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Abstract 
Mebratie W. (2019). The genetics of body weight and feed efficiency in broiler 
chickens. PhD thesis, Aarhus University, Denmark and Wageningen University, the 
Netherlands.  
 
Tremendous genetic improvement in growth rate and feed efficiency of broiler 
chickens has been recorded in the past five or more decades due to genetic selection. 
However, the increasing global human population, increasing demand for affordable 
animal protein, increase in feed price and the continued global environmental issue 
still urges the broiler industry to produce broilers that grow fast and efficiently utilize 
feed. In order to further improve growth rate and feed efficiency of broiler chickens, 
understanding the genetic background of growth rate (body weight) and feed 
efficiency in today’s broilers is essential. This thesis explored the genetic background 
of body weight (BW) and feed efficiency (FE) in broiler chickens using different 
statistical models and methods. Accurate estimation of genetic parameters is the 
primary pre-requisite to establish an efficient selection program. In this thesis, 
genetic parameters of BW and FE traits were estimated using different statistical 
models and methods. It is shown that BW and FE traits are influenced by sex by 
genotype and age by genotype interaction in addition to direct genetic effects, 
maternal permanent environmental effects and residual environmental effects. This 
suggests that genetic evaluation of broiler chickens should take in to account sex and 
age differences in order to improve accuracy of predicting breeding values and 
maximize genetic gain. Moreover, by studying the effect of selection on genetic 
parameters of BW along a selection trajectory, it is shown that the genetic variance 
of BW did not exhaust/diminish after several generations of selection. This is also 
supported by genome wide association study (GWAS) in which several quantitative 
trait loci (QTL) and candidate genes were identified to be associated with BW and FE 
in a broiler population that was pre-selected for BW and undergone several 
generations of selection for FE. In addition to identifying QTL regions and candidate 
genes for BW and FE traits, GWAS using mixed linear model and general linear model 
approach were compared. The results have shown that GWAS using the two 
approaches does not necessarily give similar results even if family structure is not a 
strong concern in the population suggesting that statistical models in GWAS should 
be carefully chosen. This thesis also explored two definitions of residual feed intake 
(RFI); phenotypic and genetic RFI. Phenotypic and genetic RFI were derived from a 
joint Bayesian analysis of body weight, feed intake (FI) and body weight gain (Gain) 
and genetic parameters of production (BW and Gain) and feed efficiency traits (FI 
and the two RFI definitions) were estimated. Moreover, genetic relationship 



 
 

between production and feed efficiency traits was quantified. Genetic correlations 
between phenotypic and genetic RFI were close to unity at a younger age and 
significantly different from unity at an older age suggesting that selection using 
either of them at that specific younger age results the same genetic response. 
Overall, the results of this thesis suggest that there exists considerable genetic 
variation in BW and FE that makes further improvement of the traits possible. The 
knowledge gained in this thesis will contribute to the understanding of the genetic 
background of BW and FE in broiler chickens. Furthermore, the statistical models and 
methods employed and the results reported in this thesis can be extended to other 
poultry species with little modification since chicken is the prime model for all avian 
species.  
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1.1 Broiler production 
 
Poultry meat production increased nearly 46 million metric tons during the past 15 
years from 2003 to 2018 (WATT executive guide to world poultry trends, 2018). US, 
China and Brazil are the leaders in poultry meat production with forecasted 2018 
production of 22.4, 17.8 and 13.7 million metric tons, respectively (WATT executive 
guide to world poultry trends, 2018). European Union, Russia and Mexico are 
significant contributors to the world’s total poultry meat production in 2018, 
whereas developing countries continue to drive demand (WATT executive guide to 
world poultry trends, 2018). Poultry meat production is forecasted to rise from 
nearly 123 million metric tons in 2018 to 139 million tons in 2027 while its main 
competitive product pig meat is forecasted to rise from nearly 121 million metric 
tons to 130.9 million metric tons in 2027 (WATT executive guide to world poultry 
trends, 2018).  
Poultry meat is the main source of animal protein for human beings in the majority 
of countries worldwide (McKay, 2009). Chickens that are reared exclusively for meat 
production are called broiler chickens or broilers. In 2010, broiler meat accounted 
for 88% of the total poultry meat output worldwide followed by turkey, duck and 
goose which accounted for 5%, 4% and 3%, respectively (MacLeod et al., 2013). In 
2018 broiler meat accounted for 86.9% of the total poultry production in the US 
followed by turkey which accounted for 12.1% of the total production and it is 
predicted to stay nearly the same in 2019 (USDA, 2018).  
Broiler meat production has increased from about 58.7 million tons in 2000 to over 
95.6 million tons in 2018 and is forecasted to grow 2 percent in 2019 to a record of 
97.8 million tons (USDA, 2018). Since about 1993, the consumption of broiler meat 
has been higher than any other type of meat each year in the US (Havenstein, 2006). 
The consumption of chicken meat in the UK (23 kilograms per head per year), is 
greater than that of any other meat and accounts for about a third of all meat 
consumed (Sheppard, 2004). The human population worldwide is predicted to reach 
9.6 billion in 2050 (UN, 2015) and the global demand for chicken meat is forecasted 
to grow by 61% between 2005 and 2030 (MacLeod et al., 2013). With the growing 
human population and consumer demand for affordable meat, chicken meat is 
predicted soon to become the world's most consumed form of animal protein 
(OECD/FAO, 2014).  
The increased importance of global sustainability in food production is well suited 
with the progress made in the poultry industry, which has relatively low 
environmental impact compared to other livestock sectors such as cattle, sheep and 
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pig (Williams et al., 2006). Livestock production contributes approximately 18% of 
the global greenhouse gas emissions (FAO, 2006) and chicken production attributes 
the least of the global emissions from livestock production (MacLeod et al., 2014; 
Williams et al., 2006) which urges the broiler industry to grow even more. 
 
1.2. Role of broiler breeding programs 
 
A dramatic transition in poultry genetics has been observed in the last several 
decades, both in commercial arena of breeding and research (Siegel, 2006). 
Industrial production has facilitated replacement of dual-purpose chickens with 
broilers that are specifically bred for meat or layers that are specifically bred for eggs. 
Today's broiler industry has its origin in the seasonal rearing of cockerels of egg type 
or dual-purpose breeds for meat. With increasing demand for juvenile chickens, 
breeds have been selected for rapid growth rate, feed efficiency, and specific carcass 
parts (Eitan and Soller, 2002). 
The broiler industry has shown astonishing change over the past half century. Many 
factors have contributed to the growth of the industry, but genetics has played the 
major role (Havenstein, 2006). A number of breeding companies have existed since 
the late 1940s to early 1950s that have specialized in applying quantitative genetics 
to the selection of chickens that are solely used for meat production (Havenstein et 
al., 1994a). The genetic progress made since the late 1950s has been the basis of a 
modern poultry industry, which is a major source of animal protein in most countries 
of the world (McKay, 2009). Breeding companies have applied different breeding and 
selection strategies at different periods for the genetic improvement of poultry. 
Those genetic changes, along with management and nutritional changes, as well as 
the application and efficiencies of vertical integration led to the development of the 
modern broiler industry and its ability to produce chicken meat at about the same 
absolute price today as it was being produced in the early 1950s (Havestein,  2003a). 
The modern broiler is a chicken that reaches market weight at an early age, has high 
carcass yield and is highly feed efficient (Siegel, 2014). 
Broiler breeding programs mainly select for growth rate, feed efficiency, and breast 
meat yield, ascites and skeletal abnormalities. Among those traits, growth rate and 
feed efficiency have received greatest attention in almost all broiler breeding 
programs mainly due to their economic importance (Arthur and Albers, 2003). 
Improved growth rate (body weight) has commonly been the principal selection trait 
over the decades, because it is relatively easy to select, has moderate heritability 
and has great economic impact for the broiler industry (Arthur and Albers, 2003). 
The continued effort made by breeding companies enabled the production and 
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efficiency of production observed in modern broilers. Havenstein et al. (2003a) 
compared a representative 2001 broiler strain (Ross 308) reared on a 2001 modern 
commercial diet with Athens-Canadian random bred control line (ACRBC) 
established in 1975 and reared on a 1957 type diet and reported that the modern 
broiler in the year 2001 was nearly five times as large as the 1957 random bred 
broiler line at 42 and 56 days of age. Moreover, the Ross 308 broiler line with the 
2001 feed was estimated to have 1,815 gram body weight and feed conversion ratio 
of 1.47 at 32 days of age while the ACRBC line with the 1957 feed would not have 
1,815 gram body weight and feed conversion ratio of 4.42 before 101 days of age 
(Havenstein 2003a).  
By focusing on economically most important traits, breeding companies succeeded 
to produce a broiler cross that reach market weight about 1 day earlier each 
generation (Siegel, 2014). Together with this change, a dramatic reduction in the 
feed conversion ratio has been recorded. Under good management condition and 
high-energy diet, modern broilers can reach 2.44 kg in just 35 days with only 3.66 kg 
of feed. Studies have shown that the majority of this tremendous change (85 to 90%) 
has been brought by the genetic selection practiced by commercial breeding 
organizations (Havestein et al., 2003a; Havenstein et al., 1994a; Havenstein et al., 
1994b; Sherwood, 1977) while 10-15% of the change is due to improvements in 
nutrition and management practices (Havenstein et al., 1994a; Havenstein et al., 
1994b).  
 
1.3. Structure of broiler breeding industry 
 
A number of broiler breeding companies have existed since the late 1940s and had 
significant contribution to genetic improvement in broilers over the years. Breeding 
companies have been successful in populating the production industry with an 
increasing numbers of efficient stock (Arthur and Albers, 2003).  
Until the beginning of the 20 century, breeders were selected based on their 
phenotypic performance (mass selection). Since then, a number of strategies such 
as pedigree selection, selection indices, as well as estimation of breeding value of 
selection candidates using different methods have been implemented (Arthur and 
Albers, 2003). These selection strategies were applied exclusively on pure breeding 
lines until 1940s and final broilers were purebreds. After that, all breeding programs 
for broilers consisted of specialized lines with distinct breeding goals per line and 
commercial broilers were cross breeds (Arthur and Albers, 2003). Modern 
commercial broilers are three-way or four-way crosses of specific closed pure 
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breeding lines. Between pure breeding lines and final commercial broilers, there are 
four generations (Arthur and Albers, 2003). To permit the transmission of genetic 
improvement from the nucleus breeding populations (where all selection takes 
place) to the billions of crossbred commercial broilers, considerable multiplication is 
needed through grandparent and parent populations. The structure of all breeding 
companies is standard. The pure line elite stock, which is relatively small in number, 
is located at the apex while large number of crossbred broiler stock is located at the 
base (Pollock, 1999). A typical broiler primary breeder/industry structure is 
presented in Figure 1. In general, the time lag between selection in the pure breeding 
lines and gain in the final commercial broilers is about four years (Pollock, 1999).  
The purebred line is possessed by the breeding company and undergo full-scale 
selection program. For each broiler product, three or four purebred lines are used. 
Individual breeding companies have a range of broiler products; hence, they 
maintain at least ten purebred lines (Arthur and Albers, 2003). Pedigree selection is 
intense in the main lines. Individuals at this stage contribute their genetic material 
to tens of thousands of final broilers (Sigel, 2013). 
Great-grandparent stock is owned by the breeding company and undergone limited 
selection for selected traits. It is mainly used for multiplying the pure lines to at least 
tens of thousands, which are needed to create the grandparent stock (Arthur and 
Albers, 2003).  
Grandparent stock is the first generation of crossbred stock. In case of a four-way 
final cross (ABCD), A males, B females, C males and D females produce the 
grandparent stock (Arthur and Albers, 2003). Grandparents are distributed 
throughout the world in at least hundreds of thousands to local operations, which 
may be integrated production companies or local distributors of parent stock (Arthur 
and Albers, 2003).  
Parent stock is the second generation of crossbred stock. In a four-way final cross, 
AB hybrid males are mated to CD hybrid females. Parent stocks are mainly possessed 
by companies, which produce final broilers. Finally, broilers are birds that are grown, 
slaughtered and processed for large-scale chicken meat production (Arthur and 
Albers, 2003).  
The mainline pedigree populations are subjected to genetic selection to improve the 
major economic traits. For male lines, growth rate, feed conversion ratio and edible 
carcass yield are the traits that receive priority. These traits are also important for 
female lines; however, greater emphasis is given to reproductive traits. Traits that 
received greatest emphasis are improved by intensive selection, which is 
regenerated from the best families. However, minor traits (e.g. fertility, hatchability, 
liveability in the male lines) are improved by low intensity selection. This latter 
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approach is aimed to maintain performance levels for the minor traits as gain in the 
major traits accumulate (Pollock, 1999).  
 
1.4. Selection strategies 
 
The initial step in any successful breeding program is to establish an appropriate 
breeding goal (Emmerson, 2003). Breeding goals for producing the modern broiler 
may vary depending on market demands and related genetic and non-genetic factors 
(Siegel, 1984). Each breeding program has four fundamental steps. The first step is a 
clear product profile for each product the breeding company needs to market. The 
second step is an assessment of the available genepools and their corresponding 
crosses for best fit to the product profile. The third step is using estimates of variance 
components to define breeding goals within each genepool for the traits under 
evaluation. This step also includes designing optimum evaluation procedures and 
rates of progress for each trait under evaluation. Breeding goals may shift with 
market changes. The last step is to take the genepools under evaluation and 
efficiently reproduce, multiply the crosses and deliver the hybrid to customers in a 
health status that meets the requirement of the modern industry (Collett, 2009).  
There are different forms of the modern broiler, each designed to address a specific 
market, and breeding programs are limited to a small number of groups operating 
globally. Generations are overlapping rather than discrete, and selection is 
multistage that is, selections are made at several points during the life of an 
individual, which may be removed from the population at any time (Siegel, 2014). 
With the development of a high quality sequence assembly of the chicken genome, 
genomics can help to complement selection, particularly for traits that are expressed 
in one sex or later in life or for traits that are difficult to measure (Siegel, 2014). 
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Figure 1. A typical broiler primary breeder structure (Figure adopted from Mackay, 
2008).

 
 
 
1.4.1. Selection strategies for growth rate 
 
Growth rate was the first trait to receive attention in the breeding industry since the 
start of commercial broiler production due to its economic importance and the 
relative ease with which it can be improved (Emmerson, 1997). Broiler selection 
occurs at an earlier point in the growth curve, which gives greatest emphasis to rapid 
growth and early carcass development (Emmerson, 1997). The primary breeding 
industry generally follows one of the following three basic approaches in selecting 
for growth rate (Emmerson, 1997).   
Selection at a commercial age: In this approach, pure lines are selected at an age 
that matches market age. This has the advantage of not being complicated by the 
weight difference between male and female lines. In this approach, candidates are 
pre-selected at a relatively immature stage prior to final selection at a commercial 
environment. This pre-selection is commonly practiced especially in lines under 
extreme selection for growth rate (Emmerson, 1997).   
Selection at a commercial weight: In this approach, pure lines are selected at a 
weight that matches market weight and the age at selection decreases with time as 
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growth rate increases. This approach takes into account the fact that male lines are 
30–40% heavier than female lines and that growth rates are significantly greater in 
a structured pedigree program than would be observed under field conditions due 
to genotype by environment interaction (Emmerson, 1997). Thus, primary selection 
might occur at a much younger age than typical market age but at a weight and 
developmental maturity that corresponds with the ultimate breeding objective. 
Although requirements are changing rapidly, selection at a commercial weight is the 
most common strategy employed in industrial broiler breeding programs 
(Emmerson, 2003) as a result broiler products generally fall within a relatively narrow 
weight ranges. Broilers that deviate from the prescribed weight ranges result in 
processing inefficiencies and associated economic loss (Emmerson, 1997).  
Multi-stage selection: It accommodates selection at a commercial age and selection 
at a commercial weight. Multi-stage selection is appropriate for development of 
multi-purpose products that perform over a relatively large range of market weights 
or in cases where there is a secondary breeding objective (Emmerson, 2003). 
Selection environments range from a simulated commercial environment to an 
optimal environment that allows full expression of genetic potential for growth. 
Mass selection is common, although many industries are currently utilizing more 
advanced statistical methods for breeding value estimation, including family 
selection, single and multi-trait indices and best linear unbiased prediction 
(Emmerson, 1997).  
 
1.4.2. Selection strategies for feed efficiency 
 
Improvement in feed efficiency is historically achieved mainly through improvement 
in growth rate. This indirect approach in improvement of feed efficiency is associated 
with negative traits such as increased feed intake and carcass fatness (Emmerson, 
1997). Direct selection for feed efficiency was started in the 1970s to select for 
components of feed efficiency that were lowly or negatively associated with growth 
rate (Emmerson, 1997). There is difference in industrial approaches to feed 
conversion selection. The most common approach involves individual testing of male 
candidates that have been pre-selected for body weight and other physical traits 
such as conformation in individual cages. Feed conversion is evaluated in a relatively 
short period in relation to the life span of the bird, which lasts between 1 to 3 week 
period starting between 3 and 8 weeks of age. The data generated is measured in a 
cumulative form giving a total feed intake and weight gain over the test period. Feed 
conversion results are generally corrected for body size using different statistical 
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procedures or standardized based on energy requirements for maintenance. Males 
that are highly feed efficient are selected through mass selection, sib selection, or 
index and in a few cases, females are selected based on the performance of their 
male sibs (Emmerson, 1997). 
 
1.5. Challenges in the broiler industry 
 
In broilers, combined selection for growth rate, feed efficiency, body composition, 
and livability delivers 2-3% improvement per year in the efficiency of meat 
production (McKay, 2009). Traits such as disease resistance, robustness, and absence 
of metabolic defects have also contributed to this improvement (McKay, 2009). 
However, one of the challenges in modern broiler breeding programs is the high 
negative genetic correlation of economically important production and feed 
efficiency traits with health related traits and welfare (Dawkins and Layton, 2012; 
Knowles et al., 2008 ; Renema et al., 2007) as well as reproductive traits (Schmidt et 
al., 1998; Schmidt et al., 1994). Studies have shown that selection for growth rate 
results in decreased heart and lung size relative to the rest of the body (Druyan et 
al., 2009; Ducuypere et al., 2000) and skeletal abnormalities that influence the gait 
of broilers (Julian, 2005; Corr et al., 2003; Bradshaw et al., 2002). Moreover, chickens 
that are highly feed efficient have low oxygen consumption and lower metabolic 
rate, which makes them susceptible to ascites and heart failure (Julian, 2005; 
Decuypere et al., 2000) which also contributes to decreased welfare, increased 
mortality and disease in modern broilers (Havenstein et al., 2003a; Havenstein et al., 
2003b). Hence, genetic selection for growth rate and feed efficiency in broiler 
chickens has unintended consequences that compromise the health and welfare of 
broiler chickens, which in turn limits further progress in growth rate and feed 
efficiency. In the future more complications may arise which urges further selective 
breeding to give due consideration for alleviating correlated side effects in addition 
to improving production and production efficiency by extending or modifying 
selection goals (Decuypere et al., 2003). 
Another challenge in broiler breeding programs is genotype by environment 
interaction (G × E). Genes that are expressed in one environment may not be 
expressed or may be expressed differently in another environment (Dawkins and 
Layton, 2012). Significant G × E interactions may be caused not only by specifically 
differentiated genotypes, such as breeds or lines, but also by single major gene 
effects (Mathur, 2003). There is evidence of significant G × E interactions in broilers, 
especially with respect to environmental conditions such as heat stress and nutrition. 
One component of G × E interaction in broilers is that breeders (parents) are tested 
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in controlled environment referred to as bio-secure environment while their progeny 
are expected to perform in a less controlled commercial farms. For example, until 
recently the parent and grandparent broiler breeders have been selected in disease 
free environments, which is different from the commercial farms (de Jong and 
Guémené, 2011). Different studies have compared broilers raised in different 
environments and reported a significant genotype by environment interaction 
(Kapell et al., 2012; N’Dri et al., 2007; Pakdel et al., 2005; Mathur et al., 2003). For 
example, N’Dri et al. (2007) noted that growth traits show G × E interactions between 
selection and production environments, which may suggest that estimation of 
breeding values of selection candidates, should include data from production 
environments. On the other hand, commercial environments may avoid disease but 
allow evaluation of response to stocking density, climate, social stress and other 
physiological stresses (Emmerson, 1997) which might not be the case in bio-secured 
environments. 
Commercial broiler production is growing worldwide while broiler breeding is 
increasingly becoming centralized. Genetic products developed in limited range of 
environments are expected to meet the requirements of diverse markets, 
environments, and husbandry practices worldwide (Emmerson, 1997). Prior 
estimates of heritability and trait correlations, based on a narrow range of genotypes 
kept in a restricted range of environments, may be highly quantitative but also may 
lead to pessimistic views of the likely success of such breeding programs (Dawkins 
and Layton, 2012). Even though, there are many industry examples of G × E 
interactions under field conditions, considerable emphasis is not given to develop 
genetic solutions to these environment and husbandry induced production problems 
(Emmerson, 1997). There is a need to estimate the magnitude of the interactions to 
evaluate their biological significance and role in selection programs (Mathur, 2003). 
Statistically significant interactions may or may not be biologically relevant, e.g. if 
they do not affect the ranking order of specific breeds or lines from one environment 
to the other. However, they can be relevant if superior individuals such as sires in 
one environment cannot maintain superiority in a different environment (Mathur, 
2003). The phenomenon of G × E interactions requires additional effort in the choice 
of breeding stocks, which are adaptable to a wide range of environment (Mathur, 
2003). Appropriate use of this phenomenon can be useful for production of 
genotypes that are well adapted and genetically superior for the given 
environmental conditions (Mathur, 2003). 
In addition to the above-mentioned challenges, sustainable poultry production is 
increasingly becoming an issue. The shift towards long-term sustainability of poultry 
production based on being economically profitable, ecologically friendly and socially 
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acceptable has received much attention recently (Soisontes, 2017). In developed 
countries, consumers are increasingly concerned about sustainable food, particularly 
food safety, animal welfare and environmental issues (Windhorst, 2015b) where as 
in low to middle income countries poultry production is an important source of 
income and a top priority for feeding a growing human population in the future 
(Soisontes, 2015a). Priotization of sustainable issues are different across regions; 
differences in agro-ecological and socio-economic circumstances as well as public 
policies in various regions have an impact on the sustainability of poultry production, 
especially between high income and low to middle-income countries (Soisontes, 
2017). Overall, the issue of sustainable poultry production is expected to increasingly 
become a challenge to the broiler industry in the foreseeable future.  
 
1.6. Genetic variation in body weight and feed efficiency 
traits 
 
Despite the considerable historical improvement that has been observed in growth 
rate and feed efficiency, there exists considerable variation in growth rate and feed 
efficiency within and between commercial broiler strains (Emmerson, 1997). 
Different studies have reported heritability estimates for body weight in broiler 
chickens at different ages to be in the range from 0.20-0.64 (Mebratie et al., 2017; 
Begli et al., 2016; Adeyinka et al., 2006; Prado-Gonzalez et al., 2003; Mignon-
Grasteau et al., 1999; Le Bihan-Duval et al., 1998). The variability of the estimates is 
due to a number of reasons including genetic groups (lines, strains), sex, age, diet, 
rearing environment, and estimation methods. The reported moderate to high 
heritability estimates suggest that genetic selection for body weight will result 
considerable response, which is consistent with the success of selection in improving 
the trait in the broiler breeding industry. 
Body weight in broiler chickens is not only influenced by direct animal genetic effects 
but also by genetic and non-genetic maternal effects (Liu et al., 1993). Different 
authors have reported estimates of maternal genetic and maternal environmental 
effects on body weight in broilers and it seems that maternal genetic effects as well 
as genetic correlations between direct and maternal genetic effects are difficult to 
estimate accurately. Koerhuis and Thompson (1997) reported low maternal 
heritability (0.02-0.13) with negative genetic correlation (-0.11 to -0.92) between 
direct and maternal genetic effects while Mignon-Grasteau (1999) reported a 
relatively higher (0.08-0.24) maternal genetic effect in broilers. Furthermore, 
reported genetic correlation estimates between direct and maternal genetic effects 
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are often negative (Larivière et al., 2009; Prado-Gonzalez et al., 2003; Cheverud, 
2003; Koerhuis and Thompson, 1997; Meyer, 1997) mainly due to ignoring 
environmental covariance between dam and offspring records in the statistical 
analyses (Koerhuis and Thompson, 1997) and also not fitting more detailed fixed 
effects in the statistical model (Meyer, 1997). Thus, accounting for the direct and 
maternal environmental covariance and fitting detailed fixed effects in statistical 
models is suggested to give better estimates of the direct and maternal genetic 
correlation (Bijma, 2007). In addition, different authors have reported that maternal 
environmental effects account only small proportion of the total phenotypic 
variance (Begli et al., 2016; Aslam et al., 2011; Koerhuis and Thompson, 1997; Towne 
et al., 1997). 
Residual feed intake (RFI) which is defined as the difference between actual feed 
intake and expected feed intake based on production and maintenance 
requirements and feed conversion ratio (FCR) which is defined as the ratio of feed 
intake to body weight gain are the two popular measures of feed efficiency in 
poultry. Different authors have reported genetic variability of RFI and FCR in poultry 
(Willems et al. 2013). The heritability estimate of RFI is reported to be in the range 
from 0.14 - 0.45 (Begli et al., 2016; Verdal et al., 2011; Aggrey et al., 2014; Aggrey et 
al., 2010; Gaya et al., 2006; Melo et al., 2006; N’Dri et al., 2006; Pakdel et al., 2005). 
On the other hand, the heritability estimate of FCR is reported to be in the range 
from 0.10 to 0.49 (Aggrey et al., 2014; Howie et al., 2011; Verdal et al., 2011; Aggrey 
et al., 2010; N’Dri et al., 2006; Gaya et al., 2006; Mignon-Grasteau et al., 2004) 
suggesting that considerable genetic gain can be achieved by selecting for feed 
efficiency using these traits. Indeed significant improvements in feed efficiency have 
been recorded through direct selection (Flock, 1998). 
Population genetics theory states that genetic variation diminishes as a result of 
long-term genetic selection (Emmerson, 1997). However, long-term selection 
experiments do not provide strong evidence that selection limits are reached and 
they suggest limits are only temporary when they do occur (Marks, 1991). To this 
end, commercial breeding companies utilize relatively large populations and have 
additional tools available to recapture variation, such as outcrossing and 
development of synthetic lines (Emmerson, 1997). 
 
1.7. Non-genetic factors that contribute to variation in body 
weight and feed efficiency traits 
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The astonishing genetic improvement in broilers for growth rate and feed efficiency 
has been discussed above. As shown in Havestein et al. (2003a; 2003b; 1994a; 
1994b) 85-90% of the improvement in body weight and feed efficiency in today’s 
broilers is due to genetics and the remaining 10-15% is due to differences in nutrition 
and management practices (Havestein et al., 1994a; Havestein et al., 1994b). 
Furthermore, the expression of genetic differences in growth rate and feed efficiency 
of broiler chickens can be manipulated by non-genetic factors such as nutrition, 
stocking density, heat stress, lighting and other husbandry practices. Although it is 
hard to strictly attribute a particular factor to genetic, non-genetic (environmental) 
factor and their interaction, the main non- genetic factors that influence growth rate 
and feed efficiency in broiler chickens are discussed below.  
1.7.1. Nutrition: dietary nutrient and energy levels, feed forms, pellet quality and 
other components of nutrition influence growth rate and feed efficiency in broiler 
chickens. Broilers that fed high protein and energy diets show faster growth rate 
than their counterparts that fed diets with less protein and energy. The genotype of 
broilers may influence their nutrient requirements. However under normal 
conditions broilers should take 22%, 20%, and 18% of crude protein in the starter, 
grower, and finisher periods, respectively, and 3200 kcal ME kg diet (NRC, 1994). 
Studies have shown that broilers that fed less protein diet than the average 
requirement show reduced growth rate and feed efficiency. Plavnik and Hurwitz 
(1990) reported that broilers fed a 9.4% crude protein diet ad libitum from 8 to 14 
days have shown 57% and 41% reduction in feed intake and weight gain, respectively 
compared to broilers that fed the recommended requirement. Havenstein et al. 
(2003b) compared feed conversion ratio (FCR) of a random bred ACRBC line fed a 
1957 diet and a 2001 diet. The ACRBC male at 56 days had a FCR of 2.23 with the 
2001 diet and FCR of 2.37 with the 1957 diet. Diets from 2001 had more energy, 
protein, lysine, methionine and total sulfur amino acids. On the other hand, 2001 
diets were crumbled and pelleted while 1957 diets were mash.  
Feed forms such as pellet, mash and crumble also influence broiler growth and 
development (Jones et al., 1995; Reece et al., 1986). Broilers that fed crumble pellet 
diets have shown improved feed intake, weight gain and feed conversion ratio 
compared to their counterparts that fed mash (Jones et al., 1995; Hamilton and 
Proudfoot, 1995; Calet, 1965). The improved feed intake, weight gain and feed 
efficiency of broilers that fed pelleted diets may be due to greater digestibility of 
carbohydrates together with increased daily nutrient intake (Hamilton and 
Proudfoot, 1995), better nutrient availability (Nir et al., 1995), and/ or less feed 
wastage (Savory, 1974; Calet, 1965).  
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1.7.2. Stocking density: Stocking density has an impact on growth rate and feed 
efficiency of broiler chickens. Current recommendations for stocking density in 
broilers differ widely by country and organization (Bessie, 2006). However, there is 
a documented reduction in feed intake and growth rate when stocking density 
exceeds about 30kg/m2 for broilers reared on deep litter conditions (Bessie, 2006). 
It was reported that the negative effect of stocking density reduced when broilers 
were kept in cages or on perforated floors combined with under floor ventilation 
(Bessie, 2006). Moreover, the negative effect of stocking density on growth rate is 
reported to decrease by increasing ventilation rates (Grashorn and Kutritz, 1991) 
which leads to the assumption that the main factor for the decrease in growth rate 
might be related to problems of dissipating the metabolic heat (Bessie, 2006). Hence, 
the influence of stocking density on growth rate of broilers is mainly related to heat 
stress than physical restriction of the broilers space for movement (Bessie, 2006). 
However, there is no consistent trend of stocking density on feed efficiency (Bessie, 
2006). 
1.7.3. Heat stress: Heat stress causes reduced growth rate and increased mortality 
of broilers, which in turn results significant economic loss for the industry particularly 
in tropical countries (Geraert et al., 1996a). Heat exposure weakens the performance 
of broilers, especially during growing and finishing periods, as their ability to 
dissipate heat decreases according to body growth (Rosa et al., 2007). The main 
consequence of heat exposure is reduction in feed intake (Geraert et al., 1996a). This 
decreased feed intake leads to decreased growth, which is a physiological response 
in order to decrease metabolic heat production and maintain body homeostasis (Koh 
& Macleod, 1999). However, the reduction in feed intake is often less than the 
reduction in growth, resulting in higher feed conversion ratio (Howlider & Rose, 
1987). 
The negative effect of heat stress on broiler performance is higher in fast growing 
lines than slow growing lines. Metabolic heat production is highly associated with 
protein accretion (Macleod, 1997). Hence, under high environmental temperature, 
maintaining body homeostasis may be more difficult for fast growing broilers than 
their slow growing counterparts. Thus, the performance of slow-growing broilers 
under heat stress is not as impaired as that of the fast growing ones (Leenstra & 
Cahaner, 1992). 
1.7.4. Lighting: In most broiler production industries, broiler chickens are raised 
under 23 hour light per day, as continuous light regime allow the birds to feed 
continuously throughout the day and in turn increases growth rate. Different studies 
have shown that growth rate and feed efficiency of broilers were better under 
continuous light than under a natural day-night regime (Morris, 1967; Schutze, 
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1960). However, recent studies reported that reducing the lighting hours or 
developing intermittent lighting schedule improves feed utilization by lowering 
cumulative feed intake while maintaining the same market weight at a given age 
(Apeldoorn et al., 1999; Buys et al., 1998; Buyes et al., 1996). For example, Buyes et 
al. (1994) studied the effect of intermittent and continuous lighting on the 
performance of female broilers and reported lower cumulative feed intake and 
considerable improvement in feed efficiency of the broilers under an intermittent 
program (1 hour light: 3 hours dark from 8 to 49 days) compared to those under a 
continuous lighting schedule. Buyes et al. (1996) also reported improved feed 
efficiency and compensatory growth in male broiler chickens at 41 days with a light 
schedule of 1 hour light: 3 hours darkness from day 7 and repeating this light 
schedule six times a day. 
Other than the above mentioned non-genetic factors, management practices such 
as vaccination against disease influences the immune responsiveness of broilers to 
pathogens and in turn influence growth rate (Emara et al., 2002) and feed efficiency. 
Moreover, management practices related to housing conditions (ambient 
temperature, humidity, ventilation, litter quality, flooring system) influence growth 
rate and feed efficiency of broiler chickens which might be associated with the 
modification of the energy and amino acid requirements of birds, and could 
potentially affect feed intake, growth  and feed efficiency (Tallentire et al., 2016). 
 
