
Bioinformatics, 2019

MSc thesis

Sequence Analysis

Calling homopolymers in nanopore sequencing data

Marijke M.A. Thijssen*

1Department of Bioinformatics, Wageningen University and Research, 6708PB, Netherlands

*To whom correspondence should be addressed.

Received on February 28, 2019

Abstract
Motivation: Nanopore sequencing is a fast developing sequencing technology capable of producing long DNA reads in

real-time. The generation of long reads helps solving obstacles in whole genome analysis that the common short reads

are unable of. However, low basecalling accuracy in homopolymer regions constrains the potential of the technology. A

number of tools exist to correct such errors, however these require substantial computational power. Here, we propose a

new approach to homopolymer calling. By selecting only those regions that actually contain homopolymers prior to base-

calling, the investment of computational resources for homopolymer correction can be reduced.

Results: We trained two different neural network architectures to detect homopolymer stretches in the raw nanopore

signal generated by a MinION sequencer, the gated recurrent unit recurrent neural network (RNN) and the hybrid residual

network-RNN (ResNetRNN). ResNetRNNs showed a greater capacity to detect homopolymers than RNNs. The best per-

forming network accurately detected two thirds of the homopolymers present in the raw signal, but also overestimated the

actual number of homopolymers. We incorporated this network in a pre-processing tool that splits the nanopore signal on

homopolymer content for specialised treatment. We highlight several venues to further improve the model and argue that

our tool, combined with specialised basecallers, can reduce the computational cost and error in basecalling nanopore

reads in the future.

Availability: All code used in this research is freely available at https://git.wur.nl/thijs030/thesis. The tool is freely available

at https://git.wur.nl/thijs030/thesis/tree/master/catfish.

Contact: marijke.thijssen@wur.nl

1 Introduction

We are currently moving towards the stage of third-gener-

ation sequencing (TGS): sequencing of single molecules,

omitting the need for amplification or interruptions for base

incorporation (Heather & Chain, 2016). TGS technologies

are maturing rapidly and pose great advantages over the

current golden standard second-generation sequencing

(SGS) technologies: real-time sequencing, reduced cost per

instrument run, detection of epigenetic modifications and

generation of long reads (Rang et al., 2018).

One of the major TGS techniques is nanopore sequenc-

ing by Oxford Nanopore Technologies (ONT). A single-

stranded DNA molecule is translocated through a nanopore

over which an electrical potential is applied. The current is

measured as the strand moves through the nanopore. This

raw signal is translated into a DNA sequence by so-called

basecallers. This is a challenging process, as multiple (on

average 5) bases simultaneously influence the signal, while

moving through the pore at a non-uniform speed (Agah et

al., 2016). Nanopore sequencing has no theoretical read

length limit and reads usually exceed 10 kb, as opposed to

the short reads of up to 300 bp generated by SGS technol-

ogies. Reads with lengths over 2 Mb, so-called ultra-long

reads, have even been reported (Payne et al., 2018).

In 2014, ONT introduced the portable MinION na-

nopore sequencing device. The small and light-weight de-

vice has a low initial cost of $1,000.- (Oxford Nanopore

Technologies, 2018). The platform has the promise of high

accessibility to sequencing, even in resource-limited set-

ting. The device connects via a USB port to a PC or laptop.

No expensive hardware, continuous power or trained per-

sonnel is needed (Elliott et al., 2018). The MinION se-

quencer was successfully exploited in monitoring the Ebola

virus during the outbreak in 2015 (Quick et al., 2016). This

illustrates the practical application of nanopore sequencing.

Nanopore sequencing suffers from a low accuracy of

about 90% to 98%, compared to SGS methods that have

accuracies over 99% (Oxford Nanopore Technologies,

2017; Sárközy et al., 2018). SGS technologies are able of

cheaply producing de novo assemblies, however repetitive

M.M.A. Thijssen

regions cause fragmentation, gaps and ambiguity in the ge-

nome that SGS technologies cannot resolve. Long reads

can span over these repetitive regions and close the ge-

nome. Generating long reads helps bridge problems in anal-

ysis of whole genomes, haplotype phasing and structural

variant detection, among others (Dijk van et al., 2018; Lu

et al., 2016; Sedlazeck et al., 2018). Since the error rate in

nanopore sequencing ranges from 2% to 10% at the mo-

ment, there is a need for improvement in accuracy to reach

the methods’ full potential.

A major issue in nanopore sequencing is the basecalling

of homopolymers, here defined as a stretch of five or more

identical bases. Basecallers including Albacore1 (Boža et

al., 2017; Teng et al., 2018) collapse homopolymers into

shorter stretches if the homopolymer length exceeds the

number of bases simultaneously influencing the measured

current, resulting in a high deletion rate in nanopore reads

(Jain et al., 2018). Currently, basecalled reads are often as-

sembled into a consensus sequence after which by so-called

polishers such as Nanopolish (Simpson et al., 2017) map

the reads back to the assembly to improve the consensus.

The consensus accuracy after polishing is close to 99.7% in

general (Wick et al., 2018), but it is a computationally ex-

pensive process. Current basecallers are not specialised to

detect homopolymers. ONT is working on new pores that

allow for more accurately measuring the bases as they pass

through (Brown, 2018). However, for now, a significant

gain could be achieved if the problem in calling of homo-

polymers can be addressed.

Here, it is proposed to select homopolymer stretches for

specialised treatment. By selecting only those regions that

actually contain homopolymers for correction, the invest-

ment of computational resources and time can be reduced.

Due to the complex and noisy nature of nanopore sequenc-

ing data, neural networks were applied with the goal to de-

tect homopolymers from non-homopolymers in the raw

signal generated by a MinION nanopore sequencing de-

vice. In this research, we developed and evaluated two dif-

ferent neural network architectures for this purpose. One

network was further developed to be incorporated into the

homopolymer selection tool catfish, that pre-processes the

reads with the ultimate goal to improve nanopore sequenc-

ing accuracy by correctly calling homopolymers.

2 Methods

2.1 Tool design

The tool catfish was designed as part of the workflow to

improve basecalling and speed up the process (Figure 1).

Catfish takes in the directory to the raw nanopore signals

1 https://community.nanoporetech.com/protocols/albacore-offline-base-

calli/v/abec_2003_v1_revan_29nov2016

saved in FAST5 format and the name for an output direc-

tory. The reads are first trimmed and median normalised.

Next, a neural network at the core of catfish classifies the

measurements making up the raw signal as part of a homo-

polymer or not. This output is corrected to remove consec-

utive homopolymer measurements that are shorter than five

times the minimal event length of three measurements, as

this is the expected minimal true homopolymer length. The

signal is split on these homopolymer regions and saved to

separate FAST5 files. The names of the split files are re-

turned by catfish. The workflow continues by basecalling

nanopore reads containing no predicted homopolymers

speedily using Albacore 2.3.3 with default settings. Reads

that do contain assumed homopolymers, are basecalled us-

ing Albacore 2.3.3 with experimentally found settings op-

timal for homopolymer basecalling.

2.2 Neural network design

As nanopore sequencing data are complex and noisy, likely

to have highly non-linear relations, recognising patterns

within that data is a task well suited for machine learning

techniques. Neural networks are known for their capability

to recognise complex patterns and to generalise to unseen

data. Several neural network architectures have been de-

signed and are applied to a variety of problems. Convolu-

tional neural networks (CNNs) have been applied to ONT

data before for demultiplexing (Wick et al., 2018) and pro-

tein sensing (Misiunas et al., 2018). Bidirectional recurrent

neural networks (RNNs) (Schuster & Paliwal, 1997) have

catfish

fast basecaller
homopolymer

basecaller

raw signal reads
(FAST5)

basecalled reads
(FASTQ)

non-homopolymer regions homopolymer regions

Figure 1 - Workflow. The raw signal generated by a MinION se-
quencer is classified by the tool. Reads are split on regions that
contain homopolymers in separate FAST5 files. Files containing no
homopolymers are basecalled by a fast basecaller. Files containing
a homopolymer are basecalled by a specialized basecaller.

