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Abstract 
Motivation: Nanopore sequencing is a fast developing sequencing technology capable of producing long DNA reads in 

real-time. The generation of long reads helps solving obstacles in whole genome analysis that the common short reads 

are unable of. However, low basecalling accuracy in homopolymer regions constrains the potential of the technology. A 

number of tools exist to correct such errors, however these require substantial computational power. Here, we propose a 

new approach to homopolymer calling. By selecting only those regions that actually contain homopolymers prior to base-

calling, the investment of computational resources for homopolymer correction can be reduced.  

Results: We trained two different neural network architectures to detect homopolymer stretches in the raw nanopore 

signal generated by a MinION sequencer, the gated recurrent unit recurrent neural network (RNN) and the hybrid residual 

network-RNN (ResNetRNN). ResNetRNNs showed a greater capacity to detect homopolymers than RNNs. The best per-

forming network accurately detected two thirds of the homopolymers present in the raw signal, but also overestimated the 

actual number of homopolymers. We incorporated this network in a pre-processing tool that splits the nanopore signal on 

homopolymer content for specialised treatment. We highlight several venues to further improve the model and argue that 

our tool, combined with specialised basecallers, can reduce the computational cost and error in basecalling nanopore 

reads in the future. 

Availability: All code used in this research is freely available at https://git.wur.nl/thijs030/thesis. The tool is freely available 

at https://git.wur.nl/thijs030/thesis/tree/master/catfish. 

Contact: marijke.thijssen@wur.nl  

 

 

1 Introduction  

We are currently moving towards the stage of third-gener-

ation sequencing (TGS): sequencing of single molecules, 

omitting the need for amplification or interruptions for base 

incorporation (Heather & Chain, 2016).  TGS technologies 

are maturing rapidly and pose great advantages over the 

current golden standard second-generation sequencing 

(SGS) technologies: real-time sequencing, reduced cost per 

instrument run, detection of  epigenetic modifications and 

generation of long reads (Rang et al., 2018).  

One of the major TGS techniques is nanopore sequenc-

ing by Oxford Nanopore Technologies (ONT). A single-

stranded DNA molecule is translocated through a nanopore 

over which an electrical potential is applied. The current is 

measured as the strand moves through the nanopore. This 

raw signal is translated into a DNA sequence by so-called 

basecallers. This is a challenging process, as multiple (on 

average 5) bases simultaneously influence the signal, while 

moving through the pore at a non-uniform speed (Agah et 

al., 2016). Nanopore sequencing has no theoretical read 

length limit and reads usually exceed 10 kb, as opposed to 

the short reads of up to 300 bp generated by SGS technol-

ogies. Reads with lengths over 2 Mb, so-called ultra-long 

reads, have even been reported (Payne et al., 2018). 

In 2014, ONT introduced the portable MinION na-

nopore sequencing device. The small and light-weight de-

vice has a low initial cost of $1,000.- (Oxford Nanopore 

Technologies, 2018). The platform has the promise of high 

accessibility to sequencing, even in resource-limited set-

ting. The device connects via a USB port to a PC or laptop. 

No expensive hardware, continuous power or trained per-

sonnel is needed (Elliott et al., 2018). The MinION se-

quencer was successfully exploited in monitoring the Ebola 

virus during the outbreak in 2015 (Quick et al., 2016). This 

illustrates the practical application of nanopore sequencing.  

Nanopore sequencing suffers from a low accuracy of 

about 90% to 98%, compared to SGS methods that have 

accuracies over 99% (Oxford Nanopore Technologies, 

2017; Sárközy et al., 2018). SGS technologies are able of 

cheaply producing de novo assemblies, however repetitive 
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regions cause fragmentation, gaps and ambiguity in the ge-

nome that SGS technologies cannot resolve. Long reads 

can span over these repetitive regions and close the ge-

nome. Generating long reads helps bridge problems in anal-

ysis of whole genomes, haplotype phasing and structural 

variant detection, among others (Dijk van et al., 2018; Lu 

et al., 2016; Sedlazeck et al., 2018). Since the error rate in 

nanopore sequencing ranges from 2% to 10% at the mo-

ment, there is a need for improvement in accuracy to reach 

the methods’ full potential. 

A major issue in nanopore sequencing is the basecalling 

of homopolymers, here defined as a stretch of five or more 

identical bases. Basecallers including Albacore1 (Boža et 

al., 2017; Teng et al., 2018) collapse homopolymers into 

shorter stretches if the homopolymer length exceeds the 

number of bases simultaneously influencing the measured 

current, resulting in a high deletion rate in nanopore reads 

(Jain et al., 2018). Currently, basecalled reads are often as-

sembled into a consensus sequence after which by so-called 

polishers such as Nanopolish (Simpson et al., 2017) map 

the reads back to the assembly to improve the consensus.  

The consensus accuracy after polishing is close to 99.7% in 

general (Wick et al., 2018), but it is a computationally ex-

pensive process. Current basecallers are not specialised to 

detect homopolymers. ONT is working on new pores that 

allow for more accurately measuring the bases as they pass 

through (Brown, 2018). However, for now, a significant 

gain could be achieved if the problem in calling of homo-

polymers can be addressed. 

Here, it is proposed to select homopolymer stretches for 

specialised treatment. By selecting only those regions that 

actually contain homopolymers for correction, the invest-

ment of computational resources and time can be reduced. 

Due to the complex and noisy nature of nanopore sequenc-

ing data, neural networks were applied with the goal to de-

tect homopolymers from non-homopolymers in the raw 

signal generated by a MinION nanopore sequencing de-

vice. In this research, we developed and evaluated two dif-

ferent neural network architectures for this purpose. One 

network was further developed to be incorporated into the 

homopolymer selection tool catfish, that pre-processes the 

reads with the ultimate goal to improve nanopore sequenc-

ing accuracy by correctly calling homopolymers.   

2 Methods 

2.1 Tool design 

The tool catfish was designed as part of the workflow to  

improve basecalling and speed up the process (Figure 1). 

Catfish takes in the directory to the raw nanopore signals 

  
1 https://community.nanoporetech.com/protocols/albacore-offline-base-

calli/v/abec_2003_v1_revan_29nov2016 

saved in FAST5 format and the name for an output direc-

tory. The reads are first trimmed and median normalised. 

Next, a neural network at the core of catfish classifies the 

measurements making up the raw signal as part of a homo-

polymer or not. This output is corrected to remove consec-

utive homopolymer measurements that are shorter than five 

times the minimal event length of three measurements, as 

this is the expected minimal true homopolymer length. The 

signal is split on these homopolymer regions and saved to 

separate FAST5 files. The names of the split files are re-

turned by catfish. The workflow continues by basecalling 

nanopore reads containing no predicted homopolymers 

speedily using Albacore 2.3.3 with default settings. Reads 

that do contain assumed homopolymers, are basecalled us-

ing Albacore 2.3.3 with experimentally found settings op-

timal for homopolymer basecalling. 

