum levels of the inventory of the depot and the destina-
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tions in each period considering an initial inventory level; (ii) vehicle routing constraints:
they impose that a delivery can be made to a location only if it is visited by a vehicle, and
that a vehicle cannot visit the same location multiple times in the same time period, they
restrict the number of vehicles used per day, and they define vehicle capacity; (iii) flow
constraints: these define how the load of the vehicle changes after visiting a location,
eliminate sub tours, and define impossible arcs. The mathematical formulation of the
IRP model and the calculations of the cost and CO2 emissions are presented in the Ap-
pendix. In that section, the parameters used in the IRP model are also summarised, and
the values used to run the model are given. The IRP model was coded and solved with
Fico Xpress Mosel version 8.0 on a PC with Intel Core i5 processor (2.6 GHz) and eight GB
of RAM memory.

In the first step, in order to find eco-efficient solutions, the weighing method proposed by
Romero and Rehman (2003) is used, which is a commonly used method in goal program-
ming. This is a convenient method as the λ value needed for the weighing method can
also be used later in the gain allocation method. An additive objective function is formu-
lated (Eq. 5.2) subject to the constraints of the above mentioned IRP model.

Minimise K = C + λE, (5.2)

where K is the additive objective function value (e), C is the cost (e), λ is the price of
CO2 emissions (e/kg), which can also be interpreted as the relative importance of saving
CO2 emissions as compared to saving cost, E are the CO2 emissions (kg). By varying λ,
the alternative optimal (eco-efficient) solutions can be found.

The set of eco-efficient solutions is calculated by changing the values ofλ. The higher the
value ofλ, the more importance is attached to the environmental indicator E. The model
is run in an iterative way, starting with λ (which results in the cost minimising solution)
and the value of λ is increased in steps of 0.1 until the emission minimising solution is
found. The value of lambda leading to an eco-efficient solution is used as the price of
emissions when calculating the benefit allocation of that eco-efficient solution. If there
is a range ofλ values leading to the same solution, the average of that rangeλ is used for
the gain allocation step.

In the second step, the λ value of each eco-efficient solution is used in the IRP model to
calculate the minimum K-value for each possible sub-coalition that can be formed from
the cooperating participants. This way, for eachλ value, the characteristic function of the
Shapley value (Eq. 5.1) is calculated.

In step three, the characteristic function is used to allocate the K-value benefits to the
partners using the Shapley value (see Eq. 5.1). The K-value can be converted back to costs,
which are easier to interpret, using the following equation:

ycj =
ykj × C

K
, (5.3)
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where ykj is the K-value allocated to partner j (e), ycj is the cost allocated to partner j
(e), With this procedure, the total costs of an eco-efficient solution are divided over the
partners. No extra costs are paid for emissions, but when λ chosen such that the cost-
minimising solution is not optimal, the contributions of the partners to saving emissions
are also considered in the cost allocation. The higher the value of λ, the higher the ad-
vantage for partners that help save emissions.

After this three-step procedure, all eco-efficient solutions, the prices of CO2 emissions
that lead to that solutions, and the allocations based on those emissions prices are cal-
culated. The cooperative costs (savings) are allocated among the partners, but the coop-
erative emissions are not since the partners have agreed to regard that as a group benefit:
if the group saves 40% of emissions, all partners can claim that they save 40% of emis-
sions by cooperating. In this Chapter, the allocation of benefits based on both costs and
emissions is done using the Shapley value, but other gain allocation methods could be
used as well.

The generation of all possible sub-coalitions of step 2 as well as the Shapley value calcu-
lations of step 3 were coded in R (version i386 3.2.1) on a PC with Intel Core i5 processor
(2.6 GHz) and eight GB of RAM memory.

5.4 Case study: VMI for eco-efficient food distribution in the
Netherlands

Data and assumptions

The case study is based on seven supermarket chains in the Netherlands. Currently, they
cooperate by buying their products together in order to negotiate a lower unit price. The
cooperatively bought products are delivered to their shared central distribution centre
(CDC, denoted by 0). From there, the supermarket chains arrange their logistics sepa-
rately. They individually pick up (or use a logistics service provider to pick up) the products
from the CDC and bring them to their distribution centres (DCs, denoted by 1–7). The su-
permarket chains aim to further cooperate by implementing VMI between the CDC and
the DCs to reduce cost and CO2 emissions. They consider to allocate the resulting eco-
nomic gains by accounting for their contribution to reducing both cost and CO2 emissions
of the coalition.

The distances between the CDC and the DCs are presented in Table 5.2. The aggregate
weekly demand of a representative set of fresh food products of each DC (in kg) is pre-
sented in Table 5.3. Note that there is no demand on Sunday because the CDC and the
DCs are closed on that day. On some days, there is no demand (the zeroes in Table 5.3)
because some DCs do not place orders every day. Other values used to run the IRP model
can be found in Table A.3 in the Appendix.
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Table 5.2: Distances (in km) between the DCs of the supermarket chains (denoted by 1–7) and the
CDC (denoted by 0).

DC 0 1 2 3 4 5 6 7
0 0 91 6 134 82 117 74 192
1 91 0 91 75 134 43 20 155
2 6 91 0 134 84 117 75 194
3 134 75 134 0 168 46 94 90
4 82 134 84 168 0 158 140 180
5 117 43 117 46 158 0 59 117
6 74 20 75 94 140 59 0 174
7 192 155 194 90 180 117 174 0

Table 5.3: Aggregate demand in kg at each DC (1–7).

Monday Tuesday Wednesday Thursday Friday Saturday
1 540 540 450 450 810 0
2 1890 1680 1260 2760 2220 1170
3 270 630 360 540 1440 0
4 0 1122 0 1248 0 0
5 1260 810 1350 1260 540 1080
6 1170 1524 1170 1608 2412 0
7 0 720 360 720 360 450

Setup of calculations
In order to establish a Shapley allocation based on both the environmental and the eco-
nomic contributions of the partners, the three-step method described in Figure 5.1 is fol-
lowed. First, the data described above are input to an IRP model (Stellingwerf et al., 2018b)
with the aggregate objective function (Eq. 5.2) to find the eco-efficient cooperative solu-
tions (Romero and Rehman, 2003). To find all these solutions, the IRP model is run itera-
tively with an increasing value of λ, with a step size of 0.1. The weighing method (which
uses an additive objective functions) results in an optimal solution for each λ. As these
λ values directly correspond with the price of emissions, it can also be used in the rest of
the calculations. For each eco-efficient solution, the corresponding average price of emis-
sions (λ) is determined. Second, the IRP model is solved for all possible sub-coalitions
and for all different eco-efficient solutions (using the different values of λ). And third,
the Shapley value is calculated based using the characteristic function calculated in step
2. The Shapley allocation based on the K-value is translated to the actual cost. Finally,
the savings in terms of the additive objective function value K, and in terms of cost for all
groups and for all individuals are calculated using Eq. (5.3).

To assess the potential benefits of VMI cooperation the allocations of each eco-efficient
solution are compared to the current situation. To estimate the current allocations, costs
are minimised using the IRP model while imposing that each supermarket chain opti-
mises transportation separately. To better understand the impact of important model
parameters such as the distance between DCs and CDC and the demand of the SC one of
the eco-efficient solutions found is used to test a set of alternative scenarios is explored.
These scenarios test the effect of distance and demand. Table 5.4 summarises the sce-
narios. In this table, base refers to one of the solutions found optimising the additive
objective function given the demand and distance data in Table 5.2 and 5.3. In this table
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equal distance refers to the situation where all partners are located equally far from the
CDC, but the total distance of the matrix is still the same as in the base case scenarios
(illustrated in Figure 5.2). Equal demand refers to the situation where the total demand
of all partners is equal (1/7 of the group demand), but the week structure is kept (i.e. if
14% of the total demand is on Monday in the base case, that is still the case in the equal
demand situations).

