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5 

Abstract 

Wang, Q. (2019). The genetic background of bovine milk infrared spectra. 

PhD thesis, Wageningen University, Wageningen, the Netherlands 

 

Milk infrared (IR) spectroscopy is a cheap, quick and high-throughput technique that 

has been widely used to determine milk components. It has been used as the 

standard method for routine quantification of fat, protein and lactose content of 

milk, and it is a promising technique to obtain information about milk composition. 

The aim of this thesis was to explore the genetic background of bovine milk IR 

spectra, identify the environmental factors affecting milk IR spectra, and combined 

use genotypic information and milk IR spectra in predicting dairy cattle phenotypes. 

Two studies were conducted to explore the genetic background of milk IR spectra of 

Holstein Friesian dairy cows in the Netherlands. Studies were focused on individual 

IR wavenumbers, and results showed that for many of them 20 to 60% of variation 

can be attributed to genetic factors. Polymorphisms of individual gene diacylglycerol 

O-acyltransferase 1 (DGAT1), -casein (CSN3) and -lactoglobulin (LGB), as well as 

lactation stage of dairy cows and the different dates of IR analysis have significant 

effect on the values of milk IR spectra. Genome wide association study (GWAS) 

identified the associated genomic regions. In addition to the regions that related to 

milk fat, protein and lactose content, this thesis detected 3 new regions related to 

phosphorus, orotic acid and citric acid content in milk. Knowledge of the genetic 

background of milk IR spectra could enhance the prediction for dairy cattle 

phenotypes. This thesis investigated if combined use of genotypes of dairy cows can 

improve the prediction for milk fat composition. Results suggest that prediction 

accuracy of unsaturated fatty acids can be considerably improved by adding stearoyl-

CoA desaturase (SCD1) genotypes of dairy cows. Predicting methane (CH4) emission 

based on milk IR spectra is of great interest due the environmental impact of dairy 

production. This thesis showed the importance of validation strategy in interpreting 

the results of predicting CH4 emission. This result has general value in milk IR 

prediction for dairy cattle phenotypes that a block cross validation with farms as 

block could reflect the true predicative ability for independent observations. This 

thesis also suggested to predict based on IR wavenumbers from water absorption 

regions of the spectra as a negative control, to detect potential problem due to 

dependency structure in the data.    



 
 

 

 

 

 



 

 
7 

 

 

To my father who never leaves me walking alone 

Finally I become the man you wanted me to be 



 
 

 

 
 

 



 

9 

Contents 

 

5 Abstract 

11  1 – General introduction 

31 2 – Genetic and environmental variation in bovine milk infrared spectra 

55 3 – Genome wide association study for milk infrared wavenumbers 

81  4 – Validation strategy can result in overoptimistic view on the ability of milk 

infrared spectra to predict methane emission of dairy cattle 

101  5 – Combined use of milk infrared spectra and genotypes improves prediction 

of milk fat composition 

121  6 – General discussion 

145 Summary 

151 Curriculum Vitae 

157 Acknowledgements 

160 Colophon



 

 

 
 

 



 

 
 

 
 
 

1 
 

General introduction 
 

 

  



 



1 General introduction  

                                                                                                                

13 

 

1.1 Milk composition  

Bovine milk serves as an important human food source and is used to 

manufacture many dairy products such as cheese, butter and yogurt. During 

the last few decades, dairy cattle breeding has been a significant factor in 

improving milk yield and in this way contributes to meet the increasing demand 

for milk products. Nowadays, although the global milk consumption is still 

growing, milk consumption has been declining in developed countries such 

US and some countries in the EU (Canadian Dairy Information Centre, 2018). 

This might be due to a decline in population growth and because the saturation 

level for dairy consumption has been reached. In addition, dairy production 

has been facing concerns on its environmental sustainability and animal 

health. The changes in dairy production circumstances suggest that the dairy 

industry should put more emphasis on sustainable dairy production. This 

change requires new phenotypes which can serve as indicators for health and 

energy status, environmental impact, and milk quality, to support management 

or selective breeding decisions. Acquiring these indicators on a large scale 

and in a cost effective way is challenging. Milk composition, however, might 

provide indicators for these traits on a large scale and in a cost effective way.  

1.1.1 Milk composition and human health 

The milk components fat and protein are currently used in many countries to 

determine the value of raw milk. Milk fat consists of many different fatty acids 

and other important nutrients like the fat soluble vitamins (German and Dillard, 

2006; Jelen, 2007). Saturated fatty acids account for approximately 70% of 

the total fatty acids in milk and lead to increased cholesterol levels and an 

increased risk of cardiovascular disease, whereas the relatively small fraction 

of polyunsaturated fatty acids in milk have been identified as beneficial to 

human health (Jensen, 2002; German and Dillard, 2006). Milk protein consists 

of approximately 80% casein (αS1-casein, αS2-casein, β-casein and κ-casein) 

and 20% whey (α-lactabumin and β-lactoglobulin) proteins. Milk protein 

provides many essential amino acids, e.g. lysine, leucine, methionine and 

threonine (FOX, 1998). Milk protein also includes multifunctional proteins such 

as lactoferrin that has antimicrobial activity and is part of the innate immune 

defence (Farnaud and Evans, 2003). Bovine milk also contains several 

important minerals such as calcium, magnesium, phosphorus, potassium, 
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selenium, and zinc, which are especially important for pregnant women and 

children (Black et al., 2002). 

1.1.2 Milk composition and manufacturing properties of dairy products 

Milk composition is also related to manufacturing properties of milk. Milk fat 

composition has an influence on melting properties of fat and therefore on the 

texture of dairy products such as butter, ice cream, yogurt (e.g., Chen et al., 

2004). A softer texture is related to a lower melting point, which is associated 

with an increased unsaturated fatty acid content (e.g., Couvreur et al., 2006). 

Milk protein composition plays an important role in cheese production. Casein 

proteins are positively correlated with cheese yield (Wedholm et al., 2006; 

Heck et al., 2009). Milk protein composition affects milk coagulation properties 

which is a crucial parameter in cheese making (Auldist et al., 2004; Bonfatti et 

al., 2010; Penasa et al., 2010). 

1.1.3 Milk composition and farm management 

Milk composition can serve as an indicator which can be used by farmers to 

assist in dairy farm management (Hamann and Krömker, 1997). Major milk 

components e.g. milk fat and protein, are routinely recorded and their changes 

may indicate changes in the farm management or health status of dairy cows. 

Bastin et al. (2012) suggested the use of milk fat composition as an indicator 

for body reserve mobilization and fertility of dairy cows. Schukken et al. (2003) 

suggested the use of somatic cell counts in milk to monitor milk quality and 

udder health of dairy cows, since a high somatic cell count is associated with 

risk of mastitis. Clinical mastitis has also been related to lactoferrin content in 

milk (Kawai et al., 1999). Changes in β-hydroxybutyrate, milk fatty acids, and 

fat to protein ratio are related to energy balance of dairy cows which is related 

to metabolic disorders like ketosis (Van Knegsel et al., 2007; Friggens et al., 

2007; Van Haelst et al., 2008; Stoop et al., 2009). Milk urea content, combined 

with milk protein content, can serve as an indicator for nitrogen efficiency and 

ammonia emission of dairy cows (Frank and Swensson, 2002). Excreted 

nitrogen and phosphorus in manure may lead to water pollution and therefore 

will affect the environmental impact of dairy production. Another topic of 

concern for the dairy sector is methane (CH4) emission. Methane is a major 

greenhouse gas contributing to global warming. Methane production in dairy 

cows is related to the volatile fatty acids acetate, butyrate and propionate 
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which are produced during fermentation in the rumen. These volatile fatty 

acids are also involved in the fatty acids synthesis in the mammary gland. 

Therefore, it has been suggested that milk composition can be used as an 

indicator for methane emission of dairy cows (Chilliard et al., 2009; Dijkstra et 

al., 2011).   

Most dairy cattle breeding programs, driven by the milk pricing system, focus 

on milk production traits such as milk, fat and protein yield (Miglior et al., 2005). 

In order to meet future demands of modern dairy consumers, dairy cattle 

breeding programs have to put more emphasis on detailed milk composition, 

which can be modified by selective breeding (Bovenhuis et al., 2013). In 

addition, dairy cattle breeding goals will be extended with novel traits that are 

related to the environmental impact of dairy production, e.g. methane 

emission. Monitoring farm management requires routine measurements of 

milk composition which can serve as an indicator for several traits. Therefore 

the need to record information on milk components is rapidly growing.  

 

1.2 Milk infrared spectroscopy 

1.2.1 Principles of milk infrared spectroscopy 

Milk composition can be quantified using different techniques. Milk fat 

composition can be quantified by gas chromatography (GC; de Jong and 

Badings, 1990; Collomb et al., 2002). Milk protein composition can be 

quantified by high-performance liquid chromatography (HPLC; Bobe et al., 

1998; Bordin et al., 2001), and capillary zone electrophoresis (CZE; de Jong 

et al., 1993; Heck et al., 2008). However these techniques are costly, time 

consuming and at present not suited for large scale routine recording of milk 

components. Alternatively, milk infrared (IR) spectroscopy is a rapid, 

inexpensive and high-throughput technique for recording milk composition. 

Nowadays, milk IR spectroscopy is the method of choice for routine milk 

recording in many countries and is used to quantify milk fat-, protein-, lactose- 

and urea content (ICAR, 2012). Therefore it is of interest to investigate the 

potential of milk IR spectroscopy to predict additional milk components (e.g., 

fat and protein composition) or other phenotypes relevant for dairy production.  
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IR spectroscopy is one of the vibrational spectroscopy techniques that is 

based on the interaction between analyzed matter and electromagnetic waves. 

Electromagnetic radiation is characterized by wavelength (in the unit of 

nanometer, 10-9 meter) and wavenumber (also referred to as frequency; in the 

unit of reciprocal wavelength in centimeter, cm-1). The relationship between 

wavelength and wavenumber is  

             ν = 
107

𝜆(𝑛𝑚)
                                                                    Equation 1.1 

where ν represents the wavenumber, λ is wavelength and 107 is a constant. 

 

For convenience, the milk IR spectra are reported in wavenumbers (cm-1) in 

this thesis. The spectra consist of measurements at a range of individual 

wavenumbers with a resolution of 3.8558 cm-1.  

The electromagnetic radiation used in milk IR spectroscopy consists of two 

spectral regions: the near-infrared region (NIR, wavenumber 12,500-4,000 

cm-1) and the mid-infrared region (MIR, wavenumber 4,000-400 cm-1). The 

NIR region is the first spectral region exhibiting absorption bands related to 

molecule vibrations. It is characterized by harmonics and combination bands. 

The MIR region is the main region of vibrations in molecules. This region 

contains information allowing the identification and characterization of 

structure, as well as the conformation of organic structures such as 

polysaccharides, proteins, and lipids. The ranges of infrared, ultraviolet (UV) 

and visible (VIS) spectral regions are shown in Figure 1.1. Energy level of the 

electromagnetic radiation is directly proportional to wavenumbers. 
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Figure 1.1 The electromagnetic spectrum. Modified from Dufour. (2009) 

 

 

1.2.2 Molecular vibration and absorption band 

For the use of milk IR spectroscopy, bovine milk samples are crossed by 

electromagnetic radiation, which induces vibrations of chemical bonds within 

a molecule and thus absorptions of energy from the incoming electromagnetic 

radiation. There are two types of vibration movements: stretching and bending. 

Stretching vibration changes the bond length. In symmetric stretching the 

bonds vibrate in and out simultaneously, while in asymmetric stretching the 

bonds vibrate in opposite directions. Bending vibration changes the angle 

between the bonds and atom. The two types of bending vibrations are in plane 

bending, when atoms stay within the same plane, and out of plane bending, 

when atoms move outside the original plane. Typical stretching and bending 

vibrations are shown in Figure 1.2 using the methylene group (–CH2) as an 

example. 

A chemical bond can be considered as a spring that needs a force or energy 

to compress or extend, responding to Hooke’s law. The position of an 

absorption band by a chemical bond depends on the strength of the chemical 

bond and the molecule weights of the two atoms. The wavenumber of 

absorption band can be estimated by Equation 1.2. 

v0 = 
1

2𝜋𝑐
√
𝐾

𝜇
                                                                Equation 1.2 

where v0 represents wavenumber, c is the speed of light, K is the strength of 

chemical bond, and μ is the reduced mass of two attached atoms.  
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Figure 1.2 Types of stretching and bending vibrations, illustrated on a methylene group 

(–CH2). Modified from Eck. (2014) 

 

In general, a stronger chemical bond is stiffer, and therefore is associated  with 

a higher K value and therefore vibrates at higher wavenumbers. The chemical 

bond between two light atoms has a smaller μ and therefore also vibrates at 

higher wavenumbers. The types of vibrations also influence the absorption 

position for the same chemical bonds. Bending vibrations are less energetic 

than stretching and thus vibrate at lower wavenumbers. 

The intensity of the absorption band depends on the difference between the 

two atoms involved in the chemical bond. A larger difference will result in a 

stronger absorption. For example, the C=O bond formed by different and 

highly polarized atoms, show a stronger absorption band than a C=C bond. 

1.2.3 Assignment of chemical bonds and milk components to spectral 

regions 

Bovine milk contains various organic components e.g. fat, protein, and 

carbohydrates. The molecules contain various chemical bonds that induce 

vibrations due to absorption of electromagnetic radiation at different 

wavenumbers. The absorption at adjacent wavenumbers can be induced by 

chemical bonds that are abundant in molecules of a certain milk component. 
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Some absorption bands in the spectral regions can be assigned to specific 

milk components. 

Spectral regions related to fat, protein and lactose in milk are shown in Figure 

1.3. In general, wavenumbers of the triacylglycerol ester linkage C–O 

symmetric stretching (approx. 1,175 cm-1), C=O stretching (approx. 1,750    

cm-1), and acyl chain C–H symmetric and asymmetric stretching (2,800-3,000 

cm-1) are commonly used to determine milk fat content. The bending vibrations 

of acyl chain C–H can be found at low wavenumbers, e.g. scissoring at 1,463 

cm-1, wagging at 1,123 cm-1. The amide I, II and III bands (1,200-1,700 cm-1) 

can be used to determine milk protein content. The Amide I band is due to 

C=O stretching in the polypeptide and is shown at 1,600-1,700 cm-1. Amide II 

band is due to N–H in plane bending and C–N stretching vibrations and is 

shown at 1,500-1,600 cm-1. The relatively weak amide III band is due to a 

combination of N–H wagging, C–C stretching, C–N stretching and C–O 

wagging and is shown at 1,200-1,400 cm-1. The bond between carbon atom 

and hydroxyl group, C–OH (approx. 1,080 cm-1) can be used to determine 

carbohydrates like lactose (Diem, 2015). 

In the IR analyses of milk samples, there is always an issue due to the main 

component of milk: water. Water molecules are very polar and strong infrared 

absorbers with absorption bands at wavenumbers between 3,000-3,600 cm-1 

(–OH stretching) and between 1,600-1,700 cm-1 (–OH bending) (Safar et al., 

1994). The absorption of water is intense and masks the absorption bands of 

other chemical bonds, for example C–H stretching in carbohydrates around 

3,200 cm-1, amide I band in protein at 1,600-1,700 cm-1, and C=C stretching 

at 1,640-1,666 cm-1. Therefore in practice, these wavenumbers are regarded 

as noise and assumed not to contain valuable information on milk composition. 

The application of milk IR spectroscopy has become an important topic in dairy 

cattle breeding, since milk IR spectroscopy has been proposed to be able to 

predict various dairy cattle phenotypes. The milk IR spectra can be regarded 

as a comprehensive reflection of milk composition. The IR profile might 

contain information on more than total fat, protein, and lactose content, 

however, it is not clear what information on milk composition is actually 

captured by the milk IR spectra. Due to the complexity of components in milk, 
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Figure 1.3 The milk infrared (IR) regions representing major milk components 

 

 

 

it is difficult to relate individual wavenumbers to detailed milk composition, 

especially the components in low concentrations. 

1.2.4 Terminology in this thesis  

In this thesis, the milk IR spectrum was determined by a Fourier-transform 

infrared spectrometer, in which a mathematical Fourier transform was applied 

to convert the raw data expressed in a time-domain into actual spectra 

expressed in a frequency-domain. Various terms and abbreviations, e.g. 

Fourier transform infrared spectroscopy (FTIR, e.g. Rutten et al., 2011), Mid-

infrared spectroscopy (MIR, e.g. Soyeurt et al., 2011) have been used in 

others’ scientific publications on the same topic. In this thesis, the term milk 

infrared (IR) spectroscopy will be used.  
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1.3 Prediction of dairy cattle phenotypes using milk infrared 

spectroscopy 

Prediction of dairy cattle phenotypes, including milk composition based on 

milk IR spectroscopy, has been a topic of many studies over the past ten years 

(reviewed by De Marchi et al., 2014). However, several issues remain 

unresolved.  

1.3.1 IR prediction of milk fat composition 

Several studies pointed at the potential of milk IR spectroscopy to predict milk 

fat composition (Soyeurt et al., 2006,2011; Rutten et al., 2009; De Marchi et 

al., 2011; Ferrand et al., 2011). When fatty acids were expressed as a 

percentage of total fat, Soyeurt et al. (2006) showed that the validation 

coefficient of determination (R2) in prediction, was 0.67 for C14:0, 0.50 for 

C16:0, and 0.53 for C18:1 (based on 49 milk samples). Rutten et al. (2009) 

used 3,622 milk samples collected in winter and summer and reported R2 of 

0.73 for C14:0, 0.71 for C16:0 and 0.84 for C18:1. Both studies reported higher 

prediction accuracies when fatty acids were expressed per unit of milk (milk 

basis) as compared to per unit of fat (fat basis). However, from the perspective 

of the dairy industry there is more interest in changing fat composition, for 

example the proportion of unsaturated fatty acids (fat basis), than changing 

the total amount of unsaturated fatty acids per unit of milk (milk basis). The 

later can also be achieved by changing fat content of milk. In addition, it was 

shown that more accurate IR predictions of fat composition were obtained for 

major fatty acids than for fatty acids in low concentrations. The relation 

between concentration of fatty acids and prediction accuracy has been 

discussed by Rutten et al. (2009) and De Marchi et al. (2011).  

1.3.2 IR prediction of milk protein composition 

Several studies showed moderate IR prediction accuracy for milk protein 

composition (De Marchi et al., 2009a; Rutten et al., 2011; Bonfatti et al., 2011). 

Bonfatti et al. (2011) used 1,517 milk samples and showed R2 of 0.66 for αS1-

casein, 0.49 for αS2-casein, 0.53 for β-casein and 0.63 for κ-casein, 0.31 for 

α-lactabumin and 0.64 for β-lactoglobulin. These prediction accuracies were 

higher than those reported by De Marchi et al. (2009a) and Rutten et al. (2011). 

The average R2 for lactoferrin was 0.71 (Lopez-Villalobos et al., 2009; Soyeurt 
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et al., 2007; Soyeurt et al., 2012). In general these moderate prediction 

accuracies for milk protein composition indicate that milk IR spectroscopy is 

not suited for setting up a milk payment system based on milk protein 

composition. 

1.3.3 IR prediction of other phenotypes 

Soyeurt et al. (2009) used 87 milk samples and investigated the possibility of 

IR spectroscopy for predicting milk mineral composition. Results showed 

cross-validation R2 of 0.87 for calcium, 0.85 for phosphorus, 0.36 for 

potassium and 0.65 for sodium and magnesium content in milk. Toffanin et al. 

(2015) showed that calcium and phosphorus content in milk can be predicted 

by milk IR spectroscopy with R2 of 0.56 and 0.72 respectively. Milk coagulation 

properties can be predicted by milk IR spectroscopy (Dal Zotto et al., 2008; 

De Marchi et al., 2009b; De Marchi et al., 2013) with R2 ranging from 0.62 to 

0.76 for rennet coagulation time, and ranging from 0.37 to 0.70 for curd 

firmness. De Marchi et al. (2009b) showed that acidity of milk can be predicted 

with R2 of 0.59 for pH and of 0.66 for titratable acidity, while Toffanin et al. 

(2015) showed R2 of 0.74 for titratable acidity.  

Moreover, milk IR spectroscopy has been proposed for prediction of traits 

related to health, energy status, and environmental impact of dairy cattle. 

Acetone content in milk, as an indicator for ketosis, can be predicted by milk 

IR spectroscopy with R2 of 0.81 (Hansen, 1999). More recent studies 

confirmed the feasibility of milk IR spectroscopy as a screening tool for 

subclinical ketosis (Heuer et al., 2001; De Roos et al., 2007; Van Knegsel et 

al., 2010). McParland et al. (2011) used 268 dairy cows with multiple lactations 

and showed R2 of 0.45 to 0.52 for energy balance. In a follow up study, the 

dataset was extended with dairy cows from different countries (McParland et 

al., 2012). Dehareng et al. (2012) conducted 2 experiments and 3 dietary 

treatments on 11 Holstein dairy cows to predict methane production                   

(g CH4/day) and methane intensity (g CH4/kg of milk). High R2 ranging from 

0.68 to 0.79 were found for these traits in different scenarios. 
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1.4 Genetic background of milk infrared spectroscopy 

The genetic background of milk composition such as heritability, genetic 

correlations, effects of genes, has been intensively studied. Genomic regions 

associated with milk production traits such as milk yield, fat and protein 

content (e.g., Daetwyler et al., 2008; Pryce et al., 2010; Cole et al., 2011), milk 

fat composition and milk protein composition (Bouwman et al., 2011; Schopen 

et al., 2011) have been identified using genome-wide association studies. 

Several studies showed that milk composition is significantly affected by some 

gene polymorphisms, e.g. Diacylglycerol O-acyltransferase 1 (DGAT1) (e.g., 

Grisart et al., 2002), Stearoyl-CoA Desaturase (SCD1) (e.g., Schennink et al., 

2008), κ-casein (CSN3) and β-lactoglobulin (LGB) (e.g., Heck et al., 2009). 

Genomic regions or gene polymorphisms that have been shown to 

significantly affect milk composition are expected to affect wavenumbers in 

the IR spectra as well, provided that changes in the corresponding milk 

component are reflected in the IR spectra. Therefore studying the genetic 

background of milk IR spectra will provide information on which milk 

components are actually captured by the milk IR spectra.  

Milk composition is also affected by environmental factors like herd, lactation 

stage and age at first calving (Schutz et al., 1990; Stoop et al., 2009; Walker 

et al., 2004). It is of interest to investigate to which extent environmental 

factors affect milk IR spectra. In addition, individual wavenumbers may be 

affected by genetic differences between animals.  

The accuracy of IR spectroscopy to predict milk composition might be 

improved, especially for components in low concentrations. Both genotypes 

and milk IR spectra contain information on milk composition and combining 

both information sources may improve prediction accuracy. The improved 

prediction accuracy might contribute to improved tools for farm management. 