2.2 Neural network design 

As nanopore sequencing data are complex and noisy, likely 

to have highly non-linear relations, recognising patterns 

within that data is a task well suited for machine learning 

techniques. Neural networks are known for their capability 

to recognise complex patterns and to generalise to unseen 

data. Several neural network architectures have been de-

signed and are applied to a variety of problems. Convolu-

tional neural networks (CNNs) have been applied to ONT 

data before for demultiplexing (Wick et al., 2018) and pro-

tein sensing (Misiunas et al., 2018). Bidirectional recurrent 

neural networks (RNNs) (Schuster & Paliwal, 1997) have 

catfish 

fast basecaller 
homopolymer 

basecaller 

raw signal reads 
(FAST5) 

basecalled reads 
(FASTQ) 

non-homopolymer regions homopolymer regions 

Figure 1 - Workflow. The raw signal generated by a MinION se-
quencer is classified by the tool. Reads are split on regions that 
contain homopolymers in separate FAST5 files. Files containing no 
homopolymers are basecalled by a fast basecaller. Files containing 
a homopolymer are basecalled by a specialized basecaller.  
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been used before in ONT basecalling (Boža et al., 2017), as 

well as a CNN combined with a RNN (Teng et al., 2018). 

Basecallers DeepNano and Chiron both employ the Long 

Short-Term Memory (LSTM) unit (Hochreiter & 

Schmidhuber, 1997), a more advanced RNN unit. Common 

difficulties encountered in training neural networks are the 

vanishing and exploding gradient problems, especially in 

deep networks (Hochreiter et al., 2001). Networks that suf-

fer from these unstable gradient problems cannot effi-

ciently tune the parameters because the updates are too 

small or large. A number of solutions exist to diminish or 

solve this problem. 

Initially, the bidirectional gated recurrent unit RNN 

(biGRU-RNN) architecture was employed in this research. 

RNNs make use of dependencies inside the data and are fit 

for sequential data. The GRU-RNN (Cho et al., 2014) is an 

improved adaptation of the standard RNN, which solves the 

vanishing or exploding gradient problem by making use of 

a gating mechanism (Chung et al., 2014) (Supplementary 

Figure 1). Because the prediction of a homopolymer can 

be influenced by both information before and after the 

measurement, a bidirectional version of the RNN was im-

plemented. Secondly, a more intricate and potentially more 

powerful architecture was adopted, namely a combination 

of the aforementioned RNN and a ResNet (ResNet-biGRU-

RNN, further referred to as ResNetRNN). A ResNet (He et 

al., 2016) is a specialized type of CNN (LeCun et al., 1999) 

that does not suffer from the vanishing or exploding gradi-

ent problem because of skip connections inside the network 

(Supplementary Figure 2). This allows for building 

deeper networks, which have a greater capacity for feature 

representation. CNNs have proven to be excellent local fea-

ture extractors and have been successfully applied to or-

dered one-dimensional data including text (Kim, 2014) and 

sensor data (Rueda et al., 2018). The hybrid architecture 

potentially benefits from the advantages of both types of 

network by combining the different methods of feature ex-

traction. 

Both types of networks were connected to a final fully 

connected layer that produces the final output. The net-

works were built in TensorFlow (Abadi et al., 2016) in Py-

thon 3.5. Network weights were initialised using Xavier in-

itialisation to avoid starting weights in saturated zones, 

which could result in a vanishing or exploding gradient 

(Glorot & Bengio, 2010). The ReLU activation function, 

robust to the vanishing gradient problem and easier to train, 

was applied in the ResNet layers. GRUs were used that 

have a tanh activation function for candidate memory de-

termination and sigmoid activation functions for gating 

(Supplementary Figure 1). Biases in GRUs were initial-

ised to one. Additionally, dropout was applied to the RNN 

layers to prevent overfitting (Srivastava et al., 2014). Batch 

normalisation was applied in the ResNet layers to acceler-

ate training and improve regularisation (Ioffe & Szegedy, 

2015). The probability for a homopolymer was calculated 

using the sigmoid cross entropy function. 

2.3 Hyperparameter selection 

The appropriate hyperparameters, which are variables that 

are initialised before training, are crucial to the success of 

the network as they significantly impact the behaviour of 

the model. However, the ideal combination of hyperparam-

eters cannot be known in advance. Therefore, random 

search was applied to search a large hyperparameter space 

for hyperparameter optimisation within the available com-

putational budget and time (Bergstra & Bengio, 2012). The 

hyperparameters learning rate, optimiser, size of layers, 

mini-batch size, number of layers and dropout rate were 

varied (see Supplementary Table 1 for a description of the 

hyperparameters; see Supplementary Table 2 for an over-

view of ranges). A total of 32 RNNs were generated for 

random search. 

 To assess if ResNetRNNs have a greater capacity of 

learning useful features in this problem, a two-fold ap-

proach was operated on. Firstly, fifteen ResNetRNNs were 

randomly generated as part of the random search, as there 

is a fair possibility that the ideal set of hyperparameters dif-

fers per network architecture. Secondly, the hyperparame-

ter settings of the top four performing RNNs were reused 

as settings for the RNN substructure and combined with a 

ResNet of which the hyperparameters were randomly se-

lected. It was hypothesized that a well-performing RNN is 

a strong basis for a ResNetRNN. For each of the four best 

performing RNNs, five new instances of a ResNetRNNs 

were created. A total of 35 ResNetRNNs were constructed. 

2.4 Data preparation 

The data set used in this research was a genomic, MinION 

generated set on Escherichia coli K-12 MG1655, made 

publicly available by the Loman research group  (Loman, 

2017). Samples were sequenced with the ONT 1D Rapid 

Sequencing Kit SQK-RAD002 on a standard FLO-

MIN106 R9.4 flow cell using MinKNOW1.4. The na-

nopore reads were basecalled by Albacore 0.8.4. Data were 

saved to a specialized hierarchical data format 5 (HDF5) 

file, FAST5, which contains both the raw signal and 

metadata such as basecalling information. 

The data were median normalised and corrected using 

the tool Tombo (Stoiber et al., 2016) resquiggle with four 

threads, which assigned the raw signal to the given refer-

ence (Blattner & Plunkett, 2014) based on the basecalled 

sequence and current, which resulted in a correction of 

some errors compared to the reference. Reads that could not 

be processed by Tombo were omitted. Non-aligning bases 

at the start and the end of the reads were trimmed off. After 

this procedure, the data set had a homopolymer content of 
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2.22%, matching that of the E. coli genome (Supplemen-

tary Table 3). 

The measurements in the raw signal were labelled as 

being part of a homopolymer or not according to the under-

lying base sequence (Supplementary Figure 3). A homo-

polymer is here defined as a stretch of five equal bases or 

longer. Measurements were linked to bases via events, seg-

ments of the raw signal that correspond to an unchanging 

set of nucleotides occupying the pore. If a measurement 

was part of an event that points to a base that is part of a 

homopolymer, the measurement is labelled as being part of 

a homopolymer. The complete read set of 81,703 reads was 

randomly distributed over a training, validation and test set 

of 70%, 15% and 15% of all reads, which corresponded to 

51,792, 12,255 and 12,256 reads respectively. 