1.8. Genome wide association study of body weight and feed 
efficiency traits 
 
Genome wide association study (GWAS) is an ideal technique to discover the major 
genes for complex traits and is a novel approach to study the genetic mechanism of 
complex traits (Zhang et al., 2012). GWAS has revealed many important findings 
associated with production traits, disease resistance, and morphological 
characteristics in chickens (Zhang et al., 2012). Furthermore, GWAS has gained 
popularity in mapping Quantitative trait locus (QTL) to economically important traits 
like body weight (BW) and feed efficiency (FE) in chickens. A number of SNPs and 
QTLs associated with BW and FE traits are reported in the chicken QTL database 
(http://www.animalgenome.org/cgi-bin/QTLdb) and the reported QTLs are 
distributed throughout the genome. The chicken QTLdb allows for easy search and 
comparison of QTL results from different studies and facilitates a narrowing of 
possible chromosomal regions from overlapping QTL results of different studies, 
which will speed up positional searches for underlying genes (Hu et al., 2005).  

http://www.animalgenome.org/cgi-bin/QTLdb
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Although a number of  GWA studies reported SNPs and QTL regions associated with 
body weight to be distributed randomly across the genome, various studies have 
found chromosome 1 (Liu et al., 2013; Sheng et al., 2013; Xie et al., 2012; Gu et al., 
2011; Wahlberg et al., 2009; Gao et al., 2006; Pinto et al., 2006; Carlborg et al., 2003; 
Van Kaam et al., 1998) or/and chromosome 4 (Wang et al., 2016; Gu et al., 2011; 
Wahlberg et al., 2009; Tsudzuki et al., 2007; Rowe et al., 2006; Schreiweis et al., 2005; 
Sasaki et al., 2004; Sewalem et al., 2002; Tuiskula-Haavisto et al., 2002) to be strongly 
associated with body weight at different ages in various breeds of chickens.  
With ever advancing technology and better knowledge of genetic mechanisms using 
GWAS, we are a step closer to the understanding of complex traits. However, along 
with the success stories, there are differences in the identified QTL regions and 
candidate genes among GWAS reports for the same trait. This might mainly be 
attributed to aspects such as population size, density of the markers (SNPs), not 
properly accounting for population structure, as well as choice of statistical models 
(Sharma et al., 2015; Zhang et al., 2012). If statistical models are carefully chosen in 
a way that can account for population stratification, family structure and cryptic 
relatedness, they can help to minimize the chances of spurious associations and type 
I error (Sharma et al., 2015). 
 
1.9. Variance components 
 
Estimation of variance components is a method often used in population genetics 
and applied in animal breeding (Mašata and Rasch, 2006) and quantitative genetics 
(Robinson, 1987). In animal breeding knowledge of variance components of traits of 
interest is the primary pre-requisite to establish a selection program. Variance 
components enable animal breeders to better understand the genetic architecture 
of a trait of interest. Moreover, variance components are essential for prediction of 
breeding values and expected response to selection in breeding programs (Robinson, 
1987). Variance components of a population are useful to understand the nature of 
the population through genetic and environmental components of a phenotypic 
variance (Falconer and Mackay, 1996).  
A general phenotypic model contains the contributions from the genotype, the 
environment and their interactions (Falconer and Mackay, 1996). The environmental 
factor and the genotype by environmental interaction can be combined as non-
genetic sources of variation so that the phenotypic model would be a simpler model 
that contains the genetic and non genetic sources of variation. The genetic effects 
can be partitioned in to additive, dominance, and epistatic effects (Falconer and 
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Mackay, 1996). The additive genetic variance is an important genetic parameter in 
animal breeding since most quantitative traits are mainly influenced by additive 
genetic effects and it is the main contributor to response to selection for a trait of 
interest. The environmental effects can also be partitioned in to common 
environmental effects, a general environmental effect and a specific environmental 
effect, which is unique to each individual (Falconer and Mackay, 1996). The possible 
sources of the common environmental effects could also be partitioned in to shared 
environmental effects, temporary nutritional or climatic changes and maternal 
effects, which are related to pre-natal and post-natal nutrition. Except the pre-natal 
maternal effect, the other components of the environmental variance can often be 
partly controlled by suitable experimental design (Falconer and Mackay, 1996).  
Since genotypes of a population must be manipulated through their corresponding 
phenotypes, it is important to calculate the change in the additive component of a 
genotype per unit change in phenotype, which is defined as heritability in the narrow 
sense or heritability (Lush, 1947). In animal breeding, heritability is the central 
parameter of a population that explains the proportion of variation among 
individuals in a population, which is due to variation in the additive genetic values 
(Falconer and Mackay, 1996). Heritability is formally defined as a ratio of variances, 
specifically as the proportion of total variance in a population for a particular 
measurement, taken at a particular time or age that is attributable to variation in 
additive genetic genetic values (Visscher et al., 2008). Different heritability estimates 
may be found for the same trait in different populations or in the same population 
at different times because the additive genetic variance may be reduced due to 
selection or/and the phenotypic variance may be altered due to environmental 
change (Falconer and Mackay, 1996). Moreover, considerable changes may have 
occurred in a population due to inclusion of external genetic material other than 
errors in estimating genetic and non-genetic parameters. Therefore, variance 
components should be estimated in every population regularly and updated 
overtime using sufficient amount of data. If sufficient amount of data is not available, 
the information in literature for the same population is in many cases even better 
than estimations based on small data set because in such situations heritabilities 
cannot be estimated with great precision and may result large standard errors. 
Phenotypic values of different traits may be correlated due to genetic or/and 
environmental factors. Similar to the phenotypic variance, the phenotypic 
covariance can be partitioned in to genetic and non-genetic (environmental) 
correlations (Lynch and Walsh, 1998). Genetic correlation is defined as the 
correlation between the additive genetic values of traits. Genetic correlation 
between traits mainly arise from pleiotropy; property of a gene whereby it influences 
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two or more traits (Falconer and Mackay, 1996. In animal breeding, knowledge of 
genetic correlation between traits of interest is important because it may enable 
improvement of traits through indirect selection. Moreover, knowledge of genetic 
correlation helps to predict correlated response to genetic selection, determine the 
extent of genotype by environment interaction, understand evolutionary processes 
of traits as well as to develop selection indices for multiple trait selection. The 
environmental correlation may arise from shared cages/housing and common 
maternal effects (Falconer and Mackay, 1996). 
 
This thesis 
 
In the above sections, the success of the broiler industry in terms of improving 
growth rate (body weight) and feed efficiency has been discussed. However, further 
improvement of the traits is needed to accommodate the rising feed cost, growing 
human population, the increasing demand for cheap source of animal protein and 
the global issue of sustainable food production with a minimal environmental 
footprint. Thus, further understanding of the genetic background of body weight 
(BW) and feed efficiency (FE) traits of today’s broilers is essential. 
 
The overall objective of this thesis is therefore to study the genetic background of 
BW and FE traits in male and female broiler chickens at different ages using different 
statistical models and methods. Hence, genetic parameters of BW and FE traits were 
estimated using commercial broiler chicken population. Sex by genotype interaction, 
age by genotype interaction, the effect of selection on genetic parameters of BW, 
phenotypic and genetic definitions of residual feed intake and direct and correlated 
superiority of a group selected on phenotypic and genetic residual feed intake were 
studied. Furthermore, GWAS was conducted to study association between BW and 
FE traits with SNP markers. The knowledge gained in this thesis will contribute to the 
understanding of genetic background of the most economically important traits in 
the broiler industry. Moreover, the methods used and the results found in this thesis 
can be extended to other poultry species with little modification since chicken is the 
prime model for all avian species. 
In chapter 2, multivariate restricted maximum likelihood (REML) analysis was 
conducted for BW in male and female broiler chickens measured at three different 
ages and sex by genotype interaction as well as age by genotype interaction were 
investigated for the broiler population under study. In chapter 3, the same data set 
as in chapter 2 was used to study the development in genetic variance for BW after 
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several generations of selection using random regression model (RRM). Moreover, 
the multivariate REML results obtained in chapter 2 were confirmed using Bayesian 
RRM. In chapter 4, BW, feed intake and body weight gain in broiler chickens were 
simultaneously analyzed from a multivariate Bayesian analysis and phenotypic and 
genetic residual feed intake (RFI) were derived. Moreover, genetic parameters were 
estimated for BW and FE traits along with the two derived RFI traits. Finally, direct 
and correlated superiority of a selected group on phenotypic and genetic RFI were 
investigated. In chapter 5, GWAS was conducted to identify quantitative trait loci 
and candidate genes associated with BW and FE traits. In addition, GWAS using 
general linear model and mixed linear model approach were compared. In chapter 
6, the main findings of the four papers of this thesis are summarized and integrated 
and the different statistical models and methods used in the papers are discussed 
relative to other possible models and methods. Moreover, the available information 
on literature about unintended consequences of improved growth rate and feed 
efficiency in broiler chickens are highlighted. Finally, areas that should be exploited 
to enhance further improvement in BW and FE traits as well as to alleviate the 
unintended consequences of improved growth rate and feed efficiency are explored.   
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Abstract 
 
Data from 54 selection rounds (SRs) for growth rate in a commercial broiler chicken 
line were used for analysis to estimate genetic parameters for body weight (BW) in 
males and females at three different ages. BW was measured at three different ages 
in different animals (t-7, t-4 and t days) of both sexes. First BW was recorded at t 
days of age for 39 SRs, however, as selection continued the birds start to grow faster 
and attain desired body weight earlier, therefore, the weighing age was changed and 
BW was recorded at t-4 and t-7 days of age for 7 and 8 SRs, respectively. Multivariate 
animal model was used to estimate genetic parameters for BW in males and females 
with REML analysis using DMU software package. In males, heritability estimates of 
BW were found to be 0.37, 0.33 and 0.29 at t-7, t-4 and t days of age, respectively, 
while, in females, heritability estimates of BW at t-7, t-4 and t days of age were found 
to be 0.40, 0.38 and 0.38, respectively. The genetic correlations of BW between 
males and females at t-7, t-4 and t days of age were found to be 0.94, 0.89 and 0.89, 
respectively, which is significantly different from unity. Also, the genetic correlations 
of BW between ages were significantly different from unity. The heritability and 
genetic correlation estimates in this study suggest that BW in males and females 
should be considered as two different traits. Moreover, BW in the three ages should 
be considered as three different traits. 
 
Key words: Heritability; genetic variance; genetic correlation; body weight.  
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2.1 Introduction 
 
Breeding programs for broilers select for body weight (BW) as the most important 
part of the breeding goal to produce chickens that have high growth rate and high 
market body weight, while minimizing cost of production (Aslam et al., 2011). In this 
context, estimation of genetic parameters is a required condition in defining, guiding 
and evaluating the efficiency of a selection program used in generations that make 
up a particular line (Grosso et al., 2010) and is needed in genetic ranking of potential 
parents of new generations. 
Different authors have estimated genetic parameters for BW in poultry and found 
heritability estimates in the range from 0.20 to 0.77 (Aslam et al., 2011; Adeyinka et 
al., 2006; Chapuis et al., 1996; Buss, 1990). Furthermore, substantial variation in 
genetic parameter estimates of BW in males and females has been reported in 
poultry (Nestor et al., 2008; Chapuis et al., 1996). Other than the sex differences, 
genetic parameters of BW might vary with age (Aslam et al., 2011; Adeyinka et al., 
2006; Chapuis et al., 1996). In this regard, the significance of the differences in 
genetic parameters for BW in males and females across different ages in poultry 
should be quantified by computing standard errors for the estimated genetic 
parameters and corresponding decisions about the significance of the differences in 
estimates across sexes and ages should be properly addressed in genetic evaluation 
models to increase accuracy of the predicted breeding values and reduce bias.  
 
In this study, we have used multivariate analysis to estimate genetic parameters for 
BW in male and female broiler chickens measured at three different ages. The data 
used in this study is the same as the data used in chapter 3 (Mebratie et al., 2017). 
However, Mebratie et al. (2017) used bivariate random regression model mainly to 
study the development in genetic variance for BW over several generations of 
selection whereas in this study multivariate animal model was used to investigate 
whether BW in males and females as well as BW at the three different ages should 
be considered as same trait or separate traits. The results of this study were used as 
prior information in chapter 3 (Mebratie et al., 2017) and therefore were briefly 
mentioned in the materials and methods part of the paper. However, this paper gives 
details of the statistical model with the results of the multivariate animal model and 
provides clear insight to multi-trait estimation of BW in male and female broiler 
chickens measured at three different ages with the subsequent conclusions. Thus, 
this study aims at estimating genetic parameters for BW in male and female broiler 
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chicken population measured at three different ages using multivariate REML 
analysis. 
 
Table 2.1. Descriptive statistics of the data. 

a-b: Least square means with different superscript letters at the same age are significantly 
different from each other. Summary of the data is the same as Mebratie et al. (2017). 

2.2 Material and Methods 

2.2.1 Data 

Data from 54 selection rounds (SRs) for growth rate in a selection line from Cobb-
Vantress chicken breeding company was used for analysis. BW was measured in 
males and females at three different ages (t, t-4 and t-7 days). For the first 39 SRs 
BW was recorded at t days of age, however, as selection continued the birds reached 
desired BW earlier and the weighing age was changed to t-4 days for 7 SRs and then 
changed again to t-7 days for the last 8 SRs (Table 2.1). In total 646, 703 broiler 
chickens with BW records were used and pedigree information were available for 
649,483 broilers. The data summary is presented in Table 2.1 and it is the same as 
the data used in chapter 3 (Mebratie et al., 2017). 

2.2.2 Statistical model 

Selection round hatch (SRH), which is an interaction of selection round and hatch 
batch of the individual chicken, were included as fixed effect in the statistical model 
after testing significance of the effect using PROC GLM of SAS. Direct genetic effect 
of the animal (a), maternal permanent environmental effect of the dam (pe) and 
residual environmental effect (e) were included as random effects in the model. 

Age (days) Sex N Mean BW(kg) SD 
t Male 215066 2.50a 0.46 

 Female 226703 2.15b 0.48 

t-4 Male 41121 2.38a 0.20 

 Female 41882 2.10b 0.20 

t-7 Male 61118 2.05a 0.25 

 Female 60813 1.81b 0.25 
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Variance components were estimated with REML animal model using DMU software 
package (Madsen and Jensen, 2013). Multivariate analysis was used to estimate 
variance components by regarding BW at the three ages in males and females as 
different traits. This results a six trait analysis and the following model was used for 
each of the BW traits. 

yBWm(t) = XbBWm(t) + Z1aBWm(t) + Z2peBWm(t) + eBWm(t),     

yBWf(t) = XbBWf(t) + Z1aBWf(t) + Z2peBWf(t) + eBWf(t),         

yBWm(t−4) = XbBWm(t−4) + Z1aBWm(t−4) + Z2peBWm(t−4) + eBWm(t−4),   

yBWf(t−4) = XbBWf(t−4) + Z1aBWf(t−4) + Z2peBWf(t−4) + eBWf(t−4),   

yBWm(t−7) = XbBWm(t−7) + Z1aBWm(t−7) + Z2peBWm(t−7) + eBWm(t−7),  

yBWf(t−7) = XbBWf(t−7) + Z1aBWf(t−7) + Z2peBWf(t−7) + eBWf(t−7)   

Where 𝑦𝑦BWm(t), 𝑦𝑦BWf(t), yBWm(t−4), yBWf(t−4), yBWm(t−7) and 𝑦𝑦BWf(t−7) are 
phenotypic vectors of records for BW in males at t days of age, BW in females at t 
days of age, BW in males at t-4 days of age, BW in females at t-4 days of age, BW in 
males at t-7 days of age and BW in females at t-7 days of age, respectively. Vectors 
bBWm(t), bBWf(t), bBWm(t−4), bBWf(t−4), bBWm(t−7) and bBWf(t−7) contain “fixed” 
effects of SRH for traits BWm(t), BWf(t), BWm(t−4), BWf(t−4), BWm(t−7) and BWf(t−7), 
respectively. aBWm(t), aBWf(t), aBWm(t−4), aBWf(t−4), aBWm(t−7) and aBWf(t−7) are 
vectors of animal additive genetic effects for 
traits BWm(t),BWf(t),BWm(t−4),BWf(t−4),BWm(t−7) and BWf(t−7), respectively. 
Vectors, peBWm(t),peBWf(t), peBWm(t−4),peBWf(t−4), peBWm(t−7) and peBWf(t−7) are 
maternal permanent environmental effects for traits BWm(t) , BWf(t), BWm(t−4), 
BWf(t−4), BWm(t−7) and BWf(t−7), respectively. X, Z1 and Z2 are the corresponding 
design matrices for the fixed effect SRH, the random effects additive genetic effect 
of the animal and permanent environmental effect of the dam for the 6 traits, 
respectively. Random effects a, pe and e are assumed to be normally distributed and 
independent to each other with the following assumptions: 𝑎𝑎~𝑁𝑁(0,𝐴𝐴⊗𝐺𝐺), 
𝑝𝑝𝑝𝑝~𝑁𝑁(0, I⊗K), 𝑝𝑝~𝑁𝑁(0, 𝐼𝐼 ⊗ 𝑅𝑅), where A is the numerator relationship matrix, G is 
the co (variance) matrix for direct animal additive genetic effects of dimension 6, I is 
identity matrix, K is the co (variance) matrix for maternal permanent environmental 
effects of dimension 6, R is residual co (variance) matrices of dimension 6 which was 



Genetic parameters for body weight in broiler chickens 
 

 

48 
 

assumed to be heterogeneous with different variance for each of the six BW traits. 
Residual covariance between the six traits were assumed to be zero since BW was 
measured at different birds in males and females at all the three ages. Symbol ⊗ 
denotes Kronecker (direct) product. 
 
2.3 Results 

The heritability estimates of BW in females (0.40, 0.38 and 0.38) at t-7, t-4 and t days, 
respectively, were found to be higher than that of males (0.37, 0.33, and 0.29) at the 
same age (Table 2.2). The genetic correlations of BW between males and females at 
the same age were found to be 0.94, 0.89 and 0.89 at t-7, t-4 and t days, respectively, 
which is different from unity and higher at earlier age than later ages (Table 2.2). 
Genetic correlations of BW within males at different age combinations (t-7, t-4), (t-
4, t) and (t, t-7) days were found to be 0.97, 0.90 and 0.86, respectively (Table 2.3), 
while the genetic correlation of BW within females were found to be 0.95, 0.87 and 
0.81 at (t-7, t-4), (t-4, t) and (t, t-7) days, respectively (Table 2.3). This shows that the 
genetic correlation of BW between the three ages is different from unity and 
decreased as the distance between BW measurements (ages) increased.
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Table 2.2. Genetic parameters of body weight in males and females at the three ages. 

* Genetic correlation of body weight between males and females at t-7 days. 

** Genetic correlation of body weight between males and females at t-4 days. 

***Genetic correlation of body weight between males and females at t days.

Age (days)  Sex h2 SE Variance components (Kg2) Genetic Correlation SE 

    Genetic Residual Permanent 
environment 

Phenotypic   

t-7 Males 0.37 0.02 0.0129 0.0206 0.0011 0.0345  *0.94 0.01 

 Females 0.40 0.02 0.0081 0.0114 0.0006 0.0202   

t-4 Males 0.33 0.02 0.0136 0.0265 0.0010 0.0412 **0.89 0.01 

 Females 0.38 0.02 0.0086 0.0137 0.0005 0.0228   

t Males 0.29 0.01 0.0139 0.0328 0.0020 0.0488 ***0.89 0.01 

 Females 0.38 0.01 0.0111 0.0170 0.0009 0.0289   
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Table 2.3. Genetic correlation of body weight with standard errors within males (upper 
diagonal) and within females (lower diagonal) at different ages. 
 

 
 
2.4 Discussion 
 
2.4.1 Genetic parameters of BW in male and female broilers 

Body weight in males is significantly different from that of females; males having 
higher mean body weight than females in all the three ages (Table 2.1). This is in line 
with, Singh (1989) who reported that male chickens have 15-20% higher BW than 
females at the same stage of growth. Higher heritability estimates of BW were 
observed in females than males in all the three ages (Table 2.2). This is in agreement 
with Chapuis et al. (1996) who reported higher heritability estimates in females than 
males in turkey birds. The genetic variance estimates of males are higher than that 
of females at all the three ages. However, females have higher heritability estimates 
than males in all the three ages due to the observed higher residual variance in males 
than in females. The maternal permanent environmental variance estimates in this 
study explain a very small proportion of the total phenotypic variance in both sexes 
(Table 2.2). This is in line with Aslam et al. (2011) who reported that the proportion 
of variance explained by the maternal permanent environment in turkeys was high 
at hatch and its effect decreased with age and becomes negligible after 60 days of 
age.  
In the present study, estimated genetic correlations of BW between males and 
females at the same age were significantly lower than unity. The effect was more 
pronounced at later ages of t or t-4 days than t-7 days of age (Table 2.2). Chapuis et 
al. (1996) also reported a genetic correlation less than one between BW in male and 
female turkeys. This might be due to different hormonal regulations between males 
and females, which is sex by genotype interaction; genes interacting differently in 
male and female physiological environments as explained by Towne et al. (1997) and 
the difference in hormonal regulations might even be more distinct with age. In 
agreement with this, Mignon-Grasteau et al. (1998) reported that male and female 

Age (days) t-7 t-4  t 

t-7  0.97(0.01) 0.86 (0.05) 

t-4 0.95 (0.02)  0.90 (0.01) 

t 0.81 (0.05) 0.87 (0.03)  
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chickens might have different physiological age at a given age. The observed 
decrease in genetic correlation of BW between males and females with age indicates 
that the hormonal differences become more significant as the birds age towards 
sexual maturity, as sexual hormones might probably have significant role for the 
genes controlling BW in the two sexes. Using random regression model, Mebratie et 
al. (2017) have also reported genetic correlation of BW between males and females 
which is significantly different from unity for the same broiler line. The significantly 
different heritability estimates of BW in males and females, and the significantly 
lower genetic correlations than unity between BW in males and females at the same 
age suggest that the genetic background of BW in males and females in this broiler 
chicken population might be partly different and genetic evaluation models should 
take this sex differences in to account to increase accuracy of selection. 
 
2.4.2 Genetic parameters of BW at the three different ages 

The heritability estimates of body weight at t-7 days (0.37, 0.40), t-4 days (0.33, 0.38) 
and, t days (0.29, 0.38) in males and females, respectively were found to be 
moderate (Table 2.2). The estimates are in agreement with different authors who 
reported heritability estimates of BW in males and females at different ages in the 
range from 0.20 - 0.48 in different poultry species (Mebratie et al., 2017; Aslam et 
al., 2011; Adeyinka et al., 2006). The heritability estimates in this study decreased 
with age. In line with this study, Adeyinka et al. (2006) observed a decreasing 
heritability with age in broiler chickens. In the current study, both genetic and 
residual variance increased with age, however, the residual variance increased in a 
relatively larger proportion than the genetic variance, which explains the decrease 
in heritability estimates with age.  
The genetic correlation of BW between the three ages decreased as the distance 
between the ages increased; genetic correlations were higher between 
measurements taken closer in age than measurements that were taken far apart. 
Aslam et al. (2011) also reported a decrease in genetic correlation between BW at 
different ages as the distance between recording ages increased in turkeys. This 
suggests that there might be physiological changes of birds with age, which might be 
related to genes that “turn on” and “turn off” as an animal ages, resulting in changes 
in physiology and performance as stated by Schaeffer (2011). Moreover, the genetic 
correlations of BW at the three different ages suggest that BW in the three ages 
might be partially controlled by different genes. 
The significantly different heritability estimates of BW in the three ages, and the 
significantly lower genetic correlations than unity between BW in the three ages 
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within sexes suggest that the genetic background of BW in the three ages might be 
different in this broiler line and genetic evaluation models should take this age 
differences in to account to increase accuracy of the predicted breeding values. In 
general, the significantly different heritability estimates of BW in males and females 
as well as genetic correlations of BW between males and females, which is 
significantly different from unity, suggest that BW in males and females should be 
considered as separate traits in the subsequent analysis. Similarly, the significantly 
different heritability estimates of BW in the three ages and genetic correlations of 
BW between ages, which are significantly different from unity, suggest that BW at 
the three different ages should be considered as separate traits in the subsequent 
analysis.  
The above conclusion led us to the bivariate random regression model in chapter 3 
(Mebratie et al., 2017). In the bivariate RRM model, males and females were treated 
as different traits and random regression coefficients (co-variables) were fitted to 
the random effects in the three ages (periods) to allow individual variation across 
the selection trajectory (54 selection rounds). By doing so, we have verified the 
results of the multivariate REML analysis in the current study with an additional 
objective of studying the development in genetic variance for BW over several 
generations of selection. 
 
2.5 Conclusions 
 
The present study showed that the heritability estimates of BW significantly varied 
with sex and the genetic correlations of BW between sexes significantly differed from 
unity. Therefore, BW in males and females should be treated as two different traits 
in genetic evaluation and optimization of broiler breeding programs. Furthermore, 
the heritability estimates of BW at t-7, t-4 and t days of age were significantly 
different and genetic correlations of BW between the three ages were significantly 
different from unity suggesting that BW in the three ages should be regarded as 
three different traits underlining the importance of recording body weight at the 
target slaughtering age. In general, the result of this study suggest that genetic 
evaluation models for body weight should take sex and age differences in to account 
to increase accuracy of selection rather than assuming a genetic correlation of unity 
between males and females as well as different recording ages. 
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Abstract 
 
Data from 54 selection rounds (SRs) for growth rate in a selection line from Cobb-
Vantress was used for analysis with the objective to investigate the extent of sex by 
genotype interaction for body weight (BW) in a commercial broiler chicken 
population, estimate genetic parameters of BW at three different ages, and study 
the development in genetic variance for BW over several generations of selection. 
BW was measured at three different ages (t, t-4 and t-7 days) in different birds of 
both sexes. For the first 39 SRs, BW was recorded at t days of age, however, as 
selection continued the birds reached desired BW earlier and the weighing age was 
changed to t-4 days for 7 SRs and then to t-7 days for the last 8 SRs. A bivariate 
random regression model regarding BW in each sex as different traits using 
segmented linear splines and heterogeneous residual variance was used to estimate 
genetic parameters of BW across the selection trajectory. The genetic variance and 
the heritability estimates of BW in males and females were found to be different at 
all the three ages. The genetic correlation between BW measured in males and 
females was less than unity and decreased further as the weighing age increased. 
This illustrated that BW in the two sexes should be considered as different but 
correlated traits and models for BW should account for a decreasing genetic 
correlation as the distance between weighing ages increased. An increased genetic 
variance of BW along the selection trajectory in the first period was observed and 
genetic correlations between BW measured in different SRs gradually decreased as 
the distance between SRs increased. Genetic correlations lower than unity between 
BW at early and late SRs in the first period indicated that the genetic background of 
BW gradually changed along the selection trajectory. This change probably 
contributes significantly to maintaining large levels of genetic variance in highly 
selected broiler populations. 
 
Key words: random regression; linear splines; heritability; genetic variance; genetic 
correlation.  
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3.1 Introduction 
 
In broilers body weight (BW) and carcass quality traits have been under intensive 
selection for more than half a century, and are considered the most important 
economic traits in broiler breeding programs (Nassar et al., 2012). Production traits 
in broilers are influenced not only by the genotype of the individual but also by 
maternal effects (Szwaczkowski, 2010). Considerable variation is found in the 
literature concerning estimates of heritabilities and genetic correlations for growth 
traits in broilers (Prado-González, 2003) due to differences in recording systems and 
age at recording. Nestor et al. (2008) regarded BW in male and female turkeys as 
different traits with a genetic correlation different from unity. This is the same as sex 
by genotype interaction and this interaction has been reported to be related to 
different hormonal regulations in males and females (Towne et al., 1997). Chapuis 
et al. (1996) reported higher genetic correlation for BW in turkey birds between 
males and females at early ages than later ages which is consistent with increased 
differentiation between the sexes as the birds get older. Therefore, models used for 
estimation of genetic parameters of BW in poultry need careful consideration of sex 
differences and different recording ages.  
Selection, generally, reduces the genetic variability of a trait due to change in gene 
frequencies in response to selection. The reduction in genetic variance is likely to be 
small during the first few generations because gene frequencies change slowly 
unless there are genes with large effects (Falconer and Mackay, 1996).  The outcome 
of selection over a long period is however unpredictable because the outcome 
depends on the properties of the individual genes contributing to the response and 
also due to new variation caused by mutation (Falconer and Mackay, 1996). 
Sørensen (1986) observed that the genetic variance for growth rate in broiler 
chickens were not significantly reduced after several generations of selection which 
was explained to be due to generation of new genetic variation as a result of 
mutuation and epistatic effects. 
Random regression models (RRMs) are reported to be more accurate than multiple 
trait models (MTM) in estimating genetic parameters especially when the data set is 
large. Meyer (2004) reported RRMs to be up to 9.5% more accurate than MTMs. 
Bohmanova et al. (2005) also reported the accuracy of RRMs over MTMs. According 
to their report MTMs and RRMs have similar accuracy when records occur at 
standard points (ages). However, MTMs lose accuracy while RRMs maintain accuracy 
when records occur at non-standard points (outside the pre-adjusted age intervals). 
The authors also reported an increased accuracy of RRMs when additional records 
are incorporated.  
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BW growth is a longitudinal process and random regression models (RRMs) are 
useful for the analysis of longitudinal data (Schaeffer, 2004). RRMs can also be used 
to study changes in genetic parameters over time (Schaeffer, 2004). The right way to 
model traits that are measured over a trajectory is to fit a set of random coefficients 
of time or weight for each animal to allow for individual variation in the course of 
the trajectory (Meyer, 1998). Cognizant of this facts, RRMs should also be a model 
of choice to study development in genetic variance (genetic parameters) of a trait 
over several generations of selection. RRMs using Legendre polynomials have been 
widely used following Kirkpatrick et al. (1990) and Meyer (2005). Legendre 
polynomials are able to model a variety of curves along a trajectory but they may 
have undesirable properties such as poor fit at the extremes of the trajectory and at 
points of the trajectory with few records (Misztal et al., 2000). However, poor fits in 
splines are more visible than with Legendre polynomials and they can be better 
controlled by changing the number and position of knots. Such models usually have 
good fit at the knots but may have poorer fit between the knots (Misztal, 2006). In 
addition RRMs with splines are reported to have better numerical properties than 
Legendre polynomials since each coefficient in splines affect only a portion of the 
trajectory and only co-variables associated with two adjacent knots are non-zero 
while in Legendre polynomials of order n all co-variables are generally non-zero 
(Robbins et al., 2005). Splines are also advantageous in offering greater flexibility 
than the functions typically used in RRMs and are often used for smoothing data 
(Jensen, 2001).  
Thus, the objectives of the present study were to (i) investigate the extent of sex by 
genotype interaction for BW in a commercial broiler chicken population (ii) estimate 
genetic parameters of BW at three different ages and (iii) study the development in 
genetic variance for BW over several generations of selection. 
 
3.2. Material and Methods 
 
3.2.1 Simulation study 
 
A small simulation study was performed to test if the complex random regression 
model we have used for the real body weight data can handle a continuous change 
in variance over time. Data on 30,000 birds were generated, so that each bird had 3 
observations recorded at different ages according to the following model. 

𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊 =µ + 𝒂𝒂𝒐𝒐𝒊𝒊 + 𝒂𝒂𝟏𝟏𝒊𝒊 (𝑳𝑳𝟏𝟏𝒊𝒊) + 𝒂𝒂𝟐𝟐𝒊𝒊 (𝑳𝑳𝟐𝟐𝒊𝒊) + 𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊 
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Where, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is the trait of interest for bird i recorded at time point j and age k. 𝑎𝑎0𝑖𝑖  is 
the intercept, 𝑎𝑎1𝑖𝑖 and 𝑎𝑎2𝑖𝑖  are breeding values of bird i for intercept, time effects and 
age effects, respectively. 𝐿𝐿1 and 𝐿𝐿2 are co (variables) for across bird time effects and 
within bird age effects, respectively, and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is the random residual. Co (variables) 

𝐿𝐿1 and 𝐿𝐿2  were generated as follows: 𝐿𝐿1𝑖𝑖=
𝐼𝐼𝐼𝐼𝑖𝑖 𝑛𝑛𝑎𝑎� , where 𝐼𝐼𝐼𝐼𝑖𝑖 is the individual bird 

and 𝑛𝑛𝑎𝑎 is the total number of birds. The ID of individual birds were ordered by time 
t and this means that time effects gradually change over from the first bird to the 

last bird. 𝐿𝐿2𝑖𝑖=𝑗𝑗𝑖𝑖 𝑛𝑛𝑖𝑖� , where 𝑗𝑗𝑖𝑖 is the kth record number (age) and 𝑛𝑛𝑖𝑖  is the total 

number of records (ages). I.e. these effects gradually change with age of the birds. 
The birds were assumed to be independent and breeding values were assumed to 
be trivariate normal, with a 3×3 identity matrix as co (variance) matrix. Normal 
distribution and unit variance were assumed for the residuals. After the generation 
of the data, co (variance) components were estimated using the same model as used 
for simulation. Estimation of variance components were carried out using DMU 
software package (Madsen and Jensen, 2010). The simulation was replicated 150 
times and the mean, standard deviation (SD) and standard error of the mean (SEM) 
of all co (variance) components estimated are reported. 
 
3.2.2 Data 
 
Data from 54 selection rounds (SRs) for growth rate in a selection line from Cobb 
broiler breeding company was used for analysis. The number of broilers with BW and 
pedigree data were 646,703 and 649,483, respectively, and the pedigree covers 
about 8 generations back from the youngest animals. BW was measured at three 
different ages (t, t-4 and t-7 days) in different animals of both sexes. For the first 39 
SRs BW was recorded at t days of age, however, as selection continued the birds 
reached desired BW earlier and the weighing age was changed to t-4 days for 7 SRs 
and then changed again to t-7 days for the last 8 SRs. Descriptive statistics of the 
data can be referred in chapter 2 , Table 2.1. 

3.2.3 Statistical model 
 
The results of the multivariate analysis in chapter 2 (Mebratie et al., 2018) showed 
different heritability estimates of BW in the two sexes and genetic correlations of 
BW between the two sexes to be different from unity. The results also showed that 
BW in the three weighing ages have different heritability estimates and genetic 
correlations of BW between the three different ages are different from unity with 
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decreased genetic correlation as the distance between the ages increased. 
Therefore, the initial model illustrated that BW in the two sexes as well as BW in the 
three different ages should not be considered as same trait in the subsequent 
analysis. 
Thus, a bivariate random regression model with piece-wise (segmented) linear 
splines which are not continuous across segments were used to estimate genetic 
parameters of BW along the trajectory of SRs using Gibbs sampling. Such a model 
can accommodate different parameters for each sex and different parameters for 
each age at measuring BW and finally can estimate gradual changes in genetic 
parameters over the selection trajectory. The bivariate RRM in scalar notation used 
for both males and females was: 

𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊=𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊 +� ∅𝒊𝒊(𝒊𝒊)𝒂𝒂𝒊𝒊𝒊𝒊
𝟒𝟒

𝒊𝒊=𝟏𝟏
+ � ∅𝒊𝒊(𝒊𝒊)

𝟒𝟒

𝒊𝒊=𝟏𝟏
𝒑𝒑𝒆𝒆𝒊𝒊𝒊𝒊 + 𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 

Where 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 is the BW of animal i hatched in selection round hatch batch j from dam 
l and recorded in SR, t. The selection round and hatch batch interaction (SRH) were 
considered fixed and the random part of the model was fitted using segmented 
linear spline functions which were not continuous over segments, with knots at SR 1 
and 39 for the first period where BW was measured at t days of age, and one knot 
with constant (linear spline) regression coefficient for all the 7 and 8 SRs in the 
second and third period, where BW were recorded at t-4 and t-7 days of age 
respectively. Thus, 𝒂𝒂𝒊𝒊𝒊𝒊 and 𝒑𝒑𝒆𝒆𝒊𝒊𝒊𝒊 represent the random regression coefficients for the 
splines describing the additive genetic effect of animal i and the maternal permanent 
environmental effect of dam l, respectively and 𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 represents the residual effect of 
animal i in SR, t. ∅𝒊𝒊 (𝒊𝒊) represents the value of the kth covariate at time t (SR). These 
covariates were computed as described by Misztal (2006). In the first period, the 

covariates were computed as:  (𝑡𝑡−1)
(39−1)

 and 1− (𝑡𝑡−1)
(39−1)

, where 1 and 39 are the first and 

last knots in the first period, respectively. In the second and third period, constant 
(1) intercept was used due to the small number of SRs in the two periods, which were 
not enough to estimate a clear pattern in change in variance along the selection 
trajectory. The same functions were used for the direct genetic effect of the animal 
and maternal permanent environmental effects. Therefore, a total of four knots and 
three segments were used in the bivariate RRM with two knots in the first period 
and a single knot in each segment of the second and third period. 

The random effects direct genetic effect, maternal permanent environment and 
residual variance were assumed to be normally distributed with the following 
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assumptions: a ~ N (0, A⊗𝐤𝐤𝟎𝟎𝟎𝟎), pe ~ N (0, I⊗𝐤𝐤𝟎𝟎𝟎𝟎𝟎𝟎), e ~ N (0, ∑ ⊕ 𝐈𝐈𝝈𝝈𝒆𝒆𝒊𝒊𝟐𝟐54
1 ). Where A 

is the numerator relationship matrix, 𝐤𝐤𝟎𝟎𝟎𝟎  is the co (variance) matrix for direct 
additive genetic effects of dimension eight (four variance components for each sex), 
and I is identity matrix, 𝐤𝐤𝟎𝟎𝟎𝟎𝟎𝟎 is the co (variance) matrix for maternal permanent 
environmental effect also of dimension eight, and 𝐈𝐈𝝈𝝈𝒆𝒆𝒊𝒊𝟐𝟐  is the residual variance for 
males and females separately in SR, t, i.e. residual variance were assumed to be 
heterogeneous with different variance for each sex in each SR. Thus, the model 
included 54 residual variances for each sex, one for each SR. Residual covariance 
between sexes were assumed to be zero. Symbol ⊗ denotes Kronecker (direct) 
product and symbol ⊕ denotes direct sum.  

A Bayesian procedure using Gibbs sampling was used to estimate (co) variances 
between random regression coefficients and estimates of residual variance for each 
SR-sex sub group. Flat priors were assumed for all “fixed” effects and variance 
components. Marginal posterior distributions were obtained for all parameters in 
the model using the RJMC module in the DMU software package (Madsen and 
Jensen, 2013). A total of 1,000,000 samples were obtained from the Gibbs sampler 
and out of these, the first 250,000 were discarded as burn in and from the remaining 
samples every 200th were saved for post Gibbs analysis. Means of the marginal 
posterior distributions of (co)variance components and breeding values were 
computed as averages of samples after the burn-in period. Convergence of the Gibbs 
chain was monitored by using the BOA program (Smith, 2007). 

3.3 Results 

The results of the small simulation study are shown in Table 3.1. The results of the 
study have shown that the means of the estimates of the diagonal and off diagonal 
elements of the co (variance) components are very close to the true value. The 
means of the estimates of the diagonals are close to 1 (identity) and the means of 
the estimates of the off diagonals are close to 0 with small standard error of the 
means which meets the expectation of the model. The SD of the estimates show that 
the variance components for intercept and age effects are quite accurately 
estimated with SD of 0.086 and 0.061, respectively. However, for the time effect 
where each individual is measured at its own specific time different from other 
individuals, have a SD of 0.257. I.e. The accuracy of estimating the change in variance 
over time is lower compared with the effects associated with each animal. 
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Table 3.1. Means of co (variance) components for trait y from the simulation study. 

N.B. Parameters 1-6 are values for the random effect animal and parameter 7 is value for the 
random residual variance. SD is standard deviation. SEM is the standard error of the mean of 
the estimates across the replicates. 

Descriptive statistics of the data is presented in Table 2.1. Body weight in males is 
significantly different from that of females; males having higher mean BW than 
females at all the three weighing ages. Mean BW decreased in both sexes as the 
weighing age decreased (Table 2.1). The posterior means of genetic variance for BW 
in males and females is presented in Figure 1 as a function of time (SR). The genetic 
variance of BW in the first period showed an overall increasing trend from 0.0103 to 
0.0268 kg2 in males and from 0.0074 to 0.0197 kg2 in females along the selection 
trajectory from SR 1 to 39. However, the genetic variance in the second period 
dropped from 0.0268 to 0.0124 in males and from 0.0197 to 0.0084 in females at the 
SR where the weighing age was changed from t to t-4 days. Similarly, it dropped 
slightly in the third period at the SR where the weighing age was changed from t-4 
to t -7 days, from 0.0124 to 0.0116 in males and from 0.0084 to 0.0076 in females 
(Figure 3.1). 

Parameter 
number 

Co (variance) Mean of 
estimates 

SD SEM True value 

1 1-1 1.001 0.086 0.007 1.000 
2 1-2 0.005 0.012 0.001 0.000 
3 1-3 0.000 0.061 0.005 0.000 
4 2-2 0.987 0.257 0.021 1.000 
5 2-3 0.003 0.123 0.010 0.000 
6 3-3 1.009 0.061 0.005 1.000 
7 4-4 1.000 0.012 0.001 1.000 
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Figure 3.1. Posterior means of genetic variance of body weight (BW) in males and females 
along the selection trajectory. 

The posterior means of maternal permanent environmental variance of BW in males 
and females is presented in Figure 3.2 as a function of SR (time). In males the 
maternal permanent environmental variance showed an increasing trend in the first 
period, from 0.0016 to 0.0026 and then dropped to 0.0015 in the second period at 
the SR where the weighing age was changed from t to t-4 days. Similarly, a drop in 
maternal permanent environmental variance of BW was observed in males in the 
third period from 0.0015 to 0.0013 at the SR where the weighing age was changed 
from t-4 to t-7 days. However, in females the change in permanent environmental 
variance over SRs was not significant since all higher posterior density regions (HPD) 
were overlapping (Figure 3.2). 
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Figure 3.2. Posterior means of maternal permanent environmental variance of BW in males 
and females along the selection trajectory. 

The residual variance of BW showed an overall increasing trend in the first period 
from 0.0220 to 0.0344 in males and from 0.0129 to 0.0163 in females but with 
considerable fluctuation from one SR to another reflecting seasonal variation. The 
residual variance dropped slightly in the second period from 0.0344 to 0.0252 in 
males and from 0.0163 to 0.0127 in females at the SR where the weighing age was 
changed from t to t-4 days. Similarly, the residual variance of BW showed a clear 
drop in the third period from 0.0273 to 0.0216 in males and dropped slightly from 
0.0143 to 0.0125 in females at the SR where the weighing age was changed from t-4 
to t-7 days. However, clear pattern in change in residual variance along the selection 
trajectory was not observed in the second and third period in both sexes probably 
due to the small number of SRs included in the two periods (Figure 3.3). 
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Figure 3.3. Posterior means of residual variance of BW in males and females along the 
selection trajectory. 

The phenotypic variance of BW showed a clear increase in the first period from 
0.0339 to 0.0638 in males and from 0.0212 to 0.0368 in females with fluctuation 
from one SR to another within the period mainly due to the observed fluctuation in 
the residual variance. However, phenotypic variance dropped in the second period 
from 0.0638 to 0.0392 in males and from 0.0368 to 0.0219 in females at the SR where 
the weighing age was changed from t to t-4 days. Similarly phenotypic variance 
showed a clear drop in the third period from 0.0413 to 0.0344 in males and a slight 
drop from 0.0234 to 0.0208 in females at the SR where the weighing age was 
changed from t- 4 days to t-7 days and then kept fluctuating from one SR to another 
in the second and third period in both sexes (Figure 3.4). 
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Figure 3.4. Posterior means of phenotypic variance of BW in males and females along the 
selection trajectory. 

The heritability estimates in the first period showed an overall increase from 0.3040 
to 0.4194 in males and from 0.3504 to 0.5345 in females but with fluctuation from 
one SR to another along the selection trajectory due to the heterogeneous residual 
variance (Figure 3.5). In males a clear drop in heritability from 0.4194 to 0.3172 was 
observed in the second period at the SR where the weighing age was changed from 
t to t-4 days. Similarly a clear drop in heritability was observed in females from 
0.5345 in the first period to 0.3860 in the second period at the SR where the weighing 
age was changed from t days to t-4 days. However, a slight increase was observed in 
the third period with SR 47-54 from 0.3013 to 0.3358 in males and from 0.3598 to 
0.3654 in females at the SR where the weighing age was changed from t-4 days to t-
7 days. The heritability estimates in the second and third period did not show any 
clear pattern along the selection trajectory within the individual periods due to the 
observed fluctuation in the residual variance in the two later periods. In males the 
heritability estimates ranged from 0.2987 to 0.3172 in the second period with 7 SRs 
and from 0.3065 to 0.4043 in the third period with 8 SRs, while in females it ranged 
from 0.3598 to 0.3926 in the second period and from 0.3573 to 0.4259 in the third 
period with fluctuation from one SR to another within the individual periods (Figure 
3.5). The heritability estimates of BW ranged from 0.2056 to 0.4194 and 0.2962 to 
0.5345 in males and females, respectively considering the estimates in all the three 
periods. In males the mean heritability estimates of BW over SRs in each individual 
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period were found to be 0.2835, 0.3083 and 0.3480 while in females it was found to 
be 0.3804, 0.3851 and 0.4372 at t, t-4 and t-7 days of age, respectively with 
increasing heritability as the weighing age decreased. 

  

Figure 3.5. Posterior means of heritability of BW in males and females along the selection 
trajectory. 

The genetic correlation of BW measured at different SRs depends on the SR and the 
distance between the SRs. Correlation plots from longitudinal models are three 
dimensional plots that are difficult to grasp. Therefore only selected subsets of 
correlations are shown. In Figure 3.6 the genetic correlation between BW at SR 20 
and all other SRs are presented for males and females, respectively. The genetic 
correlation between BW expressed in different SRs decreased in both sexes as the 
distance between the SRs increased and was found to be different from unity while 
the genetic correlation of BW between adjacent SRs within sexes was found to be 
high and close to one (Figure 3.6). The genetic correlation of BW between SR 20 and 
all the SRs in the second period was constant within sexes, due to model asumptions, 
i.e. a constant genetic variance in all the SRs within the two last periods were 
assumed. However, the genetic correlation of BW between different SRs in the first 
period and BW expressed in the second or third period would change gradually with 
SR since BW expressed in different SRs in the first period have gradually changing 
variance and covariance while in the second and third period all SRs were defined as 
having a constant genetic variance. 
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The genetic correlation of BW between the three periods was found to be different 
from unity with decreased genetic correlation as the distance between the periods 
increased (Figures 3.6-3.8). Figure 3.6 shows the genetic correlation of BW between 
SR 20 in the first period with SRs (1-54) for each sex. The genetic correlation of BW 
between the first and second period was found to be higher than the genetic 
correlation of BW between first and third period (Figure 3.6). The genetic correlation 
of BW between first and second period was found to be 0.8357 and 0.8324 within 
males and females, respectively, while the genetic correlation of BW between period 
one and three was found to be 0.7766 and 0.7029 within males and females, 
respectively (Figure 3.6). 

 
Figure 3.6. Posterior means of genetic correlations between BW in selection round (SR) 20 
(first period) and all other SRs in males and females along the selection trajectory. 

Figure 3.7 shows the genetic correlation of BW between SR 40 in the second period 
with SRs (1-54) within sexes. The Figure shows the genetic correlation of BW 
between the second and third period with weighing age t-4 and t-7 days, respectively 
to be higher than the genetic correlation of BW between the first and second period 
with weighing age t and t-4 days, respectively. The genetic correlations of BW 
between period two and three were found to be 0.9398 and 0.9232 within males 
and females, respectively both significantly different from unity (Figure 3.7). 
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Figure 3.7. Posterior means of genetic correlations between BW in SR 40 (second period) and 
all other SRs in males and females along the selection trajectory. 

Figure 3.8 shows the genetic correlation of BW between SR 47 in the third period 
with SRs 1-54 within sexes. The genetic correlation of BW between the second and 
third period was found to be higher than the genetic correlation of BW between first 
and third period while the genetic correlation of BW between SR 47 and all the SRs 
in the third period (47-54) within sexes was one due to the constant genetic variance 
in all the SRs within the individual periods (Figure 3.8). 
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Figure 3.8. Posterior means of genetic correlations between BW in SR 47 (third period) and all 
other SRs in males and females along the selection trajectory. 

Figures 3.9 show the genetic correlation of BW between males and females within 
the three different periods at the same weighing age. The first plot shows genetic 
correlation of BW between males and females within the first period (1-39 SR) and 
the second plot shows genetic correlation of BW between males and females within 
the second period (40-46 SR) while the third plot shows the genetic correlation of 
BW between males and females within the third period (47-54 SR). The genetic 
correlation of BW between males at SR 20 and females at all SRs in the first period 
(taking mean of genetic correlations of all the 39 SRs) was found to be 0.8479 and 
the genetic correlation of BW between males and females at the second period was 
found to be 0.8962 while the genetic correlation of BW between males and females 
at the third period was found to be 0.9298 (Figure 3.9). The above Figures clearly 
illustrate that the genetic correlation of BW between males and females increased 
as the weighing age decreased from t days in the first period to t-4 and t-7 days in 
the second and third period, respectively. 
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Figure 3.9. Posterior means of genetic correlations of BW between males and females at the 
three different periods. 

3.4 Discussion 
 
A bivariate random regression model was used to estimate genetic parameters of 
BW in each sex and at varying age of measuring BW in order to investigate the 
amount of sex by genotype interaction and estimate genetic parameters of BW at 
three different ages. In addition, the model was used to study the development in 
genetic variance of BW over several generations of selection. Selection for increased 
BW has increased all variance components partly due to scale effects. Heritability 
was not strongly affected by selection. However, the genetic correlation between 
BW measured in different SRs was less than unity with a decreasing correlation as 
the number of SRs between BW measurements increased. Genetic correlations 
between BW measured at different ages were considerably less than unity. 
Heritability of BW measured in males and females were different, the genetic 
variance were different in the two sexes and the genetic correlation between BW in 
males and females were significantly less than unity and further decreased as the 
age at measuring BW were increased. 
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3.4.1 Simulation results 
 
The results of the small simulation study have shown that the random regression 
model, which is used in the real body weight data, can be used to estimate a gradual 
change in variance over time, even in models that also include age effects for each 
bird. In the simulation, only one bird were recorded at each time point. Therefore, 
estimating gradual change in variance is less accurate than estimating effects relative 
to individual birds such as intercept or age effects. This means that large data sets 
are needed for such analysis such as the case in this study. I.e. The model can be 
used to study the change in variance over time within and across animals. 
 
3.4.2 Sex by genotype interaction for BW at three ages 
 
The higher heritability estimate of BW in females than males in this study was due 
to the observed higher residual variance in males compared to females (Figure 3.5). 
Genetic correlations were significantly lower than unity between BW in males and 
females at all three recording ages, suggesting that BW in the two sexes should be 
considered as different but correlated traits. This sex by genotype interaction is due 
to genes affecting BW differently in male or female physiological “environments” as 
explained by Towne et al. (1997). In agreement with this study, Merritt (1966) and 
Morton (1973) have regarded BW in male and female chickens as separate traits with 
a genetic correlation different from unity. Similarly, Chapuis et al. (1996) analyzed 
BW in male and female turkeys at 12 and 16 weeks of age and noted the largest 
genetic correlation of BW between males and females at 12 weeks of age than at 16 
weeks of age. 
The decreasing genetic correlation of BW between sexes as the weighing age 
increased suggests that the amount of sex by genotype interaction increases with 
age probably due to physiological differentiation during growth (Towne et al., 1997). 
In general, the different heritability estimates of BW in males and females in all the 
three ages, different variances and a genetic correlation of BW between males and 
females lower than unity suggest that BW in males and females should be considered 
as different but correlated traits. I.e. there is a clear sex by genotype interaction for 
BW in this broiler population. Accounting for these effects in models for genetic 
evaluation will increase accuracy of selection compared to currently used models 
that assume an average heritability and a genetic correlation of unity between BW 
expressed in males and females. In addition, the different residual variances in the 
two sexes needs to be taken in to account since male records have a considerably 
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larger residual environmental variance than female records, i.e. female records are 
more informative than male records.   
 
3.4.3 Genetic parameters of BW at three different ages 
 
The variance components estimated in third period decreased for both sexes 
compared with estimates from period one and two where the age at recording BW 
were higher. This is primarily due to scale effects since both the mean BW and the 
variance of BW decreased as the weighing age decreased (Table 2). This conforms to 
the theory explained by Falconer and Mackay (1996) which states that the variance 
of a trait is not independent on the mean because when the mean changes under 
selection, the variance also changes. I.e. when the mean increases, the variance 
increases and vice versa. The maternal permanent environmental variances of BW 
in all the three periods explained only a small proportion of the total phenotypic 
variance in both sexes. The observed fluctuations in the residual variance within the 
first period were due to seasonal variation. The phenotypic variance of BW in this 
study showed exactly the same pattern as the residual variance since the highest 
proportion of the phenotypic variance is the residual variance. 
Reducing the age at weighing reduces all components of variance considerably. Since 
birds were only weighed once and weighing age changes with SR, a direct 
comparison is difficult. However, the changes are in line with the results of Begli et 
al. (2016) who analysed records from chickens that were weighed weekly and noted 
an increase in variance of BW by factors of 1.34 to 6.02 per week. In this study, a 
slight increase in the posterior mean of heritability was observed as the weighing age 
decreased due to the decreasing residual variance as the weighing age decreased. 
This happened even though genetic variance in general decreased as the weighing 
age decreased. In agreement with this, Kinney (1969) observed heritability estimates 
of BW in broiler chickens decreasing at later ages considering BW at 4, 8 and 12 
weeks of ages. Chapuis et al. (1996) have reported considerable differences in 
heritability estimates and genetic parameters of BW due to age at recording in 
turkeys. The heritability estimates of BW in this study were found to be moderate 
ranging from 0.21 to 0.42 in males and 0.30 to 0.53 in females, which is in agreement 
with Buss (1990) who reported BW at different ages to have moderate to high 
heritability in the range from 0.23 to 0.71. The observed fluctuations in the 
heritability estimates from one SR to another is mainly due to the fluctuation 
observed in the residual variance (Figure 3.5) since heritability is a function of 
phenotypic variance which includes the residual variance. 
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The genetic correlation of BW between the three weighing ages were different from 
unity and decreased as the distance between weighing ages increased (Figures 6-8). 
I.e.  Genetic correlations of BW between period one and two is higher than that of 
period one and three while genetic correlations of BW between period two and three 
is higher than that of period one and two. This is in agreement with Aslam et al. 
(2011) who noted the genetic correlation of BW in turkey birds decreasing as the 
distance between BW measurements increased. This might be related to change in 
the physiological system of birds as explained by Schaeffer (2011) which states that 
there might be genes that “turn on” and “turn off” as animal ages causing changes 
in physiology and performance. In general, the heritability and genetic variance of 
BW changed with weighing ages, genetic correlations of BW measured at different 
ages were lower than unity and decreased even further as the distance between the 
ages at weighing increased. Therefore, the genetic background of BW in the three 
ages is partly different and models for genetic evaluation of BW should take this in 
to account. 
 
3.4.4 The effect of selection on genetic parameters of BW 
 
The effect of selection on genetic parameters of BW can only be observed in the first 
period since the numbers of SRs in the two later periods with a reduced weighing 
age were too small to observe clear pattern in change in variance along the selection 
trajectory. 
The observed increasing trend in genetic variance within the first period might partly 
be due to scale effect as the birds at the later SRs have higher mean BW than that of 
the earlier SRs at the same age. This is due to selection for growth rate, which results 
the physiological age of the birds to increase along the selection trajectory, which 
might release new genetic variation (Schaeffer, 2011). In addition, the increase in 
genetic variance along the selection trajectory might be due to change in genetic 
property of the trait as a result of mutation or other genetic effects which were not 
directly taken in to account in the model. This clearly shows that the genetic variance 
of BW has not been exhausted after several generations of selection. This might also 
indicate that BW in broilers is influenced by many genes that do not quickly go 
towards fixation even after several generations of selection. 
The variance of genetic effects in the first period was modeled with a covariance 
function using linear splines so that each animal was modeled with two breeding 
values belonging to this period. The linear spline mixed model behaves similar to a 
multivariate model where traits are recorded on the knots (Misztal, 2006). Our 
model had knots at the start and end of the period and can show how the trait 
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behaves at both ends of the period and models a gradual change of trait expression 
during the period. The model can be used to compute breeding values at any time 
during the period for each individual. Such gradual changes in breeding value 
expressed how birds would be ranked in the population at SR that can differ from 
the SR where it was hatched. Such changes in breeding value are due to change in 
genetic background of BW with SR. 
The covariance function used in our study models the gradual change in genetic 
parameters over different SRs in period one. Such a model generally fits best at the 
knots, whereas fit between the knots can be less; it is mainly because the second 
derivatives of the covariance function based on splines is often positive (Misztal, 
2006). However, our results clearly showed that all variance components increased 
over the selection trajectory. The genetic correlations of BW between early and late 
SRs within the first period were different from unity and the genetic correlation of 
BW between adjacent SRs were found to be high and close to one suggesting a 
gradual change in genetic variance of BW over the selection trajectory. Therefore, 
the genetic background of BW in early and late SRs was different (Figure 3.6). In 
agreement with this study, Sørensen (1986) reported that the genetic variance for 
growth rate in broiler chickens were not reduced significantly after several 
generations of selection which was explained to be due to generation of new genetic 
variation and epistatic effects. In a simulation study covering 25 generations of 
selection and using a finite locus model with no mutation, dominance and epistatic 
effects, Liu et al. (2014) observed a fast increase of genetic variance in the first 
generations of selection. Thereafter the genetic variance reached a higher peak 
before it decreased gradually. The increase in genetic variance was explained to be 
due to a rapid rise in frequency of favorable alleles and the higher peak was due to 
all quantitative trait loci reaching an intermediate allele frequency and finally the 
observed gradual decrease in genetic variance was explained to be due to fixation of 
favorable alleles. 
The increased heritability of BW along the selection trajectory in the first period 
where weighing age was constant show that the increase in genetic variance of BW 
was not only due to scale effects. In addition, it illustrates that the genetic variance 
of BW has not been exhausted after many generations of selection, since heritability 
is not influenced by scale effect (Figure 3.5). In the second and third period, the 
heritability estimates did not show clear pattern along the selection trajectory due 
to the observed fluctuation in the residual variance. The observed pattern in the 
heritability estimates along the selection trajectory is an image of the residual 
variance, since in period two and three; the model assumes a constant genetic and 
maternal permanent environmental variance for BW in each sex (Figure 3.5).   
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In this study, an increasing trend in the heritability estimates and genetic variance of 
BW along the selection trajectory was observed in the first period, which was long 
enough to be able to detect changes in genetic parameters. In addition, genetic 
correlation of BW between early and late SRs was found to be different from unity 
while genetic correlations of BW between adjacent SRs were found to be close to 
one. This illustrates the existence of considerable amount of genetic variance left in 
the population after several generations of selection and that BW in different SRs 
should not be considered as exactly same trait or completely different trait, rather a 
gradual change in the genetic background of the trait along the selection trajectory 
should be assumed. Such gradual change in genetic variance over time can be 
modeled using spline models. This result is in contrast to what is expected according 
to the previous knowledge of selection, which states an expected decrease in genetic 
variance as a result of selection (Falconer and Mackay, 1996). However, the same 
authors stated that the outcome of selection over a long period is difficult to predict 
due to the properties of individual genes contributing to the response and also due 
to mutation effects. The results of this study clearly illustrate that in a real population 
there might be an increase in genetic variance even after many generations of 
selection due to different factors which might partly be scaling effect in this case 
and/or due to changes in the genetic property of the trait as a result of mutation 
which were not directly taken in to account in the statistical model. These 
phenomena clearly contribute to the high amounts of genetic variance still existing 
in highly selected broiler populations. 
 
3.5 Conclusion 
 
In this study, random regression model using linear splines were used to study the 
effect of sex by genotype interaction, estimate genetic parameters of BW at three 
different ages and also to study the effect of selection on genetic parameters of the 
trait. The simulation study verified that a change in variance over time can be 
estimated using proper random regression models. There were clear sex by 
genotype interactions. Heritabilities of BW were different in males and females and 
males had higher residual variance than females at all weighing ages. Genetic 
correlations of BW between males and females were lower than unity and decreased 
further if weighing ages were increased. Therefore, BW in males and females should 
be considered as different but correlated traits. Genetic correlations between BW at 
different ages were lower than unity and the correlations further decreased as the 
distance between weighing ages increased. Thus, models for genetic evaluation of 
BW must take this effect in to account. The increasing trend in genetic variance and 
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heritability estimates (with fluctuations) along the selection trajectory illustrated 
that the genetic variance of BW is not exhausted or diminished even after several 
generations of selection in this broiler population. There was a gradual change in 
genetic variance and the genetic correlations between BW measured in different SRs 
decreased as the distance between SRs involved in the correlation increased. 
Therefore, the effects of genes that are influencing BW changes with SR. This process 
contributes to the maintenance of large amounts of genetic variance in the 
population. The gradual change in genetic (co)variance along the selection trajectory 
should be modeled as a continuous process using linear splines. Furthermore, the 
results of this study illustrate that random regression models are appropriate for the 
genetic analysis of BW in broiler chickens to study the effect of selection on genetic 
parameters of the trait. Such models should be used if the effect of genes affecting 
BW is gradually changing along the selection trajectory. 
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Abstract 
 
Body weight (BW) and feed efficiency (FE) traits have received major consideration 
in the poultry industry due to their economic and environmental implications. The 
objectives of this study were 1) to simultaneously estimate genetic parameters for 
BW, feed intake (FI), and body weight gain (Gain) during FI test in broiler chickens 
using a multi-trait Bayesian analysis; 2) derive phenotypic and genetic residual feed 
intake (RFI) and estimate genetic parameters for the traits; and 3) compute Bayesian 
measure of direct and correlated superiority of a selected group on phenotypic and 
genetic residual feed intake. A total of 56,649 male and female broiler chickens were 
measured in one of two different ages (t or t-6 days of age). BW in males and females 
as well as BW in the two ages were considered as separate traits in each of the three 
traits. This resulted in a 12-trait model for BW, FI and Gain in the two sexes and two 
ages (periods). Phenotypic RFI (RFIP ) was estimated from a conditional distribution 
of FI given BW and Gain using partial phenotypic regression coefficients. Similarly, 
genetic RFI (RFIG) was estimated from a conditional distribution of FI given BW and 
Gain using partial genetic regression coefficients. The Bayesian measure of direct and 
correlated superiority of a selected group was computed as the difference between 
the mean of the breeding values of the selected top individuals and the mean of the 
population after correcting for the genetic trend. Posterior means of heritability for 
BW, FI and Gain were moderate and estimates were significantly different in males 
and females at the same age for all the traits. In addition, the genetic correlation 
between males and females at the same age were significantly different from unity 
suggesting a sex by genotype interaction for BW and FE traits. Posterior means of 
heritability estimates for RFIP were significantly higher than that of RFIG within 
sexes and ages. Moreover, the genetic correlations between RFIP and RFIG  were 
significantly different from unity at t days of age but not at t-6 days of age. Selecting 
the best 10% birds for RFIG at t days of age yielded a genetic superiority of -59.4g on 
RFIG and a correlated superiority of -58.2g on FI at the same age in males with no 
significant change in production traits. The results of the multivariate Bayesian 
analysis in this study show that genetic evaluation for production traits (BW and 
Gain) and feed efficiency traits (FI, RFIP and RFIG) should take sex and age 
differences in to account to increase accuracy of selection and genetic gain. Genetic 
RFI, which is genetically independent of production traits, is easier to communicate 
with stakeholders than phenotypic RFI, which is not genetically independent of 
production traits. 
Key words:  Phenotypic residual feed intake; genetic residual feed intake; Bayesian 
analysis; genetic parameters; superiority of the selected group 



Bayesian estimation of phenotypic and genetic RFI 
 

83 
 

4.1 Introduction 

Genetic improvement of body weight (BW) and feed efficiency (FE) traits has 
received major consideration in the poultry industry due to their economic and 
environmental implications. Body weight is the live weight of birds at a specific age 
while feed efficiency is the ability of birds to convert kg of feed in to kg of body 
weight. Among the different ways of measuring FE in poultry, residual feed intake 
(RFI) is a popular partial measure of FE due to its phenotypic independence from 
production traits, the presence of considerable variation in RFI among birds and 
moderate heritability of the trait (Willems et al. 2013). RFI is classically defined as 
the difference between actual feed intake and predicted feed intake based on energy 
requirements for production (e.g. body weight, body weight gain) and maintenance 
(Koch et al., 1963). Since RFI is phenotypically independent from production traits, 
variation in RFI explains differences in efficiency of birds to use feed for production 
and maintenance of BW, as well as errors in the prediction (Kennedy et al., 1993). 