 

1.5 Aim and outline of this thesis  

The aim of this thesis was to explore the genetic background of milk IR spectra 

of dairy cows, and to investigate the feasibility to predict methane emission 

and detailed milk fat composition using milk IR spectroscopy. In chapter 2, 

we quantified the effects of four genes (DGAT1, SCD1, CSN3 and LGB) and 



1 General introduction 

24 

 

systematic environmental factors (e.g., lactation stage and date of IR analyses) 

on individual milk IR wavenumbers. We estimated the heritability and the 

variation due to differences between herds for individual milk IR wavenumbers. 

In chapter 3, we performed genome-wide association studies on a selected 

set of IR wavenumbers and identified genomic regions affecting these 

wavenumbers. In chapter 4 we predicted methane emission of individual dairy 

cows based on milk IR spectroscopy using different validation strategies. The 

methane emission was measured using a sensor that was installed in an 

Automatic Milking System. In chapter 5 we investigated if combining milk IR 

spectroscopy with genotypic information of dairy cows could improve 

prediction of milk fat composition. The general discussion (chapter 6) focused 

on three main topics: 1. Between-season differences in the genetic 

background of milk IR spectra; 2. Prediction of DGAT1 genotypes based on 

milk IR spectra; 3. Ways to extract more information on milk composition 

based on milk IR analyses.  
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Abstract 

Milk infrared (IR) spectroscopy is widely used to determine milk composition. 

In this study 1,060 milk IR wavenumbers ranging from 925 to 5,008 cm-1 of 

1,748 Holstein Friesian cows on 371 herds in the Netherlands were available. 

The extent to which IR wavenumbers are affected by genetic and 

environmental factors was investigated. Inter-herd heritabilities of 1,060 milk 

IR wavenumbers ranged from 0 to 0.63 indicating that the genetic background 

of IR wavenumbers differs considerably. The majority of the wavenumbers 

have moderate to high inter-herd heritabilities ranging from 0.20 to 0.60. The 

diacylglycerol O-acyltransferase 1 (DGAT1), stearoyl-CoA desaturase (SCD1), 

κ-casein (CSN3) and β-lactoglobulin (LGB) polymorphisms are known to have 

large effect on milk composition and therefore we studied the effects of these 

polymorphisms on individual milk IR wavenumbers. The DGAT1 

polymorphism had highly significant effects on many wavenumbers. In 

contrast, the SCD1 polymorphism did not significantly affect any of the 

wavenumbers. The SCD1 is known to have a strong effect on the content of 

C10:1, C12:1, C14:1, and C16:1 fatty acids. Therefore, these results suggest 

that milk IR spectra contain little direct information on these mono unsaturated 

fatty acids. The CSN3 and LGB polymorphisms had significant effects on a 

few wavenumbers. Differences between herds explained 10 to 25% of the total 

variance for most wavenumbers. This suggests that the wavenumbers of milk 

IR spectra are indicative for differences in feeding and management between 

herds. The wavenumbers between 1,619 and 1,674 cm-1 and between 3,073 

and 3,667 cm-1 are strongly influenced by water absorption and usually 

excluded when setting up prediction equations. However, we found that some 

of the wavenumbers in the water absorption region are affected by the DGAT1 

polymorphism and lactation stage. This suggests that these wavenumbers 

contain useful information regarding milk composition. 

 

Key words: 

bovine milk, IR wavenumbers, heritability, herd, genetic polymorphisms 
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2.1 Introduction 

Milk produced by dairy cows is a complex product consisting of many 

components (Jelen, 2007). However, at present only fat and protein content 

are routinely recorded and considered in most dairy cattle breeding programs 

(Miglior et al., 2005). Despite this, both from a nutritional and a manufacturing 

perspective, detailed fat and protein composition are of interest. Several 

studies suggested protein composition is related to milk coagulation and 

cheese yield (e.g., Wedholm et al., 2006), since a greater casein content is 

preferable for cheese making. Due to its relatively high concentration of 

saturated fatty acids, the consumption of bovine milk fat has been associated 

with negative effects on human health (e.g., German and Dillard, 2006) and 

therefore changing milk fat composition by means of selective breeding might 

be of interest. Moreover, milk composition can serve as an indicator for the 

cow’s health status (e.g., Vlaeminck et al., 2006; Van Haelst et al., 2008) and 

methane emission (e.g., Chilliard et al., 2009). For breeding and management 

purposes, large scale routinely collected measurements are needed and 

therefore traits should be easy to measure at relatively low costs. Analytical 

methods like gas chromatography to quantify milk fat composition, or high-

performance liquid chromatography and capillary zone electrophoresis to 

quantify milk protein composition, are expensive and time-consuming. 

Therefore these methods are less suited for large scale routine measurements.  

Fourier transform infrared (IR) spectroscopy is a fast and cost effective 

method widely used to determine milk composition. It is the standard method 

for routine quantification of fat, protein and lactose content of milk (ICAR, 

2012). Several studies showed that IR spectra also can be used to determine 

milk fat composition (e.g., Soyeurt et al., 2006; Rutten et al., 2009). Other 

studies investigated possibilities to predict milk protein composition based on 

IR spectra (Bonfatti et al., 2011; Rutten et al., 2011). Furthermore, recent 

research reported the ability of milk IR spectra to predict traits such as milk 

coagulation, ketone bodies and energy status of dairy cows (De Marchi et al., 

2014).  

Some studies analysed the genetic background of milk IR wavenumbers 

(Soyeurt et al., 2010; Bittante and Cecchinato, 2013). Soyeurt et al. (2010) 

analysed milk IR spectra of 1,594 first parity Holstein cows and found 
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substantial differences in heritability between wavenumbers and concluded 

that not all IR wavenumbers are of genetic interest. Bittante and Cecchinato 

(2013) studied the IR spectra of 1,064 Brown Swiss cows and reported that 

approximately 30% of the wavenumbers have heritability larger than 0.10.  

Besides quantifying the combined action of all genes on IR wavenumbers, it 

might be of interest to study effects of some individual genes with known and 

large effect on milk composition. Polymorphisms in diacylglycerol O-

acyltransferase 1 (DGAT1), stearoyl-CoA desaturase 1 (SCD1), κ-casein 

(CSN3) and β-lactoglobulin (LGB) have been shown to have important effects 

on milk composition (e.g., Schennink et al., 2008; Heck et al., 2009). Their 

effects on individual IR wavenumbers can provide insight in the information 

that is captured by the whole IR spectra. Furthermore, it has been shown that 

IR spectra can be used to predict LGB genotypes (Rutten et al., 2011) and 

CSN1S1 haplotypes (Berget et al., 2010). Quantifying the effects of DGAT1, 

SCD1 and CSN3 polymorphisms on individual IR wavenumbers can give 

insight in the possibilities of predicting genotypes for these polymorphisms 

based on IR spectra.  

It is well known that milk composition is also affected by feed and management 

strategies, e.g. feed composition influences milk fat content and fat 

composition (e.g., Chilliard et al., 2007) and dietary energy intake influences 

milk protein content (Emery, 1978). There is an increasing interest of 

consumers in the authenticity of milk as they purchase biological and organic 

products at higher price. Milk IR spectroscopy might be one of the methods 

that enable discriminating milk samples produced by cows fed different diets 

(Valenti et al., 2013). Quantifying herd effects will give insight in the extent to 

which feed and management differences are reflected by individual 

wavenumbers. Herd effects for individual IR wavenumbers of bovine milk have 

not been quantified before.  

The aim of this study was to quantify the contribution of genetic and 

environmental effects to the variation in milk IR wavenumbers. Furthermore, 

we aimed at quantifying the effects of polymorphisms in DGAT1, SCD1, CSN3 

and LGB on milk IR wavenumbers. 
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2.2 Materials and methods 

2.2.1 Data 

In this study, one morning milk samples from 1,748 first parity Holstein 

Friesians cows located on 371 herds have been collected for analysis. The 

data was collected from February till March of 2005. All cows have at least 

87.5% Holstein Friesian genes. The population consisted of 5 large paternal 

half-sib families from proven sires (98-196 daughters per sire), and 50 small 

paternal half-sib families from test sires (8-23 daughters per sire), as well as 

168 cows descending from 44 other proven sires (1-25 daughters per sire) to 

assure at least 3 cows per herd. The pedigree of the cows was provided by 

CRV (Cooperative cattle improvement organization, Arnhem, the 

Netherlands).  

Milk samples were conserved using sodium azide (0.03% wt/wt) at 4°C all 

times. Subsequently, IR spectra were recorded in a 10 mL milk sample using 

the MilkoScan FT 6000 equipment (FOSS, Denmark) at the certified 

laboratory of the Milk Control Station (Zutphen, The Netherlands). All milk 

samples used in this study were analysed on the same MilkoScan FT 6000. 

The IR spectra consisted of the transmittance values measured at 1,060 

wavenumbers ranging from 925 to 5,008 cm-1. 

2.2.2 Genotypes 

Blood samples were collected for DNA isolation. The genotyping procedure 

for DGAT1 K232A and SCD1 A239V polymorphisms were described by 

Schennink et al. (2008). Genotypes of CSN3 were determined as described 

by Heck et al. (2009). The polymorphisms associated with the known protein 

variants for LGB were genotyped using a SNaPshot assay as described by 

Visker et al. (2011). 

Among the 1,748 cows with milk IR data, 1,625 cows had DGAT1 genotypes, 

1,579 cows had SCD1 genotypes, 1,534 cows had CSN3 genotypes and 

1,542 cows had LGB genotypes. For some cows the genotypes were missing 

because either no DNA sample was available or the sample could not be 

genotyped unambiguously. The allele frequencies were 60.0% for A allele and 

40.0% for K allele of DGAT1, 73.0% for A allele and 27.0% for V allele of 
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SCD1, 58.3% for A allele and 41.7% for B allele of LGB and  60.4%, 30.1%, 

9.5% for CSN3 A, B and E allele respectively. 

2.2.3 Statistical analysis 

A series of analyses were performed to quantify the effects of several factors 

on the 1,060 milk IR wavenumbers. The following model was used: 

yijklm=μ+β1*lactstijklm +β2*afcijklm + seasoni + sirecodej  +  

                        datek + herdl + am + eijklm,                     Equation 2.1 

where yijklm is the transmittance value of the IR wavenumber; μ is the general 

mean; lactstijklm is a covariate for the effect of lactation stage (in days) with 

regression coefficient β1 ; afcijklm is a covariate for the effect of age at first 

calving with regression coefficient β2 ; seasoni is the fixed effect season of 

calving (June-Aug 2004, Sept-Nov 2004 or Dec 2004-Jan 2005); sirecodej is 

the fixed effect accounting for possible differences in genetic level between 

the groups of proven bull daughters and young bull daughters; datek is the 

fixed effect accounting for the effect of 17 days at which IR analyses of milk 

samples took place; herdl is a random effect of herd l, distributed as N (0, I𝜎ℎ
2), 

with identity matrix I and herd variance 𝜎ℎ
2; am is a random additive genetic 

effect of animal m, distributed as N (0, A𝜎𝑎
2), with additive genetic relationship 

matrix A and the additive genetic variance 𝜎𝑎
2 . The additive genetic 

relationship matrix was constructed based on 12,548 animals. eijklm is a 

random residual effect, distributed as N (0, I𝜎𝑒
2), with identity matrix I and error 

variance 𝜎𝑒
2.  

 

The inter-herd heritability for individual wavenumbers was calculated as  

                                       h2 = 
𝜎𝑎
2

𝜎𝑎
2+𝜎ℎ

2+𝜎𝑒
2                                      Equation 2.2 

ASReml (Gilmour et al., 2009) was used to perform single trait analyses in 

order to assess the significance (P-values) of the fixed effects and REML 

estimates of variance components. 



 2 Genetic and environmental variation in milk IR spectra 

37 

 

The effects of the DGAT1, SCD1, CSN3 and LGB polymorphisms were 

estimated using equation 2.1 but extended with a fixed effect. The effects of 

these 4 polymorphisms were determined in separate analyses. Individuals 

whose genotype was missing were included in the analysis by assigning them 

to a separate genotype class. Missing genotypes appeared to be randomly 

distributed across other effects in the model.  

Significance tests for systematic environmental factors were performed for 

each of the 1,060 wavenumbers. To adjust for multiple testing we used a 

Bonferroni correction. To determine the number of independent traits a 

Principle Component Analysis (PCA) was performed on the milk IR spectra, 

indicating that 99% of the variation can be described based on 45 principal 

components (result not shown). To adjust for multiple testing we therefore 

assumed 50 independent tests and consequently an effect was considered 

significant if -Log10(P) was larger than 3 (i.e., -Log10(0.05/50)), where P 

represents the significance of the effect.  

 

2.3 Results 

The mean, 1st percentile and 99th percentile of the 1,060 milk IR 

wavenumbers are shown in Figure 2.1. The IR wavenumbers between 1,619 

and 1,674 cm-1 and between 3,073 and 3,667 cm-1 showed larger variation 

than others. These wavenumbers represent the absorption peaks of water and 

will be referred to as the water absorption region. 

2.3.1 Fixed effects 

Age at first calving, season of calving and differences between groups of 

proven and young bull daughters did not show significant effects on any of the 

1,060 wavenumbers. Lactation stage had significant effects on 457 

wavenumbers. The highest -Log10(P) of 15.6 for lactation stage was found for 

wavenumber 2,495 cm-1. Date of IR analysis had significant effect on 80% of 

the wavenumbers, especially on the wavenumbers in water absorption region. 

The -Log10(P) of lactation stage and date of IR analysis are shown in Figure 

2.2. 
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Figure 2.2 The significance of the effect of lactation stage and date of analysis on 

1,060 milk IR wavenumbers. The horizontal line indicates a threshold at –Log10(P) of 

3. 

 

2.3.2 Variance components  

Genetic, herd and residual variances as a fraction of the total phenotypic 

variance are shown in Figure 2.3. Genetic factors explained more than 40% 

of the total variation for wavenumbers from 925 to 1,257 cm-1, 1,454 to 1,465 

cm-1, 2,811 to 2,973 cm-1 and 4,122 to 5,008 cm-1. Furthermore, for most of 

the wavenumbers from 1,693 to 2,479 cm-1 more than 40% of the total 

variation was due to genetic factors except for 1,724 cm-1 (19.6%) and 1,770 

cm-1 (29.3%). On the other hand, genetic factors explained almost no variation 

and residual variance accounted for more than 90% of the total phenotypic 

variance for most of wavenumbers in the water absorption region. An 
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exception was some wavenumbers near 3,154 cm-1 for which genetic factors 

explained up to 18.7% of the total variation.  

Inter-herd heritabilities of the 1,060 wavenumbers were 0.36 on average, 

ranging from 0 to 0.63. In total there were 197 wavenumbers with heritabilities 

lower than 0.20 and 291 wavenumbers with heritabilities between 0.20 and 

0.40. There were 560 wavenumbers with heritabilities between 0.40 and 0.60, 

and 12 wavenumbers with heritabilities larger than 0.60.  

For 806 wavenumbers, differences between herds contributed more than 10% 

of the total phenotypic variance. The herd variance accounted for up to 28% 

of the total phenotypic variance for wavenumber 3,717 cm-1, which was the 

wavenumber with the largest contribution of herd variance.  

 

 

 

 

Figure 2.3 Percentage of the total variation of 1,060 milk IR wavenumbers explained 

by genetic, herd and residual effects. 
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Figure 2.4 The significance of the effect of DGAT1, SCD1, CSN3 and LGB 

polymorphisms on 1,060 milk IR wavenumbers. The horizontal lines indicate a 

threshold at –Log10(P) of 3.  
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2.3.3 Effects of DGAT1, SCD1, CSN3 and LGB  

Figure 2.4 shows the -Log10(P) of DGAT1, SCD1, CSN3 and LGB 

polymorphisms on the 1,060 milk IR wavenumbers. The DGAT1 

polymorphism had extremely significant effects on many wavenumbers. For 

121 wavenumbers DGAT1 polymorphism had a -Log10(P) larger than 100 and 

the highest -Log10(P) was 110.4. The DGAT1 had no significant effect on 216 

wavenumbers, most of which belongs to the water absorption region. However, 

wavenumbers from 3,466 to 3,543 cm-1 were significantly affected by the 

DGAT1 polymorphism with the highest -Log10(P) value of 17.0. The SCD1 

polymorphism did not significantly affect any of the wavenumbers.  

Significant effects of the CSN3 polymorphism were found on 5 regions: 

wavenumbers from 1,238 to 1,292 cm-1, 1,431 to 1,477 cm-1, 1,504 to 1,573 

cm-1, 2,371 to 2,607 cm-1, and 3,682 to 5,008 cm-1. The largest -Log10(P) of 

19.2 was found for wavenumber 3,717 cm-1. The LGB polymorphism showed 

significant effects on wavenumbers between 1,377 and 1,415 cm-1.  

 

2.4 Discussion 

In this study we investigated the effects of genetic and environmental factors 

on milk IR wavenumbers. Besides quantifying the total genetic variance of 

individual wavenumbers we also estimated the effects of DGAT1, SCD1, 

CSN3 and LGB polymorphisms. The polymorphisms in DGAT1, CSN3 and 

LGB significantly affected several wavenumbers whereas the SCD1 

polymorphism had no significant effect on any of the wavenumbers. 

Differences between herds accounted for more than 10% of the variation in 

many IR wavenumbers. These herd effects might reflect feeding or 

management differences between farms.  

Wavenumbers from the water absorption region showed large variation 

(Figure 2.1) and a small fraction of the phenotypic variance was explained by 

genetics (Figure 2.3). These wavenumbers represent the absorption peaks of 

water and because water is the main component of milk and a very strong 

infrared absorber, water will mask the effects of other components (e.g., Safar 

et al., 1994; Karoui et al., 2010). Wavenumbers 3,466 till 3,543 cm-1 of the 

water absorption region were significantly affected by lactation stage (Figure 
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2.2) and the DGAT1 polymorphism (Figure 2.4). The wavenumbers of the 

water absorption region are usually excluded when setting up prediction 

equations (e.g., De Marchi et al., 2009). Our results suggest that some of 

these wavenumbers contain information on milk composition.  

2.4.1 Fixed effects 

Lactation stage showed significant effects on many wavenumbers (Figure 2.2). 

It is well known that fat and protein contents change during lactation (e.g., 

Schutz et al., 1990). Furthermore, Stoop et al. (2009) showed that milk fat 

composition is affected by lactation stage. Lactation stage has a smaller effect 

on milk protein composition (e.g., Walker et al., 2004). These changes in milk 

composition during lactation are reflected by the milk IR wavenumbers. In our 

dataset, lactation stage ranged from 63 to 282 days and no early lactation 

records were available. Since the milk composition changes considerably from 

early to middle lactation, it is expected that stronger effects of lactation stage 

will be observed when records covering the complete lactation are included in 

the analysis.  

To our knowledge no other studies specifically quantified the effect of date of 

analysis on the milk IR spectra. In our study the milk samples were analysed 

in a short time period of less than two months. Furthermore, the MilkoScan  

FT 6000 spectrometer was calibrated at regular times according to the 

manufacturer instructions. However, for many wavenumbers, we found 

significant effects of date of analysis which suggest instability of the IR 

spectrometer across dates. Many wavenumbers showed a time trend, which 

would point at a drift of the spectrometer. The wavenumbers in water 

absorption region showed highly significant effects of date of analysis. Grelet 

et al. (2015) standardized milk IR spectra from different laboratories, and 

reported that standardization coefficients were less adapted in the second 

study one month later. This also might be due to a time trend or perturbations 

of the spectrometers.    

In the current study milk samples from one herd were analysed on the same 

day shortly after collection. Therefore the effects of herd and date of analysis 

were confounded. We found that the variance due to differences between 

herds increased considerably for some wavenumbers when date of analysis 

was not accounted for in the model.  
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2.4.2 Heritability   

In our study most wavenumbers had moderate to high heritabilities ranging 

from 0.20 to 0.60. The estimated heritabilities for wavenumbers in this study 

were considerably higher than those reported in other studies. Bittante and 

Cecchinato (2013) analysed transmittance values at 1,056 milk IR 

wavenumbers (930 to 5,000 cm-1) of milk from 1,064 Italian Brown Swiss cows. 

Both studies showed a similar pattern of heritabilities for the different 

wavenumbers. Bittante and Cecchinato (2013) reported that heritabilities of 

milk IR wavenumbers ranged from 0 to 0.27. In their study 578 wavenumbers 

had heritabilities between 0.05 and 0.10 and 261 wavenumbers had 

heritabilities between 0.10 and 0.20. The lower heritability reported by Bittante 

and Cecchinato (2013) as compared to the current study might among others 

be due to different instruments used (FOSS FT 6000 vs. FT 120 spectrometer). 

However the most likely reason is the difference in breeds studied which is in 

agreement with previous studies who reported higher heritabilities for milk fat 

and protein content in Dutch Holstein Friesian than Italian Brown Swiss. 

Based on largely the same cows as included in the current study, Stoop et al. 

(2007) estimated heritabilities of 0.52 for fat%, 0.60 for protein% and 0.64 for 

lactose%. For Italian Brown Swiss, Samoré et al. (2012) reported heritabilities 

of 0.12 for fat%, 0.28 for protein% and 0.25 for lactose%. These differences 

are in line with the observed differences in heritability estimates of milk IR 

wavenumbers between Bittante and Cecchinato (2013) and our study. 

Soyeurt et al. (2010) estimated heritabilities for transmittance values of milk 

IR wavenumbers from 1,594 first parity Holstein cows in the Walloon Region 

of Belgium. Heritabilities in the study by Soyeurt et al. (2010) ranged from 0.00 

to 0.42. These estimates are on average approximately 0.1 lower than 

estimates from our study. Bastin et al. (2011) analysed milk samples from the 

Walloon Region and estimated heritabilities of approximately 0.40 for fat% and 

0.45 for protein%. These estimates are 0.12 lower for fat% and 0.15 lower for 

protein% than the estimates reported by Stoop et al. (2007). These differences 

are in line with the difference in heritability estimates for wavenumbers in the 

current study and those reported by Soyeurt et al. (2010).  
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2.4.3 Effects of individual genes 

Several studies showed that the DGAT1 K232A polymorphism is especially 

associated with milk fat content and fat composition (e.g., Grisart et al., 2002; 

Schennink et al., 2008). The K allele is associated with a higher fraction of 

C16:0, a higher SFA/UFA ratio and lower fractions of C14:0, unsaturated C18 

and CLA (e.g., Schennink et al., 2008). In our study, DGAT1 showed highly 

significant effects on numerous milk IR wavenumbers, which is in line with its 

large effect on milk composition. The largest DGAT1 effect was found for 

wavenumber 1,716 cm-1 with -Log10(P) of 110.4. Furthermore, highly 

significant DGAT1 effects on wavenumbers between 1,735 and 1,762 cm-1 

were observed. These wavenumbers are associated with carboxylic acid and 

ester C=O bond stretching (Safar et al., 1994). The DGAT1 also had highly 

significant effects on wavenumbers between 1,160 and 1,180 cm-1. This 

region represents the triglyceride ester linkage C–O stretching (Safar et al., 

1994). The significant DGAT1 effects on most of the wavenumbers from 2,800 

to 2,975 cm-1 can be explained as these wavenumbers are associated with 

alkyl C–H stretching (e.g., Safar et al., 1994; Yang and Irudayaraj, 2000), 

which is abundant in fat. Figure 2.4 also showed highly significant effects of 

DGAT1 on wavenumbers around 3,686 cm-1. However it is not clear which 

chemical bonds are associated with these wavenumbers. 