2.5 Building a database 

As the purpose of the network is to accurately detect homo-

polymers, using a balanced training set will create the pos-

sibility for the network to learn the patterns for both the mi-

nority and majority group (Buda et al., 2018). As homopol-

ymers are severely less present in the E. coli genome, a da-

tabase was constructed to hold homopolymer and non-ho-

mopolymer examples, so a balanced set of training exam-

ples could be extracted for training. Each example was 

composed of a randomly selected stretch of 35 measure-

ments in length, the expected minimal homopolymer length 

based on a median of seven measurements per event. Ex-

amples were included per interval of three measurements, 

the minimal event length, to keep the size of the database 

limited but still guarantee at least one example per event. 

The database thus contained complete homopolymer 

stretches, complete non-homopolymer stretches and 

stretches containing both non-homopolymers and homo-

polymers. 

2.6 Network training and validation 

All networks were trained for 10,000 iterations on sets of 

examples with an approximate homopolymer content of 

40% to 45%. These networks were validated on stretches 

of 14,980 measurements in 11,940 reads of the validation 

set. A total of 315 reads were excluded from the original 

validation set because of a raw signal length less than 

14,980 measurements. The length was set to 14,980 as val-

idation on stretches of this length gave similar results to 

validation on full reads, within an acceptable time span. 

Stretches were randomly selected to avoid possible bias to 

certain positions in the raw signal. The true percentage ho-

mopolymers varied from 2.12% to 2.27% per stretch. Net-

work performance was assessed on precision, recall, accu-

racy and F1 score, which is the harmonic mean between 

precision and recall. Networks with an accuracy of 0% 

were not taken into account as they produced Not-a-Num-

ber values during training, thus were not trained success-

fully. Networks were considered to have no predictive 

value if both precision and recall were 0%, or if recall was 

100% and precision was equal to the percentage homopol-

ymers in the E. coli genome. The two networks with either 

highest precision or recall were selected for further training 

of an additional 100,000 iterations, while monitoring per-

formance on the training set and the validation set to avoid 

overfitting. Finally, the best performing model was tested 

on randomly selected stretches of 14,980 measurements 

from the test set. A total of 11,800 stretches were selected 

as 456 of the 12,256 reads did not have the minimal re-

quired length of 14,980. 

 The best performing network was incorporated in the 

tool catfish based on the following selection criteria: (i) a 

recall of approximately 75% and (ii) a precision of at least 

10%. The optimal decision threshold for the best network 

was based on the ability of accurately detecting homopoly-

mers instead of single homopolymer measurements (Sup-

plementary Figure 3). Basecallers and polishers require 

input to have a certain size. It is therefore not essential to 

call every measurement to select the homopolymer. Actual 

performance of the selected model on detection of homo-

polymer regions instead of single measurements was as-

sessed on one hundred full reads with a combined length of 

33,537,616 measurements. The underlying base sequence 

of predicted homopolymers was inspected on position, 

length in measurements, length in bases and base composi-

tion. 

2.7 Tool testing 

Finally, the tool was tested on a set of 1,000 reads to com-

pute CPU time needed per read for homopolymer detection 

and signal splitting. The average CPU time was computed 

after four replicates of testing. This showed what the most 

expensive step in the process was. The tool was tested on 

another 100 reads to estimate total CPU time and disk space 

needed. 

 Additionally, different Albacore settings were tried to 

find to optimal settings for homopolymer basecalling. A set 

of 1,000 reads was basecalled with Albacore using different 

settings for maximum chunk size and homopolymer correc-

tion. It was reported that homopolymer calling by Albacore 

could benefit from an increased chunk size over the default 

1,000, as the chunks will be able to span over low complex-

ity regions. Homopolymer correction was deactivated by 

default. Four replicates were performed. CPU times were 

measured and basecaller performance was assessed on the 

number of insertions, deletions, mismatches and matches. 
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3 Results 

Nanopore sequencing suffers from a relatively high error 

rate compared to SGS technologies. Especially the identi-

fication of homopolymers has proven to be a difficult task. 

Two different neural network architectures, the RNN and 

the ResNetRNN, were employed with the goal to accu-

rately detect homopolymers in the raw signal generated by 

a MinION sequencer. Hyperparameter settings were se-

lected by random search. Performance was evaluated and 

the best performing network was implemented in a tool for 

homopolymer selection. 

3.1 ResNetRNNs have a greater capacity in homopoly-

mer detection than RNNs 

A total of 67 networks, having either the RNN or Res-

NetRNN architecture, were trained and compared on per-

formance to determine which architecture was most ade-

quate in homopolymer detection (Supplementary Table 

4). Two RNNs were omitted because they were not suc-

cessfully trained. In general, ResNetRNNs outperformed 

RNNs based on precision and recall, although the differ-

ence was limited (Figure 2). RNNs reached a maximum 

recall of 76.92% and precision of 12.69%, while Res-

NetRNNs reached a maximum recall of 78.47% and preci-

sion of 14.58%. The relative high recall and low precision 

of most networks was indicative of many falsely predicted 

homopolymer measurements. Networks with the highest 

accuracies (close to 98%) had an extremely poor precision 

and recall due to the fact that these networks consistently 

predicted non-homopolymers in all cases. As the true per-

centage homopolymers in the E. coli genome is about 2.2%, 

accuracy is high when predicting exclusively homopoly-

mers, but these networks do not have any useful predictive 

value. Additionally, the best performing ResNetRNN esti-

mated a homopolymer content of 10.9% against a 13.4% 

predicted content by the best 

performing RNN. Thus, the hybrid ResNetRNN architec-

ture, given the proper hyperparameters (see 3.2 The right 

combination of hyperparameters is essential for perfor-

mance), was better able of discerning homopolymer meas-

urements from non-homopolymer measurements than the 

RNN architecture. 

3.1.1 Extending well-performing RNNs with a ResNet im-

proves the performance 

Besides the common method of random search for hyperpa-

rameter optimisation, another approach was taken as well: 

the extension of a ResNetRNN. It combined randomly se-

lected ResNet hyperparameters with predefined hyperpa-

rameter settings for the RNN substructure of the Res-

NetRNN based on well-performing RNNs. Following this 

method, five new instances of a ResNetRNN for each of the 

top four RNNs were trained. Thirteen of the twenty Res-

NetRNNs had an improved performance, measured in F1 

score, in comparison to the original RNNs, of which ten 

performed better than the best RNN (Supplementary Fig-

ure 4). All hybrid networks except one had an increased 

performance with regard to the RNNs not used for exten-

sion, although no extreme increase or decrease in perfor-

mance was measured. Still, this extension approach was 

beneficial in the problem of homopolymer detection as the 

majority of extended ResNetRNNs achieved better results 

than the original RNNs. 