Calling homopolymers in nanopore sequencing data

been used before in ONT basecalling (Boža et al., 2017), as

well as a CNN combined with a RNN (Teng et al., 2018).

Basecallers DeepNano and Chiron both employ the Long

Short-Term Memory (LSTM) unit (Hochreiter &

Schmidhuber, 1997), a more advanced RNN unit. Common

difficulties encountered in training neural networks are the

vanishing and exploding gradient problems, especially in

deep networks (Hochreiter et al., 2001). Networks that suf-

fer from these unstable gradient problems cannot effi-

ciently tune the parameters because the updates are too

small or large. A number of solutions exist to diminish or

solve this problem.

Initially, the bidirectional gated recurrent unit RNN

(biGRU-RNN) architecture was employed in this research.

RNNs make use of dependencies inside the data and are fit

for sequential data. The GRU-RNN (Cho et al., 2014) is an

improved adaptation of the standard RNN, which solves the

vanishing or exploding gradient problem by making use of

a gating mechanism (Chung et al., 2014) (Supplementary

Figure 1). Because the prediction of a homopolymer can

be influenced by both information before and after the

measurement, a bidirectional version of the RNN was im-

plemented. Secondly, a more intricate and potentially more

powerful architecture was adopted, namely a combination

of the aforementioned RNN and a ResNet (ResNet-biGRU-

RNN, further referred to as ResNetRNN). A ResNet (He et

al., 2016) is a specialized type of CNN (LeCun et al., 1999)

that does not suffer from the vanishing or exploding gradi-

ent problem because of skip connections inside the network

(Supplementary Figure 2). This allows for building

deeper networks, which have a greater capacity for feature

representation. CNNs have proven to be excellent local fea-

ture extractors and have been successfully applied to or-

dered one-dimensional data including text (Kim, 2014) and

sensor data (Rueda et al., 2018). The hybrid architecture

potentially benefits from the advantages of both types of

network by combining the different methods of feature ex-

traction.

Both types of networks were connected to a final fully

connected layer that produces the final output. The net-

works were built in TensorFlow (Abadi et al., 2016) in Py-

thon 3.5. Network weights were initialised using Xavier in-

itialisation to avoid starting weights in saturated zones,

which could result in a vanishing or exploding gradient

(Glorot & Bengio, 2010). The ReLU activation function,

robust to the vanishing gradient problem and easier to train,

was applied in the ResNet layers. GRUs were used that

have a tanh activation function for candidate memory de-

termination and sigmoid activation functions for gating

(Supplementary Figure 1). Biases in GRUs were initial-

ised to one. Additionally, dropout was applied to the RNN

layers to prevent overfitting (Srivastava et al., 2014). Batch

normalisation was applied in the ResNet layers to acceler-

ate training and improve regularisation (Ioffe & Szegedy,

2015). The probability for a homopolymer was calculated

using the sigmoid cross entropy function.

2.3 Hyperparameter selection

The appropriate hyperparameters, which are variables that

are initialised before training, are crucial to the success of

the network as they significantly impact the behaviour of

the model. However, the ideal combination of hyperparam-

eters cannot be known in advance. Therefore, random

search was applied to search a large hyperparameter space

for hyperparameter optimisation within the available com-

putational budget and time (Bergstra & Bengio, 2012). The

hyperparameters learning rate, optimiser, size of layers,

mini-batch size, number of layers and dropout rate were

varied (see Supplementary Table 1 for a description of the

hyperparameters; see Supplementary Table 2 for an over-

view of ranges). A total of 32 RNNs were generated for

random search.

 To assess if ResNetRNNs have a greater capacity of

learning useful features in this problem, a two-fold ap-

proach was operated on. Firstly, fifteen ResNetRNNs were

randomly generated as part of the random search, as there

is a fair possibility that the ideal set of hyperparameters dif-

fers per network architecture. Secondly, the hyperparame-

ter settings of the top four performing RNNs were reused

as settings for the RNN substructure and combined with a

ResNet of which the hyperparameters were randomly se-

lected. It was hypothesized that a well-performing RNN is

a strong basis for a ResNetRNN. For each of the four best

performing RNNs, five new instances of a ResNetRNNs

were created. A total of 35 ResNetRNNs were constructed.

2.4 Data preparation

The data set used in this research was a genomic, MinION

generated set on Escherichia coli K-12 MG1655, made

publicly available by the Loman research group (Loman,

2017). Samples were sequenced with the ONT 1D Rapid

Sequencing Kit SQK-RAD002 on a standard FLO-

MIN106 R9.4 flow cell using MinKNOW1.4. The na-

nopore reads were basecalled by Albacore 0.8.4. Data were

saved to a specialized hierarchical data format 5 (HDF5)

file, FAST5, which contains both the raw signal and

metadata such as basecalling information.

The data were median normalised and corrected using

the tool Tombo (Stoiber et al., 2016) resquiggle with four

threads, which assigned the raw signal to the given refer-

ence (Blattner & Plunkett, 2014) based on the basecalled

sequence and current, which resulted in a correction of

some errors compared to the reference. Reads that could not

be processed by Tombo were omitted. Non-aligning bases

at the start and the end of the reads were trimmed off. After

this procedure, the data set had a homopolymer content of

M.M.A. Thijssen

2.22%, matching that of the E. coli genome (Supplemen-

tary Table 3).

The measurements in the raw signal were labelled as

being part of a homopolymer or not according to the under-

lying base sequence (Supplementary Figure 3). A homo-

polymer is here defined as a stretch of five equal bases or

longer. Measurements were linked to bases via events, seg-

ments of the raw signal that correspond to an unchanging

set of nucleotides occupying the pore. If a measurement

was part of an event that points to a base that is part of a

homopolymer, the measurement is labelled as being part of

a homopolymer. The complete read set of 81,703 reads was

randomly distributed over a training, validation and test set

of 70%, 15% and 15% of all reads, which corresponded to

51,792, 12,255 and 12,256 reads respectively.

2.5 Building a database

As the purpose of the network is to accurately detect homo-

polymers, using a balanced training set will create the pos-

sibility for the network to learn the patterns for both the mi-

nority and majority group (Buda et al., 2018). As homopol-

ymers are severely less present in the E. coli genome, a da-

tabase was constructed to hold homopolymer and non-ho-

mopolymer examples, so a balanced set of training exam-

ples could be extracted for training. Each example was

composed of a randomly selected stretch of 35 measure-

ments in length, the expected minimal homopolymer length

based on a median of seven measurements per event. Ex-

amples were included per interval of three measurements,

the minimal event length, to keep the size of the database

limited but still guarantee at least one example per event.

The database thus contained complete homopolymer

stretches, complete non-homopolymer stretches and

stretches containing both non-homopolymers and homo-

polymers.

2.6 Network training and validation

All networks were trained for 10,000 iterations on sets of

examples with an approximate homopolymer content of

40% to 45%. These networks were validated on stretches

of 14,980 measurements in 11,940 reads of the validation

set. A total of 315 reads were excluded from the original

validation set because of a raw signal length less than

14,980 measurements. The length was set to 14,980 as val-

idation on stretches of this length gave similar results to

validation on full reads, within an acceptable time span.

Stretches were randomly selected to avoid possible bias to

certain positions in the raw signal. The true percentage ho-

mopolymers varied from 2.12% to 2.27% per stretch. Net-

work performance was assessed on precision, recall, accu-

racy and F1 score, which is the harmonic mean between

precision and recall. Networks with an accuracy of 0%

were not taken into account as they produced Not-a-Num-

ber values during training, thus were not trained success-

fully. Networks were considered to have no predictive

value if both precision and recall were 0%, or if recall was

100% and precision was equal to the percentage homopol-

ymers in the E. coli genome. The two networks with either

highest precision or recall were selected for further training

of an additional 100,000 iterations, while monitoring per-

formance on the training set and the validation set to avoid

overfitting. Finally, the best performing model was tested

on randomly selected stretches of 14,980 measurements

from the test set. A total of 11,800 stretches were selected

as 456 of the 12,256 reads did not have the minimal re-

quired length of 14,980.

