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Chapter 1
General introduction



Most of the 34,000 currently known fish species swim by undulating their bodies (Froese
and Pauly, 2018). Despite the ubiquity of undulatory swimmers among vertebrates, the
complex mechanics behind their locomotion is not yet fully understood. This thesis ex-
plores the biomechanics of swimming of fish larvae, to come closer to answering the age-old
question:

How do fish swim?

This chapter briefly outlines the subject and contents of this thesis and provides back-
ground information on commonly used concepts. For more detail, see chapter 2, an ex-
tensive review of the biomechanics of swimming in developing larval fish.

1.1 The complexity of swimming
Most fish swim by contracting the axial muscles along their bodies, alternating activation
between the left and right side (Altringham and Ellerby, 1999; Videler, 1993). This pro-
duces a curvature wave along the body, which causes the water around the fish to move.
The resulting flow field produces pressure and friction forces on the skin of the fish, cre-
ating propulsion in the desired direction (e.g. Li et al., 2012; Lighthill, 1960; Müller et al.,
2008). However, the body does not simply move the water; the fluid forces also influence
the body deformation (Tytell et al., 2010). In other words: rather than any individual com-
ponent, the interaction between thewater, passive tissues andmuscles creates the instantly-
recognisable swimmingmotion employed bymany fish. If any of these three contributions
is not present, no swimming motion is produced. To illustrate, an eel’s muscle activation
pattern creates the characteristic bodywavewhen submerged, but when removed from the
water it produces an alternating C-shape (Bowtell andWilliams, 1991)—without feedback
from the fluid, body motion changes drastically. In engineering, this type of phenomenon
is commonly known as fluid-structure interaction. These problems are often highly com-
plex to solve, especiallywhen the fluid and structure are strongly coupled (Hou et al., 2012).

Based on the complexity of the physics, onewould expect that fish require an advanced
control system for their axial muscles. However, the zebrafish (Danio rerio) larva, subject
of this thesis, seems to be a counterexample to this. Zebrafish larvae hatch at approxim-
ately 2–3 days after the eggs have been fertilised (Parichy et al., 2009), and can immediately
swim (Müller and Van Leeuwen, 2004). Their brains are far from fully developed at 2
days after fertilisation (Mueller andWullimann, 2016), and they have had no opportunity
to learn how to activate their muscle to produce effective swimming motion because they
were enclosed in an egg. Despite this lack of training, the tiny (around 5 mm) larvae are
able to escape threats at high speeds (up to 38 body lengths per second; Müller and Van
Leeuwen, 2004), and coordinate their muscles to beat their tails up to 80 times per second
(Van Leeuwen et al., 2015).

Interestingly, despite the complex, non-linear physics, swimming motion does not ap-
pear to place stringent requirements on the control system. Hence, the swimming of zebra-
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1fish larvae is a suitable model to investigate this subject of great general interest. Often,
in both biology and engineering, complex underlying physics are controlled in a (seem-
ingly) simple manner, offloading much of the complexity to passive systems. This thesis
focuses on the mechanics of swimming of larval zebrafish, from their motion to their in-
ternalmechanics. We aim tounderstandhow thedeveloping larvae swimeffectively, despite
the complex physics.

1.2 Swimming motion
A logical first step to study undulatory swimming is to look at the motion of the fish. The
study of motion is commonly called kinematics and has been an important branch of fish
swimming research. The first quantitative studies on the mechanics of swimming were
done in the beginning of the 20th century (Breder, 1926; Gray, 1933), and analysed swim-
ming kinematics based on videographs of fish. In the following 80 years, many analyses of
swimming kinematics have followed (e.g. Fleuren et al., 2018; Kayan et al., 1978;Müller and
Van Leeuwen, 2004; Nursall, 1958), across a wide range of species. These studies showed
thatmany undulatory swimmers have a commonmotion pattern: the travelling bodywave
(Gray, 1933). This wave of deformationmoves towards the rear of the body to ‘push’ water
backwards, and thus propels the fish forwards (Fig. 1.1A,B,C). The properties of this wave
vary across species, sizes, and types of manoeuvre.

Breder (1926) was the first to classify swimming styles in groups based on the character-
istics of the body wave. Swimming motion is broadly divided into two groups: body and
caudal fin (BCF) propulsion and median/paired fin (MPF) propulsion (Sfakiotakis et al.,
1999). In BCF propulsion, the fish uses their axial muscles to deform the body and move
the caudal fin through the water. In MPF propulsion, the fish uses their median and/or
paired fins in an undulatory or oscillatory fashion. This thesis concerns itself with BCF
propulsion andmostly ignores the median and paired fins, as their motion is relatively un-
important for zebrafish larvae.

Body and caudal fin propulsion is further subdivided into groups, depending on the
fraction of the body that shows lateral excursions during a body wave (Breder, 1926; Sfaki-
otakis et al., 1999). These groups are named after the most common families that use that
specific swimming style. At one extreme is thunniform, where mainly the tail is moved.
The intermediate forms carangiform and subcarangiform show deformation of a larger
fraction of the body in addition to the caudal fin. Finally, at the other extreme is anguil-
liform, where a significant part of the body is moved by the body wave. Most fish larvae
exhibit anguilliform swimming, including the zebrafish larvae that we study in this thesis
(Fig. 1.1A; Müller and Van Leeuwen, 2004).

Many studies on swimming have been done under the assumption of periodic motion
of the body (Blake, 2004; Li et al., 2016; Sfakiotakis et al., 1999; Webb, 1984). This simpli-
fication of actual swimmingmotion allows the calculation of kinematic parameters such as
frequency and tail-beat amplitude (chapter 3; Bainbridge, 1958; Müller and Van Leeuwen,
2004). However, for many fish, including zebrafish larvae, cyclic swimming is relatively
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Figure 1.1: Swimming motion of zebrafish larvae. (A) A single cycle of periodic swimming, at 1:1
scale (inset) and enlarged. The centreline of the fish is shown in white. The path of the centre of mass
is shown as dots at the time instances where we show the body shape, and with a blue line showing the
path in between. (B) The same motion as A, but all centrelines have been moved such that the centre
of mass is in the same point. Note that the body wave travels towards the rear of the fish in the two time
points highlighted with green lines (also highlighted in C). (C) The curvature of the centreline (colours),
along the length of the fish (horizontal), and over the phase (vertical). Above the heat map, highlighted
slices along the body at two time points are shown (also highlighted in B). The travelling wave character is
also reflected in the curvature. (D) Fast-start motion of a 3 days post fertilisation zebrafish larva, coloured
by time (starting from light grey, ending in black), reconstructed three-dimensionally from multi-camera
high-speed video.

rare (Sfakiotakis et al., 1999). Zebrafish larvae usually swim in two distinct modes: escape
responses and spontaneous swimmingmotion (Budick andO’Malley, 2000). Bothmodes
involve only a limited number of tail beats before the motion is stopped—during most of
the swimmingbout, the fish is accelerating or decelerating. The fast start (Fig. 1.1D) is anob-
vious example of transient swimming behaviour: usually, the fish accelerates strongly from
a standstill as a response to a threat, and then decelerates after some tail beats (Domenici
and Blake, 1997; Li et al., 2014; Nair et al., 2017). In this thesis, we analyse both periodic
(chapter 3, 6) and transient motion (chapter 4, 5, 6). Studies on periodic motion are valu-
able despite their real-life rarity, as the simpler analysis makes it easier to observe general
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1trends and mechanisms. On the other hand, analyses of transient swimming are valuable
because they are closer to actual fish motion.

In addition, most of the studies on swimming kinematics have been done assuming
that the fishmoves in a two-dimensional plane. In some cases, this assumption is valid, e.g.
when experiments were done in relatively shallow water tunnels (e.g. Graham et al., 1990;
Plaut, 2000), orwhen only in-plane swimming bouts were analysed (chapter 3). However,
in many other cases, fish swimming is fundamentally three-dimensional. For example, fish
performing escape manoeuvres show a strong vertical motion component (Fleuren et al.,
2018; Kasapi et al., 1993;Nair et al., 2015), reef-foraging fish need to perform 3Dmanoeuvres
to navigate in complex environments (Gerstner, 1999), and some species perform diel ver-
tical migration (Neilson and Perry, 1990). Also for zebrafish larvae, the three-dimensional
component of their motion is often large (Fig. 1.1D; chapter 4, 5; Nair et al., 2015). Al-
though in-planemotions can be selected to perform two-dimensional analysis (chapter 3),
three-dimensional analyses are essential to study their full range of behaviour (chapter 4,
5).

1.3 Fluid dynamics of swimming
Fish exist over widely varying scales—from enormous whale sharks of around 10 metres
length (Colman, 1997) to tiny fish larvae of only a few millimetres (Parichy et al., 2009).
Across this large range of body length, fish swim with body undulations (Gazzola et al.,
2014), despite considerable changes in fluid dynamics across length scales. The behaviour
of fluids is governed by two main forces: inertia and friction (Anderson, 2001). Inertia is
the tendency of mass to keep its velocity, and friction is the resistance of the flow to velo-
city gradients. Their relative contribution to a fluid-dynamic phenomenon scales with the
Reynolds number (e.g. Bainbridge, 1960):

Re =
ρUL

µ
, (1.1)

where ρ is the fluid density,U is a characteristic speed,L is a characteristic length, and µ is
the dynamic viscosity. Fluid-dynamic phenomena are usually categorised in flow regimes,
based on their Reynolds number. Low Reynolds numbers (Re � 1) are associated with
the viscous flow regime, dominated by friction. At high Reynolds numbers (Re ' 2000),
inertia dominates, although friction may still play an important role to locally shape the
flow. In the intermediate regime (1 / Re / 2000), both inertia and friction are im-
portant. Most adult fish swim in the inertial regime, while most fish larvae swim in the
intermediate regime.

This difference in fluid-dynamic regime has profound consequences for themechanics
and energetics of swimming. Adult fish encounter relatively lower drag compared to larval
fish, due to the relative importance of friction. Furthermore, because the ratio of inertial
to frictional forces changes across the regime, fish must deal with different fluid-dynamic
circumstances as they change swimming speed and size. The consequences and challenges
of swimming in the intermediate regime are discussed in more detail in chapter 2.
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Both adult and larval fish leave a vortex wake behind them as they swim, shedding
one or more vortices at every tail beat that contribute to the hydrodynamic forces (Müller
et al., 1997, 2008; Rosen, 1959). A famous engineering example of a vortex wake is the Von
Kármán wake behind a bluff body (Anderson, 2001). The wake behind many fish looks
broadly similar, but with the rotation direction of the vortices inverted. This results in an
inversion of the jet between them, and therefore the wake produces thrust instead of drag
(Lighthill, 1969). In practice, fish wakes often involve amore complex vortex arrangement;
the precise topology and complexity of the wake varies across species and motion type (Li
et al., 2012, 2014; Triantafyllou et al., 1993), and depends on the body motion. Via pres-
sure and friction forces on the skin, the dynamics of the water are coupled to the internal
mechanics of the fish.

1.4 Internal mechanics
Although kinematics and fluidmechanics of swimming are interesting by themselves, they
are but ameans to an end for the fish. To understand how the fish uses itsmuscles to propel
itself, we need to gain insight into the internal mechanics. For many species, around 50%
of the body consists of axial muscle (Graham et al., 1983; Webb, 1978), in most adult fish
this mainly consists of white, anaerobic muscle for fast manoeuvres, and a much smaller
amount of red, aerobic muscle for cruising (Graham et al., 1983). These muscles are ar-
ranged in myomeres, and attach to each other via connective tissue sheets called myosepts,
and to the spine (Nursall, 1956).

During swimming, the axial muscles left and right of the spine are activated alternately
(Grillner, 1974; Grillner and Kashin, 1976). This asymmetric muscle activation leads to a
net bending moment across the spine, that acts to deform it and helps to create the body
wave. Inmany fish, themuscles are activated in awave travelling backwards along the body,
at a speed much higher than the body wave speed (Blight, 1976; Van Leeuwen et al., 1990;
Wardle et al., 1995). This difference in wave speeds causes some of the muscle to produce
negativework during part of the cycle (VanLeeuwen et al., 1990), which has been suggested
to stiffen the body and transfer power to the tail, where a relatively small amount ofmuscle
is located (McHenry et al., 1995).

Most of these studies were done for adult fish, because direct measurements are diffi-
cult to perform on free-swimming fish larvae (Buss and Drapeau, 2002; Cho et al., 2015).
However, due to the scale differences, and the fact that their muscle system is still in devel-
opment, we expect differences to exist between larvae and adults (chapter 2). Furthermore,
as mentioned above, we expect the larvae to have less neural capacity to control their mo-
tion. To gain insight into how swimming motion is generated by fish larvae, we would to
like examine their internal mechanics.

1.5 Inverse dynamics
Ideally, we wish to investigate the fish larvae’s internal mechanics without interfering with
its free-swimming behaviour. With direct measurement of the internal mechanics, this is
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1difficult to achieve. However, swimming kinematics can bemeasured non-invasively. Film-
ing the fish larvae frommultiple angles requires little disturbance of the natural swimming
environment of the larvae, nor induces a motion of the water. Therefore, we would like
to gather as much information as we can on the internal mechanics of swimming from the
kinematics alone.

This approach of reconstructing dynamics from motion is commonly known as in-
verse dynamics (Knudson, 2007). It is often used in the context of human biomechanics,
for example to reconstruct joint moments and -powers from walking kinematics (DeVita
and Hortobágyi, 2003; Winter, 1983; Winter and Robertson, 1978). These inverse dynam-
ics analyses are relatively straight-forward in this context, as terrestrial motion generally
involves almost-rigid bodies connected by joints, allowing direct computation of joint mo-
ments (Hof, 1992). In contrast, fish bodies are far from rigid, and do not only deform at
specific joints, but along their entire bodies. Thismakes inverse dynamics analyses generally
more difficult to perform.

In the field of fish biomechanics, an inverse dynamics approach has been used to recon-
struct resultant forces and torques from acceleration (chapter 3, 4, 5; Walker, 2004). Ac-
cording toNewton’s laws, the resultant force on the fish’s body is equal to the product of its
mass and acceleration. Therefore, from the acceleration of the centre of mass and the mass
of a body, it is possible to calculate the net force acting upon it: the resultant fluid dynamic
force on the fish. Equivalently, we can calculate resultant fluid-dynamic torques from rota-
tional accelerations of the body. This is, however, complicated by the varying body shape.
Nevertheless, with a suitable computational method (chapter 3), this becomes possible.

We can extract more information from the swimming kinematics if we create models
for components of the system. In the case of resultant forces and torques, we only need
a model of the mass distribution of the fish. However, if we introduce models on the ex-
ternal fluid dynamics and the internal mechanics, we can reconstruct internal mechanics
from kinematics. In this way, Hess and Videler (1984) used a simplified fluid-dynamic and
mechanical model of the fish to calculate internal bending moments along the centreline.
This model was later refined by Cheng and Blickhan (1994) with a more accurate vortex-
panel fluid model, but the same model of the body.

In this thesis, we expand the use of inverse dynamics for fish swimming, reconstruct-
ing resultant force and torques, fluid-dynamic forces, and internal bendingmoments from
high-speed video images with unprecedented accuracy. First, we process the high-speed
video images to reconstruct 3D kinematics. We use the accelerations of the reconstructed
surface of the fish to calculate resultant fluid-dynamic forces and torques. To determine
how these forces are produced along the body, we calculate the flow field around the fish by
feeding the motion into a computational fluid dynamics (CFD) solver. Finally, we recon-
struct internal bending moments based on the motion and the reconstructed fluid forces
with a non-linear beammodel.
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1.6 Aims and content of this thesis
In this thesis, we aim to elucidate the mechanisms behind fish swimming. Specifically, we
aim to understand how the zebrafish larvae can swim effectively from a very early stage
of development, immediately after hatching. Young fish larvae can perform fast starts to
escape from predators, for which they control the speed and direction depending on the
threat. These starts are often followed by a swimming bout, where the larvae reach high
tail-beat frequencies and speeds. With advanced inverse-dynamics approaches, we examine
these motions of zebrafish larvae to help explain how they are able to swim at such an early
stage of development.

In chapter 2, we review the literature on the swimming of larval fish. Many fish hatch
at an early stage of embryonic development, but their survival requires them to swim. Their
locomotion system—muscle, brains, skeleton—is being builtwhile remaining operational.
Furthermore, their size and speed places them in the intermediate flow regime, where fluid-
dynamic forces change rapidly as the fish grow and swim faster. We consider the demands
on fish larvae that these unique conditions create, andwhat solutions have evolved tomeet
these demands.

In chapter 3, we used a two-dimensional inverse-dynamics approach to investigate
the cyclic swimming of zebrafish larvae of 2–5 days post fertilisation (dpf). Young larvae
swim at lower Reynolds numbers than older larvae, resulting in a relatively higher drag.
This requires them to use higher frequencies (f ) and tail amplitudes (A) to achieve the
same swimming speed (U ), as expressed by the Strouhal number (fA/U ). The energetic-
ally inefficient swimming style of young larvae leads to large yawing amplitudes and high
energy losses. This illustrates the challenges of the intermediate flow regime outlined in
chapter 2—young larvae must expend a relatively large amount of energy on swimming
due to the higher contribution of the friction forces.

To make the step to three-dimensional kinematics, we developed a novel method for
reconstructing three-dimensional motion, forces and torques of fish from a multi-camera
video setup, described in chapter 4. For each time point in the video, we fitted a para-
meterised virtual representation of the fish such that its overlap with the camera views is
maximal. In addition, we developed a method to calculate the net forces and torques from
the fitted body model. In the remainder of the thesis, this method is used to reconstruct
swimming kinematics to be used as input for the inverse-dynamics methods.

The tracking method is applied to fast-starts of fish in chapter 5. We used the recon-
structed forces and torques to examine how fish larvae meet the functional demands on
their fast starts. To escape predators effectively, they need to escape with sufficient speed,
and over a wide range of directions. To meet these demands, fish larvae perform C-starts,
where the body first bends into a C-shape, and then unfolds rapidly to produce propul-
sion. We show that most of the reorientation of the body happens in the first stage, which
is generally considered ‘preparatory’. This is followed by a large propulsion peak in stage
2, resulting in most of the acceleration. Thus, the larvae are able to adjust the speed and
direction of the escape mostly independently.
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1In chapter 6, we analysed the internal mechanics of swimming fish larvae across devel-
opment. We used an advanced inverse-dynamics approach, integrating 3D tracking, nu-
merical solution of the 3D equations of fluid dynamics, and non-linear beam theory to
calculate the net bending moments along the fish, including the effects of both active and
passive tissues. Comparing the results on a tail-beat by tail-beat basis, we show that the
spatiotemporal bending moment patterns are similar across development and swimming
speed and acceleration. Our model of how swimming is adjusted reduces to two paramet-
ers: the bending moment amplitude and the tail-beat duration. This relative simplicity
of control might explain how just-hatched larvae are immediately able to swim effectively:
much of the complexity of the physics is taken care of passively.

Finally, in chapter 7, I summarise the results of this thesis, andplace them in thebroader
context of swimming research. I examine the strengths and limitations of the novel meth-
ods used in this thesis. Furthermore, I hypothesise on the consequences of our results for
fish swimming across species and developmental stages. In addition, I give suggestions on
how the knowledge from this thesis could contribute to bio-inspired applications. Finally,
I suggest directions for future research to further lift the veil on themysteries of undulatory
swimming.
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Abstract
Most larvae of bony fish are able to swim almost immediately after hatching. Their loco-
motory system supports several vital functions: fish larvae make fast manoeuvres to escape
from predators, aim accurately during suction feeding and may migrate towards suitable
futurehabitats. Owing to their small size and low swimming speed, larval fishoperate in the
intermediate hydrodynamic regime, which connects the viscous and inertial flow regimes.
They experience relatively strong viscous effects at low swimming speeds, and relatively
strong inertial effects at their highest speeds. As the larvae grow and increase swimming
speed, a shift occurs towards the inertial flow regime. To compensate for size-related lim-
itations on swimming speed, fish larvae exploit high tail beat frequencies at their highest
speeds, made possible by their low body inertia and fast neuromuscular system. The shifts
in flow regime and body inertia lead to changing functional demands on the locomotory
system during larval growth. To reach the reproductive adult stage, the developing larvae
need to adjust to and perform the functions necessary for survival. Just after hatching,
many fish larvae rely on yolk and need to develop their feeding systems before the yolk is
exhausted. Furthermore, the larvae need to develop and continuously adjust their sens-
ory, neural andmuscular systems to catch prey and avoid predation. This Review discusses
the hydrodynamics of swimming in the intermediate flow regime, the changing functional
demands on the locomotory systemof the growing and developing larval fish, and the solu-
tions that have evolved to accommodate these demands.

Glossary

Labriform Swimming mode in which mainly the pectoral fins
are used for propulsion.

Lateral line Sensory organ for flow detection.
Particle image velocimetry (PIV) Velocity measurement technique based on cross-

correlation of particle images.
Particle tracking velocimetry (PTV) Velocity measurement technique based on tracking

of particles in video frames.
Reynolds number (Re) Ratio between inertial and viscous forces in a fluid

(dimensionless number).
Strouhal number (St) Ratiobetween average lateral tail speed and forward

swimming speed (dimensionless number).
Subcarangiform Swimming mode between anguilliform and

carangiform.
Thunniform Swimming mode in which undulations are con-

fined mostly to the tail.
Undulatory Using waves of curvature along the body.
Viscosity Resistance of a fluid to deform under stress.
Viscous flow regime Hydrodynamic regime where viscosity dominates;

Re / 1.
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List of symbols and abbreviations

A peak-to-peak tail-beat amplitude PTV particle tracking velocimetry
CFD computational fluid dynamics Re Reynolds number
CoM centre of mass SR sarcoplasmic reticilum
CoT cost of transport St Strouhal number
D̄ cycle-averaged drag T̄ cycle-averaged thrust
dpf days post-fertilisation v̄ cycle-averaged swimming speed
f tail-beat frequency η Froude efficiency
` body length µ dynamic viscosity
P̄input cycle-averaged input power ν kinematics viscosity
P̄output cycle-averaged output power ρ density of water
PIV particle image velocimetry

2.1 Introduction
After hatching from the egg, most bony fish continue life as a larva, a few millimetres in
length, that needs to survive autonomously. They have to hunt prey to gather resources
for their growth and development, disperse, and escape from predators. This requires the
larvae to swim effectively almost immediately after hatching. They generally use an un-
dulatory swimming style (see Glossary), characterised by caudally directed waves of lateral
bending of their body and tail. As the fish grow from larvae into juveniles, functional de-
mands on the locomotory system change, requiring larval fish to adapt their locomotory
system continuously to these varying requirements.

The fluid-dynamic regimes for swimming fish are defined by the dimensionless Reyn-
olds number (Re; see Glossary) (e.g. Bainbridge, 1960), given by:

Re =
ρv̄`

µ
=
v̄`

ν
, (2.1)

where ρ is fluid density, v̄ is mean swimming speed, ` is body length, µ is dynamic viscos-
ity and ν is kinematic viscosity (see Glossary). The Reynolds number expresses the ratio
of contributions of inertial and viscous forces to a fluid-dynamic phenomenon, which is
crucial to its dynamics. Viscosity is associated with friction between fluid particles, and
inertia (see Glossary) is the tendency of mass to keep the same velocity in the absence of
external forces. Very low Re values (Re � 1) are associated with the viscous flow regime
(see Glossary), where inertia can be ignored. Much largerRe values (Re ' 2000) indicate
that inertia dominates. In the intermediate flow regime (1 / Re / 2000) (see Glossary),
there is a gradual transition fromviscosity-dominated flow atRe ≈ 1 to inertia-dominated
flow atRe ≈ 2000.

Small fish larvae (` / 5 mm) operate in the intermediate flow regime over most of
their range of swimming speeds, whereas larger fish larvae enter the inertial regime (see
Glossary) at their highest swimming speeds (e.g. Fuiman andWebb, 1988; Müller and Van
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11.5 mm
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2.8 mm

3.8 mm
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Paralichthys californicusA B C

Figure 2.1: Line drawings used to illustrate development of external morphology for different spe-
cies, from yolk-sac larva to juvenile. (A) Thunniform (see Glossary): Pacific bluefin tuna Thunnus
orientalis, redrawn from Kaji et al. (1996). (B) Subcarangiform (see Glossary): California halibut Para-
lichthys californicus, redrawn from Gisbert et al. (2002). (C) Labriform (see Glossary): a member of the
genus Pomacentrus, redrawn from Kavanagh et al. (2000). Note that the fish have initially similar shapes
that diverge as they develop into juveniles. The body length of each fish is shown to its left.