Prediction of RFI has been mostly based on phenotypic regression of feed intake on 
measures of production from a multiple regression analysis. This is called phenotypic 
RFI since direct consideration has not been given to underlying genetic regressions 
in the computation of RFI and it is not genetically independent of production traits. 
Kennedy et al. (1993) derived phenotypic RFI using phenotypic regression 
coefficients obtained from phenotypic co (variance) matrices of feed intake and 
production traits, that were assumed to be known without error and showed that 
phenotypic RFI is phenotypically independent from production traits but not 
genetically independent from production traits. In the same context, Kennedy et al. 
(1993) proposed the term genetic RFI to explain the component of feed intake, which 
is genetically independent of production traits derived using genetic regression 
coefficients obtained from genetic co (variance) matrices of feed intake and 
production traits that were assumed to be known. In this regard, direct consideration 
is not given to phenotypic regressions in the computation of genetic RFI (RFIG), 
therefore, RFIG is not phenotypically independent of production traits (Kennedy et 
al., 1993). 

Jensen et al. (2013) extended the definitions of phenotypic and genetic RFI by 
Kennedy et al. (1993) to a Bayesian framework, which estimates the co (variance) 
function for RFI, using proper distributions of feed intake conditional on production 
traits in a one-step procedure. This one-step procedure estimates the partial 
phenotypic and genetic regression coefficients from co (variance) matrices of feed 
intake and production traits resulting from a multiple regression analysis of feed 



Bayesian estimation of phenotypic and genetic RFI 
 

 

84 
 

intake and production traits and then it simultaneously derives phenotypic and 
genetic RFI inside the model. This one-step approach properly accounts for errors in 
estimating regression coefficients compared to the classical two-step approach by 
Kennedy et al. (1993) which assumes co (variance) matrices of component traits of 
RFI as known without error and the classical two-step approach. In the classical two-
step procedure, first feed intake and production traits are analyzed together in a 
multiple regression analysis and regression coefficients are obtained from the 
resulting co (variance) matrices before the genetic analysis. Then RFI is computed 
using the regression coefficients for each animal and the genetic analysis is 
performed together with production or body composition traits. In this procedure, 
the resulting covariance functions of RFI and production traits are usually singular 
due to defining RFI before the genetic analysis as a linear combination of other traits 
(Jensen, 2013). However, the one-step procedure in the Bayesian analysis avoids 
singularity of the co (variance) matrices by simultaneously estimating the co 
(variance) functions of RFI based on the conditional distribution of FI given 
production traits and possibly body composition traits (Jensen, 2013). In addition, 
the Bayesian one-step procedure ensures that parameter estimation in the 
regression analysis is not biased by “fixed effects” in the model and by effects due to 
genetic trends for component traits in the population under study (Jensen et al., 
2013). 

Thus, the objectives of this study were 1) to simultaneously estimate genetic 
parameters for body weight, feed intake, and body weight gain in broiler chickens 
from a multi-trait Bayesian analysis; 2) derive phenotypic and genetic RFI and 
estimate genetic parameters for the traits; and 3) compute Bayesian measure of 
direct and correlated superiority of a selected group on phenotypic and genetic 
residual feed intake. 

4.2. Methods 
 
4.2.1 Data 
 
Data from 16 selection rounds (SRs) for growth rate of broiler chickens, reared under 
strict bio-secure environmental conditions were collected using procedures by Cobb-
Vantress. The number of male and female broilers with phenotypic data were 
56,649. For the first 10 SRs, broilers were weighed at t days of age in males 
(BWm (t)) and females (BWf(t)) however as selection continued the birds start to 
mature earlier and the weighing age was changed to 6 days earlier (t-6 days) for the 
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last 6 SRs in males (BWm (t−6) and females (BWf (t−6)). The heaviest 22,281 male and 
female birds in the two periods (t and t-6 days of age) entered the feed efficiency 
(FE) test and feed intake (FI) was recorded over the test period in males (FIm(t ) and 
females (FIf (t )) at t days of age and males (FIm(t−6)) and females (FIf (t−6)) at t-6 
days of age. The proportion of birds entering the FE test were the same for each 
selection round. Body weight gain (Gain) during the FE test in males (Gainm (t )) and 
females (Gainf(t) ) at t days of age and body weight gain in males (Gainm (t−6)) and 
females (Gainf (t−6) ) at t-6 days of age were calculated as the difference between 
final body weight and body weight at the start of the FE test. Descriptive statistics of 
the data is presented in Table 4.1. 

4.2.2 Statistical model and estimation of parameters 
 
Preliminary univariate and bivariate restricted maximum likelihood estimation 
(REML) analysis was conducted to determine whether BW, FI and Gain in males and 
females at the two ages should be considered as same trait or separate traits. The 
REML results showed that genetic parameters are significantly different between 
sexes (males and females) and in the two ages (t and t-6 days) suggesting that 
records on, males and females, as well as the two ages should be considered as 
separate traits in the subsequent analysis. This resulted four different traits for each 
of the BW, FI and Gain traits. For example, BW in males at two different periods 
having different recording ages (BWm (t)), BWm(t−6) and BW in females at two 
different periods having different recording ages (BWf(t), BWf(t−6)). Thus, the final 
model was analyzed in a Bayesian multivariate (12-trait) analysis using Gibbs 
sampling where the following model was specified for each of the BW, FI and Gain 
traits in males and females and the two ages (t and t-6 days). 

yijkl = SRHj + Dagek + ai + pel + eijkl                                                                         (1) 

Where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the  BWm(t), BWf(t), BWm(t−6), BWf(t−6), FIm(t), FIf(t), FIm(t−6), 
FIf(t−6), Gainm(t), Gainf(t), Gainm(t−6), and Gainf(t−6) observations of chicken i 
hatched in selection round and hatch batch j, SRH is the interaction of selection 
round of the individual chicken and hatch batch of the individual chicken, Dagek is 
the effect of kth age of dam with k having 32 levels, 𝑎𝑎𝑖𝑖 is the additive genetic effect 
of chicken i, pel is the maternal permanent environmental effect of dam l and e is 
the random residual effect of chicken i.  
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Flat priors were used for all “fixed” location and dispersion parameters. Prior 
distributions for random vectors in the model were: 𝐚𝐚~N(0,𝐀𝐀⊗𝐆𝐆𝟎𝟎),𝐩𝐩𝐩𝐩~N(0, 𝐈𝐈 ⊗
 𝐊𝐊𝟎𝟎), 𝐩𝐩~N(0, 𝐈𝐈 ⊗  𝐑𝐑𝟎𝟎). Where A is the numerator relationship matrix, 𝐆𝐆𝟎𝟎 is the co 
(variance) matrix for direct additive genetic effects of dimension 12 (four variance 
components for each of the BW, FI and Gain traits), I is identity matrix, 𝐊𝐊𝟎𝟎 is the co 
(variance) matrix for maternal permanent environmental effect of dimension 12, 𝐑𝐑𝟎𝟎 
is the residual co (variance) matrix of dimension 12 which was assumed to be 
heterogeneous with different variance for each of the 12 traits. Symbol ⊗ denotes 
Kronecker (direct) product. The random effects a, pe, and e were considered 
independent of each other. The Gibbs sampler was used to obtain posterior 
distributions for all parameters included in the 12-trait model. The Gibbs sampler 
was run for 1,000,000 rounds; the first 250,000 rounds were discarded as burn-in 
and from the remaining samples, every 250th sample was saved for post Gibbs 
analysis. The RJMC module in the DMU software package was used for analysis 
(Madsen and Jensen, 2014).  

4.2.3 Posterior distributions of parameters 

From the joint posterior distribution of all location and (co) variance parameters of 
the 12-trait model, 3000 samples were saved for post-Gibbs analysis. Posterior 
means of breeding values and co (variance) components were computed as average 
of samples after the burn-in period. The boa package in the R program was used to 
evaluate convergence of all co (variance) parameters (Smith et al., 2007). 

Functions to specify the posterior distribution of genetic, maternal permanent and 
residual (co)variances for the 12 original traits (BWm(t), BWf(t), BWm(t−6), BWf(t−6), 
FIm(t), FIf(t), FIm(t−6), FIf(t−6), Gainm(t), Gainf(t), Gainm(t−6), Gainf(t−6) and the 8 
derived RFI traits namely, phenotypic RFI in males at t days of age (RFIP(m tdays)), 
phenotypic RFI in females at t days of age �RFIP(f tdays)�, phenotypic RFI in males at 
t-6 days of age (RFIP(m t−6days)), phenotypic RFI in females at t-6 days of age 
(RFIP(f t−6days)), genetic RFI in males at t days of age (RFIG(m tdays)), genetic RFI in 
females at t days of age (RFIG(f tdays)), genetic RFI in males at t-6 days of age 
(RFIG(m t−6days)), and genetic RFI in females at t-6 days of age (RFIG(f t−6days)) were 
derived based on Shirali et al. (2018).  
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Table 4.1. Descriptive statistics of the data 

 

BWm(t): Body weight in males at t days of age; BWf(t): Body weight in females at t days of age;  
BWm(t−6):Body weight in males at t-6 days of age; BWf(t−6):Body weight in females at t-6 days of age; 
FIm(t):Feed intake in males at t days of age; FIf(t): Feed intake in females at t days of age; FIm(t−6): Feed 
intake in males at t-6 days of age; FIf(t−6):Feed intake in females at t-6 days of age; Gainm(t): Body weight 
gain in males at t days of age; Gainf(t): Body weight gain in females at t days of age; Gainm(t−6):Body 
weight gain in males at t-6 days of age; Gainf(t−6): Body weight gain in females at t-6 days of age. 

Phenotypic RFI (RFIP) and genetic RFI (RFIG) were derived using phenotypic partial 
regression coefficients and genetic partial regression coefficients, respectively for 
each sex and age sub class. This ensures that the phenotypic co (variances) between 
RFIP and production traits (BW and Gain) is zero and the genetic covariance between 
RFIG and production traits is zero. RFIP and RFIG are linear combinations of BW, FI 
and Gain. For RFIP, the partial phenotypic regression coefficients (𝐛𝐛P) for BW and 
Gain were computed from the phenotypic (co)variance matrix while for RFIG, the 
partial genetic regression coefficients (𝐛𝐛G) for BW and Gain were computed from the 
genetic (co)variance matrix. In a given posterior sample, the two RFI definitions have 
conditional normal distributions and derived as follows: let 𝐏𝐏𝟎𝟎 = 𝐆𝐆𝟎𝟎 +𝐊𝐊𝟎𝟎 + 𝐑𝐑𝟎𝟎 be 
the phenotypic and 𝐆𝐆𝟎𝟎 the genetic (co)variance matrices, which were computed 
based on each sample from the posterior distribution of parameters. Where 𝐏𝐏𝟎𝟎 is 
12×12 phenotypic co(variance) matrix, 𝐊𝐊𝟎𝟎 is 12×12 maternal permanent 
environmental co(variance) matrix, 𝐑𝐑𝟎𝟎 is 12×12 residual co (variance) matrix. The 
Bayesian estimation of partial phenotypic (𝐛𝐛P) and genetic (𝐛𝐛G) regression 
coefficients were computed as follows: 

𝐛𝐛P = 𝐏𝐏𝐏𝐏−𝟏𝟏𝐏𝐏P,FI       and       𝐛𝐛G = 𝐆𝐆𝐏𝐏−𝟏𝟏𝐆𝐆P,FI                                                           (2) 

Trait N Mean (g) SD Min Max 
BWm(t) 17270 2732.3 268.6 1776 3712 
BWf(t) 18461 2303.3 221.9 221.9 1463 

BWm(t−6) 10117 2182.8 213.3 213.3 1319 
BWf(t−6) 10801 1882.4 180.2 1077 2449 

FIm(t) 5065 2851.7 215.6 1919.0 3712.0 
FIf(t) 10334 2355.1 185.2 1700.0 3045.0 

FIm(t−6) 2301 2311.3 163.1 1493.0 2890.0 
FIf(t−6) 4581 1954.3 141.3 1421.0 2449.0 

Gainm(t) 5056 619.2 146.6 206.0 1161.0 
Gainf(t) 10239 479.3 102.6 182.0 865.0 

Gainm(t−6) 2299 636.4 115.4 292.0 960.0 
Gainf(t−6) 4533 469.2 91.3 211.0 725.0 
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Where 𝐛𝐛P and 𝐛𝐛G are 2×1 vectors obtained in each sample from the Gibbs output 
for each sex and age. 𝐏𝐏𝐏𝐏 and 𝐆𝐆P are 2×2 phenotypic and genetic (co)variance 
matrices for the production traits of BW and Gain from 𝐏𝐏𝟎𝟎 and 𝐆𝐆𝟎𝟎, respectively in 
each sex and age. 𝐏𝐏P,FI and 𝐆𝐆P,FI are phenotypic and genetic (co)variance matrices, 
respectively, between the production traits (BW and Gain) and FI in each sex and 
age. The breeding values for RFIP can be computed for all animals by conditional 
distribution of breeding values for FI, given breeding values of BW and Gain using 𝐛𝐛𝐏𝐏 
and the breeding values for RFIG can be obtained for all animals by conditional 
distribution of breeding values for FI, given breeding values of BW and Gain using bG 
(Shirali et al., 2018). For example, a given sample from the posterior distribution of 
breeding values for phenotypic (𝐚𝐚RFIP) and genetic (𝐚𝐚RFIG) can be computed as 
follows: 

𝐚𝐚RFIP = 𝐚𝐚FI − [𝐚𝐚Gain    𝐚𝐚BW]𝐛𝐛P                                                                            (3) 

 𝐚𝐚RFIG = 𝐚𝐚FI − [𝐚𝐚Gain  𝐚𝐚BW]𝐛𝐛G                                                                           (4) 

The distribution of RFIP for a given sample were obtained as the distribution of FI, 
conditional on BW and Gain. Similarly, the distribution of RFIG for a given sample 
were obtained as the distribution of FI, conditional on BW and Gain. The 
corresponding co (variances) can be computed as follows: 

𝐏𝐏𝟏𝟏 = 𝐁𝐁 ∗ 𝐏𝐏𝟎𝟎 ∗ 𝐁𝐁′          and        𝐆𝐆𝟏𝟏 = 𝐁𝐁 ∗ 𝐆𝐆𝟎𝟎 ∗  𝐁𝐁′                                          (5) 

Where 𝐏𝐏𝟏𝟏 is the new 20 ×20 phenotypic co (variance) matrix and 𝐆𝐆𝟏𝟏 is the new 20 × 
20 genetic co (variance) matrix that includes the 8 derived traits of RFI in addition to 
the original 12 traits included in the Bayesian multivariate model. 𝐏𝐏𝟎𝟎  and 𝐆𝐆𝟎𝟎 are 
12×12 phenotypic and genetic co (variance) matrices of the original traits, 
respectively and B represents 20 linear functions used to derive the new set of traits. 
The first 12 are identity functions for the 12 original traits and the remaining 8 are 
functions for the 8 derived traits of RFI. Details can be found in Shirali et al. (2018). 

4.2.4. Superiority of the selected group 

The Bayesian measure of direct and correlated genetic superiority of a group of 
selected birds was calculated as the difference between the mean of the breeding 
values in the selected population and the mean of the population corrected for 
genetic trend. Unlike the classical selection index calculations, it is possible to make 
probability statements on the expected response to selection in the Bayesian 
analysis and their posterior standard deviations can be derived easily. This gives an 
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expression of the superiority of the selected group in every sample from the 
posterior distribution. The mean of the selected group for trait j when selecting on 
trait j′ was calculated based on the formula from Shirali et al. (2018).  

𝐚𝐚𝐣𝐣𝐣𝐣´𝐬𝐬 = 𝟏𝟏
𝐧𝐧𝐬𝐬
∑ 𝐚𝐚𝐢𝐢𝐣𝐣 𝐈𝐈(𝐚𝐚𝐢𝐢𝐣𝐣´ > 𝐚𝐚𝐧𝐧𝐬𝐬𝐣𝐣´)
𝐧𝐧
𝐢𝐢=𝟏𝟏                                                                              (6) 

Where 
ajj´s  is the mean of the selected group for trait j when selection is on trait j′, aij is 
the additive breeding value for trait 𝑗𝑗 on animal 𝑖𝑖 conditional on the genetic trend; 𝑛𝑛 
is the total number of animals, and 𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖 ´  is the additive genetic value for a ranked 

individual (𝑛𝑛𝑠𝑠) when ordering animals based on breeding values for trait 𝑗𝑗′. If 𝑗𝑗= 𝑗𝑗′, 
the superiority is due to direct selection for the trait, and if 𝑗𝑗≠ 𝑗𝑗′, the superiority is in 
trait 𝑗𝑗 due to selection of possible correlated trait 𝑗𝑗′. In this study, there are 20 traits 
(12 original and 8 derived traits). Therefore, 20 scenarios were developed to 
compare the direct and correlated superiority of the selected group on production 
or feed efficiency traits. However, only the results of the 8 scenarios for the derived 
traits are presented. The number of individuals ranked for analysis was decided 
based on truncation selection by selecting the best 5, 10 and 20% of birds, however, 
only the results of truncation selection when selecting the best 10% are presented 
since the results are consistent across all selection percentages. Production traits 
(BW and Gain), were selected upwards and FE traits (FI, RFIP and RFIG) were 
selected downwards.  

4.3. Results 

4.3.1. Genetic parameters of production and feed efficiency traits 

Descriptive statistics of the data is presented in Table 4.1. Males have higher mean 
BW, FI and Gain than females in the two ages. The higher mean BW in males than 
females is consistent with previous studies (Mebratie et al., 2018; Begli et al., 2017). 
The posterior mean and posterior standard deviations (PSDs) of genetic variance, 
residual variance and heritability estimates for the 12 original traits and the 8 derived 
traits of RFI are presented in Table 4.2, where all trait abbreviations are also 
summarized. All the reported parameters are posterior means, which were 
computed as averages of 3000 samples. For ease of presentation and interpretation 
of the results, comparison of genetic parameters in males and females is limited to 
the same age and comparison of genetic parameters in the two ages is limited to the 
same sex in the results and  discussion section. The genetic variance of BW in males 
and females was found to be significantly different, males having higher genetic 
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variance than females in both ages. However, higher heritability estimates were 
observed in females than males at both ages. Similarly, the genetic variance of BW 
was significantly different in the two ages and it decreased as the weighing age 
decreased from t to t-6 days. However, the heritability estimates of BW increased as 
weighing age decreased.  

Unlike BW traits, the heritability estimates of FI, Gain, RFIP and RFIG were higher in 
males than females at both ages except for RFIG at t days of age in which the 
heritability estimates were the same in males and females. The posterior means of 
the heritability estimates of FI and Gain were found to be low to moderate (0.19-
0.38) in males and females at both ages with males having significantly higher 
estimates than females. Moreover, the genetic variance and heritability estimates of 
FI were significantly higher than that of Gain in males and females at the two ages 
(Table 4.2). The heritability estimates of the two RFI definitions were low (0.14-0.28); 
RFIP having significantly higher heritability estimates than RFIG in the two sexes and 
ages. This was followed by a slightly higher genetic variance in RFIP than RFIG and 
higher residual variance in RFIG than RFIP in both sexes and ages.  

The posterior means of the genetic correlations between the 12 traits included in 
the multivariate model are presented in Table 4.3. PSDs of correlations are not 
shown to simplify presentation of the results; however, they were in the lower range 
(0.01-0.06). The posterior means of genetic correlation of BW (PSDs in parenthesis) 
between males and females at t days was 0.90 (0.02) and the genetic correlation of 
BW between males and females at t-6 days was 0.90 (0.03). The genetic correlations 
of FI between males and females were 0.82 (0.04) and 0.86 (0.04) at t and t-6 days 
of age, respectively. The genetic correlations of Gain between males and females 
were 0.75 (0.06) and 0.81 (0.06) at t and t-6 days of age, respectively with genetic 
correlations significantly higher at early ages (t-6 days) than later ages (t) for both FI 
and Gain. 
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Table 4.2. Posterior means of variance components and heritability of body weight (BW), feed intake (FI), body weight gain (Gain) and the two RFI 

definitions (RFIP and RFIG) with their posterior standard deviations (PSDs). 

 

BWm(t): Body weight in males at t days of age; BWf(t):Body weight in females at t days of age; BWm(t−6):Body weight in males at t-6 days of age; BWf(t−6):Body weight 
in females at t-6 days of age; FIm(t):Feed intake in males at t days of age; FIf(t): Feed intake in females at t days of age; FIm(t−6): Feed intake in males at t-6 days of 
age; FIf(t−6):Feed intake in females at t-6 days of age; Gainm(t): Body weight gain in males at t days of age; Gainf(t): Body weight gain in females at t days of age; 
Gainm(t−6):Body weight gain in males at t-6 days of age; Gainf(t−6): Body weight gain in females at t-6 days of age. 

Traits σa2 (g2) PSD σe2 (g2) PSD σpe2 (g2) PSD h2 PSD 

BWm(t) 17865.5 1870.0 37592.8 1056.0 1868.5 391.4 0.31 0.03 

BWf(t) 13339.2 1349.4 25141.9 747.1 1519.5 282.4 0.33 0.03 

BWm(t−6) 12277.1 1643.8 23589.6 902.1 1578.6 354.2 0.33 0.04 

BWf(t−6) 10228.5 1263.3 15983.8 680.3 1116.8 249.8 0.37 0.04 

FIm(t) 8014.2 993.4 17993.3 647.0 976.5 280.0 0.30 0.03 

FIf(t) 4926.2 535.9 13493.1 339.9 616.3 140.6 0.26 0.03 

FIm(t−6) 6981.7 1178.8 10445.3 706.1 971.7 312.9 0.38 0.05 

FIf(t−6) 4645.4 568.7 8343.7 350.6 447.1 144.0 0.35 0.04 

Gainm(t) 4053.8 576.9 13212.1 414.5 549.6 174.1 0.23 0.03 

Gainf(t) 1664.5 210.4 6841.4 147.9 231.8 58.3 0.19 0.02 

Gainm(t−6) 4307.4 798.3 7686.0 490.6 607.0 203.2 0.34 0.05 

Gainf(t−6) 2099.1 297.3 5124.7 195.6 239.9 76.7 0.28 0.04 
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Table 4.2. Continued 

RFI: Residual feed intake; RFIP(m tdays ): Phenotypic RFI in males at t days of age; RFIP(f tdays): Phenotypic RFI in females at t days of 
age; RFIP(m t−6days): Phenotypic RFI in males at 𝑡𝑡 − 6 days of age; RFIP(f t−6days): Phenotypic RFI in females at 𝑡𝑡 − 6 days of age;  RFIG(m tdays): Genetic RFI in 
males at t days of age; RFIG(f tdays): Genetic RFI in females at t days of age; RFIG(m t−6days): Genetic RFI in males at t-6 days of age; RFIG(f t−6 days): Genetic RFI in 
females at t-6 days of age; g: Gram; PSD:Posterior standard deviation. 

 

Traits σa2 (g2) PSD σe2 (g2) PSD σpe2 (g2) PSD h2 PSD 

RFIP(m tdays) 1431.2 247.1 6260.3 183.8 290.7 83.7 0.18 0.03 
RFIP(f tdays) 961.1 143.0 4878.0 103.0 231.1 48.6 0.16 0.02 

RFIP(m t−6days) 1443.0 295.7 3369.7 191.4 272.0 89.3 0.28 0.05 
RFIP(f t−6days) 747.0 128.3 2243.2 83.0 117.8 35.4 0.24 0.04 
RFIG(m tdays) 1261.0 246.1 7171.2 537.7 299.5 90.7 0.14 0.03 
RFIG(f tdays) 874.8 145.7 5241.3 537.7 256.9 54.3 0.14 0.02 

 RFIG(m t−6days) 1380.8 297.5 3660.2 207.1 287.9 96.9 0.26 0.05 
RFIG(f t−6days) 720.5 128.0 2357.2 365.5 128.3 40.6 0.22 0.04 
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The posterior means of genetic correlations between BW and FI were moderate 
(0.49-0.63) in males and females at both ages. The genetic correlations between BW 
and Gain were also moderate (0.30-0.50) in males and females along with the two 
ages except the low genetic correlation (0.25) between BW and Gain in males at t 
days of age. The genetic correlations between FI and Gain were high (0.82-0.90) in 
males and females along the two ages (Table 4.3). The posterior means of the genetic 
correlations between the two RFI definitions are presented in Table 4.4. The genetic 
correlations between RFIP and RFIG at the same sex and age were high and 
significantly different from unity at t days of age; however, at t-6 days of age the 
genetic correlations were not significantly different from unity (Table 4.4).  

The genetic and phenotypic correlations between production traits and the two RFI 
definitions are presented in Table 4.5. RFIG was derived using genetic partial 
regression coefficients of FI on production traits. Therefore, the posterior mean of 
genetic correlations between RFIG and BW at the same sex and age were zero 
(results not shown) and the genetic correlations between RFIP and BW at the same 
sex and age were found to be low (0.04-0.24) but different from zero (Table 4.5). 
Similarly, RFIP was derived using phenotypic partial regression coefficients of FI on 
production traits, therefore the phenotypic correlations between RFIP and BW at 
the same sex and age were zero (results not shown) and the phenotypic correlations 
between RFIG and BW at the same sex and age were low (-0.002 to -0.15) but 
different from zero (Table 4.5) 

The same holds true for genetic correlations and phenotypic correlations between 
the two RFI definitions and Gain. The posterior mean of genetic correlations between 
RFIG and Gain at the same sex and age were confirmed to be zero (results not 
shown) and the genetic correlations between RFIP and Gain at the same sex and age 
were found to be low to moderate (0.11-0.32) (Table 4.5). Similarly, the phenotypic 
correlations between RFIP and Gain at the same sex and age were confirmed to be 
zero (results not shown) and the phenotypic correlations between RFIG and Gain at 
the same sex and age were found to be low (-0.09 to -0.27) but non-zero (Table 4.5). 

The genetic and phenotypic correlations between FI and the two RFI definitions are 
presented in Table 4.6. The correlations were moderate in males and females along 
with the two ages, with higher genetic correlations between FI and RFIP (0.51-0.66) 
than between FI and RFIG (0.39-0.45). The phenotypic correlations between FI 
and RFIP at the same sex and age were found to be (0.48-0.57) and the phenotypic 
correlations between FI and RFIG at the same sex and age were found to be (0.31-
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Table 4.3. Posterior means of genetic correlations between body weight (BW), feed intake (FI) and body weight gain (Gain). 
 

Trait descriptions can be referred in Table 4.2; numbers in bold are genetic correlations between traits at the same sex and age; a-f: genetic correlations of traits 
between males and females within ages; *: Genetic correlations of traits between ages within sexes. 

Trait BWm(t) BWf(t) BWm(t−6) BWf(t−6) FIm(t) FIf(t) FIm(t−6) FIf(t−6) Gainm(t) Gainf(t) Gainm(t−6) 

BWm(t)            
BWf(t) a0.90           

BWm(t−6) *0.84 0.82          

BWf(t−6) 0.78 *0.87 b0.90         
FIm(t) 0.49 0.41 0.44 0.37        
FIf(t) 0.53 0.60 0.52 0.59 c0.82       

FIm(t−6) 0.50 0.44 0.51 0.48 *0.76 0.75      
FIf(t−6) 0.60 0.57 0.55 0.63 0.77 *0.88 d0.86     

Gainm(t) 0.25 0.20 0.25 0.16 0.87 0.64 0.59 0.55    
Gainf(t) 0.21 0.30 0.24 0.29 0.69 0.82 0.60 0.68 e0.75   

Gainm(t−6) 0.46 0.42 0.45 0.42 0.67 0.68 0.88 0.73 *0.64 0.68  
Gainf(t−6) 0.49 0.47 0.47 0.50 0.73 0.79 0.82 0.89 0.67 *0.78 f0.81 
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0.43) but lower than the genetic correlations between FI and the two RFI definitions 
(Table 4.6).  

4.3.2. Superiority of the selected group 

Table 4.7 shows the posterior mean of direct and correlated genetic level of the 
selected groups under single trait selection against the two RFI definitions. Direct 
selection against RFIP in males at t days of age resulted in a direct selection response 
of -63.0g and a correlated response of decreasing RFIG by 55.6g at the same age in 
males. Similarly direct selection against RFIG in males at t days of age resulted in a 
direct selection response of -59.4g and a correlated response of decreasing RFIP by 
59.0g at the same age in males. As shown in the table, the correlated response in 
RFIG from direct selection on RFIP is slightly different from direct response in 
RFIP at t day of age; however, correlated response in RFIP is the same as direct 
selection on RFIG in both ages. The slight differences in the correlated response at t 
days of age might be due to the significantly different from unity genetic correlations 
between RFIP and RFIG at t days of age. 

Table 4.8 shows the posterior means of correlated genetic level of the selected 
groups under single trait selection against the two RFI definitions. Direct selection 
against RFIP at t days of age in males has a correlated response of decreasing FI by 
98.2g while decreasing BW and Gain by 17.3g and 33.8g, respectively at t days of age 
in males. Thus, direct selection against RFIP has a favorable correlated response of 
decreasing FI in a relatively higher amount than decreasing BW and Gain. Moreover, 
direct selection against RFIG in males at t days of age resulted in a correlated 
response of decreasing FI by 58.2g at the same age in males with no significant 
change on BW and Gain. Similarly direct selection against RFIG in females at t-6 days 
decreased the FI by 43.2g with no significant change on BW and Gain at t-6 days of 
age in females (Table 4.8). As expected from the definition, direct selection on RFIG 
did not show considerable correlated response on BW and Gain at the same sex and 
age, however, it had a correlated response of decreasing FI (Table 4.8).  
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Table 4.4. Posterior means of genetic correlations with PSDs in parenthesis between phenotypic and genetic residual feed intake (RFIP 
and  RFIG , respectively). 

Description of abbreviations can be refered in Table 4.2; numbers in bold are genetic correlations between RFIP and RFIG at the same sex and age;  
a-d: genetic correlations of RFIP and  RFIG between sexes within ages;*:Genetic correlations of RFIP and and  RFIG between ages within sexes. 
 

 

 

 

 

Trait RFIP(m tdays) 
 

RFIP(f tdays) 
 

RFIP(m t−6days) 
 

RFIP(f t−6days) 
 

RFIG(m tdays) 
 

RFIG(f tdays) 
 

RFIG(m t−6days) 
 

RFIP(m tdays)        
RFIP(f tdays) a0.80(0.06)       

RFIP(m t−6days) *0.68 (0.11) 0.63 (0.14)      
RFIP(f t−6days) 0.70 (0.10) *0.71 (0.09) b0.70 (0.09)     
RFIG(m tdays) 0.94(0.04) 0.77 (0.07) 0.67 (0.12) 0.72(0.10)    
RFIG(f tdays) 0.78 (0.07) 0.95 (0.02) 0.64 (0.16) 0.71 (0.10) c0.80 (0.07)   

RFIG(m t−6days) 0.65 (0.11) 0.60 (0.15) 0.98(0.02) 0.69 (0.09) *0.66 (0.12) 0.63 (0.16)  
RFIG(f t−6days) 0.67 (0.10) 0.67 (0.10) 0.67 (0.09) 0.98 (0.02) 0.71(0.11) *0.69 (0.11) d0.68 (0.09) 
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4.4 Discussion 

4.4.1 Genetic parameters of production and feed efficiency traits 

Bayesian method of analysis was used to study genetic parameters for production 
and feed efficiency traits in male and female broiler chickens recorded at two 
different ages, derive phenotypic and genetic RFI and study Bayesian measure of 
direct and correlated superiority of a group selected on phenotypic and genetic RFI. 
The Bayesian method allows to simultaneously derive the two RFI definitions with 
their posterior standard deviations and it integrates over all unknown model 
parameters, including “fixed” and random effects. 