 The best performing network was incorporated in the

tool catfish based on the following selection criteria: (i) a

recall of approximately 75% and (ii) a precision of at least

10%. The optimal decision threshold for the best network

was based on the ability of accurately detecting homopoly-

mers instead of single homopolymer measurements (Sup-

plementary Figure 3). Basecallers and polishers require

input to have a certain size. It is therefore not essential to

call every measurement to select the homopolymer. Actual

performance of the selected model on detection of homo-

polymer regions instead of single measurements was as-

sessed on one hundred full reads with a combined length of

33,537,616 measurements. The underlying base sequence

of predicted homopolymers was inspected on position,

length in measurements, length in bases and base composi-

tion.

2.7 Tool testing

Finally, the tool was tested on a set of 1,000 reads to com-

pute CPU time needed per read for homopolymer detection

and signal splitting. The average CPU time was computed

after four replicates of testing. This showed what the most

expensive step in the process was. The tool was tested on

another 100 reads to estimate total CPU time and disk space

needed.

 Additionally, different Albacore settings were tried to

find to optimal settings for homopolymer basecalling. A set

of 1,000 reads was basecalled with Albacore using different

settings for maximum chunk size and homopolymer correc-

tion. It was reported that homopolymer calling by Albacore

could benefit from an increased chunk size over the default

1,000, as the chunks will be able to span over low complex-

ity regions. Homopolymer correction was deactivated by

default. Four replicates were performed. CPU times were

measured and basecaller performance was assessed on the

number of insertions, deletions, mismatches and matches.

Calling homopolymers in nanopore sequencing data

3 Results

Nanopore sequencing suffers from a relatively high error

rate compared to SGS technologies. Especially the identi-

fication of homopolymers has proven to be a difficult task.

Two different neural network architectures, the RNN and

the ResNetRNN, were employed with the goal to accu-

rately detect homopolymers in the raw signal generated by

a MinION sequencer. Hyperparameter settings were se-

lected by random search. Performance was evaluated and

the best performing network was implemented in a tool for

homopolymer selection.

3.1 ResNetRNNs have a greater capacity in homopoly-

mer detection than RNNs

A total of 67 networks, having either the RNN or Res-

NetRNN architecture, were trained and compared on per-

formance to determine which architecture was most ade-

quate in homopolymer detection (Supplementary Table

4). Two RNNs were omitted because they were not suc-

cessfully trained. In general, ResNetRNNs outperformed

RNNs based on precision and recall, although the differ-

ence was limited (Figure 2). RNNs reached a maximum

recall of 76.92% and precision of 12.69%, while Res-

NetRNNs reached a maximum recall of 78.47% and preci-

sion of 14.58%. The relative high recall and low precision

of most networks was indicative of many falsely predicted

homopolymer measurements. Networks with the highest

accuracies (close to 98%) had an extremely poor precision

and recall due to the fact that these networks consistently

predicted non-homopolymers in all cases. As the true per-

centage homopolymers in the E. coli genome is about 2.2%,

accuracy is high when predicting exclusively homopoly-

mers, but these networks do not have any useful predictive

value. Additionally, the best performing ResNetRNN esti-

mated a homopolymer content of 10.9% against a 13.4%

predicted content by the best

performing RNN. Thus, the hybrid ResNetRNN architec-

ture, given the proper hyperparameters (see 3.2 The right

combination of hyperparameters is essential for perfor-

mance), was better able of discerning homopolymer meas-

urements from non-homopolymer measurements than the

RNN architecture.

3.1.1 Extending well-performing RNNs with a ResNet im-

proves the performance

Besides the common method of random search for hyperpa-

rameter optimisation, another approach was taken as well:

the extension of a ResNetRNN. It combined randomly se-

lected ResNet hyperparameters with predefined hyperpa-

rameter settings for the RNN substructure of the Res-

NetRNN based on well-performing RNNs. Following this

method, five new instances of a ResNetRNN for each of the

top four RNNs were trained. Thirteen of the twenty Res-

NetRNNs had an improved performance, measured in F1

score, in comparison to the original RNNs, of which ten

performed better than the best RNN (Supplementary Fig-

ure 4). All hybrid networks except one had an increased

performance with regard to the RNNs not used for exten-

sion, although no extreme increase or decrease in perfor-

mance was measured. Still, this extension approach was

beneficial in the problem of homopolymer detection as the

majority of extended ResNetRNNs achieved better results

than the original RNNs.

3.1.2 Performance of the networks is variable

Performance of all the networks varied considerably de-

pending on the hyperparameter combinations (Figure 3).

Similar top results were reached in both approach for Res-

NetRNN hyperparameter optimisation as the best perform-

ing networks both had a precision of approximately 15%

Figure 2 - Network performance. Performance of networks with
either a RNN architecture or a ResNetRNN architecture based on
precision and recall.

0 20 40 60 80 100

recall

p
re

c
is

io
n

0

 2

0

4
0

6
0

 8

0

 1

0
0

Figure 3 - Boxplot of F1 score for network architecture. Ran-
dom search was applied for hyperparameter optimisation for RNNs
(blue) and ResNetRNNs (orange). Additionally, the approach to
extend RNNs to ResNetRNNs (green) was applied.

F
1

0
.0

0

 0

.0
5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

RNN ResNetRNN ResNetRNN

(extended)

M.M.A. Thijssen

and recall of 73%. However, networks created by the ex-

tension method showed more consistent performance than

the random RNNs and ResNetRNNs. This was expected,

because of the shared basis of the extended ResNetRNNs.

Especially the randomly generated ResNetRNNs showed

varied performance. A quarter of the random ResNetRNNs

did not have predictive value, while others were amongst

the best performing. RNNs generally achieved a lower per-

formance, which was caused by both a lower precision and

recall. It was clear that a good performance does not simply

depend on the network architecture, but was heavily influ-

enced by the hyperparameters settings.

3.1.3 Additional training improved performance by a small

margin

Two networks, further referred to as ResNetRNN 1 and 2,

were selected for additional training of 100,000 iterations.

The learning curves on training and validation accuracy

were monitored to prevent overfitting on the data. No over-

fitting was observed based on accuracy. The model at an

earlier point in training was restored however, because

training for more iterations had decreased precision (Sup-

plementary Figure 5). Before training, ResNetRNN 1 had

achieved the highest precision and ResNetRNN 2 the high-

est recall. After the additional training, both recall and pre-

cision were approximately equal for the two networks. Res-

NetRNN 1 was selected over ResNetRNN 2 to be incorpo-

rated into the tool catfish as it had a lower complexity than

ResNetRNN2. Less computations are needed using Res-

NetRNN 1, which is likely to result in a faster model. Res-

NetRNN 1 is a 3-layer RNN with 64 units per layer, com-

bined with 2 ResNet layer of 32 units each and a final fully

connected layer (Supplementary Figure 6). This model

has an accuracy of 90.15%, precision of 15.21% and recall

of 74.75% on homopolymer measurement detection.

 The networks discussed thus far were trained on a set of

examples with an overall homopolymer content of about

40%. Training the best network from start on a set less bal-

anced resulted in higher precision (> 20%), but lower recall

(<70%). Training on an even more unbalanced set im-

proved precision and diminished recall further, Also, re-

suming training on a set with higher homopolymer content

after training performance declined on the initial training

set, resulted in a steady decrease in recall and rise in preci-

sion (Supplementary Figure 7).

3.2 The right combination of hyperparameters is es-

sential for performance

The importance of the individual hyperparameters on the

performance of the networks was evaluated after the initial

training of 10,000 iterations for hyperparameter optimisa-

tion (Supplementary Figure 8 and 9). The hyperparame-

ters optimiser, number of RNN layers, size of RNN layers,

mini-batch size, number of ResNet layers, number of Res-

Net layers and dropout did not have a strong independent

effect on performance. Learning rate seemed to have a

small individual effect. A lower learning rate was associ-

ated with a better performance, especially in ResNetRNNs.