It is known that SCD1 is responsible for the desaturation of fatty acids. 

Schennink et al. (2008) reported that the SCD1 polymorphism has no 

significant effect on fat% but a large effect on fat composition. Using mainly 

the same animals as in the current study, Duchemin et al. (2013) showed that 

SCD1 has highly significant effects on C10:1, C12:1, C14:1, and C16:1 fatty 

acids. In the current study we didn’t find significant effect of the SCD1 

polymorphism on any of the wavenumbers (Figure 2.4). This suggests that 

there is little direct information in the IR spectra on C10:1, C12:1, C14:1, and 

C16:1 fatty acids. Milk IR prediction equations for these fatty acids therefore 

might be based on their correlations with total milk fat content. This would be 

in agreement with Eskildsen et al. (2014) who suggested that predictions of 

individual fatty acids by IR measurements in milk are indirect and are based 

on covariation between the fatty acids and total fat content. Interestingly, 

SCD1 has no significant effect on the total fraction of unsaturated fatty acids 
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which can be explained by the negative association of the SCD1 A239V 

polymorphism V allele with medium chain unsaturated fatty acids (e.g., C10:1, 

C12:1, C14:1) and the positive association with longer chain unsaturated fatty 

acids (e.g., C16:1) (Duchemin et al., 2013). Therefore, these results do not 

provide evidence that the IR spectra contain little direct information on the total 

fraction of unsaturated fatty acids. 

The CSN3 polymorphism has been shown to be associated with protein 

content (e.g., Bovenhuis et al., 1992) and the relative concentrations of the 6 

main milk proteins (e.g., Heck et al., 2009). The B allele of CSN3 is associated 

with a higher protein% and a higher relative concentration of κ-casein and   

αS2-casein, as well as a lower relative concentration of α-lactabumin and      

αS1-casein in milk (Heck et al., 2009). Casein is expected to have absorption 

peaks around wavenumbers 1,250 cm-1, 1,550 cm-1 and 1,650 cm-1 due to 

amide III, amide II and amide I bands, respectively (Osborne and Fearn, 1986), 

while in this study we found significant effects of CSN3 polymorphism on 

wavenumbers around 1,269 cm-1 and 1,550 cm-1 (Figure 2.4). The effects on 

wavenumbers around 1,269 cm-1 might be due to amide III or phosphate 

bands (Hewavitharana and van Brakel, 1997). Furthermore, the significant 

effects of CSN3 on wavenumbers between 1,504 and 1,573 cm-1 coincide with 

amide II band. This is mainly due to N–H bending and C–N stretching (Garidel 

and Schott, 2006). We did not detect significant CSN3 effects on 

wavenumbers around 1,650 cm-1 due to amide I bands which might be 

because this is in the water absorption region.  

We also found significant effects of CSN3 polymorphism on other 

wavenumbers (Figure 2.4). A spectral peak close to 1,469 cm-1 was also 

observed by De Marchi et al. (2010) and this region might be associated with 

proteins. The significant effect of CSN3 around wavenumber 2,529 cm-1 might 

be explained by its relation with S–H stretching (Hewavitharana and van 

Brakel, 1997), which commonly binds to whey protein. Therefore, this effect 

might be explained by the CSN3 effect on the relative concentration of whey 

protein. We found a highly significant effect of CSN3 for wavenumber 3,717 

cm-1, but this wavenumber is not known to be associated with any specific 

chemical bond.  
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Several studies showed significant associations between the LGB 

polymorphism and milk protein composition (e.g., Lunden et al., 1997; Heck 

et al., 2009). Cows with the LGB BB genotype have a higher casein and lower 

β-lactoglobulin content than cows with the LGB AA genotype and therefore 

the LGB B allele is preferred for cheese production (e.g., Van den Berg et al., 

1992; Boland and Hill, 2001; Wedholm et al., 2006). In this study, LGB 

polymorphism had significant effects on wavenumbers between 1,377 and 

1,415 cm-1. The highest -Log10(P) in this region was approximately 4.6. This 

significant effect of LGB polymorphism might be due to the association with 

C–N stretching at 1,414 cm-1 (Dufour, 2009). Notably, we did not find any 

wavenumbers which were significantly affected by both the CSN3 and LGB 

polymorphisms. 

The wavenumbers from 3,700 to 5,008 cm-1 are difficult to interpret because 

the spectra are complex and combined by overlapping peaks and variations. 

Wavenumbers 4,033 to 4,350 cm-1 can be attributed to combination bands of 

C–H, which is abundant in fatty acids. Wavenumbers 4,500 to 5,000 cm-1 can 

be attributed to vibrations of N–H and C=O group of proteins (Subramanian 

and Rodrigucz-Saona, 2009). These might explain the significant effects of 

DGAT1 and CSN3 polymorphism on these wavenumbers. 

It has been shown that it is possible to predict genotypes of polymorphism 

known to be associated with milk composition based on milk IR spectra. 

Rutten et al. (2011) showed that LGB genotypes can be predicted based on 

IR spectra. Our study showed that DGAT1 and CSN3 genotypes have larger 

effects than LGB on the IR wavenumbers. This suggests that IR spectra might 

be used to predict DGAT1 and CSN3 genotypes. The K allele of DGAT1 

K232A polymorphism is associated with higher fat%, protein%, and fat yield, 

but lower milk yield and protein yield (Bovenhuis et al., 2015).The CSN3 B 

allele is associated with a higher protein% (Heck et al., 2009). As these 

genotypes have distinct effects on milk composition, knowledge of these 

genotypes might be of interest. The accuracy of predicted genotypes might be 

increased by combining IR information with pedigree information. Conversely, 

genotypes of individual cows and their genotypic effects on milk composition 

might be combined with IR spectra to improve prediction of milk composition.  
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2.4.4 Herd 

Our milk samples were collected from numerous farms throughout the 

Netherlands, which is a good representation of herds in the Netherlands. The 

herd variance quantifies the relative importance of herd effect which reflects 

differences due to feeding, hygiene, and husbandry. There have been many 

studies showing the impact of feed on milk composition (e.g., Grummer, 1991; 

Palmquist et al., 1993; Slots et al., 2009). Valenti et al. (2013) demonstrated 

that based on IR data it is possible to distinguish milk from hay- and pasture-

based systems and those from maize silage- and pasture-based systems.  

Herd variation for wavenumbers might also reflect differences between herds 

in the cow’s health status and body conditions. Some metabolic diseases such 

as ketosis may affect milk composition. Several studies showed that milk IR 

spectra can be used to screen cows for subclinical ketosis (e.g., Hansen, 1999; 

Heuer et al., 2001; De Roos et al., 2007). Furthermore, in addition to cell count 

measurements, milk IR spectra might provide information regarding mastitis 

(Batavani et al., 2007). McParland et al. (2011) indicated that energy status of 

dairy cows can be predicted based on IR spectra. On the basis of routine 

prediction based on IR spectra, the predicted energy status could provide 

information about dairy farm management or body conditions of individual 

cows. 

 

2.5 Conclusions 

This study showed that genetic differences between cows explain a large part 

of the variation in milk IR wavenumbers. Furthermore we showed that the 

DGAT1 polymorphism significantly affected many IR wavenumbers. The 

polymorphisms of CSN3 and LGB also significantly affected some of the 

wavenumbers but no significant effect of SCD1 on any of the wavenumbers 

was found. Differences between herds accounted for a considerable part of 

phenotypic variance of individual wavenumbers and these wavenumbers 

might be of interest to discriminate milk from farms with different feeding or 

management regimes. Some wavenumbers are strongly influenced by water 

absorption and usually excluded when setting up prediction equations. 

However, we found that some of the wavenumbers in the water absorption 

region are significantly affected by DGAT1 polymorphism and lactation stage. 
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This suggested that these wavenumbers contain information on milk 

composition. 
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Abstract 

Individual wavenumbers of the infrared (IR) spectra of bovine milk have been 

shown to be moderately to highly heritable. The objective of this study was to 

identify genomic regions associated with individual milk IR wavenumbers. This 

is expected to provide information about the genetic background of milk 

composition and give insight in the relation between IR wavenumbers and milk 

components. For this purpose a genome wide association study (GWAS) was 

performed for a selected set of 50 individual IR wavenumbers measured on 

1,748 Dutch Holstein cows. Significant associations were detected for 28 of 

the 50 wavenumbers. In total 24 genomic regions distributed over 16 bovine 

chromosomes were identified. Major genomic regions associated with milk IR 

wavenumbers were identified on chromosomes 1, 5, 6, 14, 19 and 20. Most 

of these regions also showed significant associations with fat%, protein% or 

lactose%. However, we also identified some new regions which were not 

associated with any one of these routinely collected milk composition traits. 

On chromosome 1 two new genomic regions were identified and we 

hypothesise that they are related to variation in milk phosphorus content and 

orotic acid, respectively. On chromosome 20 a new genomic region was 

identified which seem to be related to citric acid. Identification of genomic 

regions associated with milk phosphorus content, orotic acid and citric acid 

suggest that the milk infrared spectra contain direct information on these milk 

components. Consequently milk infrared analyses probably can be used to 

predict these milk components, which have low concentrations in milk. This 

can lead to novel applications of milk IR spectroscopy for dairy cattle breeding 

and herd management. 
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bovine milk, IR wavenumbers, genome wide association study 
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3.1 Introduction 

Infrared (IR) spectroscopy is a fast and relatively cheap method to determine 

milk composition. It is the standard method for routine quantification of fat, 

protein and lactose content of milk (ICAR, 2012). Several studies showed that 

IR can also be used to determine milk fat composition (e.g., Soyeurt et al., 

2006; Rutten et al., 2009). More recently it has been suggested that milk IR 

spectra also can be used to predict other characteristics like e.g. negative 

energy balance and methane emission of dairy cows (McParland et al., 2011; 

Dehareng et al., 2012). The IR spectra are caused by the absorption of 

electromagnetic radiation at wavenumbers that are correlated to the vibrations 

(stretching and bending) of specific chemical bonds within a molecule (Sun, 

2009). The analysis of milk IR applies mainly the region 400-4,000 cm-1 or 

2,500-25,000 nm, due to active vibrations of various chemical bonds in 

different small regions. By assigning absorption bands of chemical bonds in 

IR to milk components, we can identify milk IR wavenumbers associated with 

some common milk components such as milk fat, milk protein and lactose. 

The assignment is based on the fact that the major chemical bonds with known 

vibration frequencies are abundant in these common milk components. 

However, due to the complexity of milk, it is sometimes difficult to relate 

wavenumbers to specific components. Milk IR spectra result from a 

comprehensive scan of milk and may contain information on milk components 

that are currently not quantified. 

Genome wide association study (GWAS) has been performed for routinely 

recorded milk production traits like milk yield, fat and protein content (e.g., 

Daetwyler et al., 2008; Pryce et al., 2010; Cole et al., 2011). More recently 

some studies performed GWAS for detailed milk fat and protein composition 

(Bouwman et al., 2011; Schopen et al., 2011). Buitenhuis et al. (2013) 

performed a GWAS for milk components based on nuclear magnetic 

resonance (NMR) spectroscopy. More recently Sanchez et al. (2016) 

performed a GWAS based on IR-predicted milk protein composition. The 

bovine milk IR spectrum might provide unique information about the genetic 

background of milk composition and to our knowledge, no GWAS based on 

bovine milk IR wavenumbers has been reported previously. 
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Genetic analyses of bovine milk IR spectra showed that most IR 

wavenumbers are heritable (e.g., Soyeurt et al., 2010; Bittante and 

Cecchinato, 2013). Wang et al. (2016) showed that the majority of the 

wavenumbers have moderate to high inter-herd heritabilities ranging from 

0.20 to 0.60. Performing GWAS for milk IR wavenumbers will provide new 

possibilities to identify genomic regions responsible for differences in milk 

composition and enhance our understanding of the background of bovine milk 

IR spectra.  

The objective of this study was to perform GWAS for a representative set of 

milk IR wavenumbers in order to unravel the genetic background of milk IR 

spectra and understand the relationship between milk components and IR 

wavenumbers.  

 

3.2 Materials and methods 

3.2.1 Data 

Data used for this study was based on one morning milk sample from 1,748 

first parity Holstein Friesians cows. Milk samples were collected from February 

till March 2005. All cows have at least 87.5% Holstein Friesian genes. The 

population consisted of 5 large paternal half-sib families from proven sires (98 

to 196 daughters per sire), and 50 small paternal half-sib families from test 

sires (8 to 23 daughters per sire), as well as 168 cows descending from 44 

other proven sires (1 to 25 daughters per sire) to assure at least 3 cows per 

herd. The pedigree of the cows was supplied by CRV (Cooperative cattle 

improvement organization, Arnhem, the Netherlands).  

Milk IR spectra were recorded in a 10 mL milk sample using the  same 

MilkoScan FT 6000 equipment (FOSS, Denmark) at the certified laboratory of 

the Dutch Milk Control Station QLIP (Zutphen, the Netherlands). The spectra 

consist of the transmittance values measured at 1,060 individual 

wavenumbers between 925 and 5,008 cm-1. Transmittance quantifies the 

amount of light passing through the milk sample. 

Phenotypic correlations among individual wavenumbers were analysed using 

PROC CLUSTER in SAS 9.3 (SAS Institute, 2001). More than 95% of the 

phenotypic variance in the 1,060 wavenumbers could be explained based on 
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50 clusters. From each of these 50 clusters 1 wavenumber was selected for 

the GWAS. If a cluster contained multiple consecutive wavenumbers, the 

middle wavenumber was selected. We performed GWAS for fat%, protein% 

and lactose% based on the same milk samples. Fat%, protein% and lactose% 

of the same milk samples were predicted based on milk IR analyses by the 

Dutch Milk Control Station QLIP (Zutphen, the Netherlands). 

3.2.2 Genotypes 

Blood samples were collected from the cows for DNA isolation. A custom 50K 

SNP Infinium Array (Illumina, San Diego, CA, USA) designed by CRV was 

used for genotyping. The cows were genotyped for 50,688 SNPs. The SNPs 

were mapped using the bovine genome assembly BTAU_4.0 (Liu et al., 2009). 

Among these SNPs, 778 were not mapped to any of the Bos taurus (BTA) 

chromosomes and therefore were assigned to BTA 0. In total 591 SNPs were 

assigned to the X chromosome.  

3.2.3 Statistical analysis 

The association study for each IR wavenumber was performed based on the 

following model:  

   yijklmn=μ+β1*lactstijklmn +β2*afcijklmn + seasoni + sirecodej  + datek  

+ SNPl + herdm + an + eijklmn                                                            

Equation 3.1 

where yijklmn is the transmittance value of the IR wavenumber, or predicted milk 

fat%, protein%, and lactose%; μ is the general mean; lactstijklmn is a covariate 

for the effect of lactation stage (63 to 282 days) with regression coefficient β1 ; 

afcijklmn is a covariate for the effect of age at first calving with regression 

coefficient β2 ; seasoni is the fixed effect accounting for season of calving 

(June-Aug 2004, Sept-Nov 2004 or Dec 2004-Jan 2005); sirecodej is the fixed 

effect accounting for possible differences in genetic level between the groups 

of proven bull daughters and young bull daughters; datek is the fixed effect 

accounting for the effect of day at which IR analyses of milk samples took 

place (k ranges from 1 to 17); SNPl is the fixed effect of SNP genotype; herdm 

is a random effect of herd m, distributed as N (0, I𝜎ℎ
2), with identity matrix I and 
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herd variance 𝜎ℎ
2; an is a random additive genetic effect of animal n, distributed 

as N (0, A𝜎𝑎
2 ), with additive genetic relationship matrix A and the additive 

genetic variance 𝜎𝑎
2. The additive genetic relationship matrix was constructed 

based on 12,548 animals. eijklmn is a random residual effect, distributed as N 

(0, I𝜎𝑒
2), with identity matrix I and error variance 𝜎𝑒

2.  

In the GWAS variance components were fixed at values estimated and 

presented by Wang et al. (2016) using the same data (see Table 3.1). 

Analyses were performed using ASReml (Gilmour et al., 2009). 

The genome wide false discovery rate (FDR) was used to determine 

significance. FDR were determined for each trait separately using the R (R 

Core Team, 2013) package ‘qvalue’. Associations with a FDR < 0.01 were 

considered significant. A sensitivity analysis was performed in case the lead 

SNP had a genotype class with at least 1 but less than 5 observations. In that 

case the records for the minor genotype class were excluded from the analysis 

and the analysis was repeated based on the remaining genotype classes.  

In the current study a genomic region containing at least two SNPs located 

within 10 Mbp with a significant effect on a trait is defined as a significant 

region for that trait. The region extends until the last significant SNP was not 

followed by another significant SNP within 10 Mbp.  

 

3.3 Results and discussion 

Table 3.1 shows the IR wavenumbers that were selected for the current study, 

and IR-predicted fat%, protein%, and lactose%. Table 3.1 shows the 

proportion of the variance due to herd and genetics for each of the 

wavenumbers and information regarding chemical bonds with specific 

absorption bands for the selected wavenumbers (Sun, 2009; Diem, 2015). 

Several of the selected wavenumbers were located in the water absorption 

region (between 1,619 and 1,674 cm-1 and between 3,073 and 3,667 cm-1). 

These wavenumbers were included in the GWAS as a result of the applied 

wavenumber selection procedure, i.e. these wavenumbers tend to have low 

correlations with other wavenumbers. Some of the selected wavenumbers are 

important for the quantification of milk fat%, protein% and lactose% due to the 

absorptions of abundant chemical bonds in these molecules. 



3 GWAS for milk IR wavenumbers 

                                                                                                                

61 

 

Table 3.1 Descriptive summary of selected milk IR wavenumbers. 

 
1 It describes the proportion of total variance explained by the differences between herds. 

Herd = 
𝜎 ℎ

2

𝜎𝑎
2+𝜎ℎ

2+𝜎𝑒
2, where 𝜎𝑎

2  is additive genetic variance, 𝜎ℎ
2  is the variance due to differences 

between herds, 𝜎𝑒
2 is the residual variance. 

2 heritability = 
𝜎𝑎

2

𝜎𝑎
2+𝜎ℎ

2+𝜎𝑒
2 , where 𝜎𝑎

2   is additive genetic variance, 𝜎ℎ
2   is the variance due to 

differences between herds, 𝜎𝑒
2 is the residual variance. 

3 This is according to Sun. 2009 and Diem. 2015.  
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Figure 3.1 Cluster tree based on principal component analysis of phenotypic 

correlations among the IR wavenumbers and fat%, protein%, lactose% analysed in 

this study. 
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Correlations among wavenumbers analysed in this study, including IR-

predicted fat%, protein%, and lactose% are graphically illustrated using a 

cluster tree (Figure 3.1). Wavenumbers from the water absorption region (e.g., 

WN587, WN626, and WN641) show weak correlations with other groups of 

wavenumbers. Many of the selected wavenumbers are related with IR-

predicted fat%, protein% or lactose%. Some of them show especially strong 

correlations with fat% (WN542), protein% (WN717), or lactose% (WN34).  

The significant genomic regions detected in the GWAS are summarized in 

Table 3.1 and genome wide association plots for fat%, protein% and lactose% 

are shown in Figure 3.2. For the IR wavenumbers not all genome wide 

association plots are shown; Figure 3.3 shows plots for those wavenumbers 

that show a strong signal in some of the chromosomal regions. The y-axis in 

Figure 3.2 and 3.3 are cut of at a -Log10(P) value of 20. 

The GWAS results indicated that 28 out of the 50 wavenumbers studied are 

significantly associated with at least one genomic region. Significant 

associations were detected for in total 24 genomic regions distributed over 16 

bovine chromosomes. No genomic regions were associated with all selected 

wavenumbers. Chromosomes BTA 1, BTA 5, BTA 6, BTA 14, BTA 19 and BTA 

20 showed significant associations with multiple wavenumbers or multiple 

regions on those chromosomes showed significant associations. Results from 

these chromosomes will be discussed in more details.  
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Figure 3.2 Manhattan plots of genome wide association studies on IR-predicted fat%, 

protein% and lactose%. The genomic position is represented along the x-axis and 

chromosome numbers are given. The –Log10(P) values of SNPs are given on y-axis 

and cut off at 20. The horizontal lines represent the 0.01 false discovery rate thresholds. 
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Figure 3.3 Manhattan plots of genome wide association studies on representative IR 

wavenumbers, showing all the significant genomic regions. The genomic position is 

represented along the x-axis and chromosome numbers are given. The –Log10(P) 

values of SNPs are given on y-axis and cut off at 20. The horizontal lines represent the 

0.01 false discovery rate thresholds. 
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3.3.1 BTA 1  

We detected 2 significant regions on BTA 1; region 1_a, from 56.9 to 80.8 Mbp 

(see Figure 3.3, WN208) and region 1_b, from 145.4 to 147.3 Mbp (see Figure 

3.3, WN432). These two regions did not show significant associations in our 

study with the routinely recorded milk composition traits fat%, protein% and 

lactose% (Figure 3.2), and to our knowledge these regions also have not been 

reported to be associated with routinely recorded milk production traits in other 

studies. Region 1_a is associated with WN208 and the lead SNP is 

rs29022932 with a -Log10(P) of 7.2 is located at 76.6 Mbp. Region 1_b showed 

significant associations for WN414, WN432, WN452 and WN470 with                  

-Log10(P) ranging from 6.2 to 8.9. SNP rs29019625 showed the strongest 

association for WN414, and an adjacent SNP rs43281569 showed the 

strongest association for WN432, WN452, and WN470.  

Region 1_a, associated with WN208, harbours the gene uridine 

monophosphate synthase (UMPS), which catalyses the last two steps of de 

novo pyrimidine synthesis converting orotic acid to 5’-monophosphate. This 

gene is known for the lethal genetic defect DUMPS (Deficiency of Uridine 

Mono Phosphate Synthase). Female carriers of this defect are known to have 

elevated levels of orotic acid in their milk and urine (Robinson et al. 1984). 

Buitenhuis et al. (2013) reported a QTL for orotic acid in the same region as 

the current study detected. Buitenhuis et al. (2013) quantified orotic acid using 

NMR Spectroscopy. Based on these results we hypothesise that milk IR 

spectra can be used to predict orotic acid in milk. 