Table 5.4: The scenarios used to assess the impact of distance and demand.

Scenario Distance Demand
1 Base Base
2 Equal Equal
3 Base Equal
4 Equal Base

Figure 5.2: Uniform distance distribution of locations. Black point indicates CDC, white points
indicate DCs.

5.5 Results and discussion
Analysis of the eco-efficient solutions
Using the IRP model with the additive objective function, the eco-efficient solutions were
calculated. Figure 5.3 shows the cost and CO2 emissions of all calculated eco-efficient so-
lutions and of the current situation: 11 discrete eco-efficient cooperative solutions were
calculated. All this solutions are optimal and depend on the importance allocated to the
two objectives through the value of lambda. To find these solutions, the model was run
in multiple iterations with a range of lambda values (0-40 with a step size of 0.1). Values
of λ above 31.6 result in the emission-minimising solution. For all other solutions, there
was a range ofλ values leading to that solution.

The 11 eco-efficient solutions found were labelled as s1 for the emission minimising so-
lution to s11 for the cost-minimising solution. Table 5.5 shows the CO2 emissions, costs,
distance, travelling time and the number of trips related to each eco-efficient solution, as
well as the current situation. Since there was a range of lambdas leading to the different
solutions, only the averages of each solution range are shown.
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Figure 5.3: CO2 emissions (kg) and cost (e) for the cooperative solution options and the current
situation.

Table 5.5: Current solution and the eco-efficient solutions. Abbreviations: E, emissions;C , costs;
Ct, transportation costs;CI , inventory costs;D, distance;T , travelling time;n, number of trips.

current s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
λ 0 31.6 22.25 9.15 4.95 3.95 2.60 1.50 0.90 0.45 0.25 0.10
E (kg) 976 479 484 485 490 496 547 552 559 664 710 723
C (e) 946 1139 997 977 953 925 752 743 736 676 666 664
-Ct (e) 512 252 254 255 257 260 287 290 293 348 373 380
-CI (e) 433 888 743 722 695 665 465 453 443 328 293 284
D (km) 1837 808 816 820 828 841 931 938 950 1168 1215 1241
T (h) 29.0 13.0 13.3 13.4 13.8 14.2 16.2 16.5 16.9 20.5 21.6 22.2
n 14 4 4 5 5 6 6 6 7 8 7 8

Table 5.5 shows that all cooperative eco-efficient solutions result in less CO2 emissions
compared to the current situation. Solutions s5 to s11 correspond to lower costs than
the current situation. Moreover, minimising CO2 emissions results in a solution in which
products are delivered less frequently. On the other hand, minimising cost results in a
solution in which the companies are supplied more frequently, since this reduces their
inventory cost. This is also reflected in the decrease in transportation cost and an increase
in inventory cost when the price of CO2 emissions (λ) increases. Moreover, it is illustrated
by the change in the number of trips, the distance driven and the driving time.

Shapley allocation of the K-value and costs

Table 5.6 provides the current uncooperative costs and CO2 emissions, as well as the total
savings in CO2 emissions for each solution and the cost allocation based on the K-value
for each participant in each eco-efficient solution. Also, it shows the percentage allocated
to each partner in each solution. Since Eq. (5.3) is used to convert the K-allocation to costs
using a fixed factor (the K-allocation of a partner divided by the total K-value), the per-
centage of total allocation will be the same whether this is cost, emissions or K-value.
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Table 5.6: Current costs (e) and emissions (kg CO2, and total emission savings (%) costs (e) and
percentage of the K-value (%) allocated for all eco-efficient solutions.

Solution Individual s1 s2 s3 s4 s5 s6
E saving 51% 50% 50% 50% 49% 44%
Partner C E c K c K c K c K c K c K

1 113 96 106 9 92 9 89 9 87 9 84 9 66 9
2 58 39 38 3 36 4 45 5 54 6 55 6 48 6
3 166 143 170 15 148 15 143 15 138 14 133 14 109 14
4 75 86 177 16 153 15 143 15 131 14 124 13 97 13
5 208 249 189 17 167 17 167 17 167 18 165 18 137 18
6 168 162 165 15 147 15 152 16 155 16 154 17 129 17
7 158 202 294 26 254 25 237 24 220 23 210 23 165 22

sum 946 976 1139 100 997 100 977 100 953 100 925 100 752 100

Table 5.6: Current cost (e), and costs (e) and percentage of the K-value (%) allocated for all eco-
efficient solutions (continued).

Solution Individual s7 s8 s9 s10 s11
E saving 43% 43% 32% 12% 26%
Partner C E c K c K c K c K c K

1 113 96 64 9 66 9 61 9 71 9 58 9
2 58 39 52 7 54 7 51 8 64 8 55 8
3 166 143 109 15 111 15 103 15 124 15 103 16
4 75 86 92 12 86 12 77 11 89 11 72 11
5 208 249 139 19 141 19 132 20 161 20 132 20
6 168 162 130 18 128 17 115 17 138 17 113 17
7 158 202 158 21 150 20 137 20 162 20 132 20

sum 946 976 744 100 736 100 676 100 808 100 664 100

The percentage of benefits allocated to partner 1 remains the same in all calculated eco-
efficient solutions; partner 1 may equally contribute to saving cost and to saving CO2 emis-
sions. For partner 2, 5, and 6 there is an increase in the allocation when moving from s1,
the CO2 minimising solution, to s11, the cost minimising solution. Apparently partner 2,
5, and 6 are more helpful in saving CO2 compared to the other partners. These partners
have a relatively high demand, but not too high to limit to possibility to combine their
demand with other demands. Moreover, they are located close to the CDC and their de-
mand is spread well over the week. These aspects make it easy to combine these partners
in cooperative routes.

For partner 3, the emission allocation is relatively stable from s1 to s5 but from s6 to s11,
when the price of CO2 increases further, partner 3 is allocated an increased amount of
emissions. Apparently partner 3 does not contribute that much to saving emissions in
comparison to the other partners. This might relate to the fact that partner 3 is located
relatively far from the CDC. The cost allocation results (Table 5.6) show that partner 4
does not save cost in any solution except for solution s11, the cost minimising solution.
The demand of partner 4 is relatively low, and this partner only has demand on two days
of the week. This might limit the opportunities for making cooperative route, which is
why the benefits allocated to this partner are also relatively low. For solution s1 to s8
(when the price of emissions is higher than 0.90e/kg), partner 7 is faced with a cost in-
crease. Partner 7 is located the furthest from the CDC, which is why this partner does not
contribute much to saving emissions, and why this partner only benefits when the price
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of emissions is low.

The effects of distance and demand on the allocation
To assess the impact of different demand and distance scenarios on the calculated allo-
cation, the eco-efficient solution s8, which has a λ value of 0.9, was further analysed.
The total cost and CO2 emissions of this solution aree559 and 736 kg, respectively. This
solution is a non-extreme, balanced solution between cost and CO2 emissions. These sce-
narios could also be tested on any other eco-efficient solution. Table 5.7 provides the re-
sulting allocations.

Table 5.7: The benefit allocations (%) resulting from the distance and demand scenarios.