3.1.2 Performance of the networks is variable 

Performance of all the networks varied considerably de-

pending on the hyperparameter combinations (Figure 3). 

Similar top results were reached in both approach for Res-

NetRNN hyperparameter optimisation as the best perform-

ing networks both had a precision of approximately 15% 

Figure 2 - Network performance. Performance of networks with 
either a RNN architecture or a ResNetRNN architecture based on 
precision and recall. 
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and recall of 73%. However, networks created by the ex-

tension method showed more consistent performance than 

the random RNNs and ResNetRNNs. This was expected, 

because of the shared basis of the extended ResNetRNNs. 

Especially the randomly generated ResNetRNNs showed 

varied performance. A quarter of the random ResNetRNNs 

did not have predictive value, while others were amongst 

the best performing. RNNs generally achieved a lower per-

formance, which was caused by both a lower precision and 

recall. It was clear that a good performance does not simply 

depend on the network architecture, but was heavily influ-

enced by the hyperparameters settings. 

3.1.3 Additional training improved performance by a small 

margin 

Two networks, further referred to as ResNetRNN 1 and 2, 

were selected for additional training of 100,000 iterations. 

The learning curves on training and validation accuracy 

were monitored to prevent overfitting on the data. No over-

fitting was observed based on accuracy. The model at an 

earlier point in training was restored however, because 

training for more iterations had decreased precision (Sup-

plementary Figure 5). Before training, ResNetRNN 1 had 

achieved the highest precision and ResNetRNN 2 the high-

est recall. After the additional training, both recall and pre-

cision were approximately equal for the two networks. Res-

NetRNN 1 was selected over ResNetRNN 2 to be incorpo-

rated into the tool catfish as it had a lower complexity than 

ResNetRNN2. Less computations are needed using Res-

NetRNN 1, which is likely to result in a faster model. Res-

NetRNN 1 is a 3-layer RNN with 64 units per layer, com-

bined with 2 ResNet layer of 32 units each and a final fully 

connected layer (Supplementary Figure 6). This model 

has an accuracy of 90.15%, precision of 15.21% and recall 

of 74.75% on homopolymer measurement detection. 

 The networks discussed thus far were trained on a set of 

examples with an overall homopolymer content of about 

40%. Training the best network from start on a set less bal-

anced resulted in higher precision (> 20%), but lower recall 

(<70%). Training on an even more unbalanced set im-

proved precision and diminished recall further, Also, re-

suming training on a set with higher homopolymer content 

after training performance declined on the initial training 

set,  resulted in a steady decrease in recall and rise in preci-

sion (Supplementary Figure 7). 

3.2 The right combination of hyperparameters is es-

sential for performance 

The importance of the individual hyperparameters on the 

performance of the networks was evaluated after the initial 

training of 10,000 iterations for hyperparameter optimisa-

tion (Supplementary Figure 8 and 9). The hyperparame-

ters optimiser, number of RNN layers, size of RNN layers, 

mini-batch size, number of ResNet layers, number of Res-

Net layers and dropout did not have a strong independent 

effect on performance. Learning rate seemed to have a 

small individual effect. A lower learning rate was associ-

ated with a better performance, especially in ResNetRNNs. 

A learning rate of 0.1 in combination with a larger number 

of layers (4 or 5) and large layer size (128 or 256 units) 

often resulted in networks that did not learn to detect non-

homopolymers for both the RNN and ResNetRNN archi-

tecture. Alternatively, a single ResNetRNN with a learning 

rate of 0.1 detected solely homopolymers. This indicated 

that a high learning rate does not allow the networks to 

learn the details that discriminate a homopolymer from a 

non-homopolymer. Interestingly, the learning rate of 0.001 

resulted in better performing networks that the lower learn-

ing rate of 0.0001, which could be due to inadequate train-

ing. The initialisation also affected the networks. For in-

stance, two RNNs were trained that incidentally had the 

same hyperparameter settings (Supplementary Table 4). 

One network outperformed the other on all measures. The 

difference between these networks is solely due to the ran-

dom parameter initialisation and training on different train-

ing examples. 

 RMSProp is an often-used optimiser in RNNs, while 

Adam is usually the preferred choice in CNNs. In the case 

of a combined network, the optimal choice is not apparent. 

On inspection of the optimiser choice, no obvious differ-

ence was present for neither RNNs nor ResNetRNNs based 

on optimiser alone. Although the networks that stood out 

because of obvious worse performance than the other net-

works were trained using the RMSProp optimiser, so were 

some of the top performing networks. 

Overall, no individual hyperparameter had a major in-

fluence on network performance, although learning rate 

was an indicator. It is the combination of hyperparameters 

that is most important for network performance.  

3.3 The network detects homopolymers with low preci-

sion 

The purpose of the model was to detect homopolymer re-

gions accurately. The detection of homopolymer regions 

was evaluated through an assessment of 100 full reads 

(Figure 4). Precision and recall for homopolymer regions 

instead of the measurements making up a homopolymer 

were calculated for different decision thresholds. In all 

cases, the false discovery rate was extremely high. A 

threshold of 0.9 was therefore selected to restrain the num-

ber of falsely detected homopolymers to some extent. At 

this setting, about two thirds of all true homopolymers are 

detected. The number of homopolymers was overestimated 

with a false discovery rate of 67.7%. About 5% of the 

falsely identified homopolymers was a stretch of four iden-

tical bases, about 15% of three identical bases and about 

25% of two identical bases. Also, the prevalence of small 
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repetitive sequences like ‘ACACAC’ was observed, but re-

petitive sequences were only an extremely small fraction of 

incorrectly predicted homopolymers. About half of the 

missed homopolymers had a predicted confidence score 

over 0.6, which indicates that the network does get some 

indication of a homopolymer being present. Predicted ho-

mopolymer regions had a shorter length than in reality. Ho-

mopolymer regions were underestimated on both sides for 

ten to fifteen measurements and usually overlapped with 

less than five bases. Thus, most predicted homopolymer re-

gions only partially represented the true homopolymers. On 

inspection of the overall base composition of the predicted 

homopolymer regions, there was no indication of bias for 

detecting homopolymer of certain base compositions (Sup-

plementary Figure 10). Homopolymers composed of ade-

nine and thymine are naturally more occurring that cytosine 

or guanine homopolymer. Although the low precision of 

the model was not desired, the model was used as selector 

of homopolymers to estimate the possible gain by use of 

catfish. 

3.4 A specialised homopolymer caller is needed   

The command line tool catfish was designed as a selection 

tool that finds homopolymer regions in the raw nanopore 

signal and splits the signal in chunks of minimal 100 to a 

user-defined maximum. As catfish centers the homopoly-

mers in the split, this has the advantage that the complete 

homopolymer is contained even though the model underes-

timates the homopolymers in length. At the moment, it 

takes the tool approximately 31 seconds per read in CPU 

time for homopolymer analysis and an additional 8 seconds 

in CPU time for splitting. When splitting the reads, a size-

able proportion of the metadata is copied as well, resulting 

in a steep increase in needed disk space. A set of 100 reads 

was split into 19,274 reads that took up 425 times as much 

disk space. In total, catfish takes just over 40 seconds in 

CPU time per read. In the ideal situation in which reads are 

solely split on true homopolymers, the CPU time taken for 

splitting of the reads is halved.  