In region 1_b located near 146 Mbp, we found several SNPs (e.g., 

rs29019625) significantly associated with WN414, WN432, WN452, and 

WN470. Some of these wavenumbers are related to P=O chemical bonds 

(Table 3.1). Using Inductively Coupled Plasma Emission Spectroscopy 

Buitenhuis et al. (2015) and Kemper et al. (2016) identified a QTL at 144.4 

Mbp for milk phosphorus concentration. These studies suggested SLC37A1 

(solute carrier family 37 member 1) as the most likely candidate gene, 

explaining approximately 10% phenotypic variance of phosphorus 

concentration. SLC37A1 functions as a phosphorus antiporter (Chou et al., 

2013), transporting glucose-6-phosphate and phosphorus in opposite 

directions.  
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It has been shown that milk phosphorous content can be predicted based on 

milk IR spectra (Soyeurt et al., 2009; Toffanin et al., 2015, Bonfatti et al., 2016). 

This prediction might be based on the relation between milk protein content 

and milk phosphorus content. However, region 1_b does not show an 

association with protein% in our study (Figure 3.2) and therefore these results 

suggest that the milk IR spectra contain direct information on milk phosphorus 

content. The current study provides additional evidence that milk phosphorus 

content can be predicted by milk IR spectra. Large scale quantification of milk 

phosphorus content using infrared analyses might result in management 

strategies to better feed cows according their phosphorus requirement and in 

more efficient use of phosphorus by the dairy sector.  

3.3.2 BTA 5 

We detected 2 significant regions on BTA 5; region 5_a, from 43.0 to 47.0 Mbp 

(see Figure 3.2 for fat% and Figure 3.3 for WN149) and region 5_b, from 97.4 

to 101.1 Mbp (see Figure 3.2 for fat% and protein% and Figure 3.3 for WN80). 

Region 5_a contained 2 SNPs (rs41616530 and rs29014575) showing 

significant effects on multiple IR wavenumbers (e.g., WN72, WN80, WN149, 

WN176, WN717) with -Log10(P) ranging from 4.2 to 5.1, and on fat% 

with -Log10(P) of 4.9. Figure 3.1 shows that wavenumbers associated with 

region 5_a are phenotypically correlated with protein% and fat%, however 

protein% didn’t show any association in this region. This region has not been 

associated with milk production traits in other studies. 

In region 5_b, SNPs were associated with WN72, WN80, WN176, WN279, 

WN717 (-Log10(P) up to 5.5) and fat% (-Log10(P) up to 4.7). The lead SNP 

rs29016908 was located at 101.1 Mbp. Region 5_b also contained several 

SNP (lead SNP rs41569048) significantly associated with protein% (-Log10(P) 

up to 4.9). The same region was previously reported by Schopen et al. (2011). 

Based on sequence-based imputation and expression QTL mapping, 

Littlejohn et al. (2016) identified microsomal glutathione S-transferase 1 

(MGST1) as the most likely causal gene for the observed associations with 

fat% on BTA 5. The MGST1 is located at 93.5 Mbp and Littlejohn et al. (2016) 

found this chromosomal region to be strongly associated with milk fat%, 

protein% and milk yield.    
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3.3.3 BTA 6  

We detected 2 significant regions on BTA 6; region 6_a, near 37.1 Mbp (see 

Figure 3.2 for lactose% and Figure 3.3 for WN34) and region 6_b, from 68.0 

to 93.5 Mbp (see Figure 3.2 for protein% and Figure 3.3 for WN156). Region 

6_a was associated with WN34, WN50, WN106, WN452, WN470, WN728 

and lactose%. For these wavenumbers the lead SNP rs81154100 showed        

-Log10(P) values ranging from 4.5 to 8.5. The association detected for region 

6_a with lactose% is in line with Kemper et al. (2016). As shown in Figure 3.1, 

several of the wavenumbers associated with region 6_a are strongly 

correlated with lactose%. Significant associations for this region have also 

been reported for somatic cell score (Daetwyler et al., 2008) which is known 

to be negatively correlated with lactose% (e.g., Welper et al. 1992).  

Region 6_a harbours the gene ATP binding cassette, subfamily G, member 2 

(ABCG2, located at 37.4 Mbp). The ABCG2 has been suggested to be the 

causative gene underlying the QTL (Cohen-Zinder et al., 2005; Olsen et al., 

2007). The expression of ABCG2 in the mammary gland is induced during late 

pregnancy and lactation period, contributing to the secretion of nutrients into 

the milk (Jonker et al., 2005), for instance, a major role for ABCG2 in the 

secretion of antimicrobials and riboflavin into the milk of ruminants has been 

reported (Real et al., 2011a; Otero et al., 2016).  

In region 6_b, many SNPs were very significantly associated with WN142, 

WN156, WN717, WN728, and WN764. For these wavenumbers the lead SNP 

rs43703016 showed -Log10(P) values ranging from 7.9 to 17.6 and for     

protein% the -Log10(P) value was 10.0. As shown in Figure 3.1, WN142, 

WN156, and WN728 were phenotypically strongly correlated, and WN717 was 

strongly correlated with protein%.  

This region contains the 4 casein coding genes. The lead SNP rs43703016 

located at 88.5 Mbp was the most significant SNP associated with these traits 

in the region. This SNP is one of the two SNPs that are causal for protein 

variants A and B of κ-casein gene (CSN3). Schopen et al. (2011) showed that 

this SNP is strongly associated with protein%, β-lactoglobulin content, casein 

index and especially κ-casein content. Previously we detected significant 

effects of CSN3 milk protein variants on WN142, WN156, WN717, WN728, 

and WN764 (Wang et al., 2016). 
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3.3.4 BTA 14  

We detected 2 significant regions on BTA14: region 14_a, from 0 to 18.5 Mbp 

(see Figure 3.2 for fat%, and protein% and Figure 3.3 for WN80, WN126, 

WN149, WN208 and WN432) and region 14_b, near 49.3 Mbp (see Figure 

3.3 for WN80). Region 14_a was strongly associated with 21 of the 50 

selected IR wavenumbers, as well as protein% and fat%. WN279 showed the 

highest -Log10(P) of 103.4. Region 14_a contains the diacylglycerol                   

O-acyltransferase 1 (DGAT1) gene. Previously Wang et al. (2016) showed 

that the DGAT1 K232A polymorphism has significant effects on many milk IR 

wavenumbers. It has been shown in several studies that the DGAT1 K232A 

polymorphism has major effects on milk yield, milk fat%, protein% (Grisart et 

al., 2002). Furthermore, Bovenhuis et al. (2016) showed that the DGAT1 

K232A polymorphism has significant effects on milk fatty acid, protein and 

mineral composition. We also found the significant association of region 14_a 

for WN668, which is part of the water absorption region. This agrees with our 

previous finding that the DGAT1 K232A polymorphisms are significantly 

associated with wavenumbers in the water absorption region (Wang et al., 

2016). In this previous study we found that wavenumbers from 3,466 to 3,543 

cm-1 (including WN668) were significantly affected by the DGAT1 K232A 

polymorphism with the highest -Log10(P) value of 17.0. The signals for 

wavenumbers in the so called water absorption region are dominated by the 

effect of water in milk, but not completely. This suggests that these 

wavenumbers contain useful information regarding milk composition. 

Remarkably, we detected another region on BTA 14 (14_b) affecting milk 

composition. Region 14_b was significantly associated with WN80 and 

WN142. Multiple SNPs in this region (e.g., lead SNP rs41668861), which are 

located at approximately 49.3 Mbp were significantly associated with WN80  

(-Log10(P) of 5.4; Figure 3.3) and WN142 (-Log10(P) of 4.8). The SNPs in this 

region were also associated with protein% (-Log10(P) of 4.6; Figure 3.2). The 

SNPs in this region remained significant after correcting for the DGAT1 K232A 

polymorphisms suggesting that this is the effect of a different QTL. Bennewitz 

et al. (2004) suggested that besides the DGAT1 K232A polymorphism there 

are other QTL on BTA 14 affecting milk production traits. Other studies 

reported there is a QTL in the region between 55 and 79 Mbp affecting milk 

production traits (Ashwell et al., 2004; Kolbehdari et al., 2009).  
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3.3.5 BTA 19  

We detected significant associations for the region from 42.2 to 59.0 Mbp on 

BTA 19. The associations for this region are illustrated for lactose% in Figure 

3.2 and for WN34 and WN432 in Figure 3.3. The lead SNP rs29020588, was 

significantly associated with WN20, WN34, WN50, WN106, WN432, WN452, 

and WN470 with -Log10(P) ranging from 4.6 to 10.0 and lactose% (-Log10(P) 

of 10.0). Another highly significant SNP was rs109400579 located at 52.0 Mbp 

and showed in general slightly lower -Log10(P) for the wavenumbers as 

compared to SNP rs29020588. Cecchinato et al. (2014) found a significant 

association for lactose% in Brown Swiss at 48.8 Mbp and suggested that the 

growth hormone 1 gene (GH1) is involved. 

As shown in Figure 3.1, all the wavenumbers associated with this region on 

BTA 19, except WN20, are strongly correlated. Bouwman et al. (2011) 

reported that BTA 19 is strongly associated with short and medium chain 

saturated fatty acids (e.g., C14:0) and with long chain unsaturated fatty acids 

(e.g., C18:1). Bouwman et al. (2014) fine mapped the region on BTA 19 

associated with fatty acids and showed that the most significant SNPs were 

located in an linkage disequilibrium block that contained the genes fatty acid 

synthase (FASN) and coiled-coil domain containing 57 (CCDC57). The FASN 

is involved in de novo fatty acids synthesis and has been associated with fat% 

and medium and long chain fatty acid content of milk (Roy et al., 2006; Morris 

et al., 2007). Medrano et al. (2010) showed that CCDC57 is expressed in the 

mammary gland but this gene has not been related to milk fat composition. 

Another gene ATP citrate lyase (ACLY) located at 42.7 Mbp is a critical 

enzyme linking glucose catabolism to lipogenesis by providing acetyl-CoA 

from mitochondrial citrate for fatty acid and cholesterol biosynthesis. Some 

other genes located in this region are signal transducer and activator of 

transcription 5A (STAT5A), sterol regulatory element binding transcription 

factor 1 (SREBF1). These genes are possibly related to fat composition or 

lactose%. This study didn’t detect association for fat% in this region, which 

indicates that the QTL is responsible for relative amount of fatty acids but not 

total milk fat content. 
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3.3.6 BTA 20  

We detected 2 significant regions on BTA 20: region 20_a, from 27.3 to 39.1 

Mbp (see Figure 3.2 for protein% and Figure 3.3 for WN20, WN80, WN142, 

WN279, WN717) and region 20_b, from 52.8 to70.7 Mbp (see Figure 3.3 for 

WN126). The lead SNP (rs41257066) for region 20_a showed -Log10(P) 

ranging from 4.9 to 5.8. This region harbours the growth hormone receptor 

(GHR) gene which has been reported to be associated with milk yield and 

composition (e.g., Blott et al. 2003, Kadri et al, 2015). Region 20_b is 

associated with WN106, WN176 and especially WN126 (-Log10(P) of 8.6). 

Another SNP in this region was also associated with lactose% (Figure 3.2), 

however, this SNP was not associated with WN126. Therefore, the highly 

significant association detected for WN126 was not detected for the routinely 

recorded milk composition traits fat%, protein% and lactose%. For the same 

genomic region on BTA 20, Buitenhuis et al. (2013) reported a significant 

association for citric acid in Danish Holstein and therefore WN126 might be 

related to citric acid. Recently, Grelet et al. (2016) showed that citrate in milk 

can be predicted with good accuracy based on milk IR data. 

3.3.7 Additional genomic regions 

BTA 10. A SNP located at 51.6 Mbp was significantly associated with WN50, 

WN72, WN80, WN142, WN279, WN452 and WN717 with -Log10(P) ranging 

from 4.8 to 6.6. The association of this region is shown for WN80 in Figure 3.3. 

In Danish studies this region on BTA 10 has been associated with milk fat 

composition and glycosylated κ-casein content (Buitenhuis et al. 2014; 2016). 

However, based on largely the same animals as used in the current study, 

Bouwman et al. (2012) did not detect significant associations of this region 

with milk fat composition.  

BTA 11. The SNP located at approximately 95 Mbp (e.g., lead SNP 

rs29014608) were significantly associated with WN126 (-Log10(P) up to 5.2). 

The association for this region is shown in Figure 3.3 for WN126. Wang et al. 

(2016) showed that the β-lactoglobulin polymorphism (LGB) has a significant 

effect on WN126. Schopen et al. (2011) reported that the region from 84.3 to 

110.2 Mbp is associated with milk protein composition, and SNP rs41255679 

located at 107.2 Mbp is associated with β-lactoglobulin content and the casein 

index. This SNP is located in the promoter region of the LGB gene and is 
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known to be in linkage disequilibrium with variants A and B of LGB (Ganai et 

al., 2009). Bedere and Bovenhuis (2017) showed that the tail part of BTA 11 

contains more than one mutation with an effect on β-lactoglobulin content. 

BTA 13. Several SNPs on BTA 13 (e.g., lead SNP rs41658332) located from 

50.6 to 50.8 Mbp were significantly associated with WN20, WN149, WN176, 

WN542, WN764, WN886 (-Log10(P) ranging from 4.2 to 5.8) and fat% 

(-Log10(P) up to 5.5). Figure 3.1 shows that these wavenumbers are correlated 

with each other and with fat%. The associations detected for this region are 

illustrated in Figure 3.2 for fat% and in Figure 3.3 for WN149. Bouwman et al. 

(2011) found a SNP located at 64.8 Mbp, which is in the gene acyl-CoA 

synthetase short-chain family member 2 (ACSS2). This is a candidate gene 

for C6:0, C8:0 and C10:0. Cole et al. (2011) reported several SNPs located 

between 50 and 60 Mbp are related to fat yield and fat%.  

BTA 15. In the region around 51.9 Mbp, several SNPs were significantly 

associated with WN142, WN156, and protein% with -Log10(P) ranging from 

5.5 to 7.7. SNP rs110249976 showed the most significant associations with 

these traits. This SNP was also reported by Schopen et al. (2011) to be 

significantly associated with protein%. The associations of this region were 

shown in Figure 3.2 for protein% and in Figure 3.3 for WN156. 

BTA 28. The SNP rs29016491 at 14.9 Mbp was significantly associated with 

WN34, WN50, WN106, WN208, WN432, WN470 (-Log10(P) ranging from 4.7 

to 9.2), and lactose% (-Log10(P) up to 7.3). Another SNP at 8.7 Mbp also 

showed significant associations with these wavenumbers. The associations of 

this region were shown in Figure 3.2 for lactose% and in Figure 3.3 for WN34. 

Most of these wavenumbers were associated with absorption bands of C–O 

and C–H bonds (Table 3.1), which are abundant in lactose.  

BTA 29. The significant associations were detected at 45.4 Mbp for WN156 

and protein%. SNP rs29026584 was the most significant SNP affecting 

WN156 (-Log10(P)=6.2) and protein% (-Log10(P)=5.0). This SNP was also 

reported by Schopen et al. (2011) to be significantly associated with protein%. 

Pryce et al. (2010) also found this region to be associated with protein%. 

WN156 is related to the band of N–H stretching vibration. Therefore this 

genomic region might contain information on milk protein content. The 
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associations for this region are illustrated in Figure 3.2 for protein% and in 

Figure 3.3 for WN156. 

In the current study we presented GWAS results for milk IR wavenumbers. 

Most of the identified genomic regions have been previously associated with 

fat%, protein% or lactose%. Interestingly also a number of regions were 

identified which could not be related to these routinely recorded traits. For 

instance, genomic regions were identified which in other studies have been 

associated with phosphorus, orotic acid and citric acid. This suggests that 

there is genetic variation in these milk components and that the milk IR spectra 

contain information about these milk components. Phosphorus, orotic acid 

and citric acid are components with low concentration in milk. Detection of 

genomic regions based on IR wavenumbers for these low concentration 

components suggest that it might be of interest to calibrate milk IR spectra for 

other low concentration components. Large-scale recording of milk 

phosphorus content based on milk IR prediction equations can contribute to 

improved phosphorus efficiency of the dairy sector whereas there is currently 

no clear application for large scale recording of orotic or citric acid. 

 

3.4 Conclusions 

A GWAS was performed for 50 individual bovine milk IR wavenumbers, 

resulting in 24 significant genomic regions on 16 bovine chromosomes. Out of 

the 50 individual milk IR wavenumbers, 28 wavenumbers showed significant 

associations with at least one genomic region. Genomic regions, on 

chromosome 5, 6, 14, 19, and 20, showed significant associations with milk 

IR wavenumbers as well as milk composition traits, such as fat%, protein%, 

and lactose%. Remarkably, chromosome 1 contains 2 regions which are 

associated with milk IR wavenumbers but did not show an association with 

routinely recorded milk composition traits fat%, protein%, or lactose%. One of 

these regions has been shown to be associated with orotic acid and the other 

with phosphorus content of milk. This suggests that milk IR spectra contain 

information about phosphorus and orotic acid content of milk. The current 

study shows that GWAS based on milk IR wavenumbers revealed new 

genomic regions affecting milk composition that were not identified based on 
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routinely recorded milk composition traits. Furthermore, this study shows the 

GWAS provides further insight in the information that is captured by the milk 

IR spectra. This can lead to novel applications of milk IR spectroscopy for 

dairy cattle breeding and herd management. 
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Abstract 

Due to its environmental impact, it is of great interest to reduce methane (CH4) 

emission of dairy cattle and selective breeding might contribute to this. 

However, this requires a rapid and cheap measurement technique which can 

be used to quantify CH4 emission for a large number of individual dairy cows. 

Milk infrared (IR) spectroscopy has been proposed as a predictor for CH4 

emission. This study investigated the feasibility of milk IR spectra to predict 

breath sensor measured CH4 of 801 dairy cows on 10 commercial farms. To 

evaluate the prediction equation we used random and block cross validation. 

Using random cross validation we found a R2val of 0.49 which suggests that 

milk IR spectra are informative in predicting CH4 emission. However based on 

block cross validation, with farms as blocks, a negligible R2val of 0.01 was 

obtained, indicating that milk IR spectra cannot be used to predict CH4 

emission. Random cross validation thus results in an overoptimistic view on 

the ability of milk IR spectra to predict CH4 emission of dairy cows. The 

difference between both validation strategies can be explained by the 

confounding effects of farm and date of milk IR analysis, which introduces a 

correlation between batch effects on the IR analyses and the farm average 

CH4. Breath sensor measured CH4 is strongly influenced by farm specific 

conditions which magnifies the problem. Based on random cross validation, 

also milk IR wavenumbers from water absorption regions showed moderate 

accuracy (R2val=0.25) but not based on block cross validation (R2val=0.03). 

These results therefore indicate that in the current study random cross 

validation results in an overoptimistic view on the ability of milk IR spectra to 

predict CH4 emission. We suggest prediction based on wavenumbers from 

water absorption regions as a negative control to identify potential 

dependence structures in the data.  

 

Key words:  

validation strategy, CH4 emission, milk infrared spectroscopy, prediction 
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4.1 Introduction 

Methane (CH4) is emitted by dairy cattle during anaerobic fermentation of feed 

in the rumen (Gerber et al., 2013). CH4 is a potent greenhouse gas and in this 

way dairy production contributes to global warming. In addition, the emitted 

CH4 accounts for a loss of 2 to 12% gross energy intake of the cow (Johnson 

and Johnson, 1995), which negatively affects feed efficiency. Therefore there 

is a need to reduce CH4 emission from dairy cattle and selective breeding 

might contribute to this (Wall et al., 2010). This would require the 

measurements of CH4 or CH4 indicators on a large number of individual dairy 

cows. 

Several methods have been suggested to quantify CH4 emission from 

individual dairy cows (Hammond et al., 2016; Negussie et al., 2017). Some 

studies investigated the possibility of predicting CH4 emission based on milk 

infrared (IR) spectroscopy (Dehareng et al., 2012; Vanlierde et al.,2015; 

Shetty et al., 2017; Van Gastelen et al., 2018; Vanlierde et al., 2018). Milk IR 

spectroscopy is a method to analyse milk composition and widely used to 

routinely quantify milk fat-, protein- and lactose content. The hypothesized 

relationship between CH4 emission and milk composition is based on the 

observation that hydrogen and volatile fatty acids produced during microbial 

fermentation in the rumen are both involved in the synthesis pathways of CH4 

and de novo milk fatty acids (short and medium-chain fatty acids). Therefore 

milk IR spectra might be used to predict CH4 and has the advantage as 

compared to alternative indicators for CH4 emission that it can be easily 

applied on a large scale without substantial cost. Results from studies 

predicting CH4 emission based on milk IR spectra are not consistent; 

Vanlierde et al. (2015) reported a R2val of 0.77 for CH4 production whereas 

Shetty et al. (2017) reported a R2val of 0.13. These differences warrant further 

research into the potential to quantify CH4 emission of individual cows using 

milk IR spectra.  

A common strategy to evaluate the performance of prediction equations is 

random cross validation. The basic idea behind random cross validation is to 

randomly split the data in a part that is used for building the prediction equation 

(calibration set) and a part used for evaluating the performance of the 

prediction equation (validation set). When the validation set is independent 
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from the calibration set, cross validation should provide a good estimate of 

prediction error of the equation when applied to new data. However, recently 

a number of studies in different fields of science pointed at situations in which 

random cross validation resulted in overoptimistic estimation of predicative 

ability (Qin et al. 2016; Roberts et al. 2017). Problems with random cross 

validation might occur when there are dependence structures in the data and 

in these situations block cross validation, where data is not split randomly but 

strategically and accounting for the dependence structures, can address these 

problems. The issue of dependence structures might also be relevant for milk 

IR spectra prediction of traits relevant for dairy cows, e.g. when milk samples 

on farms are collected and analysed in batches. Therefore in this study we 

compared results from random cross validation with block cross validation 

using farms as blocks. 

The objective of this study was to investigate the feasibility of milk IR spectra 

to predict breath sensor measured CH4 emission of individual dairy cattle on 

commercial farms using different validation strategies.  

 

4.2 Materials and methods 

4.2.1 Methane 

CH4 data was collected for in total 1,508 lactating dairy cows located on 11 

commercial dairy farms in the Netherlands between November 2013 and 

March 2016. The number of cows per farm ranged from 62 to 224 and more 

than 85% of the cows were of the Holstein Friesian breed.  

CH4 was measured in the breath of cows during milking in Automatic Milking 

Systems (Lely Astronaut A4, Lely Industries NV, Maassluis, the Netherlands) 

with non-dispersive infrared sensors (Acreo Swedish ICT, Kista, Sweden). 