A learning rate of 0.1 in combination with a larger number

of layers (4 or 5) and large layer size (128 or 256 units)

often resulted in networks that did not learn to detect non-

homopolymers for both the RNN and ResNetRNN archi-

tecture. Alternatively, a single ResNetRNN with a learning

rate of 0.1 detected solely homopolymers. This indicated

that a high learning rate does not allow the networks to

learn the details that discriminate a homopolymer from a

non-homopolymer. Interestingly, the learning rate of 0.001

resulted in better performing networks that the lower learn-

ing rate of 0.0001, which could be due to inadequate train-

ing. The initialisation also affected the networks. For in-

stance, two RNNs were trained that incidentally had the

same hyperparameter settings (Supplementary Table 4).

One network outperformed the other on all measures. The

difference between these networks is solely due to the ran-

dom parameter initialisation and training on different train-

ing examples.

 RMSProp is an often-used optimiser in RNNs, while

Adam is usually the preferred choice in CNNs. In the case

of a combined network, the optimal choice is not apparent.

On inspection of the optimiser choice, no obvious differ-

ence was present for neither RNNs nor ResNetRNNs based

on optimiser alone. Although the networks that stood out

because of obvious worse performance than the other net-

works were trained using the RMSProp optimiser, so were

some of the top performing networks.

Overall, no individual hyperparameter had a major in-

fluence on network performance, although learning rate

was an indicator. It is the combination of hyperparameters

that is most important for network performance.

3.3 The network detects homopolymers with low preci-

sion

The purpose of the model was to detect homopolymer re-

gions accurately. The detection of homopolymer regions

was evaluated through an assessment of 100 full reads

(Figure 4). Precision and recall for homopolymer regions

instead of the measurements making up a homopolymer

were calculated for different decision thresholds. In all

cases, the false discovery rate was extremely high. A

threshold of 0.9 was therefore selected to restrain the num-

ber of falsely detected homopolymers to some extent. At

this setting, about two thirds of all true homopolymers are

detected. The number of homopolymers was overestimated

with a false discovery rate of 67.7%. About 5% of the

falsely identified homopolymers was a stretch of four iden-

tical bases, about 15% of three identical bases and about

25% of two identical bases. Also, the prevalence of small

Calling homopolymers in nanopore sequencing data

repetitive sequences like ‘ACACAC’ was observed, but re-

petitive sequences were only an extremely small fraction of

incorrectly predicted homopolymers. About half of the

missed homopolymers had a predicted confidence score

over 0.6, which indicates that the network does get some

indication of a homopolymer being present. Predicted ho-

mopolymer regions had a shorter length than in reality. Ho-

mopolymer regions were underestimated on both sides for

ten to fifteen measurements and usually overlapped with

less than five bases. Thus, most predicted homopolymer re-

gions only partially represented the true homopolymers. On

inspection of the overall base composition of the predicted

homopolymer regions, there was no indication of bias for

detecting homopolymer of certain base compositions (Sup-

plementary Figure 10). Homopolymers composed of ade-

nine and thymine are naturally more occurring that cytosine

or guanine homopolymer. Although the low precision of

the model was not desired, the model was used as selector

of homopolymers to estimate the possible gain by use of

catfish.

3.4 A specialised homopolymer caller is needed

The command line tool catfish was designed as a selection

tool that finds homopolymer regions in the raw nanopore

signal and splits the signal in chunks of minimal 100 to a

user-defined maximum. As catfish centers the homopoly-

mers in the split, this has the advantage that the complete

homopolymer is contained even though the model underes-

timates the homopolymers in length. At the moment, it

takes the tool approximately 31 seconds per read in CPU

time for homopolymer analysis and an additional 8 seconds

in CPU time for splitting. When splitting the reads, a size-

able proportion of the metadata is copied as well, resulting

in a steep increase in needed disk space. A set of 100 reads

was split into 19,274 reads that took up 425 times as much

disk space. In total, catfish takes just over 40 seconds in

CPU time per read. In the ideal situation in which reads are

solely split on true homopolymers, the CPU time taken for

splitting of the reads is halved.

 The purpose of this pre-processing step is to be able to

basecall the homopolymer containing stretches with a spe-

cialised basecaller to increase accuracy, while saving time

and computational expense on non-homopolymer stretches

by basecalling them regularly. We looked into Albacore

2.3.3 and explored different settings to improve homopol-

ymer calling. A comparison on using different chunk sizes

with homopolymer correction activated, showed that in-

creasing the chunk size decreased the number of deletions

with respect to the default (Figure 5). The effect was the

strongest when increasing chunk size to 20,000. Larger

chunk sizes did not significantly decrease the number of

deletions further. Interestingly, the number of insertions in-

creases when increasing the chunk size to 10,000, but fur-

ther increasing the chunk size showed slightly less inser-

tions. A similar pattern was observed for the number of

mismatches and matches. The proportion of deletions, in-

sertions, matches and mismatches however stayed constant

for every chunk size and activated or deactivated homopol-

ymer correction, and the total number of called bases de-

creased with increased chunk size. CPU times steadily in-

creased for every increase of 10,000 for chunk size. For ho-

mopolymer detection, Albacore can be optimised a little by

activating homopolymer detection and increasing chunk

size to 10,000. At a chunk size of 20,000, the total number

of bases had decreased by 10%. At the settings of chunk

size at 10,000 and homopolymer correction activate, the

number of deletions decreased with 3% within a reasonable

CPU time. However, the number of insertions increased

with the same proportion as the number of deletions de-

creased. The effect of the adjusted setting was thus limited.

A basecaller specialised in homopolymer calling must be

developed to exploit the advantage of pre-processing the

raw signal on homopolymers.

Figure 4 - Comparison of homopolymer predictions against genuine homopolymer positions in two full reads. Decision threshold
is set at 0.9. Top row: predicted positions of homopolymers; middle row: actual homopolymer positions; bottom row: confidences of predic-
tions as indicated by the colour scale.

c
o
n
fi
d

e
n
c
e
s

tr
u
th

p
re

d
ic

ti
o

n

c
o
n
fi
d

e
n
c
e
s

tr
u
th

p
re

d
ic

ti
o

n

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

M.M.A. Thijssen

4 Discussion

Nanopore sequencing is a quickly developing technique for

generating long reads, with the potential to advance the

field. However, it suffers from a relatively high sequencing

error rate compared to the current golden standard SGS

techniques. The calling of homopolymers has proven to be

difficult and remains the major problem in nanopore se-

quencing. Addressing this problem will increase the ap-

plicability of nanopore sequencing to current problems in

genotyping (Goldstein et al., 2019), structural variant de-

tection (Sedlazeck et al., 2018) and single nucleotide vari-

ant detection (Rang et al., 2018).

 In this research, two different types of neural net-

works were trained on a MinION generated E. coli data set

with the intent to accurately detect homopolymers based on

the raw signal. A comparison on the different neural net-

works showed variable performance for the two architec-

tures, which emphasized the role of the combination of hy-

perparameters. Individual hyperparameters did not have a

major effect by themselves. In general, ResNetRNNs had a

greater capacity to detect homopolymers that the RNNs.

Although the differences in accuracy, precision and recall

were not large between the different network architectures,

applying a more complex network with deeper learning ca-

pabilities led to more accurate predictions. A ResNetRNN

was further developed by additional training and moving

the decision threshold. It achieved a reasonable recall but

0

500000

1000000

1500000

2000000

2500000

deletions insertions mismatches

n
u

m
b

er
 o

f
b

as
es

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

matches

n
u

m
b

er
 o

f
b

as
es

0

20000

40000

60000

80000

100000

120000

C
P

U
 t

im
e

(s
)

B

A

C

Figure 5 – Comparison of Albacore on different settings. Basecalling performance on number of deletions, insertions, mismatches (A),
matches (B) and CPU time (C) using default settings (blue) versus homopolymer correction in combination with a chunk size of 1,000
(orange), 10,000 (grey), 20,000 (yellow), 30,000 (light blue), 40,000 (green) or 100,000 (dark blue) was measured. CPU time for default
settings is not clearly visible in the graph as it was less than 5,000 seconds.