Leeuwen, 2004). In the intermediate flow regime, fish larvae have to deal with relatively
strong viscous effects at low swimming speeds, whereas, at their highest speeds, inertial ef-
fects come to dominate. The changing hydrodynamic circumstances affect the production
of fluid-dynamic forces. Hence, demands on the locomotory system change with swim-
ming speed. Because the larvae need to swim throughout a range of speeds, they cannot
adapt to a specific hydrodynamic regime and thus need to compromise in morphology,
physiology and muscle control to accommodate the varying functional demands.

Bony fish larvae change shape considerably over development (Fig. 2.1), but the mor-
phology of early larval stages of most species is surprisingly similar. When the larvae hatch,
they have an elongated body surrounded by a continuous finfold (seeGlossary) behind the
head and yolk sac (Kendall Jr. et al., 1984). These similarities might indicate adaptations
to common developmental constraints and/or common problems in locomotion, feeding
and respiration. As the larvae grow and develop into juveniles, the body shapes of the dif-
ferent species diverge to prepare them for their adult lifestyle and swimming styles. For
example, flatfish such as halibut change from a yolk-sac-bearing larva to a pelagic suction
feeder to an asymmetric benthic flatfish (Fig. 2.1B) (Osse and Van den Boogaart, 1997). In
addition to the changing hydrodynamic regime, these changes over the life history of the
fish also result in changing functional demands.

This Review addresses the locomotory challenges that larval fish have to cope with,
as well as the evolved solutions to the associated functional demands. We discuss the kin-
ematics, fluid dynamics and energetics of swimming, and how the muscles of fish larvae
are adapted to power swimming in the intermediate flow regime. Furthermore, we exam-
ine the functions supported by the locomotory system and how fish larvae have adapted
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Behaviour
Use optimal kinematics
Move to or stay in suitable habitat

Initiate fast starts with minimal delay
Control

Control swimming muscles accurately
Sense predators and prey

Contract at high frequencies
Produce sufficient force and power

Be useable continuously
Muscle

BA
Functional
requirements

Derived
requirements

Specific
requirements

Conserve energy
Minimise cost of transport

Minimise need for swimming

Escape predators

Respond quickly

Accelerate strongly

Control escape angle

Move unpredictably

Hunt and feed

Control mouth position

Develop and time suction flow

Accelerate strongly

Cruise and disperse

Swim prolongedly

Use environmental flow

Swim sufficiently fast

External morphology
Minimise drag

Generate thrust efficiently
Generate high thrust

Figure 2.2: Requirements on locomotion for developing fish larvae. (A) General requirements on
fish larvae, where functional requirements (depicted by different colours) are connected to derived re-
quirements. (B) Specific requirements on the subsystems of the fish. The functional requirement(s) from
A that each specific requirement belongs to is indicated by the small coloured rectangle(s).

to the demands derived from these functions (see Fig. 2.2 for an overview). Cruising is es-
sential for many fish larvae, to disperse or to avoid dispersal caused by environmental flow
(discussed in the section Cruising and dispersal). An important factor for survival is escape
frompredators, requiring the locomotory system to respond quickly and accelerate the fish
strongly (discussed in the section Escaping predators). Fish larvae need to swim to find and
hunt prey after they exhaust their yolk, which requires accurate control to aim their strikes
(discussed in the section Hunting and feeding). Swimming also supports respiration by
renewing the diffusive boundary layer of gases and ions (e.g. Green et al., 2011), and helps
to maintain and control body orientation (e.g. Ehrlich and Schoppik, 2017); for reasons of
space, we do not discuss these two functions. Finally, we provide perspectives for possible
future research.

2.2 Body kinematics
Swimming kinematics are producedby a complex interactionbetween internal bodymech-
anics and fluidmechanics (e.g.McMillen andHolmes, 2006;Tytell et al., 2010). Themuscle
systemof the fish generates forces that cause bodydeformations. The resultingmotionpro-
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Figure 2.3: Swimming kinematics of fish larvae. (A) High-speed-video-derived centreline kinematics
(grey), path of the centre of mass (CoM) of a 5 day post-fertilisation (dpf) zebrafish larva based on a
body-attached CoM approximation method (‘stretched-straight’, red), and a more accurate method based
on a deforming body model with uniform density (‘true’, blue). A two-dimensional (2D) projection of the
body model is indicated for one time instant, with the two approximations of the CoM indicated with circles.
Owing to the large body curvature, the CoM computed with the deforming body model is located outside
the body at this instant; the body-attached CoM approximation fails to capture this feature. (B) Speed
of the CoM based on the body-attached approximation (red) and the deforming body model (blue). The
grey blocks indicate the two swimming cycles, for which the tail-beat averaged speed (horizontal lines)
is calculated; this speed is 15% higher for the body-attached approximation (red) than for the deforming
body model (blue). (C) Resultant forces (black) and yaw torque (orange) on the CoM, calculated with
inverse dynamics. The forces are given in the direction of the instantaneous velocity vector (solid) and
perpendicular to it (dashed). Data for A–C are from Van Leeuwen et al. (2015b,a). (D) Change of max-
imum deformation angle amplitude for two carp larvae, one with a body length of 4.8 mm (green) and the
other 8.1 mm (purple). Standard deviations are indicated by the shaded area. The deformation angle is
defined as the angle between successive, straight equal-length segments (‘virtual body segments’) along
the central axis. Sketches of larvae are redrawn and data are from Osse and Van den Boogaart (2000).

duces a flow field in the surrounding water, creating a fluid-dynamic force distribution on
the skin. In turn, these forces change the loading on the fish, and with it the deformation
of the body. Again, this deformation couples back to the fluid forces, creating a loop of
interactions between the water and the body of the fish. These mechanical interactions
determine the changes in body shape and motion of the fish through the water.

To study these complex interactions, swimming kinematics (i.e. body shape, position
and orientation) need to be determined in detail. Historically, this has been performed
mostly by tracking the two-dimensional (2D)movements of the body centreline and centre
of mass (CoM) in a horizontal plane from a single, vertically oriented movie camera (e.g.
Fig. 2.3A; Müller and Van Leeuwen, 2004), but recently more sophisticated multi-camera
three-dimensional (3D) tracking systems have been developed (e.g. Butail and Paley, 2012;
Voesenek et al., 2016). Results from these new trackers show that swimming motions that
appear 2D in a single (bottom or top) camera view often have a large vertical component.
For example, a fast-starting larval zebrafish [5 days post-fertilisation (dpf)] produced pitch
angles up to 15 deg with respect to the horizontal plane, roll angles up to 30 deg and a con-
siderable vertical speed, demonstrating the necessity of 3D tracking (Voesenek et al., 2016).
Also in 3D, kinematics are generally quantified as the movement and lateral curvature of
the body centre line, 3D body orientation, and the displacement of the CoM.

The CoM of the fish is important to determine because it is the point that the res-
ultant fluid-dynamic forces and torques act upon (Fig. 2.3A,C; Van Leeuwen et al., 2015b;
Voesenek et al., 2016). TheCoMdepends on themass distribution of the fish at every point
in time, and it changeswith deformationof the fish (Tytell andLauder, 2008;VanLeeuwen
et al., 2015b). The position of the CoM along the body axis for a straight fish is often used
to define a body- attached point that can be tracked to estimate theCoMmovement during
swimming. This might be a reasonable approximation for low-amplitude swimming mo-
tions (Xiong and Lauder, 2014), but for high-amplitude motions as found in swimming
larvae, the difference with the true CoM is large (Fig. 2.3A,B; Van Leeuwen et al., 2015b).
Hence, for high-amplitude larval swimming,more sophisticatedCoMestimationmethods
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are required, such as methods based on a 3Dmodel of the deforming body.
Fish locomotion has been divided into cyclic and acyclic swimming. In cyclic swim-

ming, the kinematics repeat themselves and the cycle-averaged speed is constant. In reality,
however, variations between the swimming cycles always occur. Acyclic swimming consti-
tutes a large part of natural swimming motion: turns, escape manoeuvres, feeding strikes
and burst-and-coast swimming. Many fish switch from (approximately) cyclic swimming
toburst-and-coast swimming early indevelopment (Weihs, 1979;Müller andVanLeeuwen,
2004). Much of the work on the fluid mechanics of fish swimming has focused on (near-)
cyclic swimming.

During near-cyclic swimming, many teleost larvae employ an anguilliform swimming
style (see Glossary), where the majority of the body makes considerable lateral excursions.
An example of this motion is shown in (Fig. 2.3A; Van Leeuwen et al., 2015b), which de-
picts the kinematics of a 5-dpf zebrafish larva swimming at a speed of approximately 50
body lengths s−1. Compared with adults, the larva shows high-amplitude motion of the
whole body (peak-to-peak tail-beat amplitudeA ≈ 0.44 ` at the tail) at a high frequency
(≈ 85 Hz). This anguilliform swimming mode is relatively rare in most fish species at
` > 10 mm—larvae often change to a more tail-heavy amplitude distribution later in de-
velopment. Fig. 2.3D (Osse andVan den Boogaart, 2000) shows the amplitude envelope of
the deformation angle between successive ‘virtual body segments’ for a just-hatched carp
larva (4.8 mm) and a larger larva (8.1 mm). The just-hatched larva bends strongly along a
large part of the body, whereas the older larva confines large amplitudes to the tail.

2.3 Fluid dynamics
Analyses of the hydrodynamic forces on the fish are important for understanding swim-
ming. The flow field surrounding the fish creates time-dependent pressure and shear-stress
distributions on the skin. When integrated over the body, these distributions provide a
resultant force and torque, resulting in linear and angular accelerations. It is common to
divide the resultant force into thrust and drag, where thrust propels the fish, whereas drag
opposes its motion. In engineering, drag is defined in the direction of the oncoming flow,
and thrust is opposed to it (Anderson, 2001). In many engineering cases, the propulsive
system is clearly separate from the body, so drag can easily be distinguished from thrust:
drag acts on the body and thrust is produced by the propulsive system. However, for larval
fish that undulate their whole body, this distinction is difficult tomake (Schultz andWebb,
2002). A large part of the body surface contributes to both forward and backward forces,
depending on the phase in the swimming cycle (Fig. 2.4A,B; Li et al., 2016). Almost no part
of the body uniquely contributes to thrust or drag over a complete tail beat cycle, except
the head, which almost exclusively experiences drag. Efforts were made to define drag and
thrust on an undulating body, for example by separating friction forces from inertia forces
(Chen et al., 2011), by estimating thrust from the bodymotion with a fluid-dynamicmodel
(Webb et al., 1984) or by separating forward- and backward-acting forces (Fig. 2.4D–F; Li
et al., 2012). The latter approach gives the most robust definition of thrust and drag, but is
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Figure 2.4: Predicted hydrodynamic force generation by a simplified zebrafish larva at different
Reynolds numbers (Re). These data are from three-dimensional (3D) computational fluid dynamics of a
simplified model of a zebrafish larva with dorsoventral symmetry, for which the travelling body waves were
prescribed, and the changing body position and yaw were computed from fluid-dynamic forces. (A,B)
Surface pressure (A) and shear stress (B) on the left side of the fish at four time instants throughout the
cycle; Re = 340. (C) In-plane streamlines (lines) and pressure (contours) in a typical transversal cross-
section. (D–F) Cycle-averaged forward component of the pressure force (D), shear force (E) and total
force (F) per unit length along the body at different Re. Shear forces contribute almost exclusively to drag,
and their relative importance with respect to pressure forces increases with decreasing Re. Adapted from
Li et al. (2016).
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not generally applicable to measurements on swimming fish because it requires quantitat-
ive estimates of fluctuating force distributions along the body.

Many approaches have been used to measure, estimate or calculate the hydrodynamic
forces. With an inverse-dynamics approach, resultant forces and torques on the body have
been calculated from swimming kinematics of larval zebrafish (2D: Fig. 2.3C; VanLeeuwen
et al., 2015b). Particle image velocimetry (PIV; see Glossary) techniques have been used to
quantify flow fields around swimming fish larvae (e.g. Müller et al., 2008), allowing the
estimation of resultant hydrodynamic forces (Unal et al., 1997; Drucker and Lauder, 1999;
Dabiri, 2005). In addition, velocity fields obtained with PIV have been used to estimate
pressure fields in a horizontal plane around swimming fish (Dabiri et al., 2013). From the
velocity gradient near the body, the shear-stress distribution can be calculated. Therefore,
in principle, it is possible to calculate the force distribution on the skin from a velocity field
around the fish. In practice, it is difficult to quantify this near-body velocity field with PIV
[or with particle tracking velocimetry (PTV; see Glossary)]. Because the flow field around
a swimming fish is fundamentally 3D (e.g. Fig. 2.4), 3D PIV/PTV techniques (e.g. Elsinga
et al., 2006) are required. These techniques are expensive and still have a relatively low spa-
tial resolution, leading to inaccurate estimations of pressure and shear-stress distributions
on the skin. This makes it difficult to obtain reliable force distributions from PIV or PTV.

Force distributions on the fish have been calculated using fluid-dynamic models. In
the inertial flow regime, Lighthill’s elongated body theory (Lighthill, 1960, 1971) has been
used extensively. However, this model is not applicable to the intermediate flow regime
because it models only inertial forces and ignores friction (Borazjani and Sotiropoulos,
2009). Simplified fluid-dynamic models have been proposed (Jordan, 1996; Chen et al.,
2011) where the force on every segment of the body is calculated based only on the motion
of that segment. However, this does not take into account spatial and temporal interac-
tions between segments. Especially for large-amplitude body motion, these assumptions
might not hold (Van Leeuwen et al., 2015b). More advanced models have been applied by,
for example, (Eloy, 2013), who combined different empirical models to achieve more ac-
curate fluid-dynamic forces. Finally, the full Navier-Stokes equations describing fluid dy-
namics have been approximated numerically using computational fluid dynamics (CFD)
techniques for swimming animals, for example tadpoles (Liu et al., 1997), a modelled eel-
like swimmer (Kern and Koumoutsakos, 2006) and zebrafish larvae (Li et al., 2012). This
approach has the advantage of capturing the complete fluid dynamics, andmay provide ac-
curate force distributions on the skin in the intermediate flow regime. In the inertial flow
regime, where turbulence may be important, large-scale differences exist within the flow—
from the smallest turbulent vortices to the much larger wake vortices—which makes ac-
curate numerical flow computations challenging with the current technology. In contrast,
the scale differences are much smaller in the intermediate flow regime, allowing all scales of
the flow to be resolved at achievable computational cost. The calculated flow fields can be
validated with flowmeasurements, for example with planar PIV (Li et al., 2012). We expect
that, in the future, a combination of measured kinematics, flow fields and validated CFD
will allow accurate estimation of force distributions for arbitrary 3Dmotion.
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Such a CFD approach can help us to answer why small fish larvae show high body
curvatures along a large range of the body. For fish swimming in the intermediate flow
regime, the relatively high viscous forces result in three negative effects on swimming per-
formance: (1) relatively high skin friction results in a relatively high body drag (Fig. 2.4; Li
et al., 2012), (2) thrust is more costly to produce (Najafi andGolestanian, 2004), and (3) the
increased amplitudes of the body undulations, necessary to compensate for the relatively
high body drag, themselves further increase drag (Van Leeuwen et al., 2015b). Fig. 2.4D–
F shows the contribution of pressure and shear (friction) forces to the thrust and drag
for a modelled zebrafish larvae swimming at different Re, calculated using CFD (Li et al.,
2016). The shear forces contribute almost exclusively to drag (Fig. 2.4E), and their relative
importance increases with decreasing Re. For the lowest Re values (< 100), a particu-
larly high contribution to friction drag is present in the posterior region, where relatively
strong velocity gradients occur near the skin. Most likely to compensate for the strong fric-
tion effects upon drag, the larval fish generates thrust by producing high-amplitude, high-
frequency body motions (Verhagen, 2004; Müller and Van Leeuwen, 2004; Van Leeuwen
et al., 2015b). This results in a pressure difference across the undulating body (Fig. 2.4D;
Li et al., 2016), with large contributions of dorsal- and ventral-edge vortices created at the
sharp edges of the finfold (Fig. 2.4C). The highest contribution to thrust is present in the
posterior region.

An intriguing experiment with adult African lungfish (Protopterus annectens; ` =
510–590 mm, two orders larger than larval fish) demonstrated the importance of the Re
regime for drag and thrust production (Horner and Jayne, 2008). The viscosity of the sur-
rounding fluid was increased up to three orders of magnitude by adding a polymer to the
water, pushing the Reynolds number of the swimming adult fish into the intermediate
flow regime. The lungfish swam with increased muscle activity and body curvature in the
mid and anterior regions of its trunk, with bending amplitudes (relative to `) approxim-
ating those of fish larvae swimming in plain water. The higher drag at a given swimming
speed in the more viscous regime presumably required an increased bending effort to gen-
erate a similarly higher thrust—the adult lungfish seem to deal with the increased viscous
forces similarly to the much smaller larvae. Note that the tail-beat frequency did not reach
values similar to larval fish because themuch larger body inertia of the lungfish presumably
prevented this.

The dimensionless Strouhal number (St; see Glossary) is an important quantity
relating tail-beat characteristics and forward velocity and is defined as (Triantafyllou et al.,
1993):

St =
fA

v̄
, (2.2)

where f is tail-beat frequency andA is peak-to-peak tail amplitude. The Strouhal number
gives an indication of the wake topology; assuming that vortices are shed at the extremes
of the lateral tail motion, they are laterally spaced at a distance A and longitudinally at a
distance v̄ (2f)−1 (Fig. 2.5A). The Strouhal number of a swimming fish also defines the
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Figure 2.5: Effects of Reynolds
number (Re) on the Strouhal num-
ber (St) and cost of transport
(CoT). (A) St versus Re for zebra-
fish (Danio rerio) larvae of four age
classes (colours). Data from Van
Leeuwen et al. (2015a,b). The blue
region is the suggested optimal St
range of 0.2–0.4 from Taylor et al.
(2003). Indicated on the right, con-
nected to the dashed lines, are the-
oretical wake patterns for St = 0.3
and 2.5. (B) CoT (black) and swim-
ming speed (green) versus Re of a
simplified computational model of a
zebrafish larva swimming in fluids with
different viscosities, using the same
body curvature fluctuations. Despite
the increase in swimming speed with
decreasing viscosity, CoT reduces
with Re. Data from Li et al. (2016).

ratio between oscillatory flow velocities induced by the beating tail (that scale with fA)
and translatory flow velocities (associated with v̄). Drag on an animal scales approximately
with v2, whereas thrust scales approximately with (fA)2. A poorly streamlined animal
generates relatively high body drag at a given v̄ and, thus, to swim periodically, it needs to
generate an equally high thrust force, which is achieved by increasing fA. For this reason,
poorly streamlined animals need to swim at a relatively high St to produce enough thrust
to counter drag, such as crocodiles swimming at St = 0.78 (Eloy, 2012, based on data
of Seebacher et al., 2003). For a similar reason, animals that are ‘streamlined’ but operate
at low Re need also to swim at high St (e.g. the lungfish described above) because the
relatively strong viscous effects similarly result in increased body drag, which consequently
requires an equal increase in thrust production. Owing to this dependency on the friction
forces, St varies with Re in the intermediate flow regime (Fig. 2.5A; Kayan et al., 1978;
Borazjani and Sotiropoulos, 2009; Van Leeuwen et al., 2015b).
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2.4 Energetics
Energy efficiency is important for fish in general, and especially for larvae. Young larvae have
a limited amount of energy in their yolk and are not yet able to feed. Because the ‘primary
goal’ of the larva is to reach the reproductive adult stage and produce offspring, they need
to use as much of this yolk for growth and development as possible. Because swimming
activity can contribute up to 80% of the total metabolism [for larval cod (Ruzicka and
Gallager, 2006)], saving energy on locomotion can have a large impact on the total energy
budget. Therefore, it is useful to define a measure of swimming energetics for comparison
between species and between developmental stages.

Based on the efficiency of thrust production of an oscillating foil in the inertial flow re-
gime,Triantafyllou and colleagues (1993) proposed that optimal efficiency is achieved forSt
values of 0.25–0.35, where the vortices shed by the fish are optimally reused for thrust pro-
duction. For the inertial regime, most examined flying and swimming animals have been
found to operate in an St range of 0.2–0.4 (Taylor et al., 2003). In contrast, within the in-
termediate regime, animals tend to operate at higher St than the optimal range for inertia-
dominated flows (Fig. 2.5A; Eloy, 2012; Van Leeuwen et al., 2015b). To produce sufficient
thrust to overcome the relatively high (viscous) drag at a given swimming speed (see Fluid
dynamics section, above), animals swimming in the intermediate Re regime may need to
operate at relatively high St. Further research is required to elucidate the link between St
value and energy use for the intermediate flow regime.

Another measure often used in the analysis of swimming energetics is the Froude effi-
ciency (η) (Lighthill, 1960), defined as:

η =
P̄output

P̄input

=
T̄ v̄

P̄input

=
D̄v̄

P̄input

, (2.3)

where P̄input and P̄output are the cycle-averaged input and output power, respectively. The
outputpower consists of theproduct of cycle-averaged swimming speed (v̄) andmagnitude
of thrust (T̄ ) or drag (D̄), which are equal during cyclic swimming. However, asmentioned
above, unambiguously separating drag and thrust requires extensive computational effort,
which is not feasible in many cases. But, most importantly, η does not relate to absolute
power consumption, a quantity crucial to the fish. To illustrate, consider a high-drag fish
and a low-drag fish swimming at the same speed with identical η. The high-drag fish has
a higher output power (D̄v̄) than the low-drag fish, and therefore requires a higher input
power, despite having the same η. In agreement with (Schultz andWebb, 2002), these reas-
onsmake Froude efficiency unsuitable as ameasure of energetics forwhole-body swimmers
such as fish larvae.

Instead, a measure of swimming energetics during cruising should give a direct indic-
ation of swimming-related power consumption (Schultz and Webb, 2002). Cost of trans-
port (CoT) (Schmidt-Nielsen, 1972) is defined as a locomotion-related energy consump-
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tion per unit distance and unit mass:

CoT =
Einput

dm
=
P̄input

v̄m
, (2.4)

where Einput is input energy required for locomotion, d is covered distance andm is the
mass of the fish. TheCoT is directly relevant to the energetics of the animal—minimising
CoT at a particular swimming speed is identical to minimising power (and therefore en-
ergy) consumption. Furthermore, determining CoT is not burdened by the difficulties
associated with separating thrust and drag. The CoT is relevant for cruising fish, swim-
ming either (approximately) cyclically or by burst-and-coast. It is less suitable for motions
where maximum acceleration and short response times are paramount, such as fast starts.
Here, an efficiency-like quantity could be used, taking for example the ratio of the final
kinetic energy to the total invested energy.

To calculate CoT, multiple definitions of the input power are possible, either derived
only from the fluid and body dynamics or, better, taking into account all sources of in-
creased energy expenditure due to locomotion, including for example muscles and circula-
tion. The first, which ignores the conversion losses of metabolic energy into muscle work,
can be calculated from CFD results (e.g. Li et al., 2012), whereas the latter can be determ-
ined from, for example, respiration flow-tunnel experiments (e.g.MadanMohanRao, 1971;
Palstra et al., 2008). These experiments are, however, challenging for small larval fish be-
cause they tend to swim in the (low speed) boundary layer or even adhere to the bottom.
Therefore, to measure the swimming speed in a flow tunnel accurately, the flow profile
of the tunnel and the position of the larva within it need to be quantified. Note that
the locomotion-related energy consumption should be extracted from the respirometry-
derived total energy consumption by correcting for the basal metabolic rate.

The body and fluid-dynamic components of the CoT give insight into the energy
expended into the flow, but the quantity directly relevant to the fish is the muscle input
power—the power that is actually consumed for swimming. Because the muscle efficiency
depends on shortening rate and frequency (Curtin and Woledge, 1993), which in turn de-
pend on the motion of the fish, optimal swimming for minimal muscle power presum-
ably needs to compromise between efficient fluid dynamics and optimal muscle shorten-
ing rates. Therefore, the optimal swimming motion that minimises fluid-dynamic power
will in general not minimise muscle power. Hence, depending on the type of analysis, care
should be taken to clearly define theCoT.

