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Abstract16

The geometric structure of tree branches has been hypothesized to relate to the mechanical safety and17

efficiency of resource transport within a tree. As such, the topology of tree architecture links physical18

properties within a tree and influences the interaction of the tree with its environment. Prior work19

suggests the existence of general principles which govern tree architectural patterns across of species20

and bio-geographical regions. In particular, West, Brown and Enquist (WBE; 1997) and Savage et al.21

(2010) derive scaling exponents (branch radius scaling ratio α and branch length scaling ratio β) from22

symmetrical branch parameters and from these, an architecture-based metabolic scaling rate (θ) for the23

whole tree. With this key scaling exponent, the metabolism (e.g., number of leaves, respiration, etc.)24

of a whole tree, or potentially a group of trees, can be estimated allometrically. Until now, branch25

parameter values have been measured manually; either from standing live trees or from harvested26

trees. Such measurements are time consuming, labour intensive and susceptible to subjective errors.27

Remote sensing, and specifically terrestrial LiDAR (TLS), is a promising alternative, being objective,28

scalable, and able to collect large quantities of data without destructive sampling. In this paper,29

we calculated branch length, branch radius, and architecture-based metabolic rate scaling exponents30

by first using TLS to scan standing trees and then fitting quantitative structure models (TreeQSM )31

models to 3D point clouds from nine trees in a tropical forest in Guyana. To validate these TLS-derived32

scaling exponents, we compared them with exponents calculated from direct field measurements of33

all branches > 10 cm at four scales: branch-level, cumulative branch order, tree-level and plot-level.34

We found a bias on the estimations of α and β exponents due to a bias on the reconstruction of the35

branching architecture. Although TreeQSM scaling exponents predicted similar θ as the manually36

measured exponents, this was due to the combination of α and β scaling exponents which were both37

biased. Also, the manually measured α and β scaling exponents diverged from the WBE’s theoretical38

exponents suggesting that trees in tropical environments might not follow the predictions for the39

symmetrical branching geometry proposed by WBE. Our study provides an alternative method to40

estimate scaling exponents at both the branch- and tree-level in tropical forest trees without the need41

for destructive sampling. Although this approach is based on a limited sample of nine trees in Guyana,42

it can be implemented for large-scale plant scaling assessments. These new data might improve our43

current understanding of metabolic scaling without harvesting trees.44

Keywords45

terrestrial LiDAR; WBE plant scaling exponent; quantitative structure models; architecture-based46

metabolic rate; destructive harvesting47
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1 Introduction48

Tropical forests are structurally complex ecosystems. This complexity is due to the distribution of49

woody stems and the three-dimensional arrangement of aboveground elements (i.e., leaves, branches,50

trunks) from the bottom to the top of the canopy (Saatchi et al., 2011). Detailed descriptions of the51

branching complexity of trees in forests can be traced back to Leonardo Da Vinci in the 15th century;52

however, it was not until the work of Francis Halle in the late 70’s that tree form was qualitatively53

classified (Hallé et al., 1978). The architectural form of the tree is the result of a combination of both54

its genetic programme and its adaptive response to the surroundings (Hallé et al., 1978; Malhi et al.,55

2018) and influences physical (such as growth, water movement and nutrient allocation) and ecological56

processes (such as photosynthesis, CO2 sequestration and evapotranspiration) (Rosell et al., 2009).57

Indeed, similarities in relationships between physical and ecological processes suggest the existence58

of general principles underlying tree form (Savage et al., 2010; Sperry et al., 2012; Tredennick et al.,59

2013).60

Several “universal” models, including the Geometric Similarity Model (McMahon and Kronauer,61

1976), Stress Similarity model (Niklas, 1994) and the West, Brown and Enquist (WBE) model (West62

et al., 1997; West, 1999) have been developed to understand these principles with reproducible theo-63

retical predictions (Tredennick et al., 2013). Among these, the WBE model (West et al., 1997; West,64

1999) is the most tested and can be used to extrapolate the scaling of trees to larger spatial scales65

such as whole forests (West et al., 2009). The WBE model states that the scaling of metabolic rate66

and other biological functions has its origin in a (theoretical) optimal branching system network with67

both internal (vascular) and external (branching) components (West et al., 1997; West, 1999; Savage68

et al., 2010; see Appendix A.1 for more information regarding WBE model). Moreover, an idealized69

branching network which must be symmetrical, self-similar and hierarchical is assumed for the exter-70

nal structure of trees in the WBE model (Appendix A.1). From this branching network, three key71

parameters (branching ratio, branch radius and branch length) can be extracted and used to estimate72

scaling exponents (West et al., 1997; West, 1999; Savage et al., 2010). While the WBE model has73

been criticized since, real tree branches rarely conform to idealized branching networks, a recent study74

by Brummer et al. (2017) showed that showed that asymmetric branching can incorporated into the75

WBE model and does not drastically change predictions.76

To apply the WBE model to forest modelling and management across spatial scales, an accurate77

quantification of the trees external branching architecture is needed. However, few studies quantita-78

tively assess branch architecture at the branch- or tree-level within the context of plant scaling models79

(Nygren and Pallardy, 2008; Bentley et al., 2013; Tredennick et al., 2013). Furthermore, these studies80

use either destructive harvesting or direct measurements and the intensity of manual labour required81

to sample large quantities of trees with enough detail have been a bar to progress in this field (Bentley82

et al., 2013). Large trees (DBH > 70 cm) are hardly ever measured manually (due to the intensity83

of manual labour) and most of the tests within the context of plant scaling models are based on84

small trees. Additionally, manual measurements require subjective decisions, such as defining where a85

branch starts and finishes, which may limit their usefulness in plant scaling models. As encountered86

by Lau et al. (2018), their results found a bias in the branch length measurements. This because87

the “branch length” definition differed between the manual measurements and TreeQSM. An accurate88

estimation and quantification of external branching architecture is key to understand the linkage of89

plant form and function across multiple spatial scales.90

Terrestrial Light Detection and Ranging (LiDAR) or terrestrial laser scanning (TLS) is a valuable91

tool to capture the three-dimensional structure of trees and, in combination with specialized algo-92

rithms, to assess the woody structure in a repeatable, non-invasive and objective way (Wilkes et al.,93