Partner
Scenario Distance Demand 1 2 3 4 5 6 7

1 Base Base 9.0 7.3 15.1 11.6 19.2 17.4 20.4
2 Equal Equal 14.3 14.3 14.3 14.3 14.3 14.3 14.3
3 Base Equal 12.0 4.1 16.3 17.6 14.0 11.3 24.7
4 Equal Base 10.2 22.9 12.0 8.5 16.6 19.5 10.3

When all distances to the DC are equal and all demands are equal, the resulting allo-
cation is equal for every partner (Table 5.7). This result is inherent to the Shapley value,
because it has the symmetry property: if a partner contributes the same as an other part-
ner, the allocation of those partners should be the same. Partner 4 and 7 do not always
benefit from the allocation (see Table 5.6). The results of the demand and distance sce-
narios can help explain why this is the case. In the base case, partner 4 is relatively far from
the other DCs. Therefore, the equal-distance cases cause a lower allocation for partner 4.
Partner 4 also has a low demand and only has demand on two days in the base case. This
probably causes partner 4 to have a limited number of cooperation possibilities which is
why this partner can also not benefit that much from cooperation. Note that the relative
allocation to partner 4 is not high but since the demand is low, the allocation per unit is
relatively high.

Partner 7 is located very far from the CDC in the base case. Therefore, a reduction in dis-
tance (as in the equal distance scenarios) also reduces the allocated percentage of this
partner.

5.6 Conclusions and future work
This study developed a method to allocate benefits of costs and emissions according to
contributions of the cooperating partners. A case study on VMI cooperation between
Dutch supermarket chains demonstrated how the method works. The results of the case
study showed a trade-off between costs and emissions, and multiple alternative coopera-
tive solutions. Different emissions prices were used to determine the different solutions.
In turn, emissions prices were used to allocate the monetary benefits. Most of the solu-
tions resulted in savings for all partners. However, some partners were confronted with
cost increases. Those partners have demand or location characteristics that make coop-
eration with the other partners non-beneficial. In practise, those partners might choose
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to continue individually organising their logistics, or to cooperate with partners outside
the group used in the case study. The results have shown that the economic benefits of
cooperation can be fairly divided, while simultaneously rewarding the effort of partners
that reduce CO2 emissions and costs.

Prior to the case study, the partners were already cooperating to a limited extent. The
partners arranged their procurement together and were co-owners of a shared distribu-
tion centre. Therefore, CGT methods were a logical next step in distributing benefits. In
other similar cases where pre-existing forms of cooperation already exist, CGT methods
are an appropriate approach for allocating cooperative benefits. Guajardo et al. (2018)
studied coalition formation among cooperative agents. When there are many possible
cooperative partners, it is useful to combine their techniques with CGT. Future research
or other case studies could focus on situations with no pre-existing form of cooperation.
In those situations, non-cooperative game theory could be used to find coalitions with a
low chance of being abandoned.

In the study, emission prices between 0 and 3.95 e/kg led to a reduction of CO2 emis-
sions without increasing costs. All cooperative solutions resulted in a decrease of CO2
emissions compared to the current situation, even when emissions were priced at 0e/kg.
Most of the emissions prices tested were much higher than the current price. For exam-
ple, 3.95e/kg corresponds with 3950e/ton whereas in the European Trading Scheme it
has varied over the last 10 years between 4 and 40 euros per ton (CBS, 2018). However, the
price of CO2 emissions used in this Chapter does not necessarily translate to an increase
in costs; it mainly captures the importance a group attaches to savings attributed to CO2
emissions. It does influence the cost allocation based on the price of emissions.

The method proposed in the study can be applied to other kinds of cooperative partner-
ships. However, applying these methods to bigger cases can increase computation time
for both the IRP model and for the Shapley value calculation. Heuristics for the IRP model
and approximation methods for the Shapley value could reduce the calculation times.
In this Chapter, the Shapley value is used to allocate benefits based on both costs and
CO2 emissions, but the proposed three-step methodology can be used with other CGT
methods as well. For example, the Equal Profit Method (Frisk et al., 2010) and the meth-
ods described by Kellner and Otto (2012) could be useful for cases with more cooperating
partners. Applying different CGT methods within the proposed framework can provide
valuable information about the differing outcomes of cost and CO2 emissions based al-
locations.
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Chapter 6

Conclusions and general discussion

6.1 Conclusions
The overall objective of this PhD study was to develop decision support models that are
able to capture the complexity of establishing eco-efficient food logistics cooperation
in supply chains. To achieve this, we extended existing OR models to account for spe-
cific characteristics of food products such as perishability, and we quantified trade-offs
between economic and environmental indicators. Different forms of cooperation were
compared on their eco-efficiency performance, and a gain allocation method was ad-
justed such that it was not only based on costs but also on emissions. The main research
question was:

Which decision support models can be used to design eco-efficient logistics cooperation in food sup-
ply chains?

To answer this question, four sub questions were formulated:

1. How to quantify eco-efficiency in temperature-controlled food logistics?

2. How to model temperature-dependent food quality decay in logistics models?

3. What are the effects of different forms of cooperation on eco-efficiency?

4. How can gain allocation be applied such that eco-efficient forms of logistics coop-
eration are stimulated?

Here, we summarise the main findings per research question. Then, scientific impact,
societal and managerial implications, limitations of the study and future research direc-
tions are discussed.

Eco-efficiency in temperature-controlled food supply chains
In Chapter 2, it was found that estimation of costs and emissions of (fresh and frozen)
food supply chains can be improved by considering the effects of temperature control.
Temperature control in transportation can result in more emissions and costs, since ex-
tra fuel is used to drive the cooling engine of the vehicle. Next to that, in temperature-
controlled transportation refrigerant slowly leaks out of the vehicle, which causes addi-
tional pollution. The study showed that in frozen food transportation, thermal emissions
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account for around 33% of total emissions. We also showed that considering tempera-
ture control can change the optimal speed. For ambient transportation, a speed around
40 km/h results in the lowest emissions (Bektaş and Laporte, 2011), while for frozen food
transportation, the optimal speed is around 60 km/h.

Cooperative route planning and food quality

In Chapter 3, we modelled food quality during cooperative transportation by extending a
vehicle routing problem (VRP) with a kinetic model to describe quality decay on a multi-
stop route. With this model, we showed that the estimation of the quality level of food
during transportation can be improved and optimised by integrating kinetic modelling
in routing models. This way, the effect of temperature fluctuations on a cooperative route
can be considered. Extending the green VRP (Bektaş et al., 2016) with a quality decay
minimisation-objective has shown that on a cooperative route, minimising quality decay
can result in different optimal routes compared to minimising costs or emissions. Also,
there is a significant difference in decay for the first partner that is visited on the route
compared to the last one. Dependent on the type of products and their decay rate, this
should be considered in route planning. For example by setting constraints on the max-
imum quality decay for each customer. However, this can result in increased costs and
emissions.

The effects of different forms of cooperation on eco-efficiency

Chapter 4 provided a comparison between the eco-efficiency of a non-cooperative sce-
nario to joint route planning (JRP) (Cruijssen et al., 2007b) and vendor-managed inventory
(VMI) (Coelho et al., 2013) using an inventory routing problem (IRP) model, in which multi-
day planning and inventory are optimised (Cheng et al., 2017). JRP can provide significant
benefits compared to individual routing, and VMI can provide even more savings, both
in terms of costs and emissions. Other studies generally assume that reducing costs by
cooperating can also result in emission savings. We found that JRP cooperation results in
the same optimal decisions independent of the objective of the model (i.e. cost or emis-
sion minimisation). However, in VMI, there is a trade-off between cost and emissions,
and a set of alternative eco-efficient cooperative solutions exists. This implies that part-
ners should agree on an eco-efficient solution that balances cost and emissions savings.

Gain allocation for eco-efficient forms of logistics cooperation

In Chapter 5, the Shapley value gain allocation method (Shapley, 1953) was used to allo-
cate monetary gains based on contributions of the cooperating partners based on both
costs and emission reductions. We demonstrated how the price of emissions can be cal-
culated from an eco-efficient cooperation solution, and how that price can be used to al-
locate benefits using the Shapley value. For each eco-efficient solution benefits are dis-
tributed in a way that reflects the importance of economic and environmental goals of
the cooperation.
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6.2 Scientific impact
The main research question (Which decision support models can be used to design eco-efficient
logistics cooperation in food supply chains?) is answered by integrating the findings of the dif-
ferent chapters in four research themes: cooperative food logistics, cooperation and mul-
tiple objectives, eco-efficiency and gain allocation, and operations research (OR) models
for cooperative food logistics.