Li et al. (2012) studied the effect of swimming speed on (body and fluid-dynamic)
power consumption for a simplified model of a zebrafish by varying curvature amplitude.
This showed thatCoT increases with swimming speed, presumably caused by an increase
in drag. Fig. 2.5B shows the swimming speed and (body and fluid-dynamic) CoT for a
similar model larva swimming at different viscosities with identical body-curvature fluctu-
ations (Li et al., 2016). Owing to a reduction in viscous forces at a higher Re, thrust and
drag are balanced at a higher swimming speed. Despite this higher speed, CoT is lower at
a higherRe: the hydrodynamic regime influencesCoT strongly.
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Fish larvae can actively change theirCoT by selecting the speed at which they swim: a
lower speed tends to result in a lowerCoT (Li et al., 2012). However, constraints often exist
on the time spent to cover a distance. The larva needs to compromise between energy con-
sumption and travel time. For example, for a foraging larva, the amount of consumed food
tends to increase with the average swimming speed, as does theCoT (i.e. power consump-
tion). In this case, the optimal swimming speed might be the one that leads to the highest
net energy gain (energy gained from the foodminus the costs for catching and processing),
balancing between food intake and energy spent on locomotion (Ware, 1975).

2.5 Muscles
Fish larvae power swimming with their axial muscle system. The varying demands on the
muscular system throughout development require continuousmolecular changes and spa-
tial rearrangement of muscle fibres, as well as changes in the neural pattern generators that
orchestrate the spatiotemporal muscle activation. Given the size and scope of this Review,
we do not intend to provide a broad overview of the regulation ofmuscle development and
the molecular changes that occur during the larval phase. Instead, we highlight selected
biomechanical challenges that fish larvae need to cope with and point at evolved solutions.

The trunk muscles in bony fish are arranged in two rostrocaudal series of myomeres,
one at each side of the body, that power the lateral bending of the body during swimming
(Fig. 2.6A). It is advantageous if all muscle fibres in the myomeres can usefully contribute
to themechanical work required to bend the body, and thus power swimming (Alexander,
1969; Van Leeuwen et al., 2008). To achieve this, active muscle fibres need to contract at
similar strains, which depend on their lateral position and orientation. Van Leeuwen and
colleagues (2008) showed that, in zebrafish, the internal arrangement of the muscle fibres
changes over development—they initially have an approximately longitudinal orientation
and rearrange over ontogeny to form near-helical muscle-fibre trajectories (Fig. 2.6B). Van
Leeuwen et al. (2008) suggested that the fibre reorientation results in reduced variation of
the longitudinal muscle-fibre strain over the muscle volume, allowing all muscle fibres to
contribute effectively to work production. Although it is still unclear by which mechan-
ism the muscle fibres rearrange, it was shown that larvae that cannot activate their trunk
muscles undergo a much-reduced reorientation (Van der Meulen et al., 2005). This sug-
gests that the muscle-fibre forces and the deformation of the trunk are essential for the
muscle-fibre rearrangement.

Small fish larvae reach relatively high swimming speeds by beating their tails at high fre-
quencies with large amplitude. Within hours after hatching at 2 dpf, larval zebrafish can
swimwith tail beat frequencies of≈80Hz, and1or2days later even at90–100Hz (Müller
and Van Leeuwen, 2004; Van Leeuwen et al., 2015b,a), allowing them to reach swimming
speeds of≈65 body lengths s−1. To generate these fast motions, the muscle system needs
to produce high strain rates, and activate and deactivate at a high frequency. To meet
these requirements, bony fish larvae have evolved ‘specialised’ very fast larval (embryonic)
muscle-fibre types that are distinct from the slow (red), intermediate and fast (white) fibres
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Figure 2.6: Muscle-fibre reorientation during development of zebrafish. (A) Cross-section of the
trunk muscle of a 15-dpf zebrafish larva. The diagram at the top indicates the location of the slice, at
the anus. Note that only a subset of muscle fibres and myosepta has been labelled. (B) Reorientation of
muscle fibres over development of a larval zebrafish, for 2, 15 and 51 dpf. The vectors indicate muscle-
fibre directions. Each vector is of unit length (indicated by the reference vector at the bottom left) in 3D.
Hence, from the length of each projected vector, the angle with the projection plane can be deduced.
Adapted from Van Leeuwen et al. (2008), who used data for 51 dpf larvae from Mos and Van der Stelt
(1982).

found in juvenile and adult zebrafish (Buss and Drapeau, 2000). What makes these larval
muscle fibres so very fast? They are short [<200 µm in 7 dpf carp larvae (Alami-Durante
et al., 1997)], leading to small activationdelays along the fibre. High-frequency contractions
require fast release and uptake of Ca2+ from the sarcoplasmic reticulum (SR). This ismade
possible by a relatively large membrane surface of the SR and by short diffusion distances
within myofibrils with a comparatively small diameter [≈0.3 µm in larval herring (Vieira
and Johnston, 1992); ≈1–1.2 µm in adult saithe (Patterson and Goldspink, 1976)]. Fur-
thermore, different isotypes of the Ca2+-binding protein parvalbumin are expressed over
development (Focant et al., 1992; Huriaux et al., 1996), suggesting specific adaptations to
the demands on fast Ca2+ release and uptake. In addition, fish larvae have distinct isoforms
of myosin heavy chain and myosin light chain proteins compared with those of juveniles
and adults (Scapolo et al., 1988; Crockford and Johnston, 1993;Huriaux et al., 1999;Veggetti
et al., 1993), which is suggested to correspond to the extreme demands in larvae. Early fish
larvae have been observed to have high mitochondrial densities in the muscle (Vieira and
Johnston, 1992; Brooks et al., 1995). This, together with the short diffusion distances, sug-
gests that small larvae always swim almost entirely aerobically with their very fast muscle
(El-Fiky et al., 1987; Wieser, 1995). As the larvae grow, tail-beat frequencies are decreased
owing to the increasing body inertia. At this stage, slower muscle-fibre types appear, suit-
able for cruising aerobically with higher efficiency than the very fast muscles (Mascarello
et al., 1995).

The muscle system needs specific activation patterns to perform effective swimming
motion. Muscle activation patterns during swimming are often measured with electro-
myography (EMG) in adult fish (e.g. Blight, 1976; Van Leeuwen et al., 1990; Horner and

38



2

Jayne, 2008). For smaller larval fish, this technique is difficult without strongly disrupting
swimming behaviour. Muscle activation patterns were measured in so-called fictive swim-
ming, where a paralysed fish is stimulated to swim and an EMG signal is recorded at the
muscles (Buss and Drapeau, 2002). These investigations showed that muscle activation
patterns in larval zebrafish are similar to those of the adult fish, with alternating left–right
activation of the muscle with a rostrocaudal delay. More recently, a method was proposed
to measure muscle activity on a fixed, but non-anaesthetised, zebrafish larva (Cho et al.,
2015). However, as far as we are aware, no muscle-activation-pattern measurements have
been performed on free- swimming larval fish, limiting our knowledge on the locomotory
control in fish larvae.

To drive the very fast muscle system, the neural motor system should be up to the
task of generating very fast activation patterns. The motoneurons in the spinal cord of
the larval zebrafish that innervate the muscles are arranged in left and right dorsoventral
columns (McLean et al., 2007; Fetcho andMcLean, 2010). The fastest primary motoneur-
ons lie dorsally and activate high-power, high-frequencymotions, whereas the slowest mo-
toneurons lie ventrally and activate finely controlled low-frequency motions. The fastest
motoneurons develop first; the slowest motoneurons develop last. Thus, the function-
ally different motoneurons are spatially segregated and their appearance is shifted in time.
McLean and colleagues (2007) suggested that the activationof themotoneurons takes place
according to the size principle (Henneman et al., 1965)—the dorsal motoneurons are larger
than the ventral ones and more difficult to recruit. In the hindbrain, very large so-called
Mauthner (and homologous) neurons are already present in just-hatched larvae. Their ax-
ons run along the entire spinal cord and innervate motoneurons. These neurons drive the
fast starts by initiating an almost instantaneous activation along one side of the trunk (see
Escaping predators section, below). The early presence of theMauthner neurons and their
homologues, and the fastest motoneurons, support fast high-frequency motions from the
day of hatching in the larval zebrafish, but fine control is still lacking owing to the absence
of functional slowermotoneurons, which are still developing. This results in fast but ‘visu-
ally chaotic’ swimmingmotions of 2-dpf larvae, which seem hard to predict andmight still
be effective for predator avoidance. Later in development, the response to threats becomes
more refined (see also Escaping predators section, below).

2.6 Cruising and dispersal
Anobvious reason to swim is to cover distance formigration anddispersal: many fish larvae
disperse early in development, travelling long distances (e.g. Sancho et al., 1997; Dudley
et al., 2000). For late-stage reef-fish larvae, active swimming might affect dispersion at a
magnitude comparable to that of oceanic currents (Fisher, 2005; Huebert and Sponaugle,
2009). These late-stage larvae are relatively large (15–30 mm) and swim at relatively high
speeds [≈0.2–0.6ms−1,≈10–20body lengths s−1 (Fisher, 2005)], and so theirRe values
(3300–20, 000) are well within the inertial regime. The resulting low CoT allows them
to disperse over longer distances, and their relatively high swimming speed allows them
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to achieve this within a suitable time window. Even larvae of non-migrating species often
need to cruise. Larvae foraging in habitats of low food abundance need to swim relatively
long distances to find prey. In addition, in the presence of a prevailing current, larvae need
to swim for prolonged periods to remain in their current habitat, unless they have an organ
to attach themselves to the substrate (Able et al., 1984; Pottin et al., 2010).

Virtually all bony-fish larvae have a functional finfold when they hatch (Kendall Jr.
et al., 1984). To what extent could such a finfold be useful for swimming in the interme-
diate flow regime? As explained above (see Fig. 2.4), fish larvae swimming in this regime
need to produce high thrust to compensate for high drag. To this end, fish larvae adopt
an anguilliform swimming style, with a large region along the body that curves substan-
tially and produces thrust. Using CFD, Li and colleagues (2016) showed that production
of thrust is enhanced by edge vortices emanating from a sharp edge, making a finfold sur-
rounding a large part of the body an effective adaptation to increase thrust. Keeping the
body-curvature fluctuations the same, they also computed that a removal of the finfold,
except for the caudal fin, leads to a decrease in swimming speed and fluid-dynamic power
input, butwith almost the same fluid-dynamicCoT. Thus, comparedwith the finfold-less
larval morph, the morph with finfold covers distance within a shorter time with the same
fluid-dynamic costs. This might be advantageous duringmigration and searching for prey,
if the higher power can be delivered with the muscular system. These findings might help
to explain the omnipresence of the finfold in larval bony fish.

As the larvae grow, inertia becomes more important during swimming. The associ-
ated relative drag reduction allows many fish to shift towards a carangiform swimming
mode (see Glossary) by reducing the relative curvature amplitude along their bodies (see
Body kinematics section; Osse and Van den Boogaart, 2000). This change in swimming
style correlates with development ofa separate caudal fin in many species (Osse and Van
den Boogaart, 1995). In some species, development of the caudal fin occurs before that of
other unpaired fins, presumably because it has the largest contribution to thrust produc-
tion [black rockfish (Omori et al., 1996), yellow-fin mullet (Kingsford and Tricklebank,
1991)].

2.7 Escaping predators
Predation is an important cause of mortality in fish larvae (Sogard, 1997). Hence, the
chances of survival will increase with increasing ability to escape predators. Larval fish gen-
erally attempt to escape predators by performing a ‘C-start’, during which they curl their
body into a C-shape, with little movement of the CoM (stage 1, or preparatory stroke), and
then uncurl to generate high thrust, and therefore high accelerations of their CoM [stage
2, or propulsive stroke (Müller et al., 2008)]. This motion is often followed by a high-
amplitude, high-frequency swimming bout (Müller and Van Leeuwen, 2004). Fig. 2.7A
shows an example of a 3D kinematic analysis of a fast-starting zebrafish larva (data in Data-
set 1), illustrating the strong body curvature at the end of the C-phase, the subsequent
push-off phase with a rapid increase in CoM velocity, and the 3D nature of the motion.
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Figure 2.7: Escape responses
by larval fish. (A) Fast-start es-
cape response by a 3-dpf zebra-
fish larva (top view, side view and
3D view) automatically tracked
from three synchronised high-
speed video cameras at 2000
frames s−1 using the setup and
method described in Voesenek
et al. (2016). Fish midlines are
indicated in 3D with lines col-
oured by time. In all views, three
3D renders are shown: at the
start of the escape, at the end of
stage 1 and at the end of stage
2. Based on unpublished data
by C.J.V., R. P. M. Pieters and
J.L.v.L. (B) Contours of velocity
magnitude and velocity vectors
around a zebrafish larva perform-
ing a C-start, simulated with com-
putational fluid dynamics (CFD),
along with sketches of the flow il-
lustrating the evolution of jets and
vortex rings, at different time in-
stants. The contour plots are
shown in the x–y plane, at the
height indicated by the blue line
over the sketch of the zebrafish.
In the sketches at the right, jets
(arrows) and vortex rings (dotted
lines) with the same colours over
multiple time instants indicate that
they are the same structure. Ad-
apted from Li et al. (2014). (C)
Timing of escape responses is im-
portant for survival. The probabil-
ity of escape depends on distance
from the predator’s mouth, and the
angle with respect to the pred-
ator’s heading. In the figure, the
sketch of the fish head represents
the predator; the escape probab-
ility is indicated by colour, binned
by angle and distance; inside each
bin is the number of samples. Ad-
apted from Stewart et al. (2013).
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Initiation ofthe C-start requires fast unilateral activation of the axial muscles [e.g. for adult
bluegill sunfish (Jayne and Lauder, 1993)]. Such manoeuvres require concerted actions of
the complete locomotory system: the sensory-motor systemneeds to detect threats reliably,
and initiate and control the escape; the muscular system should produce enough force and
power at short activation times; and the external morphology needs to support effective
hydrodynamic thrust production to maximise acceleration.

2.7.1 Producing high accelerations and velocities

During thepreparatory stroke, zebrafish larvaeproduce a jet flow into theC-form(Fig. 2.7B;
Li et al., 2014; Müller et al., 2008). The resulting pressure distribution on the body mainly
produces a torque that rotates the larva (Li et al., 2012). In the following propulsive stroke,
the jet is reoriented along the body (Fig. 2.7B), where the pressure distribution propels the
fish forward and provides a torque that counteracts the angular velocity produced in the
preparatory stroke. The relatively high thrust results in high accelerations; for zebrafish,
up to 28 g (Müller and Van Leeuwen, 2004). CFD simulations indicate that the typical
motions of a C-start in larval fish tend to maximise escape distance (Gazzola et al., 2012).
After the propulsive phase, larvae use large-amplitudehigh-frequencymotion, up to≈100
Hz [zebrafish (Müller and Van Leeuwen, 2004; Van Leeuwen et al., 2015b)]. Larval fish in-
crease their fast-start performance over development, decreasing the time spent performing
a start and increasing the distancewithin that time, which is suggested to be associatedwith
an increase inRe [Chinook salmon (Hale, 1996)].

The high-frequency body undulations require the muscle system to operate at the
same high frequencies and produce relatively high forces and power within a short time
(< 5 ms) to push off against the water with the tail. These short high-amplitude contrac-
tions lead to high strain rates, and put high demands on the activation and deactivation
systems. This conflicts with the requirement to produce high force: superfast muscle re-
quired for high-frequency swimming tends to produce low tensile stresses at low efficiency
(Rome et al., 1999). However, because the larvae are small, scaling works in their favour:
the produced force is proportional to the muscle physiological cross-section, which scales
with `2, whereas bodymass is approximately proportional to the volume,which scaleswith
`3.The favourable ratio ofmuscle cross-section to body inertia allows larvae to produce suf-
ficient muscle force to power strong accelerations. Furthermore, fish larvae might employ
an elastic mechanism to support swimming at high frequencies (Müller andVan Leeuwen,
2004). For example, larval carp have smaller, stiffer isoforms of titin than adults, suggested
to contribute to an increased muscle and body stiffness and possibly elastic energy stor-
age (Spierts, 2001). As fish larvae grow, the required hydrodynamic power for escaping in-
creases but it is compensated by a decrease in the required muscle shortening velocity and
an increase in muscle mass, leading to an increase in total muscle force and power [carp
(Wakeling et al., 1999)].

42



2

2.7.2 Timing and controlling the escape

When attackedby a slow-movingpredator, as is often the case for suction-feedingpredators
(Webb, 1984), fish larvaemay reachhigher speeds than the predator. In these cases, predator
detection rather than locomotor performance has been suggested to be themost important
determinant of escape success (Nair et al., 2017). Prey escape success in zebrafish larvae
is highest when they respond at an intermediate distance (4–8 mm) from the predator
(Fig. 2.7C; Stewart et al., 2013). Larger response distances allow the predator to adjust its
intercept course, whereas smaller distances do not give the larvae enough time to escape.
This places requirements on the sensing systems, to detect predators sufficiently early, and
on the control of the escape, to perform an adequate response.

Flow sensing using the lateral line (see Glossary) plays an important role for predator
detection (McHenry et al., 2009). Zebrafish larvae detect the approach of a predator by
sensing pressure differences, and escape in the direction away from the fastest flow (Stew-
art et al., 2014). In Atlantic herring, late-stage larvae make more-sophisticated escape man-
oeuvres than younger larvae and undergo fewer false alarms (Fuiman, 1993), suggesting that
they becomebetter at performing a proportional andwell-timed response, presumably ow-
ing to learning, and improved sensing and control capabilities.

Fish larvae also use visual cues to detect threats. Zebrafish larvae of 5–6 dpf respond to
a growing dark spot (i.e. a looming stimulus) by performing an escape manoeuvre after it
has reached a critical size on the retina, suggesting relatively advanced visual processing early
in development (Dunn et al., 2016). Herring larvae only show responses to looming stimuli
late in development (at 25 mm body length), whereas early larvae do respond to flashing
stimuli, indicating that visual processing power increases over development (Batty, 1989).
Comparedwith sound or touch, visual responses result inmore escape trajectories directed
away from the stimulus. Hence, it is likely that improvements in the sensory systems allow
older fish larvae to escape predators more effectively.

Fast reaction times place requirements on the neural control of escape manoeuvres
and sensors to detect approaching predators. The fast-start response to stimuli is con-
trolled mainly by the Mauthner neurons and their homologues (Wilson, 1959; Foreman
and Eaton, 1993). A group of three reticulospinal neurons—the Mauthner cell, MiD2cm
and MiD3cm—initiates escape manoeuvres in zebrafish larvae: the Mauthner cell is in-
volved in responding to tail-directed stimuli, whereas the two other neurons respond to
head-directed stimuli (Liu and Fetcho, 1999). This system develops early in zebrafish: lar-
vae show a strong swimming response to touch stimuli after 2 days of development (Eaton
and Farley, 1973), allowing them to respond to threats immediately after hatching. The re-
sponse time to visual stimuli is often much larger than that of acoustic stimuli, and delays
in both decrease throughout development [red drum larvae (Fuiman et al., 1999)].

Following an optimal escape trajectory requires precise control of muscle activation
patterns. In adult goldfish, the escape trajectory is controlled by the relative magnitude of
ipsilateral and contralateral muscle contraction, and by the delay between them (Foreman
and Eaton, 1993). Furthermore, fish larvae actively regulate the elevation angle of their fast
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starts, likely by separate activation of hypaxial and epaxial muscle [zebrafish (Nair et al.,
2015)], and presumably also by using their medial and paired fins. During a strong C-start,
an escaping larva can intercept its own wake, which causes a deflection of the escape path
of more than 5 deg (Li et al., 2014). For precise control over the final heading of the escape
trajectory, this should be taken into account by the neural control system.

2.8 Hunting and feeding
The vastmajority of hatched fish larvae die before they reach the juvenile stage, often owing
to starvation (Hjort, 1914; Houde, 2002). As soon as larvae exhaust their yolk, they need
to hunt prey to meet their energy requirements. Limited energy supply arising from inef-
fective feeding can cause starvation; in a less extreme case, it can limit the growth rate of
the larva (Lee et al., 2010). The resulting smaller size might negatively affect survival owing
to increased predation of smaller larvae (Peterson and Wroblewski, 1984). To gather the
required food, nearly all teleost fish larvae are pelagic suction feeders preying on zooplank-
ton after they exhaust their yolk sac (Hunter, 1980; Drost, 1987). Suction feeding places
requirements on the developing fish: it needs to be able to detect prey, approach it while
aiming the mouth, create an accurately timed suction flow, and subsequently swallow and
digest the prey (Osse, 1989). The hydrodynamics of suction feeding depends on the Reyn-
olds number. Feeding under relatively viscous conditions generally seems less successful
because the prey can more easily escape the suction, requiring smaller forces than in a less
viscous flow regime (China andHolzman, 2014). For this reason, larger fish can catchmore
prey and hence survive longer.

The locomotory system supports suction feeding by allowing the fish to control and
time its prey approach for effective capture (VanLeeuwen, 1984). Duringundulatory swim-
ming, the head oscillates with respect to the path of the CoM (Van Leeuwen et al., 2015b).
Thismakes a precise approach of the feeding apparatus towards the prey difficult, especially
without creating large flow disturbances that might be sensed by the prey. The fish require
specific adaptations to achieve this, either another means of propulsion (e.g. pectoral fins)
or specific control patterns that limit head motion and hydrodynamic disturbances [e.g. a
J-turn (Bianco et al., 2011)].

Pectoral fin movement to brake and manoeuvre during suction feeding has been ob-
served in adult (Higham, 2007) and juvenile (Lankheet et al., 2016) fish. Pectoral fins have
been suggested to play a respiratory function in larval zebrafish, rather than a locomotory
one (Green et al., 2011; Hale, 2014), because genetic elimination of the pectoral fins did not
seem to influence slow-swimming performance. However, during feeding, theymight play
an important role in aligning the head through control of the pitch and yaw angles, as well
as contributing to forward acceleration anddeceleration. Fig. 2.8Adepicts a carp larvae per-
forming a feeding strike (Drost et al., 1987). It beats the pectoral fins to approach the prey,
adducts them against the body and then brakes by flapping them forward. Zebrafish larvae
beat their pectoral fins to align themselves before a strike, perform an S-start to accelerate
and finally brake using forwardmotionof the pectoral fins (Fig. 2.8B).The S-start produces
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Figure 2.8: Pectoral fin use
during feeding of carp and
zebrafish larvae. (A) Traces
from high-speed-video frames of
a 6.5-mm carp (Cyprinus carpio;
pale grey) larva while sucking
prey (Artemia; dark grey). Re-
drawn from (Drost et al., 1987).
(B) High-speed video frames of
a 5-dpf zebrafish larva perform-
ing a feeding strike on a piece
of debris. Based on unpublished
data by C.J.V., R. P. M. Pieters
and J.L.v.L. For both panels,
time is relative to the moment of
mouth opening, and each draw-
ing/frame connects to the asso-
ciated point on the time axis.

much lower yaw angles of the head than the C-start, allowing for an accurate alignment of
the head.

Newborn juvenile guppies (Girardinus metallicus) have a partly ‘innate’ feeding beha-
viour, butmore advanced eye-fin coordination develops rapidly after birth (Lankheet et al.,
2016). Early zebrafish larvae (6–8 dpf) have been suggested to have fine motor control dur-
ing feeding, showing complex bend-to-bend variation in timing and rostrocaudal location
of bending (Borla et al., 2002). Prey tracking in zebrafish larvae is visually guided (McEllig-
ott and O’Malley, 2005). Because the eye becomes functional only after hatching (which
occurs at 2 dpf) [zebrafish (Glass and Dahm, 2004)], rapid development of the visual pro-
cessing system is required before the first feeding at approximately 5 dpf.

2.9 Perspectives
Much work on the swimming of fish has been performed under the assumption of peri-
odic motion, although the majority of swimming behaviour of most (larval) fish is aperi-
odic. With the exception of fast starts, aperiodic motion has been studied much less. Fur-
thermore, owing to technical limitations, much of the analyses have been done in a single
plane, even though swimmingmotion is often highly 3D.Many open questions remain on
the kinematics, fluid dynamics and control of complex 3D manoeuvres often performed
by the fish during escape or hunting.
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Whereas the fluid dynamics of wakes behind swimming fish has received considerable
attention, both experimentally and numerically, the resulting force distributions on the
skin have not. As demonstrated with dedicated CFD solvers (e.g. Li et al., 2016—see Fluid
dynamics section), the fluid dynamics of swimming in the intermediate flow regime and
the resulting force distributions can be well modelled using CFD techniques, because the
lack of turbulence allows all relevant scales of the flow to be resolved accurately. The ad-
vent of open-source fluid-dynamic solvers [e.g. OpenFOAM (Jasak et al., 2007)] make this
possible at low cost with comparatively limited programming effort. There are interest-
ing opportunities to numerically investigate force, torque and power production, and 3D
manoeuvring, and how these correlate with shifts in the fluid-dynamic regime.