2017; Malhi et al., 2018). This active remote sensing technique is based on the emission and reception94

of tens to hundreds of thousands of mono-spectral laser beam pulses (Grau et al., 2017) which are95

propagated into the surroundings of the instrument up to hundreds of metres (Malhi et al., 2018).96

When these pulses hit an object they are reflected back to the instrument. The reflected pulse’s return97

time is used to create an accurate and highly detailed spatial three-dimensional representation of the98
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surface of the objects surrounding the scanner. With the use of specialized software, a highly detailed99

3D point cloud of the scanned area is created (Wilkes et al., 2017).100

TLS is increasingly used to extract various attributes from scanned forests. Initial studies focused101

on extracting plot-level attributes of trees (Côté et al., 2012; van Leeuwen et al., 2011; Dassot et al.,102

2011; Newnham et al., 2015; Xi et al., 2016; Wilkes et al., 2017; Grau et al., 2017), mostly due to103

the intensive manual labour required to identify and extract individual trees from the massive point104

cloud. The development of tree segmentation algorithms (Raumonen et al., 2015; Ayrey et al., 2017)105

assisted in a semi-automated extraction of individual trees and allowed for tree-level measurements106

to be collected. Moreover, the development of quantitative models to reconstruct the fine structure107

of trees (e.g. TreeQSM ; Raumonen et al., 2013 and Simple Tree; Hackenberg et al., 2015) further108

refined approaches available to derive indirect quantitative parameters related to tree architecture. In109

particular, using these algorithms and quantitative structure models, branch diameter (Tansey et al.,110

2009; Huang et al., 2011), tree height (Burt et al., 2013; Krooks et al., 2014; Brede et al., 2017), and111

crown diameter and area (Zhao et al., 2012; Srinivasan et al., 2015) can be automatically estimated112

from individual tree point clouds.113

Reconstruction algorithms also have the potential to estimate tree volume, and indirectly, above-114

ground biomass (Calders et al., 2015; Gonzalez de Tanago et al., 2017; Momo Takoudjou et al., 2018;115

Saarinen et al., 2017; Stovall et al., 2017). Further, from estimations of volume and biomass, allo-116

metric models can be constructed Olagoke et al. (2016). Other characteristics of trees, such as root117

structure (Smith et al., 2014a; Paynter et al., 2016) and species recognition (Åkerblom et al., 2017)118

can also be extrapolated from TLS scans. TLS scanning of the same area at different periods allowed119

Olivier et al. (2017) to observe canopy change and Kaasalainen et al. (2014) to observe aboveground120

biomass change. The reconstruction of tree structure in fine detail allows not only the quantification121

of tree productivity, as mentioned above, but also the assessment of tree structure from an ecological122

point of view. Malhi et al. (2018) detailed the potential application of TLS and quantitative structure123

models to understand the ecological challenges regarding branching architecture, surface area scaling,124

tree respiration, seed dispersal and tree mechanics.125

As detailed above, TLS scans are a promising alternative to collect large quantities of data without126

destructive sampling and subjective bias over various spatial and temporal scales. While TLS has a127

variety of ecological applications for forest modelling, this study aims to provide a better basis for128

understanding metabolic scaling through an approach to estimate scaling exponents using TLS and129

TreeQSM (Fig. 1). Importantly, with this research, we do not try to revise the theory of metabolic130

scaling, but rather, propose and validate a methodological approach to estimate model parameters that131

does not rely on destructive sampling and increases data collection efficiency compared to traditional132

methods. Moreover, we focused our methodological approach on tropical trees. TLS Scanning and133

3D modelling the complex external architecture of tropical trees in-situ adds challenge to our research134

(Wilkes et al., 2017; Lau et al., 2018). To date, no study has used remote sensing estimates of branch135

parameter values to estimate α and β exponents. In this paper we aim to: (i) estimate WBE model136

scaling exponents from TLS point clouds and TreeQSM ; (ii) validate these exponent estimates from137

the TreeQSM with manually measured exponent estimates and; (iii) assess if theoretical metabolic138

scaling predictions are included within our estimations.139

2 Material and methods140

2.1 Study area141

Field data were acquired from Vaitarna Holding’s concession, central Guyana, during November 2014142

(see Lau et al. 2018 for details). The area is a lowland tropical moist forest with an elevation of143

117 m above sea level and a mean rainfall of 2195 mm yr−1. Seven Eperua grandiflora, one Ormosia144

coutinhoi, and one Eperua falcata (See Fig. A.1) had been already marked for logging in the forest145

management plan of the concession (for timber production or management purposes). The diameter at146

breast height (DBH) across all trees ranged from 61.3 cm to 97.0 cm and the height ranged from 18.8 m147
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Figure 1: Branch scaling ratios for idealized symmetrical trees (top) and for trees modelled with
TreeQSM (bottom) based on branch radius (r), length (l), and branching ratio (n). The branching
ratio is the number of daughter branches per parent branch. The branch radius scaling parameter is
rdaughter
rparent

and the length scaling parameter is
ldaughter
lparent

. Based on Fig. 1 from Bentley et al. (2013) and

Fig. 3 from Malhi et al. (2018). Refer to digital version for colour image.

to 29.9 m. A 30 x 40 m plot was set up around each selected tree in the expected felling direction. We148

scanned each plot with TLS, harvested the tree and took detailed geometrical measurements of each149

branch > 10 cm diameter. Plot details can be found in Gonzalez de Tanago et al. (2017) and Wilkes150

et al. (2017).151

2.2 TLS acquisition and plot design152

All TLS datasets were acquired using a RIEGL VZ-400 V-Line 3D terrestrial laser scanner (RIEGL153