This method is commonly referred to as the sniffer method. Sensors were 

located in the front gate of the Automatic Milking System, above the feeding 

trough at the same level as the cow’s nose. In total 4 different sensors were 

used during data collection and the sensors were moved from one farm to the 

other. The sensors measured CH4 concentrations (expressed in ppm) 

continuously twice per second and these measurements were averaged over 

the period a cow visited the Automatic Milking System. The average CH4 
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concentrations were log10-transformed to make the trait resemble a normal 

distribution and the transformed trait will be simply referred to as CH4 in the 

remaining part of this article. More details about data collection and definition 

of the CH4 phenotype is described by Van Engelen et al. (2018). 

4.2.2 Milk infrared spectra 

Milk samples were collected during routine milk production recording for all 

lactating cows on the 11 commercial dairy farms involved in the current study. 

Milk recording was on farms with Automatic Milking Systems and milk samples 

were collected during a cows’ visit to the milking unit. Sample collection took 

place during routine milk recording as implemented by CRV (Cooperative 

cattle improvement organization, Arnhem, the Netherlands). Milk IR spectra 

were obtained by analysing the milk samples using FOSS FT6000 instruments 

by Qlip B.V. (Leusden, the Netherlands). Milk IR predicted fat%, protein%, and 

lactose% were based on the same milk samples and provided by CRV.   

4.2.3 Data editing 

The CH4 and milk IR spectra data were combined to build the dataset for IR 

prediction of CH4. All CH4 measurements of a cow for a period ranging from 2 

days before and 2 days after the date of milk recording (a 5-day period) were 

averaged to represent CH4 emission of a cow. Average CH4 is based on 10 to 

12 CH4 measurements. Using a repeatability of 0.27 (Van Engelen et al., 2018) 

it was calculated that CH4 emission of a cow based on the average of 11 

repeated measurements can be estimated with 90% accuracy. Cows with less 

than 5 CH4 measurements during the 5-day period were eliminated. Due to 

this restriction several cows were eliminated from the data set, among others 

all records from 1 particular farm. The final dataset consisted of 801 cows from 

10 commercial farms.  

4.2.4 Methane prediction  

The partial least squares regression (PLSR) (Wold et al., 1983) procedure in 

SAS 9.3 (SAS Institute, 2001) was used to develop CH4 prediction equations. 

Milk IR spectra consist of 1,060 individual wavenumbers ranging from 925 to 

5,008 cm-1. The spectra were converted from transmittance to absorbance 

values. In total 275 individual wavenumbers from 3 spectral regions of milk IR 

spectra were used to develop prediction equations: 925 to 1,584 cm -1, 1,719 
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to 1,784 cm-1 and 2,652 to 2,976 cm-1. Wavenumbers in these regions are 

known to contain most of the information on milk composition (e.g., Capuano 

et al., 2014) and they will be referred to as “informative IR wavenumbers”.  

Wavenumbers from the water absorption regions are generally considered to 

contain mainly noisy information and not considered informative for predicting 

milk composition or any other trait. Therefore we expect that prediction of CH4 

based on these wavenumbers will result in negligible prediction accuracy and 

we considered this prediction as a negative control. Based on results from 

Wang et al. (2016) we selected wavenumbers from the water absorption 

regions which contain negligible information on milk composition. In total 114 

wavenumbers from 1,623 to 1,670 cm-1, 3,166 to 3,254 cm-1, 3,285 to 3,463 

cm-1, and 3,547 to 3,659 cm-1 were selected. These wavenumbers were 

selected based on the following criteria: they should not be significantly 

affected by systematic environmental effects (except for date of IR analysis), 

they should not be significantly affected by DGAT1 genotypes and more than 

90% of the variation should be unexplained (residual variance).  

The optimal number of latent variables for the PLS prediction equation was 

determined based on the lowest root mean squared error of a 10-fold cross 

validation procedure using CVTEST option in PROC PLS in SAS 9.3 (SAS 

Institute, 2001). The optimal number of latent variables was 15 for the 275 

informative IR wavenumbers and 4 for the 114 wavenumbers from the water 

absorption regions and these values were used as input for building the CH4 

prediction equations.  

Fat%, protein%, and lactose% are milk composition traits which are routinely 

collected and predicted based on milk IR measurements and might contain 

information on CH4. As interest is in the additional information that might be 

available in the full milk IR spectra for predicting CH4, we also predicted CH4 

based on these routinely collected milk composition traits.  

4.2.5 Validation strategies 

For the described CH4 prediction we applied 2 different validation strategies: 

random cross validation and block cross validation with farms as blocks. The 

commonly used random cross validation refers to a strategy in which the 

samples are randomly assigned to a calibration or a validation set. This 

procedure is repeated and results are averaged. In the current study 640 cows 
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(approx. 80%) were randomly assigned to the calibration set and 161 cows to 

the validation set (approx. 20%) and the procedure was repeated 50 times. 

The averaged coefficient of determination was calculated based on the 

calibration samples (R2cal) along with root mean squared error of calibration 

(RMSEC). The validation samples were used to calculate the validation 

coefficient of determination (R2val) and the validation mean squared error of 

prediction (RMSEP).  

In the block cross validation strategy samples were assigned to a calibration 

or a validation set based on the farm from which the samples were taken. In 

the current study the calibration set consisted of 9 farms and the validation set 

consisted of samples from the remaining farm. This procedure was repeated 

10 times such that samples from each farm were validated based on the 

prediction equation that was calibrated based on data from the other 9 farms.  

4.2.6 Repeated observations 

Several studies that predicted CH4 emission based on milk composition used 

data that included repeated observations on the same cow (e.g., Dehareng et 

al., 2012). Consequently, when using random cross validation different 

samples from the same cow might be present both in the calibration and the 

validation set. This might affect the evaluation of the prediction equation as it 

creates dependencies between calibration and validation sets. Therefore we 

also constructed CH4 prediction equations based on cows with repeated 

observations. A second milk recording was available on 4 out of the 10 farms. 

In total 234 cows had repeated CH4 and milk IR observations available and 

these 468 observations were used in this analysis. The repeated observations 

had the same data editing procedure as described above. The number of 

cows on each of the 4 farms ranged from 39 to 92. The time interval between 

2 observations (2 routine milk recordings) of a cow was approximately 1 month. 

Observations that were collected first were assigned to the calibration set and 

the records that were collected later were assigned to the validation set.  
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4.3 Results 

4.3.1 Descriptive statistics 

The average log10-transformed CH4 based on all 801 records from the first 

sampling period was 2.250 with a standard deviation of 0.267. The number of 

records per farm ranged from 34 to 116. There were substantial differences 

between farms in average log10-transformed CH4 (ranging from 2.026 till 2.657) 

and the within farm standard deviation (ranging from 0.072 till 0.188) was 

substantially smaller than the standard deviation based on all records (0.267). 

The Pearson correlation coefficients between CH4 and routinely recorded milk 

production traits were generally low: 0.03 for fat%, 0.07 for protein%, and           

-0.14 for lactose%. Pearson correlations between CH4 and each of the 275 

informative IR wavenumbers ranged from -0.17 to 0.25. Pearson correlations 

between CH4 and each of the 114 wavenumbers from the water absorption 

regions ranged from -0.23 to 0.29.  

4.3.2 Prediction of methane 

Performance of the different CH4 prediction equations evaluated using 

random cross validation and block cross validation are in Table 4.1. Based on 

random cross validation, prediction of CH4 based on routinely recorded milk 

production traits fat%, protein% and lactose% was poor (R2val=0.02). 

Prediction based on 275 informative IR wavenumbers and evaluation using 

random cross validation indicated a moderate prediction accuracy 

(R2val=0.49). A surprisingly high prediction accuracy was found based on 

wavenumbers from the water absorption regions (R2val=0.25).  

Block cross validation gave a completely different view on the ability to predict 

CH4 based on milk IR spectra. Prediction based on 275 informative IR 

wavenumbers showed an R2val averaged over 10 replicates of 0.01 indicating 

that the predictive power of milk IR spectra for CH4 is negligible. Results for 

each of the 10 replicates are shown in Table 4.2. In each replicate samples 

from one farm were validated based on the prediction equation that was 

calibrated based on samples from the other 9 farms. The R2val ranged from 

0.00 to 0.03 while R2cal ranged from 0.53 to 0.67. These results show that the 

small R2val is not due to specific conditions on one or a few farms.  
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Table 4.1 Evaluation of log10-transformed CH4 prediction using random cross 

validation and block cross validation1  

 Random cross validation2  Block cross validation3 
Predicators R2cal R2val RMSEC RMSEP  R2cal R2val RMSEC RMSEP 

Fat%+Prot%+Lact% 0.02 0.02 0.265 0.266  0.02 0.04 0.263 0.266 
IR informative 0.55 0.49 0.180 0.192  0.58 0.01 0.171 0.408 
IR water absorption 0.32 0.25 0.221 0.233  0.33 0.03 0.217 0.309 

1 R2cal = coefficient of determination for calibration; R2val = coefficient of determination for 
validation; RMSEC = root mean squared error of calibration; RMSEP = root mean squared error 
of validation. 
2 Results are averaged from 50 replicates. 
3 Results are averaged from 10 replicates and in each replicate samples from 1 farm were 
validated by samples from the other 9 farms.  

 

 

 

Table 4.2 Descriptive statistics and evaluation of log10-transformed CH4 prediction 

based on informative IR wavenumbers and block cross validation. Results are shown 

for each of the 10 replicates where records from one of the farms are used for 

validation1 

 Calibration   Validated  Validation  
No. Cow Mean SD R2cal RMSEC  Farm No. Cow Mean SD R2val RMSEP 

733 2.264 0.273 0.57 0.178  A 68 2.095 0.115 0.00 0.298 
767 2.254 0.272 0.56 0.181  B 34 2.160 0.072 0.01 0.222 
702 2.209 0.258 0.54 0.175  C 99 2.542 0.105 0.00 0.363 
733 2.253 0.275 0.67 0.159  D 68 2.216 0.156 0.01 0.516 
729 2.262 0.272 0.57 0.178  E 72 2.128 0.174 0.03 0.266 
721 2.205 0.235 0.60 0.149  F 80 2.657 0.188 0.00 0.671 
698 2.281 0.269 0.62 0.166  G 103 2.037 0.126 0.03 0.467 
749 2.222 0.253 0.62 0.155  H 52 2.653 0.080 0.03 0.714 
685 2.288 0.269 0.53 0.183  I 116 2.026 0.094 0.00 0.438 
692 2.264 0.283 0.57 0.184  J 109 2.160 0.093 0.00 0.128 

 1 Mean = averaged log10-transformed CH4; R2cal = coefficient of determination for calibration; 
R2val = coefficient of determination for validation; RMSEC = root mean squared error of 
calibration; RMSEP = root mean squared error of validation. 
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Block cross validation also resulted in low prediction accuracy based on 

wavenumbers from the water absorption regions (Table 4.1, R2val=0.03). 

Validation coefficient of determination based on block cross validation for 

routinely recorded milk production traits fat%, protein% and lactose% was 

negligible (R2val=0.04) and in line with results obtained using random cross 

validation.  

4.3.3 Repeated observations 

Results for validation of CH4 prediction based on repeated observations of the 

same cow are shown in Table 4.3. The predictions were based on 275 

informative IR wavenumbers and validation was based on 1 replicate. Results 

are presented for each farm separately as well as based on all 234 cows. For 

each prediction, we found a large discrepancy between the R2val and 

corresponding R2cal. For individual farms, the R2val for CH4 ranged from 0.10 

to 0.21. Based on data from all 234 cows the R2val for CH4 was 0.07. 

 

 

Table 4.3 Prediction of repeated observations on the farms with 2 measurements of 

log-transformed CH4 and milk IR spectra1, 2  

Farm Number of cows R2cal R2val RMSEC RMSEP 

A 58 0.77 0.10 0.057 0.526 
C 45 0.72 0.10 0.047 0.277 
H 39 0.78 0.21 0.037 0.850 
J 92 0.63 0.19 0.066 0.094 
Total 234 0.81 0.07 0.109 0.364 

1 R2cal = coefficient of determination for calibration; R2val = coefficient of determination for 
validation; RMSEC = root mean squared error of calibration; RMSEP = root mean squared error 
of validation. 
2 Results are based on 1 replicate. Prediction equations were developed on the first collected 
samples and validated on the later collected samples. 
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4.4 Discussion 

In this study we investigated the feasibility of milk IR spectra for predicting 

breath sensor measured CH4 emission of individual dairy cows on commercial 

farms. The CH4 prediction was evaluated using different validation strategies. 

Results from random cross validation suggested a moderate prediction 

accuracy (R2val=0.49) whereas block cross validation with farms as blocks 

indicated that milk IR spectra cannot be used to predict CH4 emission 

(R2val=0.01). Wavenumbers from water absorption regions are commonly 

assumed to contain no information on milk composition however these 

wavenumbers resulted in a R2val of 0.25 for CH4 based on random cross 

validation whereas a R2val of 0.03 was obtained based on block cross 

validation. These results indicate that random cross validation leads to an 

overoptimistic view on the ability of milk IR spectra to predict CH4 emission of 

individual dairy cows.  

4.4.1 Validation strategy 

The current study showed large differences in results between random cross 

validation and block cross validation. Random cross validation has been 

commonly applied in studies that use milk IR spectra to predict CH4 emission 

(e.g., Dehareng et al., 2012; Shetty et al., 2017) or other traits of dairy cows 

(e.g., Soyeurt et al., 2006; Rutten et al., 2009). However, in the current study 

we show that random cross validation can lead to misleading conclusions. Qin 

et al. (2016) indicate that random cross validation underestimates the error 

rate of the prediction equation when predictors are analysed in batches and 

there are systematic differences between batches. In the current study CH4 

measurements were taken by installing breath sensors consecutively in 

different farms. Milk samples were collected on these farms during routine milk 

production recording. Consequently milk IR analyses of all milk samples 

collected from a farm were performed on the same day, and probably using 

the same spectrometer, whereas milk samples from different farms were 

analysed on different days, and possibly different spectrometers. As a 

consequence systematic differences between the date of milk IR analysis, 

which might include differences between spectrometers, are confounded with 

farm. Grelet et al. (2015) showed the importance of differences between 

spectrometers. Furthermore, Wang et al. (2016) showed significant effects for 
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date of milk IR analysis, and the time trend in milk IR wavenumbers indicates 

instability of the spectrometer in time. Confounding of farm with the date of 

milk IR analysis causes that errors associated with the date of milk IR analysis 

become correlated with average CH4 emission of a farm. The problem is 

illustrated by prediction of CH4 based on wavenumbers from the water 

absorption regions which resulted in a R2val of 0.25. These wavenumbers 

show highly significant effects for the date of milk IR analysis (Wang et al., 

2016) and contain negligible information on the actual milk composition. Due 

to this confounding wavenumbers from the water absorption regions explained 

part of the between herd variation in CH4 emission. Correlations due to 

confounding of farm and date of milk IR analysis will not be transmitted to new 

data points and are spurious. These correlations are broken down in block 

cross validation with farms as blocks, however, they will remain undetected 

when using random cross validation and therefore random cross validation 

will lead to wrong conclusions. Similar discrepancies between validation 

strategies were reported in other fields of science (Gasch et al., 2015; Robert 

et al., 2017; Meyer et al., 2018). Burman et al. (1994) conducted simulations 

on dependent observations and showed that classical leave-one-out cross 

validation can be misleading. They also demonstrated that blocking adapts 

cross validation to dependency by allowing near independence between 

calibration and validation sets. 

Based on largely the same data as used in the current study, Van Engelen et 

al. (2018) quantified that 56% of the total variation in CH4 can be explained by 

the interaction of day of CH4 measurement and automatic milking system 

which reflects mainly variation between farms. The sniffer method used in the 

current study to quantify CH4, is known to be affected by specific farm 

conditions like airflow patterns and barn management (Wu et al., 2016). 

Differences in R2val between both validation strategies are directly related to 

the magnitude of the between farm variation in CH4 emission. 

Prediction of CH4 based on fat%, protein%, and lactose% suggests no 

information of breath CH4 emission is captured by routinely recorded milk 

composition traits. Interestingly, there is no discrepancy between both 

validation strategies as both R2val were negligible. This indicates batch effects 

on IR analyses do not affect IR predicted fat%, protein%, and lactose%; the 
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signal to “date of milk IR analysis”-noise ratio does not affect all IR 

wavenumbers to the same extend.  

4.4.2 Negative control 

There might be situations where confounding effects of batch analyses are 

not immediately obvious. To identify potential problems we therefore suggest 

prediction based on wavenumbers from the water absorption regions as a 

negative control. This assumes that wavenumbers from the water absorption 

regions contain negligible information on milk composition. Previously Wang 

et al. (2016) showed that some of the wavenumbers from the water absorption 

regions are significantly affected by the DGAT1 polymorphism and lactation 

stage suggesting that these wavenumbers do contain information regarding 

milk composition. When we included these wavenumbers in the prediction we 

obtained a random cross validation R2val of 0.34, which is considerably higher 

than the value of 0.25 (Table 4.1). This underlines the importance of carefully 

selecting wavenumbers from the water absorption regions when used as a 

negative control. 

A commonly used negative control is permutation of the data. We additionally 

performed 2 different permutation analyses. Firstly, we randomly assigned the 

milk IR spectra to cows in the dataset. Based on random cross validation this 

resulted in R2val<0.01, both for prediction equations based on informative IR 

wavenumbers and wavenumbers from the water absorption regions. Secondly, 

the data was permutated by randomly assigning milk IR spectra to another 

cow within the same farm. Based on random cross validation this resulted in 

a R2val of 0.44 for a prediction equation based on informative IR 

wavenumbers and a R2val of 0.23 based on wavenumbers from the water 

absorption regions. When using block cross validation R2val was negligible, 

both for prediction based on informative IR wavenumbers and for 

wavenumbers from the water absorption regions. The second permutation 

strategy did not affect herd CH4 averages and therefore these results confirm 

that errors associated with date of milk IR analysis are correlated with average 

farm CH4 emission; batch effects on the IR analyses explain differences in 

CH4 between farms. The permutation analysis provides further insight in the 

problem but will not necessarily be able to identify the problem, i.e. 
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confounding. Including prediction based on wavenumbers from the water 

absorption regions is a way to detect potential problems. 

4.4.3 Literature 

Several studies investigated the feasibility of predicting CH4 emission for 

individual cows based on milk IR spectra. The reported random cross 

validation R2val ranged from 0.13 (Shetty et al., 2017) to 0.77 (Vanlierde et al., 

2015). These large differences between studies can be partly explained by 

differences in methods used to quantify CH4 emission: some studies used 

climate respiration chambers (Van Gastelen et al., 2018; Vanlierde et al., 2018) 

whereas others used sulfur hexafluoride (SF6) tracer (Dehareng et al., 2012; 

Vanlierde et al., 2015) or the sniffer method (Shetty et al., 2017). Similar like 

the current study Shetty et al. (2017) used the sniffer method and reported a 

R2val based on random cross validation of 0.13. This is considerably lower 

than the value of 0.49 we found using the same validation strategy. Therefore 

the spurious results obtained based on random cross validation in the current 

study seem less severe in the study by Shetty et al. (2017). This might be 

because Shetty et al. (2017) averaged the IR spectra over multiple milk 

samples. It is expected that averaging milk IR spectra, when analysed in 

different batches, will reduce date of IR analysis effects. In addition, 

differences in CH4 emission between farms might be smaller in Shetty et al. 

(2017) as compared to the current study. Shetty et al. (2017) used data from 

3 farms and also performed an additional calibration based on data from an 

experimental farm while validating based on commercial farm data, which is 

identical to the block cross validation as we propose. This block validation 

strategy showed negligible R2val and it was concluded that variation in 

commercial farm data is not included in the experimental data (Shetty et al., 

2017).  

Most studies used random cross validation to evaluate the prediction of CH4 

emission based on milk IR spectra (Dehareng et al. 2012; Vanlierde et al., 

2015; Vanlierde et al., 2018; Van Gastelen et al. 2018). Results from the 

current study indicate that random cross validation results overoptimistic view 

on the ability of milk IR spectra to predict CH4 emission and therefore results 

presented in these studies might be too optimistic. However, this will only be 

the case under specific conditions. The description of the data in the 
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aforementioned studies do not allow drawing conclusions about whether, and 

if so to what extent, the results reported are affected by the validation strategy.  

Several studies showed that milk IR spectra can be used to predict a wide 

variety of traits like milk fat composition (e.g., Soyeurt et al., 2006; Rutten et 

al., 2009), milk protein composition (Bonfatti et al., 2011; Rutten et al., 2011), 

milk coagulation, ketone bodies and energy status of dairy cows (McParland 

et al., 2011; De Marchi et al., 2014). All of these studies based their conclusion 

on random cross validation, and as shown in the current study, under certain 

conditions this might lead to overoptimistic conclusions. Studies by Rutten et 

al. (2009, 2011) involved almost 400 farms and milk samples from 

approximately 20 farms were analysed on the same day. Therefore, 20 farms 

are confounded with date of milk IR analysis. Random cross validation might 

result in overoptimistic R2val in case the averaged milk fat or milk protein 

composition for these farms differs between dates of milk IR analysis. This is 

unlikely and was confirmed by analysis of the negative control (results not 

shown). 

4.4.4 Predicting on repeated observations 

The differences between random and block cross validations indicate that an 

overoptimistic result was obtained when both calibration and validation 

datasets contained samples from the same farms. In order to investigate if the 

presence of the same cows in both calibration and validation sets has an 

impact on the evaluation of the prediction equation, we performed additional 

analyses using the repeated observations. As shown in Table 4.3, the R2val 

were between 0.10 and 0.21 for individual farms, and 0.07 when based on all 

cows with repeated observations. These values were rather low but higher 

than the block cross validation R2val of 0.04. Although these results are based 

on a small number of observations and only one replicate, they suggest that 

having repeated observations on the same cow is a smaller problem than the 

issue related to confounding of farm and date of milk IR analysis. However 

when multiple observations per cow are available, the validation strategy 

should take this into account (Shetty et al., 2017; Vanlierde et al., 2018).   
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4.5 Conclusions 

In this study, we investigated the feasibility of milk IR spectra to predict breath 

sensor measured CH4 emission of dairy cows on commercial farms in the 

Netherlands using different validation strategies. We showed that random 

cross validation can result in an overoptimistic view on the ability of milk IR 

spectra to predict CH4 emission. This is due to confounding of farm and date 

of milk IR analysis. Whether adjusting for date of milk IR analysis can avoid 

these issues requires further investigations. In order to identify dependence 

structures in the data we recommend prediction based on wavenumbers from 

the water absorption regions as a negative control. The negligible prediction 

accuracy of CH4 emission based on block cross validation with farms as 

blocks indicates that milk IR spectra cannot be used to predict breath sensor 

measured CH4 of dairy cows.  
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Abstract 

It has been shown that milk infrared (IR) spectroscopy can be used to predict 

detailed milk fat composition. In addition polymorphisms have been identified 

with substantial effects on milk fat composition. In this study we investigated 

the combined use of milk IR spectroscopy and genotypes of dairy cows on the 

accuracy of predicting milk fat composition. Milk fat composition based on gas 

chromatography and milk IR spectra were available for 1,456 Dutch Holstein 

Friesian cows. In addition genotypes for the diacylglycerol acyltransferase1 

(DGAT1) K232A, the stearoyl-CoA desaturase1 (SCD1) A293V 

polymorphisms and a Single Nucleotide Polymorphism (SNP) located in an 

intron of the fatty acid synthase (FASN) gene were available. Adding SCD1 

genotypes to the milk IR spectra resulted in a considerable improvement of 

the prediction accuracy for the unsaturated fatty acids C10:1, C12:1, C14:1 

cis-9, C16:1 cis-9 and their corresponding unsaturation indices. Adding 

DGAT1 genotypes to the milk IR spectra resulted in an improvement of the 

prediction accuracy for C16:1 cis-9 and C16 index. Adding genotypes of the 

FASN SNP to the IR spectra did not improve prediction of milk fat composition. 