4.4.2 Genetic parameters for body weight, feed intake and body weight gain 

Different authors have estimated genetic parameters for BW in males and females 
at different ages of broiler chickens and reported the heritability estimates of BW in 
the range from 0.20 to 0.53 (Mebratie et al., 2017; Adeyinka et al., 2006; Mignon-
Grasteau et al., 1999; Le Bihan-Duval et al., 1998). Our heritability estimates of BW 
in males and females were moderate (0.31-0.37) at both ages and in the range with 
previous studies. Moreover, our results showed that the genetic variance of BW is 
higher in males than females in both ages. The higher genetic variance in males than 
females might partly be due to scale effect since males have higher mean BW than 
females at a given age; however, the heritability estimates were significantly higher 
in females than males due to higher residual variance in males. The higher residual 
variance in males than females might be due to higher feed competition between 
males. The genetic correlation of BW between males and females in both ages were 
significantly different from unity, which is in agreement with Mebratie et al. (2017). 
The difference in heritability estimates between BW in males and females, and 
genetic correlations of BW between males and females that deviate from unity 
suggest that there is sex by genotype interaction for BW in broiler chickens. This 
implies that, genes may react differently in male and female “physiological 
environments” due to differences in hormonal regulations or growth metabolism in 
male and female broiler chickens (Towne et al. 1997). The proportion of the maternal 
permanent environmental variance to the total phenotypic variance was low in the 
current study but not negligible. This might be due to the relatively older age of birds 
in our study since maternal permanent environmental variance often influences 
birds at early age and diminishes as birds grow older which is also in line with 
previous studies in poultry (Mebratie et al., 2017; Begli et al., 2016; Aslam et al., 
2011; Towne et al., 1997).
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Table 4.5. Posterior means of genetic and phenotypic correlations with PSDs between production traits (BW and Gain) and the two RFI definitions 
(RFIP and RFIG). 

 

 

 

 

 

 

 

 

               

Description of abbreviations can be referred in Table 4.2.  

 

Production 
traits 

The two RFI 
definitions 

Genetic correlation Production traits  The two RFI 
definitions 

Phenotypic 
correlation 

BWm(t) RFIP(m tdays) 
 

0.09 (0.09) BWm(t) RFIG(m tdays) 
 

-0.04 (0.07) 

BWf(t) RFIP(f tdays) 0.24 (0.08) BWf(t) RFIG(f tdays) -0.15 (0.06) 

 BWm(t−6) RFIP(m t−6days) 
 

0.04 (0.11)  BWm(t−6) RFIG(m t−6days) 
 

-0.002 (0.12) 

BWf(t−6) RFIP(f t−6days) 
 

0.10 (0.09) BWf(t−6) RFIG(f t−6days) 
 

-0.05 (0.08) 

Gainm(t) RFIP(m tdays) 
 

0.32 (0.10) Gainm(t) RFIG(m tdays) 
 

-0.27 (0.08) 

Gainf(t) RFIP(f tdays) 0.20 (0.09) Gainf(t) RFIG(f tdays) -0.14 (0.08) 

   Gainm(t−6) RFIP(m t−6days) 
 

0.11 (0.13)    Gainm(t−6) RFIG(m t−6days) 
 

-0.10 (0.13) 

Gainf(t−6) RFIP(f t−6days ) 
 

0.12 (0.10) Gainf(t−6) RFIG(f t−6days) 
 

-0.09 (0.10) 
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  Table 4.6. Posterior means of genetic and phenotypic correlations with PSDs between feed intake and the two RFI definitions (RFIP and RFIG). 

 

 

 

 

 

 

 

 

 

Description of abbreviations can be referred in Table 4.2.                     

                           

 

Feed intake The two RFI 
definitions 

Genetic 
correlation 

Feed intake  The two RFI 
definitions 

Phenotypic 
correlation 

FIm(t) RFIP(m tdays) 
 

0.66 (0.06) FIm(t) RFIP(m tdays) 
 

0.54 (0.01) 

FIf(t) RFIP(f tdays) 0.64 (0.05) FIf(t) RFIP(f tdays) 0.57 (0.01) 

 FIm(t−6) RFIP(m t−6days) 
 

0.54 (0.09)  FIm(t−6) RFIP(m t−6days) 
 

0.53 (0.01) 

FIf(t−6) RFIP(f t−6days) 
 

0.51 (0.07) FIf(t−6) RFIP(f t−6days ) 
 

0.48 (0.01) 

FIm(t) RFIG(m tdays) 
 

0.40 (0.04) FIm(t) RFIG(m tdays) 
 

0.31 (0.08) 

FIf(t) RFIG(f tdays) 0.42 (0.04) FIf(t) RFIG(f tdays) 0.41 (0.06) 

   FIm(t−6) RFIG(m t−6days) 
 

0.45 (0.06)    FIm(t−6) RFIG(m t−6days) 
 

0.43 (0.11) 

FIf(t−6) RFIG(f t−6days) 
 

0.39 (0.04) FIf(t−6) RFIG(f t−6days) 
 

0.39 (0.08) 
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The genetic variance and heritability estimates of BW was different in the two ages 
and the genetic correlation of BW between the two ages was significantly different 
from unity. This is consistent with Mebratie et al. (2017) who reported different 
heritability estimates for BW at three different ages and genetic correlations 
(standard errors in parenthesis) of BW between the three different ages in the range 
between 0.81 (0.05) - 0.97(0.01) in broiler chickens. Aslam et al. (2011) also reported 
genetic correlations between BW at six different ages in the range between 0.86 
(0.06)-0.98 (0.01) in turkeys which significantly deviate from one. The differences in 
heritability estimates in the two ages and genetic correlations of BW between the 
two ages suggest that genes influencing BW might change with the age of broiler 
chickens. This confirms the statement from Schaeffer (2011) which highlights that 
there are genes, which “turns on” and “turns off” with the age of animals causing 
changes in physiology and performance. 

In general, the different heritability estimates of BW in males and females and 
genetic correlations of BW between males and females in the two ages suggest that 
there is sex by genotype interaction for BW and the genetic background of BW might 
be partly different in male and female broiler chickens. Similarly, the heritability 
estimates of BW in the two ages and genetic correlations of BW in the two ages 
suggest that there is age by genotype interaction for BW and the genetic background 
of BW in broiler chickens might be partially different in the two ages. Therefore, 
models for genetic evaluation of BW in broiler chickens should take in to account sex 
and age differences. Otherwise, ignoring the differences and combining them may 
create bias in the prediction of breeding values and it in turn influences selection 
decision. 

The heritability estimates of FI and Gain in males and females at the two ages of 
recording were found to be moderate (0.26-0.38) but lower than the estimates from 
Aggrey et al. (2010) who reported heritability estimates of FI to be 0.46 and 0.48 at 
5 and 6 weeks of age, respectively. The authors also reported heritability estimates 
for Gain to be 0.48 and 0.51 at 5 and 6 weeks of age, respectively in broiler chickens.
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Table 4.7. Posterior means of direct (bold numbers) and correlated (non-bold numbers in a row) additive genetic superiority when the best 10% 
population were selected against single traits of the two RFI definitions. 

 Please refer Table 4.2 for description of abbreviations.

Trait RFIP(m tdays) RFIP(f tdays) RFIP(m t−6days) RFIP(f t−6days) RFIG(m tdays) RFIG(f tdays) RFIG(m t−6days) RFIG(f t−6days) 
RFIP(m tdays) -63.0 -40.7 -42.5 -31.8 -55.6 -37.8 -39.8 -29.8 
RFIP(f tdays) -49.7 -51.7 -39.0 -32.5 -45.2 -47.2 -36.7 -30.0 

RFIP(m t−6days) -42.0 -31.7 -63.5 -31.5 -38.8 -30.7 -60.8 -29.8 
RFIP(f t−6days) -43.5 -36.5 -43.6 -45.9 -42.2 -34.5 -42.4 -44.4 
RFIG(m t days) -59.0 -39.4 -41.6 -32.8 -59.4 -39.2 -40.5 -31.8 
RFIG(f t days) -48.3 -49.4 -39.7 -32.2 -47.1 -49.4 -38.5 -31.1 

RFIG(m t−6days) -40.2 -30.4 -62.0 -31.3 -38.5 -30.3 -62.2 -30.2 
RFIG(f t−6days) -41.3 -34.2 -41.8 -45.0 -41.5 -33.8 -41.5 -45.3 
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However, our estimates are slightly higher than that of Begli et al. (2016) who 
reported cumulative heritability estimates for FI in chickens from weeks 2-10 to be 
0.24 and Case et al. (2012) who reported heritability estimates of FI to be 0.25 in 
turkeys. Similar to the observed sex and age differences in genetic parameters for 
BW, the different heritability estimates in FI and Gain between males and females 
and the genetic correlations between them that is significantly different from unity 
suggest that there is sex by genotype interaction for FI and Gain. Moreover, the 
higher genetic correlations in FI and Gain between males and females at early age (t-
6) than later age (t) suggest that there is sex by age interaction for FI and Gain 
showing that sex by genotype interaction increases with age as broilers start to attain 
sexual maturity. The significantly different heritability estimates of FI and Gain in 
males and females and the genetic correlations between sexes, which were 
significantly different from unity, suggest that the genetic background of these traits 
might be partly different in males and females. Similarly, the significantly different 
heritability estimates for FI and Gain in the two ages and the genetic correlations of 
the traits between the two ages, which is significantly different from one, suggest 
that there is age by genotype interaction for the traits. Moreover, it suggests that 
the genetic background of FI and Gain might partly be different in the two ages. 
Therefore, models for genetic analysis of the two traits should consider the sex and 
age differences to increase accuracy of selection and genetic gain. The moderate 
genetic correlation (0.30-0.50) within production traits (BW and Gain) and between 
BW and FI (0.49-0.63) as well as the high genetic correlation between FI and Gain 
(0.82-0.89) in the current study is not surprising since higher BW and Gain might 
require higher feed intake and vice versa. Case et al. (2012) reported a genetic 
correlation 0.67 between BW and FI and a genetic correlation of 0.41 between BW 
and Gain in turkeys. 

4.4.3. Genetic parameters for the two RFI definitions 

Previous studies have reported low to moderate heritability estimates (0.10 - 0.49) 
for phenotypic RFI in male and female broiler chickens at different ages (Begli et al., 
2016; Aggrey et al., 2010; Pakdel et al., 2005). In pigs, Shirali et al. (2018) reported 
low heritability estimate for RFIP (0.20 (0.03)) and RFIG (0.15 (0.03)), respectively. 
Our heritability estimates of RFIP (0.18-0.28) were in the range with previous studies 
in chickens while heritability estimates of RFIG is scant in literature; however, our 
estimates (0.14-0.26) were in the range with previous estimates of RFIP in broiler 
chickens. In addition, the genetic variance and heritability estimates of RFIP was 
higher than RFIG (0.14-0.26) which is expected because the genetic variance of
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Table 4.8. Posterior means of correlated (numbers in a row) additive genetic superiority of the selected group when the best 10% population were 
selected against single traits of the two RFI definitions. 

 Trait descriptions can be referred in Table 4.2; numbers in Bold are correlated responses within sexes and ages. 

 

 

 

 

 

 

Trait BWm(t) BWf(t) BWm(t−6) BWf(t−6) FIm(t) FIf(t) FIm(t−6  FIf(t−6) Gainm(t) Gainf(t) Gainm(t−6) Gainf(t−6) 

RFIP(m tdays) -17.3 -5.2 -12.9 -15.7 -98.2 -65.9 -71.6 -62.2 -33.8 -21.8 -28.1 -25.7 

RFIP(f tdays) -63.7 -47.6 -50.1 -54.5 -79.6 -74.4 -69.7 -67.7 -19.0 -12.5 -25.6 -24.8 

RFIP(m t−6days) -10.8 1.1 -6.4 -10.6 -58.0 -39.4 -76.3 -56.2 -14.8 -7.2 -12.1 -21.1 

RFIP(f t−6days) -38.1 -20.0 -3.6 -17.8 -54.3 -46.9 -51.1 -56.2 -3.8 -6.0 -7.2 -7.0 

RFIG(m tdays) -0.4 6.90 0.52 -8.8 -58.2 -43.6 -46.2 -43.6 1.0 -4.9 -4.6 -8.7 

RFIG(f tdays) -20.6 -3.3 -16.5 -21.0 -56.1 -49.0 -48.6 -46.6 -4.1 0.8 -7.1 -10.3 

RFIG(m t−6days) -3.1 6.9 -0.5 -5.8 -47.4 -31.0 -62.3 -47.4 -7.0 -1.7 -0.3 -13.9 

RFIG(f t−6days) -20.8 -4.5 11.6 -2.7 -42.0 -35.1 -37.0 -43.2 3.5 -0.03 3.6 2.0 



Bayesian estimation of phenotypic and genetic RFI 
 

 

104 
 

RFIP is influenced by residual covariance between the component traits of feed 
intake and production traits whereas genetic variance of RFIG is not influenced by 
residual covariance between feed intake and production traits (Kennedy et al., 
1993). The heritability estimates of RFIP and RFIG were significantly different in 
males and females at the same age and the estimates differed significantly between 
the two ages at the same sex. The genetic correlations of the two RFI definitions 
between males and females at the same sex, which was found to be significantly 
different from unity, suggest that there is sex by genotype interaction for the traits. 
Similarly, the genetic correlations for the two RFI definitions between t and t-6 days 
at the same sex that significantly deviate from one suggest that there is age by 
genotype interaction for the traits. In agreement with our findings, Aggrey et al. 
(2010) noted moderate and significantly different from one genetic correlation 
(0.59) between phenotypic RFI in broiler chickens measured at two different periods 
(28-35 and 35-42 days of age). In our study, the genetic correlations between RFIP 
and RFIG was found to be high but significantly different from unity at t days of age 
in both sexes, however at t-6 days of age the genetic correlations were high and not 
significantly different from unity. This suggests that selection for FE using either of 
them in breeding programs will yield the same genetic response at t-6 days but may 
not result the same response at t days of age. Shirali et al. (2018) conditioned FI on 
average daily gain (ADG) and body composition trait (lean meat percentage) and 
reported a genetic correlation of 0.92 (0.04) between RFIP and RFIG in pigs which is 
high but significantly different from unity.  

The low to moderate genetic correlations (0.04-0.32) between RFIP and production 
traits (BW and Gain) in the current study is expected from the definition of RFIP since 
it is a component of FI that is phenotypically, but not genetically, independent of 
production traits. Genetic correlations between RFIP and production traits should 
not necessarily be zero but might vary considerably in sign and magnitude depending 
on the genetic and phenotypic parameters of its component traits (Kennedy et al., 
1993). Moreover, the genetic covariance between RFIP and production traits 
involves the environmental covariance between feed intake and production traits 
therefore the partial phenotypic regression coefficients of RFIP and production traits 
do not ensure that RFIP is genetically independent of production traits (Kennedy et 
al., 1993). According to the authors, RFIP will only be genetically independent of 
production traits if the heritability of FI and production traits is equal and the genetic 
correlations between them is equal to the corresponding environmental 
correlations. In the same context, the phenotypic correlation between RFIG and 
production traits is not necessarily zero except in situations where the heritability of 
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FI and production traits is zero and the genetic correlations of FI and production 
traits is equal to their corresponding environmental correlations (Kennedy et al., 
1993). This is well confirmed in our study that the phenotypic correlations between 
RFIG and production traits were low (-0.002 to -0.27) whereas the phenotypic 
correlations between RFIP and production traits were zero. Aggrey et al. (2010) 
reported low (-0.05 to 0.06) genetic correlation between RFIP and average daily gain 
(ADG) and moderate genetic correlation (0.31-0.45) between RFIP and metabolic 
BW in broiler chickens. In pigs, Shirali et al. (2018) reported moderate genetic 
correlation (0.35) between RFIP and ADG and phenotypic correlations of -0.30 
between RFIG and ADG.  

The genetic variance of FI was considerably and significantly higher than both 
RFIP and RFIG in males and females at the two ages showing that most of the 
variation in FI is determined by production traits (BW and Gain). For example, at t 
days of age in males, 83.3% of the variation in FI is determined by production traits 
and at t days of age in females, 82.2% of the variation in FI is determined by 
production traits. Moreover, the heritability estimates of RFIP and RFIG were 
considerably lower than that of FI in both ages. This might be due to the higher 
genetic correlations between FI and production traits than environmental 
correlations between the traits. Kennedy et al. (1993) reported that variability in 
RFIP relative to feed intake is dependent on the phenotypic correlation between FI 
and production traits (BW and Gain) which is a function of heritability of FI, 
heritability of production traits, genetic correlation between FI and production traits 
as well as environmental correlation between FI and production traits. Heritability of 
RFIP increases as the genetic covariance between FI and production traits decreases 
and the environmental correlation between feed intake and production traits 
increases (Kennedy et al., 1993). Genetic correlations between FI and RFIP was 
noted to be in the range 0.51-0.66 which is in line with Kennedy et al. (1993) who 
stated that genetic correlations between FI and RFIP are highly positive except in 
some situations where the heritability of FI is low compared to production traits and 
their genetic and environmental correlations are both high. In such situations, the 
genetic correlation between FI and RFIP can even be negative (Kennedy et al., 1993). 
Higher genetic correlations between FI and RFIP than FI and RFIG in the current 
study is because the genetic correlation between FI and RFIP involves the 
environmental covariance between FI and production traits whereas the genetic 
correlation between FI and RFIG does not involve the environmental covariance 
between FI and production traits. In addition, lower phenotypic correlations than 
genetic correlations between FI and the two RFI definitions might indicate lower 
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environmental covariance between FI and production traits than their corresponding 
genetic covariance. Pym and Nichols (1979) noted that phenotypic correlations 
among traits such as BW, Gain, FI and feed conversion ratio are generally lower than 
their corresponding genetic correlations. Aggrey et al. (2010) reported genetic 
correlations between FI and RFIP in broiler chickens to be 0.51 and 0.56 in the 
periods, 35-42 days and 28-35 days, respectively, which are in line with our estimates 
at t-6 days of age. 

 4.4.4 Superiority of the selected group 

The results of the current study showed that, direct selection on one of the 12 traits 
included in the model results in a positive correlated response on the other traits, 
which also means correlated positive response in FI, which is not advantageous 
(Results not shown). The observed positive correlated response between the traits 
in this study is a reflection of the moderate to high genetic correlations between 
them. The Bayesian analysis in our study suggests that direct selection against RFIG 
does not have a correlated response on production traits since the model ensures 
that genetic correlations between RFIG and production traits is zero. However, 
direct selection against RFIP results in a correlated response on production traits 
since RFIP is derived using phenotypic partial regression coefficients, which ensure 
that phenotypic correlations between phenotypic RFI and production traits are zero 
while genetic correlations between the traits are not necessarily zero. The correlated 
response in FI from selection against RFIG was found to be very similar to the direct 
response to selection against RFIG at the same sex and age. This is in agreement with 
Kennedy et al. (1993) who noted that when selection is on genetic RFI direct 
response in genetic RFI is expected to be equal to the correlated response in FI 
because there is no change in FI due to BW and production. However, direct genetic 
response in RFIP and correlated response in FI will only be equal when there is no 
correlated response in production. Otherwise, correlated response in FI on direct 
selection of RFIP partly depends on correlated response in production traits. If the 
correlated response on production is positive, there will be less reduction in FI which 
also means positive response in FI which is not favorable and vice versa.  

Superiority of the selected group on RFIG was slightly but not significantly lower 
than RFIP in the current study. This is in agreement with Kennedy et al. (1993) who 
reported that response to selection against RFIG is less than or equal to the response 
to selection against RFIP because selection against RFIP results in a reduction of the 
proportion of feed intake used for production. Moreover, Kennedy et al. (1993) 
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noted that response to selection on genetic RFI increases if the genetic correlation 
between feed intake and production traits is low or the heritability of feed intake is 
higher than the heritability of production traits. In our study, the heritability of FI is 
greater than production traits; however, the genetic correlation between FI and 
production traits is moderate to high. 

The results of this study showed that selection for FE based on RFIP or RFIG gives 
the same genetic response at t-6 days but might result different response at t days 
of age in both sexes. Since, RFIG  explains the efficiency of birds in nutrient utilization 
irrespective of energy requirements for production and maintenance, it is easier to 
interpret the results to relevant stakeholders than FI and RFIP which is not 
genetically independent of production traits. 

4.5. Conclusions 

Genetic parameters were simultaneously estimated for feed intake, body weight and 
body weight gain from a multi-trait Bayesian analysis. The heritability estimates of 
the traits were moderate and significantly different in males and females at the same 
age. Moreover, the genetic correlations of BW, FI and Gain between males and 
females at the same age were significantly different from unity suggesting that BW, 
FI and Gain traits are influenced by sex by genotype interaction in addition to direct 
genetic and maternal permanent environmental effects. Similarly, the different 
heritability estimates of BW, FI and Gain in the two ages within sexes and the genetic 
correlations of BW, FI and Gain between the two ages within sexes shows that there 
is age by genotype interaction for the traits. In our study, heritability estimates of 
RFIP and RFIG were significantly different in both sexes and ages. Furthermore, the 
genetic correlations between the two RFI definitions were significantly different 
from unity at t days of age and not significantly different from one at t-6 days of age. 
Direct selection against phenotypic RFI resulted in a decrease in FI with a decrease 
in production traits while direct selection against genetic RFI resulted in a correlated 
response of decreasing FI with no significant change in production traits.  
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Abstract 
 
Genome wide association study was conducted using a mixed linear model (MLM) 
approach that accounted for family structure to identify single nucleotide 
polymorphisms (SNPs) and candidate genes associated with body weight (BW) and 
feed efficiency (FE) traits in a broiler chicken population. The results of the MLM 
approach were compared with the results of a general linear model approach that 
does not take family structure in to account. In total, 11 quantitative trait loci (QTL) 
and 21 SNPs, were identified to be significantly associated with BW traits and 5 QTL 
and 5 SNPs were found associated with FE traits using MLM approach. Besides some 
overlaps between the results of the two GWAS approaches, there are considerable 
differences in the detected QTL regions. Even though the genomic inflation factor (λ) 
values indicate that there is no strong family structure in this population, using 
models that account for the existing family structure may reduce bias and increase 
accuracy of the estimated SNP effects in the association analysis. The SNPs and 
candidate genes identified in this study provide information on the genetic 
background of BW and FE traits in broiler chickens and might be used as prior 
information for genomic selection.  
 
Key words: Genome wide association study; Body weight; Feed efficiency; Mixed 
linear model; General linear model 
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5.1 Introduction 
 
Genome wide association studies (GWAS) are commonly used to identify single 
nucleotide polymorphisms (SNPs) and candidate genes associated with quantitative 
traits. GWAS have revealed important regions associated with production, 
reproduction and disease resistance traits in chickens (Fan et al., 2017; Wang et al., 
2016; Jin et al., 2015; Zhang et al., 2015; Reyer et al., 2015; Xu et al., 2013; Yuan et 
al., 2010). 

One of the essential elements in GWAS is a powerful statistical method that can be 
employed to identify genetic associations in unbiased fashion (Cantor et al., 2010). 
Methods that model population structure by estimating the covariance due to 
genetic relatedness between individuals has been reported to perform better in 
terms of detecting true associations than models that ignore population structure 
(Gianola et al., 2016; Eu-ahsunthornwattana et al., 2014; Kang et al., 2010; Yu et al., 
2006). 
Kennedy et al. (1992) reported that using general linear model (GLM) analysis when 
relations between animals exist, results in an inflated F-test. Consequently it is likely 
to find an excess of spurious genotype effects when actually no genotype effect 
exists (Kennedy et al., 1992). In this situation, the use of mixed-model procedures 
under an animal model treating single-gene effects as fixed effect and accounting for 
family relations can provide an exact F-test of associated hypotheses and unbiased 
estimates of genotype effects (Ekine et al., 2014; Kennedy et al., 1992). 
Population structure mainly refers to population stratification and cryptic 
relatedness (Zhang et al., 2010). Population stratification is the presence of 
systematic differences in allele frequencies between subpopulations in a population 
due to different ancestry between study subjects (Li et al., 2010). Unidentified 
population stratification can result both false positive and false negative associations 
and can hide the true association signals if not properly corrected (Sillanpää et al., 
2011; Voight et al., 2005). 
Cryptic relatedness refers to the phenomenon that some members of a study sample 
(population) might be related beyond what can be inferred from the pedigree, in 
which case their genotypes are not independent of the population frequencies (Price 
et al., 2010). Because population based association studies assume individual 
independence of study samples, cryptic relatedness may make these statistical tests 
less reliable and reduce the robustness and efficiencies of the studies (Sillanpää et 
al., 2011; Zhang et al., 2010). 



GWAS using MLM and GLM approaches 
 

 

114 
 

Methods modeling population structure, family structure and cryptic relatedness are 
expected to be better than models that ignore these complexities (Sillanpää et al., 
2011; Kang et al., 2010). Mixed models provide a practical and extensive approach 
to simultaneously address confounding due to population stratification, family 
structure and cryptic relatedness (Gianola et al., 2016; Eu-ahsunthornwattana et al., 
2014; Price et al., 2014 ). 
This study aims to identify potential loci and candidate genes associated with body 
weight (BW) and feed efficiency (FE) traits in a commercial broiler line genotyped 
with 60k SNP chip using mixed linear model (MLM) approach that accounts for family 
structure and compare the results with general linear model (GLM) approach that 
does not take family structure in to account. 
 
5.2. Material and Methods 
 
Ethical statement. Samples were collected from a commercial flock under the 
guidance of the local committees for the care and use of animals following the Cobb-
Vantress Inc. Animal Welfare Policy. In addition, the experimental protocol was 
carried out in accordance with the approved guidelines for safeguarding good 
scientific practice at the institutions in the Leibniz Association. 

Birds and phenotypic data. Phenotypic data were obtained from Cobb-Vantress 
broiler breeding company. A total of 5000 male broilers fed standard commercial 
broiler chicken diet based mainly on maize were raised from hatch to five weeks of 
age. Only males were studied in this experiment since selection intensity in males is 
considerably higher than that of females in broiler breeding programs. At the age of 
36 days (BW36), birds were weighed and the heaviest 1000 birds were selected for 
feed efficiency (FE) experiment and put in individual cages. At the age of 39 days 
(BW39), birds entered to a 7 day FE experiment and final body weight (BW46) were 
recorded at the end of the experiment. Total feed intake (FI) was recorded from 
individually caged birds during the experiment. Body weight gain (Gain) was 
calculated as the difference between final body weight (BW49) and start weight 
(BW39). Feed conversion ratio (FCR) was calculated as the ratio of feed intake to 
body weight gain. After data cleaning, 848 BW and FE records were used for further 
analysis. 
Genotyping and quality control. Blood samples from the branchial vein were 
collected in anticoagulant tubes for DNA extraction. Extraction of genomic DNA was 
performed using Qiagen 96-well extraction kit (Qiagen, Hilden, Germany). DNA from 
a total of 864 samples were genotyped using the Illumina 60K SNP chip (Illumina, San 
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Diego, CA, USA). The Illumina 60K SNP chip contains 57636 SNPs that are distributed 
across 29 autosomes (chromosome 1 to 28 and chromosome 32), two linkage groups 
(LGE 64 and LGE 22 C19 W28_E50C23), and two sex chromosomes (Z and W) using 
chicken genome assembly Galgal4. In this study only male broilers were examined 
so only genotypes from the Z sex chromosome were included. Plink software was 
used for quality control of the genotypic data (Purcell et al., 2007). SNPs with low call 
rates (< 95%), minor allele frequency (MAF < 0.03) and Hardy Weinberg equilibrium 
(HWE) P-value (< 0.0001) were excluded. After quality control a total of 43914 SNPs 
were retained for GWAS analysis.  
Genome wide association analysis. Genome wide association analysis was 
performed for BW traits (BW36, BW39, BW46) and for traits from the FE test (FI, Gain 
and FCR) using GCTA (Yang et al., 2011). The genomic relationship matrix (GRM) was 
constructed using methods from Yang et al. (2010). The P-values were adjusted by 
Bonferroni correction based on linkage disequilibrium (Duggal et al., 2008). The 
effective number of independent SNPs of autosomes were defined by the 
independent pairwise option in plink (Purcell et al., 2007). A total of 19416 
independent SNPs were identified and the 5% genome wide significance threshold 
was adjusted to -log10 (P-value) = 5.60. The threshold P-value for suggestive 
significant association that allows one false positive association per GWAS was 
adjusted to -log10 (P-value) = 4.3. Genomic inflation factor (λ), was calculated using 
the R package GenABEL with “median” option (Aulchenko et al., 2014).  
Manhattan plots of genome wide association analysis and quantile-quantile (QQ) 
plots were created using the qqman package in R software (Turner et al., 2014). The 
annotated genes that were closest to the top SNPs were identified using Ensembl 
and NCBI. The reported top SNPs or “lead SNPs” are SNPs which have the highest -
log 10 (P-value) among the significant SNPs which are in linkage disequilibrium (LD) 
with each other in 1 Mb windows. Base pair positions of SNP markers were updated 
to the latest version of the chicken genome assembly Gallus-gallus-5 (Galgal5). 

 
For FI and Gain, the following linear mixed model was used:  

 
y =  µ + βmi + β1x + Zu + e                                                                               (1) 

 
For FCR and BW traits the following linear mixed model was used: 

 
y = µ +  βmi + Zu + e                                                                                         (2) 
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Where, y is a vector of  BW or FE observations, µ is the mean term, β is the SNP 
effect for marker i, m is a vector of SNPs for the ith SNP genotype indicator variable 
coded as 0, 1 or 2, β1 is the regression coefficient (the effect of start weight on FI 
and Gain that accounts for differences in start weight), x is a vector of start weights 
(BW39), u is a vector of random polygenic effects i.e. The effect of all QTL except 
those on the chromosome where the candidate SNP is located, e is a vector of 
random residuals. The variance of u was re-estimated each time when a 
chromosome was excluded from calculating the genetic relationship matrix. Z is the 
incidence matrix for the random effect. The variance co-variance structure for      
random effects were assumed to be normally distributed with mean 0 and variance; 
var (u) =𝐆𝐆σg2 and var (e) =𝐈𝐈σe2. Start weight was included in the model as covariate 
for FI and Gain in order to account for differences in start weight for these traits. The 
genomic relationship matrix of this broiler population indicated that there are only 
small number of half sibs and full sibs in the data (Mebratie et al., 2018), therefore 
maternal effects were not included in the model.  
Comparison of MLM and GLM approaches. The results of the present study were 
compared with the results of the GLM analysis by Reyer et al. (2015)  which does not 
take family structure in to account, using the following model. 

 
y =  µ + β mi + β1x + e                                                                      (3)        
                                                                 

Where, y is the BW or FE observations, µ is the mean term, β is the SNP effect for 
marker i, m is vector of markers for the ith SNP genotype indicator variable coded as 
0, 1 or 2, β1 is the regression coefficient (the effect of start weight on FI and Gain) 
that accounts for differences in start weight, x is a vector of start weights (BW39) for 
FI and Gain, and, e is the random residual. The variance of e is Iσe2. Base pair positions 
of SNP markers in Reyer et al. (2015) were updated to the latest version of the 
chicken genome assembly, Gallus-gallus-5 (Galgal5) for easy comparison of the 
results with the current study. 
 