Laser Measurement Systems GmbH, Horn, Austria, www.riegl.com). The instrument used in this154

study is a discretized multiple-return LiDAR scanner with a 1550 nm wavelength and a 0.35 mrad155

beam divergence (Gonzalez de Tanago et al., 2017; Wilkes et al., 2017). This TLS has a scan range156

of 360° in the azimuth, 100° in the zenith and the angular resolution used in this study was 0.06°. In157

each plot, 9 to 16 scan positions were set up and 80 to 100 5-cm-diameter cylindrical reflecting targets158

(tie-points) were distributed evenly in the plot. The tie-points were placed in such a way that each159

of them could be scanned from several positions. These tie-points were later used to co-register the160
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individual points clouds into a unified point cloud as in Gonzalez de Tanago et al. (2017); Wilkes et al.161

(2017) and Lau et al. (2018).162

2.3 Manual measurements of branches163

The manual measurements of the nine harvested trees were analysed in Lau et al. (2018). Here, we164

give a summary of the methodology employed. We measured a total of 279 individual branches up to165

10 cm diameter with 1 cm resolution forestry tape. We took two measurements of each branch: length166

(m) and diameter (cm). The length was defined as the distance between the base and the termination167

of the branch and the diameter was defined as the average of two diameter measurements, one taken168

at the base, and the other, at the termination of the branch (See Fig. 1 in Lau et al., 2018). Finally,169

we defined the branch order and hierarchy. The branch order was established ”centrifugally”, starting170

from the main stem and adding an order at every branch node. The branch hierarchy was defined as171

the branch correspondence between a parent branch and daughter branch. A daughter branch is any172

branch with originates from a parent branch and the parent branch was recorded for each individual173

branch.174

2.4 Branching reconstruction175

The branching reconstruction of the scanned trees was performed in Lau et al. (2018) and had three176

components: (a) manual tree extraction from the point cloud (Fig. 2a). All individual TLS scans were177

co-registered into a plot point cloud, in which the harvested trees were located and extracted. For178

quality control, visual inspection was performed on each tree point cloud to ensure that no parts of the179

tree were missing; (b) 3D reconstruction of individual tree point clouds using TreeQSM (Figs. 2b-c180

and Raumonen et al. 2013 and Fig. 2 in Lau et al., 2018). A series of steps was performed to ensure181

that the seven best-fitted TreeQSM models were obtained (Lau et al., 2018); and, (c) comparison of182

TreeQSM branches and manually measured branches (Fig. 2d). For this step, each manually measured183

branch was visually paired with a QSM modelled branch following the structure of the modelled tree.184

If a measured branch did not have a modelled branch, the measured branch was not paired and185

excluded from further analysis. If a measured branch corresponded to two or more modelled branches,186

we quantitatively analysed the similarity of these branches using their length and diameter. We used a187

diagonal-norm approach to standardize both parameters and analysed their similarities. The modelled188

branch most similar to the measured branch was chosen as the best-fitted pair.189

The geometrical structure was determined as follows: TreeQSM branch length was the sum of the190

length of all cylinders of the same branch, TreeQSM branch diameter was the average of the first and191

last cylinder of the same branch, and branch order was estimated starting from the main stem and192

adding a new level at each branch node.193

2.5 Tree metrics194

Tree architecture was analysed in Lau et al. (2018) and a summary of tree metrics for this dataset195

can be seen in Table 1. Lau et al. (2018) validated the reconstruction accuracy of branches lengths,196

branches diameters and branch orders of 279 modelled branches compared with manually measured197

branches. Their method found and reconstructed 95 % of branches thicker than 30 cm diameter. The198

accuracy of the length and diameter of the modelled branches varied among diameter classes. For199

branches smaller than 50 cm in diameter, the length of the modelled branches was underestimated by200

20 %.201

For branches greater than 50 cm in diameter, the length of the modelled branches was overesti-202

mated by 1 %. For branches between 10 cm and 20 cm in diameter, the modelled branch diameters203

were overestimated by 40 %. For branches with a diameter between 20 cm and 60 cm, diameter was204

underestimated by 8 %; if the branch diameter was greater than 60 cm, diameter was underestimated205

by 6 %. In this study, the branch order was correctly assigned with an overall accuracy of 99 %.206
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Figure 2: (a) Ormosia coutinhoi tree point cloud, (b) TreeQSM with branches > 10 cm diameter
reconstructed along with the tree point cloud, (c) QSM branches classified by branch order and (d)
QSM branches which were paired with manually measured branches. Refer to digital version for colour
image.

Table 1: Tree metrics from TreeQSM branches and manually measured branches from the Vaitarna
dataset (Lau et al., 2018).

Diameter
class (cm)

Measured
branches

Reconstruction
Accuracy (%)

Absolute error Relative error
Length (m) Diameter (cm) Length (%) Diameter (%)

10–20 160 45 −1.03± 1.81 5.14± 5.50 12 40
20–30 67 67 −0.67± 1.50 −0.65± 4.76 10 −2
30–40 26 84 −0.42± 2.19 −5.33± 5.26 37 −15
40–50 11 92 −0.21± 1.37 −4.23± 7.83 19 −9
50–60 7 100 −0.10± 0.76 −3.61± 8.98 −1 −7
60–70 5 100 0.34± 0.40 −5.33± 5.68 3 −9
≥ 70 3 100 0.39± 0.30 −1.54± 0.80 2 −2

2.6 Estimation of WBE scaling exponents207

Based on previous work by Savage et al. (2010) and Bentley et al. (2013), the scaling exponents from the208

WBE model for idealized trees can be described using three key parameters (West, 1999; Malhi et al.,209

2018): branch radius scaling ratios (αbranch), branch length scaling ratios (βbranch), and branching210

ratios (n, ratio between number of daughter branches per parent branch). From these branch-level211

attributes, the scaling of architecture-based metabolic rate (θbranch) can be further predicted (Table212

2). Within the WBE model, constant values are given to these parameters when idealized trees are213

estimated (α = 1/2, β = 1/3, and θ = 0.69 ; West, 1999; Savage et al., 2008, 2010). We used θ = 0.69214

and not the WBE prediction of θ = 3/4 to concord with the predictions for finite-size effects from215

restricting size range of plants (Savage et al., 2010). Moreover, (von Allmen et al., 2012) also found216

a lower value of θ (0.62 ± 0.016) and Brummer et al. (2017) in their work on asymmetric branching217

also found that θ ranged between 0.5 and 1 in asymmetric branching.218

2.7 Assessment of WBE scaling exponents219

The scaling exponents α, β, and θ were assessed at different levels:220
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Table 2: Scaling exponents αbranch and βbranch were calculated at branch-level and definitions are as
follows: r = branch radius, n = number of branches, and l = branch length, while the θbranch was
derived from αbranch and βbranch.