The development and restructuring of the axialmuscle of larvae have been investigated
in previous studies, but research on the physiological properties and activation patterns of
the larval muscle system is relatively limited. Larval fish have adapted to the required high-
frequency contractions with specific larval muscle-fibre types, possessing unique proper-
ties. Research on these properties could uncover how larval muscle can generate sufficient
force at such high frequencies. Furthermore, althoughmany studies havemeasuredmuscle
activation patterns of swimming adult fish, little is known about these patterns in free-
swimming larval fish. These measurements might answer how larvae produce swimming
motions with their muscles, how this changes over development and whether muscle con-
trol is innate or learned. Owing to the small size of the larvae, both muscle-property and
muscle-activation measurements are challenging and will require novel methodologies.

Many studies have addressed different aspects of the biomechanics of larval swimming
separately. However, swimming motion is created by a complex interaction between the
different components; to understand the system as a whole, the components need to be
studied integratively. By combining models and measurements of different systems of the
fish, including the neuromuscular system, passive tissues and the fluid dynamics, an in silico
integrative neuromechanical model of the fish larva can be developed. Although a daunt-
ing task, such an approach will allow investigators to study the effect of the variation of a
large range of parameters on swimming performance in an unprecedented way, andmight
therefore answer numerous questions on the locomotory system of larval fish throughout
their development.
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Abstract
Small undulatory swimmers such as larval zebrafish experience both inertial and viscous
forces, the relative importance of which is indicated by the Reynolds number (Re). Re
is proportional to swimming speed (v̄swim) and body length; faster swimming reduces
the relative effect of viscous forces. Compared with adults, larval fish experience relatively
high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high
level, they must employ a high product of tail-beat frequency and (peak-to-peak) amp-
litude fAtail, resulting in a relatively high fAtail/v̄swim ratio (Strouhal number, St), and
implying relatively high lateral momentum shedding and low propulsive efficiency. Using
kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish
aged 2–5 days post-fertilization (dpf). Larvae at 4–5 dpf reach higher f (95Hz) andAtail

(2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating
increasing muscle powers. AsRe increases (60→ 1400), St (2.5→ 0.72) decreases non-
linearly towards values of large swimmers (0.2–0.6), indicating increased propulsive effi-
ciency with vswim and age. Swimming at high St is associated with high-amplitude body
torques and rotations. Low propulsive efficiencies and large yawing amplitudes are un-
avoidable physical constraints for small undulatory swimmers.

3.1 Introduction
Being small has costs and benefits for swimmers and flyers. On the one hand, small swim-
mers and flyers experience relatively strong viscous forces resulting in high drag, reduced
stride length `stride (distance travelled per cycle) and propulsive efficiency (Batty and Blax-
ter, 1992;Borazjani andSotiropoulos, 2009b;Chattopadhyay et al., 2006; FuimanandBatty,
1997; Osse and Van den Boogaart, 1999). On the other hand, they have relatively high
muscle strength and low body inertia, affording small flyers and swimmers excellent ma-
noeuvrability—they achieve high rotational accelerations (Fry et al., 2003; Müller and Van
Leeuwen, 2004; Verhagen, 2004). Small swimmers often move in the intermediate flow
regime, where both viscous and inertial forces play an important role. The ratio of inertial
to viscous forces is expressed by the Reynolds number:

Re =
ρwater`bodyvswim

µ
, (3.1)

with ρwater the density of water, `body the body length of the fish, vswim the swimming
speed (defined here as the speed of the centre of mass (CoM)) and µ the dynamic viscosity
ofwater. Symbols and definitions are listed in the electronic supplementarymaterial, Table
S3.1.

Fish larvae, compelled to generate high thrust with their posterior body to overcome
the high drag on the anterior body (Li et al., 2012), must use high tail-beat frequencies and
amplitudes to generate the required high rate of change of momentum of the fluid. Fast,
large-amplitude tail beats can cause large lateral forces on thebody and large torques around
the CoM, in turn causing large yaw accelerations. Large yaw can increase drag, which then
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requires more thrust to overcome. The large body deformations should also cause signi-
ficant fluctuations in the fish’s moment of inertia. Furthermore, we expect fluctuations in
swimming speed and kinetic energy due to the time-varying nature of thrust production
with a flapping propeller that causes large fluctuations in instantaneous force, both in dir-
ection and in amplitude. So far, these consequences have not been explored systematically
and their relationwith swimming speed andRe is unclear. Here, we quantify these aspects
in zebrafish larvae using a combined kinematic and inverse-dynamics approach and show
how body kinematics and dynamics vary withRe.

Large body undulations affect also the fluid-dynamic efficiency of swimming and cost
of transport. Computational studies of larval swimmers have shown that increasing body-
wave amplitude steadily increases energy cost per unit distance while propulsive efficiency
plateaus at a value just above 0.3 at tail-beat frequency f = 57 Hz (Li et al., 2012), sug-
gesting that fish larvae use body-wave amplitudes that maximize fluid-dynamic efficiency
at acceptable costs of transport. Nevertheless, swimmers in the viscous and intermediate
flow regime (Re < 300) often achieve only lowpropulsive efficiency (Chattopadhyay et al.,
2006; Borazjani and Sotiropoulos, 2009b). Propulsive efficiency in fluids strongly depends
on vortex shedding dynamics, which correlates with the Strouhal number:

St =
fAtail

v̄swim
, (3.2)

where v̄swim is the mean swimming speed during cyclic swimming, Atail is the peak-to-
peak amplitude of the tail tip. Several studies suggest (Eloy and Schouveiler, 2011; Nudds
et al., 2014; Taylor et al., 2003; Triantafyllou et al., 1993) that swimmers in the inertial flow
regime swim close to the St that maximizes efficiency (St = 0.25–0.35 for carangiform
swimmers and 0.4–0.5 for anguilliform swimmers (Borazjani and Sotiropoulos, 2009b,c,
2010; Eloy, 2012). By contrast, small organisms swimming in the viscous and intermediate
flow regimes experience relatively higher drag forces, which reduces relative stride length
(`stride/`body) and increases St, indicating a high-energy wake with a relatively large com-
ponent of lateral momentum and thus low efficiency (Borazjani and Sotiropoulos, 2009b;
Müller andVan Leeuwen, 2004; Tytell, 2004b). Adult fish increase v̄swim in proportion to
f while keeping Atail nearly constant, implying that St and propulsive efficiency remain
nearly constant (Tytell, 2004b; Bainbridge, 1958; VanWeerden et al., 2014). In cyclic swim-
ming, Stmust increase with decreasingRe if a swimmer is to balance thrust and drag over
the tail-beat cycle (Borazjani and Sotiropoulos, 2009c). Fish larvae are particularly inter-
esting because they swim in the critical Re range that corresponds to the transition from
high to low St (Borazjani and Sotiropoulos, 2009a,c). As body size and swimming speed
increase,Re increases, and so should efficiency.

By changing vswim, larvae change Re and thus the relative influence of inertial and
viscous forces. Using v̄swim to compute Re (electronic supplementary material, Equation
S3.3), it follows that St relates toRe as

St =
ρwaterfAtail`body

µRe
=

Sw

Re
, (3.3)
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whereSw =
(
ρwaterfAtail`body

)
/µ is the dimensionless swimming number (introduced

by Gazzola et al. (2014)). To explore how St varies withRe, and hence what larval fish can
do to increase hydrodynamic efficiency, we determined f andAtail for a range of (nearly)
cyclic swimming speeds spanning more than one order of magnitude.

Changes in Re and St are confounded by larval development. We expect develop-
mental stage to profoundly affect swimming performance, because body shape and size
as well as sensory, neural and muscular properties change rapidly in the first days of larval
development. The changes inmuscle size, structure and physiology are expected to provide
a higher power output, enabling an increase in f orAtail, or a combination of both.

We aim to quantify the body kinematics and dynamics of larval zebrafish aged 2–5 dpf
(days post-fertilization), including body torques and Strouhal number, and their relation
with developmental age and swimming speed,which indirectly yields performance require-
ments for swimming muscles. Our data also provide validation criteria for computational
swimming models.

3.2 Material and methods

3.2.1 Animals

Zebrafish larvae (Danio rerioHamilton 1822) were reared in the laboratory fromwild-type
stock at a water temperature of 28◦C and a 12 L : 12 D cycle. We used larvae at age 2, 3, 4
and 5 dpf. Larvae were fed Paramecium twice a day at age 5 dpf.

3.2.2 Kinematic analysis and force on centre of mass

We used custom software developed in Matlab R2013a (Mathworks, MA, USA) for our
analysis. To collect kinematic data of cyclically swimming larvae, we used three video set-
ups recording at 1000–2000 frames s−1 (see the electronic supplementary material, §S3.2
for details). We recorded spontaneous and elicited swimming sequences (by approach-
ing individual larvae with a horse hair) and selected 8–11 sequences per age group. We
manually digitized 18–25 points on the fish’smidline of every video frame, then smoothed
and interpolated the midlines to obtain 51 equidistant points (see the electronic supple-
mentary material, §S3.3.1 for details). We defined two Cartesian coordinate systems, an
earth-bound frame of reference, XYZ , and a ‘fish-bound frame’ XmovYmovZmov with
the origin located at the fish’s CoM and axes parallel toXYZ . We selected sequences with
a small Z-component, and assumed that fish moved parallel to theXY -plane. To ensure
that we include only (near-)cyclic swimming events (a prerequisite for computing Strouhal
numbers), we identified 38 close-to-cyclic swimming events by calculating auto-correlation
functions of the bodywave (expressed as51 segment angles) for all tail beats of a given event
and selected video sequences comprising at least three consecutive tail beats above the nor-
malized auto-correlation threshold of 0.975 and at least two extrema in the body angle
(αbody).

To determine the body shape of larvae (details in the electronic supplementary mater-
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ial, §S3.3.1), wedigitized theoutline of the fin fold, body, eye andyolksac indorsal and lateral
views of larvae aged 2–5 dpf (five per age group) at 51 equidistant points from snout to
tail tip. We selected the larva whose values were closest to the per age average, to represent
the body shape of its age group.

We estimated body volume by modelling the fish as a series of 51 segments by fitting
ellipses to thehead, eyes, fin fold, trunk (excluding fins) and yolk sac (for details, see the elec-
tronic supplementary material, §S3.3.1 and Fig. S3.1). We assumed a uniform mass density
(ρfish = 1000 kg m3) over the entire body. For each segment, we computed volume Vi,
massmi, and position vector ri of the local CoM by numerical integration. The average
`body for stages 2–5 dpfwere 3.39, 3.81, 4.37 and 4.36mm(N = 5 larvae per age group).
Bodymassmbody was computed as the sumof the segmentalmasses, resulting in 239, 289,
414 and 373 mg for stages 2–5 dpf. These values for `body andmbody were used for all
subsequent computations.

We then calculated the instantaneous position, velocity, acceleration and force acting
on the CoM from the instantaneous positions of the body segments (see electronic supple-
mentary material, §S3.3.1 for details).

3.2.3 Instantaneous moment of inertia, body angle, angular velo-
city and torque

For each body segment i, we computed the moment of inertia Ji about the segmental ver-
tical centre line and the moment of inertia with respect to the CoM JCoM, i about the
verticalZmov-axis in the fish frame of reference (electronic supplementarymaterial, §S3.3.3
Equations S3.6 and S3.7) to ultimately derive the instantaneous moment of inertia of the
body Jbody with respect to the CoM location (electronic supplementary material, Equa-
tion S3.8). We computed the instantaneous body angleαbody, angular velocity ωbody and
angular acceleration ω̇body (electronic supplementary material, §S3.3.3). We computed the
inertial body torque about the CoM, τbody, as the summation of the contributions of all
body segments to the inertial torque about the CoM (electronic supplementary material,
§S3.3.3: Equation S3.15).

To explore the spatio-temporal contributions of external fluid forces along the body to
the net torque on the body, we computed skin friction-based (τ∗fric,i), dynamic pressure-
based (τ∗dynp,i) and acceleration reaction-based (τ

∗
acc,i) torques per unit length along the

fish, which include, respectively, the effects of forces associated with the local velocity com-
ponents parallel and perpendicular to the body, and the acceleration of an addedmass per-
pendicular to the body, as well as the relevant surface per unit length and position vector
from the CoM to the location of interest along the body. The net estimated contribu-
tions of the three torque distributions to the external body torque (τfric, τdynp, τacc) were
obtained by integration along the fish and compared with the fluctuations in τbody. Com-
putational details are provided in the electronic supplementary material, §S3.3.3.
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3.2.4 Kinetic energy and power

We computed the total kinetic energy of the body Ekin,body, as well as the kinetic energy
associated with translation of the CoM, Etr,CoM, and the kinetic energy due to rotation
of the body segments about the CoM, Erot,body. The latter is a close approximation of
the internal kinetic energy of the body. We computed also the total power due to kinetic
energy changes of the body, Pkin,body, the power associated with translation of the CoM,
Ptr,CoM and the power associated with rotation of the body about the CoM, Prot,body.
Specific energies and powerswere computed by dividing the respective values by bodymass
(designated asE∗ and P ∗). Details on energy computations are provided in the electronic
supplementary material, §S3.3.4.

3.2.5 Dimensionless quantities and trend analyses

We defined dimensionless swimming speed along the path of the CoM as

v̂swim =
vswim

f`body
. (3.4)

To compute f for (near-)cyclic swimming events, we first determined a series of positive
and negative extremes in αbody with the ‘findpeaks’ function of Matlab’s Signal Pro-
cessing toolbox (v. 2013a). Frequency was computed as

f =
n− 1

2(tn − t1)
, (3.5)

wheren is the number of extrema inαbody, and t1 and tn the time, respectively, at the first
and last extreme in αbody. Dimensionless tail amplitude was computed as

Âtail =
Atail

`fish
. (3.6)

Dimensionless body torque was defined as

τ̂body =
τbody

J|f2
, (3.7)

where J| is the value of Jbody for the straight fish. Details about the computation of Re
and St are provided in the electronic supplementary material, §S3.3.2.

We fitted curves to the datasets used for trend analyses (Figs 3.6–3.9) using an optim-
ization procedure with Matlab’s ‘fminsearch’ function. Fitted variables were scaled by
their mean value, then we computed for each set of optimized coefficients the perpendic-
ular distance from each data point to the curve (i.e. total least-squares approach for either
a line, a parabola, a power curve or a power curve plus a constant). We used the sum of
squared distances as the objective function for the optimization and estimated 95% con-
fidence intervals for the coefficients of each curve fit with aMonte Carlo approach (see the
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electronic supplementary material, §S3.3.5 for details). We computed the ratio of the root
of the sum of squared distances for each nonlinear curve fit and the corresponding linear
curve fit. Standard linear regression curve fits were applied for the log transformed data of
Sw andRe for a comparison with previous work (Gazzola et al., 2014).

3.3 Results and discussion

3.3.1 Body morphology

During larval development,mass is redistributedwithin the body as the yolk sac is absorbed
and the body grows allometrically (e.g. Müller and Videler, 1996; Fuiman, 1983; electronic
supplementary material, Fig. S3.3). Yet, the shift in mass distribution does not affect the
location of the CoM along the straight fish (expressed as fraction of total length). At 2 dpf,
the CoM is at 0.287 `body from the snout tip, at age 5 dpf at 0.286 `body.

3.3.2 Larval fish swim with small centre of mass sideslip and
large body angle fluctuations

Fish larvae typically swim with wide body undulations (Müller and Van Leeuwen, 2004)
(see Fig. 3.1A,B for an example with v̄∗swim ≈ 50 `body s−1, f ≈ 83 Hz). Snout tip
(Fig. 3.1A: green curve) and tail tip (Fig. 3.1A: red curve) oscillate substantially. While the
large-amplitude body undulations do not result in large side-slip (lateral movements of the
CoM, Fig. 3.1A: black curve; lateral component of net forcewith respect to ṙCoM, Fig. 3.1D:
dotted curve), they do cause theCoM tomove outside the body (twice per cycle) (Fig. 3.1B).
CoM speed (vswim) fluctuates strongly (Fig. 3.1C), a result of the oscillating net force on the
body (Fig. 3.1D). The forward speed of the fish fluctuates over the tail-beat cycle in tune to
the fore–aft force component (Fig. 3.1C,D).

Body yaw is smaller than head yaw—the peak-to-peak amplitude of the body angle
αbody is half that of the head angle αhead (Fig. 3.2A, for event in Fig. 3.1). Changes in
αbody are also delayed with respect toαhead. Thus,αhead is not a valid approximation for
αbody in undulatory swimming fish larvae. Bothωbody and ω̇body reach high amplitudes,
respectively≈ 10◦ ms−1 and≈ 5◦ ms−2 for the example event (Fig. 3.2B,C); ω̇body gen-
erally shows a double peak per tail beat.

The undulatory bodymovements cause the bodymoment of inertia Jbody and its rate
J̇body to fluctuate (Fig. 3.2D,E). They also cause Jbody to be smaller than J| of the straight
fish. Furthermore, specific power (P ∗kin,body) fluctuates due to changes in kinetic energy
(up to 20Wkg−1 in Fig. 3.2F).

3.3.3 Body dynamics during cyclic swimming: insights from torque

Body torque around the CoM (τbody) fluctuates strongly (Fig. 3.3A), causing large changes
in ω̇body,ωbody andαbody (Fig. 3.2A–C).Torque τbody oscillates in anon-sinusoidalman-
nerwithusually a double peakper tail beat (fourpeaks per tail-beat cycle; Fig. 3.3A), consist-
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A Figure 3.1: A 5 dpf fish larva swim-
ming at approximately 50 `body s−1.
(A) Sequence of body midlines at 0.5
ms intervals (blue); path of snout tip
(green), tail tip (red) and CoM (black).
(B) Body shape at 3 ms intervals. CoM
(red sphere) periodically falls outside the
body. (C) Translational speed of CoM
and (D) force on CoM in the direction
of (continuous curve) and perpendicular
to (dotted curve) the instantaneous velo-
city vector. The blue and red ‘+’ signs
in panel C and D correspond to the min-
ima and maxima inαbody (Fig. 3.2A). The
time between two ‘+’ signs of the same
colour represents a full tail-beat cycle.

ent with the double peak in ω̇body. Body torque is just ahead of the fluctuations in angle-
of-attack of the tail with respect to the local velocity vector (βtail), which is also double
peaked and deviates considerably from a sine wave (Fig. 3.3B) due to the large-amplitude
motion. These observations indicate that the force associated with tail velocity may con-
tribute significantly to τbody.

We will now consider how the segmental contribution to the inertial torque about the
CoMvaries in time and along the body (derived by an inverse-dynamics analysis; electronic
supplementarymaterial, §S3.3.3; note that this is not a distribution of the segmental inertial
torquewith respect to the segmental CoM).The amplitude of the inertial torque about the
CoM per unit length τ∗body,i is largest at the head and tail, as indicated by the amplitude
envelope over a tail-beat cycle (Fig. 3.3C). Although the tail has less mass per unit length
than the head, it contributes similar to inertial torque of the body, because the tail is further
away from the CoM andmoves at higher accelerations. The location of the ‘neck’ at about
0.28 `body of the envelope corresponds to the caudo-rostral location of the CoM in the
straight fish. Inertial torque behaves as a travelling wave along the flexible posterior two-

64



3

40

0

20

-20

-40

0 10 20 30

A
ng

le
 [d

eg
]

A

0

10

-10

0 10 20 30

ω
bo

dy
 [d

eg
 m

s-1
]

ω
bo

dy
 [d

eg
 m

s-2
]

B

5

0

-5

0 10 20 30

C

0.4

0.35

0.30

0.25

0 10 20 30

J bo
dy

 [m
g 

m
m

-2
]

J bo
dy

 [m
g 

m
m

-2
 s-1

]

D

20

0

-20

0 10 20 30

E

20

0

-20

0 10 20 30

P
ow

er
 [W

 k
g-1

]

F

Time [ms] Time [ms]

Figure 3.2: Body angle, mo-
ment of inertia and power
for episode in Fig. 3.1.
(A) Instantaneous body angle
αbody (black; blue and red
‘+’ signs: minima and max-
ima) and head angle αhead

(green); (B) body angular ve-
locity ωbody; (C) body angu-
lar acceleration ω̇body (black:
by differentiation of ωbody; red:
according to electronic sup-
plementary material, Equation
S3.18); (D) moment of inertia
about the CoM Jbody; dashed
blue line shows J| (i.e. Jbody

for the straight fish), (E) rate of
change of the moment of iner-
tia J̇body; (F) total specific body
power P ∗kin,body based on the
rate of change of kinetic en-
ergy.

thirds of the body and as a standing wave along the stiff head (Fig. 3.4A).
To explore how external forces on the body contribute to the external torque on the

body, we estimated τ∗dynp,i (Fig. 3.4C), τ
∗
fric,i (Fig. 3.4D) and τ

∗
acc,i (Fig. 3.4F) for the swim-

ming event of Fig. 3.1. Our simplified approach to calculate external torque contributions
is useful for our analysis but causes the sum of τdynp, τfric and τacc to not equal the in-
ertial body torque τbody. Torque τdynp (Fig. 3.4B: green curve) is of similar magnitude
and phase as τbody (Fig. 3.4E: black curve). By far the highest τ∗dynp,i amplitudes are found
in the tail region (Fig. 3.4C). By contrast, τfric contributes little and is shifted forward in
phase with respect to τbody (Fig. 3.4E: blue and black curve, respectively), indicating that
skin friction has a relatively small effect on body torque. Peak values of τ∗fric,i are found in
the tail region where high velocities occur (Fig. 3.4D). Finally, the estimated contribution
of τacc (Fig. 3.4E: red curve; a fivefold scale reduction was applied to preserve the visible
dynamic range of the other curves) is about five times as large in peak amplitude as τbody

and almost in counter-phase. From this grossly simplified analysis, we conclude that τdynp

performs remarkably well as an indicator of the external torque on the body, while τfric
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is relatively small. The estimate of τacc deviates significantly in amplitude and phase and
should be avoided as an indicator of the external torque on the body. A future compu-
tational fluid-dynamics solution may show how pressure and shear-stress distributions on
the body contribute to the external torque on the body.

3.3.4 Kinetic energy fluctuations

While cyclic swimming entails no changes in body dynamics between successive cycles,
instantaneous values oscillate considerably in fish larvae. Kinetic energy comprises two
main contributions: translational kinetic energy of the CoM (Etr,CoM) and rotational en-
ergy around the CoM (Erot,body). Translational kinetic energy varies in proportion to
v2

swim. Rotational kinetic energy never drops to zero because the body undulates continu-
ously (Fig. 3.5). Kinetic energy fluctuates by a factor of 3 during slow swimming (Fig. 3.5B,
v̄∗swim ≈ 8 `body s−1), and less than twofold during fast swimming (Fig. 3.5A, v̄∗swim ≈
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50 `body s−1), caused by fluctuations of the net force on the body (FCoM) (Li et al., 2012).
Figure 5 shows that instantaneous and mean Etr,CoM are higher than the corresponding
values forErot,body at a relatively high swimming speed (Fig. 3.5A), whereas the low-speed
example (Fig. 3.5B) shows the reverse, which suggests a lower efficiency at the lower speed.
Most of the in-phase reductions of both kinetic energy components over the swimming
cycle will be dissipative (without useful conversion into elastic energy). Both translational
kinetic energy and rotational kinetic energy fluctuate in phase (Fig. 3.5), mainly due to the
varying amplitude and direction of the fluid force on the posterior body that causes oscil-
lations in both FCoM and τbody.