This study demonstrated the potential of combining milk IR spectra with 

genotypic information from 3 polymorphisms to predict milk fat composition. 

Prediction accuracy can be further improved by combining milk IR spectra with 

genomic breeding values. 

 

Key words: 

milk fat composition, milk infrared spectroscopy, genotypes, prediction 

 

  



5 Combine IR and genotypes to predict milk fat composition 

                                                                                                                

103 

 

5.1 Introduction 

Bovine milk composition contains many valuable components such as fatty 

acids, caseins, β-lactoglobulin, α-lactalbumin, lactose, and minerals. Milk fat 

consists of fatty acids that differ in length and degree of saturation. Saturated 

fatty acids (SFA) make up approximately 70% of total fat in milk, and some of 

them have been related to increased risks of cardiovascular disease. On the 

other hand, unsaturated fatty acids (UFA) such as oleic acid (C18:1 cis-9), 

conjugated linoleic acid (CLA) and other polyunsaturated fatty acids have 

been suggested to have beneficial effects on human health (Haug et al., 2007). 

Moreover, milk fat composition has been associated with energy status and 

health of dairy cows (Vlaeminck et al., 2006a,b; Van Haelst et al., 2008), and 

therefore milk fat composition might contain valuable information for dairy farm 

management (Hamann and Krömker, 1997).  

Detailed milk fat composition is currently not quantified during routine milk 

recording on commercial dairy farms. This is mainly due to the expensive and 

time consuming quantification of fatty acids using gas chromatography (GC). 

Milk infrared (IR) spectroscopy is the routine method for quantifying milk fat-, 

protein- and lactose content (ICAR, 2012). Milk IR spectroscopy has also been 

suggested as a method to estimate milk fat composition (e.g., Soyeurt et al., 

2006; Rutten et al., 2009; Ferrand et al., 2011) The results of these studies 

show that especially milk fatty acids in low concentration like UFA cannot be 

predicted accurately based on IR analyses. 

Polymorphisms in diacylglycerol O-acyltransferase 1 (DGAT1) and stearoyl-

CoA desaturase 1 (SCD1) genes have been shown to have highly significant 

effects on milk fat composition (e.g., Schennink et al., 2007, 2008; Bovenhuis 

et al. 2016). In addition, the fatty acid synthase (FASN) gene has been 

proposed as a candidate gene responsible for fatty acids in milk (Morris et al., 

2007). Based on a genome wide association study, Bouwman et al. (2014) 

identified a SNP located in an intron of the FASN gene with a highly significant 

effect on C14:0.  

We hypothesize that the genotypic information explains part of the variation in 

milk fat composition that is not captured by the milk IR spectra and therefore 

combining milk IR spectroscopy and genotypic information can improve 

prediction of milk fat composition. The aim of this study is to determine the 
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accuracy of predicting milk fat composition based on a combination of milk IR 

spectra and genotypic information.  

 

5.2 Materials and methods 

5.2.1 Milk IR spectra data 

One morning milk sample of first parity Holstein Friesians cows which were 

between 63 and 263 days in lactation was collected for analyses. The data 

was collected from February till March of 2005. All cows in this study have at 

least 87.5% Holstein Friesian genes. The population consisted of 5 large 

paternal half-sib families from proven sires (98-196 daughters per sire), and 

50 small paternal half-sib families from test sires (8-23 daughters per sire), as 

well as 168 cows descending from 44 other proven sires (1-25 daughters per 

sire).  

Milk samples were conserved using sodium azide (0.03% wt/wt) and stored at 

4°C. Milk IR spectra were recorded in a 10 mL milk sample using the 

MilkoScan FT 6000 equipment (FOSS, Denmark) at the certified laboratory of 

the Milk Control Station (Zutphen, The Netherlands). All milk samples used in 

this study were analysed using the same MilkoScan FT 6000. The milk IR 

spectra consisted of measurements at 1,060 wavenumbers ranging from 925 

to 5,008 cm-1. 

5.2.2 Fat composition data 

Milk fatty acids were measured using gas chromatography at the COKZ 

laboratory (Netherlands Controlling Authority for Milk and Milk Products, 

Leusden, the Netherlands). Details on the method used to quantify milk fatty 

acids can be found in Schennink et al. (2007). Individual fatty acids were 

expressed on a fat basis (g/100 g of fat) rather than on a milk basis (g/100 g 

of milk). Although studies showed better prediction can be achieved when fatty 

acids are expressed on a milk basis (e.g., Soyeurt et al., 2006; Rutten et al., 

2009), main interest of the dairy industry is to detect changes in fatty acids 

independent of milk fat content.  

In this study we predicted individual fatty acids as well as groups of fatty acids 

and unsaturation indices. Groups of fatty acids were C6-12 which is the sum 
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of C6:0, C8:0, C10:0 and C12:0, C14-16 which is the sum of C14:0 and C16:0, 

C18u which is the sum of C18:1 trans-4-8, C18:1 trans-9, C18:1 trans-11, 

C18:1 cis-9, C18:1 cis-11, C18:2 cis-9,12 and C18:3 cis-9,12,15, C18 trans 

which is the sum of sum of C18:1 trans-4-8, C18:1 trans-9, C18:1 trans-11. In 

addition total SFA (C4:0, C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, 

C13:0, C14:0, C15:0, C16:0, C17:0, C18:0), total UFA (C10:1, C12:1, C14:1, 

C16:1, C18u, CLA). The ratio between SFA and UFA were defined and 

included in the category “groups of fatty acids”. Milk fat unsaturation indices 

were calculated by expressing an unsaturated fatty acid as the proportion of 

the unsaturated fatty acid plus its saturated substrate, and multiplied by 100, 

e.g. C14 index = 100*C14:1 cis9/(C14:1 cis9 + C14:0). Unsaturation indices 

were calculated for the following product and substrate pairs: C10:1 and C10:0 

(C10 index), C12:1 and C12:0 (C12 index), C14:1 cis-9 and C14:0 (C14 index), 

C16:1 cis-9 and C16:0 (C16 index), C18:1 cis-9 and C18:0 (C18 index), CLA 

and C18:1 trans-11 (CLA index). Records from 17 dairy cows were eliminated 

because they had at least one milk fatty acid observation that deviated more 

than five standard deviations from the mean. 

5.2.3 Genotypes 

Previous genome-wide association studies identified 3 genomic regions with 

major effects on milk fat composition, located on chromosomes 14, 19 and 26 

(Bouwman et al., 2011). On chromosome 14 the DGAT1 K232A polymorphism 

and on chromosome 26 the SCD1 A239V polymorphism are responsible for 

the observed effects. Genotypes of these 2 polymorphisms were obtained as 

described by Schennink et al. (2008). The causal mutation for the association 

detected on chromosome 19 has not been identified. The Coiled-coil domain-

containing protein 57 (CCDC57) and the FASN gene have been suggested as 

possible candidate genes (Bouwman et al. 2014). Genotypes from the lead 

SNP on BTA19, rs137372738 (or BovineHD1900014372), located in an intron 

of the FASN gene, were included in the current study (Bouwman et al. 2014). 

In the remaining part of this article we will refer to this SNP as “FASN” .  

In the study population frequencies for the DGAT1 A allele was 59.6% and 

40.4% for the K allele; frequencies for the SCD1 A allele was 72.9% and 27.1% 

for the V allele; and frequencies for the FASN A allele was 34.0% and 66.0% 

for the G allele. Records from dairy cows with no genotypic information were 
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removed. After combining milk IR spectra, fatty acid composition and 

genotypes the final dataset consisted of 1,456 dairy cows from 355 farms.  

5.2.4 Fatty acid prediction 

In the current study 1,200 cows were randomly assigned to the calibration set 

and 256 cows to the validation set, and the procedure was repeated 50 times. 

The averaged coefficient of determination was calculated based on the 

validation samples (R2val). The partial least squares regression (PLSR) (Wold 

et al., 1983) procedure in SAS 9.3 (SAS Institute, 2001) was used to develop 

prediction equations. The milk IR spectra were converted from transmittance 

to absorbance values. In total 275 individual wavenumbers from 3 spectral 

regions of milk IR spectra were used to develop prediction equations: 925 to 

1,584 cm-1, 1,719 to 1,784 cm-1 and 2,652 to 2,976 cm-1. Wavenumbers in 

these regions are associated with vibrations of chemical bonds e.g. 

triacylglycerol ester linkage C–O symmetric stretching, C=O stretching, and 

acyl chain C–H symmetric and asymmetric stretching, and these vibrations 

are informative for quantifying milk fat (Dufour et al., 2009). These 

wavenumbers will be referred to as “informative IR wavenumbers”.  

At first fatty acids were predicted based on genotypes for each of the 3 

polymorphisms separately. The 3 polymorphisms were treated as class 

variables in the predictions. Secondly milk fat composition was predicted 

based on informative IR wavenumbers. Subsequently the informative IR 

wavenumbers were combined with information from the 3 described 

polymorphisms: 1. Prediction based on informative IR wavenumbers and 

DGAT1 genotypes (referred to as IR+DGAT1); 2. Prediction based on 

informative IR wavenumbers and SCD1 genotypes (referred to as IR+SCD1); 

3. Prediction based on informative IR wavenumbers and FASN genotypes 

(referred to as IR+FASN); 4. Prediction based on informative IR wavenumbers 

and all these 3 polymorphisms (referred to as IR+3 polym.).  

We used wavenumbers from the water absorption regions as a negative 

control for predicting milk fat composition (Wang and Bovenhuis, submitted). 

Wavenumbers from the water absorption regions are expected to contain 

negligible information on milk fat composition and therefore we expect 

prediction accuracies based on these wavenumbers to be close to zero. 

Prediction accuracy different from zero is an indication for problems with the 
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validation strategy e.g. due to dependencies in the data (Wang and Bovenhuis, 

submitted). We selected those wavenumbers from the water absorption region 

which contain negligible information on milk composition; more than 95% of 

the variation in the selected wavenumbers was unexplained (residual variance) 

and the selected wavenumbers were not significantly affected by systematic 

environmental effects (except for date of IR analysis) or DGAT1 genotypes. In 

total 114 wavenumbers from 1,623 to 1,669 cm-1, 3,164 to 3,253 cm-1, 3,284 

to 3,462 cm-1, and 3,547 to 3,658 cm-1 were selected (Wang and Bovenhuis, 

submitted). 

 

5.3 Results and discussion 

5.3.1 Descriptive statistics 

Descriptive statistics of the gas chromatography measured milk fatty acids, 

groups of fatty acids and unsaturation indices are shown in Table 5.1. The 

concentrations of fatty acids are similar to Rutten et al. (2009) who used 

largely the same dairy cows. Individual fatty acids C16:0, C18:1 cis-9, and 

C14:0 contributed most to the total fat content, and they are the only fatty acids 

which account for more than 10% of the total fat. The short to medium chain 

UFA (i.e. C10:1, C12:1, C14:1 cis-9, C16:1 cis-9) and conjugated linoleic acid 

(CLA) were in low concentrations. C16:1 cis-9 was the most abundant of them 

and accounted for less than 1.5% of total milk fat. For the individual fatty acids, 

coefficients of variation ranged from 6.9% for C6:0 to 26.9% for CLA. The fatty 

acids in this study showed comparable means but smaller coefficients of 

variation as compared to Soyeurt et al. (2011) and Fleming et al. (2017). This 

might be due to the inclusion of multiple dairy cattle breeds in the studies by 

Soyeurt et al. (2011) and Fleming et al. (2017).  

The SFA accounted for approximately 69% of total milk fat and UFA for 

approximately 25%. The most important UFA, C18:1 cis-9, contributed 18% to 

the total fat content. The unsaturation indices were relatively low (2.7 to 10.9%) 

for short and medium chain fatty acids (C10 to C16 index) and much higher 

for the C18 index (67%). C18:1 cis-9 derived from the diet contributes to the 

relatively high C18 index, whereas short to medium UFA can only be 

synthesized in the mammary gland by SCD1. The coefficients of variation 

were large for C10 to C16 indices and small for C18 index.  



5 Combine IR and genotypes to predict milk fat composition 

108 

 

Table 5.1 Descriptive statistics of GC-measured individual fatty acids content, groups 

of fatty acids and unsaturation indices on a fat basis (g/100 g of fat, n=1,456). 

Trait Mean SD1 CV(%)2 Min. Max. 

Individual fatty acids 
C4:0 3.52 0.27 7.6 2.70 4.57 
C6:0 2.23 0.15 6.9 1.72 2.76 
C8:0 1.37 0.13 9.5 0.86 1.85 
C10:0 3.03 0.41 13.6 1.51 4.62 
C10:1 0.37 0.06 16.5 0.12 0.59 
C12:0 4.12 0.69 16.7 1.97 6.85 
C12:1 0.12 0.03 23.7 0.04 0.22 
C14:0 11.64 0.88 7.6 8.61 14.94 
C14:1 cis-9 1.35 0.26 19.1 0.47 2.40 
C16:0 32.70 2.71 8.3 22.86 42.95 
C16:1 cis-9 1.45 0.31 21.6 0.74 2.92 
C18:0 8.72 1.35 15.4 3.91 14.06 
C18:1 cis-9 17.99 1.98 11.0 12.34 25.14 
C18:2 cis-9,12 1.18 0.26 22.1 0.56 2.54 
C18:3 cis-9,12,15 0.41 0.11 25.5 0.15 0.90 
CLA  0.39 0.11 26.9 0.19 0.92 

Groups of fatty acids 
C6-12 10.76 1.18 11.0 6.61 15.50 
C14-16 44.34 2.64 5.9 33.86 53.54 
C18 u 21.11 2.22 10.5 15.31 29.54 
C18 trans 1.12 0.23 20.2 0.55 2.12 
SFA 69.25 2.56 3.7 60.41 76.93 
UFA 24.83 2.30 9.3 18.61 32.93 
Ratio SFA:UFA 2.82 0.36 12.6 1.85 4.13 

Unsaturation indices 
C10 index 10.93 1.78 16.3 3.45 17.92 
C12 index 2.74 0.51 18.8 0.75 4.65 
C14 index 10.38 1.85 17.9 3.86 17.13 
C16 index 4.23 0.79 18.6 2.16 7.48 
C18 index 67.40 3.66 5.4 52.00 79.93 
CLA index 33.75 3.71 11.0 19.53 50.74 
Total index 26.22 2.57 9.8 18.05 35.07 

1 SD = Standard deviation 
2 CV = Coefficient of variation (in %) 
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5.3.2 Negative control 

Table 5.2 shows the R2val, averaged over 50 replicates for predicting milk fatty 

acids based on different sources of information. In this study 114 

wavenumbers from the water absorption regions were used to predict milk fat 

composition. The results in Table 5.2 show that prediction based on these 

wavenumbers showed a negligible R2val of 0.01 or lower. Wang and 

Bovenhuis. (submitted) reported that batch effects of milk IR analyses can 

cause overoptimistic results when using random cross validation, which can 

be detected by a negative control. Results from the negative control indicate 

that batch effects do not affect R2val in the current study.  

5.3.3 Milk IR spectra 

Prediction based on IR showed R2val ranging from 0.19 (C18:3 cis-9,12,15) 

to 0.72 (C6:0) for individual fatty acids, from 0.33 (C18 trans) to 0.78 (SFA) for 

groups of fatty acids, and from 0.22 (C14 index) to 0.75 (total index) for 

unsaturation indices. The current study shows higher prediction accuracies as 

those presented by Rutten et al. (2009), who based their results on largely the 

same winter milk samples (WW scenario) as the current study. Rutten et al. 

(2009) calibrated based on 909 samples and validated on the remaining 909 

samples. In the current study we calibrated on 1,200 samples and validated 

on 256 samples and using a larger calibration set increases the prediction 

accuracy. The current study showed lower prediction accuracies as compared 

to Rutten et al. (2009) when winter and summer milk samples were combined 

in a larger calibration set. The current study also showed in general higher 

prediction accuracy as reported by Soyeurt et al. (2006), which can be 

explained by the smaller dataset (49 samples). We found higher prediction 

accuracies for short chain fatty acids but lower prediction accuracies for long 

chain fatty acids as compared to Fleming et al. (2017) which used a dataset 

of 2,023 samples.  

To our knowledge prediction of milk unsaturation indices based on milk IR 

spectroscopy have not been reported before. The prediction accuracy was 

moderate for most of the indices: R2val ranging from 0.22 for C14 index to 

0.57 for C18 index. A remarkably high prediction accuracy was obtained for 

the total unsaturation index (R2val of 0.75). The total unsaturation index is 

strongly determined by C16:0 and C18:1 cis-9, which are the 2 most abundant 
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Table 5.2 Validation coefficients of determination (R2val) for predicting milk fat 

composition based on wavenumbers from water absorptions as a negative control 

(NC), genotypes, milk IR spectra and using combinations of milk IR spectra.1 

Trait NC DGAT1 SCD1 FASN IR 
IR 

+DGAT1 
IR 

+SCD1 
IR 

+FASN 
IR 

+3 polym. 

Individual fatty acids 

C4:0 0.00 0.01 0.01 0.02 0.67 0.66 0.66 0.67 0.66 

C6:0 0.00 0.03 0.01 0.02 0.72 0.73 0.72 0.72 0.71 

C8:0 0.00 0.02 0.01 0.06 0.71 0.71 0.70 0.72 0.71 

C10:0 0.00 0.01 0.02 0.08 0.71 0.72 0.72 0.71 0.73 

C10:1 0.00 0.01 0.15 0.01 0.36 0.37 0.55 0.36 0.55 

C12:0 0.00 0.01 0.01 0.04 0.56 0.56 0.56 0.56 0.55 

C12:1 0.01 0.01 0.09 0.01 0.37 0.35 0.47 0.36 0.47 

C14:0 0.00 0.10 0.02 0.12 0.58 0.63 0.59 0.59 0.65 

C14:1 cis-9 0.01 0.01 0.24 0.00 0.23 0.23 0.47 0.22 0.48 

C16:0 0.01 0.12 0.01 0.01 0.53 0.55 0.53 0.54 0.57 

C16:1 cis-9 0.00 0.13 0.09 0.01 0.27 0.35 0.36 0.29 0.46 

C18:0 0.00 0.01 0.01 0.00 0.41 0.39 0.39 0.41 0.40 

C18:1 cis-9 0.00 0.13 0.01 0.03 0.68 0.70 0.69 0.69 0.69 

C18:2 cis-9,12 0.00 0.04 0.00 0.00 0.28 0.27 0.27 0.27 0.28 

C18:3 cis-9,12,15 0.00 0.03 0.00 0.01 0.19 0.20 0.18 0.17 0.18 

CLA  0.00 0.06 0.01 0.01 0.40 0.40 0.41 0.40 0.40 

Groups of fatty acids 

C6-12 0.01 0.01 0.01 0.07 0.77 0.77 0.77 0.77 0.77 

C14-16 0.01 0.07 0.00 0.00 0.55 0.56 0.56 0.56 0.56 

C18 u 0.00 0.14 0.01 0.02 0.70 0.71 0.70 0.70 0.71 

C18 trans 0.00 0.02 0.00 0.01 0.33 0.32 0.33 0.34 0.32 

SFA 0.01 0.10 0.00 0.02 0.78 0.78 0.78 0.78 0.78 

UFA 0.00 0.10 0.01 0.02 0.76 0.76 0.76 0.76 0.75 

Ratio SFA:UFA 0.00 0.10 0.00 0.02 0.77 0.78 0.77 0.77 0.77 

Unsaturation indices 

C10 index 0.01 0.01 0.21 0.03 0.29 0.31 0.51 0.27 0.48 

C12 index 0.00 0.01 0.18 0.01 0.29 0.31 0.48 0.28 0.49 

C14 index 0.01 0.04 0.28 0.02 0.22 0.26 0.52 0.23 0.54 

C16 index 0.00 0.06 0.13 0.01 0.34 0.41 0.46 0.35 0.54 

C18 index 0.00 0.08 0.02 0.01 0.57 0.57 0.58 0.57 0.56 

CLA index 0.00 0.05 0.03 0.01 0.52 0.50 0.53 0.51 0.53 

Total index 0.00 0.09 0.00 0.03 0.75 0.76 0.75 0.75 0.74 
1 NC = negative control, i.e. prediction using wavenumbers from the water absorption regions; 

DGAT1 = prediction using DGAT1 genotypes; SCD1 = prediction using SCD1 genotypes; FASN = 

prediction using genotypes of SNP rs137372738 which is located in an intron of FASN. 
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individual SFA and UFA in milk respectively. However, prediction accuracies 

for C16:0 (0.53) and C18:1 cis-9 (0.68) were lower than for the total 

unsaturation index. 

5.3.4 Milk IR spectra and DGAT1 genotypes 

Table 5.2 shows prediction accuracy for fat composition based on DGAT1 

genotypes only. The results show that DGAT1 genotypes explain a 

considerable part of the variation in several milk fat acids. DGAT1 genotypes 

explained more than 10% of the variation in C14:0, C16:0, C16:1 cis-9, and 

C18:1 cis-9, and 9% of the variation in the total unsaturation index. When 

DGAT1 genotypes were combined with informative IR wavenumbers 

(IR+DGAT1), prediction accuracies showed small to moderate improvements 

for C14:0 (+0.05), C16:0 (+0.02) and C18:1 cis-9 (+0.02). A stronger 

improvement in prediction accuracy was observed for C16:1 cis-9 (+0.08). 

Small to moderate improvements in prediction accuracies were also observed 

for the C10 index (+0.02), C12 index (+0.02), C14 index (+0.04), and the C16 

index (+0.07). 