Exponents Equations

Radius scaling - α αnode = − lnδnode
nnode

where:

δnode =
rdaughter
rparent

;nnode =
ndaughter
nparent

Length scaling - β βnode = − lnγnode
nnode

where:

γnode =
ldaughter
lparent

;nnode =
ndaughter
nparent

Architecture-based
metabolic rate - θ

θnode =
1

2αnode + βnode

� Branch–level: scaling exponents at branch-level are shown as the distribution of the exponents,221

calculated from all branch nodes as in Table 2 and Fig. 1 of all the branch nodes assessed in222

this study. We estimated the median exponents, 95 % confidence interval (CI), the bias (in %),223

and the significant differences between TreeQSM and manually measured scaling exponents for224

all branches.225

� Cumulative branch order: scaling exponents at branch-level were calculated from 2nd to 8th226

cumulative branch order and are shown as the median exponents and 95 % CI of all the branch227

nodes per cumulative branch order. We assessed the bias (in %) and the significant differences228

between TreeQSM and manually measured scaling exponents per cumulative branch order.229

� Tree–level: scaling exponents at tree-level are shown as the median exponents and 95 % CI of230

all the branch nodes within a tree. We assessed the bias (in %) and the significant differences231

between TreeQSM and manually measured scaling exponents per tree.232

� Plot–level: scaling exponents at plot-level are shown as the median ranges among the trees in233

this study.234

First, we tested for normality of the data distribution with a Shapiro-Wilks test. Then, and235

depending on the distributional assumption, we estimated the median with 95 % CI or (pseudo)236

median with 95 % CI from Wilcoxon signed-rank test. Median exponents were used instead of the237

arithmetic mean because we did not want to assume unimodal and symmetrical distributions and238

could not use the geometric mean due to negative numbers (Bentley et al., 2013). We assessed the239

bias as the deviation (in %) of the TreeQSM scaling exponents from the manually measured scaling240

exponents. Finally, to test the significant differences between the TreeQSM and manually measured241

scaling exponents, we used either a paired t-test or Wilcoxon signed-rank test, also depending on242

the distributional assumption. We included the theoretical predictions and analysed whether the243

theoretical predictions fall within the CI of our estimations in all three levels.244
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3 Results245

3.1 Scaling exponents from TreeQSM branching reconstruction246

The accuracy of the tree metrics used in this paper (Table 1) influenced the estimations of the WBE247

exponents. The underestimation of the TreeQSM branch radius parameter and the overestimation of248

the TreeQSM branch length parameter displayed in Table 1 can also be seen as a bias in the α and β249

exponents (Fig. 3 and Table 3) and the cumulative exponents (Fig. 4 and Table A.2).250

The average underestimation of the radius parameter from the branching reconstruction incurs251

in a negative bias towards the TreeQSM αbranch (Table 3) and the cumulative αbranch (Table A.2).252

Likewise, the great overestimation of the length parameter incurs in a great positive bias towards253

the TreeQSM βbranch (Table 3) and the cumulative βbranch (Table A.2). Since the estimation of θ254

is computed from α and β exponents, the two biases have a direct influence over the estimation of255

θbranch.256

3.2 Scaling exponents at branch-level257

The scaling exponent distributions at branch-level of αbranch, βbranch and θbranch for both, TreeQSM258

and manually measured branches were not normally distributed (p-value < 0.05, Fig. 3, and Table259

A.1).260
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Figure 3: Distribution of individual branches for αbranch (top), βbranch (middle) and θbranch (bottom)
exponents as density function (y-axis), for TreeQSM and manually measured scaling exponents. Ver-
tical dashed line indicates WBE idealized predictions for α = 1/2, β = 1/3 and θ = 0.69. Refer to
digital version for colour image.

∗ significant different at 0.05 probability level.
† non significant different at 0.05 probability level.

The (pseudo) median exponents, 95 % CIs, bias, and the significant differences for scaling expo-261

nent distributions at branch-level are displayed in Table 3. The TreeQSM αbranch showed a lower262

pseudo(median) and a bias of −29 % than its manually measured counterpart. However, the TreeQSM263

βbranch showed great disparity compared to its manually measured value with a bias of 500 %. The264

TreeQSM θbranch showed a higher pseudo(median) and a bias of 15 % than its manually measured265

counterpart. We compared TreeQSM and manually measured exponents and found a significant dif-266

ference (p-value < 0.05) for αbranch and βbranch; but not for θbranch exponents (Table 3). Likewise,267
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when comparing the 95 % CIs, we found that the CIs of αbranch and βbranch showed disparity; while268

the CI of θbranch overlapped (Table 3).269

Table 3: Scaling exponents of αbranch (n = 484), βbranch (n = 484), and θbranch (n = 484) of the
TreeQSM and manually measured branches at branch-level. Exponents shown as (pseudo) median
with 95 % CI for the branch-level distribution and exponents are shown as average. Bias (%) and
significant differences were calculated between TreeQSM and manually measured scaling exponents.