5.3 Results 

 
GWAS results for body weight traits. Using MLM approach, the present study 
revealed 3 QTL which have suggestive significance association with BW36, 6 QTL with 
BW39 and 2 QTL with BW46 (Table 5.1). A total of 11 QTL and 21 SNPs reached the 
suggestive significance level with BW traits. The top SNPs and candidate genes 
associated with BW36 are located on chromosome 12, 14, and 8 while the top SNPs 
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associated with BW39 are located on chromosome 12, 14, 1 and 23. The top SNPs 
associated with BW 46 are located on chromosome 6 and 1 (Table 5.1). Manhattan 
plots and QQ plots of body weight traits are shown in Fig. 5.1 and Fig. 5.2, 
respectively. All the reported QTL in Table 5.1 are suggestive, no SNP reached the 
genome-wide significance level for BW and FE traits in the present study, which 
suggests that BW and FE traits are controlled by many genes, each having small 
effect. All of the reported top SNPs were found inside the candidate genes in an 
intronic region except SNP rs15652523 associated with BW39, which is located 
2.52Kb upstream of the candidate gene LOC107054392 (Table 5.1).  
 
SNP, rs14042911 is one of the top SNPs (-log 10 (P-value) = 5.15) associated with 
BW36 which is located on chromosome 12. Due to the proximal position to the top 
SNP, PTPRG (protein tyrosine phosphatase receptor type G) is proposed as candidate 
gene associated with BW36 (Table 5.1). PTPRG is a protein coding gene which is a 
member of the protein tyrosine phosphatase (PTP) family. In humans members of 
the PTP gene family are known to be signaling molecules that regulate a variety of 
cellular processes including cell growth and differentiation, mitotic cycle, and 
oncogenic transformation (GeneCards, 2018). Moreover, SNPs, rs14073523 and 
rs16617885, located on chromosome 14 and 8, are top SNPs associated with BW36. 
CACNA1H (calcium voltage-gated channel subunit alpha1 H); a protein coding gene 
and LOC107053920 (uncharacterized gene) are the proximal genes to the top SNPs, 
rs14073523 and rs16617885, respectively. Wang et al. (2016) identified QTL located 
on chromosome 14 associated with abdominal fat weight in chickens. The detected 
QTL for BW traits in the current study suggest that the genetic variance of BW was 
not exhausted after the pre-selection rather there are many genes with small effects 
left in the population. This is a remarkable finding relative to our expectation given 
the fact that this broiler line has been pre-selected for BW. Mebratie et al. (2017) 

also noted an increase in genetic variance of BW after several generations of 
selection in a commercial broiler chicken population. 
 
This study also revealed 6 QTL located on chromosome 12, 14, 1 and 23, to have 
suggestive significance association with BW39, 3 of them located on chromosome 
12. SNP, rs10723005 is one of the top SNPs, associated with BW39 found on 
chromosome 12 which is located in an intron region of CCDC71 (coiled-coil domain 
containing 71 recombinant protein). SNPs, rs316610173, and, rs15652523, which are 
located on chromosome 12 and SNPs, rs14073523, rs13880135, and, rs16190017 
located on chromosome 14, 1 and 23, respectively, are also found associated with 
BW 39 (Table 5.1). PTPRG, LOC107054435 (uncharacterized gene), CACNA1H, SOX5 
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(transcription factor SOX-5) and RSPO1 (R-spondin 1) are candidate genes, with 
putative contribution to the variation in BW39. They are found proximal to SNPs, 
rs316610173, rs14073523, rs13880135 and rs16190017, respectively (Table 5.1). In 
humans, SOX5 is involved in the regulation of embryonic development and in the 
determination of the cell fate (Genecards, 2018) while RSPO1 gene in mice is 
involved in the rapid onset of crypt cell proliferation (Genecards, 2018) . 
 
Two QTL located on chromosome 6 and 1, showing suggestive significance 
association with BW46 were identified with MLM approach. SNP,rs315083186, 
located on chromosome 6 and, SNP, rs314956606, located on chromosome 1 were 
found significantly associated with BW46 (Table 5.1). The candidate genes associated 
with BW46 are LOC101748440 (uncharacterized gene) and ADIPOR2 (adiponectin 
receptor 2), which is a protein coding gene involved in fatty acid oxidation and 
glucose uptake in humans (Genecards, 2018). In the chicken QTL database 
(https://www.animalgenome.org/cgi-bin/QTLdb/GG/index), 3 QTL located on 
chromosome 12 and 2 QTL located on chromosome 12 are reported to be associated 
with BW36 and BW46, respectively. One of the 3 QTL reported in the chicken QTL 
database for BW36 by Reyer et al. (2015) is overlapping with the identified QTL in 
the current study. However, the others are different QTL on the same chromosome, 
suggesting that chromosome 12 is potential chromosome for QTL associated with 
BW traits. 
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Table 5.1. Top SNPs associated with body weight and feed efficiency traits using mixed linear model approach. 

 

 

Trait Chrom
osome 

Number of 
significant 

SNPs 

Top SNP in 1 MB 
window 

Galgal5 
position (bp) 

-log10 
 (P-value) 

SNP 
effect  
(SE) 

Proximal gene Distance 
from gene 

Body weight (36 days) 12 8 rs13612706 12867052 5.03 -0.039 
(0.009) 

PTPRG Within 

Body weight (36 days) 14 1 rs14073523 5337950 4.89 0.036  
(0.008) 

CACNA1H Within 

Body weight (36 days) 8 1 rs16617885 
 

1883743 
 

4.79 -0.051 
(0.012) 

LOC107053920 Within 

Body weight (39 days) 12 1 rs10723005 11570033 4.89 -0.054 
(0.012) 

CCDC71 Within 

Body weight (39 days) 12 3 rs316610173 12931647 4.74 -0.047 
(0.011) 

PTPRG Within 

Body weight (39 days) 12 2 rs15652523 10278318 4.72 -0.043 
(0.010) 

LOC107054392 2.52 Kb 
upstream 

Body weight (39 days) 14 1 rs14073523 5337950 4.67 0.041  
(0.010) 

CACNA1H Within 

Body weight (39 days) 1 1 rs13880135 66076666 4.44 0.040  
(0.010) 

SOX5 Within 

Body weight (39 days) 23 1 rs16190017 3741996 4.38 0.043  
(0.011) 

RSPO1 Within 
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Table 5.1. Continued 

 

 

Body weight (46 days) 6 1 rs315083186 7305184 4.94 -0.118 

(0.027) 

LOC101748440 Within 

Body weight (46 days) 1 1 rs314956606 61033904 4.39 -0.095 

(0.023) 

ADIPOR2 Within 

Feed intake 1 1 rs15384287 110928416 4.96 -0.111 

(0.021) 

KDM6A Within 

Body weight gain 8 1 rs16617885 1883743 4.43 -0.058 

(0.013) 

LOC107053920 Within 

Body weight gain 17 1 rs14098962 7902999 4.32 -0.054 

(0.012) 

LOC107052218 Within 

Feed conversion ratio 17 1 rs14098962 7902999 4.78 0.082  

(0.019) 

LOC107052218 Within 

Feed conversion ratio 6 1 rs14568465 6730175 4.30 0.073  

(0.018) 

CTNNA3 Within 
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Figure 5.1. Manhattan plots of genome wide association results for body weight traits using 
linear mixed model analysis. Chromosomes 29, 30 and 36 represent linkage groups 
LGE22C19W28_E50C23, LGE64, and chromosome Z respectively. Red and blue lines indicate 
genome wide and suggestive significance thresholds respectively. 
 

 
Figure 5.2. Quantile-quantile plots of body weight traits using linear mixed model approach. 
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GWAS results for Feed efficiency traits. In this study a total of 5 QTL and 5 SNPs that 
showed suggestive significance association with FE traits were identified using MLM 
approach. QTL located on chromosome 1 is found associated with feed intake while 
2 QTL located on chromosome 8 and 17 are found associated with body weight gain. 
Two QTL located on chromosome 17 and 6 are found significantly associated with 
FCR. The top SNPs and proximal genes associated with FI, Gain and FCR are reported 
in Table 5.1. Manhattan plots and QQ plots of feed efficiency traits are shown in Fig. 
5.3 and Fig. 5.4, respectively. 
QTL that contain SNP, rs15384287 located on chromosome 1 is found to be 
associated with feed intake (Table 5.1). The candidate gene associated with feed 
intake is KDM6A (lysine demethylase 6A). In line with this study, Yuan et al. (2010) 
reported a region on chromosome 1 that contains 8 SNPs which are significantly 
associated with feed intake in laying hens. Similarly, Mignon‑Grasteau et al. (2015) 
reported four QTL associated with feed intake on chromosome 1 in chickens. Gao et 
al. (2009) and Tran et al. (2014) also reported QTL located on chromosome 1 to be 
associated with Gizzard weight in chickens which might have positive correlation 
with feed intake. 
Two QTL located on chromosome 8 and 17 reached the suggestive significance level 
with body weight gain. SNP, rs16617885, located on chromosome 8 and SNP, 
rs14098962, located on chromosome 17 are found associated with body weight gain 
(Table 5.1). LOC107053920 and LOC107052218 are uncharacterized candidate genes 
associated with the trait which are found proximal to the significant SNPs 
rs16617885 and rs14098962, respectively. SNP, rs16617885, located on 
chromosome 8 is also found associated with BW36 with overlapping uncharacterized 
candidate gene, LOC107053920 (Table 5.1). 
Two QTL located on chromosome 17 and 6 showed suggestive significance 
association with FCR. SNPs, rs14098962 and rs14568465 located on chromosome 17 
and 6, respectively are found associated with FCR (Table 5.1). CTNNA3 (catenin alpha 
3) and LOC107052218 (uncharacterized gene) are candidate genes found proximal 
to SNPs, rs14098962 and rs14568465, respectively. SNP, rs14098962 located on 
chromosome 17 and candidate gene LOC107052218 are also found associated with 
body weight gain (Table 5.1). Yuan et al. (2010) reported a region on chromosome 
17 which is significantly associated with residual feed intake (RFI) in laying hens. In 
the chicken QTL database (https://www.animalgenome.org/cgi-
bin/QTLdb/GG/index) different authors have reported different QTL on 
chromosome 1 to be associated with FI. Similarly QTL on chromosomes 6 and 17 
were reported to be associated with FCR in the QTL database. The reported 
chromosomes are overlapping with the chromosomes associated with FI and FCR in 

https://www.animalgenome.org/cgi-bin/QTLdb/GG/index
https://www.animalgenome.org/cgi-bin/QTLdb/GG/index
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the current study. However the QTL regions are different except the QTL reported 
by Reyer et al. (2015)  for FCR located on chromosome 6 which were identified using 
Bayesian method of analysis for the same broiler line.  
 
Comparison of results in MLM and GLM approach. The results of the MLM analysis 
in this study were compared with the results of the GLM analysis by Reyer et al. 
(2015) (Table 5.2). There were some overlaps between the identified QTL and 
candidate genes for BW36 and FCR. However, for most of the BW and FE traits, the 
identified QTL and candidate genes were different suggesting that the two methods 
do not necessarily give similar results. Table 5.3 shows comparison of genomic 
inflation factor (λ) between MLM and GLM analysis. The λ values in both approaches 
are “benign” and not significantly different from each other suggesting that 
population stratification is not a strong concern in our data. 
 
Reyer et al. (2015) have reported GWAS results for two BW traits (BW36 and BW46) 
and three FE traits (FI, Gain and FCR) using the same data. Table 5.2 shows the 
reported GWAS results of the BW and FE traits derived from a general linear model 
(GLM) by Reyer et al. (2015). The GLM analysis was replicated in this study to 
compute the λ values reported in Table 5.3 and we found similar significant SNPs and 
-log 10 (P-values) for all of the BW and FE traits as reported by Reyer et al. (2015) 
(Table 5.2). BW39 was not considered in the analysis of Reyer et al. (2015) but 
considered both in the replicated GLM analysis and the MLM analysis in this study. 
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Figure 5.3. Manhattan plots of genome wide association results for feed efficiency traits using 
linear mixed model analysis. Chromosomes 29, 30 and 36 represent linkage groups 
LGE22C19W28_E50C23, LGE64, and chromosome Z respectively. Red and blue lines indicate 
genome wide and suggestive significance thresholds respectively. 
 
 

 
 Figure 5.4. Quantile-quantile plots of feed efficiency traits using linear mixed model approach. 
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Using the GLM approach, Reyer et al. (2015) reported 2 QTL and 9 SNPs that reached 
the suggestive significance level, located on chromosome 12 and 14 which were 
associated with BW36. The reported top SNPs, rs13612706, rs14073523, and 
proximal candidate genes associated with BW 36 are consistent with the present 
study (Table 5.1 and 5.2). SNP, rs13612706 showed higher -log 10 (P-value) in the  
GLM analysis compared to the MLM approach, whereas SNP, rs14073523 was 
indicated by a higher -log 10 (P-value) in the MLM approach than the GLM approach 
(Table 5.1 and 5.2).  
 
Reyer et al. (2015) also reported 2 QTL and 2 SNPs associated with BW46 located on 
chromosome 8 and Z, 1 QTL and a single SNP associated with body weight gain 
located on chromosome 17, 1 QTL and 3 SNPs associated with feed intake located 
on chromosome 5, 19 and 26, which are not consistent with the present study (Table 
5.2). Moreover, Reyer et al. (2015) reported 4 QTL and 5 SNPs which have significant 
association with FCR, 2 of them located on chromosome 17, 1 located on 
chromosome 4 and the remaining QTL located on chromosome 22 (Table 5.2). 
Among the reported top SNPs associated with FCR, SNP rs4098962, located on 
chromosome 17 was found overlapping with the present study with higher -log 10 
(P-value) in the GLM approach compared to the MLM approach. However, the 
reported candidate genes are different (Table 5.1 and 5.2).  
 
For most of the BW and FE traits, the reported QTL in this study are not consistent 
with the reported QTL by Reyer et al. (2015). A total of 12 QTL and 20 SNPs associated 
with two BW (4 QTL and 11 SNPs) and three FE traits (8 QTL and 9 SNPs), were 
reported by Reyer et al. (2015) using the GLM approach (Table 5.2). By applying the 
MLM approach, the present study identified a total of 10 QTL and 17 SNPs, 
associated with the same BW (5 QTL and 12 SNPs) and FE (5 QTL and 5 SNPs) traits 
(Table 5.1). Among the identified 10 QTL in the MLM approach only 2 QTL associated 
with BW36 and 1 QTL associated with FCR were found overlapping with the GLM 
approach while the 7 identified QTL were different from the ones reported in Reyer 
et al. (2015) for the same BW and FE traits. 
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        Table 5.2. Top SNPs associated with body weight and feed efficiency traits using general linear model approach by Reyer et al. (2015).  

        The  position of SNPs is updated to the latest chicken genome assembly (Galgal5). 

 

Trait Chrom
osome 

Number of 
significant 

SNPs 

Top SNP in 1MB 
window 

Galgal5 position 
(bp) 

-log10 
(P-value) 

Candidate gene 

Body weight (36 days) 12 8 rs13612706 12867052 5.31 PTPRG 

Body weight (36 days) 14 1 rs14073523 5337950 4.42 CACNA1H 

Body weight (46 days) 8 1 rs16617885 1883740 5.21 PTPRC,NR5A2 

Body weight (46 days) Z 1 rs14753816 19805476 4.89 HTR1A 

Feed intake 5 1 rs16266739 6549732 4.38 SPON1 

Feed intake 19 1 GGaluGA001282 
( rs313913143) 

1878406 4.61 ENSGALG0000002830 

Feed intake 26 1 rs15467593 539371 4.50 KDM5b 

Body weight gain 17 1 GGaluGA117403 
( rs312843163) 

9904101 5.29 GPR144,NR5A1,NR6A1 

Feed conversion ratio 4 2 rs14445503 31108872 5.04 HHIP 

Feed conversion ratio 17 1 GGaluGA117403 
(rs312843163) 

9904101 6.57 NR5A1, NR6A1 
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                 Table 5.2. Continued 
                
 
 
 
 
                Table 5.3. Comparison of lambda values with standard errors in general linear model (GLM) and mixed linear model (MLM) analysis. 
 
 
 
 

Feed conversion ratio 17 1 rs14098962 7902999 4.86 RXRA 
Feed conversion ratio 22 1 GGaluGA186837 

( rs312757200 
4533949 5.07 ADRA1A 

Trait Lambda GLM SE Lambda MLM SE 

Body weight (36 days) 1.0812 9.921616e-05 1.0532 0.0001531706 

Body weight (39 days) 1.0925 8.277596e-05 1.0423 8.860991e-05 

Body weight (46 days) 1.0592 0.002739952 1.0057 0.0001031297 

Feed intake 1.0429 8.538701e-05 1.0242 0.0001203372 

Body weight gain 1.0022 6.283618e-05 0.9955 9.700197e-05 

Feed conversion ratio 1.0513 0.0002345801 1.0258 0.0001107539 
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5.4 Discussion 

Body weight and feed efficiency traits are the most important economic traits in the 
poultry industry. Body weight is the live weight of birds at a given age and feed 
efficiency (FE) is the ability of birds to convert a certain input to a certain output (e.g. 
Kg of feed in to Kg of meat) (Willems et al., 2010). Among the number of way to asses 
feed efficiency, the most widely used are feed conversion ratio (FCR) and residual 
feed intake (Willems et al., 2010). We have performed GWAS for body weight and 
feed efficiency traits in a commercial broiler chicken population using a MLM 
approach, taking family structure into account. The results were compared with the 
results of a GLM approach, which does not take family structure into account. Reyer 
et al. (2015) also used Bayesian (Multi-marker) approach, which is more robust to 
population stratification (Kärkkäinen et al., 2012) and reported more significant SNPs 
associated with BW and FE traits than the GLM approach. However, in this paper the 
results were only compared with the single marker GLM approach which is 
comparable to the single marker MLM approach in the present study.  
 
Xu et al. (2013) reported that chromosome 1 and 4 are the two critical chromosomes 
influencing growth traits particularly body weight in chickens. In this study, SNPs on 
chromosome 1 were found to be associated with BW39 and BW46 while no 
significant SNP were found on chromosome 4 for any of the BW traits under study. 
Podisi et al. (2013) also reported two significant QTL for body weight at 12 weeks of 
age on chromosome 1 in broiler-layer cross female chickens.  
Some of the BW and FE traits share consistent QTL and candidate genes. BW36 and 
BW39 share consistent region on chromosome 14 and candidate genes, PTPRG and 
CACNA1H, while BW46 does not share those candidate genes with BW36 and BW39. 
The effects of the lead SNPs with standard errors in parenthesis for BW36 and BW39 
were found to be 0.036 (0.008) and 0.041 (0.010), respectively. This might indicate 
that the effects of these genes are smaller on BW46 due to increasing importance of 
other genes for the trait, suggesting that the identified genes are age dependent and 
the two traits (BW36 and BW39) might be genetically correlated. Mebratie et al. 
(2017) have reported that the genetic correlation between BW at different ages 
increased as the distance between BW measurements decreased. This might be due 
to changes in the physiological system of the chickens with age. Indeed, Schaeffer et 
al. (2011) states that there might be genes that “switch on” and “off” at a certain age 
of an animal which could lead to changes in physiology and performance. Similarly, 
Carlborg et al. (2004) concluded that there are different genes and gene actions 
involved in growth at different developmental stages.  
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BW36 and body weight gain share an overlapping region on chromosome 8 and 
consistent candidate gene, LOC107053920 with SNP effects -0.051 (0.012) and -
0.058 (0.013), respectively (Table 5.1). This might suggest high positive genetic 
correlation between BW36 and body weight gain which is not surprising since body 
weight gain is a component of body weight. Furthermore, body weight gain and FCR 
share consistent QTL on chromosome 17 and candidate gene LOC107052218 (Table 
5.1) with SNP effects -0.054 (0.012) and 0.082 (0.019), respectively.  
This broiler line is pre-selected for BW (only heaviest birds were entered to the FE 
experiment) and undergone several generations of selection for feed efficiency. This 
phenomenon might affect the detection power of our GWAS and estimated SNP 
effect sizes since the genetic variance of BW and FE traits might be reduced due to 
pre-selection and several generations of intense selection. Mebratie et al. (2018) 
have reported that the SNP based estimated genetic variance of BW (0 - 0.006kg2) 
and FE traits (0.001 - 0.006kg2) in this broiler population is very small with high 
standard error and among others, one of the reasons for the reported very small 
estimates of genetic variance was pre-selection of the broiler line for BW. 
We have conducted GWAS using MLM approach, which takes in to account family 
structure and compared the results with the GLM approach by Reyer et al. (2015) 
which does not take family structure in to account. A number of studies (Fang et al., 
2010; Kang et al., 2010) have shown that methods that model family structure 
perform better than models that ignore family structure. A widely used approach to 
evaluate whether confounding due to population stratification, family structure and 
cryptic relatedness exist is to compute the genomic inflation factor (λ), which is 
computed as the median χ2 (1 degree of freedom) association statistic across SNPs 
divided by its theoretical median under the null distribution (Reich et al., 2001). 
Values of genomic inflation factor (λ) > 1 generally suggest population stratification 
or other confounders, such as family structure or/and cryptic relatedness (Price et 
al., 2010). Values of λ < 1.05 are considered “benign” regarding power and type I 
error (Price et al., 2010), although inflation in λ is proportional to sample size. 
 
Table 5.3 shows the λ values of BW and FE traits using the MLM approach in the 
present study and the GLM approach by Reyer et al. (2015). The genomic inflation 
factor values suggest that population structure is not a strong concern in our data 
and the values are not significantly different from each other in the two methods. 
Moreover, the genomic relationship matrix of individuals shows that there are only 
few half sib and full sib relations in the current data (Mebratie et al., 2018) suggesting 
that family structure is not a strong concern in this study. However, there is a slightly 
higher inflation of λ values in the results of Reyer et al. (2015) compared to the 
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results of the present study. This may suggest that although there is no strong family 
structure in the population, using MLM analysis that takes in to account the existing 
family structure may increase power to detect true associations than ignoring this 
kind of sample structure which may result spurious associations. 
In a simulation study, Thornton et al. (2010) have noted that using the genomic 
relationship matrix that accounts for family and population structure can 
successfully control spurious associations under different settings. Price et al. (2010) 
have also suggested that in studies where population stratification is not a very 
serious concern, an appealing and simple approach is to use mixed models. 
For the commercial broiler chicken data used in this study, family structure is not a 
strong concern. However, as suggested by different authors (Ekine et al., 2014;  Price 
et al., 2010; Thornton et al., 2010), we have used a MLM approach that takes in to 
account the existing family structure and revealed differences in the identified top 
SNPs and candidate genes associated with BW and FE traits compared with the GLM 
approach by Reyer et al. (2015). This strengthens the suggestion that, even though 
there is no strong family structure in the data, MLM approach that uses the genomic 
relationship matrix to account for the existing family structure may decrease bias 
and improve accuracy of the association analysis. 
The results of this study might provide insight about the genetic background of body 
weight and feed efficiency traits. Furthermore, the study emphasizes that GWAS 
using the two approaches (GLM and MLM) does not necessarily give similar results 
even with the absence of strong family structure in the data. 
 
5.5 Conclusions 

GWAS for BW and FE traits was performed in a commercial broiler chicken 
population. The present study has identified 11 QTL and 21 SNPs associated with BW 
traits and 5 QTL and 5 SNPs associated with FE traits. The results of this study provide 
insight on QTL and genes that are involved in the genetics of BW and FE traits in 
broiler chickens and can be used as fundamental information for genomic selection. 
Moreover, the results of the study showed that the MLM approach, which takes in 
to account the existing family structure by using the genomic relationship matrix 
results in different QTL and SNPs for most of the analyzed BW and FE traits compared 
to the GLM approach that ignored the existing family structure. Although, there is 
no strong family structure in this population, the use of MLM approach may increase 
power to detect true associations compared to the GLM approach that does not take 
family structure into account as suggested by previous studies. 
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6.1. Introduction 
 
Improvement of growth rate and feed efficiency is the primary breeding goal in most 
broiler breeding programs. Growth rate and feed efficiency are not only 
economically important traits in the broiler industry but also have environmental 
implications, which increasingly become a global issue. Aggrey et al. (2010) 
quantified feed cost to account for about 70% of the total cost of poultry production 
attesting the significance of improving feed efficiency on the profitability of the 
broiler industry. It is known that body weight or growth rate and feed efficiency are 
highly correlated (Emmerson, 1997). Thus, other than direct selection, improvement 
in feed efficiency of broilers can be achieved through improvement in growth rate of 
broilers since the time required in achieving a specific weight for age decreases with 
increased growth rate, which in turn improves feed efficiency due to lower needs for 
maintenance of body mass. Although poultry production accounts the least of the 
global emissions relative to other livestock sectors such as beef, sheep and pigs, the 
continuous development of the sector makes reduction in emission intensity 
necessary (MacLeod et al., 2013). Feed production is the activity that produces the 
highest emission in the poultry sector, which makes feed efficiency a major 
determinant for reduction in emission intensity (MacLeod et al., 2013). The world 
population is predicted to reach 9.6 billion in 2050 (UN, 2015) and the global demand 
for chicken meat is forecasted to grow by 61% between 2005 and 2030 (MacLeod et 
al., 2013). Thus, there is no doubt about the need to further improve growth rate 
(body weight) and feed efficiency of broiler chickens.  
 
In order to further improve body weight at a certain age and feed efficiency, 
unravelling the genetic background of the traits is essential. The main objective of 
this thesis is to understand the genetic background of body weight and feed 
efficiency using different statistical models and methods. In chapter 2, genetic 
parameters of body weight were estimated using multi-trait REML analysis, hence, 
sex by genotype interaction as well as age by genotype interaction for BW was 
investigated. Chapter 3 confirmed the results of chapter 2 using Bayesian bivariate 
random regression model with an additional objective of investigating the effect of 
selection on body weight along a selection trajectory of 39 selection rounds. In 
chapter 4 genetic parameters for body weight, feed intake and body weight gain 
were estimated simultaneously using a multi-trait Bayesian model. Moreover, the 
relationship between production and feed efficiency traits were investigated. The 
two RFI definitions were derived inside the model; genetic parameters were 
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estimated for the traits, and the relationship between the two RFI definitions were 
investigated. Furthermore, direct and correlated superiority of a group selected on 
phenotypic and genetic RFI were investigated. In chapter 5 GWAS was conducted to 
identify QTL and candidate genes associated with BW and FE traits using mixed linear 
model approach that takes in to account family structure and the results were 
compared with a general linear model approach that does not take family structure 
in to account. By doing so, we investigated several new loci associated with BW and 
FE traits and showed that GWAS using the two approaches does not necessarily give 
similar results, even in the absence of strong family structure. 
In this chapter, the main findings of the four papers of this thesis are summarized 
and integrated with each other and the different statistical models and methods 
employed in the papers are discussed relative to other possible models and 
methods. Moreover, available information on literature about unintended 
consequences of improved growth rate and feed efficiency of broiler chickens are 
discussed. Finally, areas that could be exploited to enhance further improvement in 
body weight and feed efficiency as well as to alleviate unintended consequences of 
improved growth rate and feed efficiency are explored.   
 
6.2. Genetic variability in body weight and feed efficiency  
 
In animal breeding knowledge of variance components of traits of interest is a 
primary pre-requisite to establish a selection program. In an infinitesimal additive 
model estimation of genetic parameters is often synonyms to estimation of variance 
components (Thompson et al., 2005). Reliable estimates of genetic parameters such 
as genetic variance, heritabilities, genetic correlations etc. are essential to properly 
exploit the properties of best linear unbiased predictions (BLUP) of breeding values 
(Chapuis et al., 1996). Genetic parameters enable animal breeders to understand the 
genetic background of traits of interest. Moreover, genetic parameters are essential 
for prediction of breeding values and expected response to selection in breeding 
programs. 
In chapter 2, 3 and 4 of this thesis genetic parameters of BW and FE traits were 
estimated in commercial broiler chicken populations. Furthermore, sex by genotype 
interaction for BW and FE traits, age by genotype interaction for BW and FE traits, 
the effect of selection on genetic parameters of BW, phenotypic and genetic 
definitions of RFI and relationship between production and feed efficiency traits 
were investigated. The results showed that heritability estimates of BW and FE traits 
are moderate and thus could be modified by genetic manipulation or selection. 
Moreover genetic parameters of BW and FE traits were found to differ between 
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males and females as well as between the different recording ages suggesting sex by 
genotype and age by genotype interaction, respectively for BW and FE traits. In 
addition to the heritability estimates, the genetic correlations of BW and FE traits 
between males and females as well as the genetic correlations of BW and FE traits 
between the different recording ages were found to be different from unity. 
Therefore, it was concluded that BW in males and females as well as BW in the 
different recording ages are not the same traits. Furthermore, the moderate 
heritability estimates of BW and FE traits indicate that despite the intense selection 
carried out in BW and FE traits, there is still possibility to further improve the traits 
through selective breeding. 
 
6.2.1. Sex by genotype interaction 
 
Sex by genotype interaction refers to the interaction of genes with male or female 
physiological "environments" (Towne et al., 1997). To understand the genetic basis 
of sex differences in economically important traits, it is necessary to consider 
differential effects of genes on a trait in males and females (Towne et al., 1997).  
In quantitative genetics research there is an implicit, or sometimes, explicit 
assumption that genetic control of metric traits is similar in males and females, sex 
differences being caused by a simple proportional effect of sex on otherwise 
identical genetic effects (Morton, 1973). However, recent studies have consistently  
reported higher BW in males than females at the same age (Begli et al., 2017; 
Mebratie et al., 2017) and accelerated growth rate in male birds compared to 
females (Tagirov and Rutkowska, 2015). The main source of this sexual dimorphism 
is considered to be of epigenetic origin, probably due to the availability and dosage 
of active sex chromosomes (Gutierrez-Adan et al., 2006). The proportion of genes 
which are over expressed is larger in avian males which are homogametic (Zhang et 
al., 2010). In male embryos, those genes which are expressed at a higher dose are 
involved in fatty acid and carbohydrate metabolisms as well as mitochondrial and 
cell cycle processes starting from the primitive streak-stage (Zhang et al., 2010). 
Hence, it is suggested that the faster growth rate of males than females is associated 
with the overexpression of growth hormone receptors and other genes that regulate 
the cell cycle and metabolism (Tagirov and Rutkowska, 2015).  
In humans, sexual dimorphism in disease susceptibility is reported to be due to sex 
chromosomes and gonadal sex hormone effects. The latter is more prominent at 
sexual maturity where as difference in sex chromosomes is a result of  evolution of 
XY testis determination. i.e Females carry two copies of the X chromosome which 
contains relatively higher dosage of genes, whereas males carry a single copy of the 
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X chromosome and a Y chromosome which relatively contains lower dosage of 
genes. Thus, there are differences in gene expression between males and females 
since the sex chromosomes (X-Y) gene pairs are functionally diverged contributing to 
sexual dimorphism (Snell and Turner, 2018 ). 
On the other hand, Mignon-grasteau et al. (1999) reported that sexual dimorphism 
of body weight at 8 weeks of age is lowly heritable (0.05) where as it is moderately 
heritable (0.21) at 36 weeks of age suggesting that selection on growth curve 
parameters might modify the difference between sexes in body weight at a given 
age particularly at later age when the birds attain sexual maturity. 
The results of chapter 2 (Mebratie et al., 2018), 3 (Mebratie et al., 2017) and 4 of this 
thesis showed that the genetic background of BW and FE traits is different in males 
and females. The different heritability estimates of BW and FE traits in the two sexes 
and the genetic correlations of BW and FE traits between males and females which 
were significantly different from unity suggest that the traits are influenced by sex 
by genotype interaction. The genetic correlations between sexes is lower at later 
ages than early ages suggesting that hormonal differences become more distinct at 
later ages. In such cases, treating male and female records of BW and FE traits as 
different traits in broiler breeding programs is important since it may result in re-
ranking of selection candidates. In this regard, Falconer and Mackay (1996) noted 
that cross-sex genetic correlations are population-specific like all other genetic 
parameters due to differences in allele frequencies. In addition to being population-
specific, genetic correlation estimates between male and female traits are expected 
to be environment specific due to genotype by environment interactions particulary 
for fitness traits like longevity (Falconer and Mackay, 1996; Simons and Roff, 1994) 
suggesting that genetic correlation estimates obtained in a single environment or 
averaged across environments may not be sufficient to fully understand the 
evolutionary dynamics of sexual dimorphism when environmental conditions are 
heterogeneous (Poissant et al., 2009). Hence, the effect of sex by genotype 
interaction should be considered in genetic evaluation models for BW and FE traits 
as well as other economically important traits in different broiler populations rather 
than assuming a genetic correlation of unity between males and females and average 
heritability estimates across sexes.  
 