67



10

30

20

40

50

0

K
in

et
ic

 e
ne

rg
y 

pe
r m

as
s 

[m
J 

kg
-1
]

A

0 355 10 15
Time [ms]

20 25 30

1.0

0.5

2.0

1.5

2.5

3.0

0

K
in

et
ic

 e
ne

rg
y 

pe
r m

as
s 

[m
J 

kg
-1
]

B

0 7010 20 30
Time [ms]

40 50 60

Ekin,body
* Etr,CoM

* Erot,body
*
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3.3.5 Changes in swimming speed and tail-beat amplitude with
frequency

To reach higher speeds, fish tend to increase tail-beat frequency f rather than body-wave
amplitude (Müller and Van Leeuwen, 2004; Borazjani and Sotiropoulos, 2009c). How-
ever, the relationship between f and mean swimming speed v̄swim is not a simple pro-
portionality in larval zebrafish (Fig. 3.6A) during (near-)cyclic swimming. We previously
found a decreasing slope with speed (Müller and Van Leeuwen, 2004), based on a small
dataset biased towards younger stages. Based on a much larger dataset, this study found
that younger larvae swim slower than older larvae at f > 50 Hz (Fig. 3.6A). Stage 2 dpf
reached frequencies of close to 80Hzwith v̄∗swim ≈ 40 s−1 (Fig. 3.6B). Stages 3–5 dpf top
off at about 95 Hz and 60 s−1. The largest improvement in maximum swimming speed
occurs between stage 2 and 3 dpf.

Swimming speed depends also on tail-beat amplitude. When looking at the trend of
Atail with f within age groups, there is only a weak trend in early larvae (Fig. 3.6C,D
blue line: data for 2 and 3 dpf combined). By contrast,Atail increases markedly with fre-
quency in older larvae (Fig. 3.6C,D red-green line: data for 4 and 5 dpf combined). Older
larvae use higher amplitudes as f > 50 Hz. Correspondingly, for f > 50 Hz swim-

68



3

0.10

0.20

0.30

0

A

50
Frequency [Hz]

100

v sw
im

 [m
 s

-1
]

2 dpf
3
4
5

1.5

2.0

2.5

1.0
0.2

0.3

0.4

0.5

C

50
Frequency [Hz]

100

A
ta

il [
m

m
]

20

40

60

0

B

50
Frequency [Hz]

100

v sw
im

 [ℓ
 s

-1
]

*

D

50
Frequency [Hz]

100

Â
ta

il [
m

m
]

Figure 3.6: Swimming kinematics during (near-)cyclic swimming for 9–11 swimming events per
age group (2–5 dpf). (A) Mean swimming speed v̄swim along the path of the CoM (◦) and along a straight
line approximation of the path of motion (+) against cycle frequency f . Both speeds differ little, indicating
small sideslip. 2, 3 dpf larvae reach lower speeds for a given f than 4, 5 dpf larvae. (B) Specific swimming
speed (v̄∗swim = v̄swim/`body) against f (same dataset as A). (C) Peak-to-peak tail-beat amplitude Atail

against f . Data in C and D were fitted by total least squares. In C, the black curve shows the fit for the
total dataset. The combined datasets for 2 and 3 dpf (blue-cyan line) and 4 and 5 dpf (red-green line)
were fitted also separately. The 4–5 dpf age group tended to use higher Atail than the 2–3 dpf group
for f > 50 Hz, and they vary Atail more over the frequency range. Panel D shows same data as C for
dimensionless tail-beat amplitude (Âtail = Atail/`body). Parameter values for each curve fit are given in
electronic supplementary material, Table S3.2.

ming speed tends to be higher in older larvae for the same tail-beat frequency (Fig. 3.6A).
While younger larvae mainly increase frequency, older larvae increase both frequency and
amplitude to swim faster. Increasing both frequency and amplitude requires more muscle
power, suggesting that 4–5 dpf larvae have more powerful muscles than younger larvae.
Non-dimensionalizingAtail reduces the differences in howmuch amplitude changes with
frequency (Fig. 3.6D), showing the importance of size in between-stage differences.

Plots of v̄swim against fAtail and v̄∗swim against fÂtail show the expected upward trend
(electronic supplementary material, Fig. S3.4), yet the scatter is largest at the highest swim-
ming velocities (caused by a relatively large range of tail-beat amplitudes of the 4–5 dpf
larvae and small deviations from an ideal cyclic swimming pattern).
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3.3.6 Body torque and yawing angle

Higher swimming speeds imply higher drag and require more thrust, resulting in higher
amplitudes of body torques and yaw, because local forces on the body are generally not in
linewith theCoM(Fig. 3.7A).This trend remains even after removing size effects (Fig. 3.7B).
With swimming speedproportional toRe, torque increaseswith increasingRe (Fig. 3.7C,D).
Higher torques at higher speeds result in higher body yaw (despite the decreasing cycle time
with increasing v̄swim)—the peak-to-peak amplitude of αbody increases with swimming
speed (Fig. 3.7E,F), reaching almost 40◦. Head yaw (fluctuation in αhead) is twice as large
as body yaw (fluctuation in αhead; mean± s.d. of peak-to-peak ratio of αhead over αbody

is 2.11±0.49), indicating that head yaw is not a valid proxy of body yaw. Maximum τbody

increases fivefold from stage 2 to 4 dpf (Fig. 3.7A,C).Maximum torquemore than doubles
from stage 2 to 3 dpf. Non-dimensionalizing torque reduces these increases (although it
increases scatter), showing the important effect of size on torque (Fig. 3.7B,D).

3.3.7 Effects of Reynolds number on Strouhal number and swim-
ming number

The same increase in the product of tail-beat frequency and amplitude causes a larger in-
crease in swimming speed at high than at low swimming speeds (electronic supplementary
material, Fig. S3.4A). This larger increase in speed for a given increase in fAtail causes St to
dropwith increasingRe, which is proportional to v̄swim. The lowest swimming speeds res-
ult in Strouhal numbers of up to 2.5; St drops to 0.72 as larvae reach top swimming speeds
of nearly 0.30m s−1 or 60 `body s−1 (Fig. 3.7G). The decrease in St is largely explained by
the increase in Re: St decreases from 2.5 to 0.72 (with≈ 0.72/2.5 = 0.29) at a similar
rate as the ratio of the product of tail-beat frequency and amplitude to Re—the product
fAtail increases by a factor of ≈ 8 as Re increases by a factor of ≈ 23 (8/23 ≈ 0.30).
More precisely, the St relates to Re as St = fAtailρwater`body/(µRe) = Sw/Re. The
St–Re data of larval fish are described well by a (negative) power function plus a constant
(St = c1Rec2 + c3 = 41.29Re−0.741 + 0.525; Fig. 3.7G, black curve). The youngest lar-
vae of 2 dpf do not reach the high Re–low St combinations exploited by the older larvae.
With St = Sw/Re, our curve fit can be rewritten as Sw = c1Rec2 + c3Re, which devi-
ates from a simple power function. When plotted on a double logarithmic scale (Fig. 3.7H)
this fit is still curved, the slope decreases with increasingRe.

Our experimental data do not conformwith the theoretical prediction ofGazzola et al.
(2014), which states thatSt ∝ Re−0.25 andRe ∝ Sw4/3 (giving a straight line in a double
log Re–Sw plot) based on small-amplitude body undulations and Blasius resistive theory
for the laminar swimming regime. The predicted exponent of−0.25 lies outside the 95%
confidence interval [21.250, 20.389] of the experimentally obtained exponent of−0.741.
A large deviation is to be expectedbecause neither assumption is substantiatedby the actual
swimming motions of larval fish. To further compare the predicted exponent with our
data, we also made linear regressions for log Re = c2 log Sw + c1. For the full Sw–Re
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Figure 3.7: Dynamics
of (near-)cyclic swim-
ming for same dataset
as Fig. 3.6. (A) Amp-
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(F) Idem, but against
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polynomial curve fits are
shown for A–F. (G) St
against Re, with a fit of a
(negative) power function
plus a constant. (H) Re
against swimming number
Sw (logarithmic scales).
The curve fit follows from
the fit of St against Re,
by using St = Sw/Re.
Parameter values for
each curve fit are given in
electronic supplementary
material, Table S3.3.
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range in the dataset, we obtained values for c2 of 1.464 and 1.572 for, respectively,Re and
Sw as the dependent variable. Both values are well above 4/3. Restricting themaximum in
Re to800 (used as upper limit for numerical simulations of the laminar regime inGazzola),
we found corresponding values of 1.614 and 1.710, deviating even more from 4/3. The
higher value of the exponent for the lowerRe range is in agreement with the curved shape
of the double log Sw–Re fit (Fig. 3.7H).

3.3.8 Kinetic energy and power

Translational and rotational kinetic energy increase nonlinearly with swimming speed
(Fig. 3.8A,B). The contribution of translational versus rotational kinetic energy changes
with age and swimming speed (Figs 3.5, 3.8A,B). Maximum mass-specific E∗tr,CoM and
E∗rot,body more than triple between age 2 and 4 dpf. Translational energy outweighs rota-
tional energy in most recorded swimming events (Fig. 3.8C,D) except a few young larvae
(age 2 dpf) at low v̄∗swim (< 15 `body s−1) and high St, when the tail produces a relatively
high lateral force component. In general, rotational kinetic energy is a substantial compon-
ent of the total kinetic energy of the body in larval swimmers.
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Figure 3.8: Specific kinetic energy due to translation E∗tr,CoM and rotation E∗rot,body during
(near-)cyclic swimming for the same dataset as Fig. 3.6. (A,B) Maximum (◦) and mean (+) values
against mean swimming speed v̄swim. Second-order polynomial curve fits for maxima (continuous curve)
and mean (dashed curve) are shown in A,B. (C,D) Ratio of the maxima (C) and the means (D) of E∗tr,CoM
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fit in A and B are given in electronic supplementary material, Table S3.4.
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Maximum specific power due to fluctuations in kinetic energy of the body increases
nonlinearly with v̄swim (Fig. 3.9A). The two main contributors to power are translational
and rotational power (Fig. 3.9B). Rotational power exceeds translational power rarely and
only at low v̄swim (Fig. 3.9B). Specific power triples within 3 days of development—peak
P ∗kin,body at the highest observed v̄swim in 5 versus 2 dpf larva is 22 versus 7 W kg−1.
These values are much lower than the total power required for swimming, neglecting en-
ergy dissipated in the body and power spent on external fluid flow. Assuming that this
body kinematics-based motion power is 25% of muscle power, and that 50% of the body
is locomotion musculature, and 50% of these contribute at any one time, zebrafish larvae
require muscle peak power outputs of 112–352 W kg−1 muscle at the respective max-
imum performance at 2 and 4–5 dpf with contraction frequencies of 80–95 Hz. Given
the high maximum tail-beat frequencies, these projected muscle powers match or exceed
the currently known maxima for aerobic fast, super-fast and asynchronous muscles (tree
frog: 200Wkg−1 (peak), 54Wkg−1 (average in work loop) at 44Hz at 25◦C (Girgenrath
and Marsh, 1999); toadfish: 14 W kg−1 (average in workloop) at 22 Hz at 15◦C (Young
and Rome, 2001); beetle: 200 W kg−1 (peak), 127 W kg−1 (average in workloop) at 94
Hz at 35◦C (Josephson et al., 2000)), but are less thanmaximum power in anaerobic quail
muscles (1121Wkg−1 (peak), 390Wkg−1 (average during shortening phase inworkloop)
at 23Hz at 40◦C (Askew et al., 2001)).
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Figure 3.9: Maximum specific power computed as rate of change of kinetic energy of the body per
body mass during (near-)cyclic swimming for same dataset as Fig. 3.6. (A) Total (◦), translational (×)
and rotational (+) power over mean swimming speed. Second-order polynomial curve fits for maximum
total (continuous curve), and translational, and rotational (dashed curves) powers are shown. (B) Ratio of
maximum translational to rotational power. The horizontal dashed line indicates a ratio of 1. Parameter
values of the curve fits in (a) are given in electronic supplementary material, Table S3.4.
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3.4 General discussion

3.4.1 Body dynamics of undulatory swimming in larval fish: im-
proving swimming skills within a narrow time window

Using a distributed-mass inverse-dynamics approach, we shed new light on the swimming
mechanics of larval fish. Across the observed range of swimming speeds, large body undu-
lations do not cause large sideslip of the CoM, but considerable body yaw. We expect that
adult fish, which use narrower, lower frequency body waves, will show considerably lower
relative fluctuations in body yaw, torque and moment of inertia.

Comparing within larval stages, swimming performance greatly improves between 2
and 5 dpf. Over this age range, larval fish increasingly favour intermittent over cyclic swim-
ming (Müller and Van Leeuwen, 2004). Yet burst periods are sufficiently long and cyclic to
analyse trends that elucidate the physics of swimming in the intermediate Reynolds regime
and the development of swimming in larval fish. From 2 to 3 dpf, the larvae increase max-
imum tail-beat frequency fmax from 80 to 95Hz. The 4 dpf larvae used similar fmax as 3
dpf larvae, but generated higher maximum tail-beat amplitudes for frequencies above 50
Hz. The higher tail-beat frequencies and amplitudes lead to higher swimming speeds and
indicate thatmaximumpower output of the swimmingmusculature increases rapidly after
hatching. Improving swimming speed reduces the predation risk of larval fish (Fuiman and
Magurran, 1994) and enhances their ability to catch prey when they start feeding at 5 dpf.
Several other performance criteria require future attention, such as fast-start performance
and manoeuvres in three-dimensional space.

3.4.2 Coping with high-friction forces: trading efficiency for thrust

Vortex shedding mechanics (as expressed by St) changes with flow regime (as expressed
by Re) in a nonlinear way (Eloy, 2012; Van Weerden et al., 2014; Roshko, 1954). The in-
verse relationship between St and Re is mapped out by larval fish (Fig. 3.7G). Slow larvae
swim at higher St (St ≈ 2.5 at Re = 60) than fast larvae (St ≈ 0.72 at Re = 1400).
Thus, across the examined larval size range (body length 3–4.5mm), increasing swimming
speed by one order of magnitude from 25 to 250mm s−1 causes a drastic, nonlinear drop
in St. The Strouhal number remains roughly constant across the typical speed range of
adult fish and cetaceans (St = 0.2–0.4 for Re = 103–105) (Triantafyllou et al., 1993;
Eloy, 2012; Van Weerden et al., 2014; Rohr and Fish, 2004). When adult fish increase tail-
beat frequency, their swimming speed increases proportionallywithout increasing tail-beat
amplitude, so St drops little with increasing speed (Tytell, 2004a). The Strouhal number
reflects differences in vortex shedding mechanics caused by body shape. Swimmers with
high aspect-ratio tail fins use lowerSt values (Eloy, 2012; Rohr and Fish, 2004) than anguil-
liform swimmers (Eloy, 2012; Tytell, 2004a). Overall, undulatory swimmers operate close
to optimal St values, yet optimal Strouhal numbers vary with body shape and swimming
speed.

Undulatory swimmersusehighStrouhal numbers inhigh-friction environments. High
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Strouhal numbers occur not just at small body sizes, but generally in systems with high
body drag, such as adult lungfishmoving through highly viscous watery solutions (Horner
and Jayne, 2008); sandfish and nematodesmoving through granularmedia (Maladen et al.,
2009, 2011; Ding et al., 2012; Jung, 2010); and alligators (data in Gazzola et al., 2014). When
facing higher frictional forces, undulatory swimmers swim at lower stride lengths—tail-
beat frequency f and amplitude Atail must increase to achieve the same displacement
(computational: Borazjani and Sotiropoulos, 2009b,c, 2010;Reid et al., 2012, experimental:
VanWeerden et al., 2014;Horner and Jayne, 2008; Kayan et al., 1978; Sznitman et al., 2010).
Theoretical studies (Eloy and Schouveiler, 2011; Eloy, 2012) show that maximal efficiency
decreases and St increases with decreasing Re. When viscous or other frictional forces
become large relative to inertial forces, undulatory swimmers must sacrifice efficiency for
higher thrust.

The Strouhal number decreases steeply as undulatory swimmers transition from the
viscous to the inertial flow regime (Fig. 3.7G,H), consistent with the inverse relationship
between St and Re. As seen in larval fish, swimming at lower Re requires generating re-
latively higher propulsive forces by increasing f and Atail (Fig. 3.7H). Both increase the
torque around the CoM and hence decrease the ratio of translational to rotational kin-
etic energy. Undulatory swimmers have no known mechanisms to store rotational kinetic
energy. Hence, a lower ratio of translational to rotational kinetic energy implies a lower
propulsive efficiency, as indicated by a high St value. As Re drops, a given increase in f or
Atail causes less of an increase in swimming speed andSt increases. By swimming faster, lar-
val fish crank up theirRe, whichmight enable them to increase propulsive efficiency at the
expense of higher power expenditure. High swimming speeds require very high tail-beat
frequencies, which demand super-fast muscles, which are known to have low efficiencies
(Rome, 2006), which counteracts the gain in fluid-dynamic efficiency. In larval zebrafish of
4–5 dpf, this limitation tops off fmax at about 100Hz andRe at about 1400. The general
trend of a decreasing St with Re in the intermediate regime has been predicted by CFD
studies (e.g. Borazjani and Sotiropoulos, 2009b,c; Gazzola et al., 2014)).

3.4.3 Scaling of the swimming number Sw

We obtained a more complex relationship between Re and the swimming number Sw
than suggested by Gazzola et al. (2014). They explored the relation between Re (range
200–20, 000) and Sw with CFD simulations. They suggested that the nonlinear Sw–Re
relationship can be described by first approximation by two power functions. While the
theoretical prediction matches both the CFD and the experimental data on large swim-
mers, the match is less convincing in the laminar flow regime, where the power exponents
predicted using Blasius theory (Re ∝ Sw1.33) and CFD (Re ∝ Sw1.31) are considerably
lower than the experimentally observed exponent (Re ∝ Sw1.52, power function fit to
zebrafish data over 10 / Re / 1000) and depend critically on the exact value of trans-
itional Re—Gazzola et al. obtain a good fit between Blasius prediction (exponent 1.33),
CFD data (exponent 1.31) and experimental data (exponent 1.33) partly by placing the
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transition from the laminar to the turbulent flow regime at differentRe and Sw (CFD:Re
800, Sw 2000; experimental data: Re 3000, Sw 10, 000).

The largediscrepancybetween experimental data on theonehandand theoretical Blasius
prediction on the other hand stem from the complex fluid-dynamic effects caused by large-
amplitude tail motion. Any high anterior dragmust be balanced by high thrust, which the
swimmer generates by increasing tail-beat amplitude and frequency, which in turn increase
anterior drag by positive feedback on tbody and hence amplitudes of αhead and αbody.
The nature of this feedback depends on Re and body shape. The Blasius prediction of
Gazzola et al. is not able to capture this complex feedback, leading them to underestimate
drag and hence St.

3.4.4 Swimming performance varies with size and speed

Small organisms (`body < 10 mm) operating in the intermediate flow regime (101 <
Re < 103) reach not onlymuch higher tail-beat frequencies, but also higher `body-specific
swimming speeds than large undulatory swimmers (`body > 10 mm). Despite experien-
cing relatively higher viscous fluid forces and despite a lower swimming efficiency, zebrafish
larvae can reach extreme forward speeds of up to 60`body s−1, because they can generate re-
latively high propulsive forces at tail-beat frequencies of up to 95Hz. By contrast, large un-
dulatory swimmers have considerably lower tail-beat frequencies and `body-specific swim-
ming speeds. And adult fish retain those low values when placed in more viscous flow
regimes. Lungfish maintain swimming speeds of 0.15–0.25 `body s−1 and tail-beat fre-
quencies of 1–2Hz over a 1000-fold increase in viscosity (Horner and Jayne, 2008). Sand-
fish ‘swimming’ in sand use similar tail-beat frequencies (1–4 Hz) (Maladen et al., 2009).
Compared with small undulatory swimmers, which are adapted to the intermediate flow
regime, largeundulatory swimmershavemuscles optimized tooperate at lowcycle frequen-
cies in order to swim at low Strouhal numbers. Large swimmers cannot adjust to increased
friction forces by increasing tail-beat frequency by orders of magnitude, because their axial
muscles have a low maximum cycling frequency.

Across body sizes, distance/`body covered per tail beat in the viscous flow regime is
low compared with undulatory swimmers in the inertial flow regime: lungfish and sand-
fish reach 0.1–0.2 `body/tail-beat cycle (Horner and Jayne, 2008; Maladen et al., 2009),
zebrafish larvae 0.2–0.6 (Fuiman and Batty, 1997; Müller and Van Leeuwen, 2004), tad-
poles 0.3–0.6 (D’Août and Aerts, 1999), insect larvae 0.3 (Brackenbury, 2000). By con-
trast, adult fish in the inertial flow regime swim at 0.4 (anguilliform swimmers; (Kern and
Koumoutsakos, 2006; Gillis, 1998)) to 0.9 `body/tail-beat cycle (carangiform swimmers;
(Videler, 1993; Wardle et al., 1995; Müller et al., 2002)) during routine swimming. In sum-
mary, during undulatory swimming in systems with high viscous or friction forces, St is
high and efficiency is low.
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Electronic supplementary material
S3.1 Symbols and definitions
Mathematical symbols and abbreviations used in the main manuscript and this electronic
supplement are listed in Table S3.1.

Table S3.1: Overview of symbols and abbreviations.

Symbol Definition Dimension
Atail peak-to-peak amplitude in (near) cyclic swim-

ming event
L

Âtail dimensionless peak-to-peak amplitude in a (near)
cyclic swimming event: Atail/`fish

–

a⊥,i acceleration perpendicular to fish axis of body seg-
ment i

LT−2

c1; c2; c3 constants used tomake curve fits for various para-
meter sets, for specifications and values see Tables
S3.2–S3.4

variable

cdynp,i; cfric,i constants used to estimate the external torque per
unit length on the body due to dynamic pressure
and skin friction

–

CoM centre of mass of the body; the centre of mass of a
body segment is indicated as the segmental CoM

–

dpf days post fertilization –
Ekin,body total kinetic energy of the body ML2T−2

Ekin,int ‘internal’ kinetic energy of the body ML2T−2

Etr,CoM kinetic energy due to CoM translation ML2T−2

Erot,body kinetic energy due to rotation of the body parts
around the CoM

ML2T−2

E∗ specific energy: E/mbody L2T−2

FCoM net force vector on the CoM MLT−2

Fv⊥; Fv‖ force components on the CoM, respectively, per-
pendicular and parallel to the velocity of the CoM
(Fig. 3.1D)

MLT−2

f ; fmax cycle frequency; maximum cycle frequency T−1

J| moment of inertia of straight fish body with re-
spect to the CoM

ML2

Jbody; J̇body moment of inertia of the body with respect to the
CoM and its rate of change

ML2;ML2T−1
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Ji momentof inertia of body segment i about its ver-
tical central axis

ML2

JCoM,i; J̇CoM,i moment of inertia of body segment i about about
the CoM; time derivative of JCoM,i

ML2

hi dorso-ventral height of segment i L
i indicator for the number of a body segment –
ˆ̀ normalised position along the body (0 at the

snout, 1 at the tail tip)
–

`body; `stride length of the fish body; stride length (distanced
travelled per tail-beat cycle)

L

mbody mass of the body M
mi mass of body segment i M
n number of extrema in αbody –
N number of objects –
Pkin,body total kinetic power of the body ML2T−3

Ptr,CoM power due to translational velocity changes of the
CoM

ML2T−3

Prot,body power due to rotation of body parts around the
CoM

ML2T−3

P ∗ specific power: P/mbody L2T−3

rCoM; ṙCoM;
r̈CoM

position, velocity and acceleration vector of the
CoM

L; LT−1; LT−2

rx,CoM; ry,CoM;
rz,CoM

components of rCoM, coordinates of the CoM in
earth-bound frame

L

ri; ṙi; r̈i position, velocity and acceleration vector of seg-
ment i

L; LT−1; LT−2

rmov,i; ṙmov,i;
r̈mov,i

idem for segment i in moving frame L; LT−1; LT−2

rx,mov,i;
ry,mov,i;
rz,mov,i

components of rmov,i L

rseg,i distance to central vertical axis through segment i L
rtail direction vector of the tail L
rx,tail; ry,tail;
rz,tail

components of rtail L

Re Reynolds number –
si distance of segment i from the the tip of the snout

along the axis of the fish
L

Si wetted surface of segment i L2

St Strouhal number –
Sw Swimming number –
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t; t1; tn time; time at first extreme in αbody; time at last
extreme in αbody

T

Vi volume of body segment i L3

v‖,i; v⊥,i velocity parallel and perpendicular to fish axis of
segment i

LT−1

vswim; v̄swim swimming speed along path of CoM; idem but
mean value

LT−1

v̂swim dimensionless swimming speed (Equation 3.4) –
v∗swim; v̄

∗
swim specific swimming speed (vswim/`body); idem

but mean value
T−1

vtail; v⊥,tail velocity of the tail; component of tail velocity per-
pendicular to local fish axis

LT−1

vx,tail; vy,tail;
vz,tail

components of vtail LT−1

XYZ earth-bound coordinate system –
XmovYmovZmov moving coordinate system –
y(x) curve fit y as function of x –
α0,body constant used to compute the angle of the body

in theXY -plane
–

α0,head constant used to compute the angle of the head in
theXY -plane

–

αbody angle of the body inXY -plane –
αCoM,i the angle of the position vector from the CoM to

the centre of mass of segment i
–

αhead angle of the head inXY -plane –
βtail angle of attack of the tail with respect to the local

velocity vector of the tail
–

µ dynamic viscosity of water ML−1T−3

∆`i length of segment i L
ρfish; ρwater mass density of the body; mass density of water ML−3

τacc; τ∗acc,i torque on the body due to acceleration-reaction
forces; idem but per unit length along the body

ML2T−2;MLT−2

τbody net inertial torque of the body ML2T−2

τ̂body dimensionless body torque (Equation 3.7) –
τ∗body,i inertial torque per unit length along the body

with respect to the CoM
MLT−2

τdynp; τ∗dynp,i torque on the body due to dynamic pressure, pro-
portional to squared perpendicular velocity com-
ponent; idem but per unit length along the body

ML2T−2;MLT−2

τfric; τ∗fric,i torqueon thebodydue the skin friction; idembut
per unit length along the body

ML2T−2;MLT−2
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ωbody; ω̇body angular velocity and angular acceleration of the
body

T−1;T−2

ωCoM,i; ω̇CoM,i angular velocity and acceleration in theXY -plane
of the position vector from the CoM to the centre
of mass of segment i

T−1;T−2

ωi; ω̇i angular velocity and acceleration of segment i
around the local central axis

T−1;T−2

S3.2 High-speed video recordings
Weused three video setups: aRedlakeMotionPro high-speed camera (Redlake, SanDiego,
CA, USA; 1000 frames s−1, 1280×512 pixels, exposure time 124µs), recording through
a dissection microscope (Zeiss, Sliedrecht, The Netherlands; magnification 0.6–1.6× on
the camera chip), for details see Müller and Van Leeuwen (2004); a pco.dimax HS4 high-
speed camera (PCOAG,Kelheim, Germany; 2000×2000 pixels, 2000 frames s−1, expos-
ure time of 74 µs); a Photron FASTCAM 1024 PCI (Photron, West Wycombe, UK; 1500
frames s−1, 896 × 784 pixels, exposure time 124 µs). In the first setup, we filmed from
a dorsal viewpoint with background light from below. In the latter two setups, we used a
Nikkor 105D macro lens at f2.8 with an extension tube and back-light from above with a
nearly parallel beam, and we filmed from a ventral viewpoint. In a few cases, we recorded
the fish in water seeded with Nylon particles (diam. 6 µm) with laser sheet illumination
(details in Müller et al., 2008). The set up with the pco.dimax HS4 camera provided the
best resolution in space and time.