Scaling
exponents

Theoretical
class

TreeQSM Manually measured Bias (%) Signif.
(pseudo) median CI (95%) (pseudo) median CI (95%)

αbranch 0.50 0.45 0.43 – 0.48 0.63 0.62 – 0.65 −29 ∗
βbranch 0.33 0.42 0.31 – 0.54 0.07 −0.06 – 0.2 500 ∗
θbranch 0.69 0.59 0.53 – 0.65 0.50 0.4 – 0.56 18 †

∗ significant different at 0.05 probability level.
† non significant different at 0.05 probability level.

3.3 Branch scaling exponents per cumulative branch order at branch-level270

We analysed the representation of the scaling exponents for cumulative branch orders for both, Tree-271

QSM and manually measured branches up to the 8th branch order (Fig. 4 and Table A.2). The272

TreeQSM and manually measured scaling exponents followed the same pattern in each cumulative273

scaling exponent (Fig. 4). For the cumulative αbranch, the TreeQSM exponents had lower (pseudo)274

median exponents, a negative bias, and a significant difference from the 3rd branch order onwards275

(Fig. 4 and Table A.2). For the cumulative βbranch and cumulative θbranch, both TreeQSM exponents276

had higher (pseudo) median exponents than the measured ones. However, cumulative βbranch showed277

great disparity (great bias and significance) from the 4th branch order onwards. Cumulative θbranch278

showed low bias and differences were not significant different across all orders.279
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Figure 4: Cumulative (pseudo) median and 95 % CI for αbranch (top), βbranch (middle) and θbranch
(bottom) exponents for TreeQSM and manually measured branches up to 8th cumulative branch order.
The 95 % CIs are shown as vertical lines on the (pseudo) median exponents. Horizontal dashed line
indicates WBE idealized predictions for α = 1/2, β = 1/3 and θ = 0.69. Refer to digital version for
colour image.

∗ significant different at 0.05 probability level.
† non significant different at 0.05 probability level.
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Cumulative αbranch showed no overlapping CIs and significant differences for cumulative branch280

order higher than 3rd order (Fig. 4 and Table A.2). The cumulative βbranch displayed a significant281

variation and non-overlapping CIs from the 4th cumulative branch order onwards. On the other hand,282

cumulative θbranch showed overlapping CIs and no significant differences across all orders.283

3.4 Scaling exponents at tree-level and plot-level284

Figure 5 and Table A.3 shows the (pseudo) median exponents, the 95 % CI, bias (%), and the significant285

difference for each exponent for each tree, and ranges for plot-level. The average (pseudo) median286

exponents for the TreeQSM and manually measured exponents were 0.46 and 0.64 for αtree, 0.41 and287

0.05 for βtree, and 0.56 and 0.51 for the θtree, respectively.288
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Figure 5: (pseudo) median exponents, 95 % CI, and significant difference for αtree (top), βtree (middle)
θtree 9bottom) for TreeQSM and manually measured individual trees. The 95 % CIs are shown as
vertical lines on the (pseudo) median exponents. Horizontal dashed line indicates WBE idealized
predictions for α = 1/2, β = 1/3 and θ = 0.69. Plot-level figures display ranges among the trees’
(pseudo) median exponents. Refer to digital version for colour image.

∗ significant different at 0.05 probability level.
† non significant different at 0.05 probability level.
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When comparing TreeQSM with manually measured trees the αtree and θtree, both predictions289

followed similar patterns. As with the scaling exponents at cumulative branch-level (Fig. 4), TreeQSM290

αtree consistently underestimated the manually measured αtree with a range of bias between −38 %291

to −15 %. In contrast, TreeQSM βtree exponents overestimated manually measured βtree and showed292

great disparity with a bias between −426 % to 1027 %. As a result, TreeQSM θtree exponents were293

higher than the manually measured θtree, with a bias between −36 % to 101 %.294

At plot-level, the range of TreeQSM αplot (pseudo) median exponents did not overlap and under-295

estimated the manually measured αplot (Fig. 5 and Table A.3). For the TreeQSM βplot, the range296

greatly overlap and slightly overestimated the manually measured βplot. In the same way, for TreeQSM297

θplot, the range of exponents greatly overlap and slightly overestimated the manually measured θplot.298

3.5 Theoretical scaling exponents inclusion299

At branch-level, the 95 % CI ranges for manually measured αbranch, βbranch, and θbranch excluded300

the theoretical exponents (Table 3). The manually measured αbranch range was higher than the301

theoretical α (0.5). On the contrary, manually measured βbranch and θbranch ranged were lower than302

the theoretical β (0.33) and θ (0.69), respectively. For TreeQSM, only αbranch and θbranch ranges303

excluded the theoretical exponents. The TreeQSM βbranch included the theoretical exponents within304

its range. The TreeQSM ranges for αbranch and θbranch were lower than the theoretical α (0.5) and θ305

(0.69), respectively.306

At the cumulative branch order, most of the cumulative branch orders for both, TreeQSM and307

manually measured cumulative exponents excluded the theoretical values from their 95 % CI ranges308

(Fig. 4 and Table A.2). At tree-level, most of the TreeQSM trees included the three theoretical309

exponents within their 95 % CI ranges (Fig. 5 and Table A.3). For the manually measured trees, most310

of the trees included theoretical β and θ (and excluded α) within their 95 % CI ranges. At plot-level,311

the theoretical exponents were included within the ranges of all scaling exponents from TreeQSM and312

manually measured exponents except for the manually measured αplot (Table A.3). The range for313

αplot was higher than the theoretical value.314

4 Discussion315

4.1 Constraints in the branch architecture316

This study generated the first quantitative measurements of metabolic scaling exponents from the317

WBE model using 3D models from point clouds of tropical trees. Our results show that, with some318

limitations, radius, length and architecture-based metabolic rate scaling exponents can be derived319

from 3D data of tree point clouds. Importantly, there is some error in these estimates as we observed320

systematic deviations between TreeQSM modelled and measured measurements of branch architecture.321

The large divergence in the βbranch ratios was caused by the large absolute length error between the322