Cooperative food logistics
In Chapter 2, 3 and 4, OR models were developed to evaluate the impact of coopera-
tive food logistics on eco-efficiency. With these models, we showed that cooperation
in food logistics can improve eco-efficiency by saving costs and emissions especially in
temperature-controlled transportation, which is needed for fresh and frozen foods. Also,
logistics cooperation can reduce quality decay. For quality decay minimisation however,
other routes are optimal compared to cost or emission minimisation. Next to that, if mul-
tiple partners have high quality requirements, costs and emissions will increase. In order
to become more eco-efficient using cooperation, partners should not minimise the to-
tal driving distance but their costs, emissions, or a combination of both. Fuel consump-
tion should be considered in the estimation of costs and emissions. Fuel consumption
depends on many aspects, but some of the most important ones are distance, load fac-
tor, order of unloading, driving speed, energy used for temperature control, and, in areas
with altitude differences, the slopes of the road.

Companies in the food supply chain should also consider the effects of cooperation on
food quality. On a cooperative route, the temperature fluctuations can cause products
that are delivered later in the route to receive products with a lower quality. Moreover,
when inventory and routing are optimised together, there exists a trade-off between prod-
uct age and emissions which the cooperating partners should consider.

The effects of cooperative logistics on the eco-efficiency of food logistics depend on the
form of cooperation. More advanced forms of cooperation, where more parts of the sup-
ply chain are executed together and more information is shared, can result in increased
eco-efficiency of the supply chain. However, more advanced forms of cooperation result
in more alternative eco-efficient solutions, which will increase complexity for partners:
next to choosing a form of cooperation, they also need to choose between the alterna-
tive optimal solutions that different forms of cooperation provide.

Cooperation and multiple objectives
We have shown that logistics cooperation can reduce both cost and emissions, which is
useful to convince potential partners to cooperate. Comparing different forms of coop-
eration has shown that joint route planning (JRP) and vendor-managed inventory (VMI)
perform differently in terms of their eco-efficiency. VMI can provide further eco-efficiency
improvements compared to JRP. However, in JRP there is one optimal solution that re-
sults in minimum costs and minimum emissions, while in VMI there is a set of alterna-
tive eco-efficient solutions. This means that partners need to choose which solution they
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prefer (Chapter 4). Other studies confirm that even if partner's objectives are conflicting,
still forming a coalition can be beneficial for all partners (Defryn and Sörensen, 2018).

However, cooperation also requires streamlining of vehicles, routes, locations, products,
and inventories (Chapter 3 and 4). Also there are multiple stakeholders, with possibly
conflicting objectives. Indeed studies have shown that it is important to find a balance
between efficiency improvement and an increase in complexity in cooperative logistics
(Defryn and Sörensen, 2018). The advancement of new IT applications can be of help in
dealing with this increased complexity (Kruize et al., 2016). For example, it is easier to
monitor food quality with sensors that can track food quality throughout the supply chain
(Akkerman et al., 2010).

Eco-efficiency and gain allocation
Fair gain allocation is an important prerequisite for long-term successful cooperation (Crui-
jssen et al., 2007a). In this thesis, gain allocation was based on both contributions of part-
ners to saving costs and to saving emissions. This approach to gain allocation helps to
stimulate eco-efficient cooperative solutions (Chapter 5). However, for partners to accept
this form of gain allocation, a change of perspective might be needed. Saving emissions
should be seen as a benefit instead of a burden. Indeed, studies have shown that the
commitment of the upper management to climate change is an important predictor for
the firm's climate change strategy, which may include carbon emission reduction plans
(Eleftheriadis and Anagnostopoulou, 2017).

OR models for cooperative food logistics
To evaluate the eco-efficiency impacts of cooperation, operations research (OR) models
can be used. In this thesis, OR models based on the VRP (Chapter 2 and 3) and the inven-
tory routing problem (IRP) were used (Chapter 4 and 5). They were adjusted to account
for the effects of temperature control and to quantify the effects of cooperation on food
quality.

We have demonstrated the need to consider the effects of temperature control in fresh
and frozen food transportation. Often, VRP and IRP models focus on reducing costs. Re-
cently, green versions of VRP and IRP models have been developed to also consider emis-
sions (Bektaş and Laporte, 2011; Cheng et al., 2017; Zachariadis et al., 2015). However, these
type of models had not been adjusted to account for food specific issues. Therefore, we
extended them to account for the costs and emissions related to temperature control,
and to consider food quality as a consequence of cooperative routing. Moreover, in our
IRP study, we calculated product age and found that less frequent inventory replenish-
ment could save emissions but also increase average product age.

In the Introduction, a modelling framework was presented, and it was used to approach
the main objective of this thesis: to develop decision support models that are able to cap-
ture the complexity of establishing effective long term food logistics cooperation in sup-
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Figure 6.1: Modelling approach used in the thesis.

ply chains. In Chapters 2, 3, 4, and 5, different decision support models have been de-
veloped based on the modelling framework. Figure 6.1 shows the detailed version of the
modelling framework, summarising the models and approaches used in this thesis.

Thus, VRP and IRP that are extended to account for temperature control and food quality
can be used as decision support tools to design and test eco-efficient forms of logistics
cooperation. However, dependent on the part of the supply chain and the scale of the
cooperation, also other OR models could be of use. This thesis can be used as a guideline
on how to adjust them to account for food specific aspects and cooperation.

6.3 Societal impacts
This thesis has focused on improving eco-efficiency, mostly by extending existing OR mo-
dels with food aspects, and with an emission minimisation function. Cost minimisation
is important for the company that has to pay the cost but emissions affect the whole soci-
ety. Therefore, reducing emissions has more impact than reducing costs, from a societal
perspective. We showed that temperature-controlled logistics has more environmental
impact compared to ambient logistics. Therefore, in temperature-controlled logistics,
it is even more important to improve eco-efficiency. Combined with the fact that food
trucks often transport food towards and emit polluting gases in residential areas, there is
a societal need to take emission reduction action in temperature-controlled transporta-
tion, and logistics cooperation is a way to do so.

Gain allocation is an important prerequisite for a successful cooperation. When eco-ef-
ficient cooperation works on the long term, emissions are saved, which benefits the so-
ciety. Instead of studying how to save costs or emissions, we studied how to save and
reward both. In society, for example when discussing taxes on emissions, it is often im-
plicitly assumed that saving emissions comes at some costs. This research shows that
saving costs and saving emissions can go hand in hand.
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We focused our study on eco-efficiency, by considering costs as economic indicator and
emissions as environmental indicator. We also considered food quality, which could be
considered both an economic and an environmental indicator, since quality affects price,
but also food waste. Improving costs, emissions and food quality are thus all part of an
eco-efficient food supply chain. Improving eco-efficiency can be seen as a first step to-
wards improving sustainability (Huppes and Ishikawa, 2005). Besides the environmen-
tal and economic dimensions, sustainability also has a social dimension that we did not
study in this thesis. This is still an important future research direction.

6.4 Managerial insights

The CapsLog project
This PhD thesis is part of the CapsLog project, which is funded by the NWO (Netherlands
Organisation for Scientific Research). CapsLog stands for Capitalising on cooperation in sus-
tainable logistics in food chains. The case studies used in this thesis originate from a group of
Dutch retail companies that cooperatively buy products, but they were interested in also
cooperative organising logistics. The study results were communicated with the retail
organisation, and they have implemented eco-efficiency improving measures inspired
by the studies in this thesis. Moreover, a supply chain advisory was involved. Before the
project, they were mainly focused on minimising distance, but they are now starting to
advice other companies to implement cooperative cost and emission minimising solu-
tions.