Calling homopolymers in nanopore sequencing data

fairly low precision, as the model overestimated the num-

ber of homopolymers present in the raw signal considera-

bly. In light of the low percentage of homopolymers in av-

erage reads, it was expected that the number of homopoly-

mers would be overestimated. The networks were trained

on a limited number of examples. In particular, most non-

homopolymer examples were not included in training as the

training set was almost balanced. By chance, instances that

contained important differences between homopolymers

and non-homopolymers may have been excluded or not

been included in the training set. However, with respect to

the available examples in the database, the networks were

likely to have learned all possible information as consider-

able additional training did not improve performance.

As a practical application, the neural network was in-

corporated in the pre-processing tool catfish that splits the

raw signal on homopolymer stretches, so they can be pro-

cessed with extra care to improve the calling of homopoly-

mers, while saving computational power and time by regu-

larly processing non-homopolymer stretches. Detecting ho-

mopolymers in the nanopore reads is a relatively costly op-

eration and the tool would twofold increase the basecalling

process in CPU time. At the moment, there is no sufficient

basecaller or polisher that can handle homopolymer calling.

Albacore 2.3.3 and later do have a homopolymer correction

settings, although the effect appeared to be small. Recently,

ONT released the latest research basecaller Flappie, which

uses a new algorithm that supposedly handles homopoly-

mers better (Brown, 2018). An initial comparison revealed

the basecaller to more accurately call homopolymers up to

six bases in length, but no significant improvement for

longer homopolymers (Robison, 2018). It is clear that there

is still much room for improvement in basecalling software.

In the future, we see homopolymer selection joined with

specific homopolymer calling, incorporated in standard

basecallers. This would additionally solve the issue with

the large disk space required, because the splitting step

would be omitted.

The first step to advance catfish is optimising the net-

work as the current network lacked the desired precision.

When constructing a neural network, choosing the optimal

hyperparameters is crucial to generate well-performing

models. Random search was applied for hyperparameter

optimisation. Although most hyperparameters inde-

pendently did not have a strong influence on network per-

formance, the combination of hyperparameters does. This

was clear from the varied performance between networks

of the same and different architecture. Larger networks

may have need more training to reach the same level of per-

formance as smaller networks because they have more pa-

rameters to fine tune. Networks with a high learning rate

were generally unable to detect homopolymers well, which

could be expected as they are more prone to stepping over

the optimal solution due to the larger step size with which

the updates are made.

A small fraction of the large number of possible hy-

perparameter combinations was explored using random

search. Bergstra & Bengio (2012) showed that neural net-

works on average achieved better accuracies when random

search was used than a grid search of 100 trials in the opti-

misation of nine hyperparameters in experiments with eight

or more networks on binary classification. This indicates

that a sufficient number of networks is tried, although the

addressed problem is different from homopolymer detec-

tion. It cannot be guaranteed that the optimal hyperparam-

eter combination was found, even when assuming that the

determined range of hyperparameter setting includes the

optimal setting. A promising alternative approach is evolu-

tionary algorithms, such as population-based training as it

exploits well-performing models to explore a new range of

hyperparameters dynamically during training (Jaderberg et

al., 2017; Oehmcke & Kramer, 2018).

 The alternative approach of extending a relatively well-

performing RNN with a ResNet was not unequivocally bet-

ter than a random search for hyperparameter optimisation.

This method did found the best combination of hyperpa-

rameters. Also, none of the extended RNNs had a strong

decrease in performance, which is likely due to the struc-

ture of the ResNet layers. In the worst case scenario, these

layers do not learn but pass on the input without modifica-

tion.

In contrast to the hyperparameters of a network that

have to be selected beforehand, the parameters are learned

via gradient descent during training. Appropriate examples

for learning are therefore crucial. The raw signal contains

measurements that capture the transition from non-homo-

polymers to a homopolymer. This is not reflected in the ap-

plied labelling method that strictly discriminates between

homopolymer and non-homopolymer. A different labelling

system using more labels could have been applied to make

this distinction. For instance, the sequence ‘TAAAA’ could

be the beginning of a homopolymer but can also be fol-

lowed by another base than an adenine. The difference be-

tween a possible homopolymer and a true homopolymer

could be exploited to increase model performance, if the

transitions from non-homopolymers to possible homopoly-

mers were marked as such. The network could possibly rec-

ognise short stretches of identical bases and assign different

confidentialities as the number of identical bases increases.

If a certain threshold would be reached in the sequence, it

will be marked as homopolymer and otherwise it will not.

This could possibly reduce the number of short stretches of

identical bases identified as homopolymer.

The majority of homopolymers was detected by the

model, although one third is missed and predicted homo-

polymers are shorter in length than the true homopolymers.

It is likely beneficial to use a larger example length (was

M.M.A. Thijssen

set to 35) in future research so the network will learn to

recognise longer homopolymers. Additionally, over 65%

of the predicted homopolymers did not overlap with true

homopolymers at all. A substantial number of these incor-

rectly predicted homopolymers had an underlying base se-

quence of two, three or four identical bases. The detection

of theses short stretches of identical bases could be ex-

plained by the fact that many examples used in training rep-

resented edge cases that contained both homopolymers and

non-homopolymers.

The ultimate goal is to be able to generate confident ge-

nome assemblies for all organisms. In this research, a pro-

karyotic set was used as opposed to a eukaryotic set to

avoid complications due to DNA modifications, as modi-

fied bases give a different signal than their canonical ver-

sions (Stoiber et al., 2016). However, Chiron, a basecaller

with a similar neural network at its core as the one inte-

grated in the tool, was able to generalize well over a human

set while trained on a small prokaryotic set (Teng et al.,

2018). This suggests that the proposed neural network

could be able of generalizing to other organisms as well.

A big obstacle in training of the networks is the severe

class imbalance. Undersampling of the majority group

combined with oversampling of the minority group was

used to enable training on a balanced set. Other techniques

to work with imbalanced sets exist as well. In some data

sets over 10,000 examples in size, cost-sensitive learning

has proven to be more efficient than sampling (Weiss et al.,

2007) and easy to implement, although learning could be

more difficult in heavily imbalanced problems like this one

(Zhou & Liu, 2006). Alternately, a different perspective

could be taken on homopolymer detection. Novelty detec-

tors exceeded binary classifiers like the used neural net-

works in data for which the minority class is than 5% (Lee

& Cho, 2006).

Neural networks are powerful machine learning algo-

rithms that handle complex data. Many different architec-

tures exist, which provide different ways of learning the ex-

pected output from a presentation of input samples. Two

well-known architectures, the RNN and the ResNet, were

tried, which are known for learning from sequential data

and extracting local features respectively. It would be inter-

esting to explore the capabilities of less used networks,

such as the capsule network (CapsNet) (Sabour et al., 2017)

that uses nested sets of CNN layers to extract local features.

Future directions are focused on improving the perfor-

mance of the network by strengthening precision and recall.

As mentioned above, different approaches exist and could

be combined, including an alternative labelling method,

cost-sensitive learning, different network architectures,

training examples that are composed of longer stretches of

signal or a dynamic hyperparameter optimisation algo-

rithm. Nonetheless, it is difficult to pinpoint what aspects

matter most with regard to network performance after the

many subsequent linear and non-linear operations that tran-

spire in a neural network. This is not the first attempt to

utilise the raw signal instead of the previously used seg-

mented signal. However, it is the first approach that solely

focusses on identification of homopolymers.

In conclusion, neural networks are able to detect a pat-

tern that discerns homopolymers from non-homopolymers

in the complex MinION generated data. The ResNetRNN

architecture enabled increased learning over the RNN ar-

chitecture, as they are deeper networks that combine local

feature learning with extraction of long-range information.

Although the neural networks presented here lacked the

precision required for accurate selection of homopolymer

regions, we propose several venues towards further im-

provements in this respect. Optimising the neural networks

in combination with a polisher or a basecaller specialised

in calling homopolymers, has the potential to reduce the er-

ror rate of nanopore sequencing, while limiting additional

costs by restricting additional care to only those regions

that actually contain homopolymers.