The DGAT1 gene codes the enzyme that catalyzes the last step of 

triacylglycerol synthesis and has major effect on milk fat percentage and fat 

composition (e.g., Schennink et al., 2007; Bovenhuis et al., 2016). Results 

from the current study show that for some of the fatty acids over 10% of the 

phenotypic variation can be explained by the DGAT1 polymorphism. The 

results from the current study show that variation in milk fat composition 

explained by the IR spectra and by DGAT1 genotypes are not simply additive 

but the information partly overlaps. Prediction of C14:0 based on DGAT1 has 

a prediction accuracy of 0.10 and based on IR spectra of 0.58. Combining 

both information sources does not result in a prediction accuracy of 0.68 but 

0.63, indicating that the information captured by both sources are not 

independent. This is in agreement with Wang et al. (2016) who showed that 

DGAT1 genotypes have highly significant effects on many individual 

wavenumbers. Therefore these results indicate that the information on milk fat 

composition of DGAT1 genotypes has to a large extend been captured by the 

milk IR spectra. Improvement in prediction by combining both information 

sources is therefore for some traits absent (e.g., SFA, UFA, C18 index). The 

largest improvements in prediction accuracies were observed for C16:1 cis-9 
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(+0.08) and C16 index (+0.07).  

5.3.5 Milk IR spectra and SCD1 genotypes 

Results in Table 5.2 show that SCD1 genotypes explained a substantial part 

of the variation in the individual fatty acids C10:1 (15%), C12:1 (9%), C14:1 

cis-9 (24%), C16:1 cis-9 (9%) and their unsaturation indices. As compared to 

prediction based on IR only, IR+SCD1 shows considerable improvements in 

prediction accuracies for C10:1 (+0.19), C12:1 (+0.10), C14:1 cis-9 (+0.24), 

C16:1 cis-9 (+0.09), and their corresponding unsaturation indices: C10 index 

(+0.22), C12 index (+0.19), C14 index (+0.30) and C16 index (+0.12). 

However, negligible improvement in prediction accuracy was observed for 

C18 index (+0.01), CLA index (+0.01) and no improvement for the total 

unsaturation index. 

Large effects of SCD1 genotypes on UFA and unsaturation index traits have 

been reported. Schennink et al. (2008) indicated that the SCD1 V allele is 

associated with lower C10, C12, and C14 indices, and higher C16, C18, and 

CLA indices. As compared to the other unsaturation indices the effect of SCD1 

was smaller on C18 and CLA indices and the total saturation index was not 

affected by SCD1 genotypes (Schennink et al., 2008). Duchemin et al. (2013) 

showed that SCD1 has highly significant effects on C10:1, C12:1, C14:1 cis-

9, and C16:1 cis-9 fatty acids. These results are in agreement with the 

prediction accuracies presented in Table 5.2. 

The SCD1 gene codes stearoyl-CoA desaturase that is responsible for Δ9-

desaturation of fatty acids which explains the effects of this polymorphism on 

unsaturated fatty acids and the unsaturation indices. Wang et al. (2016) 

showed no significant effects of SCD1 genotypes on any of the milk IR 

wavenumbers. These results suggest that SCD1 genotypes and milk IR 

spectra contain independent information on milk unsaturation. This is 

confirmed by results presented in Table 5.2, e.g. prediction accuracy of the 

C10 unsaturation index is 0.29 base on IR, 0.21 based on SCD1 and 0.51 

based on IR+SCD1. Prediction accuracy of individual unsaturated fatty acids 

based on IR is low but can be improved considerable by adding information 

on SCD1 genotypes. 
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5.3.6 Milk IR spectra and FASN genotypes 

Results in Table 5.2 show that the chromosomal region on BTA19 containing 

the FASN gene explained part of the variation in the short to medium chain 

SFA: C8:0 (6%), C10:0 (8%), C12:0 (4%), C14:0 (12%). This is in line with 

previous studies on the effects of this region (Morris et al., 2007; Bouwman et 

al., 2011). The results of the current study show that prediction based on 

IR+FASN had a negligible improvement in prediction accuracy as compared 

to IR (Table 5.2).  

The FASN gene codes the fatty acid synthase that catalyzes fatty acid 

synthesis in the mammary gland. However, multiple candidate genes might 

be responsible for the effects associated with this chromosomal region on 

BTA19 (Bouwman et al. 2014). The SNP rs137372738 that was used in the 

current study has no significant effects on any of the milk IR wavenumbers 

(results not shown). Therefore, similar as for the SCD1 genotypes, it was 

expected that the information captured by the genotypes and the milk IR 

spectra would be relatively independent and prediction accuracies would be 

additive. However, results did not show an improvement in R2val based on 

IR+FASN as compared to prediction based on IR only. Although SNP 

rs137372738 was not significantly associated with any of the IR wavenumbers, 

Wang et al. (2016) did show significant associations of other SNP in the same 

region on BTA19 with several IR wavenumbers and with lactose content. 

Therefore, this region most likely contains multiple QTL. We performed 

additional analyses and estimated correlations between the fatty acids and all 

IR wavenumbers. Correlations were estimated separately for each FASN 

(rs137372738) genotype class. Results suggest that correlations between e.g. 

C14:0 and IR wavenumbers for one genotype class differed from correlations 

estimated for the other two genotype classes. This might be due to the 

presence of multiple QTL in this genomic region. In this case multiple SNP or 

haplotype information might need to be combined with IR data rather than 

information from a single SNP. 

5.3.7 Milk IR spectra and 3 genotypes 

The predictive ability of milk IR spectra combined with DGAT1, SCD1 and 

FASN genotypes is shown in Table 5.2. As compared to prediction based on 

IR only, the joint improvement in R2val based on genotypic information from 3 
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polymorphisms was dominated by information contributed by DGAT1 

genotypes for predicting C14:0 and C16:0, and by SCD1 genotypes for 

predicting C10:1, C12:1, C14:1 cis-9 and their unsaturation indices. Both 

DGAT1 and SCD1 improved prediction of C16:1 cis-9 and C16 index, and 

effects of both genotypes were additive (IR+3 polym.). The additive effect of 

DGAT1 and SCD1 genotypes on prediction accuracies of C16:1 cis-9 

suggests that both genotypes explain different parts of the genetic variation in 

C16:1 cis-9. This is in line with results by Schennink et al. (2008). 

5.3.8 Perspectives of combined use milk IR spectra and genotypic 

information  

Different approaches have been suggested to improve milk IR prediction of 

milk fat composition, e.g. pre-treatments of IR wavenumbers (De Marchi et al., 

2011; Soyeurt et al., 2011; Ferrand-Calmels et al., 2014), wavenumber pre-

selection by genetic algorithms (Ferrand et al., 2011), log-transformation of 

skewed fatty acid measurements and creating uniform distributed subset 

samples (Fleming et al., 2017). In the current study we combined milk IR 

spectra with genotypic information to improve the prediction of milk fat 

composition. We showed that the combined use of genotypes and milk IR 

spectra can improve prediction for milk fat composition.  

We used information from 3 polymorphisms with major effects on milk fat 

composition, however, there is no reason to restrict prediction to these 3 

polymorphisms. The availability of a reference population consisting of 

animals with milk fat composition which are genotyped for a large number of 

SNP can result in the prediction of genomic breeding values. Genomic 

breeding values estimate the effect of the whole genome on a specific trait 

and thus provide additional information on top of the information provided by 

polymorphisms with a major effect. The prediction accuracy based on genomic 

information is bounded by the square root of the heritability of the trait. Results 

from the current study show that in some situations genotypic information and 

information from IR spectra can to a certain extend overlap. In those situations 

gain in prediction accuracy from including genomic information might be 

limited.  

Combining genotypic information with information from IR spectra might also 

improve prediction of for example milk protein composition and mineral 
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composition. Changes in milk composition might be due to feeding strategies 

but they also might reflect the health status dairy cows. Milk composition has 

for example been related to negative energy balance (Bastin et al., 2012), 

udder health (Kawai et al., 1999; Schukken et al., 2003; Ouweltjes et al., 2007), 

ketosis (Van Knegsel et al., 2010Friggens et al., 2007; Stoop et al., 2009) and 

nitrogen efficiency (Frank and Swensson, 2002). Therefore, changes in milk 

composition might be used to monitor efficiency and health of dairy cows. 

Improved prediction of milk composition based on milk IR spectra combined 

with genotypic information of dairy cows might therefore contribute to 

precision livestock farming. 

 

5.4 Conclusions 

In this study genotypes of DGAT1, SCD1 and a SNP in the FASN gene were 

combined with milk IR spectra to investigate if prediction of milk fat 

composition can be improved. DGAT1 genotypes showed small 

improvements in prediction accuracy for some of the fatty acids. Adding FASN 

genotypes did not improve prediction of milk fat composition. The SCD1 

genotypes considerably improved prediction for the unsaturated fatty acids 

and their unsaturation indices. This improved prediction accuracy illustrates 

the potential of combining milk IR spectroscopy with genomic information to 

predict milk composition. More accurate prediction of milk composition can 

result in better farm management indicators. 
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The main aim of this thesis was to investigate the genetic background of 

bovine milk infrared (IR) spectra of Holstein Friesian dairy cows in the 

Netherlands, and to investigate if knowledge of the genetic background can 

improve prediction of dairy cattle phenotypes based on milk IR spectra. In 

chapter 2, we estimated the heritability of individual milk IR wavenumbers and 

determined the significance of lactation stage, date of IR analyses, 

polymorphisms of diacylglycerol O-acyltransferase 1 (DGAT1), κ-casein 

(CSN3) and β-lactoglobulin (LGB) on individual milk IR wavenumbers. In 

chapter 3, we detected genomic regions that are significantly associated with 

selected milk IR wavenumbers. Most of the identified genomic regions were 

also associated with routinely recorded milk production traits such as fat-, 

protein-, and lactose content, but also other genomic regions were detected. 

We found evidence that these regions are related to milk phosphorus content, 

citric acid and orotic acid. In chapter 4, we predicted methane (CH4) emission 

of dairy cattle by milk IR spectroscopy. We used different validation strategies 

to assess the quality of the predictions. The results showed the importance of 

using an appropriate validation strategy. We suggest the use of IR 

wavenumbers from water absorption regions as a negative control. In chapter 

5, we showed that combined use of milk IR spectroscopy and genotypes 

improved the accuracy of predicting milk fat composition. Especially prediction 

accuracy of unsaturated fatty acids improved when combining milk IR 

spectroscopy with stearoyl-CoA desaturase-1 (SCD1) genotypes. 

In this general discussion, I will first discuss the differences between the 

genetic background of milk IR spectra collected in winter and summer. 

Secondly I will discuss the potential of using milk IR spectroscopy to predict 

DGAT1 genotypes of dairy cattle. Finally I will discuss possible approaches to 

extract more information from milk IR spectra.  

 

6.1 Seasonal differences in genetic background of milk IR spectra 

The very first objective of this thesis was to unravel the genetic background of 

bovine milk IR spectra. Milk IR spectra consist of IR measurements at more 

than 1,000 individual wavenumbers. These individual milk IR wavenumbers 

were treated as dependent variables in a statistical analysis. It is well known 

that milk composition is affected by genetic factors, e.g. milk fat and protein 
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composition have substantial heritabilities and individual genes have been 

detected affecting milk composition (Schennink et al., 2008; Heck et al., 2009a; 

Bouwman et al., 2014). In addition, milk composition is affected by feed and 

management strategies, e.g. feed composition influences milk fat content and 

fat composition (e.g., Chilliard et al., 2007) and dietary energy intake 

influences milk protein content (Emery, 1978). The effect of differences 

between farms on milk IR spectra was described in chapter 2: approximately 

10 to 25% of total variance in individual IR wavenumbers can be attributed to 

differences between farms. 

All milk samples studied in chapter 2 were collected during a short period in 

winter (between February and March). Changes in feed may alter milk 

composition and the values for milk IR wavenumbers. Feed composition of 

dairy cows differs between seasons. During winter dairy cows in the 

Netherlands are housed indoor and fed with silage based diets, whereas 

during summer the majority of the cows graze outdoor. This change in diet 

most likely will result in changes in milk composition (Palmquist and Bealieu, 

1993; Chilliard et al., 2001). In the Netherlands, considerable differences in 

milk composition exist between seasons. Heck et al. (2009b) showed large 

seasonal variation in milk fat and protein content. Milk fat content was 4.1% in 

June and 4.6% in January. Protein content increased from 3.2% in June to 

3.4% in December. Seasonal difference also exists in milk fat composition. 

Short and medium chain saturated fatty acids, are generally increased in 

winter, whereas long chain unsaturated fatty acids are increased in summer 

(Duchemin et al., 2013). Capuano et al. (2014) showed that inclusion of fresh 

grass in the cows’ diet can be accurately predicted based on milk IR spectra 

(more than 98% correctly predicted), which indicates that there are difference 

between IR spectra of milk collected in different seasons.  

This thesis unravelled the genetic background of milk IR spectra of winter milk 

samples. To have a better understanding of the general applicability of the 

results presented in this thesis, I performed genetic analyses on another milk 

IR dataset of milk samples collected during summer, and investigated the 

correlations between milk IR wavenumbers based on winter and summer milk 

samples. 
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6.1.1 Heritability and effects of genes 

Additional genetic analyses were performed using the same methods and 

based on largely the same dairy cows as described in chapter 2. The summer 

milk samples consisted of 1,757 milk samples from 384 commercial dairy 

farms collected between May and June in 2005. The effects of polymorphisms 

in DGAT1, SCD1, CSN3 and LGB and variance components were estimated 

for individual milk IR wavenumbers. The inter-herd heritability for individual 

wavenumbers was estimated.  

The inter-herd heritabilities of individual IR wavenumbers for both winter and 

summer samples are shown in Figure 6.1. For the summer IR samples, inter-

herd heritabilities of the 1,060 wavenumbers were 0.31 on average (0.36 in 

winter samples), ranging from 0 to 0.65 (0 to 0.63 in winter samples). In total 

there were 207 wavenumbers (197 in winter samples) with heritabilities lower 

than 0.20 and 562 wavenumbers (291 in winter samples) with heritabilities 

between 0.20 and 0.40. There were 283 wavenumbers (560 in winter samples) 

with heritabilities between 0.40 and 0.60, and 8 wavenumbers (12 in winter 

samples) with heritabilities larger than 0.60. Compared to IR wavenumbers in 

winter samples, the heritability of IR wavenumbers in summer samples had 

similar pattern but in general estimates were lower. This is in line with 

Duchemin et al. (2013) that heritability estimates for fat composition in 

summer samples are slightly lower in general. However in this study given the 

standard errors of heritability estimates, there are no significant differences 

between estimates from winter and summer samples. As shown in Figure 6.1, 

winter and summer samples showed similar heritability in the spectral region 

related to lactose content (around 1,080 cm-1), which might be related to the 

constant lactose content in milk across seasons (Heck et al., 2009b). Winter 

milk samples showed higher heritabilities in the regions related to fat (2,800 

to 2,900 cm-1). It is difficult to observe a pattern in differences between winter 

and summer for IR regions related to protein (around 1,425 cm-1). Analyses of 

the summer milk samples indicate that substantial variation of many individual 

milk IR wavenumbers can be attributed to genetics. This confirms results as 

reported in chapter 2.  
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Figure 6.1 Heritability of individual milk IR wavenumbers for winter and summer 

samples. 

 

The effects of DGAT1 and CSN3 polymorphisms on milk IR wavenumbers 

from summer samples are shown in Figure 6.2. DGAT1 showed highly 

significant effects on many IR wavenumbers with a generally lower 

significance level as compared to winter samples (chapter 2). The 

wavenumbers in the water absorption regions that affected by DGAT1 were 

also detected in summer samples. This confirms the findings in chapter 2. 

Significance of the CSN3 polymorphism showed similar results in summer as 

in winter samples. Significance levels in the spectral region around 1,250 and 

1,450 cm-1, which is related to protein, was higher in summer samples. 

Polymorphism in LGB showed similar levels of significance in summer and 

winter samples, and polymorphism in SCD1 showed no significant effects on 

any wavenumbers (results not shown), which is in line with chapter 2.  
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Figure 6.2 Effect of DGAT1 and CSN3 polymorphisms on individual milk IR 

wavenumbers in winter and summer samples.  

 

 

6.1.2 Phenotypic and genetic correlations 

Furthermore, I calculated correlations between milk IR wavenumbers in winter 

and summer samples. These correlations were estimated based on 1,572 

dairy cows with records in both winter and summer.  

Pearson correlations between winter and summer samples based on 

unadjusted data were estimated for all 1,060 IR wavenumbers. As shown in 

Figure 6.3, moderate to high phenotypic correlations were observed for the 



6 General discussion 

128 

 

informative wavenumbers (as defined and used in chapter 4 and 5). The 

highest correlation (0.78) was found for wavenumber 1,230 cm-1. The 

wavenumbers in water absorption regions showed low phenotypic correlations. 

It was remarkable that the highest correlation for wavenumbers in the water 

absorption region was 0.09 for wavenumber 3,497 cm-1 (WN668 as shown in 

chapter 3). This was the wavenumber in the water absorption region with the 

highest -Log10(P) value for DGAT1 (Figure 6.3, indicated by a black dot). 

 

 

Figure 6.3 Pearson correlations of 1,060 unadjusted milk IR wavenumbers between 

winter and summer samples. The black dot indicates wavenumber 3,476 cm-1 (WN668). 

 

Genetic correlations between winter and summer samples were estimated for 

14 individual IR wavenumbers by ASReml 4 (Gilmour et al., 2015). These 14 

wavenumbers were part of the wavenumbers selected in chapter 3. Table 6.1 

shows the estimated phenotypic, genetic and herd correlations of the selected 

wavenumbers between winter and summer IR measurements. Most of the 

wavenumbers have very high genetic correlations between winter and 

summer and the estimates do not significantly differ from unity. WN208 and 

WN668 have a lower estimated genetic correlation of 0.66. In chapter 3, 

WN208 was significantly associated with a genomic region on chromosome 1 

and it was hypothesized that this wavenumber could provide information on 

orotic acid. WN668 is the wavenumber showed the most significant effect of 

the DGAT1 polymorphism in the water absorption regions. WN668 also 
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showed the highest Pearson correlation between winter and summer samples 

(Figure 6.3). The standard errors for the genetic correlations of WN208 and 

WN668 were larger than for the other wavenumbers, indicating that the 

current dataset does not contain sufficient information to estimate the genetic 

correlations for these wavenumbers accurately. For WN668 the heritabilities 

were very low (<0.06) which explains the large standard error for the estimated 

genetic correlation. For WN208 heritabilities were 0.25 in winter and 0.29 in 

summer and lower than the other wavenumbers. The correlations due to herd 

were moderate, ranging from 0.17 to 0.59 except for WN668 with an estimate 

that did not differ significantly from 0. This shows that effects of herd 

management on IR wavenumbers are quite different in summer and in winter.  

 

Table 6.1 Phenotypic correlations, genetic correlations and herd correlations (with 

standard error in parentheses) between measurements in winter and summer of 14 

selected IR wavenumbers. 
 

Wavenumber  
(cm-1) 

Phenotypic  
correlation 

Genetic  
correlation 

Herd  
correlation 

WN20 999 0.56 (0.02) 0.97 (0.05) 0.18 (0.11) 

WN34 1,053 0.57 (0.02) 0.99 (0.02) 0.44 (0.10) 

WN50 1,114 0.69 (0.02) 0.96 (0.03) 0.59 (0.07) 

WN80 1,230 0.78 (0.02) 0.99 (0.01) 0.59 (0.07) 

WN126 1,407 0.53 (0.02) 0.99 (0.03) 0.36 (0.09) 

WN142 1,469 0.68 (0.02) 0.96 (0.03) 0.56 (0.06) 

WN156 1,523 0.50 (0.02) 0.97 (0.05) 0.41 (0.08) 

WN208 1,724 0.46 (0.02) 0.66 (0.19) 0.24 (0.07) 

WN220 1,770 0.45 (0.02) 0.97 (0.05) 0.30 (0.08) 

WN414 2,518 0.47 (0.02) 0.99 (0.05) 0.18 (0.08) 

WN432 2,587 0.40 (0.02) 0.97 (0.06) 0.20 (0.07) 

WN668 3,497 0.09 (0.03) 0.66 (0.49) -0.25 (0.34) 

WN717 3,686 0.52 (0.02) 0.86 (0.08) 0.27 (0.07) 

WN728 3,729 0.26 (0.02) 0.94 (0.10) 0.17 (0.06) 
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These analyses show that the genetic background of milk IR spectra in winter 

and summer milk samples is very similar: the high genetic correlations indicate 

that the milk IR wavenumbers are genetically the same traits in winter and 

summer. This is in line with Duchemin et al. (2013) which showed strong 

positive genetic correlations between milk fat composition in winter and 

summer. Rutten et al. (2009) investigated the prediction of milk fatty acids 

using both winter and summer samples. It was concluded that the effect of 

season on the coefficient of determination (R2) in validation was limited but 

occasionally a large prediction bias was observed.  

These analyses suggest that the genetic background of milk IR spectra is very 

similar in winter and in summer; significance of the effects of polymorphisms 

in DGAT1, SCD1, CSN3, and LGB on milk IR wavenumbers are similar; and 

genetic correlations between milk IR wavenumbers in winter and summer are 

close to unity. This indicates that the results described in this thesis are not 

limited to winter milk samples but have general applicability.  

 

6.2 Prediction of DGAT1 genotypes 

The diacylglycerol O-acyltransferase 1 (DGAT1) gene, which plays a role in 

triglyceride synthesis, has been identified as a strong positional and functional 

candidate gene for the QTL effect on bovine chromosome 14. Associations 

between DGAT1 polymorphism and multiple milk production traits have been 

investigated. Many studies presented evidence that the DGAT1 K232A 

polymorphism has major effects on milk production traits: the lysine residue 

(K allele) increased milk fat production, fat content and protein content, but 

decreased milk protein yield and milk production (Grisart et al., 2002; Spelman 

et al., 2002; Winter et al., 2002; Thaller et al., 2003; Weller et al., 2003; 

Sanders et al., 2006; Gautier et al., 2007; Schennink et al., 2007; Banos et al., 

2008; Berry et al., 2010). Other studies showed that the DGAT1 K232A 

polymorphism was associated with milk fat composition (Shorten et al., 2004; 

Schennink et al., 2007; Schennink et al., 2008; Conte et al., 2010; Lu et al., 

2015; Bovenhuis et al., 2016). Moreover, Bovenhuis et al. (2016) detected 

substantial effects of the DGAT1 polymorphism on milk mineral composition. 