TreeQSM estimates and the manual measurements (Table 1). For branches greater than 50 cm, the323

length of TreeQSM branches was overestimated by 1 % and, for branches thinner than 50 cm, the324

average length of TreeQSM branches was underestimated by 20 % (See Table 1). As found in Lau325

et al. (2018), this bias is likely due to a conceptual difference in the definition of the point of branch326

termination between TreeQSM and manual measurements (Table 2). Since the length of TreeQSM327

branches was overestimated (Table 1), our TreeQSM βbranch,tree,plot were higher than the measured328

exponents, as in Table 3 and Figure 4. Interestingly, the radii of the TreeQSM branches were generally329

underestimated (Table 1) and our TreeQSM αbranch were therefore lower than the measured exponents330

as in Table 3 and Figure 4. As discussed in Lau et al. (2018), a correct definition of the branch331

measurements is essential to avoid ambiguity and lower absolute errors.332
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4.2 Reducing uncertainties in the branch reconstruction333

One strategy to reduce error in model estimations is to improve the point cloud quality. Tree architec-334

ture relies on hardwood measurements and the presence of leaves introduces uncertainty in the derived335

branch length and branch radius, which leads to uncertainty in the scaling exponent estimation. To336

reconstruct the small, higher order branches, we need to defoliate the tree point cloud. At the time the337

current analysis was carried out, no algorithm to digitally remove leaves was available. However, the338

leaf/wood separation algorithm from Vicari (2017) is a promising tool for future research. Achieving339

a point cloud density sufficient enough for modelling small branches in-situ is challenging (Lau et al.,340

2018; Wilkes et al., 2017). In this study, we used a scan resolution of 0.06°. As mentioned in Wilkes341

et al. (2017), increasing the resolution to 0.04° would increase the point density in the point cloud342

(especially on the top of the canopy), making TreeQSM tree models more representative of the actual343

tree. Another strategy to reduce divergence between models and the field measured estimates might344

be to use another tree parameter that is easier to obtain from the tree point cloud, with the proviso345

that this parameter can be linked to plant scaling models. Instead of branch length and radius, sev-346

eral studies used the biomass to relate architecture to metabolic scaling (Muller-Landau et al., 2006;347

Nygren and Pallardy, 2008). Tree above-ground biomass can be estimated from tree point clouds of348

tropical trees with good concordance with reference estimations (Calders et al., 2015; Gonzalez de349

Tanago et al., 2017).350

4.3 Do small branches can be representative of a whole tree?351

Since using TLS to analyse branch architecture represents a significant cost and time investment,352

it is important to determine if our approach needs to be applied to an entire tree to determine353

accurate scaling exponents. A pattern can be observed in the cumulative scaling exponents between354

the TreeQSM and the manually measured branches (Fig. 4 and Table A.2 in Appendix). While αbranch355

and θbranch had no substantial variation with cumulative branch order, βbranch had a high (pseudo)356

median in the first two cumulative branch orders and then decreased from the 4th cumulative branch357

order. We theorize that β ratio is high at these first two cumulative branch orders due to the ratio358

between the length of parent branch (in this case, the main stem) and the length of daughter branches.359

This difference can be up to several meters, having a direct effect on βbranch at this cumulative branch360

order. Having a stable pattern in higher branch orders opens the possibility that an analysis of the361

whole tree might be not needed to estimate scaling exponents; instead, the higher order branching362

section could potentially be used to estimate the tree scaling exponent for the whole tree. However,363

due to the lack of sufficient observations in higher branch orders, we cannot verify this hypothesis in364

this study. We suggest future studies to increase the branch sampling in higher branch orders to test365

our hypothesis.366

4.4 WBE scaling exponents from 3D tree modelling of tropical trees367

Our results of the scaling exponents from the tropical trees assessed in this study were not in con-368

cordance with the WBE predicted exponents for the scaling of α, β and θ. Moreover, this study369

found out that while TreeQSM αbranch,tree were relatively close to the theoretical value, βbranch,tree370

and θbranch,tree greatly deviated from WBE predictions, in both, TreeQSM and manually measured371

datasets.372

The TreeQSM βbranch,tree,plot were closer to 1/2 than to the WBE theoretical estimate of 1/3. This373

finding is consistent with Bentley et al. (2013) and Muller-Landau et al. (2006), who also observed374

that observed exponents significantly differed from predicted theoretical exponents. Bentley et al.375

(2013) suggested that β = 1/3 might only occur in large trees, but our results do not support this376

hypothesis although our tree sample comprised trees with DBH ranging between 61.3 cm to 97.0 cm.377

As mentioned by Malhi et al. (2018), the tree’s response to the environment to maximize light capture378

through maximizing vertical height; maximize efficiency of resource distribution and minimize the risk379
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of breakage or overturning might be the reason why trees appear more plastic in their lengths than in380

their radius (Bentley et al., 2013; Price et al., 2007).381

In addition to the deviation observed for β; our findings for TreeQSM θbranch,tree were lower than382

WBE prediction of 0.69. Metabolic rate is directly calculated from α and β exponents. Since both383

exponents showed deviation, it was expected that metabolic rate would also differ from theoretical384

predictions. Our results are more aligned with those by Savage et al. (2010); Sperry et al. (2012); von385

Allmen et al. (2012); Bentley et al. (2013); Smith et al. (2014b), whose estimates all deviated (with386

lower exponents) from predicted exponents. Our results at branch-level and tree-level were on average387

closer to 0.69 metabolic rate than the original 3/4 proposed by WBE.388

Fractal branching and homogeneous length and diameter parameters within the same branch node389

were not found in our dataset. As mentioned by Petit and Anfodillo (2009), the fractal branching390

proposed by the WBE model is very unlikely to be found in real plants. The scaling exponents deviated391

substantially from the exponents predicted from symmetrical and self-similar branches as proposed392

by the WBE model. The WBE predictions might work on individual trees which grow in absence of393

competition and no nutrition limitation, such as on plantations (Muller-Landau et al., 2006); or might394

work on young trees with simple branching rules (Petit and Anfodillo, 2009; Loehle, 2016). Those395

trees would have enough nutrients and would be protected from environmental hazards (such as heavy396

wind or rainfall) and with small branch size distributions which might be easily measured. Our sample397

trees do not fall into those assumptions. Predictions for large trees, as explained by Loehle (2016), are398

still puzzling due to the architectural complexity of real trees, their susceptibility to damage and their399

rapid resilience; characteristics unfitted for the symmetrical branching geometry proposed by WBE400

model.401

Our sample also showed large dispersion around the pseudo-median exponents supporting Loehle’s402

statement which says that optimal branching cannot be found in old trees or with increased exposure403

to the environment. We suggest a further study using the current methodology for WBE predictions404

from asymmetric branching (Brummer et al., 2017) and TreeQSM to estimate θ. As suggested by405