S3.3 Supplementary computations

S3.3.1 Body shape and force components on centre of mass and
dimensionless quantities

Using the spline routine package of Woltring (1986), the manually digitised body axes of
the larval fish (main text, §3.2.2)were first interpolatedwith a cubic spline function, provid-
ing 51 equidistant axis points along the length of the fish with a straight portion imposed
for the head region, then smoothed with a cubic spline function (smoothing factor 10−7).
The smoothed body outlines were subsequently smoothed with a quintic spline function
as a function of time (using the generalized cross validation criterion). In one video se-
quence, the tail tip was missing in a single frame (not at the maximum tail amplitude that
was used to compute the Strouhal number). The tail-tip position for this frame was estim-
ated manually, followed by a correction of the interpolation with a smoothing spline.

To determine body shape, we photographed (Olympus DP50 digital camera mounted
on a Zeiss Stemi SV1 microscope) dorsal and lateral views of larvae aged 2–5 dpf, then
digitized the outlines of themain body, dorsal and ventral fin fold, eyes, and yolk sac at 53–
55 equidistant points along the body with AnalySIS V3.1 (Soft Imaging System GmbH,
Germany) and interpolated with a cubic spline fit to 51 equidistant points from snout to
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tail tip for each measurement.
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Figure S3.1: (A) Series of ellipses for
the eyes (red), fin fold (green), and rest
of the body (blue) as determined from
dorsal and lateral photographs of a larva
of 5 dpf. (B) The approximated out-
lines of the body at each of the 51 trans-
verse sections along the body as de-
rived from the ellipses shown in panel
(A). From these outlines, the shape plots
of Fig. S3.3A,B were computed.

Weestimated body volumebymodelling the fish as a series of51 segments: the first and
last segment eachof length `body/100 and all others of `body/50. Ellipseswere fitted to the
head, eyes, fin fold, trunk (excluding fins) and yolk sac (where present). The circumference
of each segment was assumed to be the closed-loop combination of the most peripheral
arcs of the intersecting ellipses (Fig. S3.1). We assumed a uniform mass density (ρfish =
1000 kg m−3) over the entire body. For each segment, we computed volume Vi, massmi,
and position vector ri of the local centre of mass by numerical integration. Body mass
mbody was computed as the sum of the segmental masses, resulting in 239, 289, 414, and
373 µg for stages 2–5 dpf. The average `body for these stages were, respectively, 3.39,
3.81, 4.37 and 4.36 mm. These values for `body andmbody were used for all subsequent
computations.

The position vector rCoM of the CoM of the fish was calculated by dividing the sum
of the product ofmi and ri bymbody:

rCoM =
∑
i

(miri) /mbody, (S3.1)

which enabled us to calculate the instantaneous CoMposition during swimming. Velocity
and acceleration vectors (ṙCoM and r̈CoM) of the CoMwere calculated by (double) differ-
entiation of Equation S3.1. The required segmental velocities ṙi and accelerations r̈i were
calculated by (double) differentiation of the spline functions describing the fish’s midline.
Swimming speed was defined as: vswim = ṙCoM = ||ṙCoM||, and the specific swimming
speed as: v∗swim = vswim/`body. The force on the CoM was computed from Newton’s
second law:

FCoM = mbodyr̈CoM. (S3.2)
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S3.3.2 Dimensionless quantities

The Reynolds number was computed as

Re = ρwater`bodyv̄swim/µ, (S3.3)

with v̄swim the mean swimming speed over either a full or half a swimming cycle. We used
a full swimming cycle unless only two lateral tail beats of a particular swimming event met
the auto-correlation criterion for near cyclic swimming (main text: §3.2.2). We computed
v̄swim as the displacement over the swimming cycle (or half the cycle) divided by the cycle
time (or half the cycle time). We used ρwater = 996.232 kg m−3 for the density and
µ = 0.833 mPa s for the viscosity, i.e. the values for water at 28◦C. The Strouhal number
was defined as:

St = fAtail/v̄swim, (S3.4)

whereAtail is the peak to peak amplitude of the tail, and v̄swim themean swimming speed.
The computation ofAtail from our selected recordings was complicated by lateral oscilla-
tions of the CoM (sideslip), and by unavoidable slight deviations from pure cyclic swim-
ming (in spite of our fairly strict cross-correlation criterion). To address these problems,
the average of 2 or 3 tail-beat maxima during the swimming cycle was manually measured
from graphs of the paths of the CoM and tail, and doubled to obtain an estimate forAtail.
Corrections were applied for slightly curved paths of the CoM.

S3.3.3 Instantaneous values of moment of inertia, body angle,
angular velocity and torque

In the fish frame of reference, the position vector of the segment centre i is:

rmov,i = ri − rCoM. (S3.5)

For each segment, the moment of inertia about the segmental vertical centre line as a func-
tion of time was obtained by a numerical approximation of:

Ji =

∫
ρfishr

2
seg,i dVi, (S3.6)

where rseg,i is the distance to the central vertical axis through segment i. The moment of
inertia of segment i with respect to the CoM about the vertical Zmov-axis was computed
as:

JCoM,i = Ji +mir
2
mov,i, (S3.7)

where rmov,i is the distance of the centre of mass of the segment to the CoM. The time-
dependent instantaneousmoment of inertia of the body with respect to the instantaneous
location of the CoMwas computed as the sum of JCoM,i along the body:

Jbody =
∑
i

JCoM,i. (S3.8)
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The rate of change of Jbody was computed by a smoothing cubic spline (tolerance value
5 · 10−8 kg m2) and a subsequent differentiation with the Matlab routines spaps and
fnder.

The angular velocity of the bodyωbody can be derived from themomentum equation:

Jbodyωbody =
∑
i

JCoM,i ωCoM,i, (S3.9)

where ωCoM,i is defined as the angular velocity of the centre of mass of segment i with
respect to the CoM. The relatively small contribution of the rotation around the central
vertical axis of the segment is ignored here.

rmov,i

Figure S3.2: Diagram of the shape of the larval body in the moving frame at two different instances
(continuous and dashed curves, 1 ms apart), taken from the event of Fig. 3.1 (main text). The red dot
indicates the CoM (which is fixed in the moving frame). A segment (yellow) is indicated with its position
vector rmov,i . The components of rmov,i and its derivative are used to compute the angular velocity of the
segments about the CoM (Equation S3.10). The continuous and dashed blue lines indicate the computed
body orientation at the two instances, which differ considerably from the head orientation. The head
rotates slightly clockwise, while the total body rotates counter clockwise.

Angular velocity ωCoM,i can be calculated by dividing the cross product of rmov,i and
ṙmov,i by r2

mov,i, which for the considered two-dimensional case results in:

ωCoM,i =
ṙy,mov,i rx,mov,i − ṙx,mov,i ry,mov,i

r2
mov,i

. (S3.10)

During a swimming cycle, the CoM passes twice through the central body axis, leading to
very small values of rmov,i in nearby body segments (or even a singular point if the location
of the CoMoverlaps with the segmental centre). This problemwas neutralized by dividing
by 10−8 m2 for rmov,i < 10−4 m, instead of the computed value of r2

mov,i. The angular
velocity of the body was obtained from Equation S3.9:

ωbody =

∑
i JCoM,i ωCoM,i

Jbody
. (S3.11)

The body angle αbody was derived by integration of ωbody:

αbody =

∫ t

t0

ωbody dt− α0,body. (S3.12)
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where α0,body is defined as zero or the mean angle of translation of the CoM over a com-
plete swimming cycle. We approximated the integral by numerical integration with the
trapezoidal method 1. The angular acceleration of the body ω̇body was computed by dif-
ferentiation of ωbody.

For the examined (near) cyclic swimming events, we detected the maxima andminima
inαbody with theMatlab functionfindpeaks. For each of these events, we computed the
peak-to-peak amplitude by taking the absolute value of the difference between the second
peak and the mean of the first and the third peak. For very short events with only two
available peaks in αbody, we took the absolute value of the difference between the first
and the second peak. This forms the basis for the body angular amplitude data against
swimming speed shown in Fig. 3.7E,F.

To enable a comparison with αbody, the yaw angle of the head was computed as:

αhead =



arctan
(
ry,mov,1−ry,mov,7

rx,mov,1−rxmov,7

)
for rx,mov,1 − rx,mov,7 > 0

π/2 for

{
rx,mov,1 − rx,mov,7 = 0

ry,mov,1 − ry,mov,7 > 0

3π/2 for

{
rx,mov,1 − rx,mov,7 = 0

ry,mov,1 − ry,mov,7 < 0

arctan
(
ry,mov,1−ry,mov,7

rx,mov,1−rx,mov,7

)
+ π for rx,mov,1 − rx,mov,7 < 0

, (S3.13)

where an unwrapping correction was applied for angular transitions around 3π/2 and
the average value resulting from Equation S3.13 during the swimming event (α0,head). The
angle of attack of the tail was calculated as:

βtail =

arccos
(
rx,tailvx,tail+ry,tailvy,tail

rtailvtail

)
if v⊥,tail points to left

− arccos
(
rx,tailvx,tail+ry,tailvy,tail

rtailvtail

)
if v⊥,tail points to right

, (S3.14)

where rx,tail and ry,tail are the components of the direction vector of the tail rtail, which
was defined to point from segmental centre 50 to segmental centre 48. Similarly, vx,tail

and vy,tail are the components of the velocity vector of the tailvtail, defined as the velocity
1 Alternatively, we can first expand and rewrite Equation S3.12 before numerical integration: αbody =∑

i

∫ t

t0

JCoM,i

Jbody
ωCoM,i dt − α0,body. Integration by parts gives: αbody =

∑
i

JCoM,i

Jbody
αCoM,i −∑

i

∫ t

t0

(
JCoM,i

Jbody

)′

αCoM,i dt− α0,body,where the prime denotes the first derivative with respect to time,

and αCoM,i is the integral of ωCoM,i. The equation can be expanded as: αbody =
∑

i

JCoM,i

Jbody
αCoM,i −∑

i

∫ t

t0
αCoM,i

J̇CoM,iJbody−JCoM,iJ̇body

J2
body

dt−α0,body. By ignoring the relatively small second term at the

right-hand-side, we obtain: αbody ≈
∑

i

JCoM,i

Jbody
αCoM,i − α0,body. With this simplification, the instant-

aneous body angle αbody is computed by dividing the sum of the products of αCoM,i and JCoM,i along the
body by Jbody. Thus, the relative contribution of segment i toαbody is proportional to JCoM,i. We did not
adopt this method because it requires implementation of a relatively cumbersome unwrapping procedure.
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of segmental centre 49. Furthermore, v⊥,tail is the perpendicular component of vtail to
rtail. The words left and right in Equation S3.14 refer to the left and right side of the larva.

Following Newton’s second law, body torque about the CoM is equal to the rate of
changeof angularmomentum(EquationS3.15, whichwas alsoused to calculate ω̇body). For
the considered planarmotions, we computed body torque about the CoMas a summation
of the inertial torque components over all body segments:

τbody =
∑
i

d (JCoM,i ωCoM,i)

dt
=
∑
i

J̇CoM,i ωCoM,i + JCoM,i ω̇CoM,i, (S3.15)

where we ignored the small contribution of the additional rotations of the individual body
segments around their vertical central axes. We computed also the inertial torque per unit
length along the body (with respect to the CoM) to explore the spatio-temporal contribu-
tions to τbody along the body:

τ∗body,i =
∑
i

J̇CoM,i ωCoM,i + JCoM,i ω̇CoM,i

∆`i
, (S3.16)

where∆`i is the length of segment i.
The inertial body torque about the CoM can also be written as:

τbody =
d (Jbodyωbody)

dt
= Jbodyω̇body + ωbodyJ̇body. (S3.17)

This torque is equal to the torque exerted on the body by the surrounding fluid. From this
equation, we derived the angular acceleration of the body:

ω̇body =
τbody − ωbodyJ̇body

Jbody
. (S3.18)

This approach is an alternative for the computation of the angular acceleration by differ-
entiation ofωbody (obtained via Equation S3.11) thatmight be less prone to errors, because
of summation along the body used to obtain τbody.

To explore which portions of the body might contribute most to the net torques on
the body, we estimated velocity-based torques per unit length (‘dynamic pressure torque’)
along the body that include the density of water ρwater, the local height of the bodyhi, the
velocity components perpendicular to the body v⊥,i, and the position vector from CoM
to the location of interest along the body:

τ∗dynp,i =
1

2
ρwater cdynp,i hi rmov,i × (−||v⊥,i||v⊥,i) , (S3.19)

where i in the subscript refers to the location on the body. The value of the coefficient
cdynp,i was prescribed to increase linearly along the body:

cdynp,i = 2.0 + 1.25i/50, (S3.20)
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a simplification of Jordan’s approach (1992), whomade a distinction between cross-sections
that are approximately circular in shape and those that are shaped like plates. The simpli-
fication appeared to work as well as Jordan’s approach, if not better. The contribution to
the total body torque was computed by a summation along the fish:

τdynp =

50∑
i=2

τ∗dynp,i∆`i, (S3.21)

where the relatively small tip segments were ignored.
Following Jordan (1992), we estimated the torques per unit length due the skin friction:

τ∗fric,i =
1

2
ρwater cfric,i Si rmov,i ×

(
−||v‖,i||v‖,i

)
/∆`i, (S3.22)

where Si is the wetted surface of segment i, and v‖,i the velocity parallel to the fish axis of
segment i. We defined cfric,i as:

cfric,i = 0.64µ1/2
(
siv‖,i ρwater

)−1/2
, (S3.23)

where si is the distance along the body axis of segment i from the snout. The contribution
to the total body torque due to skin friction of all segments was computed as:

τfric =
50∑
i=2

τ∗fric,i∆`i, (S3.24)

where the tip elements were again ignored. Since acceleration-reaction forces might also
play a role in the interactionwith body andwater, we computed the torque per unit length
for each of the segments:

τ∗acc,i = ρwaterπ(0.5hi)
2rmov,i × (−a⊥,i), (S3.25)

where a⊥,i is the acceleration perpendicular to the fish axis at body segment i. The contri-
bution to the total body torque was computed as:

τacc =

50∑
i=2

τ∗acc,i∆`i, (S3.26)

where the small tip elements were ignored.

S3.3.4 Kinetic energy and power of the body

The kinetic energy associated with translation of the CoMwas calculated as

Etr,CoM =
1

2
mbodyv

2
swim. (S3.27)
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The kinetic energy due to rotation of the body segments about the CoMwas calculated as

Erot,body =
1

2

∑
i

(
JCoM,i ω

2
CoM,i + Jiω

2
i

)
, (S3.28)

where ωi is angular velocity of body segment i around the vertical axis through the seg-
mental centre of mass. The first term at the right-hand-side represents rotational energy
with respect to the CoM, the second term accounts for rotational energy of the segments
about the local vertical axis. This rotational energy of the deforming body is a close approx-
imation ofwhat is usually considered internal kinetic energy (Ekin,int = 1

2

∑
imiṙ

2
mov,i+

Jiω
2
i ). The total kinetic energy of the body was calculated as

Ekin,body =
1

2

∑
i

(
miṙ

2
i + Jiω

2
i

)
. (S3.29)

The sum ofEtr,CoM andErot,body is a close approximation ofEkin,body.
The power associated with translation of the CoMwas calculated as

Ptr,CoM = mbodyr̈CoM · ṙCoM, (S3.30)

which for planar motion reduces to

Ptr,CoM = mbody(r̈x,CoM ṙx,CoM + r̈y,CoM ṙy,CoM). (S3.31)

The power associated with rotation of the body about the CoMwas calculated as

Prot,body =
∑

i

{
d(JCoM,i ωCoM,i)

dt · ωCoM,i +
d(Jiω2

i /2)
dt

}
≈
∑

i

(
J̇CoM,i ω

2
CoM,i + JCoM,i ω̇CoM,i · ωCoM,i + Jiω̇i · ωi

)
,

(S3.32)

wherewe ignored the negligibly small term
∑

i J̇iω
2
i /2 at the right-hand side of the≈ sign.

The total power due to kinetic energy changes of the body was computed as

Pkin,body ≈
∑
i

(mir̈i · ṙi + Jiω̇i · ωi) (S3.33)

wherewe again ignored the term
∑

i J̇iω
2
i /2. Thepowerof thebodyPkin,body ≈ Ptr,CoM+

Prot,body. Specific energies and powers were computed by dividing the respective values
by body mass (designated, respectively, asE∗ and P ∗).

S3.3.5 Computation of confidence intervals

To calculate confidence intervals for the coefficients from the curve fitting procedure (main
text, §3.2.5), we used a Monte Carlo approach implemented in Matlab (see chapter 17 in
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(Motulsky and Christopoulos, 2003) for a detailed discussion of this approach). We first
performed a scaled total-least-squares-fit to obtain the optimal fit for the data points. We
then calculated the standard deviations with respect to the curve for both variables, which
were used to generate 10, 000 simulated data sets with the same number of points as the
original, and fitted these with the same total-least-squares-procedure. The 2.5th percentile
and the 97.5th percentile of the resulting coefficient distributions from all simulated data
setswere then selected as the boundaries of the95%confidence interval, except for constant
c1 in the fit St = c1Rec2 + c3 (see data for Fig. 3.7G in Table S3.3), where a single sided
95% confidence interval was applied.

S3.4 Supplementary results
The measured shape of a 2 dpf and a 5 dpf fish larva is shown in Fig. S3.3A,B. The mass of
the body increases from 2 to 4 dpf, while the relative position of the CoM along the body
is constant (Fig. S3.3C).
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Figure S3.3: Morphology and mass
distribution. (A–B) Dorsal and lateral
views of reconstructed larval shapes at 2
and 5 dpf. (C) Mass per unit length and
position of CoM (dotted vertical lines)
along the body of four larval stages.

Fish increase their swimming speed by increasing the product of fAtail as illustrated
by the scatter plots of Fig. S3.4.
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Figure S3.4: (A) Scatter plot of mean swimming velocity v̄swim against fAtail of fish larvae aged 2–5 dpf.
(B) Scatter plot of specific mean swimming velocity v̄∗swim against fÂtail.

Two supplementary movies (play back rate 6 frames s−1, original frame rate of high-
speed video1000 frames s−1) illustrate themotion andnet torque fluctuations on thebody
of a 5 dpf fish larva (same event as shown in Fig. 3.1 of themain text; duration of event 31.5
ms). Movie S1 shows the swimmingmotion in the earth-bound frame andmovie S2 shows
the same event in the moving frame with a fixed location of the CoM.

Tables S3.2–S3.4 show the values found of the coefficients (including the associated
confidence intervals), as well as the ratio of the square root of the sum of the squared per-
pendicular distances to the fitted curve for the non-linear fit of the curves shown in Figs
3.6–3.9 and a linear fit (where applicable).

Additional data underlying this paper can be found at:

https://doi.org/10.1371/journal.pone.0146682.s002
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Table S3.2: Values of the coefficients for the linear fits (y = c2x + c3) of Fig. 3.6C,D and those for the
second order polynomial fits (y = c1x

2 + c2x + c3) of Fig. 3.6A,B of the main text. The curve fits of
Fig. 3.6A,B were constrained to go through the origin. Confidence intervals are indicated by the values
between [ ]. Distances were expressed in meters and time in seconds to compute the coefficients. Column
5 shows the ratio of the square root of the sum of squared perpendicular distances to the fitted curve for
the non-linear fit and a linear fit (where applicable). The lower the ratio, the more important the non-linear
component of the fit. A high scatter in the data (which is partly due to variance in the behaviour of the fish
and partly due to measurements errors) may increase the computed ratio.
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Table S3.3: Values of the coefficients for the St-Re and Sw-Re fits (Fig. 3.7G: St = c1Rec2 +c3; Fig. 3.7H:
Sw = c1Rec2 + c3Re), and those for the second order polynomial fits (y = c1x

2 + c2x + c3; Fig. 3.7A–F)
of the main text. Confidence intervals are indicated by the values between [ ]. Angles were expressed in
radians, distances in meters and time in seconds to compute the coefficients. Column 5 shows the ratio
of the square root of the sum of squared perpendicular distances to the fitted curve for the non-linear fit
and a linear fit. The lower the ratio, the more important the non-linear component of the fit. A high scatter
in the data (which is partly due to variance in the behaviour of the fish and partly due to measurements
errors) may increase the computed ratio.
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Table S3.4: Values of the coefficients for the second order polynomial fits (y = c1x
2 + c2x + c3) of

Figs 3.8 and 3.9 of the main text. Confidence intervals are indicated by the values between [ ]. Angles
were expressed in radians, distances in meters and time in seconds to compute the coefficients. Column
5 shows the ratio of the square root of the sum of squared perpendicular distances to the fitted curve for
the non-linear fit and a linear fit (where applicable). The lower the ratio, the more important the non-linear
component of the fit. A high scatter in the data (which is partly due to variance in the behaviour of the fish
and partly due to measurements errors) may increase the computed ratio.
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Abstract
Fish canmove freely through the water column andmake complex three-dimensional mo-
tions to explore their environment, escape or feed. Nevertheless, themajority of swimming
studies is currently limited to two-dimensional analyses. Accurate experimental quantifica-
tion of changes in body shape, position and orientation (swimming kinematics) in three di-
mensions is therefore essential to advance biomechanical research of fish swimming. Here,
we present a validated method that automatically tracks a swimming fish in three dimen-
sions frommulti-camera high-speed video. We use an optimisation procedure to fit a para-
meterised, morphology-based fish model to each set of video images. This results in a time
sequence of position, orientation and body curvature. We post-process this data to de-
rive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-
dynamics method to compute the resultant forces and torques during swimming. The
presented method for quantifying 3D fish motion paves the way for future analyses of
swimming biomechanics.