 The purpose of this pre-processing step is to be able to 

basecall the homopolymer containing stretches with a spe-

cialised basecaller to increase accuracy, while saving time 

and computational expense on non-homopolymer stretches 

by basecalling them regularly. We looked into Albacore 

2.3.3 and explored different settings to improve homopol-

ymer calling. A comparison on using different chunk sizes 

with homopolymer correction activated, showed that in-

creasing the chunk size decreased the number of deletions 

with respect to the default (Figure 5). The effect was the 

strongest when increasing chunk size to 20,000. Larger 

chunk sizes did not significantly decrease the number of 

deletions further. Interestingly, the number of insertions in-

creases when increasing the chunk size to 10,000, but fur-

ther increasing the chunk size showed slightly less inser-

tions. A similar pattern was observed for the number of 

mismatches and matches. The proportion of deletions, in-

sertions, matches and mismatches however stayed constant 

for every chunk size and activated or deactivated homopol-

ymer correction, and the total number of called bases de-

creased with increased chunk size. CPU times steadily in-

creased for every increase of 10,000 for chunk size. For ho-

mopolymer detection, Albacore can be optimised a little by 

activating homopolymer detection and increasing chunk 

size to 10,000. At a chunk size of 20,000, the total number 

of bases had decreased by 10%. At the settings of chunk 

size at 10,000 and homopolymer correction activate, the 

number of deletions decreased with 3% within a reasonable 

CPU time. However, the number of insertions increased 

with the same proportion as the number of deletions de-

creased. The effect of the adjusted setting was thus limited. 

A basecaller specialised in homopolymer calling must be 

developed to exploit the advantage of pre-processing the 

raw signal on homopolymers. 

Figure 4 - Comparison of homopolymer predictions against genuine homopolymer positions in two full reads. Decision threshold 
is set at 0.9. Top row: predicted positions of homopolymers; middle row: actual homopolymer positions; bottom row: confidences of predic-
tions as indicated by the colour scale. 
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4 Discussion 

Nanopore sequencing is a quickly developing technique for 

generating long reads, with the potential to advance the 

field. However, it suffers from a relatively high sequencing 

error rate compared to the current golden standard SGS 

techniques. The calling of homopolymers has proven to be 

difficult and remains the major problem in nanopore se-

quencing. Addressing this problem will increase the ap-

plicability of nanopore sequencing to current problems in 

genotyping (Goldstein et al., 2019), structural variant de-

tection (Sedlazeck et al., 2018) and single nucleotide vari-

ant detection (Rang et al., 2018).  

 In this research, two different types of neural net-

works were trained on a MinION generated E. coli data set 

with the intent to accurately detect homopolymers based on 

the raw signal. A comparison on the different neural net-

works showed variable performance for the two architec-

tures, which emphasized the role of the combination of hy-

perparameters. Individual hyperparameters did not have a 

major effect by themselves. In general, ResNetRNNs had a 

greater capacity to detect homopolymers that the RNNs. 

Although the differences in accuracy, precision and recall 

were not large between the different network architectures, 

applying a more complex network with deeper learning ca-

pabilities led to more accurate predictions. A ResNetRNN 

was further developed by additional training and moving 

the decision threshold. It achieved a reasonable recall but 
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Figure 5 – Comparison of Albacore on different settings. Basecalling performance on number of deletions, insertions, mismatches (A), 
matches (B) and CPU time (C) using default settings (blue) versus homopolymer correction in combination with a chunk size of 1,000 
(orange), 10,000 (grey), 20,000 (yellow), 30,000 (light blue), 40,000 (green) or 100,000 (dark blue) was measured. CPU time for default 
settings is not clearly visible in the graph as it was less than 5,000 seconds.  
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fairly low precision, as the model overestimated the num-

ber of homopolymers present in the raw signal considera-

bly. In light of the low percentage of homopolymers in av-

erage reads, it was expected that the number of homopoly-

mers would be overestimated. The networks were trained 

on a limited number of examples. In particular, most non-

homopolymer examples were not included in training as the 

training set was almost balanced. By chance, instances that 

contained important differences between homopolymers 

and non-homopolymers may have been excluded or not 

been included in the training set. However, with respect to 

the available examples in the database, the networks were 

likely to have learned all possible information as consider-

able additional training did not improve performance. 

As a practical application, the neural network was in-

corporated in the pre-processing tool catfish that splits the 

raw signal on homopolymer stretches, so they can be pro-

cessed with extra care to improve the calling of homopoly-

mers, while saving computational power and time by regu-

larly processing non-homopolymer stretches. Detecting ho-

mopolymers in the nanopore reads is a relatively costly op-

eration and the tool would twofold increase the basecalling 

process in CPU time. At the moment, there is no sufficient 

basecaller or polisher that can handle homopolymer calling. 

Albacore 2.3.3 and later do have a homopolymer correction 

settings, although the effect appeared to be small. Recently, 

ONT released the latest research basecaller Flappie, which 

uses a new algorithm that supposedly handles homopoly-

mers better (Brown, 2018). An initial comparison revealed 

the basecaller to more accurately call homopolymers up to 

six bases in length, but no significant improvement for 

longer homopolymers (Robison, 2018). It is clear that there 

is still much room for improvement in basecalling software. 

In the future, we see homopolymer selection joined with 

specific homopolymer calling, incorporated in standard 

basecallers. This would additionally solve the issue with 

the large disk space required, because the splitting step 

would be omitted. 

The first step to advance catfish is optimising the net-

work as the current network lacked the desired precision. 

When constructing a neural network, choosing the optimal 

hyperparameters is crucial to generate well-performing 

models. Random search was applied for hyperparameter 

optimisation. Although most hyperparameters inde-

pendently did not have a strong influence on network per-

formance, the combination of hyperparameters does. This 

was clear from the varied performance between networks 

of the same and different architecture. Larger networks 

may have need more training to reach the same level of per-

formance as smaller networks because they have more pa-

rameters to fine tune. Networks with a high learning rate 

were generally unable to detect homopolymers well, which 

could be expected as they are more prone to stepping over 

the optimal solution due to the larger step size with which 

the updates are made. 

A small fraction of the large number of possible hy-

perparameter combinations was explored using random 

search. Bergstra & Bengio (2012) showed that neural net-

works on average achieved better accuracies when random 

search was used than a grid search of 100 trials in the opti-

misation of nine hyperparameters in experiments with eight 

or more networks on binary classification. This indicates 

that a sufficient number of networks is tried, although the 

addressed problem is different from homopolymer detec-

tion. It cannot be guaranteed that the optimal hyperparam-

eter combination was found, even when assuming that the 

determined range of hyperparameter setting includes the 

optimal setting. A promising alternative approach is evolu-

tionary algorithms, such as population-based training as it 

exploits well-performing models to explore a new range of 

hyperparameters dynamically during training (Jaderberg et 

al., 2017; Oehmcke & Kramer, 2018). 