Starting logistics cooperation
Decision makers in food logistics are confronted with the challenge to make their com-
panies more eco-efficient and cooperation is one way to do that. However, food logistics,
cooperation, eco-efficiency and gain sharing are complex topics. In many studies, coop-
eration has been qualitatively assessed, and quantitative assessments have often only
focused on one form of cooperation and on monetary benefits. Since this thesis anal-
yses the effects of cooperation on both costs and emissions, and different forms of co-
operation are compared, it will help decision makers in getting more insight in the eco-
efficiency effects of different forms of cooperation, such that they can make a more in-
formed decision on cooperation.

Effects of logistics cooperation
In this thesis, analyses were done to test the effect of different parameters on costs and
emissions. To quantify costs, emissions, and eco-efficiency correctly, it is important to
have a precise fuel estimation, and (in the case of fresh and frozen food products) to con-
sider temperature control. Especially in areas with hills or mountains, considering the
slope of the road in the route planning can result in significant fuel savings as well. Also,
we confirmed the importance of considering the weight of the load and the order of un-
loading for fuel consumption, and the resulting costs and emissions. We also studied
the effect of cooperation on food quality. For managers, it can be reassuring to know that
cooperation does not always yield products of lower quality. However, on a cooperative
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route with highly perishable goods and long door opening times, partners that are vis-
ited later in the route do get products with a lower quality compared to partners that are
visited earlier in a route. Partners that decide to organise cooperative routes with perish-
able products together should thus also think about this.

Maintaining logistics cooperation
Fair gain allocation is important to make cooperation work in the long term. When de-
cision makers decide to work together, emission reduction is often seen as a reason to
cooperate (Makaci et al., 2017). The gain allocation study can be of help for partners that
want to reward both efforts to reduce costs and to reduce emissions, such that the coop-
eration also leads to emission reductions.

6.5 Validity of the findings
Here, we discuss the validity of the findings related to case study choices, modelling choices,
and regulatory aspects.

Case study
All studies in this thesis are based on a case study on a group of retail organisations in The
Netherlands. Since we used the same case study for the different studies, it allows for
easy comparison of the results within this thesis. However different case studies would
allow for easier generalisation. On the other hand, the case study is a stylised example,
which allows for a more general interpretation, and for interested companies to test the
findings with their data. Our case study was based a data set that was small enough
to be solved exactly but large enough to show relations between important parameters.
When applying the methods described in this thesis in practise, data sets will be bigger
and heuristics will need to be used. There has been a significant amount of research on
heuristics for (green) VRPs and IRPs, such as simulated annealing (Xiao and Konak, 2015)
and variable neighbourhood search (Jabir et al., 2017).

In most of the studies in this thesis, temperature-controlled transportation is assumed.
The data related to calculating the effects of temperature control are based on a limited
number of sources, which makes it hard to validate them. This implies that more re-
search on temperature-controlled transportation should be done. For simplification and
because of a lack of data, the self-insulating effect of the cooled load was not considered.
It is expected that this effect does play a role in reducing the thermal energy needed to
cool the load, especially in frozen food transportation.

In our case study, there was already a shared distribution centre. In other forms of co-
operation, it could be needed to start a consolidation centre, which brings advantages
and barriers for the cooperation (Paddeu et al., 2018). In our study, cooperation mainly
resulted in financial benefits that needed to be divided fairly. However, when starting a
consolidation centre, there are costs that need to be shared, especially in the beginning.
Since most people are loss averse, the prospect of first having to pay in order to gain later
in the cooperation is probably not attractive. This is why it is important that we quanti-
fied the benefits of cooperation; that can help convincing potential partners to invest in
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cooperation.

Optimisation models

We have shown possibilities for supply chain improvements using logistics cooperation.
In the real world however, logistics decisions are made by people. More and more, peo-
ple use (optimisation or simulation) computer models to support their decisions. But
still, in order to change towards a more efficient and sustainable way of working, people
need to implement changes. In case of implementing cooperation, this is even harder as
multiple people need to work together, and an improvement for the overall supply chain
could come at the cost of harming one part of the supply chain. Cooperation should cre-
ate enough value for the partners such that they make sure it endures (Morgan and Hunt,
1994). At the same time, there exist barriers that can prevent partners from fully cooper-
ating and reaching the cooperation objectives (Fawcett et al., 2015). These kind of issues
cannot be solved by optimisation models; model findings should always be combined
with a managerial approach in order to implement them in practise (Badraoui et al., 2019).

Regulatory aspects

We quantified benefits and drawbacks of cooperation in terms of costs, emissions, food
quality, and we studied how cooperative gains could be shared. However, we did not
discuss regulatory aspects since it is outside our scope and outside our area of exper-
tise. Nonetheless, it should be mentioned that the antitrust law can complicate coop-
erative settings, and cooperation will result in an administrative burden for the partners.
The antitrust law forbids forms of cooperation that harm the consumer. For example,
price agreements are a form of cooperation that is not allowed by the antitrust law. Since
logistics cooperation does not directly affect consumer prices, we do not expect that it
causes difficulties in that sense. Logistics cooperation could even result in lower con-
sumer prices.

6.6 Future research directions

Eco-efficiency and supply chain resilience

To remain competitive and satisfy the increasing demand for sustainable products, food
supply chains must adapt. Cooperation is proven to be a logistical concept which can
bring economic benefits to the companies of the supply chain involved but also environ-
mental benefits for the society. However, being 100% efficient should not be an aim, be-
cause then supply chain resilience can be compromised. Supply chain resilience is the
capability of a supply chain to deal with unexpected deviations from the norm and their
negative consequences (Pettit et al., 2010). On the other hand, Scholten and Schilder (2015)
show that supply chain cooperation also provides opportunities to improve resilience.
Their study focused on buyer-supplier cooperation, while this thesis also studied hori-
zontal cooperation; between two partners at the same level in the supply chain. Finding
the balance between eco-efficiency and resilience could be a topic for further research.
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Larger scale case studies
The case study was big enough to show relations between important parameters of the
model and results of the analysis, but small enough to solve exactly. For bigger cases (e.g.
with more partners or a bigger part of the supply chain), bigger data sets will be used and
heuristics and approximation methods are needed (Arnold et al., 2017). Gain allocation
methods such as the Shapley value have been approximated (Fatima et al., 2008), which
could be used in future research with bigger case studies. Moreover, different allocation
methods could be used for bigger case studies (Frisk et al., 2010).

Also, the introduction of this thesis gave a limited overview of different forms of logistics
cooperation. In this thesis, JRP and VMI cooperation were compared to a non-cooperative
scenario. However, a classification of more forms of cooperation could be used to com-
pare and quantify the effects of more different forms of cooperation (Badraoui et al., 2019).

Applied gain allocation studies
In this thesis, the Shapley value gain allocation method was applied in a new way, to ac-
count for economic and environmental contributions of cooperating partners. The ap-
proach to allocate benefits based on costs and emissions could also be combined with
other gain allocation methods. Future research directions based on gain allocation meth-
ods could also focus on finding fair allocations of product quality on cooperative routes.
Also, the acceptability of different gain allocation methods could be tested in practise.