6.2.2. Age by genotype interaction 
 
Body weight and feed efficiency traits are quantitative traits which could be recorded 
at a continuous range of points in the life of a bird in which case genes may react 
differently or different genes may be involved at different ages (range of points) of 
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the bird which is termed as age by genotype interaction (AxG). Variation in 
quantitative traits is assumed to be caused by many loci of small effects. In the 
absence of AxG, breeding values may be constant across ages in which the individual 
is expected to express the same value for the traits recorded at different ages. 
However, when AxG is present, the magnitude of the effects of loci on the trait may 
change with the age of the animal. Some loci which did not have an effect earlier 
may be “turned on” and others which had an effect may be “turned off”, or the same 
genes may increase or decrease in their effect. Thus, the presence of AxG is assumed 
to indicate a change in the genetic basis of the trait with age (Brommer and Class, 
2015) suggesting that  accounting for AxG in genetic evaluation of broiler chickens is 
important in order to fully exploit the sources of variation in BW and FE traits of 
broiler chickens. 
Chapter 2, 3 and chapter 4 of this thesis investigated AxG for BW and FE traits in 
broiler chickens. In chapter 2 (Mebratie et al., 2018) and 3 (Mebratie et al., 2017), it 
is shown that the heritability estimates of BW were significantly different at the three 
different recording ages. In chapter 4, the heritability estimates of FE traits were  
significantly different at the two weighing ages. Moreover genetic correlations of BW 
at the three ages in chapter 2 (Mebratie et al., 2018) and 3 (Mebratie et al., 2017) 
and genetic correlations of FE traits at the two recording ages in chapter 4 were 
significantly different from unity suggesting significance of AxG for BW and FE traits 
in broiler chickens. The genetic correlations of BW between different ages is also 
shown to decrease as the distance between BW measurements increased suggesting 
that BW at “early age” and “late age” is partly controlled by different genes which 
might be related to change in the physiological system of birds with age as explained 
by Schaeffer (2011) stating that there could be genes that “turn on” and “turn off” 
as an animal ages causing changes in physiology and performance. This is consistent 
with our results in chapter 5 (Mebratie et al., 2019) where we have identified age 
specific Quantitative trait locus (QTL) regions; different QTLs and candidate genes 
were identified to be associated with BW at three different ages with only a little 
overlap between the identified QTL regions and candidate genes across the three 
ages. The reported overlap in QTL and candidate genes were for BW measurements 
that were taken closer together than those recorded far apart. Ovelapping QTLs 
were identified for BW at 36 days and BW at 39 days where as no overlapping QTL 
was reported between BW at 46 days with BW36 and BW39. In general, our results 
suggest that that the genetic background of BW and FE traits are not the same across 
ages indicating that BW and FE traits should be selected at the target age to maximize 
genetic gain. Furthermore our results suggest that genetic evaluation models for BW 
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and FE traits in broiler chickens should take in to account AxG instead of assuming a 
genetic correlation of unity and average heritability across ages.  
Genetic improvement of growth rate in broilers has long been accomplished mainly 
by selection for BW at a specific age (Siegel and Dunnington, 1987) which may result 
in differences in body weight between birds at a common age (Liu et al., 1988b). 
Growth curve parameters describe the growth process by summarizing the 
information provided by all weights in to only a few parameters (Mignon-Grasteau 
etal., 1999). The Gompertz curve is one of the most popular growth curve in poultry 
(Laird, 1966). Mignon-Grasteau et al. (1999) used the Gompertz curve in chickens 
which included 8-10 weights per animal from 0 to 20 weeks of age and estimated 
genetic parameters for the growth curve parameters. They reported different 
heritability estimates for the growth curve parameters in the range between 0.25-
0.48 in males and 0.43-0.54 in females. Moreover the reported genetic correlations 
between the different growth curve parameters range from low and negative to 
positive and high (-0.02 to 0.98) but significantly different from unity suggesting that 
growth curve parameters are partly controlled by different genes. Furthermore, it 
suggests that specific breeding programs for different growth curve parameters 
could alter the growth trajectory for example to maintain optimal growth at early 
age and protein accretion while reducing fat deposition. Genetic manipulation of 
growth curve parameters could be an alternative to decrease unintended 
consequences of intense selection for BW at a specific age on fitness traits in modern 
broilers by independently selecting the heritable part of the curve or selecting based 
on genetic correlations.  
 
6.2.3. Maternal effects on body weight  
 
Body weight in broilers is not only influenced by direct genetic effects but also by 
maternal genetic and maternal environmental effects (Liu et al., 1993). Females vary 
in their ability to provide suitable environment to their offspring to survive and grow 
in terms of protection and nourishment. This ability has both genetic and non-
genetic basis, which are called maternal genetic and maternal environmental effects, 
respectively. Maternal effects are mainly exhibited in mammals and related to pre-
natal and post-natal nutrition (Falckoner and Mackay, 1996).  
Maternal environment influences the growth of birds in two ways which are known 
as pre-ovipositional maternal effects and post-ovipositional maternal effects (Aggrey 
and Cheng, 1993). The pre-ovipositional maternal effects are common oviductal 
factors expressed by the characteristics of the egg (Aggrey and Cheng, 1993). The 
post-ovipositional effects can be divided into pre-hatch (incubation) and post-hatch 
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effects (Aggrey and Cheng, 1993). Pre-hatch and post-hatch maternal effects are not 
important in growth of commercial broilers where chicks are incubated and raised 
independet from hens. Thus, the common environmental effects that could possibly 
affect chick growth are pre-ovipositional maternal components, such as egg weight,  
egg size, yolk composition and shell quality (Aggrey and Cheng, 1993). 
In poultry maternal environmental effects are mainly due to egg weight/size which 
is influenced by the age of the hens (Shalev and Pasternak, 1993) and the size of the 
hens (Mignon-Grasteau et al., 1999). Schmidt et al. (2003) noted that 62 to 78 % of 
chick weight is determined by egg weight while Koerhuis et al. (1997) reported that 
a difference in 1 gram egg weight is reflected in about 10 gram gain of body weight 
of juvenile broilers. In a different study, Schmidt et al. (2009a) reported an increase 
in 0.71 gram and 0.68 gram chick weight for selected line for growth rate and control 
lines, respectively, which result from an increase in 1.0 gram egg weight. Maternal 
effects are shown to be sensitive to effects such as hatch, age, year etc. (Koerhuis 
and Thompson, 1997; Robinson, 1996; Robinson, 1994). If such sources of variations 
are not taken in to account in the model, they could affect estimates of maternal 
effects.  
In chapter 2, 3, and chapter 4 of this thesis, maternal genetic effect was not 
significant for BW at different ages in the studied broiler population, hence, it was 
not included in the models while maternal permanent environmental effect was 
significant and included in the statistical models. In all our studies, the maternal 
environmental effect accounted for a relatively small proportion of the total 
phenotypic variance, decreased with age and were smaller in males than in females. 
This is in agreement with literature. For example, Aslam et al. (2011) reported the 
proportion of variance explained by common (maternal) environment in turkeys to 
be 0.43 for body weight at day 1, however it reduced quickly to 0.11 at day 17 and 
became negligible after 60 days. Similarly, Koerhuis and Thompson (1997) reported 
a relatively low maternal environmental variance as a proportion of phenotypic 
variance in chickens. They also reported low maternal heritability in the range 0.01-
0.17 in broiler chickens. In contrast, Mignon-Grasteau et al. (1999) reported a 
relatively higher maternal heritability; 0.21 in females and 0.24 in males at 8 weeks 
of age and 0.08 in females and 0.11 in males at 36 weeks of age in chickens. In the 
same study, they observed maternal effects on growth curve parameters and 
reported that maternal effects were higher for the juvenile traits (BW at hatch and 
initial specific growth rate) relative to other growth curve parameters. Indeed, 
maternal effects are more pronounced at earlier age of birds and diminish with age. 
Higher maternal effects in males than females is also observed in turkey birds 
(Chapuis et al., 1996) and was explained by females being precocius (appearing more 
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mature at a given age) than males (Mignon-Grasteau et al., 1999; Chapuis et al., 
1996). Morover, the differences in maternal effects between males and females is 
suggested to be due to differences in  growth metabolisms and other causes such as 
incidences of leg disorders (Chapuis et al., 1996). In turkeys, Chapuis et al. (1996) 
compared six different animal models for BW which ranges from a simple model with 
animals as the only random effects to the most comphrensive model which includes 
both genetic and maternal environmental effects as well as a genetic covariance 
between direct and maternal effects and noted that the most comphrensive model 
resulted in the highest log likelihood value. However, increase in computation time 
and convergence problems may be an issue in using such complex models.  
Maternal effects on feed efficiency traits did not receive much attention in poultry. 
In chapter 4, we have observed that the maternal environmental effect is significant 
for FE traits, although it accounts only small proportion of the total phenotypic 
variance, the effect is not negligible. It seems that the effect of the dam on the 
variation of FE of its offspring needs further investigation.  
In general maternal effects (genetic and environmental) should receive due 
consideration in genetic evaluation models since ignoring these effects while 
statistically significant may result inflation of the genetic variance and in turn 
inflation of the direct heritability estimates. Roehe and Kennedy (1993) evaluated 
the loss of selection response due to a model that ignored maternal effects while 
statistically significant versus a model that included maternal effects and reported 
that ignoring maternal effects slightly decreased the accuracy of estimating direct 
effects and caused an increased overestimation of genetic trend over 10 years for 
the direct effect. As a result, younger animals were more frequently selected than 
older animals. When generations are not overlapping, this kind of bias does not 
affect selection decisions dramatically. However, in commercial broiler breeding 
schemes generations are mostly overlapping thus ignoring maternal effects may 
highly influence selection decisions. 
 
6.3. Effects of selection on body weight and feed efficiency  
 
The aim of a selection program in animal breeding is to select individuals having high 
additive genetic merit to be parents of the next generation. On average, half of the 
genes of a parent and thus random half of its additive genetic merit is transmitted to 
the offspring. While selecting parents based on their additive genetic merit any 
parallel merit for additive by additive epistatic effects is also transmitted. The 
additive genetic merit or the breeding value of an individual is defined as the sum of 
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the additive effects of its genes, which mainly determines response to selection 
(Falconer and Mackay, 1996).  

In chapter 3 (Mebratie et al., 2017), the effect of selection on genetic parameters of 
BW is investigated by studying the development in genetic variance of BW across a 
selection trajectory of 39 selection rounds. It is shown that the genetic variance of 
BW did not diminish or exhaust after several generations of selection suggesting that 
there is still genetic variance avilable for selection and considerable genetic gain can 
be obtained by selective breeding. Theoretically, it is known that long term selection 
reduces the genetic variability of a trait which also reduces the heritability and inturn 
diminishes the response to selection. However, our results indicate that this is not 
always the case. We have clearly shown that the genetic variance and the heritability 
estimates of BW increased across the selection trajectory. It can be argued that the 
increased genetic variance is partly due to scale effect since the weight of the birds 
is expected to increase due to the increase in their “physiological age” along the 
selection trajectory. However, heritability estimates cannot be influenced by scale 
effects since they are ratios of two variances. Hence, the increase in the heritability 
estimates across the selection trajectory attest the increase in genetic variance is not 
only due to scale effects rather it may be attributed to accumulation of new 
mutuations or other genetic effects that are not properly accounted in the statistical 
model. This is consistent with the reported results in chapter 5 (Mebratie et al., 2019) 
in which we have detected a number of QTL regions and candidate genes associated 
with BW and FE traits even though birds were pre-selected for BW and undergone 
several generations of selection for FE. In fact, the increase in genetic variance of 
quantitative traits from the accumulation of new mutations has been known for 
quite some time (Hill, 2000; Falconer and Mackay, 1996). After 50 generations of 
selection for body weight in an inbred mice line, Keightley (1998) reported an 
increase of 0.23–0.57 % in heritability of body weight per generation and the author 
suggested that the increase in heritability is due to new mutations.  
Despite the intense selection carried out on growth rate of broiler chickens for the 
last several decades, there is considerable genetic variation for BW; heritability of 
body weight at different ages in males and females is reported to be in the range 
from 0.20-0.64 (Mebratie et al., 2017; Begli et al., 2016; Adeyinka et al., 2006; Prado-
Gonzalez et al., 2003; Mignon-Grasteau et al., 1999; Le Bihan-Duval et al., 1998). 
Moreover tody’s broilers have about four fold higher body weight at the same age 
than broilers at the 1950s (Havestein et al., 2003a). It is not likely that this is only due 
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to random mutuations that occured in all commercial broilers rather it is likely that 
selection increased the frequency of new combinations of rare alleles and genes, 
which gave rise to higher performing genotypes (Deeb and Lamont, 2002).  
Selection results changes in allele frequency of a gene. The effect of selection on 
gene frequency not only depends on the intensity of selection but also on the actual 
frequency of the gene at the time of selection. It is noted that the rate of change 
increases dramatically for intermediate initial gene frequencies and declines rapidly 
for small and large initial gene frequencies. However, if the favourable gene is rare, 
the variance can increase by selection until intermidiate gene frequency is reached 
in the absence of dominance (Falconer and Mackay, 1996). The consequence of 
selection over a long period is, however, unpredictable. It depends on the individual 
genes contributing to the response and the presence/absence of mutation, which 
can produce new variation that is hard to predict (Falconer and Mackay, 1996). On 
the other hand, Bulmer (1971) noted that in artificial selection experiments, it is 
more likely that the effects of linkage disequilibrium are more important than the 
effects of gene frequiencies which are slower and less rapid. Under the infinitesimal 
model, selection-induced changes in gametic-phase disequilibrium can cause rapid 
and significant changes in the additive genetic variance. Directional and stabilizing 
selection induces negative covariances (negative disequilibrum) among loci affecting 
a trait, which reduces the genetic variance and inturn reduces the phenotypic 
variance (Bulmer, 1971). However, the reduction in genetic variance does not 
continue indefinitely rather it is balaced when the increase in disequilibrum is 
balanced by the loss in disequilibrum due to recombination. In the absence of linkage 
about four generations are enough to bring the popultion near to balance (Falconer 
and Mackay, 1996). 
In a simulation study, Liu et al. (2014) noted that genetic variance across 25 
generations of selection was influenced by the number of QTL controlling a trait. The 
authors compared different selection criteria and different numbers of QTL (4, 40 
and 100) controlling a trait and reported that the change in genetic variance is more 
prounounced for a trait controlled by smaller number of QTL (4 QTL). In this regard, 
all selection criteria have shown a faster initial increase in genetic variance followed 
by a higher peak and finally a faster reduction in genetic variance. The faster initial 
increase in genetic variance was attributed to a rapid rise in allele frequency due to 
easier identification of animals with favourable alleles when the number of QTL was 
smaller. While the higher peak was attributed to all QTL reaching intermidiate allele 



General discussion 
 

 

147 
 

frequencies at the same time because of the small number of QTL. Finally the 
reduction in genetic variance was attributed to the rapid fixation of favourable alleles 
(Liu et al., 2014). 
The effect of selection that can be observed and of interest to animal breeders is 
,however, restricted mainly to changes in population mean since changes in 
individual gene frequencies are hidden as most genes are effectively unknown 
(Falconer and Mackay, 1996). This is known as response to selection which is 
computed as the difference between mean phenotypic value of progeny of selected 
parents and the mean of the parental generation before selection (Falconer and 
Mackay, 1996). Response to selection depends on the accuracy of selection, which 
inturn depends on the heritability of the trait and the amount of information 
available for estimating breeding values, the intensity of selection and the genetic 
variance in the population of individuals being selected (Falconer and Mackay, 1996). 
The moderate heritability of BW and FE traits reported in chapter 2, 3, and 4 suggest 
that further improvement/response can be achieved through direct selection on 
these traits.  
It may sometimes be advantageous to improve a trait using indirect selection 
through its correlated response to another trait than direct selection if the trait is 
lowly heritable, difficult or/and expensive to measure with precision, or/and if it is 
expressed in only one sex (Falconer and Mackay, 1996). The response of a correlated 
trait can be predicted if the genetic correlation between the traits and the 
heritabilities for the traits are known (Falconer and Mackay, 1996). If trait 1 is the 
trait of interest, the gain in trait 1 through indirect selection relative to the gain from 
direct selection is calculated as the genetic correlation between the traits multiplied 
by the the ratio of heritability of trait 2 to trait 1 (Falconer and Mackay, 1996). Hence,  
indirect selection is better than direct selection, if trait 2 has considerably higher 
heritability than trait 1 and the genetic correlation between the traits is high.  
The moderate heritability estimates of production traits (body weight and body 
weight gain) and feed efficiency traits (feed intake and the two RFI definitions) as 
well as the moderate to high genetic correlations between production and feed 
efficiency traits reported in chapter 4 suggest that selection on production traits will 
result a considerable correlated response on feed efficiency traits and vice versa. 
Indeed  improvement in feed efficiency of broilers has long been achieved through 
indirect selection of growth rate and still broilers with highest body weight are pre-
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selected before they start feed efficiency test in most commercial breeding 
programs. 
 
6.4. Different measures of feed efficiency 
 
In chapter 4 two RFI definitions (phenotypic and genetic RFI) were derived from a 
joint Bayesian analysis of body weight, feed intake and body weight gain. Phenotypic 
RFI was derived using partial phenotypic regression coefficients and genetic RFI were 
derived using partial genetic regression coefficients. The advantage of the Bayesian 
analysis over the conventional methods is that it minimizes error in the estimation 
of regression coefficients by estimating the partial phenotypic and genetic regression 
coefficients from co (variance) matrices of feed intake and production traits 
simultaneously compared to the assumption of known co (variance) matrices of 
component traits of RFI in Kennedy et al. (1993) and the classical two-step approach 
(Koch et al., 1963). In the classical two step approach, feed intake and production 
traits are analyzed together in a multiple regression analysis and regression 
coefficients are obtained from the resulting co (variance) matrices before the genetic 
analysis. Then RFI is computed using the regression coefficients for each animal and 
the genetic analysis is performed. In this procedure, the resulting covariance 
matrices of RFI and production traits are usually singular due to problems related to 
defining the traits before the genetic analysis (Jensen, 2013). 
The genetic correlation between phenotypic and genetic RFI were high and not 
significantly different from unity at t-6 days of age suggesting that selection for FE 
based on either phenotypic or genetic RFI will result similar genetic response at this 
specific age. However, genetic RFI is easier to communicate to stakeholders since it 
is a part of FI which is not genetically correlated with production traits. In a recent 
study in pigs, body composition trait was included as production trait other than 
average daily gain and a genetic correlation between phenotypic and genetic RFI 
which is significantly different from unity was reported (Shirali et al., 2018).  
Feed conversion ratio (FCR) which is calculated as the ratio of feed intake to body 
weight gain is also a popular measure of feed efficiency in poultry. The trait is 
moderately heritable, hence, improvement of FE using FCR as selection criterion is 
possible. However, it is well known that selection for FE based on FCR has  an 
inherent problem which is related to ratio traits. Mainly, as selection intensity 
increases, direct selection for FCR causes selection to be focused primarily on the 
information in the numerator regardless of the distributional properties of the 
component traits (Gunsett, 1984) which leads to selection pressure being placed 
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non-linearly on feed intake and body weight gain (Willems et al., 2013). This problem 
may be circumvented by using the Bayesian method applied in chapte 4 which 
accounts for the non-normal distribution of ratio traits. The Bayesian method 
enables the amount of genetic variance and covariance available for selection to be 
derived from the results of the Gibbs sampler without enforcing approximations due 
to the unknown distributional properties of a ratio trait and its component traits 
(Shirali et al., 2018). 
Other measures of FE such as Residual gain (RG) and Residual feed intake and Gain 
(RIG) were suggested in literature as alternative measures of FE in poultry. Residual 
gain (RG) is defined as the residuals from the linear regression of average daily gain 
(ADG) on both FI and BW. It is calculated as: RG = ADG - [μ + (b1*FI) + (b2*BW)]. 
Where, ADG represents the average daily gain over a defined period, μ represents 
the average ADG, b1 and b2 represent the partial regression coefficients on FI and 
BW, respectively (Berry and Crowley, 2012; Romero et al., 2009b). In this regard, 
birds having high RG, have higher growth rate but not higher feed intake (Berry and 
Crowley, 2012). Our Bayesian analysis presented in chapter 4 can be easily extended 
to include RG without resorting to the two step procedure assumed in the definition 
of RG. Using the Bayesian analysis it is possible to simultaneously estimate regression 
coefficients and perform genetic analysis for RG rather than the two step procedure. 
In the two step procedure, first RG is computed using regression coefficients 
obtained from joint analysis of ADG, FI and Gain and then genetic analysis of RG is 
conducted with FI and ADG. However, the Bayesian one step procedure minimizes 
error in the estimation of regression coefficients by estimating the regression 
coefficients and conducting the genetic analysis simultaneously.  
Residual feed intake and Gain (RIG) which integrates the beneficial characteristics of 
both RFI and RG was also suggested as an alternative measure of FE. RIG which is 
calculated as, RIG = [(-1*RFI) + RG] is independent of BW, but when used for selection 
it can increase body weight gain and reduce feed intake, simultaneously. Both RFI 
and RG are standardised to a variance of one and multiplying RFI by a negative value 
accounts for the fact that birds with a negative RFI have better feed efficiency, 
whereas the opposite is true with RG; a positive number corresponds to having 
greater feed efficiency (Berry and Crowley, 2012). The above alternative measures 
of FE are not commonly used in poultry, hence, the impact of using these alternative 
measures should be further investigated.  
One of the challenges in using the different measures of FE is to find optimal ways of 
measuring feed intake. In this regard, all the available measures of FE require the 
measurement of individual feed intake, which can be difficult to measure in practice. 
The commonly used way to measure individual FI is using individually caged birds 
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and record aggregate feed intake over a test period. This method is cheap and 
simple, but requires a significant amount of barn space, doesn't account for social 
interactions and feed intake measurements can only be taken on a limited number 
of birds. Moreover, it does not represent the real situation in which parents are 
selected in individual cages while their progeny’s are expected to perform in a group 
housed enviroment. Therefore, the FI measured in this way might be a genetically 
different trait compared to  that of the FI measured from commercial birds which 
are housed in groups. To this end, an automated electronic feeding system that 
enables to take feed intake measurements on specific individuals in a group-house 
setting was proposed as an alternative (Howie et al., 2011; Tu et al., 2011). This 
system enables feed intake measurements to be taken on larger number of birds, 
and because of the group-housed environment, it takes in to account social 
interactions between birds. However it is expensive to implement except in large 
scale industries. In fact, large global breeding companies have started to replace 
single bird cage selection with selection of individual birds from group floor housing, 
using transponders on the birds and feeding stations with sensors to record feed 
intake (Pym, 2008). This way of measuring FI should be developed to a cheaper 
version to fully exploit the system. 
Other than feed intake and energy use of birds, feed efficiency of broilers also 
depend on the digestion ability (digestibility) of birds (Fairfull and Chambers, 1984). 
Mignon-Grasteau et al. (2004) reported variation in digestibility of birds that were 
fed a wheat based diet while birds fed a corn-based diet were reported to have 
homogenous digestibility. The authors reported moderate heritability (0.37) of 
digestibility for birds fed wheat based diet and low heritability of digestibility for 
birds fed corn based diet. This suggests that selection for FE based on digestibility 
could be possible. However, the type of feed that is fed to broilers is important to 
select on digestibility since there is considerable variability of birds in digestibilty 
depending on the type of feed. Until recently, there was no evidence for genetic 
improvement of  digestive efficiency in broilers (Tallentire et al., 2016). However, 
considering the variation in digestibility among birds and its moderate heritability, it 
seems that genetic selection for improved digestibility is worth trying to further 
improve feed efficiency. 
Another possibility for improvement in FE could be exploring the gut microbiota of 
broilers. Host genotype may influence the gut microbiota composition either directly 
through secretions into the gut, control of gut motility and modification of epithelial 
cell surfaces, or indirectly, through feed and other husbandry practices (Zhao et al., 
2013). Zhao et al. (2013) compared gut microbiota composition of two chicken lines 
which are selected for high and low BW for more than 50 generations, fed the same 
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diet and reared in the same environment. The authors reported that the composition 
of the gut microbiota were different in the two lines as well as in males and females 
suggesting that the composition of gut microbiota is influenced by host genotype 
and sex. They reported 190 microbiome species and of which 68 were influenced by 
genotype, sex, and sex by genotype interactions, among which the most prominent 
microbiome is Lactobacillus, which is reported to be associated with variations in 
BW. In dairy cows, Difford et al. (2018) reported associations between rumen 
bacteria abundance and methane emissions and suggested that unlocking the 
genetic potential of the host through strategies which may result required changes 
in the rumen microbiota through selective breeding may reduce methane emissions. 
Likewise, exploring the gut microbiota of broilers if there is significant association 
between specific microbiota and FE and selection of birds with the desired 
microbiota after quantifying their associations with FE may complement the 
currently avilable strategy of selection for FE.  
It is known that improvement of FE reduces the enviromental impact of poultry 
production. However other than indirect selection, direct selection against emission 
related traits could also be a possibility to reduce the environmental impact of 
poultry production. The most significant emissions from poultry production include 
carbon dioxide (CO2), ammonia (NH3), nitrous oxide (N2O) and methane (CH4) that 
are considered to be components of global warming that result from feed 
production, energy use, transport, manure storage and processing and directly from 
the live animal (MacLeod et al., 2013; Williams et al., 2006). Despite the difficulty to 
measure these traits, estimation of genetic parameters for emission related traits 
and quantify genetic correlations with FE traits may help to understand the genetic 
background of the traits and explore possibilities of direct selection or/and including 
them in a multi trait selection index with FE traits may be an area that needs to be 
further explored.   
 
6.5. Identification of QTL 
 
Most economically important traits in livestock are highly polygenic, and are 
controlled by many genes spread throughout the genome, environmental factors, as 
well as genotype by environment interactions (Gao et al., 2007; Zhu and Zhao, 2007). 
Body weight and feed efficiency traits are quantitaive traits which are controlled by 
many genes, each having small effects. In chapter 5 (Mebratie et al., 2019), a number 
of QTL regions have been reported to be associated with BW and FE traits. This is a 
remarkable finding, given the fact that the broiler population were pre-selected for 
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body weight and undergone several generations of selection for feed efficiency, one 
may not expect to detect a considerable number of QTL. In fact, this is consistent 
with our investigation in chapter 3 (Mebratie et al., 2017) in which we reported that 
the genetic variance of BW were not exhausted after several generations of 
selection. Although there were an overlap of QTL regions for BW at the three 
different ages a number of age specific QTL were identified which supports our 
investigations in chapter 2, 3 and 4 suggesting that genes affecting BW is partially 
changing with age. Moreover, an overlap of QTL regions and candidate genes were 
observed for BW measurements taken closer together than far apart which is also in 
line with our investigations in chapter 2 (Mebratie et al., 2018) and chapter 3 
(Mebratie et al., 2017) in which genetic correlations were higher between BW 
measurements taken closer together than far apart. In this regard, it would be 
interesting to investigate if there is sex specific QTL for the traits. Unfortunately we 
had only access to male broilers in our GWAS and we, therefore, could not 
investigate this. 
Inspite of the many success stories of GWAS, one of the challenges in GWA studies 
is inconsistencies among the results of GWAS reports for the same trait, which may 
be mainly attributed to aspects such as population size, density of the markers 
(SNPs), accounting/not accounting for population genetic structure, as well as choice 
of statistical models and methods (Sharma et al., 2015; Zhang et al., 2012). A number 
of studies have shown that methods that model family structure, population 
structure and cryptic relatedness are better interms of reducing type I error than 
methods that ignore these complexities (Kang et al., 2010; Zhang et al., 2010). Mixed 
models offer a practical and comprehensive approach for simultaneously addressing 
confounding due to population stratification, family structure and cryptic 
relatedness (Gialona et al., 2018; EU-ahsunthornwattana et al., 2014; Price et al., 
2010).  
In chapter 5 (Mebratie et al., 2019), we have conducted GWAS using a statistical 
model (Mixed linear model) that takes in to account family structure by using the 
genomic relationship matrix and compared the results with a general linear model 
(GLM) which does not take family structure in to account. Although there were 
overlaps in the detected QTL regions in the two methods, most of the identified QTL 
regions for BW and FE traits were different suggesting that careful consideration of 
statistical models in GWAS is important. Moreover, the slightly lower genomic 
inflation factor values in our analysis than the GLM analysis may suggest that using 
mixed linear models that takes in to account the existing sample structure may help 
to reduce type I error and reduce spurious associations than the GLM analysis even 
if family structure is not a strong concern in the data. 
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6.6. Methods and models for estimation of variance 
components 
 