 The alternative approach of extending a relatively well-

performing RNN with a ResNet was not unequivocally bet-

ter than a random search for hyperparameter optimisation. 

This method did found the best combination of hyperpa-

rameters. Also, none of the extended RNNs had a strong 

decrease in performance, which is likely due to the struc-

ture of the ResNet layers. In the worst case scenario, these 

layers do not learn but pass on the input without modifica-

tion. 

In contrast to the hyperparameters of a network that 

have to be selected beforehand, the parameters are learned 

via gradient descent during training. Appropriate examples 

for learning are therefore crucial. The raw signal contains 

measurements that capture the transition from non-homo-

polymers to a homopolymer. This is not reflected in the ap-

plied labelling method that strictly discriminates between 

homopolymer and non-homopolymer. A different labelling 

system using more labels could have been applied to make 

this distinction. For instance, the sequence ‘TAAAA’ could 

be the beginning of a homopolymer but can also be fol-

lowed by another base than an adenine. The difference be-

tween a possible homopolymer and a true homopolymer 

could be exploited to increase model performance, if the 

transitions from non-homopolymers to possible homopoly-

mers were marked as such. The network could possibly rec-

ognise short stretches of identical bases and assign different 

confidentialities as the number of identical bases increases. 

If a certain threshold would be reached in the sequence, it 

will be marked as homopolymer and otherwise it will not. 

This could possibly reduce the number of short stretches of 

identical bases identified as homopolymer. 

The majority of homopolymers was detected by the 

model, although one third is missed and predicted homo-

polymers are shorter in length than the true homopolymers. 

It is likely beneficial to use a larger example length (was 
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set to 35) in future research so the network will learn to 

recognise longer homopolymers. Additionally, over 65% 

of the predicted homopolymers did not overlap with true 

homopolymers at all. A substantial number of these incor-

rectly predicted homopolymers had an underlying base se-

quence of two, three or four identical bases. The detection 

of theses short stretches of identical bases could be ex-

plained by the fact that many examples used in training rep-

resented edge cases that contained both homopolymers and 

non-homopolymers.  

The ultimate goal is to be able to generate confident ge-

nome assemblies for all organisms. In this research, a pro-

karyotic set was used as opposed to a eukaryotic set to 

avoid complications due to DNA modifications, as modi-

fied bases give a different signal than their canonical ver-

sions (Stoiber et al., 2016). However, Chiron, a basecaller 

with a similar neural network at its core as the one inte-

grated in the tool, was able to generalize well over a human 

set while trained on a small prokaryotic set (Teng et al., 

2018). This suggests that the proposed neural network 

could be able of generalizing to other organisms as well.  

A big obstacle in training of the networks is the severe 

class imbalance. Undersampling of the majority group 

combined with oversampling of the minority group was 

used to enable training on a balanced set. Other techniques 

to work with imbalanced sets exist as well. In some data 

sets over 10,000 examples in size, cost-sensitive learning 

has proven to be more efficient than sampling (Weiss et al., 

2007) and easy to implement, although learning could be 

more difficult in heavily imbalanced problems like this one 

(Zhou & Liu, 2006). Alternately, a different perspective 

could be taken on homopolymer detection. Novelty detec-

tors exceeded binary classifiers like the used neural net-

works in data for which the minority class is than 5% (Lee 

& Cho, 2006). 

Neural networks are powerful machine learning algo-

rithms that handle complex data. Many different architec-

tures exist, which provide different ways of learning the ex-

pected output from a presentation of input samples. Two 

well-known architectures, the RNN and the ResNet, were 

tried, which are known for learning from sequential data 

and extracting local features respectively. It would be inter-

esting to explore the capabilities of less used networks, 

such as the capsule network (CapsNet) (Sabour et al., 2017) 

that uses nested sets of CNN layers to extract local features. 

Future directions are focused on improving the perfor-

mance of the network by strengthening precision and recall.  

As mentioned above, different approaches exist and could 

be combined, including an alternative labelling method, 

cost-sensitive learning, different network architectures, 

training examples that are composed of longer stretches of 

signal or a dynamic hyperparameter optimisation algo-

rithm. Nonetheless, it is difficult to pinpoint what aspects 

matter most with regard to network performance after the 

many subsequent linear and non-linear operations that tran-

spire in a neural network. This is not the first attempt to 

utilise the raw signal instead of the previously used seg-

mented signal. However, it is the first approach that solely 

focusses on identification of homopolymers.  

 

In conclusion, neural networks are able to detect a pat-

tern that discerns homopolymers from non-homopolymers 

in the complex MinION generated data. The ResNetRNN 

architecture enabled increased learning over the RNN ar-

chitecture, as they are deeper networks that combine local 

feature learning with extraction of long-range information.  

Although the neural networks presented here lacked the 

precision required for accurate selection of homopolymer 

regions, we propose several venues towards further im-

provements in this respect. Optimising the neural networks 

in combination with a polisher or a basecaller specialised 

in calling homopolymers, has the potential to reduce the er-

ror rate of nanopore sequencing, while limiting additional 

costs by restricting additional care to only those regions 

that actually contain homopolymers. 
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OUTPUT 

GRU 

INPUT 

MEMORY 

FIGURE 1 - GRU. A GRU MAKES USE OF TWO GATING MECHANISMS: THE RESET GATE (A) AND THE UPDATE GATE (B). INPUT AND 

PREVIOUS MEMORY GO THROUGH THE RESET GATE. THE RESET GATE DECIDES WHAT INFORMATION FROM THE PAST TO FORGET. 
CANDIDATE MEMORY UNDERGOES TANH ACTIVATION. MEMORY IS UPDATED GOING BY THE UPDATE GATE. IT DECIDES WHAT 

INFORMATION FROM THE PAST TO ADD TO KEEP IN THE FUTURE. THE UPDATED MEMORY AND CANDIDATE MEMORY ARE ADDED TO FORM 

THE OUTPUT OF THE GRU, WHICH IS ALSO THE NEW MEMORY OF THE UNIT. 