Environmental indicators
In this thesis, CO2 emissions were quantified as measure for environmental impact. How-
ever, road transportation causes many more types of emissions, which can be divided in
greenhouse gases and local pollutants. Greenhouse gases have a large scale effect and
are linked to the greenhouse effect, which causes global warming. Of the different green-
house gasses, CO2 is estimated to account for two thirds of the global warming effect. Lo-
cal pollutants exhausted by vehicle engines are carbon monoxide (CO), nitrogen oxides
(NOx), fine particles, and hydrocarbons. Local pollutants from vehicle engines remain in
the area in which they are exhausted (Palmer, 2007). For a more comprehensive view of
the environmental effects of cooperative logistics, it would be good to test the effects on
more types of emissions. For local pollutants, legislation is in place to limit these emis-
sions (Palmer, 2007). Recently, international agreements, such as the Paris agreement
have been made to limit greenhouse gases. However, studies mention that the plans are
not strict enough to contain climate change, and the United States have announced to
step out of the agreement (Rogelj et al., 2016). Therefore, it is important to keep study-
ing the causes of climate change such that measures can be taken to mitigate its effects.
This study has shown that logistics cooperation is an effective way to reduce emissions, so
policy makers that want to reduce emissions should consider stimulating logistics coop-
eration. Also, we have shown that reducing emissions can also result in cost reductions.
This finding can help convince companies to implement emission reduction measures
such as cooperative logistics.
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Table A.1: Glossary.

Abbreviation Explanation
CDC Central Distribution Center
CGT Cooperative Game Theory
CO2 Carbon dioxide
COP Coefficient of Performance
DC Distribution Center
GVRP Green Vehicle Routing Problem
HDV Heavy Duty Vehicle
IRP Inventory Routing Problem
JRP Joint Route Planning
LDV Light Duty Vehicle
LDVRP Load Dependent Vehicle Routing Problem
MDV Medium Duty Vehicle
MILP Mixed Integer Linear Programming
VMI Vendor Managed Inventory
VRP Vehicle routing problem
OR Operations Research
TCLDVRP Temperature Controlled Load Dependent

Vehicle Routing Problem

Table A.2: Decision variables used in the chapters.

Decision unit used in definition
variables chapter
Dkp

ij - 3 decay at an arc
Dkp

ij,v - 3 decay during cooling time (at a variable temperature) at an arc
Dkp

ij,f - 3 decay at a fixed temperature on an arc
It
ir kg 4 inventory at DC i of age r in period t

qtir kg 4 demand fulfilled from DC i of age r in period t
Qpm

ij - 3 quality level arriving at node j from node i of productpwith vehiclek
sckij s 3 cooling time of vehiclek on arc ij
ui - 2 index for order number in a delivery route (MTZ constraints)
xk
ij 0,1 2,3,4,5 binary: 1 if arc ij is crossed with vehiclek, 0 otherwise

wk
ij kg 2 weight transported on vehiclek from node i to node j (incl. vehicle weight)

wkp
ij kg 3 weight productp transported on vehiclek from node i to node j (ex. vehicle weight)

wkt
ij kg 4 weight transported on vehiclek from node i to node j in period t (incl. vehicle weight)

ykt
i kg 4 quantity delivered to DC i by vehiclek in period t

zk
ij 0,1 3 binary for big M method

Z - 3 variable to minimise maximum quality decay
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Table A.3: Values used to run the models in the different chapters.

Symbol Value Unit in chapter Definition Source
αij 0.0981 m/s2 2, 3, 4, 5 arc-specific constant Bektaş and Laporte (2011)
β 3.013 kg/m 2, 3, 4, 5 vehicle-specific constant Bektaş and Laporte (2011)
∆T 0,8,18,28,38,48 K 2, 3, 4, 5 Temperature difference vehicle and outside Akkerman et al. (2010)
ηe 0.3 - 2, 3, 4, 5 efficiency chemical to refrigeration energy Bell (2008)
ηm 0.3 - 2, 3, 4, 5 motive energy conversion efficiency Bektaş and Laporte (2011)
ρ 1.2041 kg/m3 2, 3, 4, 5 air density Bektaş and Laporte (2011)
A 7.15 m2 2, 3, 4, 5 frontal area of the vehicle Bektaş and Laporte (2011)
c0 0.0005, 0.001, 0.0015 e/kg 4 unit inventory cost CDC Soysal et al. (2015)
Cd 0.7 - 2, 3, 4, 5 coefficient of drag Bektaş and Laporte (2011)
cf 1.4 e/L 2, 3, 4, 5 unit fuel cost Bektaş and Laporte (2011)
cI 0.005, 0.01, 0.015 e/kg 4 unit inventory cost DC Soysal et al. (2015)
Cr 0.01 - 2, 3, 4, 5 rolling resistance Bektaş and Laporte (2011)
cw 0.0022 e/s 2, 3, 4, 5 unit wage cost Bektaş and Laporte (2011)
COP 0.67, 2 - 2, 3, 4, 5 coefficient of performance Bektaş et al. (2016)
ef 2.668 kg/L 2, 3, 4, 5 fuel to CO2 emissions factor Tassou et al. (2009)
er 1.205 kg/kg 2, 3, 4, 5 emission factor refrigerated transport Koehler et al. (1997)
g 9.81 m/s2 2, 3, 4, 5 gravitation constant Koehler et al. (1997)
hi 4 kWh 2, 4, 5 heat entering during service time at stop i Tso et al. (2002)
k 3, 4, 7 2, 3, 4, 5 number of vehicles Tso et al. (2002)
Pf 8.8 kWh/L 2, 3, 4, 5 energy content of the fuel Bektaş and Laporte (2011)
L 7500, 12500, 30000 kg 2, 3, 4, 5 truck capacity Bektaş and Laporte (2011)
L0 4500, 5500, 10000 kg 2, 3, 4, 5 curb weight Koç et al. (2016)
si 900 s 2, 4, 5 service time at each stop Koç et al. (2016)
Sk 165 m2 2, 3, 4, 5 the surface area of vehiclek Tassou et al. (2009)
U 0.7 W/m2/K 2, 3, 4, 5 heat transfer coefficient Tassou et al. (2009)
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Table A.4: Parameters used in models.

Symbol Unit Definition
αij m/s2 arc-specific constant
β kg/m vehicle-specific constant
∆T K difference in temperature inside an outside vehicle
ηe - chemical to refrigeration energy conversion efficiency
ηm - motive energy conversion efficiency
ηp - coefficient of performance
λ e/kg price of CO2 emissions
ρ kg/m3 air density
θij ° slope of the road
a m/s2 acceleration of the vehicle
A m2 frontal area of the vehicle
C e total cost
cij m distance of arc ij
c0 e/kg unit inventory cost CDC
Cd - coefficient of drag
cf e/L unit fuel cost
cI e/kg unit inventory cost DC
CI e inventory cost
Ci kg capacity DC i

cp,a J/(m3 K) volumetric heat capacity
Cr - rolling resistance
Ct e transportation cost
cw e/s unit wage cost
d s maximum driving time
E kg CO2 total emissions for transportation
En kg CO2 emissions of non-refrigerated transport
Ep

a Joule/mol activation energy of product p
ef kg/L fuel to CO2 emissions factor
Er kg CO2 emissions of refrigerated transport
er kg/kg emission factor refrigerated transport
fa L fuel use for ambient transport
fr L fuel use for refrigerated transport
f K/s temperature increase speed
g m/s2 gravitation constant
hi kWh heat entering during service time at stop i
Hs kWh heat entering during service time
Hw kWh heat entering through the wall
κ mol/(Ls) rate constant
κ0 mol/(Ls) pre-exponential factor
k index for vehicles
Lk kg capacity of vehiclek
L0 kg curb weight
M - big number
Pij kWh motive power on arc ij
Pf kWh/L energy content of the fuel
q
p
i - demand node i of productp

Q
p
0 - initial quality productp

R J/(mol K) gas constant
r days average product age
si s service time at stop i

Sk m2 the surface area of vehiclek
sckij s cooling time of vehiclek on arc ij
T K temperature in Kelvin
T0 K goal temperature
Tk
0 K air temperature in vehicle k when it leaves the CDC

Ta K ambient temperature
Tk
i K air temperature of vehicle k at the end of the service time at node i

T
kp
i K air temperature of vehicle k at the end of the service time at node i

T
p
ref

K reference (optimal) temperature of productp
ts s/kg unloading rate
U W/m2/K heat transfer coefficient
vij m/s speed driven on arc ij
Vk m3 volume of vehiclek
yc
j e cost allocated to partner j

ye
j kg CO2 emissions allocated to partner j

yK
j - K-value allocated to partner j
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Table A.5: Base case speed matrix (km/h) used in Chapter 3.