In animal breeding, estimation of variance components is a primary pre-requisite to 
establish a selection program. One of the problems involved in the application of 
quantitative genetic theories is accurate statistical estimation of genetic parameters 
(variance and covariance components). There are different methods of variance 
component estimation and there is no one method that is uniformly best for all 
situations (Mašata and Rasch, 2006) because different methods have different 
statistical properties. The choice of methods depend on the data available for 
analysis, the objective of the study, the availability of computing resources, and 
property of the statistical model to be used for analysis. Different methods can be 
applied in combination with different statistical models. Models are simple 
approximations to how factors influence a trait. The goal is to find the best practical 
model that leads to the most accurate inference (Schaeffer, 2011). In chapters 2, 3, 
and 4 we have used different statistical models and methods for estimation of 
variance components. Below, the different statistical models and methods used in 
this thesis are discussed relative to other possible models and methods. 
In chapter 2 (Mebratie et al., 2018), our objective was to study genetic parameters 
for BW in males and females recorded at three different ages considering BW in 
males and females as well as BW at the three different ages as different traits. Hence, 
we have used multivariate model which enables estimation of genetic correlations 
of BW between sexes and ages. Multivariate models (MTMs) are essential for 
estimation of genetic and phenotypic correlations between traits. Moreover, joint 
analyses of correlated traits yields more accurate results for a trait of interest by 
utilizing information from all other traits. One of the advantages of multivariate 
models is that information on each trait contributes to the accuracy of breeding 
value prediction in other traits because utilization of the available information 
increases accuracy and decreases systematic biases in genetic parameters and 
breeding values. For example accuracy of predicting breeding value for trait 3 might 
increase when including information on traits 1 and 2. This is more important when 
data are not a random sample, i.e. when records for some traits are missing due to 
selection which is often practical in animal breeding where data is obtained from 
selection experiments or field records (Meyer, 1991). However, multivariate models 
have limitations such as  being computationally expensive and require more memory 
and disc space than univariate models. Moreover, MTMs do not increase accuracy if 
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heritability of traits are similar in magnitude; genetic and residual correlations are 
relatively the same in magnitude or sign and when each animal is recorded for all 
traits (Schaeffer, 2011). Another problem in MTMs is that the number of (co) 
variance parameters to estimate grows proportional to the square of the number of 
traits included in the analysis. This increases computation time and for small data 
sets accurate estimation of parameters will be even more difficult. Hence, joint 
estimation of many parameters may lead to models with low predictive ability than 
simpler univariate models. 
One can use univariate models to estimate genetic parameters and reduce the 
computation time, however such models do not enable estimation of genetic 
correlations between traits rather they implicitly assume that all correlations are 0 
or 1. In addition, the accuracy of estimation may decrease due to the fact that the 
available information is not utilized. In chapter 2 (Mebratie et al., 2018), we have 
used multivariate analysis and shown that the heritability estimates of BW are 
different in males and females as well as the three ages. Furthermore, every animal 
is not measured for each of the traits because of selection. i.e. the time required for 
market age reduced due to selection for growth rate, and the weighing age was 
reduced from t to t-4 and t-7 days. Thus, birds measured at t days of age did not have 
records at  t-4 and t-7 days and birds measured at t-4 days did not have records at t 
and t-7 days, etc. Therefore, using multivariate models in such cases increases 
accuracy of estimation due to the arguments justified above.  
Nevertheless, MTMs are not optimal for traits that are measured over a trajectory 
(longitudinal data). For traits that are recorded repeatedly and may change, 
gradually and continually, as time progresses like growth (body weight), individual 
records can be considered as points on a trajectory (Meyer, 2004). Thus, an 
appropriate way of modelling such traits is to fit a set of random coefficients of time 
or weight for each animal to allow for individual variation across the trajectory 
(Meyer, 1998). Since using each record at the “age” it was taken is more appropriate 
than a repeatability model that assumes homogeneous variance and treat records at 
different “ages” as same traits or multivariate models that assumes hetrogeneous 
variance and treat records at different “ages” as different traits (Meyer, 2000). In 
chapter 3 (Mebratie et al., 2017), we have used bivariate random regression model 
via Gibbs sampling to study the development in genetic variance of BW over a 
selection trajectory of 39 selection rounds in males and females. To model such kind 
of data random regression models (RRMs) are more appropriate because they 
assume the correct variance for each BW records at each selection round whereas 
MTMs treat all BW records at each SR as if they had variances and genetic 
parameters equal to that of the target age (t days of age) (Meyer, 2004). Thus, using 
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RRMs increase accuracy compared to MTMs when records occur outside non 
standard points (target ages) (Bohmanova et al., 2005; Meyer, 2004).  
RRMs are commonly used with LeGendre polynomials (LPs) and splines. However, 
differenet studies have shown than splines have better numerical properties than 
LPs particularly at the extremes of the trajectory where the number of records is 
small (Meyer, 2005a; Misztal et al., 2000). In chapter 3 (Mebratie et al., 2017), we 
have used RRMs with splines and investigated the development in genetic variance 
of BW over the selection trajectory and showed that the gradual change in genetic 
variance of BW along a selection trajectory should be modelled as a continuous 
process using RRMs. Such models are important to investigate the effect of selection 
on genetic parameters of traits of interest.  
In chapter 4, we have employed a multivariate (12-trait) Bayesian analysis to analyse 
body weight, feed intake and body weight gain in males and females at two different 
ages simultaneously and derive the two RFI definitions inside the model. The 
Bayesian analysis used in our study enables estimation of the co (variance) function 
for phenotypic and genetic RFI using proper distributions of feed intake conditional 
on production traits in a one-step procedure. This minimizes error in the estimation 
of regression coefficients compared to the assumption of known co (variance) 
matrices of component traits in Kennedy et al. (1993). Moreover, the Bayesian one-
step procedure ensures that parameter estimation in the regression analysis is not 
biased by “fixed effects” in the model and by effects due to genetic trends for 
component traits in the population under investigation (Jensen et al., 2013) 
compared to the two-step procedure (Koch et al., 1963) where RFI is estimated 
before the genetic analysis. However, both genetic and phenotypic RFI can be 
estimated in a standard multivariate REML analysis as well. Nevertheless, such 
analysis cannot be extended to ratio traits like FCR due to distributional properties 
of ratio traits. 
Methods of estimation of genetic parameters in animal breeding have changed 
considerably over the last decade. Increasing application of mixed model 
methodology in genetic evaluation (BLUP) has been followed by progressive use of 
efficient procedures to estimate variance components. In particular, the animal 
model has influenced the use of mixed model methodology in the statistical analysis 
of animal breeding data considerably. The animal model includes a random effect 
for the additive genetic merit of each animal incorporating all known relationship 
information in the analysis via the additive genetic relationship matrix. This is 
important to obtain more accurate predictors and to take in to account effects of 
selection on prediction and estimation of genetic parameters (Sorensen et al., 1994). 
In chapter 2, 3 and 4 we have used pedigree based BLUP animal model under 
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different settings. In chapter 2 (Mebratie et al., 2018), we have used REML analysis 
to estimate genetic parameters for BW where as in chapter 3 (Mebratie et al., 2017) 
and 4 we have used Bayesian analysis via Gibbs sampling to estimate genetic 
parameters for BW and FE traits. Estimation of genetic parameters needed for BLUP 
has been largely based on REML analysis using an animal model (Gianola et al., 2018). 
REML estimators of variance components maximizes the part of the likelihood 
function, which is independent of fixed effects (Corbeil and Searle, 1976; Patterson 
and Thompson, 1971) by replacing the data by linear functions also called ’error 
contrasts’, with an expectation of zero (Meyer, 1991). However, the REML analysis 
does not lead to exact inferences about genetic change when variances are unknown 
(Sorensen et al., 1994). In contrast the Bayesian analysis makes inferences about 
breeding values (or functions thereof such as selection response) irrespective of 
whether variances are unknown, using the marginal posterior distribution of the 
vector of breeding values or from the marginal posterior distribution of selection 
response. In the Bayesian analysis, all other unknown parameters, such as ’fixed 
effects’ and variance components or heritability, are considered as nuisance 
parameters and must be integrated out of the joint posterior distribution (Gianola et 
al., 1986). 
The Bayesian analysis yields a Monte-Carlo estimate of the full marginal posterior 
distribution of a parameter of interest, from which probabilities that the parameter 
lies between specified values can be computed. This is particularly relevant in the 
case where the asymptotic normality of posterior distributions is difficult to justify, 
which can often be the case in selection experiments (Sorensen et al., 1994). 
Nevertheless, the Bayesian approach is computationally demanding in terms of 
computation time and the rate of convergence can be extremely slow, especially 
when there is high correlation between random effects, which is often the case in 
animal models. However, the cost of the additional computation time needed to 
conduct the Bayesian analysis is negligible relative to the total cost of the selection 
experiment (Sorensen et al., 1994). 
 
6.7. Correlated effects of improved growth rate and feed 
efficiency  
 
Genetic selection for improved growth rate, feed efficiency, and carcass yields have 
considerably changed the morphology and physiology of broiler chickens. In just 6 
weeks, modern broilers undergo a 50-fold multiplication in body weight from 
hatching to slaughter weight (Tickle et al., 2014). Growth rates in commercial broiler 
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chickens have consistently increased such that a 300% increase has been acheived 
in the past 60 years, from 25 g per day in the 1950’s to 100 g per day in the modern 
broiler (Knowles et al., 2008). However, selection for rapid growth and improved 
feed efficiency is associated with unintended consequences resulting from 
disruption of physiological equilibria (Chambers, 1990). This may compromise the 
welfare of broilers and could limit further improvement in growth rate and feed 
efficiency (Tickle et al., 2014). The major unintended consequences of selection for 
growth rate and feed efficiency in broiler chickens that can reduce performance and 
compromise their welfare can be classified as physiological, skeletal, reproductive 
and immunological consequences. Each of them are discussed below. 
Physiological consequences: One of the physiological consequences of increased 
growth rate is pulmonary hypertension that leads to ascites, which is accumulation 
of fluid in the abdomen (water belly). Pulmonary hypertension is characterized by 
increased blood flow, hypertrophy of the right ventricle, valvular insufficiency, 
increased venous pressure which leads to ascites (Julian, 1993). Pulmonary 
hypertension syndrome (PHS) is related to increased metabolic oxygen requirement 
due to insufficient oxygen supply to the tissues of the rapidly growing broilers, i.e. 
any factor that increases oxygen requirement increases ascites incidence caused by 
PHS (Julian et al., 1989; Julian et al., 1987). Rapid growth has been signalled as a 
cause for increased ascites due to increased metabolic oxygen requirement related 
to it (Pakdel et al., 2005; Currie, 1999; Julian, 1993; Scheele et al., 1992; Scheele et 
al., 1991). Large and heavy breast of modern broilers together with the pressure of 
abdominal contents on air sacs are reported to be involved in the development of 
PHS that leads to ascites (Julian, 1998). Furthermore, broilers selected for high BW 
and lower FCR are less flexible in metabolic adaptation to a changing environment 
(e.g. low temperature, high altitude) which  could be a cause for ascites (Julian, 2000; 
Scheele, 1996; Scheele et al., 1991). Genetic selection for growth rate in broilers has 
not only led to higher BW but resulted in allometric changes; decreased heart and 
lung size relative to the rest of the body (Ducuypere et al., 2000; Julian, 1998) which 
causes inability of the heart and lungs to deliver sufficient oxygen to tissues and 
inturn makes the birds susceptible to ascites.  
Improved feed efficiency results in decreased metabolic rate, which inturn leads to 
low oxygen consumption (Decuypere et al., 2000). Broilers which are selected for 
low oxygen consumption has been reported to show high feed efficiency (Steward 
et al., 1980) and low thyroid gland activity (Buys et al., 1999) which is associated with 
regulation of metabolic rate. Thus improved feed efficiency in broilers is associated 
with low oxygen consumption leading to ascites (Luger et al., 2001; Decuypere et al., 
2000). Ascites mortality is late occurring, after a significant amount of feed and 
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labour has been committed (Anthony, 1998), hence, it has has a great economic 
impact in the broiler industry. It has been reported that ascites results 25% of broiler 
losses and an economic loss of about 1 billion US dollar annually worldwide (Navarro 
et al., 2002; Maxwell and Robertson, 1997).  
Considerable genetic variation exists between and within broiler lines in 
susceptibility of ascites (Deeb et al., 2002). To this end, breeding companies are 
working to reduce these physiological limitations through selection. A number of  
breeding programs have included ascites in the breeding objective and remarkable 
success has been acheived in reducing the incidence of ascites. Hence, levels of 
ascites in the field are now greatly decreased, even at high altitudes (Pym, 2008). 
Nevertheless, breeding companies need to give further emphasis in reducing ascites 
and other physiological problems related to higher growth rate and improved feed 
efficiency. 
Together with increased body weight, an increase in fat deposition is also reported 
which influences carcass composition (Havenstein et al., 2003a ; Havenstein et al., 
1994b) and slightly reducing feed efficiency due to higher energetic cost of 
synthesizing adipose tissue. This fat deposition could be a consequence of increased 
concentrations of insulin and glucagon in plasma (Sinsigalli et al., 1987). Abdominal 
fat is highly heritable (Siegel, 1959), and breeding programs have been selecting 
against it for quite some time (Laughlin, 2007; Muir and Aggrey, 2003). Hence, 
significant improvement is achieved due to commercial selection pressures on 
reducing fatness (Zuidhof et al., 2014; Fleming et al., 2007). The decrease in fat 
composition was also attributed to improved feed efficiency and improved diet 
(Tallentire et al., 2016). Due to genetic and nutritional improvements, it is reported 
that tody’s broilers have leaner body composition by the time they reach slaughter 
weight than broilers in the recent decades (Tallentire et al., 2016; Fleming et al., 
2007; Havenstein et al., 2003a).  
Immunological consequences: Selection for increased growth rate and feed 
efficiency is also reported to have consequences on the immune response. 
Havenstein (1994a, 1994b) compared the immune response of Ross 308 which is a 
representative of modern broiler line and a random bred ACRBC line which is 
representative of broilers from 1950s. Results showed higher Immunoglobulin G 
(IgG) and Immunoglobulin M (IgM) antibody production in the ACRBC line. Similar 
results were also reported due to genetic selection for growth rate in turkeys (Nestor 
et al., 1996). In comparing mortality of a random bred line and three commercial 
lines of turkeys selected for growth rate, Nestor et al. (1996) reported 26% mortality 
in the random bred control line while the mortality of the commercial lines ranged 
from 54 to 65%. Causes of mortality associated with fast growth are mainly related 
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to ascites (Maxwell and Robertson, 1997) and sudden death syndrome (SDS) 
(Gardiner et al., 1988). Regarding SDS male broilers are generally more susceptible 
than female broilers (Grashorn et al., 1998) probably due to higher growth rate of 
males than females. Although the physiological mechanisms causing SDS are not 
quite clear, growth rate is believed to be the primary cause. Birds with the syndrome 
die within a short period of  time; the first sign of unrest until death reported to be 
from 37 to 69 seconds (Newberry et al., 1987). 
Skeletal problems: Various skeletal disorders have been reported to be related to 
rapid growth of broiler chickens (Julian, 1998; Lilburn, 1994). Rapid growth may be 
the main factor in defects occurring up to about 4 weeks of age, after which high 
body weight produces more stress on the bones, tendons and ligaments 
(Thiruvenkadan et al., 2011). Among the skeletal problems, tibial dyschondroplasia, 
spondylolisthesis, osteodystrophy, epiphyseal ischaemic necrosis, epiphyseal 
separation, skeletal fracture, gastrocnemius tendon rupture, valgus and varus 
deformities (twisted leg) are the most common disorders (Bessie et al., 2006). Most 
of them are found in the locomotor system (Bessie et al., 2006). For example, tibial 
dyschondroplasia (TD) is growth-related abnormality that occurs when transitional 
chondrocytes accumulate, forming a mass of a vascular cartilage underlying the layer 
of proliferative chondrocytes, often in the proximal tibia (Eu-ahsunthornwattana et 
al., 2011). Havenstein et al. (1994b) compared the incidence of TD in a 1991 strain 
which is a representative of modern broilers with a 1957 strain and reported that 
the incidence of TD  in 1991 and 1957 strains was 47.5% and 1.2%, respectively. 
Different studies (Kuhlers and Mcdaniel, 1996; Ducro and Sorensen, 1992) have 
reported moderate heritability for TD, Valgus and Varus deformities (Le Bihan-Duval 
et al., 1996) suggesting possibility of genetic improvement of the traits through 
genetic selection. Indeed, selection based on gait, morphology and X-ray imaging has 
done much to reduce the expression of conditions such as TD, spondylolisthesis and 
valgus and varus deformities in most commercial strains of broilers, but skeletal 
abnormalities still continue to be a major focus in most broiler breeding programs 
(Pym, 2008). 
Reproductive consequences: Selection for high juvenile body weight is reported to 
influence reproductive traits in males and females. Marks (1985) reported that high 
juvenile BW is negatively correlated to spermatozoa motility. In comparing, broilers 
with high and low body weight lines the authors reported that the high body weight 
line had more dead and abnormal spermatozoa with a lower concentration of 
spermatozoa in semen than the low body weight line. Increased growth rate has also 
consequence on  breeders such that breeders rapidly become obese (Dunnington & 
Siegel, 1985); the males have reduced fertility (McGary et al., 2002), poor libido 
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(Bilcik & Estevez, 2005) and lower mating frequencies (Schmidt et al., 1994) while 
the females have multiple ovulation (Hocking et al., 1987) and decreased egg 
production (Robinson et al., 1991) as well as reduced fertility and hatchability 
(Schmidt et al., 1998).  
In general, breeding companies have become successful in reducing some of these 
unintended consequences of growth rate and feed efficiency such as ascites and 
carcass fatness, however, there are still reports of higher mortality and suceptability 
to suboptimal management of nutrition and environment in highly selected 
commercial broilers than those that are less selected for growth rate and feed 
efficiency. Thus, further work needs to be done on reducing these negative 
consequences by including those traits in the selection goal. Otherwise, the 
disruption of physiological homeostasis might ultimately result in economic and 
genetic barriers in further improving growth rate and  feed efficiency. Moreover, 
these negative consequences are increasingly raising serious animal welfare issues 
and become concerns of considerable consumer segments. Thus, further 
understanding of the biological basis of these consequences is essential to design 
breeding programs that aim to reduce unintended consequences or prevent them 
from progressing further. In such cases, genomics could play a role to unravel the 
biological mechanisms and support breeders in selection programs. 
 
6.8. Has genetic level reached a plateau? 
 
It has been speculated that genetic progress at the present rate and for the current 
main traits like growth rate and feed efficiency in broiler chickens will only be 
possible for a limited period of less than two decades (Albers, 1998). Even though 
the speculated period is over and broilers continue to show genetic progress a 
number of scientists in the area still seem to agree that a plateau will be reached 
soon and  broilers are near to their physiological limits especially in terms of the main 
breeding goal traits in the industry such as growth rate and feed efficiency. I do not 
have strong argument on the speculation, however, in this section areas that seem 
promising to further exploit the genetic potential of broilers which are directly or 
indirectly related to growth rate and FE are discussed.  
In theory, intense selection of traits having moderate to high heritabilities such as 
growth rate and feed efficiency is expected to narrow the genetic variation, and a 
close to zero value of genetic variance would be approached. As a result, the 
heritability estimates and response to selection are also expected to diminish 
(Falconer and Mackay, 1996). In chapter 3 (Mebratie et al., 2017), we have shown 
that the genetic variance of BW did not exhausted after several generations of 



General discussion 
 

 

161 
 

selection for growth rate, rather an increase in genetic variance across the selection 
trajectory was observed. Moreover the heritability estimates of BW found in our 
study and reported in several other studies suggest that further improvement in 
growth rate and feed efficiency can be achieved through selective breeding. The 
increase in genetic variance for BW after several generations of selection may be 
attributed to accumulation of new mutations and also epistatic effects. In fact, 
results from long term selection experiments provide little evidence of long term 
genetic plateaus, and suggest that plateaus are only temporary when they do occur 
(Marks, 1991). This is also in line with our results in chapter 5 (Mebratie et al., 2019) 
where we have identified several loci and candidate genes associated with BW and 
FE traits, even though birds were pre-selected for BW and undergone several 
generations of selection for FE. Indeed, BW and FE traits are quantitative traits 
influenced by many genes which therefore do not go to fixation quickly.   
To further improve BW and FE traits as well as to address related welfare issues, the 
unintended negative consequences of high growth rate and feed efficiency should 
be alleviated. For this, genomics could play a great role in understanding the 
biological basis and alleviating the negative consequences of improved growth rate 
and feed efficiency. In this regard, It might also be important to detect linkages 
between DNA markers and QTL associated with growth rate and FE as well as fitness 
traits such as metabolic disorders, skeletal problems and disease susceptibility to 
improve animals simultaneously in both categories of traits. In this way sustainability 
of broiler production can also be achieved.  
In addition to genomic selection, the negative consequences of increased growth 
rate such as disease susceptibility may be solved by the availability of precision 
genome engineering tools such as genome editing. Using genome editing, SNPs or 
gene variants associated with a specific disease, can be introduced into a desired line 
of genetics in a single step rather than waiting several reproductive rounds (Doran 
et al., 2016). This reduces the time taken to introduce resilience to specific diseases 
that may threaten the poultry industry (Doran et al., 2016). However, there might be 
ethical concerns and public acceptance issues which should be properly dealt and 
communicated. If desired SNPs or variants already exist within the species, 
introduction of genes within the species rather than exogenous genes could be one 
way of challenging the public concern.  
Furthermore, gene editing could also contribute in sex determination of broilers 
before hatching unlike the conventional way of sex determination such as manual 
sexing or colour feather identification after hatching. It is reported that male broilers 
have higher BW (growth rate) than females at a given age. For example, Emmerson 
(1997) reported that male broiler lines are 30–40% heavier than female broiler lines 
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while Singh (1989) reported male chickens to be 15-20% heavier than females at the 
same age. Therefore, gene-editing technology could help to selectively hatch male 
broiler chicks thereof increase the profitability of the industry. For example in the 
layer industry, Doran et al. (2016) suggested a possibility of editing the Z 
chromosome in females so that males can be identified and excluded before 
hatching to mainly address ethical issue in which males are culled after hatching 
(Doran et al., 2016). In poultry, males are homogametic (ZZ) and females are 
heterogametic (ZW). According to Doran et al. (2016), if a marker gene (e.g. with 
coloured flourecent protein) can be sited specifically engineered in to the Z 
chromosome in the female, then males (ZZ) crossed with females (WZ*) would yield 
offsprings, ZZ*, ZZ*, ZW, and ZW, hence, all male embryos will carry the marker gene 
and female embryos will be free of the marker gene. This could be detected easily in 
a freshly laid egg using lighting. In this way, it is possible to exclude male broilers in 
the layer industry before hatching. Thus, there might be a possibility to modify this 
technology a little bit and extend to the broiler industry.  
Furthermore, combined crossbred and purebred selection (CCPS) is an area that 
could be exploited in broilers. It is suggested that including the information recorded 
on purebreds as well as crossbreds in selection programs might help in improving 
the response to selection in crossbreds (Bijma et al., 1998; Wei and van der Werf, 
1994). Bijma et al. (1998) reported that including information of crossbred halfsibs 
while estimating breeding values for the purebred selection candidates increases 
accuracy of selection. In fact, the superiority of CCPS over purebred or crossbred 
selection is determined by the genetic correlation between purebreds with 
combined purebred and crossbred performance (rpc) as well as the heritability of 
the crossbreds (Wei and van der Werf, 1994). Superiority of CCPS over purebred 
selection increases with decreasing rpc while superiority of CCPS over crossbred 
selection decreases with decreasing rpc (Wei and van der Werf, 1994). Moreover 
response of CCPS and crossbreds is reported to increase with increasing heritability 
of crossbreds relative to purebreds (Wei and van der Werf, 1994). However for very 
large values of rpc (> 0.8), CCPS is reported to be worse than purebred selection (Wei 
and van der Werf, 1994). Thus, CCPS could be a strategy that could help to further 
exploit the genetic potential of broiler chickens.  
Finally there is an issue of maintaining genetic diversity. The majority of breeding 
populations in broilers are controlled by a limited number of breeding companies, 
thus genetic diversity may be a concern in the future. As the genetic relatedness 
between parents increases, the probability that pairs of alleles in an offspring are 
copies of a single allele in a common ancestor increases (Koenig and Simianer, 2006). 
Those alleles which are identical by descent have negative effects such as loss in 
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genetic variability, higher chance of appearance of detrimental recessive genes in 
the homozygous state, and inbreeding depression (Falconer  and Mackay, 1989). It 
is reported that 50% or more of the genetic diversity in ancestoral breeds is lost in 
commercial pure lines (Muir et al., 2008), suggesting that looking for genotypes 
outside the current commercial stock could be important. In this regard, breeding 
companies should keep utilizing tools to recapture variation such as outcrossing, 
importing genetic material from a relatively unrelated stock, optimum contribution 
selection and development of synthetic lines in addition to utilizing large population 
size so as to avoid inbreeding and maintain genetic diversity. 
 
6.9. Conclusions 
 
This thesis has explored the genetics of BW and FE traits using different statistical 
models and methods. It is shown that, in addition to direct genetic effect, maternal 
environmental effect and other environmental effects, BW and FE traits in broiler 
chickens are influenced by sex by genotype interaction as well as age by genotype 
interaction. Furthermore, we have shown that the genetic variance of BW did not 
exhaust after several generations of selection rather an increase in genetic variance 
has been observed along the selection trajectory. This was also supported by our 
GWAS results in which we have identified several QTL regions and candidate genes 
associated with BW and FE traits using a broiler population that has been pre-
selected for BW and undergone several generations of selection for FE. This  suggests 
that BW and FE traits are influenced by many genes, which do not go to fixation 
quickly. Hence, we have shown that inspite of the long history of selection for BW 
and FE traits, there is still available genetic variation for these traits which enables 
further improvement of the traits through selective breeding. However, further 
improvement should be implemented considering sustainability of the industry in 
away that reduces the conflict between high production efficiency and welfare of 
broilers. In this regard further investigations using tools such as genomics may help 
to understand the biological basis of the consequences thereby alleviate the 
unintended negative consequences of improved growth rate and feed efficiency.  
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Summary 

Growth rate (body weight) and feed efficiency have received greatest attention in 
the broiler industry due to their economic and environmental implications. Among 
the different strategies of improving growth rate and feed efficiency, selective 
breeding is optimal since its effect is cumulative and persistent over generations. 
Genetic selection has improved the growth rate and feed efficiency of broiler 
chickens in the last five or more decades. However, further genetic improvement in 
growth rate (body weight) and feed efficiency is essential due to the increasing 
human population, increasing global demand for cheap source of animal protein, 
increase in feed price and continued global environmental issue. In order to further 
improve the traits unravelling the genetic background of BW and FE traits in today’s 
broilers is essential. Thus, the main objective of this thesis is to study the genetic 
background of BW and FE traits in broiler chickens using different statistical models 
and methods.  
In chapter 2, multivariate REML analysis was employed to study genetic parameters 
of BW in male and female broiler chickens measured at three different ages. We 
have shown that in addition to direct genetic effects, maternal permanent 
environmental effects and residual environmental effects, BW in broiler chickens is 
influenced by sex by genotype interaction as well as age by genotype interaction. In 
chapter 3, Bayesian bivariate random regression model were used to study the effect 
of selection on genetic parameters of BW. It is shown that the genetic variance and 
heritability estimates of BW increased along a selection trajectory of 39 selection 
rounds, which is a remarkable finding relative to the animal breeding theory, which 
is known for quite some time stating a reduction in genetic variance as a result of 
long term selection. Moreover, the multivariate REML results obtained in chapter 2 
were confirmed using the bivariate random regression model. In chapter 4, body 
weight, feed intake and body weight gain in males and females at two different ages 
were simultaneously analyzed in a multivariate Bayesian analysis and genetic 
parameters were estimated for the traits. Moreover, phenotypic RFI were derived 
using partial phenotypic regression coefficients while genetic RFI were derived using 
partial genetic regression coefficients in a one-step procedure inside the model. It is 
shown that FE traits are influenced by sex by genotype as well as age by genotype 
interaction in addition to other genetic and non-genetic effects. Genetic correlations 
between phenotypic and genetic RFI were high and close to unity at a younger age 
suggesting that selection using either of them in breeding programs will result the 
same genetic response at that specific age. In chapter 5, genome wide association 
study (GWAS) was conducted to identify quantitative trait locus (QTL) and candidate 
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genes associated with BW and FE traits. Moreover, GWAS using mixed linear model 
(MLM) approach that takes in to account family structure and general linear model 
(GLM) approach that does not take family structure in to account were compared. 
As a result, several QTL regions and candidate genes associated with BW and FE traits 
were identified even if the broiler population were pre-selected for BW before the 
FE test and undergone several generations of selection for FE. Although there were 
overlaps, most of the identified QTLs for BW and FE traits were different in the MLM 
and GLM approaches, suggesting that statistical models in GWAS should be carefully 
chosen. Overall, the moderate heritability of BW and FE traits, the increase in genetic 
variance and heritability of BW along the selection trajectory and the identified QTLs 
and candidate genes associated with BW and FE traits after pre-selection and several 
generations of selection, respectively suggest that further improvement of the traits 
is possible through genetic selection. In chapter 6 (General discussion), the core 
findings of the four chapters of this thesis are summarized and integrated and the 
different statistical models and methods employed in the papers are discussed 
relative to other possible models and methods. Furthermore, the available 
information on literature about the major unintended consequences of improved 
growth rate and feed efficiency that can reduce performance and compromise 
animal welfare such as physiological, skeletal, reproductive, and immunological 
consequences are discussed. Finally, areas that can possibly be exploited to enhance 
further improvement in growth rate and feed efficiency of broiler chickens along 
with alleviating the unintended consequences of improved growth rate and feed 
efficiency are discussed. The knowledge gained in this thesis will contribute to the 
understanding of the genetic background of BW and FE traits in broiler chickens. 
Moreover, the results found and the statistical models employed in this thesis can 
be expanded to other poultry species with little modification. 
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Sammendrag 
 
Egenskaber som tilvækst (vægt) og foderudnyttelse har gennem mange år været de 
primære fokusområder for forbedring i fjerkræproduktionen på grund af den store 
økonomiske og miljømæssige betydning af disse egenskaber. Mellem forskellige 
strategier til forbedring af tilvækst og foderudnyttelse er genetiske forbedringer 
optimale, da genetiske forbedringer er kumulative og bevares over generationer. 
Genetisk selektion har været anvendt til forbedring af tilvækst og foderudnyttelse 
gennem de sidste mere end 50 år. En fortsat genetisk forbedring af tilvækst og 
foderudnyttelse er dog stadig nødvendig på grund af den globalt stigende befolkning, 
stigende globalt behov for billig adgang til protein af animalsk oprindelse, stigende 
foderpriser, samt problemer med emission fra miljøskadelige stoffer fra 
produktionen. For at sikre en fortsat genetisk forbedring af disse egenskaber er det 
derfor af afgørende betydning at udvikle en bedre forståelse af den genetiske 
baggrund for tilvækst og foderudnyttelse i moderne kyllinger, der er specialiseret til 
kødproduktion. Derfor er hovedformålet med denne afhandling at studere den 
genetiske baggrund for tilvækst, vægt og foderudnyttelse i kyllinger ved anvendelse 
af forskellige statistiske modeller og metoder. 
 
I kapitel II blev multivariate REML analyser anvendt til at studere genetiske 
parametre for vægt i kok- og hønekyllinger, som var vejet ved tre forskellige aldre. 
Analyserne viste at, ud over direkte genetiske effekter ved de tre vejealdre, var 
egenskaberne også påvirker af permanente maternelle miljømæssige effekter samt 
vekselvirkninger mellem genotype og køn og vekselvirkninger mellem alder og 
genotype. I kapitel III, blev en bivariat regressions model med tilfældige effekter 
anvendt til at studere effekten af genetiske selektion på kyllingers vægt. Analyserne 
viste at genetisk variation og heritabilitet for vægt steg i løbet af 39 selektionsrunder. 
Dette er særligt bemærkelsesværdigt da den genetisk teori siger at der skulle 
forventes en reduktion af den genetiske variation som følge af konstant genetisk 
selektion over lang tid. Derudover blev de resultater der blev fundet med den 
multivariate model bekræftet ved anvendelse af den bivariate regresionsmodel med 
tilfældige effekter. 
 
I kapitel IV blev vægt, foderoptagelse og tilvækst i kok- og hønekyllinger analyseret 
i en såkaldt multivariat Bayesiansk analyse og genetiske varianser og ko-varianser 
blev estimeret for alle egenskaber. Testperioden for de analyserede kyllinger 
involverede to forskellige aldre da sluttidspunktet for testen var blevet nedsat på 
grund af den fortsatte genetiske forbedring i populationen. Den udviklede model 
blev anvendt til at udvikle genetiske parametre og avlsværdital for foderudnyttelse i 
form af residualfoderoptagelse. Residualfoderoptagelse blev defineret såvel 
fænotypisk som genetisk. Analyserne viste at foderudnyttelse, ud over direkte 
genetisk effekter, er påvirket af vekselvirkninger mellem køn og genotype og 
vekselvirkninger mellem alder og genotype og andre genetiske og ikke-genetiske 
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effekter. Den genetisk korrelation mellem fænotypisk og genetisk 
residualfoderoptagelse var høj og tæt på 1.0 specielt når målingerne blev foretaget 
ved en yngre alder. Uanset hvilken af de undersøgte definitioner af 
residualfoderoptagelse, der anvendes i et avlsprogram så forventes der den samme 
effekt i form af genetisk fremgang. 
 
I kapitel V blev hel-genom studier (GWAS) anvendt til at identificere gener eller 
kandidatgener med effekt på vægt og foderudnyttelse hos kyllinger. I analysen blev 
to forskellige statistiske metoder anvendt, en stokastisk model versus en 
generaliseret lineær model. Den stokastiske model tager hensyn til familiestrukturen 
i data, hvorimod dette ikke sker i den almindeligt anvendte generaliserede lineære 
model. Resultatet af analyserne var at flere gener eller kandidatgener, der var 
associeret med vægt og foderudnyttelse, blev identificeret selv om de anvendte 
kyllinger kom fra en avlslinje, som var selekteret for disse egenskaber gennem mange 
generationer. Der var et vist overlap mellem de gener der blev identificeret med de 
to metoder men fleste identificerede gener var forskellige afhængig af den anvendte 
statistiske metode. Dette viser at statistisk model og metode skal udvælges og testes 
omhyggeligt i studier hvor man søger at identificere individuelle gener. 
 
Generelt så viser den moderate heritabilitet for tilvækst og foderudnyttelse, 
stigningen i genetisk variation som følge af selektion og de identificerede gener 
associeret med tilvækst og foderudnyttelse, at en fortsat genetisk forbedring af 
tilvækst og foderudnyttelse hos kyllinger i høj grad er mulig. 
 
I kapitel VI (Generel Diskussion), bliver de vigtigste resultater fra de fire kapitler i 
denne afhandling opsummeret og diskuteret og de forskellige statistiske modeller og 
metoder, som er anvendt i de enkelte kapitler bliver også diskuteret i forhold til 
andre mulige modeller og metoder.  De fundne resultater bliver sammenlignet med 
resultater fra litteraturen og sidstnævnte bliver yderligere anvendt til at diskutere 
mulige uønskede konsekvenser af øget tilvækst of foderudnyttelse der kan reducere 
frugtbarhed eller påvirke dyrevelfærd såsom fysiologiske, skeletale, reproduktive, og 
immunologiske følgevirkninger. Dette følges af en diskussion af mulige tiltag, der kan 
implementeres for at undgå sådanne uønskede konsekvenser af genetisk forbedret 
tilvækst og foderudnyttelse.  
 
Den viden som er opnået i denne afhandling vil bidrage til en bedre forståelse af den 
genetiske baggrund for tilvækst og foderudnyttelse i voksende kyllinger. De fundne 
resultater og de udviklede statistiske modeller og metoder kan let videreudvikles til 
anvendelse i andre fjerkræarter. 
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