Smith et al. (2014b); Price et al. (2009); Brummer et al. (2017), the theoretical value for metabolic406

scaling in the WBE context might be more an approximate rather than an exact value when applied407

to real trees.408

5 Conclusions409

We present a novel approach based on Terrestrial Laser Scanning (TLS) to measure branch architecture410

traits and so estimate scaling exponents within the context of the West, Brown and Enquist (WBE)411

model. We also manually measured the branch architecture for nine large trees in Guyana and tested412

both the model and theory estimates of scaling exponents against those derived from field data. The413

consistent biases found between the TreeQSM and the manually measured exponents showed that414

the bias found on the measured branching architecture influenced the estimations of the α and β415

scaling exponents, and thus, the computation of θ exponent. The manually measured α and β scaling416

exponents diverged from the WBE’s theoretical exponents at branch-level, cumulative branch orders417

and tree-level suggesting that trees in tropical environments might not follow the predictions for the418

symmetrical branching geometry proposed by the WBE. The TreeQSM scaling exponents predicted419

similar architecture-based metabolic rate exponents as the manually measured exponents, although420

this was due to the combination of α and β scaling exponents which were both biased. In particular421

the TreeQSM and the manually measured estimates converged at branch-level, cumulative branch422

order and tree-level; but diverged at plot-level. More tests are needed to validate this methodology423

as a consolidated approach to account for individual tree structure and as a provider of enough424

detailed architectural information to estimate scaling exponents at branch-, tree-, and plot-level in425

forested ecosystems. This study identifies a much easier way to generate data for plant scaling models426

using large datasets collected non-destructively in the field, rather than with the smaller datasets427

obtained from tedious and time-consuming hand-collection of data. Moreover, this approach could428
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potentially be linked to LiDAR systems mounted on Unnamed Aerial Vehicle (UAV) may provide429

valuable information on top-of-the-canopy branches that are not well described from the ground (ie.430

using TLS) – or on the entire vertical profile when the forest canopy is not too closed (Brede et al.,431

2017) and could potentially be implemented for large-scale plant assessments at a regional or global432

scale (Bazezew et al., 2018).433
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Appendix A459

A.1 WBE metabolic scaling exponents460

The WBE theory holds that the scaling of metabolic rate and other biological functions has its461

origin in an optimal branching system network at both internal (vascular) and external (branching)462

components (West et al., 1997; West, 1999). While the internal structure is composed by xylem and463

phloem conduits, the external structure is composed by branches. The WBE theory assumes that an464

idealized external tree branching network is symmetrical, self-similar and hierarchical (see Figure 3465

in Malhi et al. (2018)), organized in such a way that metabolic rate should not vary when comparing466

branch node-level to the whole tree-level (West, 1999; Nygren and Pallardy, 2008; Sperry et al., 2012;467
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Bentley et al., 2013). Nevertheless, real trees do not show an idealized external branching network.468

Self-similarity rarely holds true throughout a whole tree, branch order varies across tree-level and469

stems taper and exhibit asymmetric branching (Nygren and Pallardy, 2008; Smith et al., 2014b; Price470

et al., 2012; Bentley et al., 2013).471

Figure A.1: Tree point clouds and TreeQSM models from the nine trees scanned in Guyana. (a) tree
point clouds of the nine trees from Guyana, (b) One repetition of TreeQSM with branches > 10 cm
diameter reconstructed along with the tree point clouds, (c) QSM branches classified by branch order,
and (d) QSM branches which were paired with manually measured branches. GUY01 to GUY08 are
Eperua grandiflora trees, GUY09 is a Ormosia coutinhoi tree, and GUY10 is a Eperua falcata tree.
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Table A.1: Normality test (Shapiro-Wilks) for TreeQSM and manually measured scaling exponents
at branch-level (p-value < 0.05).

Exponent type
p-value

TreeQSM Measured

Radius scaling - α 0.03 1.73 x 10-9

Length scaling - β 0.02 4.23 x 10-5

Architecture-based metabolic rate - θ 1.38 x 10-41 9.05 x 10-42

Table A.2: (pseudo) median, CI (95%), bias (%), and significance for αbranch, βbranch and θbranch for
cumulative branch order for TreeQSM and manually measured branches.

Cumulative
branch order

Number
of

obs.

Radius scaling exponent - α
TreeQSM Measured Bias (%) Signif.

(pseudo)
median

CI (95%) (pseudo)
median

CI (95%)

up to 2nd 63 0.70 0.63 – 0.75 0.61 0.57 – 0.65 15 †
up to 3rd 184 0.54 0.50 – 0.58 0.64 0.59 – 0.66 −15 ∗
up to 4th 330 0.51 0.48 – 0.54 0.64 0.62 – 0.66 −20 ∗
up to 5th 422 0.48 0.45 – 0.50 0.64 0.62 – 0.66 −20 ∗
up to 6th 467 0.46 0.44 – 0.48 0.64 0.62 – 0.66 −28 ∗
up to 7th 482 0.46 0.43 – 0.48 0.63 0.62 – 0.65 −28 ∗
up to 8th 484 0.45 0.43 – 0.48 0.63 0.62 – 0.65 −28 ∗

∗ significant different at 0.05 probability level.
† non significant different at 0.05 probability level.

Table A.2: Extended

Cumulative
branch order

Number
of

obs.