Acknowledgements
I would like to thank Carlos de Lannoy and Dick de Ridder
for their supervision and feedback.

References

Abadi, M. et al. (2016). TensorFlow: A system for large-scale

machine learning. In Proceedings of the 12th USENIX

Symposium on Operating Systems Design and

Implementation (pp. 265–283). Savannah, United States:

USENIX Association Berkeley.

Agah, S. et al. (2016). DNA sequencing by nanopores: Advances

and challenges. Journal of Physics D: Applied Physics,

49(41), 413001–413015.

Bergstra, J. et al. (2012). Random search for hyper-parameter

optimization. Journal of Machine Learning Research, 13,

281–305.

Blattner, F. et al. (2014). Escherichia coli str. K12 substr.

MG1655, complete genome, U00096.3. Retrieved October

3, 2018, from

https://www.ncbi.nlm.nih.gov/nuccore/U00096.3

Boža, V. et al. (2017). DeepNano: Deep recurrent neural networks

for base calling in MinION nanopore reads. PLoS One,

12(6), e0178751.

Brown, C. G. (2018). Clive G Brown: Nanopore Community

Meeting 2018 talk. Retrieved January 21, 2019, from

https://nanoporetech.com/about-us/news/clive-g-brown-

nanopore-community-meeting-2018-talk

Buda, M. et al. (2018). A systematic study of the class imbalance

problem in convolutional neural networks. Neural

Networks, 106, 249–259.

Cho, K. et al. (2014). On the properties of neural machine

translation: encoder-decoder approaches. In Eighth

Calling homopolymers in nanopore sequencing data

Workshop on Syntax, Semantics and Structure in Statistical

Translation (pp. 103–111). Doha, Qatar: Association for

Computational Linguistics.

Chung, J. et al. (2014). Empirical evaluation of gated recurrent

neural networks on sequence modeling. In Neural

Information Processing Systems 2014 Deep Learning and

Representation Learning Workshop (pp. 1–9). Montreal,

Canada: Neural Information Processing Systems

Foundation.

Dijk van, E. L. et al. (2018). The third revolution in sequencing

technology. Trends in Genetics, 34(9), 666–681.

Elliott, I. et al. (2018). Oxford Nanopore MinION sequencing

enables rapid whole-genome assembly of Rickettsia typhi

in a resource-limited setting. BioRxiv.

Glorot, X. et al. (2010). Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the

Thirteenth International Conference on Artificial

Intelligence and Statistics (pp. 249–256). Sardina, Italy:

JMLR.org.

Goldstein, S. et al. (2019). Evaluation of strategies for the

assembly of diverse bacterial genomes using MinION

long-read sequencing. BMC Genomics, 20(1), 23.

He, K. et al. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 770–778). Las Vegas,

United States: IEEE Computer Society.

Heather, J. M. et al. (2016). The sequence of sequencers: The

history of sequencing DNA. Genomics, 107(1), 1–8.

Hochreiter, S. et al. (1997). Long short-term memory. Neural

Computation, 9(8), 1735–1780.

Hochreiter, S. et al. (2001). Gradient flow in recurrent nets: The

difficulty of learning long-term dependencies. In A Field

Guide to Dynamical Recurrent Networks. IEEE Computer

Society.

Ioffe, S. et al. (2015). Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In

Proceedings of the 32nd International Conference on

Machine Learning (pp. 448–456). Lille, France:

JMLR.org.

Jaderberg, M. et al. (2017). Population based training of neural

networks. ArXiv.

Jain, M. et al. (2018). Nanopore sequencing and assembly of a

human genome with ultra-long reads. Nature

Biotechnology, 36(4), 338–345.

Kim, Y. (2014). Convolutional neural networks for sentence

classification. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (pp.

1746–1751). Doha, Qatar: Association for Computational

Linguistics.

LeCun, Y. et al. (1999). Object recognition with gradient-based

learning. In Shape, contour and grouping in computer

vision (pp. 319–345). London, United Kingdom: Springer-

Verlag.

Lee, H. et al. (2006). The novelty detection approach for different

degrees of class imbalance. In Springer-Verlag (Ed.),

Proceedings of the Thirteenth International Conference on

Neural Information Processing (pp. 21–30). Hong Kong,

China: Springer.

Loman, N. (2017). Thar she blows! Ultra long read method for

nanopore sequencing. Retrieved September 20, 2018, from

http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/

Lu, H. et al. (2016). Oxford Nanopore MinION sequencing and

genome assembly. Genomics, Proteomics &

Bioinformatics, 14(5), 265–279.

Misiunas, K. et al. (2018). QuipuNet: Convolutional neural

network for single-molecule nanopore sensing. Nano

Letters, 18(6), 4040–4045.

Oehmcke, S. et al. (2018). Knowledge sharing for population

based neural network training. In Joint German/Austrian

Conference on Artificial Intelligence (pp. 258–269).

Berlin, Germany: Springer, Cham.

Oxford Nanopore Technologies. (2017). New basecaller now

performs ‘raw basecalling’, for improved sequencing

accuracy. Retrieved September 21, 2018, from

https://nanoporetech.com/about-us/news/new-basecaller-

now-performs-raw-basecalling-improved-sequencing-

accuracy

Oxford Nanopore Technologies. (2018). MinION. Retrieved

September 21, 2018, from

https://nanoporetech.com/products/minion

Payne, A. et al. (2018). BulkVis: A graphical viewer for Oxford

nanopore bulk FAST5 files. Bioinformatics, 1–6.

Quick, J. et al. (2016). Real-time, portable genome sequencing for

Ebola surveillance. Nature, 530(7589), 228–232.

Rang, F. J. et al. (2018). From squiggle to basepair:

Computational approaches for improving nanopore

sequencing read accuracy. Genome Biology, 19(1), 1–11.

Robison, K. (2018). Flappie vs. Albacore via Counterr. Retrieved

January 18, 2019, from

http://omicsomics.blogspot.com/2018/12/flappie-vs-

albacore-via-counterr.html

Rueda, F. M. et al. (2018). Convolutional neural networks for

human activity recognition using body-worn sensors.

Informatics, 5(2), 26.

Sabour, S. et al. (2017). Dynamic routing between capsules.

Advances in Neural Information Processing Systems,

3856–3866.

Sárközy, P. et al. (2018). Calling homopolymer stretches from

raw nanopore reads by analyzing k-mer dwell times. In

International Foundation for Medical and Biological

Engineering Proceedings (Vol. 65, pp. 241–244). Prague,

Czech Republic: International Foundation for Medical and

Biological Engineering.

Schuster, M. et al. (1997). Bidirectional recurrent neural

networks. IEEE Transactions on Signal Processing,

45(11), 2673–2681.

Sedlazeck, F. J. et al. (2018). Accurate detection of complex

structural variations using single-molecule sequencing.

M.M.A. Thijssen

Nature Methods, 15(6), 461–468.

Simpson, J. T. et al. (2017). Detecting DNA cytosine methylation

using nanopore sequencing. Nature Methods, 14(4), 407–

410.

Srivastava, N. et al. (2014). Dropout: A simple way to prevent

neural networks from overfitting. Journal of Machine

Learning Research, 15, 1929–1958.

Stoiber, M. H. et al. (2016). De novo identification of DNA

modifications enabled by genome-guided nanopore signal

processing. BioRxiv, 094672.

Teng, H. et al. (2018). Chiron: Translating nanopore raw signal

directly into nucleotide sequence using deep learning.

GigaScience, 7, 1–9.

Weiss, G. M. et al. (2007). Cost-sensitive learning vs. sampling:

Which is best for handling unbalanced classes with unequal

error costs? In Proceedings of the 2007 International

Conference on Data Mining (Vol. 7, pp. 35–41). Las

Vegas, United States: Springer.

Wick, R. R. et al. (2018a). Deepbinner: Demultiplexing barcoded

Oxford Nanopore reads with deep convolutional neural

networks. PLoS Computational Biology, 14(11),

e1006583.