4.1 Introduction
Quantification of swimming kinematics is essential to perform biomechanical analyses of
fish locomotion. Kinematic parameters, such as tail-beat frequency or amplitude (Hunter,
1972; Eloy, 2012), are frequently used to express changes in swimming behaviour. More
detailed descriptions of the fishmotion are required to performmechanism-oriented stud-
ies into propulsion and manoeuvring, using for example computational fluid dynamics
techniques (Borazjani and Sotiropoulos, 2009; Li et al., 2012). Many types of fish motion
are essentially three-dimensional, as fish are free to move through the water column to ex-
plore their environment, escape predators, or hunt for prey. Unless relatively rare cases
of single-plane motion are considered, it is necessary to quantify swimming kinematics in
three dimensions.

Experimental data on swimming motion are commonly obtained in the form of high-
speed videographs (Liao et al., 2003; Müller and Van Leeuwen, 2004; Green et al., 2011),
from which the motion and/or kinematic variables are extracted. Historically, this has of-
ten been done bymanual digitisation (Müller and Van Leeuwen, 2004; Tytell and Lauder,
2002; MacIver and Nelson, 2000; Kasapi et al., 1993). This process is tedious, time con-
suming and may introduce a user-dependent bias, e.g. the results may differ consistently
between individual digitisers. An automated approach is therefore preferred, allowing
higher data throughput and consistency compared to manual digitisation.

Automated fish tracking methods have been proposed in 2D (Fontaine et al., 2008;
Xiong and Lauder, 2014), but the assumption of two-dimensional motion restricts applic-
ation to a narrow range of swimming behaviour. A method was developed (Butail and
Paley, 2012) that allows tracking of multiple fish in three dimensions. However, it does not
support rolling motion, and describes the fish centreline with relatively low accuracy us-
ing a quadratic polynomial in lateral direction, and a quartic polynomial in longitudinal
direction. To our knowledge, an automated method to reconstruct arbitrary 3D motion
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(translation, pitch, roll and yaw) and body curvature with sufficiently high accuracy in all
variables to analyse dynamics (i.e. forces and torques) is still lacking.

Resultant forces and torques can be reconstructed from kinematic data, under specific
assumptions. This approach, commonly known as inverse dynamics, has been used often
for terrestrial and aerial locomotion (Koopman et al., 1995; Muijres et al., 2015), but it has
rarely been applied to analyse fish swimming. Resultant forces and torqueswere computed
for swimming zebrafish larvae in 2D (Van Leeuwen et al., 2015). Other studies (Hess and
Videler, 1984;Cheng andBlickhan, 1994) compute swimming forces andbendingmoments
along the fish body, assuming (simplified) fluid-dynamic models. This requires assump-
tions to bemade on the fluidmotion, thatmaynot hold for low and intermediateReynolds
number flow regimes, or complex manoeuvres with strong vortex interactions (Li et al.,
2014). We calculate the resultant 3D forces and torques on the body directly from the mo-
tion of the fish, only assuming a mass distribution based on its shape. To our knowledge,
three-dimensional tracking has never been used to calculate resultant forces and torques to
study the dynamics of fish swimming and manoeuvring.

In this article, we describe a method that allows accurate tracking of the fish’s body
position, orientation and deformation in 3D space, and reconstruction of resultant forces
and torques from high-speed video sequences from two or more arbitrary viewpoints. We
use an optimisation procedure tominimise differences between a parameterisedmodel fish
and fish silhouettes from segmented high-speed video frames. The method is validated
using synthetically generated data, and demonstrated on three-camera synchronised high-
speed video of a three day old zebrafish larva.

4.2 Materials and Methods
Our trackingmethod, outlined in Fig. 4.1 and implemented inMATLAB (R2013a; version
8.1, The Mathworks, Natick, Massachusetts, USA), is based on the creation of an in silico
representation of the videography experiment: we create a virtual, parameterised fish and
project it onto virtual cameras. We find the fish’s position, orientation and deformation by
minimising the difference between the virtual and the actual images using an optimisation
algorithm. We post-process these kinematics to yield resultant forces and torques on the
body, and other quantities of interest. For a full mathematical treatment of the methods,
we refer to the Appendix.

4.2.1 Creating the parameterised fish model

To represent the fish in silico, we create a three-dimensional virtual representation of the
fish. To this end, we construct a 3D model of the outer surface of the fish. The motion
and deformation of this model is parameterised based on the typical motion of body and
caudal fin swimmers.

We assume that: (1) The fish bends its body in lateral direction only (Hughes andKelly,
1996; Butail and Paley, 2012; Van Leeuwen et al., 2015), resulting in a single deformation
plane. (2) Transverse sections remain perpendicular to the deformed centre line; only pure
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Figure 4.1: Schematic overview of the
tracking method. We provide initial inform-
ation by creating a 3D model of the fish, cal-
ibrating the cameras and initialising the fish
position by clicking the snout and tail pos-
ition in the images from every camera (I).
For every time step, we segment the fish in
the images from all cameras and predict the
fish position, orientation and body curvature
based on previous frames (II). The predicted
parameters are then used to initialise an op-
timisation algorithm. This algorithm finds the
set of parameters (body curvature, position
and orientation) that minimises the difference
with the high-speed video frames (III). Once
the optimisation has been performed for all
frames, we compute the centre of mass and,
by inverse dynamics, the resultant forces and
torques over time (IV).

bending is applied to the fish model. This allows us to describe the body deformation by a
single parameter: the curvature along the centre line (Van Leeuwen et al., 2015). (3) There
is no passive or active deformation of the medial fin fold relative to the body. Because the
fin fold has a small mass compared to the trunk of the fish, its deformation will only be
a minor contribution to the resultant forces and torques from inverse dynamics. (4) The
motion of the pectoral fins is ignored in the present version of the 3D fish tracker. For
zebrafish larvae, the pectoral fins have been suggested to play a minor role in propulsion
during slow swimming (Green et al., 2011), and often remain adducted during fast swim-
ming (Thorsen et al., 2004). (5) The 3D position and orientation (roll, pitch, yaw) of the
head are completely unconstrained.
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Figure 4.2: Construction of the in silico zebra-
fish. (A) A series of cross-sectional shapes is com-
bined into a three-dimensional body model. The
cross-section indicated in blue is shown in more de-
tail in (B). (B) Generation of cross-section in the
tail region: two ‘components’, body (green) and
fin (blue), with different cross-sectional shapes are
merged into a single cross-section (black). (C) Para-
meterisation (position, head orientation and body
curvature) of the three-dimensional body model.
The position of the tip of the snout is described by
the coordinates x, y , z , and head orientation by the
three Tait-Bryan angles ϕroll, ϕpitch, ϕyaw. Body de-
formation is parameterised by prescribing a curva-
ture κ along the centreline (red) at a number of con-
trol points, indicated by the dots; the body surface is
deformed along with the centreline, under the as-
sumption that the transverse sections stay plane,
and perpendicular to the centreline.

We describe the three-dimensional surface of the fish by a longitudinal series of trans-
verse sections (Van Leeuwen et al., 2015) (see Fig. 4.2A). This approach allows large flex-
ibility in the body shapes to be described, and makes it relatively easy to create new three-
dimensional surface models. Furthermore, deforming the body model under the assump-
tion of pure bending becomes a simple matter of rotating and translating cross-sections.

For our case of the larval zebrafish, we distinguish three ‘components’: trunk, eyes and
medial fin fold. The cross-sectional shape of these components is described separately by re-
spectively cubic splines, superellipses (generalised ellipseswith an exponent 6= 2) andordin-
ary ellipses. To determine the parameters of each cross-sectional shape at different points
along the body, we photograph zebrafish larvae laterally and dorsally using a digital cam-
era (DP50, Olympus, Japan) mounted on a microscope (Stemi SV11, Zeiss, Germany), and
then digitise these photos using a customMATLABR2013a program.

At each point along the fish, the three components are merged into a single cross-
sectionby finding their outermost contour (seeFig. 4.2B).Allmerged cross-sectional shapes
are generatedwith the samenumber of circumferential points, allowingus to connect them
into quadrilateral faces and thus create a 3D surface model. Because we assume that cross-
sections remain plane and perpendicular to the fish’s centreline, we can easily deform the
model based solely on the centreline position.

The head motion is described by its three-dimensional position and orientation (roll,
pitch, yaw). This also prescribes the orientation of the plane in which the fish bends. The
body deformation is described by the local body curvature along the centre line in this
deformation plane. We reconstruct curvature rather than position or local angle to allow
applications of the method to use higher order spatial derivatives. We prescribe the cur-
vature to be zero in the stiff head region of the fish, where we expect no deformation (the
anterior 10%of a larval zebrafish). We define a relatively small number of control points (7
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for themodel of the zebrafish larva) where curvature is prescribed, which we interpolate to
all nodes of the high-resolution body model using a cubic spline. This reduces computa-
tional load during tracking, while enabling us to capture arbitrary curvature distributions
along the fish.

We calculate the deformed surface of the fish froma set of parameters (i.e. headposition
and orientation, and body curvature) and the 3D model (see Fig. 4.2C). First, we calculate
the deformed shape of the body based in a coordinate system attached to the head, with
thex-coordinate in caudo-rostral direction. The interpolating spline fit describes the curva-
ture along the body as a third-order piecewise polynomial, which we integrate analytically
to obtain the local angle of the centreline. The shape of the centreline is constructed by
rotating each subsequent segment by this local angle. Each cross-section is then translated
with the centreline, and rotated by the local angle to create the deformed surface model.

This model is subsequently rotated in 3D space bymultiplication with a rotationmat-
rix, created using the roll, pitch and yaw angles. Finally, it is translated to the specified
snout position. The result is a three-dimensional surface representing the fish shape for
the prescribed set of parameters.

4.2.2 Pre-processing video frames

The main input for the tracking algorithm is a set of high-speed video images of a swim-
ming fish from two or more cameras. In order to track the fish, these images must be seg-
mented into fish silhouette pixels and background pixels. The result of this procedure is a
binary image, with background pixels set to 0 and fish pixels set to 1.

The specific implementation of the segmentation procedure is strongly dependent on
the video setup. We shortly outline the procedure for our example case of larval zebrafish,
which was implemented in MATLAB R2013a. First, we correct the video sequence for in-
tensity fluctuations originating from the incandescent light sources. Weobtain a correction
factor for these fluctuations by calculating the average background intensity, and normal-
ising it by its maximum value. Because the zebrafish larvae have translucent fins with low
greyscale contrast to the background, we cannot use intensity thresholding. Instead, we
calculate themagnitude of the spatial gradient, threshold this at a specified value and fill all
holes; this results in a white silhouette of the fish on a black background.

4.2.3 Fitting the body model

The goal of the tracking algorithm is to find the set of fish model parameters that corres-
ponds best to the set of video frames. To assess how well a set of parameters matches a set
of video frames, we compare a simulated image of the fish to the segmented video frames.
This comparison can be expressed in a single scalar, that is low for a good fit, and high for
a bad fit.

To find the set of fish parameters that minimises this number at every time step, we
use an optimisation algorithm. However, we cannot directly apply the optimisation to
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the goodness-of-fit term, because the problem of reconstructing a three-dimensional shape
from a small number of viewpoints is ill-posed. A unique solution may not exist and the
optimal solution may vary strongly with small changes in the projections. We therefore
introduce a regularising term that ensures smoothness of the body curvature, and thus
reduces the risk of local minima with unrealistic body curvature. The regularised objective
function ftot is therefore given by

ftot(Ω) = fGoF(Ω) + freg(Ω), (4.1)

whereΩ is the set of fish parameters, fGoF is the term expressing the goodness of fit and
freg is the regularising term. The solution that minimises this function is selected to rep-
resent the state of the fish in the current time step.

The goodness-of-fit term is computed by determining the overlap between projections
of the virtual fish and the segmented high-speed video images in the current time step. We
generate these projections with virtual cameras at calibrated positions and orientations of
the experimental cameras (using a bundle adjustment approach for the zebrafish experi-
ment). The projections of the three-dimensional bodymodel onto the virtual image planes
are overlayed onto the segmented video images. We count all non-zero pixels in this com-
bined image, and subtract the number of overlapping non-zero pixels. The total number
of pixels that differ between all virtual-actual image pairs is our goodness-of-fit term.

The regularising term is defined to become larger if the body curvature is less ‘smooth’;
this suppresses sets of parameters with unrealistically steep curvature gradients. We com-
pute this term by integrating the squared curvature gradient along the fish, weighted with
a function that is high near the head and small near the tail:

freg =

1∫
0

w(s)

(
dκ(s)

ds

)2

ds, (4.2)

where s is a normalised parameter along the fish midline, w(s) is the weighting function
of the form c0 e

−c1s with constants c0 and c1, and κ(s) is the local curvature. Due to the
weighting function, the regularisation penalises curvature gradients near the head more
strongly thannear the tail, corresponding to the expected deformation of the fish. The final
objective function is computed by summing the goodness-of-fit term and the regularising
term.

The objective function (Equation 4.1) is minimised using the Nelder-Mead (or down-
hill simplex) algorithm (Nelder and Mead, 1965; Lagarias et al., 1998), which marches an
N -dimensional simplex with N + 1 vertices through optimisation space to find an op-
timal set of parameters. We initialise the algorithm by extrapolating from the solution in
previous time steps, or from a manual indication of the snout and tail tip in the first time
step. A rough optimisation is performed from this initial solution, after which we restart
the optimisation with ten-fold reduced tolerances. If the objective function differs more
than a threshold value from the value in the previous frame, additional optimisations are
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performed from a randomised initial condition near the previous solution, until the differ-
ence is sufficiently small. Applying this procedure to all time steps, we get a description of
the state of the fish in terms of the model parameters for the complete video sequence.

4.2.4 Post-processing and inverse dynamics

The result from the fish tracker is a time series of head positions, head orientations and
body curvatures, sampled at every frame in the high-speed video. These data can be post-
processed to compute derived quantities of interest (velocities, accelerations, forces, and
torques) to answer biological questions on the mechanics of swimming.

Computing these derived quantities involves the computation of (second) derivatives,
requiring smoothing of the solution to ensure accurate results. We apply a penalised least
squares approach (Eilers, 2003) to the rawmodel parameters—no further smoothing is ap-
plied to the derived quantities. A fourth order derivative regularisation term is used, ensur-
ing that all second time derivatives are smooth (Stickel, 2010). The smoothing parameter is
chosen by visual evaluation of the resulting derived quantities, such that unrealistic high-
frequency components disappear and relevant low-frequency information is retained. The
derivatives are computed of the smoothed data using second order finite differences.

The resultant force on the fish body can be computed from the centre of mass (CoM)
acceleration and total fish mass. Computation of both quantities requires knowledge of
the mass distribution. By assuming a constant density (of water) of the fish volume, the
surface description can be used as a mass distribution. We triangulate the optimised sur-
face, and compute the CoM position and fish mass with a method for general polyhedra
(Dobrovolskis, 1996). We calculate the acceleration of the CoM by double differentiation
of its 3D position, yielding the resultant force vector by multiplication with the fish mass
according to Newton’s second law. This approach reconstructs the resultant of all external
fluid forces acting on the body. Note that the added mass of the surrounding water con-
tributes to these fluid forces, and does not have to be implemented explicitly.

Calculating the resultant torque on a rigid body can be done in a similar manner to the
force reconstruction: it is equal to the moment of inertia multiplied by the angular accel-
eration. However, for the case of a swimming fish this is not applicable, since a significant
portion of its mass is moving over distances of the same order of magnitude as its body
size, causing the moment of inertia to vary significantly (Van Leeuwen et al., 2015). We
have developed an alternative approach, where we calculate the total angular momentum
of the body by an extension of a previously developed method for calculation of moments
of inertia (Dobrovolskis, 1996); see the Appendix for the mathematical background. Tak-
ing the time derivative of the total angular momentum L yields the resultant torque τ of
a three-dimensional, arbitrarily shaped, deforming body:

τ = ρ
d

dt


∫∫∫
V

r∗(x)× v∗(x) dV

 , (4.3)
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where ρ is the fish’s mass density, r∗ is the distance vector from the CoM and v∗ is the
velocity vector relative to the CoM.

To simplify interpretation of the calculated forces and torques, we express them in
a local coordinate system (xfish, yfish, zfish), aligned with the deformation plane of the
fish and moving with its CoM. In the deformation plane, xfish is aligned with the result-
ant body angle (Van Leeuwen et al., 2015), which is defined as a local moment of inertia-
weighted average angle. Torque vectors in this coordinate system can be interpreted as
being respectively ‘roll’-, ‘pitch’-, ‘yaw’-torques. To provide a more intuitive definition of
the ‘forward’ force, we define it in the direction of the CoM velocity vector, in addition to
the fish coordinate system.

4.2.5 Larval zebrafish kinematics setup

As an example, we created high-speed videography of a three days post fertilisation zebra-
fish larva (Danio rerio Hamilton 1822). We used a three-camera setup, with one vertical
camera (pco.dimax HS4, PCO, Kelheim, Germany; 2000 × 2000 pixels, 75 µs expos-
ure, 500 pixels along the 3.5 mm fish), and a left- and right-facing camera (respectively
FASTCAM APX RS and FASTCAM SA5, Photron, Tokyo, Japan; 1024 × 1024 pixels,
33 µs exposure, 250 pixels along the 3.5 mm fish) at 30◦ to horizontal. A macro lens at
f/2.8 (105 mm AF Micro-NIKKOR f/2.8D, Nikon, Tokyo, Japan) with 27.5 mm exten-
sion tubes was used on all three cameras. The cameras were synchronised with a digital
delay pulse generator (9618+, Quantum Composers, Bozeman, Montana, USA), running
at 2000 pulses (frames) per second. Approximately 50 larvae were placed in a regular-
hexagonal tube (16 mm sides, 80 mm long), positioned such that the optical axes of all
cameras were perpendicular to the air-glass-water interface. Parallel light, created by shin-
ing a fibre optic cold light source (KL 150 B, Schott AG, Mainz, Germany) through a 250
mm lens (52 mm 250D close-up lens, Canon, Tokyo, Japan), was aligned with the camera
axis. This allows for the creation of high contrast shadow images with large depth-of-field
(approximately 8mm for 15×15mm field of view) at shutter speeds in the order of 50µs.
These experiments were approved by the animal ethics committee ofWageningen Univer-
sity.

4.2.6 Test cases

Motion verification

In order to assess the motion tracking accuracy of the method, we generated a sequence of
images simulating a swimming fishwith an exactly knownmotion. Weprescribed the snout
motion, orientation and the body curvature analytically, such that it has comparable prop-
erties (i.e. spatiotemporal resolution, angle amplitudes, velocities, curvature amplitudes)
to actual zebrafish swimming kinematics. A C-start-like motion is prescribed first, which
then smoothly blends into a ‘continuous’ swimming mode with a travelling body wave
along the body (see Fig. 4.3A).
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Figure 4.3: Results of tracking a simulated swimming fish. (A) Projections in the world x, y -plane
of the analytically prescribed simulated swimming motion. (B) Path of the snout and the centre of mass,
reference (thick, black) and tracked (thin, respectively green and purple), the arrow indicates the direction
in time. The dots correspond to the fish states depicted in A. (C) The rotation angle vector over time,
reference (thick, black) and tracked (thin, green), the arrow indicates the direction in time. (D) Body
curvature (colours) as a function of normalised position along the body s (horizontal axis) and time (vertical
axis) for the reference (left) and tracked result (right), s = 0 corresponds to the head, s = 1 corresponds
to the tail. The grey lines correspond to the fish states depicted in A. (E) Head-tail angle for the reference
(thick, black) and tracked (thin, green) solution. This is effectively the difference in angle between the first
and last point on the body, and is the net result of the curvature in every location along the body. The grey
lines correspond to the fish states depicted in A.

We projected the prescribed shape of the body model onto three simulated cameras,
oriented similarly to the set we used for the larval zebrafish. We simulated a frame rate
of 2000 frames per second, and set all virtual cameras to have a field of view of 15 × 15
mm at 1024× 1024 pixels, resulting in approximately 340 pixels along the simulated fish
(` = 5 mm). The projections were then Gaussian blurred (σ = 1 pixel) and given a 45%
decreased contrast. We generated normally distributed (σ = 5% of maximum intensity)
additive noise at a 10× lower resolution than the images (102× 102 pixels), oversampled
this to full resolution and Gaussian blurred it (σ = 5 pixels). This noise image was added
to the generated images to simulate dirt and other disturbances in the background of the
image. We created synthetic images at two other resolutions: 512 × 512, and 2048 ×
2048 (respectively 170 and 680 pixels along the fish) with the same kinematics and camera
settings as used for the motion verification.

Inverse dynamics verification

In order to verify the validity of the approach for computing forces and moments from
a triangulated surface, we simulated a cylinder to which we applied prescribed forces and
torques. We generated a cylinder with a diameter of 1.25 mm and a length of 5 mm and
applied simple prescribed forces and torques. We integrated the forces over time using
trapezoidal integration (MATLAB’strapz), we integrated the torques using themidpoint
rule (Simo et al., 1995; Zupan and Saje, 2011). The resulting translation and rotation were
applied to the three-dimensional, triangulated cylinder model and fed directly into the in-
verse dynamics module of the post-processor.

4.3 Results

4.3.1 Motion verification

We tracked the synthetically generated images (see §4.2.6) to assess how accurately the mo-
tion is reproducedby the tracker (see Figs 4.3 and4.4). The snout positionwas trackedwith
an error smaller than 2% body length over the entire motion (see Figs 4.3B and 4.4A). The
centre of mass position is reconstructed more accurately, with an error smaller than 0.5%
over the image sequence. The snout rotation anglewas reproducedwith amagnitude of the
error vector less than 6◦ (see Figs 4.3C and 4.4B). The curvature is shown in Fig. 4.3D: the
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largest deviation of the tracked curvature from the reference values occurs near the head.
We assess the accuracy of the body curvature reconstruction by computing the integrated
value over the entire body—effectively the difference in angle between the first point on
the head and the last point on the tail. This head–tail angle is reconstructed with an error
smaller than 11◦, approximately 6% of its maximum value (see Figs 4.3E and 4.4C).

4.3.2 Inverse dynamics verification

The results in Figs 4.5B and C verify that our inverse dynamics method functions cor-
rectly in principle—all components of the reconstructed forces and torques are practically
identical to the prescribed reference values.

A final step in the verification is the reproducibility of forces and torques from kin-
ematics sequences tracked fromvideo. We fed the prescribed three-dimensional body shape
directly into the inverse dynamics module to compute reference forces and torques. We
also tracked the generated images and computed the forces and torques from these results
(see Fig. 4.6). Having verified the inverse dynamics method with the moving cylinder, we
consider the first as our reference and compare it to the latter.

In general, there is strong agreement between the reference and tracked solutions, with
amaximum error of approximately 0.5µN in force and 0.5µNmm in torque for the solu-
tionwith a resolutionof1024×1024. Thedependency on resolution is as expected: higher
resolutions will give more accurate results since the body mass distribution can be recon-
structedwith higher fidelity. The largest deviations occur in the first and last frames, due to
edge effects in the smoothing and numerical differentation. Fish swimming data will gen-
erally consist of two types of sequences: starts and ‘continuous’ swimming. Edge effects
for starts can be eliminated by assuming zero time derivative for all kinematic parameters
in the first frame, and cutting off the last few frames. Edge effects for ‘continuous’ swim-
ming can be eliminated by cutting off a few frames from the start and end of the movie
sequence during post-processing. Hence, for fish swimming in general, edge effects should
not present a major problem for solution accuracy.

4.3.3 Analysis of three-dimensional fast start of a larval zebrafish

Fig. 4.7 shows an example tracked result of a fast-start of a zebrafish larva three days post
fertilisation (see also the Supplementary Movie). The difference between the fish model
and the high-speed images is small in all three views, also in the presence of optical occlu-
sions in the form of other fish (around 29 ms). Deviations occur mostly near the head,
where the body curvature is underestimated.