Length scaling exponent - β
TreeQSM Measured Bias (%) Signif.

(pseudo)
median

CI (95%) (pseudo)
median

CI (95%)

up to 2nd 63 2.40 2.22 – 2.63 2.27 1.98 – 2.46 6 †
up to 3rd 184 1.01 0.80 – 1.23 0.84 0.59 – 1.03 21 †
up to 4th 330 0.60 0.46 – 0.75 0.32 0.17 – 0.47 91 ∗
up to 5th 422 0.48 0.36 – 0.61 0.07 −0.06 – 0.22 549 ∗
up to 6th 467 0.44 0.32 – 0.56 0.11 −0.01 – 0.26 282 ∗
up to 7th 482 0.43 0.31 – 0.54 0.07 −0.06 – 0.20 476 ∗
up to 8th 484 0.42 0.31 – 0.54 0.07 −0.06 – 0.20 497 ∗
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Table A.2: Extended

Cumulative
branch order

Number
of

obs.

Architecture-based metabolic rate - θ
TreeQSM Measured Bias (%) Signif.

(pseudo)
median

CI (95%) (pseudo)
median

CI (95%)

up to 2nd 63 0.28 0.26 – 0.29 0.30 0.28 – 0.31 −9 †
up to 3rd 184 0.47 0.39 – 0.56 0.47 0.43 – 0.53 0 †
up to 4th 330 0.56 0.50 – 0.62 0.58 0.52 – 0.65 −3 †
up to 5th 422 0.58 0.52 – 0.65 0.51 0.45 – 0.58 14 †
up to 6th 467 0.58 0.51 – 0.64 0.50 0.44 – 0.56 16 †
up to 7th 482 0.58 0.52 – 0.65 0.50 0.44 – 0.56 17 †
up to 8th 484 0.58 0.52 – 0.65 0.50 0.44 – 0.57 16 †

Table A.3: (pseudo) median exponents, 95 % CI, bias (%), and significance for αtree, βtree and θtree
per individual tree and plot-level (pseudo) median ranges among trees.

Tree
Number

of
obs.

Radius scaling exponent - α
TreeQSM Measured Bias (%) Signif.

(pseudo)
median

CI (95%) (pseudo)
median

CI (95%)

GUY01 64 0.49 0.44 – 0.54 0.66 0.61 – 0.70 −26 ∗
GUY03 50 0.45 0.36 – 0.52 0.62 0.60 – 0.69 −29 ∗
GUY04 48 0.43 0.37 – 0.49 0.69 0.65 – 0.76 −37 ∗
GUY05 38 0.44 0.32 – 0.56 0.68 0.65 – 0.75 −35 ∗
GUY06 52 0.47 0.41 – 0.51 0.62 0.54 – 0.67 −25 ∗
GUY07 50 0.5 0.40 – 0.60 0.65 0.62 – 0.68 −23 ∗
GUY08 50 0.5 0.41 – 0.61 0.66 0.6 – 0.73 −23 ∗
GUY09 65 0.52 0.46 – 0.59 0.62 0.56 – 0.66 −15 ∗
GUY10 67 0.33 0.28 – 0.38 0.53 0.46 – 0.59 −38 ∗
plot-level 10 0.33 – 0.52 NA 0.53 – 0.69 NA NA NA

∗ significant at 0.05 probability level.
† non significant at 0.05 probability level.
NA not available.
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Table A.3: Extended

Tree
Number

of
obs.

Length scaling exponent - β
TreeQSM Measured Bias (%) Signif.

(pseudo)
median

CI (95%) (pseudo)
median

CI (95%)

GUY01 64 0.21 −0.06 – 0.60 −0.12 −0.32 – 0.25 −281 †
GUY03 50 0.59 0.24 – 0.99 0.3 0.10 – 0.49 97 †
GUY04 48 0.35 −0.04 – 0.79 0.13 −0.23 – 0.42 164 †
GUY05 38 0.17 −0.31 – 1.04 −0.33 −0.71 – 0.59 −153 †
GUY06 52 0.55 0.10 – 0.99 0.42 −0.11 – 0.99 29 †
GUY07 50 0.62 0.24 – 1.08 −0.19 −0.53 – 0.30 −426 ∗
GUY08 50 0.44 0.12 – 0.74 0.28 −0.20 – 0.75 57 †
GUY09 65 0.57 0.26 – 0.83 0.05 −0.35 – 0.38 1027 ∗
GUY10 67 0.23 0 – 0.5 −0.11 −0.51 – 0.32 −302 †
plot-level 10 0.17 – 0.62 NA -0.33 – 0.42 NA NA NA

Table A.3: Extended

Tree
Number

of
obs.

Architecture-based metabolic rate - θ
TreeQSM Measured Bias (%) Signif.

(pseudo)
median

CI (95%) (pseudo)
median

CI (95%)

GUY01 64 0.69 0.45 – 0.88 0.52 0.39 – 0.65 33 †
GUY03 50 0.56 0.38 – 0.84 0.64 0.53 – 0.76 −12 †
GUY04 48 0.38 −0.27 – 0.56 0.47 0.41 – 0.59 −20 †
GUY05 38 0.24 −0.39 – 0.65 0.38 −1.26 – 0.69 −36 †
GUY06 52 0.51 0.34 – 0.84 0.38 0.23 – 0.92 35 †
GUY07 50 0.75 0.55 – 1.04 0.76 0.58 – 0.97 −1 †
GUY08 50 0.53 0.37 – 0.67 0.27 −2.18 – 0.34 101 ∗
GUY09 65 0.59 0.48 – 0.83 0.71 0.54 – 0.96 −16 †
GUY10 67 0.77 0.57 – 1.02 0.45 0.25 – 0.95 72 †
plot-level 10 0.24 – 0.77 NA 0.27 – 0.76 NA NA NA

Appendix B. Supplementary material472

Supplementary data associated with this article can be found, in the online version, at https://doi.473

org/10.1016/j.foreco.2019.02.019.474
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