 

FIGURE 2 - RESNET BLOCK. A RESNET BLOCK CONSISTS OF THREE LAYERS THAT EACH CONTAIN A CONVOLUTIONAL LAYER  

FOLLOWED BY BATCH NORMALISATION AND THE RELU ACTIVATION FUNCTION. THE SKIP CONNECTION IS REPRESENTED BY THE 

CONVOLUTIONAL LAYER FOLLOWED BY A BATCH NORMALISATION LAYER ENCLOSED IN THE ARROWS. THE SKIP CONNECTION 

ADDS THE IDENTITY MAPPING FROM THE INPUT TO THE TRANSFORMED OUTPUT, WHICH ALLOWS FOR BUILDING DEEPER 

NETWORKS. 
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homopolymer region 

homopolymer measurement 

FIGURE 3 - LABELLING METHOD. A RAW SIGNAL IS DEPICTED AS A SQUIGGLE. FIRST, BASES ARE MARKED AS BEING PART OF A 

HOMOPOLYMER (1) OR NOT (0). SECOND, MEASUREMENTS THAT ARE LINKED TO A CERTAIN BASE ARE LABELLED ACCORDINGLY. THE 

GREEN BLOCK HIGHLIGHTS A PART OF THE SQUIGGLE AND SHOWS THE UNDERLYING MEASUREMENTS AND THE ASSIGNED LABELS. 
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FIGURE 4 - F1 SCORE FOR RESNETRNNS BASED ON TOP PERFORMING RNNS. ARROWS INDICATE THE RNNS THAT WERE THE BASIS FOR 

THE RESNETRNNS. COLOURS INDICATE THE ORIGINAL RNN ON WHICH A RESNETRNN IS BASED. 
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FIGURE 5 - LEARNING CURVES. THE TOP TWO RESNETRNNS WERE TRAINED FOR 110,000 ITERATIONS IN TOTAL. TRAINING ACCURACY (PURPLE), 
VALIDATION ACCURACY (YELLOW), RECALL (GREEN) AND PRECISION (BLUE) FOR EVERY 10,000 ITERATIONS IS DEPICTED. A) RESNETRNN 1; B) 
RESNETRNN 2. 

FIGURE 6 - RESNETRNN. INPUT IS TRANSFORMED BY THREE GRU LAYERS OVER WHICH DROPOUT IS APPLIED IN TRAINING. THE 

TRANSFORMED INPUT IS PASSED ON TO TWO RESNET BLOCKS. A FINAL FEEDFORWARD LAYER FOLLOWED BY A SOFTMAX LAYER 

PRODUCES THE OUTPUT. 
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FIGURE 7 - NETWORK PERFORMANCE. THE NETWORK WAS TRAINED ON A SET WITH A HOMOPOLYMER 

CONTENT OF 40% FOR 40000 ITERATIONS. TRAINING WAS RESUMED WITH A SET CONTAINING 20% 

HOMOPOLYMERS (LIGHT) OR 30% HOMOPOLYMERS (DARK). 
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FIGURE 8 – HYPERPARAMETERS (I). NETWORK PERFORMANCE BASED ON TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR) 
COLOURED BY HYPERPARAMETER SETTINGS. A) KEEP PROBABILITY; B) OPTIMISER; C) LEARNING RATE; D) BATCH SIZE. 
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FIGURE 9 – HYPERPARAMETERS (II). NETWORK PERFORMANCE BASED ON TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR) 
COLOURED BY HYPERPARAMETER SETTING. E) NUMBER OF RNN LAYERS; F) SIZE OF RNN LAYERS; G) NUMBER OF RESNETRNN 

LAYERS; H) SIZE OF RESNETRNN LAYERS. 
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FIGURE 10 – BASE COMPOSITION OF GENUINE AND PREDICTED HOMOPOLYMERS. THE PROPORTION OF A CERTAIN BASE OVER ALL 

GENUINE AND PREDICTED HOMOPOLYMERS IS DEPICTED, AS WELL AS THE ABSOLUTE NUMBERS. 
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Supplementary Tables 

 

TABLE 1 - DESCRIPTION OF THE HYPERPARAMETERS. 

Hyperparameter Description 

Learning rate Step size with which the model parameters are updated with respect to 
the loss gradient. 

Optimiser Algorithm that updates the model parameters in response the output of 
the loss function. 

Mini-batch size Number of training examples utilized in one iteration, after which an up-
date of the model parameters is performed. 

Layer size The number of units that make up a single layer, which is the collection 
of units at a specific depth in the network. 

Number of layers / blocks The number of layers or blocks of which the RNN or ResNet respectively 
consists. 

Dropout rate Proportion of units temporarily removed from training. Before every mini-
batch of training, units are randomly selected to drop out. 

 

 

TABLE 2 - OVERVIEW OF RANGES PER HYPERPARAMETER. NO DROPOUT WAS APPLIED TO THE RESNET LAYERS.  

  Options 

Network type biGRU-RNN ResNet 

Learning rate 0.0001, 0.001, 0.01, 0.1 

Optimiser Adam,  RMSprop 

Mini-batch size 128, 256, 512 

Layer size 16, 32, 64, 128, 256 

Number of layers / blocks 1, 2, 3, 4, 5 

Dropout rate 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8  
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TABLE 3 - COMPARISON OF READ DATA BEFORE AND AFTER CORRECTION. THE TOMBO RESQUIGGLE ALGORITHM WAS APPLIED TO CORRECT THE 

DATA ORIGINALLY BASECALLED WITH ALBACORE 0.8.4. PERCENTAGES OF TOTAL NUMBER OF READS, NUMBER OF HOMOPOLYMER STRETCHES AND 

NUMBER OF BASES AFTER CORRECTION RELATIVE TO THE ORIGINAL DATA ARE GIVEN. 

 

 

  

 Original data Tombo corrected data Reference 

Total number of reads 147,861 81,703            (55.26%)  

Total number of homopolymer 

stretches 
454,105 13,747,629    (207.94%) 

19,247 

Total number of bases in homopoly-

mers 
33,066,885 73,636,414    (222.69%) 

103,097 

Homopolymer content 0.66% 2.22% 2.22% 
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TABLE 4 - NETWORK HYPERPARAMETERS AND PERFORMANCE. THE HYPERPARAMETER SETTINGS PER NETWORK ARE PRESENTED HERE. KEEP 

PROBABILITY IS THE PROPORTION OF GRU UNITS TO KEEP WHILE APPLYING DROPOUT DURING TRAINING. NETWORK PERFORMANCE IS DESCRIBED 

BY THE MEASURES ACCURACY, PRECISION, RECALL AND F1. ORIGINAL INDICATES ON WHICH RNNS CERTAIN RESNETRNNS WERE BASED. 
NETWORKS ARE ORDERED BY F1 SCORE. BLUE: RNN; WHITE: RESNETRNN; GREEN: SELECTED NETWORKS FOR FURTHER TRAINING; RED: 
EXCLUDED NETWORKS; ASTERISKS INDICATE NETWORK WITH SAME HYPERPARAMETERS. 