Wick, R. R. et al. (2018b, March 5). Comparison of Oxford

Nanopore basecalling tools. Retrieved January 18, 2019,

from https://github.com/rrwick/Basecalling-comparison/

Zhou, Z.-H. et al. (2006). Training cost-sensitive neural networks

with methods addressing the class imbalance problem.

IEEE Transactions on Knowledge and Data Engineering,

1, 63–77.

Supplementary Information

Supplementary Figures

OUTPUT

GRU

INPUT

MEMORY

FIGURE 1 - GRU. A GRU MAKES USE OF TWO GATING MECHANISMS: THE RESET GATE (A) AND THE UPDATE GATE (B). INPUT AND

PREVIOUS MEMORY GO THROUGH THE RESET GATE. THE RESET GATE DECIDES WHAT INFORMATION FROM THE PAST TO FORGET.
CANDIDATE MEMORY UNDERGOES TANH ACTIVATION. MEMORY IS UPDATED GOING BY THE UPDATE GATE. IT DECIDES WHAT

INFORMATION FROM THE PAST TO ADD TO KEEP IN THE FUTURE. THE UPDATED MEMORY AND CANDIDATE MEMORY ARE ADDED TO FORM

THE OUTPUT OF THE GRU, WHICH IS ALSO THE NEW MEMORY OF THE UNIT.

FIGURE 2 - RESNET BLOCK. A RESNET BLOCK CONSISTS OF THREE LAYERS THAT EACH CONTAIN A CONVOLUTIONAL LAYER

FOLLOWED BY BATCH NORMALISATION AND THE RELU ACTIVATION FUNCTION. THE SKIP CONNECTION IS REPRESENTED BY THE

CONVOLUTIONAL LAYER FOLLOWED BY A BATCH NORMALISATION LAYER ENCLOSED IN THE ARROWS. THE SKIP CONNECTION

ADDS THE IDENTITY MAPPING FROM THE INPUT TO THE TRANSFORMED OUTPUT, WHICH ALLOWS FOR BUILDING DEEPER

NETWORKS.

M.M.A. Thijssen

homopolymer region

homopolymer measurement

FIGURE 3 - LABELLING METHOD. A RAW SIGNAL IS DEPICTED AS A SQUIGGLE. FIRST, BASES ARE MARKED AS BEING PART OF A

HOMOPOLYMER (1) OR NOT (0). SECOND, MEASUREMENTS THAT ARE LINKED TO A CERTAIN BASE ARE LABELLED ACCORDINGLY. THE

GREEN BLOCK HIGHLIGHTS A PART OF THE SQUIGGLE AND SHOWS THE UNDERLYING MEASUREMENTS AND THE ASSIGNED LABELS.

F
1

 (
x
1

0
0

)

FIGURE 4 - F1 SCORE FOR RESNETRNNS BASED ON TOP PERFORMING RNNS. ARROWS INDICATE THE RNNS THAT WERE THE BASIS FOR

THE RESNETRNNS. COLOURS INDICATE THE ORIGINAL RNN ON WHICH A RESNETRNN IS BASED.

Calling homopolymers in nanopore sequencing data

0

10

20

30

40

50

60

70

80

90

100

p
er

fo
rm

an
ce

 (
%

)

iteration

0

10

20

30

40

50

60

70

80

90

100
p

er
fo

m
an

ce
 (

%
)

iterationA B

FIGURE 5 - LEARNING CURVES. THE TOP TWO RESNETRNNS WERE TRAINED FOR 110,000 ITERATIONS IN TOTAL. TRAINING ACCURACY (PURPLE),
VALIDATION ACCURACY (YELLOW), RECALL (GREEN) AND PRECISION (BLUE) FOR EVERY 10,000 ITERATIONS IS DEPICTED. A) RESNETRNN 1; B)
RESNETRNN 2.

FIGURE 6 - RESNETRNN. INPUT IS TRANSFORMED BY THREE GRU LAYERS OVER WHICH DROPOUT IS APPLIED IN TRAINING. THE

TRANSFORMED INPUT IS PASSED ON TO TWO RESNET BLOCKS. A FINAL FEEDFORWARD LAYER FOLLOWED BY A SOFTMAX LAYER

PRODUCES THE OUTPUT.

M.M.A. Thijssen

0

10

20

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 45000 50000 65000

p
er

fo
rm

an
ce

 (
%

)

iteration

accuracy precision recall

FIGURE 7 - NETWORK PERFORMANCE. THE NETWORK WAS TRAINED ON A SET WITH A HOMOPOLYMER

CONTENT OF 40% FOR 40000 ITERATIONS. TRAINING WAS RESUMED WITH A SET CONTAINING 20%

HOMOPOLYMERS (LIGHT) OR 30% HOMOPOLYMERS (DARK).

Calling homopolymers in nanopore sequencing data

FIGURE 8 – HYPERPARAMETERS (I). NETWORK PERFORMANCE BASED ON TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR)
COLOURED BY HYPERPARAMETER SETTINGS. A) KEEP PROBABILITY; B) OPTIMISER; C) LEARNING RATE; D) BATCH SIZE.

M.M.A. Thijssen

FIGURE 9 – HYPERPARAMETERS (II). NETWORK PERFORMANCE BASED ON TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR)
COLOURED BY HYPERPARAMETER SETTING. E) NUMBER OF RNN LAYERS; F) SIZE OF RNN LAYERS; G) NUMBER OF RESNETRNN

LAYERS; H) SIZE OF RESNETRNN LAYERS.

Calling homopolymers in nanopore sequencing data

28883

58174431

29753

34338

52944742

34986

A C G T

FIGURE 10 – BASE COMPOSITION OF GENUINE AND PREDICTED HOMOPOLYMERS. THE PROPORTION OF A CERTAIN BASE OVER ALL

GENUINE AND PREDICTED HOMOPOLYMERS IS DEPICTED, AS WELL AS THE ABSOLUTE NUMBERS.

REALITY

PREDICTION

M.M.A. Thijssen

Supplementary Tables

TABLE 1 - DESCRIPTION OF THE HYPERPARAMETERS.

Hyperparameter Description

Learning rate Step size with which the model parameters are updated with respect to
the loss gradient.

Optimiser Algorithm that updates the model parameters in response the output of
the loss function.

Mini-batch size Number of training examples utilized in one iteration, after which an up-
date of the model parameters is performed.

Layer size The number of units that make up a single layer, which is the collection
of units at a specific depth in the network.

Number of layers / blocks The number of layers or blocks of which the RNN or ResNet respectively
consists.

Dropout rate Proportion of units temporarily removed from training. Before every mini-
batch of training, units are randomly selected to drop out.

TABLE 2 - OVERVIEW OF RANGES PER HYPERPARAMETER. NO DROPOUT WAS APPLIED TO THE RESNET LAYERS.

 Options

Network type biGRU-RNN ResNet

Learning rate 0.0001, 0.001, 0.01, 0.1

Optimiser Adam, RMSprop

Mini-batch size 128, 256, 512

Layer size 16, 32, 64, 128, 256

Number of layers / blocks 1, 2, 3, 4, 5

Dropout rate 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

Calling homopolymers in nanopore sequencing data

TABLE 3 - COMPARISON OF READ DATA BEFORE AND AFTER CORRECTION. THE TOMBO RESQUIGGLE ALGORITHM WAS APPLIED TO CORRECT THE

DATA ORIGINALLY BASECALLED WITH ALBACORE 0.8.4. PERCENTAGES OF TOTAL NUMBER OF READS, NUMBER OF HOMOPOLYMER STRETCHES AND

NUMBER OF BASES AFTER CORRECTION RELATIVE TO THE ORIGINAL DATA ARE GIVEN.