0 1 2 3 4 5 6 7
0 45.9 50.7 51.4 63.4 65.9 50.5 46.7
1 59.1 42.9 48.1 60.2 65.3 44.5 46.9
2 64.2 60.3 60.2 66.4 63.6 59.1 50.5
3 61.0 64.7 44.2 67.9 58.9 51.3 52.3
4 41.8 49.7 50.0 50.4 65.5 48.2 48.1
5 50.7 52.1 46.8 47.8 42.3 42.5 50.2
6 62.5 63.1 44.9 65.3 65.2 61.1 50.7
7 62.8 56.8 59.7 59.8 59.3 59.2 60.9

Table A.6: Demand and location data used for the demand and distance sensitivity analysis in-
stances in Chapter 4, based on the Solomon R101 data set (Solomon, 1987). The DC number refers
to the day in the Solomon data set of which the x and y coordination were taken.

Data set DC Monday Tuesday Wednesday Thursday Friday Saturday
1 1 1 8 15 22 29 36

2 2 9 16 23 30 37
3 3 10 17 24 31 38
4 4 11 18 25 32 39
5 5 12 19 26 33 40
6 6 13 20 27 34 41
7 7 14 21 28 35 42

2 8 1 8 15 22 29 36
9 2 9 16 23 30 37

10 3 10 17 24 31 38
11 4 11 18 25 32 39
12 5 12 19 26 33 40
13 6 13 20 27 34 41
14 7 14 21 28 35 42

3 15 1 8 15 22 29 36
16 2 9 16 23 30 37
17 3 10 17 24 31 38
18 4 11 18 25 32 39
19 5 12 19 26 33 40

20 6 13 20 27 34 41
21 7 14 21 28 35 42

4 22 1 8 15 22 29 36
23 2 9 16 23 30 37
24 3 10 17 24 31 38
25 4 11 18 25 32 39
26 5 12 19 26 33 40
27 6 13 20 27 34 41
28 7 14 21 28 35 42

5 29 1 8 15 22 29 36
30 2 9 16 23 30 37
31 3 10 17 24 31 38
32 4 11 18 25 32 39
33 5 12 19 26 33 40
34 6 13 20 27 34 41
35 7 14 21 28 35 42
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Summary

Road transportation generates significant costs for firms that deliver and collect prod-
ucts. Next to that, it results in emissions. Food supply chains cause additional emis-
sions because of the extra energy needed to guarantee product quality. Moreover, cur-
rent transportation systems are inefficient since the available capacity is not optimally
used. Cooperation between food supply chain actors could provide opportunities to re-
duce costs and emissions and improve eco-efficiency, which is defined as solutions for
which it is impossible to improve the environmental objective without worsening the
economic objective. In food supply chains, it is also important to guarantee food quality.
However, reducing costs, emissions, and quality decay do not always go hand in hand,
and trade-offs need to be made. Moreover, despite the benefits, companies hesitate to
implement cooperation because it might bring advantages to competitors and they find
it difficult to agree on gain sharing. To find out how cooperation can improve eco-efficiency
in food logistics, we need decision support models that can capture these complexities.
Therefore, the main research question that this thesis aims to answer is: Which decision
support models can be used to design eco-efficient logistics cooperation in food supply chains?

All studies in this PhD thesis are based on a case study on a Dutch retail cooperative,
where several smaller retail organisations cooperate by forming a buying organisation.
By jointly purchasing their products, they can negotiate a lower unit price. The retailers
currently hire different logistics service providers to pick up their orders from their shared
distribution centre and bring them to their own distribution centre. From there, they dis-
tribute the products to their supermarket outlets. Currently, the retailers arrange their
logistics individually, but they are considering to cooperate to reduce costs, emissions
and quality decay.

In this thesis, the effects of different forms of logistics cooperation between food supply
chain actors are analysed using existing optimisation models, which we extended to ac-
count for temperature control and food quality. Using these extended models, routing
and inventory are optimised to minimise costs, emissions, and quality loss. Moreover,
trade-offs between the objectives are established. Also, we proposed a method to divide
cooperative gains, not only based on costs but also on emissions. This way, eco-efficient
forms of logistics cooperation are rewarded and stimulated.

In Chapter 2, we extend the Load Dependent Vehicle Routing Model such that it accounts
for the extra costs and emissions related to temperature control. We show that temper-
ature control can significantly affect costs and emissions and thus the optimal routing.
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This extended model can be used to test the effect of new cooling technologies on the
costs and emissions of routing.

In Chapter 3, we introduce the Quality Driven Vehicle Routing Problem. This problem
is modelled and used to more realistically quantify how food degrades during distribu-
tion processes. We consider effects of outside temperature, door openings, and differ-
ences in optimal temperatures for different products. When transporting temperature-
sensitive products, minimising quality loss results in multiple routes with less stops per
route whereas minimising costs or emissions results in longer routes. The negative qual-
ity effects of multi-stop routes can be mitigated by adjusting driving speed, unloading
rate, cooling rate, and by setting a quality threshold level.

In Chapter 4, we compare the effect of different forms of cooperation in temperature-
controlled transportation on cost and emissions. Joint route planning (JRP, in which daily
transport decisions are optimised cooperatively) is compared to vendor-managed inven-
tory (VMI, in which multi-day routing and inventory decisions are optimised coopera-
tively) and to a non-cooperative scenario using vehicle routing and inventory routing mo-
dels. In JRP, there is one optimal solution for minimising costs and for minimising emis-
sions. For VMI however, additional savings in both objectives are obtained but there is a
set of alternative eco-efficient solutions and partners need to choose which of those so-
lutions (i.e. cooperative routing and inventory plans) they prefer. Also, in VMI there exists
a trade-off between product age and emissions: less frequent inventory replenishment
leads to reduced emissions but it also to a higher average product age.

In Chapter 5, we study how the monetary benefits of VMI can be allocated. We discuss
that gain allocations should reflect both contributions to savings in costs and emissions.
That way, gain allocation can be used to stimulate eco-efficient forms of cooperation. A
green IRP model is used to quantify cooperative benefits and establish all possible eco-
efficient cooperative solutions. For each solution, we allocate monetary benefits based
on costs and emissions using the Shapley value. This approach results in cost savings for
all partners that help reducing impacts.