Therefore knowledge about the DGAT1 genotypes of cows might be beneficial 

for selective breeding and for predicting phenotypes.  
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Results presented in this thesis showed that DGAT1 genotypes have highly 

significant effects on milk IR spectra with -Log10(P) values of up to 110.4 

(chapter 2). In chapter 3, the genomic region containing the DGAT1 gene was 

detected in GWAS for many milk IR wavenumbers. In chapter 5, DGAT1 

genotypes improved prediction accuracy for some milk fatty acids when 

combined with milk IR spectra, among others for C16:1 cis-9 and C16 

unsaturation index. These results show a strong relation between milk IR 

spectra and DGAT1 genotypes which suggests that DGAT1 genotypes can 

be predicted by milk IR spectra. Studies showed that milk IR spectra have 

some potential to predict LGB genotypes (Rutten et al., 2011), αS1-casein 

(CSN1S1) genotypes (Berget et al., 2010; Bonfatti et al., 2015) and CSN3 

genotypes (Bonfatti et al., 2015). Therefore it is of interest to investigate the 

ability of milk IR spectra to predict DGAT1 genotypes of dairy cows. 

To investigate the potential of milk IR spectra to predict DGAT1 genotypes I 

used the same methodology as described Rutten et al. (2011). The actual 

DGAT1 genotypes of individual cows were obtained by the genotyping 

procedure described by Schennink et al. (2007). DGAT1 genotypes and milk 

IR spectra were available for 1,636 dairy cows. Of these cows 596 (36.4%) 

were AA, 771 (47.2%) AK and 269 (16.4%) KK. The total samples were 

divided into a calibration and a validation set. 1,300 observations (approx. 

80%) were randomly selected as calibration data and the remaining 336 

observations (approx. 20%) were used as the validation data. The response 

variable of the prediction model, the DGAT1 genotype, was represented by a 

dummy variable and coded as 0, 1, 2 for the DGAT1 genotypes AA, AK and 

KK, respectively. The 275 informative milk IR wavenumbers as described in 

chapter 4 and 5 were used as predictors. The partial least squares (PLS)  

procedure in SAS 9.3 (SAS Institute, 2001) was used to perform the analyses. 

The number of latent variables was 9 and was determined by cross validation. 
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In the validation process, dummy variables indicating the DGAT1 genotypes, 

were predicted using the milk IR prediction model. A set of decision rules were 

used to transform the continuous dummy variables into the three genotypes: 

Ŷ ≤ 0.5  → DGAT1 genotype = AA; 

0.5 < Ŷ < 1.5  →  DGAT1 genotype = AK; 

Ŷ ≥ 1.5   → DGAT1 genotype = KK. 

In total 10 replicates of the calibration and validation procedure were 

performed. The results averaged over the 10 replicates are presented in Table 

6.2. 

 

Table 6.2 Observed and predicted DGAT1 genotype combinations. 

Percentage 1 (%) 
Observed DGAT1 genotype Correct 

AA AK KK Prediction2  

Predicted AA 19.4 ± 1.7 5.5 ± 1.0 0.3 ± 0.3 
 

DGAT1 AK 16.9 ± 1.7 40.0 ± 3.1 12.5 ± 1.4 63.0 ± 2.2 

genotype KK 0.1 ± 0.1 1.7 ± 0.5 3.6 ± 0.6 
 

1 Averaged proportions over all 336 observations in the validation set and based on 10 
replicates. Standard deviations are based on 10 replicates. 
2 The averaged proportion of correctly predicted DGAT1 genotypes, equal to the sum of 
diagonal elements. 

 
 
 
DGAT1 genotypes for 63.0% (±2.2) cows were correctly predicted based on 

milk IR spectra. The standard deviations for all combinations were small. 

Rutten et al. (2011) investigated the use of milk IR spectra to predict LGB 

genotypes and reported that LGB genotypes could be predicted correctly in 

74% of the cases. Bonfatti et al. (2015) showed 56% of the CSN1S1 

genotypes and 70% of the CSN3 genotypes can be predicted correctly based 

on milk IR spectra in buffalo. Genotypes of LGB, CSN1S1 and CSN3 have 

significant effects on milk protein composition whereas DGAT1 has significant 

effects on many milk components: milk fat content, milk protein content, milk 
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fatty acid composition and milk mineral composition (e.g., Grisart et al., 2002; 

Thaller et al., 2003; Schennink et al., 2007; Bovenhuis et al., 2016). The 

DGAT1 polymorphism showed highly significant effects (-Log10(P) >100) on 

numerous IR wavenumbers, while associations of LGB and CSN3 

polymorphisms were significant but much less strong (chapter 2). Therefore I 

expected that DGAT1 genotypes of individual cows could be predicted 

accurately based on the milk IR spectra. The fraction of correctly predicted 

DGAT1 genotypes was 63.0% and lower than expected. Especially when 

considering that randomly assigning cows to DGAT1 genotypes without any 

IR information results in correctly assigning 37.5% of the cows to DGAT1 

genotypes. This shows that the information in the milk IR spectra to predict 

DGAT1 genotypes is low and less than expected. 

Table 6.2 shows that 25.2% of the cows were predicted to be DGAT1 AA, 

which is lower than the observed proportion of DGAT1 genotypes (36.4%). 

Furthermore, 69.4% of dairy cows were predicted to have AK genotype which 

is higher than the observed proportion (47.2%), and 5.4% of dairy cows were 

predicted to have KK genotype which is lower than the observed proportion 

(16.4%). In the dairy cows predicted to have AK genotype, more than 40% of 

them were actually AA or KK genotypes. The issue is that due to the choice 

of the cut off values too few animals were predicted to have AA and KK 

genotypes. 

I investigated if it is possible to improve the prediction accuracy. First of all, 

the decision rule was adjusted so that proportions of predicted genotypes 

were the same as the observed genotype frequencies: 36.4% for AA, 47.2% 

for AK and 16.4% for KK. And secondly, after corrected for the systematic 

environmental effects e.g. lactation stage, season of calving, as well as 

random effects due to herd and residue, the additive genetic effects of 

individual milk IR wavenumbers were used as predictors. However neither of 

these attempts improved the prediction accuracy as compared to PLS based 

on raw milk IR wavenumbers. 

As DGAT1 genotypes have highly significant effects on many milk 

components, it would be of interest to have an easy, non-invasive and 

inexpensive method to determine DGAT1 genotypes of dairy cows. The 

analysis showed a low prediction accuracy of DGAT1 genotypes based on 
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milk IR spectra. This was surprising as other studies have shown higher 

prediction accuracies for polymorphisms which showed smaller effects on milk 

IR wavenumbers. It is worthwhile to investigate if other prediction methods, 

for example partial least square discriminant analysis (PLS-DA) or machine 

learning algorithms can improve prediction accuracies.  

 

6.3 Capture more information from milk IR spectra  

It is very attractive to use milk IR spectra to capture fine milk composition for 

breeding and management of dairy cows (Gengler et al., 2016). Milk IR 

spectroscopy is used e.g. in milk payment systems, prediction of 

manufacturing properties of dairy products, and prediction of novel 

phenotypes for monitoring dairy cattle health and dairy farm management. 

The basis of these applications is that milk IR spectra capture information on 

milk composition. Major milk components e.g. fat, protein and lactose have 

direct signals in the milk IR spectra. Signals from major milk components might 

overwhelm signals of other milk components, e.g. components in low 

concentrations. In chapter 3, the genome wide association study detected 

genomic regions that have been related to milk phosphorus content, citric acid 

and orotic acid. These results suggest that the milk IR spectra contains 

information on milk components which are currently not routinely quantified. 

There might be other ways to extract additional information from milk IR 

spectra.  

6.3.1 Extract information from the water absorption regions 

Water is the main component of milk. Wavenumbers from water absorption 

regions (between 1,619 and 1,674 cm-1, and between 3,073 and 3,667 cm-1, 

as indicated by chapter 2) show much larger phenotypic variance than other 

wavenumbers, and most of the variance is noise (unexplained residual 

variance). Therefore the water absorption regions are commonly excluded 

when building prediction equations. In chapter 2, we identified that some 

wavenumbers (between 3,466 and 3,543 cm-1) in the water absorption regions 

are significantly affected by DGAT1 polymorphisms. This was confirmed in the 

summer milk samples (Figure 6.2). Furthermore, wavenumbers around 3,497 

cm-1 in the water absorption regions have heritabilities larger than 0, which 
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was also found in a recent study in Danish Holstein and Jersey cows (Zaalberg 

et al., 2019). 

The water absorption regions are caused by intense and broad absorption 

bands of water due to hydroxyl group (–OH) stretching and H–O–H bending. 

Water molecules result in intense absorption and overwhelm signals induced 

by other milk components in the same region. First of all, the stretching of         

–OH also exists in carbohydrates for example glucose and in carboxyl group 

(–COOH) present in fatty acids. Therefore information about these 

components in the water absorption region might be masked by the 

overwhelming signal from the water molecules. Secondly, the double carbon 

bond (C=C) stretching is observed between 1,640 and 1,666 cm-1 (Dufour, 

2009), which is located in the water absorption. In addition the C=C bond is 

non-polar and shows weaker absorption as compared to C=O bond. This 

explains why milk IR spectra capture little information on unsaturated fatty 

acids. Last but not least, Amide I band due to C=O stretching in the 

polypeptide shows absorption at 1,600-1,700 cm-1. Amide I band is related to 

secondary structure of protein, e.g. α-helix, β-sheet (Karoui et al., 2003). 

Therefore part of information on milk fat, protein and carbohydrates might be 

masked by water when IR spectroscopy is based on raw milk.  

Two approaches can be applied to limit or avoid the effect of water. A obvious 

approach is to remove water from milk samples. Afseth et al. (2010) applied 

IR to dried film measurements. This study showed that the dried film approach 

improved predictions of milk fatty acids as compared to analysing raw milk, 

especially major saturated fatty acids like C16:0 (R2 of 0.93 vs. 0.65), C18:0 

(R2 of 0.91 vs. 0.48) and minor fatty acids like CLA (R2 of 0.86 vs. 0.53), 

polyunsaturated fatty acids (R2 of 0.78 vs. 0.52) and total trans-UFA (R2 of 

0.85 vs. 0.54). The concentration of milk samples before IR analyses removed 

water and increased the content of the component of interest. This study 

showed a new approach to extract additional information from the milk IR 

spectra. It is of interest to investigate if prediction of milk composition can be 

further improved after correcting for the IR signals due to water. 

Another approach avoiding water absorption band is to subtract water spectra 

by using attenuated total reflectance (ATR) combined with IR spectroscopy. 

ATR is a sampling technique that allows analysing samples directly in solid or 
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liquid state, for example milk component dissolved in water. When samples 

are presented in solid or liquid form, the feature of spectral light is determined 

by the thickness of the solid sample or absorption of the liquid. A larger 

thickness is associated with a stronger absorption. ATR is ideal for strongly 

absorbing or thick samples which often produce intense peaks when 

measured by transmission. The conformation changes of β-lactoglobulin have 

been studied by Dufour et al. (1994) using ATR technique. Recent studies 

showed the use of ATR combined with IR spectroscopy in investigating 

physicochemical and structural changes of protein when processing ultra-heat 

treatment (UHT) milk (Grewal et al., 2017, 2018), with emphasis on the 

spectral region between 1,500 and 1,700 cm-1. The available spectra in the 

region might also be useful to quantify milk protein composition. These type 

of analyses require combining an ATR unit with IR spectrometer.  

6.3.2 Use of processed milk 

The study of Afseth et al. (2010) removed water from the milk sample and this 

way IR absorption signals from other milk components can be revealed. 

Similarly, removing other milk components than water might improve IR 

prediction of some components. Removing milk fat and performing analysis of 

skim milk might for example improve prediction of milk protein composition. 

Furthermore, removing casein from milk will enhance the ability to quantify 

whey proteins. Membrane technology has been applied in the dairy industry 

for separation of milk (Kumar et al. 2013). It is commonly based on ceramic or 

polymeric membranes with different pore sizes, allowing separation of 

permeate from retentate. Different types of milk filtrations have been 

developed, in the order of pore size from large to small, such as micro-filtration, 

ultra-filtration, nano-filtration and reverse osmosis. The permeate and 

retentate of each filtration technique contain separated milk component 

fractions. Applying milk IR spectroscopy to permeate or retentate of different 

filtration stage might enhance the prediction of certain milk components, and 

possibly additional milk components. Franzoi et al. (2018) developed very 

accurate milk IR predictions for protein and sugars in defatted and 

delactosated milk after ultra- and nano-filtration. This study showed that the 

use of processed milk has the potential to capture additional information from 

milk IR spectra. However the procedure of membrane technology might be 

currently too complicated for routine milk recording scheme. 
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6.3.3 Use of different prediction methods 

The most commonly used method in predicting dairy cattle phenotypes based 

on milk IR spectra is partial least square (PLS) regression. There are some 

studies suggesting that Bayesian regression outperforms PLS in predicting 

dairy cattle phenotypes. Ferragina et al. (2015) compared PLS and Bayesian 

methods in predicting several milk fatty acids and technological properties. 

Bayesian models showed a remarkably higher R2 in validation as compared 

to PLS; 0.67 for the Bayesian model versus 0.44 based on PLS for C10:0, 

0.48 versus 0.30 for C14:1 cis-9, 0.60 versus 0.41 for C16:0, and 0.49 versus 

0.26 for C18:0. Increases in R2 when using Bayesian models were also 

observed for milk technological property traits e.g. rennet coagulation time, 

cheese yield and recovery of fat and protein. The authors showed that the 

Bayesian models with highest prediction accuracy used a smaller number of 

informative wavenumbers, and therefore prediction was less affected by the 

uninformative wavenumbers. However Bonfatti et al. (2017) reported small 

improvements in R2 for Bayesian methods as compared to PLS: up to 2.3 

percentage points for C14:0 and limited improvement for protein composition. 

Bayesian models even showed lower prediction accuracy for milk mineral 

composition. Depending on the phenotypes, Bonfatti et al. (2017) concluded 

that Bayesian models produced statistically significant improvements in 

prediction accuracy but the absolute amounts of improvement were small or 

negligible. 

Further research could be extended to new approaches like machine learning 

algorithms to predict dairy cattle phenotypes based on milk IR spectra. 

Artificial neural networks (ANN) have been suggested for predicting dairy 

cattle phenotypes, e.g. subclinical ketosis (Ehret et al., 2015) and time of 

calving (Borchers et al., 2017). Vásquez et al. (2018) indicated that ANN 

model had slightly better performance than PLS model in predicting hardiness 

of cheese using spectral imaging data. Dórea et al. (2018) compared the 

performance of PLS versus ANN in predicting dry matter intake of lactating 

dairy cows based on milk IR spectra. Both PLS and ANN had similar accuracy 

when using milk production traits (fat%, protein% and lactose%) as predictors, 

however when milk production traits were replaced by milk IR wavenumbers, 

ANN showed better prediction accuracy than PLS (R2 of 0.67 vs. 0.53) and 

smaller prediction error. This suggested that additional information from milk 



6 General discussion 

138 

 

IR spectra can be extracted by ANN which improves prediction of dry matter 

intake. Comparison between PLS and ANN methods has also been 

investigated in other fields of science. Perai et al. (2010) showed that ANN 

outperforms PLS in predicting metabolizable energy level of poultry diets (R2 

of 0.94 vs. 0.36).  

It has been demonstrated that ANN can capture nonlinear relationships 

between the response variable and predictors (milk IR wavenumbers), and 

therefore it has an advantage over PLS regression where commonly linearity 

is assumed. The actual advantage of machine learning algorithms over PLS 

still requires further study. However the aforementioned studies showed 

promising results.  

 

6.4 Concluding remarks 

In this general discussion, I investigated the differences between the genetic 

background of milk IR wavenumbers in winter and summer samples. The high 

genetic correlations indicated that the studied individual IR wavenumbers are 

genetically the same traits. The polymorphism of DGAT1 gene has very 

significant effect on milk IR wavenumbers, however the ability of milk IR 

wavenumbers to predict DGAT1 genotypes is low. Some approaches might 

be helpful to capture more information from milk IR spectra, e.g. prediction 

using machine learning algorithms.  
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Milk infrared (IR) spectroscopy has been used as the routine method to 

determine milk production traits such fat, protein, lactose, urea content in milk, 

and it is a promising technique to obtain detailed milk composition. Several 

studies suggested that milk IR spectra can be used to predict milk fatty acids, 

protein composition, mineral composition, milk coagulation properties, acidity, 

as well as some traits related to health, energy status, and environmental 

impact of dairy cattle. A great advantage of milk IR spectroscopy is that large 

number of samples can be analyzed in a cost-effective and a relatively short 

period. The quantification of milk components is based on the absorption of 

electromagnetic radiation by chemical bonds in the molecules at different 

wavenumbers. The absorption at adjacent wavenumbers can be induced by 

a chemical bond that is abundant in molecules of a certain milk component, 

and thus information on certain milk components can be captured by milk IR 

spectra. The genetic background of milk composition has been studied 

intensively however little is known about the genetic background of milk IR 

spectra. Therefore it is of interest to understand to what extent milk IR spectra 

are affected by genetic differences between dairy cows. This thesis aimed at 

studying the genetic background of milk IR spectra and applying the gained 

knowledge into prediction of dairy cattle phenotypes such as methane (CH4) 

emission and milk fat composition.  

Chapter 2 investigates the genetic and environmental variation in individual 

wavenumbers of milk IR spectra. Inter-herd heritabilities of 1,060 infrared 

wavenumbers ranged from 0 to 0.63 indicating that the genetic background of 

infrared wavenumbers differs considerably. The majority of the wavenumbers 

have moderate to high inter-herd heritabilities ranging from 0.20 to 0.60. 

Differences between herds explained 10 to 25% of the total variance for most 

wavenumbers. This suggests that the wavenumbers of milk IR spectra are 

indicative for differences in feeding and management between herds. This 

chapter also investigates the effects of systematic environmental and genetic 

factors on individual wavenumbers of milk IR spectra. Many wavenumbers of 

milk IR spectra were significantly affected by lactation stage, date of IR 

analysis, and polymorphisms of gene diacylglycerol O-acyltransferase 1 

(DGAT1), -casein (CSN3) or -lactoglobulin (LGB). These genes have major 

effect on milk composition. In contrast, the stearoyl-CoA desaturase (SCD1) 

polymorphism did not significantly affect any of the wavenumbers. SCD1 is 
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known to have a strong effect on the content of C10:1, C12:1, C14:1, and 

C16:1 fatty acids. Therefore, these results suggest that IR spectra contain little 

direct information on these mono unsaturated fatty acids. The wavenumbers 

between 1,619 and 1,674 cm-1 and between 3,073 and 3,667 cm-1 are strongly 

influenced by water absorption and usually excluded when setting up 

prediction equations. However, we found that some of the wavenumbers in 

the water absorption region are affected by the DGAT1 polymorphism and 

lactation stage. This suggests that these wavenumbers contain useful 

information regarding milk composition. 

Chapter 3 identifies the genomic regions that are associated with milk IR 

spectra. For this purpose a genome wide association study (GWAS) was 

performed for a selected set of 50 individual IR wavenumbers measured on 

1,748 Dutch Holstein cows. Significant associations were detected for 28 of 

the 50 wavenumbers. In total 24 genomic regions distributed over 16 bovine 

chromosomes were identified. Major genomic regions associated with milk IR 

wavenumbers were identified on chromosomes 1, 5, 6, 14, 19 and 20. Most 

of these regions also showed significant associations with fat%, protein% or 

lactose%. However, we also identified some new regions which were not 

associated with any one of these routinely collected milk composition traits. 

On chromosome 1 two new genomic regions were identified and we 

hypothesise that they are related to variation in milk phosphorus content and 

orotic acid, respectively. On chromosome 20 a new genomic region was 

identified which seem to be related to citric acid. Identification of genomic 

regions associated with milk phosphorus content, orotic acid and citric acid 

suggest that the milk IR spectra contain direct information on these milk 

components. 

Chapter 4 applies different validation strategies in predicting CH4 emission of 

individual dairy cows based on milk IR spectroscopy. Due to its environmental 

impact it is of great interest to reduce CH4 emission of dairy cattle and 

selective breeding might contribute. Milk IR spectroscopy has been proposed 

as a rapid and cheap measurement technique which can be used to quantify 

CH4 emission for a large number of individual dairy cows. This study 

incorporated breath sensor measured CH4 of 801 dairy cows on 10 

commercial farms. Using random cross validation a coefficient of 

determination in validation (R2val) of 0.49 was found which suggest that milk 
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IR spectra are of interest for predicting CH4 emission. However based on block 

cross validation, with farms as blocks, a negligible R2val of 0.02 was obtained, 

indicating that milk IR spectra cannot be used to predict CH4 emission 

independently. Random cross validation thus results in an overoptimistic view 

on the ability of milk IR spectra to predict CH4 emission of dairy cows. The 

difference between both validation strategies can be explained by 

confounding of farm and date of milk IR analysis which introduces a correlation 

between batch effects on the IR analyses and the farm average CH4. Breath 

sensor measured CH4 is strongly influenced by farm specific conditions which 

magnifies the problem. Based on random cross validation also milk IR 

wavenumbers from water absorption regions, which contain mainly noisy 

information, showed moderate accuracy (R2val=0.25) but not based on block 

cross validation (R2val=0.03). These results suggest wavenumbers from water 

absorption regions as a negative control to identify potential dependence 

structures in the data. 

Chapter 5 investigates the combined use of milk IR spectroscopy and 

genotypes of dairy cows on the accuracy of predicting milk fat composition. 

Milk fat composition based on gas chromatography and milk IR spectra were 

available for 1,456 Dutch Holstein Friesian cows. Genotypes of DGAT1, SCD1 

and a single nucleotide polymorphism (SNP) located in an intron of fatty acid 

synthase (FASN) have significant effects on some milk fatty acids. The 

genotypes of them were incorporated and combined with milk IR spectra 

wavenumbers as predicators to milk fat composition. Adding DGAT1 

genotypes to the milk IR spectra resulted in an improvement of the prediction 

accuracy for C16:1 cis-9 and C16 index. Adding SCD1 genotypes to the milk 

IR spectra resulted in a considerable improvement of the prediction accuracy 

for the unsaturated fatty acids C10:1, C12:1, C14:1 cis-9, C16:1 cis-9 and their 

corresponding unsaturation indices. Adding genotypes of the FASN SNP to 

the IR spectra did not improve prediction of milk fat composition. This study 

demonstrated the potential of combining milk IR spectra with genotypic 

information from 3 polymorphisms to predict milk fat composition. Prediction 

accuracy can be further improved by combining milk IR spectra with genomic 

breeding values. 
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Chapter 6 is the general discussion. The first topic addressed the differences 

in genetic background of milk IR spectra collected in winter and summer. The 

high genetic correlations of wavenumbers indicated that milk IR spectra 

collected in different seasons can be regarded as genetically the same trait. 

The second topic focused on predicting DGAT1 genotypes based on milk IR 

spectra. DGAT1 genotypes have very significant effects on milk IR 

wavenumbers, however the ability of milk IR wavenumbers to predict DGAT1 

genotypes is low. The third topic was about to extract more information on milk 

composition captured by milk IR spectra. Some approaches such as analysing 

processed milk and applying different prediction methods are of interest. 
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