 Original data Tombo corrected data Reference

Total number of reads 147,861 81,703 (55.26%)

Total number of homopolymer

stretches
454,105 13,747,629 (207.94%)

19,247

Total number of bases in homopoly-

mers
33,066,885 73,636,414 (222.69%)

103,097

Homopolymer content 0.66% 2.22% 2.22%

M.M.A. Thijssen

TABLE 4 - NETWORK HYPERPARAMETERS AND PERFORMANCE. THE HYPERPARAMETER SETTINGS PER NETWORK ARE PRESENTED HERE. KEEP

PROBABILITY IS THE PROPORTION OF GRU UNITS TO KEEP WHILE APPLYING DROPOUT DURING TRAINING. NETWORK PERFORMANCE IS DESCRIBED

BY THE MEASURES ACCURACY, PRECISION, RECALL AND F1. ORIGINAL INDICATES ON WHICH RNNS CERTAIN RESNETRNNS WERE BASED.
NETWORKS ARE ORDERED BY F1 SCORE. BLUE: RNN; WHITE: RESNETRNN; GREEN: SELECTED NETWORKS FOR FURTHER TRAINING; RED:
EXCLUDED NETWORKS; ASTERISKS INDICATE NETWORK WITH SAME HYPERPARAMETERS.

*

*

network original batch optimizer learning size of number of keep size of number of accuracy precision recall F1

size rate RNN layers RNN layers probability ResNet layers ResNet layers

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 32 2 89.90 14.58 73.28 0.2432

ResNetRNN X 128 RMSProp 0.001 256 4 0.2 32 4 90.10 14.47 72.15 0.2411

ResNetRNN X 256 Adam 0.001 32 2 0.5 64 2 89.67 14.21 73.33 0.2381

ResNetRNN 2 512 Adam 0.001 128 2 0.4 256 5 89.36 14.11 75.90 0.2380

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 64 2 89.16 13.91 75.28 0.2348

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 256 2 89.09 13.85 75.02 0.2338

ResNetRNN 2 512 Adam 0.001 128 2 0.4 32 1 88.89 13.62 75.93 0.2310

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 32 2 89.00 13.54 75.02 0.2294

ResNetRNN 4 128 Adam 0.001 64 5 0.3 16 3 88.55 13.05 74.31 0.2220

ResNetRNN 4 128 Adam 0.001 64 5 0.3 256 3 88.52 13.02 74.61 0.2217

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 16 1 88.04 12.92 76.53 0.2211

ResNetRNN X 256 RMSProp 0.001 64 3 0.8 32 1 88.12 12.89 76.48 0.2206

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 256 2 88.40 12.92 73.84 0.2199

ResNetRNN X 512 Adam 0.001 128 2 0.4 16 1 87.78 12.69 77.37 0.2180

RNN 2 512 Adam 0.001 128 2 0.4 0 0 87.78 12.69 76.92 0.2179

ResNetRNN X 128 Adam 0.01 32 2 0.4 128 2 88.43 12.72 72.67 0.2165

ResNetRNN X 128 RMSProp 0.0001 128 2 0.6 32 2 88.16 12.58 73.32 0.2148

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 32 4 88.45 12.61 71.91 0.2146

ResNetRNN 2 512 Adam 0.001 128 2 0.4 16 3 87.44 12.45 77.29 0.2145

RNN 1 256 RMSProp 0.001 64 3 0.8 0 0 87.75 12.47 75.32 0.2140

ResNetRNN 2 512 Adam 0.001 128 2 0.4 32 4 87.44 12.36 77.85 0.2133

ResNetRNN 4 128 Adam 0.001 64 5 0.3 128 1 87.43 12.32 76.34 0.2122

RNN 3 512 RMSProp 0.01 32 3 0.4 0 0 87.73 12.34 74.54 0.2117

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 64 3 88.68 12.47 68.04 0.2108

ResNetRNN 2 512 Adam 0.001 128 2 0.4 16 2 87.07 12.14 78.13 0.2101

ResNetRNN X 128 RMSProp 0.001 256 2 0.3 64 2 86.92 12.11 78.47 0.2098

ResNetRNN 4 128 Adam 0.001 64 5 0.3 32 3 87.23 12.03 76.09 0.2078

ResNetRNN X 128 Adam 0.001 16 5 0.8 128 5 87.07 11.83 75.57 0.2046

RNN 4 128 Adam 0.001 64 5 0.3 0 0 86.79 11.77 76.06 0.2039

ResNetRNN X 512 RMSProp 0.0001 256 1 0.6 32 1 87.67 11.72 69.80 0.2007

ResNetRNN 4 128 Adam 0.001 64 5 0.3 64 4 86.63 11.45 76.14 0.1991

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 64 5 87.54 11.52 69.58 0.1977

RNN X 256 Adam 0.001 16 2 0.6 0 0 86.95 11.35 72.49 0.1963

RNN X 256 Adam 0.0001 128 3 0.5 0 0 86.65 11.32 73.08 0.1960

RNN X 128 RMSProp 0.001 32 4 0.5 0 0 85.85 11.13 76.30 0.1943

RNN X 128 RMSProp 0.001 32 5 0.4 0 0 85.82 11.12 76.68 0.1942

RNN X 512 RMSProp 0.0001 32 1 0.3 0 0 87.26 11.25 69.61 0.1937

ResNetRNN X 512 RMSProp 0.0001 32 2 0.2 128 2 85.16 10.47 75.11 0.1838

RNN X 512 Adam 0.0001 16 2 0.8 0 0 85.86 10.54 71.51 0.1837

RNN X 512 RMSProp 0.001 16 1 0.4 0 0 86.71 10.62 67.55 0.1835

RNN X 128 Adam 0.001 16 4 0.5 0 0 85.18 10.44 75.44 0.1834

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 64 3 86.51 10.49 67.78 0.1817

RNN X 256 RMSProp 0.0001 256 2 0.2 0 0 85.41 10.27 72.60 0.1799

RNN X 256 RMSProp 0.001 16 1 0.7 0 0 85.59 10.02 69.01 0.1750

RNN X 512 Adam 0.0001 16 2 0.8 0 0 85.14 9.74 69.45 0.1708

RNN X 256 Adam 0.0001 64 2 0.7 0 0 84.16 9.52 72.54 0.1683

RNN X 512 RMSProp 0.0001 32 1 0.3 0 0 85.42 9.40 64.71 0.1642

RNN X 256 Adam 0.01 16 1 0.6 0 0 85.51 9.33 63.72 0.1628

RNN X 512 Adam 0.0001 32 4 0.5 0 0 82.39 8.90 75.14 0.1591

RNN X 256 Adam 0.0001 16 3 0.6 0 0 82.40 8.62 71.96 0.1540

RNN X 256 RMSProp 0.0001 16 3 0.8 0 0 83.28 8.29 71.01 0.1485

RNN X 128 Adam 0.01 32 4 0.6 0 0 85.02 8.26 57.19 0.1444

RNN X 512 Adam 0.1 64 5 0.5 0 0 81.01 7.53 67.11 0.1354

RNN X 128 RMSProp 0.0001 16 5 0.5 0 0 78.38 7.36 75.51 0.1341

ResNetRNN X 512 RMSProp 0.01 128 1 0.3 16 1 68.77 5.18 75.75 0.0970

RNN X 256 RMSProp 0.01 128 4 0.6 0 0 89.88 4.80 19.19 0.0768

RNN X 128 RMSProp 0.01 128 3 0.7 0 0 63.27 3.84 65.28 0.0725

ResNetRNN X 256 RMSProp 0.1 128 2 0.8 32 2 2.23 2.23 100.00 0.0436

RNN X 128 RMSProp 0.01 128 4 0.4 0 0 65.01 2.27 42.65 0.0431

RNN X 512 RMSProp 0.01 256 4 0.3 0 0 97.78 1.99 0.03 0.0006

RNN X 128 RMSProp 0.1 16 4 0.6 0 0 97.79 1.12 0.00 0

ResNetRNN X 512 RMSProp 0.1 256 5 0.3 16 5 97.80 0 0 0

ResNetRNN X 512 Adam 0.01 128 5 0.5 16 5 97.79 0 0 0

ResNetRNN X 256 Adam 0.1 128 3 0.3 128 3 97.80 0 0 0

RNN X 512 Adam 0.1 64 5 0.5 0 0 97.79 0 0 0

RNN X 128 Adam 0.1 256 3 0.3 0 0 0 0 0 0

RNN X 128 Adam 0.1 256 3 0.6 0 0 0 0 0 0