 

 

* 

* 

network original batch optimizer learning size of number of keep size of number of accuracy precision recall F1

size rate RNN layers RNN layers probability ResNet layers ResNet layers

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 32 2 89.90 14.58 73.28 0.2432

ResNetRNN X 128 RMSProp 0.001 256 4 0.2 32 4 90.10 14.47 72.15 0.2411

ResNetRNN X 256 Adam 0.001 32 2 0.5 64 2 89.67 14.21 73.33 0.2381

ResNetRNN 2 512 Adam 0.001 128 2 0.4 256 5 89.36 14.11 75.90 0.2380

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 64 2 89.16 13.91 75.28 0.2348

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 256 2 89.09 13.85 75.02 0.2338

ResNetRNN 2 512 Adam 0.001 128 2 0.4 32 1 88.89 13.62 75.93 0.2310

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 32 2 89.00 13.54 75.02 0.2294

ResNetRNN 4 128 Adam 0.001 64 5 0.3 16 3 88.55 13.05 74.31 0.2220

ResNetRNN 4 128 Adam 0.001 64 5 0.3 256 3 88.52 13.02 74.61 0.2217

ResNetRNN 1 256 RMSProp 0.001 64 3 0.8 16 1 88.04 12.92 76.53 0.2211

ResNetRNN X 256 RMSProp 0.001 64 3 0.8 32 1 88.12 12.89 76.48 0.2206

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 256 2 88.40 12.92 73.84 0.2199

ResNetRNN X 512 Adam 0.001 128 2 0.4 16 1 87.78 12.69 77.37 0.2180

RNN 2 512 Adam 0.001 128 2 0.4 0 0 87.78 12.69 76.92 0.2179

ResNetRNN X 128 Adam 0.01 32 2 0.4 128 2 88.43 12.72 72.67 0.2165

ResNetRNN X 128 RMSProp 0.0001 128 2 0.6 32 2 88.16 12.58 73.32 0.2148

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 32 4 88.45 12.61 71.91 0.2146

ResNetRNN 2 512 Adam 0.001 128 2 0.4 16 3 87.44 12.45 77.29 0.2145

RNN 1 256 RMSProp 0.001 64 3 0.8 0 0 87.75 12.47 75.32 0.2140

ResNetRNN 2 512 Adam 0.001 128 2 0.4 32 4 87.44 12.36 77.85 0.2133

ResNetRNN 4 128 Adam 0.001 64 5 0.3 128 1 87.43 12.32 76.34 0.2122

RNN 3 512 RMSProp 0.01 32 3 0.4 0 0 87.73 12.34 74.54 0.2117

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 64 3 88.68 12.47 68.04 0.2108

ResNetRNN 2 512 Adam 0.001 128 2 0.4 16 2 87.07 12.14 78.13 0.2101

ResNetRNN X 128 RMSProp 0.001 256 2 0.3 64 2 86.92 12.11 78.47 0.2098

ResNetRNN 4 128 Adam 0.001 64 5 0.3 32 3 87.23 12.03 76.09 0.2078

ResNetRNN X 128 Adam 0.001 16 5 0.8 128 5 87.07 11.83 75.57 0.2046

RNN 4 128 Adam 0.001 64 5 0.3 0 0 86.79 11.77 76.06 0.2039

ResNetRNN X 512 RMSProp 0.0001 256 1 0.6 32 1 87.67 11.72 69.80 0.2007

ResNetRNN 4 128 Adam 0.001 64 5 0.3 64 4 86.63 11.45 76.14 0.1991

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 64 5 87.54 11.52 69.58 0.1977

RNN X 256 Adam 0.001 16 2 0.6 0 0 86.95 11.35 72.49 0.1963

RNN X 256 Adam 0.0001 128 3 0.5 0 0 86.65 11.32 73.08 0.1960

RNN X 128 RMSProp 0.001 32 4 0.5 0 0 85.85 11.13 76.30 0.1943

RNN X 128 RMSProp 0.001 32 5 0.4 0 0 85.82 11.12 76.68 0.1942

RNN X 512 RMSProp 0.0001 32 1 0.3 0 0 87.26 11.25 69.61 0.1937

ResNetRNN X 512 RMSProp 0.0001 32 2 0.2 128 2 85.16 10.47 75.11 0.1838

RNN X 512 Adam 0.0001 16 2 0.8 0 0 85.86 10.54 71.51 0.1837

RNN X 512 RMSProp 0.001 16 1 0.4 0 0 86.71 10.62 67.55 0.1835

RNN X 128 Adam 0.001 16 4 0.5 0 0 85.18 10.44 75.44 0.1834

ResNetRNN 3 512 RMSProp 0.01 32 3 0.4 64 3 86.51 10.49 67.78 0.1817

RNN X 256 RMSProp 0.0001 256 2 0.2 0 0 85.41 10.27 72.60 0.1799

RNN X 256 RMSProp 0.001 16 1 0.7 0 0 85.59 10.02 69.01 0.1750

RNN X 512 Adam 0.0001 16 2 0.8 0 0 85.14 9.74 69.45 0.1708

RNN X 256 Adam 0.0001 64 2 0.7 0 0 84.16 9.52 72.54 0.1683

RNN X 512 RMSProp 0.0001 32 1 0.3 0 0 85.42 9.40 64.71 0.1642

RNN X 256 Adam 0.01 16 1 0.6 0 0 85.51 9.33 63.72 0.1628

RNN X 512 Adam 0.0001 32 4 0.5 0 0 82.39 8.90 75.14 0.1591

RNN X 256 Adam 0.0001 16 3 0.6 0 0 82.40 8.62 71.96 0.1540

RNN X 256 RMSProp 0.0001 16 3 0.8 0 0 83.28 8.29 71.01 0.1485

RNN X 128 Adam 0.01 32 4 0.6 0 0 85.02 8.26 57.19 0.1444

RNN X 512 Adam 0.1 64 5 0.5 0 0 81.01 7.53 67.11 0.1354

RNN X 128 RMSProp 0.0001 16 5 0.5 0 0 78.38 7.36 75.51 0.1341

ResNetRNN X 512 RMSProp 0.01 128 1 0.3 16 1 68.77 5.18 75.75 0.0970

RNN X 256 RMSProp 0.01 128 4 0.6 0 0 89.88 4.80 19.19 0.0768

RNN X 128 RMSProp 0.01 128 3 0.7 0 0 63.27 3.84 65.28 0.0725

ResNetRNN X 256 RMSProp 0.1 128 2 0.8 32 2 2.23 2.23 100.00 0.0436

RNN X 128 RMSProp 0.01 128 4 0.4 0 0 65.01 2.27 42.65 0.0431

RNN X 512 RMSProp 0.01 256 4 0.3 0 0 97.78 1.99 0.03 0.0006

RNN X 128 RMSProp 0.1 16 4 0.6 0 0 97.79 1.12 0.00 0

ResNetRNN X 512 RMSProp 0.1 256 5 0.3 16 5 97.80 0 0 0

ResNetRNN X 512 Adam 0.01 128 5 0.5 16 5 97.79 0 0 0

ResNetRNN X 256 Adam 0.1 128 3 0.3 128 3 97.80 0 0 0

RNN X 512 Adam 0.1 64 5 0.5 0 0 97.79 0 0 0

RNN X 128 Adam 0.1 256 3 0.3 0 0 0 0 0 0

RNN X 128 Adam 0.1 256 3 0.6 0 0 0 0 0 0