In this thesis, we adjusted VRP and IRP models to account for temperature control and
perishability. Using these OR models, we found that food logistics cooperation can re-
sult in significant economic and environmental benefits. The findings of all studies can
be summarised in three main concluding statements: (i) temperature control influences
costs and emissions of cooperative routes, and cooperative routing influences food qual-
ity. Therefore, these food specific aspects should be considered in cooperative logistics;
(ii) dependent on the intensity of the cooperation, it can result either in one optimal solu-
tion for both costs and emissions, or a set of eco-efficient solutions; and (iii) to stimulate
forms of cooperation that both reduce costs and emissions, we should allocate coopera-
tive gains based on partner's contributions to both indicators.
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Samenvatting

Wegtransport is een grote kostenpost voor bedrijven die producten bezorgen en ophalen.
Daarnaast veroorzaakt het uitstoot. Levensmiddelenketens zorgen daarbovenop nog voor
extra uitstoot omdat ze energie gebruiken voor koeling om productkwaliteit te kunnen
garanderen. Verder wordt in de huidige transportsystemen de capaciteit niet optimaal
benut. Samenwerking tussen actoren in levensmiddelenketens kan mogelijkheden bieden
om kosten en uitstoot te verminderen en eco-efficiëntie te verbeteren. Een situatie kan
worden gezien als eco-efficiënt wanneer het niet mogelijk is verdere milieuwinst te be-
halen zonder er financieel op achteruit te gaan en andersom. In levensmiddelenketens
is het daarnaast ook belangrijk om voedselkwaliteit te garanderen. Helaas gaan het ver-
beteren van kwaliteit en het verminderen van uitstoot en kosten niet altijd hand in hand
en moeten er afwegingen gemaakt worden. Bedrijven hebben, ondanks de beschreven
voordelen, vaak een aarzelende houding ten opzichte van samenwerking, omdat het ook
voordelen kan brengen voor concurrenten en ze het eens moeten worden over het verde-
len van de besparingen. Om erachter te komen hoe samenwerking eco-efficiëntie kan
bevorderen, zijn beslissingsondersteunende modellen nodig die met dit soort complexi-
teit kunnen omgaan. Daarom is de hoofdvraag van deze dissertatie: Welke beslissingson-
dersteunende modellen kunnen gebruikt worden om eco-efficiënte vormen van samenwerking te
ontwerpen in de voedsellogistiek?

De onderzoeken in deze dissertatie zijn gebaseerd op een studie bij een Nederlandse in-
kooporganisatie voor supermarkten. Hierin werken verschillende supermarktketens sa-
men. Door samen in te kopen, kunnen ze beter onderhandelen over de productprijs. In
de huidige situatie huren de supermarktketens verschillende logistieke dienstverleners
in om hun bestellingen op te halen bij het gezamenlijke distributiecentrum: ze plannen
hun logistiek dus individueel. Ze overwegen ook op het gebied van logistiek samen te
werken om zo kosten, uitstoot en kwaliteitsvermindering tegen te gaan.

In deze dissertatie worden de effecten van verschillende vormen van logistieke samen-
werking tussen actoren in de levensmiddelenketen geanalyseerd met bestaande opti-
malisatiemodellen die uitgebreid zijn om rekening te houden met het effect van gekoeld
transport en het effect op voedselkwaliteit. Met deze uitgebreide modellen worden trans-
port- en voorraadbeslissingen geoptimaliseerd om kosten, uitstoot en kwaliteitsvermin-
dering te minimaliseren. Bovendien worden de modellen gebruikt om de afweging tus-
sen de verschillende doelfuncties (zoals uitstootvermindering, kostenminimalisatie en
kwaliteitsverbetering) in kaart te brengen. Ook wordt een methode geïntroduceerd om
de kostenbesparingen als gevolg van samenwerking eerlijk te verdelen, gebaseerd op

115



Samenvatting

zowel kosten als emissies. Op deze manier worden eco-efficiënte vormen van logistieke
samenwerking beloond en gestimuleerd.

In hoofdstuk 2 wordt het Load Dependent Vehicle Routing Model uitgebreid zodat reke-
ning wordt gehouden met kosten en uitstoot gerelateerd aan het koelen van vrachtwa-
gens. Uit de resultaten blijkt dat koeling leidt tot een significante verhoging van kosten
en uitstoot en dat het daarom nodig is de standaard routeplanning aan te passen. Dit
model kan worden gebruikt om de effecten van nieuwe koeltechnieken op kosten en emis-
sies in kaart te brengen.

In hoofdstuk 3 wordt het Quality Driven Vehicle Routing Problem geïntroduceerd. Dit
probleem wordt gemodelleerd en gebruikt om realistischer te kwantificeren hoe voedsel-
kwaliteit verandert gedurende het distributieproces. Hierbij wordt rekening gehouden
met de effecten van de buitentemperatuur, het openen van de deur van de wagen en
verschillen in de optimale temperatuur van verschillende producten die samen vervoerd
worden. In dit hoofdstuk blijkt dat het minimaliseren van kwaliteitsverlies in meerdere,
kortere routes resulteert wanneer temperatuurgevoelige producten vervoerd worden. Het
minimaliseren van kosten en emissies resulteert daarentegen in langere routes. De nega-
tieve kwaliteitseffecten van routes met veel tussenstops worden verminderd door het
aanpassen van rijsnelheid, uitlaadsnelheid, koelefficiëntie en door een minimumkwaliteit
in te stellen voor alle klanten.

In hoofdstuk 4 worden de effecten van verschillende vormen van logistieke samenwer-
king in koeltransport vergeleken op basis van kosten en uitstoot met behulp van een in-
ventory routing problem (IRP). Joint route planning (JRP, waarbij dagelijkse transportbeslis-
singen samen worden geoptimaliseerd) wordt vergeleken met vendor-managed inven-
tory (VMI, waarbij meerdaagse transport- en opslagbeslissingen samen worden genomen)
en met een scenario waarin transport en opslag individueel worden geoptimaliseerd.
Met JRP is er één optimale oplossing wat betreft kost- en uitstootminimalisatie. Met VMI
kunnen extra besparingen in kosten en uitstoot worden behaald maar is er een set van al-
ternatieve eco-efficiënte oplossingen. De partners moeten in dit geval dus kiezen voor
welke oplossing (m.a.w. welk plan voor transport en opslag) ze een voorkeur hebben.
Daarnaast moet er bij VMI samenwerking een afweging worden gemaakt tussen de vers-
heid van een product en de uitstoot: als de voorraad minder vaak wordt aangevuld, wordt
uitstoot bespaard, maar gaat de gemiddelde versheid van de producten naar beneden.

In hoofdsuk 5 wordt er gekeken hoe de financiële voordelen van VMI verdeeld kunnen
worden over de partners. De verdeling van de voordelen moet gebaseerd worden op de
bijdragen van de verschillende partners aan het besparen van kosten, maar ook op de
bijdragen van de partners aan het besparen van uitstoot. Op deze manier kan het verde-
len van de baten van samenwerking zorgen dat eco-efficiënte vormen van samenwer-
king gestimuleerd worden. Een green inventory routing problem (GIRP) model wordt
gebruikt om de gezamenlijke voordelen te kwantificeren en alle mogelijke eco-efficiënte
oplossingen in kaart te brengen. Voor elke oplossing worden de financiële voordelen
verdeeld gebaseerd op kosten en uitstoot met behulp van zogenaamde Shapley waarde.

116



Deze aanpak resulteert in kostenbesparingen voor alle partners die helpen om de geza-
menlijke impact te verminderen.

In deze dissertatie zijn VRP en IRP modellen aangepast zodat ze het effect van koeling en
de effecten op kwaliteit kunnen meten. Met behulp van deze modellen blijkt dat samen-
werking in de voedsellogistiek zorgt voor significante economische besparingen en ook
milieuvoordelen biedt. De bevindingen van deze studies kunnen worden samengevat in
drie punten: (i) transportkoeling beïnvloedt kosten en uitstoot van gezamenlijke routes
en het gezamenlijk organiseren van transport beïnvloedt voedselkwaliteit. Daarom is
het belangrijk om rekening te houden met voedselspecifieke eigenschappen bij samen-
werking in de logistiek; (ii) afhankelijk van de vorm van logistieke samenwerking, kan
het zorgen voor óf één optimale oplossing voor zowel kosten als uitstoot óf een set van
eco-efficiënte oplossingen; en (iii) om vormen van samenwerking te stimuleren die zowel
kosten als uitstoot verminderen, moeten gezamenlijke verdiensten worden gebaseerd
op bijdragen van partners op beide gebieden.
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