The post-processed result for the same movie is shown in Fig. 4.8. During the prepar-
atory stroke, the CoMmoves very little, after which it increases its speed andmoves along a
wavingpath (Fig. 4.8A).Themotion is not confined to a single plane: the fishmoves down-
ward by approximately 1.4mmover a total distance of 8.3mm. The curvature (Fig. 4.8B)
shows clearwaves along the body after the start,moving fromapproximately0.25 ` to close
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Figure 4.6: Inverse dynamics results of the simulated fish from Fig. 4.3. The reference forces and
torques were computed by applying our inverse dynamics method to the prescribed triangulated body
shape. The grey lines correspond to the time points indicated in Fig. 4.3A. (A) Resultant force on the
fish, reference (thick, black) and tracked (thin, green) at a resolution of 1024× 1024 pixels. (B) Resultant
torque on the fish, reference (thick, black) and tracked (thin, green) at a resolution of 1024× 1024 pixels.
(C) Magnitude of the force error vector ||Fref −Fcalc|| and (D) the torque error vector for three resolutions
of the generated images: 512×512 (light blue), 1024×1024 (medium blue) and 2048×2048 (dark blue)
pixels, respectively approximately 170, 340 and 680 pixels along the fish. The grey bands indicate the first
and last 5 frames that have reduced accuracy due to edge effects and may be cut off.

to the tail. The curvature of the highly flexible tail is mainly caused by a strong interaction
with the surrounding fluid, resulting in a complex pattern.

The resultant three-dimensional forces and torques (Figs 4.8C,D) start at low amp-
litudes until the tail starts moving at high speed at the end of the preparatory phase. The
forces in sideward and upward direction oscillate around zero, resulting in a path that is ap-
proximately straight. In forward direction, there is a mainly positive force during the start,
indicating that the fish is accelerating. After the start, the average force per cycle is around
zero, indicating an approximately constant cycle-averaged speed. The pattern of produced
force looks non-periodic, similar to earlier results for zebrafish larvae (Van Leeuwen et al.,
2015). Slight differences from periodicity at the level of position will result in large differ-
ences in the force time series.

The torque about the upward axis (‘yaw’) is largest over most of themotion compared
to the ‘roll’-torque and ‘pitch’-torque, because most of the fish’s mass is rotating in its de-
formation plane. For the examined tail beats, the yaw torque shows a double-peaked pat-
tern, similar to earlier observations for zebrafish larvae (Van Leeuwen et al., 2015). Though
smaller than the yaw torque, the roll and pitch torques are considerable, mainly causing
pitch (up to approximately 15◦) and an oscillating roll angle (up to approximately 30◦

during the start).
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Figure 4.7: Overlap between the
tracked fish and the video images of
a three days post fertilisation zebra-
fish larva. The tracked fish (green) is
overlayed over high-speed shadow im-
ages for a fast-start of a three days
post fertilisation zebrafish larva, with its
centre of mass indicated by white dots.
Each column shows data from a differ-
ent camera, from left to right oriented at:
30◦ to horizontal from the left, vertical,
and 30◦ to horizontal from the right, as
illustrated on the top of each column.
The first frame (0 ms) is shown in full,
and zoomed in to the fish to illustrate the
field of view size; the rest of the frames
are only shown zoomed in.
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Figure 4.8: Post-processing result for a fast-start of a three days post fertilisation zebrafish larva.
(A) Tracked fish model, time is shown by fill colour (from light grey to black), the path of the centre of
mass is indicated by the orange line, with circles corresponding to each of the depicted fish shapes. The
preparatory stroke is indicated by a narrow white line. The axes (x, y , z) define the world coordinate
system, the axes (xfish, yfish, zfish) define an instantaneous local coordinate system for the highlighted fish
shape, defined in the deformation plane of the fish aligned with an inertia-weighted average of the local
deformation angle. (B) Local body curvature (colours) along the fish length (horizontal) and time (vertical).
The grays on the time axes correspond to the fish shapes in A. (C) Resultant force on the body in ‘forward’,
xfish-, yfish- and zfish-direction, in respectively dark orange, light orange, light purple and dark purple. The
‘forward’, xfish- and yfish, zfish-components are shown separately for reasons of clarity. (D) Resultant torque
on the body in xfish-, yfish- and zfish-direction, in respectively light orange, light purple and dark purple. The
grayscale boxes on the time axes correspond to the fish shapes in each section in E. (E) Time trace of
the body shape in the world x, y - and x, z-plane (from light grey to black) for each of the 5 time-slices in
D and E, every second frame is shown.

This example demonstrates that the tracker performs well on high-speed video images
of swimming fish. Furthermore, it illustrates that swimming behaviour is essentially three-
dimensional, and needs to be analysed as such.

4.4 Discussion and perspectives
Testing of the method using synthetically generated data shows that our tracking method
reconstructs position, orientation, curvature, and forces and torques accurately. The ex-
ample data with a three day old zebrafish demonstrate that it is applicable to real-world
high-speed videography.

The accuracyof the extractionof the fish silhouette fromthehigh-speed images strongly
determines the fidelity of the result. The quality of segmentation is influenced by image
contrast and spatial resolution. Higher image resolution will in general lead to a higher fi-
delity of reconstruction, both in motion and forces and torques. Higher contrast between
fish and background will lead to a sharper silhouette, resulting in smaller tracking errors.

An important source of error is the regularising term that we use to suppress non-
physical solutions. It cannot distinguish between spurious and physical curvature gradi-
ents, and will suppress any strong gradient, regardless of its source. Most importantly, this
leads to an underestimation of curvature in the region near the stiff head section. However,
reducing the penalty below a certain threshold may lead to unrealistically steep changes in
curvature in the same region. These errors have a limited effect on the reconstructed mass
distribution, since the local error can be compensated by changing body curvature else-
where. Therefore, resultant forces and torques will still be accurate.

For some cases, our assumptions on the fish deformation may not hold; the fish body
may twist, the medial fin fold may deform in a more complex way (Van den Boogaart
et al., 2012), and subtle out of plane movements may be used to generate the fluid dynamic
torques that roll and pitch the animal. Furthermore, the assumption that transverse cross-
sections remain perpendicular to the centreline may be invalid for fish with a low aspect
ratio body shape, unlike the slender zebrafish larvae. These effects may influence hydro-
dynamic force generation, but will have a minor influence on the accuracy of the mass dis-
tribution of the fish. Since we use the mass distribution directly to calculate forces and
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torques, they are sufficiently accurate under the present assumptions.
The assumed morphology may not match perfectly with the measured fish and will

therefore result in errors. We generate body models separately from the experiments, as
opposed to previous approaches (Fontaine et al., 2008; Butail and Paley, 2012), which gen-
erated a body model from the images themselves. We chose our morphology-based ap-
proach to maximise use of a priori information on the 3D shape of the fish, which cannot
be perfectly reconstructed from only three camera views. To prevent tracking errors, care
should be taken that the chosen bodymodel corresponds well to the target fish by e.g. gen-
erating separate shape models for each individual fish. In our case, we assume that fish of
a similar developmental stage are highly similar (Parichy et al., 2009), so we will generate
body models for different individuals than the tracked fish.

To calculate forces and torques, we assume that the fish has a constant density over
its entire volume. In general, this is not the case—the presence of different types of tissue
and a swim bladder cause an inhomogeneous mass distribution. The swim bladder causes
the largest density difference within the body, since it is filled with gas. However, because
it is located close to the fish’s centre of mass, it will have a small influence on the recon-
structed torques. If necessary, density differences can be taken into account by creating a
high-resolution tetrahedral mesh in the complete volume, on which a density distribution
can be prescribed.

If needed, the current tracking method can be extended to track the complex deform-
ation of the medial fin fold and the motion and deformation of the pectoral fins. This will
require the addition of parameterised models of the medial and pectoral fins to the overall
shape model. These parameters can be optimised simultaneously with the body deform-
ation and motion. The image resolution of the data in the present work is insufficient to
reliably perform this tracking, because we chose a large field of view to film extended swim-
ming motions.

Themethodpresented in this article is able to track a fish in three-dimensions by recon-
structing its position, orientation (yaw, pitch and roll) andbody curvature fromhigh-speed
video, with sufficient accuracy to compute resultant forces and torques. Body kinematics
and dynamics at this high level of detail will help to pave the way for in-depth mechanistic
analyses of the biomechanics of locomotion and manoeuvring in swimming fish.
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Supplementary movie
The supplementary movie can be found at:

https://doi.org/10.1371/journal.pone.0146682.s002

References
Borazjani, I. and Sotiropoulos, F. (2009). Numerical investigation of the hydrodynamics
of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 212,
576–592.

Butail, S. and Paley, D. A. (2012). Three-dimensional reconstruction of the fast-start
swimming kinematics of densely schooling fish. J. R. Soc., Interface 9, 77–88.

Cheng, J.-Y. and Blickhan, R. (1994). Bending moment distribution along swimming
fish. J. Theor. Biol. 168, 337–348.

Dobrovolskis, A. R. (1996). Inertia of any polyhedron. Icarus 124, 698–704.
Eilers, P. H. C. (2003). A perfect smoother. Anal. Chem. 75, 3631–3636.
Eloy, C. (2012). Optimal Strouhal number for swimming animals. J. Fluids Struct. 30,
205–218.

Fontaine, E., Lentink, D., Kranenbarg, S., Muller, U. K., Van Leeuwen, J. L., Barr,
A. H. and Burdick, J. W. (2008). Automated visual tracking for studying the ontogeny
of zebrafish swimming. J. Exp. Biol. 211, 1305–1316.

Green, M. H., Ho, R. K. and Hale, M. E. (2011). Movement and function of the pectoral
fins of the larval zebrafish (Danio rerio) during slow swimming. J. Exp. Biol. 214, 3111–
3123.

Hess, F. and Videler, J. J. (1984). Fast continuous swimming of saithe (Pollachius virens):
a dynamic analysis of bending moments and muscle power. J. Exp. Biol. 109, 229–251.

Hughes, N. F. and Kelly, L. H. (1996). New techniques for 3-D video tracking of fish
swimmingmovements in still or flowing water. Can. J. Fish. Aquat. Sci. 53, 2473–2483.

Hunter, J. R. (1972). Swimming and feeding behavior of larval anchovyEngraulis mordax.
Fish. Bull. 70, 821–838.

Kasapi, M. A., Domenici, P., Blake, R. W. and Harper, D. (1993). The kinematics and
performance of escape responses of the knifefish Xenomystus nigri. Can. J. Zool. 71,
189–195.

Koopman, B., Grootenboer, H. J. and De Jongh, H. J. (1995). An inverse dynamics
model for the analysis, reconstruction and prediction of bipedal walking. J. Biomech.
28, 1369–1376.

Lagarias, J. C., Reeds, J. A., Wright, M. H. and Wright, P. E. (1998). Convergence
properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9,
112–147.

117

https://doi.org/10.1371/journal.pone.0146682.s002
https://doi.org/10.1242/jeb.025007
https://doi.org/10.1242/jeb.025007
https://doi.org/10.1242/jeb.025007
https://doi.org/10.1098/rsif.2011.0113
https://doi.org/10.1098/rsif.2011.0113
https://doi.org/10.1006/jtbi.1994.1114
https://doi.org/10.1006/jtbi.1994.1114
https://doi.org/10.1006/icar.1996.0243
https://doi.org/10.1021/ac034173t
https://doi.org/10.1016/j.jfluidstructs.2012.02.008
https://doi.org/10.1016/j.jfluidstructs.2012.02.008
https://doi.org/10.1242/jeb.010272
https://doi.org/10.1242/jeb.010272
https://doi.org/10.1242/jeb.010272
https://doi.org/10.1242/jeb.057497
https://doi.org/10.1242/jeb.057497
https://doi.org/10.1242/jeb.057497
https://doi.org/10.1139/f96-200
https://doi.org/10.1139/f96-200
https://doi.org/10.1139/z93-026
https://doi.org/10.1139/z93-026
https://doi.org/10.1139/z93-026
https://doi.org/10.1016/0021-9290(94)00185-7
https://doi.org/10.1016/0021-9290(94)00185-7
https://doi.org/10.1016/0021-9290(94)00185-7
https://doi.org/10.1137/s1052623496303470
https://doi.org/10.1137/s1052623496303470
https://doi.org/10.1137/s1052623496303470


Li, G., Müller, U. K., Van Leeuwen, J. L. and Liu, H. (2012). Body dynamics and
hydrodynamics of swimming fish larvae: a computational study. J. Exp. Biol. 215, 4015–
4033.

Li, G., Müller, U. K., Van Leeuwen, J. L. and Liu, H. (2014). Escape trajectories are
deflected when fish larvae intercept their own C-start wake. J. R. Soc., Interface 11,
20140848–20140848.

Liao, J. C., Beal, D. N., Lauder, G. V. and Triantafyllou, M. S. (2003). The Kármán
gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol.
206, 1059–1073.

MacIver, M. A. and Nelson, M. E. (2000). Body modeling and model-based tracking for
neuroethology. J. Neurosci. Methods 95, 133–143.

Muijres, F. T., Elzinga, M. J., Iwasaki, N. A. and Dickinson, M. H. (2015). Body saccades
ofDrosophila consist of stereotyped banked turns. J. Exp. Biol. 218, 864–875.

Müller, U. K. and Van Leeuwen, J. L. (2004). Swimming of larval zebrafish: ontogeny of
body waves and implications for locomotory development. J. Exp. Biol. 207, 853–868.

Nelder, J. A. and Mead, R. (1965). A simplexmethod for functionminimization. Comput.
J. 8, 308–313.

Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. and Engeszer, R. E.
(2009). Normal table of postembryonic zebrafish development: staging by externally
visible anatomy of the living fish. Dev. Dyn. 238, 2975–3015.

Simo, J. C., Tarnow, N. and Doblare, M. (1995). Non-linear dynamics of three-
dimensional rods: exact energy and momentum conserving algorithms. Int. J. Numer.
Methods Eng. 38, 1431–1473.

Stickel, J. J. (2010). Data smoothing and numerical differentiation by a regularization
method. Comput. Chem. Eng. 34, 467–475.

Thorsen, D. H., Cassidy, J. J. and Hale, M. E. (2004). Swimming of larval zebrafish: fin-
axis coordination and implications for function and neural control. J. Exp. Biol. 207,
4175–4183.

Tytell, E. D. and Lauder, G. V. (2002). The C-start escape response of Polypterus seneg-
alus: bilateral muscle activity and variation during stage 1 and 2. J. Exp. Biol. 205, 2591–
2603.

Van den Boogaart, J. G. M., Muller, M. and Osse, J. W. M. (2012). Structure and
function of the median finfold in larval teleosts. J. Exp. Biol. 215, 2359–2368.

Van Leeuwen, J. L., Voesenek, C. J. and Müller, U. K. (2015). How body torque and
Strouhal number change with swimming speed and developmental stage in larval zebra-
fish. J. R. Soc., Interface 12, 20150479.

Xiong, G. and Lauder, G. V. (2014). Center of mass motion in swimming fish: effects of
speed and locomotor mode during undulatory propulsion. Zoology 117, 269–281.

118

https://doi.org/10.1242/jeb.071837
https://doi.org/10.1242/jeb.071837
https://doi.org/10.1242/jeb.071837
https://doi.org/10.1098/rsif.2014.0848
https://doi.org/10.1098/rsif.2014.0848
https://doi.org/10.1098/rsif.2014.0848
https://doi.org/10.1242/jeb.00209
https://doi.org/10.1242/jeb.00209
https://doi.org/10.1242/jeb.00209
https://doi.org/10.1016/S0165-0270(99)00161-2
https://doi.org/10.1016/S0165-0270(99)00161-2
https://doi.org/10.1242/jeb.114280
https://doi.org/10.1242/jeb.114280
https://doi.org/10.1242/jeb.00821
https://doi.org/10.1242/jeb.00821
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1002/dvdy.22113
https://doi.org/10.1002/dvdy.22113
https://doi.org/10.1002/dvdy.22113
https://doi.org/10.1002/nme.1620380903
https://doi.org/10.1002/nme.1620380903
https://doi.org/10.1002/nme.1620380903
https://doi.org/10.1016/j.compchemeng.2009.10.007
https://doi.org/10.1016/j.compchemeng.2009.10.007
https://doi.org/10.1242/jeb.01285
https://doi.org/10.1242/jeb.01285
https://doi.org/10.1242/jeb.01285
https://doi.org/10.1242/jeb.065615
https://doi.org/10.1242/jeb.065615
https://doi.org/10.1098/rsif.2015.0479
https://doi.org/10.1098/rsif.2015.0479
https://doi.org/10.1098/rsif.2015.0479
https://doi.org/10.1016/j.zool.2014.03.002
https://doi.org/10.1016/j.zool.2014.03.002


4

Zupan, E. and Saje, M. (2011). Integrating rotation from angular velocity. Adv. Eng.
Softw. 42, 723–733.

119

https://doi.org/10.1016/j.advengsoft.2011.05.010
https://doi.org/10.1016/j.advengsoft.2011.05.010


120



4

Appendix
S4.1 Creating the parameterised fish model

S4.1.1 Shape

Wedescribe the fish in its undeformed state in a coordinate system (x̂, ŷ, ẑ) attached to the
snout of the fish, with x̂ in caudal-rostral direction, ŷ in lateral direction and ẑ in ventral-
dorsal direction such that they form a right-handed coordinate system.

A (super-)elliptic cross-sectional shape is used for the eyes, the fin fold and the region
of the body without yolk sack is given by:

ŷ(ψ) = rŷ cos(ψ);

ẑ(ψ) = ẑ0 ± rẑ
[
1−

(
|ŷ(ψ)|
rŷ

)n ] 1
n

,
(S4.1)

with rŷ and rẑ the radii in respectively ŷ- and ẑ-direction andψ = [0, 2π]where the sign in
the equation for ẑ depends on the considered quadrant: + in the positive ẑ-quadrant,− in
the negative ẑ-quadrant. For the fin fold and body cross-sections in the tail, the exponent
n = 2, making it a regular ellipse. The elliptic exponent for the eyes is 2.3.

The slices of the body with a bulging yolk sack have their egg-like cross-sectional shape
defined by a cubic spline fit (using MATLAB’s spline) through 4 points: (x̂0, rŷ, ẑ0 +
hshift), (x̂0, 0, ẑ0 + rẑ), (x̂0,−rŷ, ẑ0 + hshift), (x̂0, 0, ẑ0 − rẑ). To prevent edge effects
of the spline, we perform the fit on three repetitions of the points, and only use themiddle
section as a cross-section.

We build up the body withNlon cross-sections andNcirc points along the circumfer-
ence of each cross-section. We can connect each set of two cross-sections with (Nlon −
1)Ncirc quadrilateral faces, or 2(Nlon − 1)Ncirc triangular faces. To close the surface, we
cap the front- and aftmost cross-sections withNcirc triangular faces each.

S4.1.2 Parameterisation

The body curvatureκ is prescribed in a small number (< Nlon, 7 for the zebrafish larva) of
control points along the length of the fish. We define a normalised parameter along the fish
length s = [0, 1] and use it to create a cubic spline (MATLAB’s spline) that interpolates
the curvature control points. We analytically integrate each piecewise polynomial of the
curvature spline to obtain the local deformation angle:

θ(s) = `

∫ s

0
κ(s) ds, (S4.2)
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with ` the body length. We model the fish’s centreline as a sequence of straight segments i
of length∆` = `/(Nlon − 1), and apply the local deformation angle to each:

x̂centre,i =

{
0 i = 1

x̂i−1 −∆` cos
(
θi−1+θi

2

)
otherwise

ŷcentre,i =

{
0 i = 1

ŷi−1 + ∆` sin
(
θi−1+θi

2

)
otherwise

(S4.3)

in coordinates relative to the fish’s head. Every cross-section i consists ofNcirc circumfer-
ential points to which we assign the index j. We rotate every point i, j on the cross-section
with the rotation of the centreline, such that it remains perpendicular:

x̂def,i,j =

 x̂def,i,j

ŷdef,i,j

ẑdef,i,j

 =

 x̂centre,i + ŷi,j sin θi
ŷcentre,i + ŷi,j cos θi

ẑi,j

 (S4.4)

We now have a deformed fish in the (x̂, ŷ, ẑ) coordinate system, which we place in world
coordinates with the positionxsnout and rotationϕ at the snout. The anglesϕroll,ϕpitch,
ϕyaw (abbreviated asϕr,ϕp,ϕy for reasons of clarity) specifying the rotation are converted
to a rotation matrix:

R =


cosϕp cosϕy − cosϕp sinϕy sinϕp(

sinϕr sinϕp cosϕy+
cosϕr sinϕy

) (
− sinϕr sinϕp sinϕy+

cosϕr cosϕy

)
− sinϕr cosϕp(

− cosϕr sinϕp cosϕy+
sinϕr sinϕy

) (
cosϕr sinϕp sinϕy+

sinϕr cosϕy

)
cosϕr cosϕp

 (S4.5)

We compute the final position of each point on the fish with:

xdef,i,j = Rx̂def,i,j + xsnout. (S4.6)

Finally, all points are reassembled into a three-dimensional surface of quadrilaterals during
tracking and of triangles during post-processing.

S4.2 Fitting the body model

S4.2.1 Objective function

The objective function that we aim tominimise in order to achieve an optimal fit is defined
as follows:

ftot(Ω) = fGoF(Ω) + freg(Ω). (S4.7)

Here,Ω is the list of optimised parameters, fGoF(Ω) is a term indicating how accurately
the fishmodel approaches thehigh-speed video images, andfreg(Ω) is a term thatpenalises
‘unsmoothness’. The two terms are discussed in detail below.
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Goodness of fit

To compare the virtual images to the segmented high-speed video images, we project the
three-dimensional shape of the fish onto virtual cameras. We define a left-handed camera
coordinate system (ξ, η, ϑ), respectively rows, columns, and a coordinate perpendicular
to the image plane in the viewing direction of the camera. A transformation matrix from
camera to world coordinate system is given by:

Tcam =

 ωx,ξ ωx,η ωx,ϑ
ωy,ξ ωy,η ωy,ϑ
ωz,ξ ωz,η ωz,ϑ

 (S4.8)

Since we are considering a camera systemwith parallel light, the distance of an object from
the camera has no influence on its projected size. The light is collimated to within 10◦
divergence, so perspective effects are negligible at the millimetre scales of zebrafish motion.
Projecting objects onto the camera is therefore only a coordinate transformation to camera
coordinates (i.e., a rotation, translation and rescaling):

ξ =
1

dscale
TT

cam(xobj − xcam) + 1, (S4.9)

where xobject are the object coordinates, xcam the camera coordinate system origin (i.e.,
the top left corner of the image), dscale a scaling factor in unit distance per pixel. The 1 is
added because by convention, the top left corner is denoted as having row-column (i.e., ξ,
η) coordinates (1, 1). Because the transformationmatrixTcam is orthogonal, we can invert
the matrix by taking its transpose. The image plane coordinates of the projected point are
given by (ξ, η); the third coordinate ϑ can be ignored.

When considering caseswith significantmagnification effects (e.g., whenno collimated
light setup is used), we use a simple linear pinhole model, where image magnification is
linear with distance from the camera. In that case, we use the ϑ coordinate to determine
the scaling factor for the current projected point and thus compute its projection on the
image plane.

To compute the goodness of fit, we project the three-dimensional surface of the fish
onto the camera plane using the procedure outlined above. We then overlay the fish sil-
houette in image coordinates onto the segmented high-speed video frames. All pixels in the
combined image are counted, and the pixels that overlap between the model fish and the
actual fish are subtracted from this number. The final result is the number ofmismatching
pixels – an expression for the goodness of fit.

Penalty function

The regularising term in the objective function is of the form

freg =

1∫
0

w(s)

(
dκ(s)

ds

)2

ds, (S4.10)
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wherew(s) is a weighting function that allows stronger suppression of curvature near the
head thannear the tail. For the zebrafish,weprescribew(s) as a cubic spline fit (MATLAB’s
spline) in logarithmic space of control points along the body. In our case of the larval
zebrafish, we prescribe two points at s = {0, 1}. Since a cubic spline fit of two points is
linear, the result is a function of the formw(s) = c0 e

−c1s.

S4.2.2 Initialisation

The initial set of model parameters for the first frameω0 is computed from two user-
clicked points per camera: the snout and the tail. Rewriting Eqn. S4.9 gives, for every cam-
era,

1

dscale
TT

camxobj = ξ+
1

dscale
TT

camxcam − 1. (S4.11)

Manually indicating a point in an image will give us the first two components of ξ, so we
can use the first two equations of this system for each camera. This results in an overde-
termined linear system (forNcam > 2): we have 3 unknowns (x, y, z) and 2Ncam equa-
tions. We solve this systemwith least-squares (MATLAB’s \ operator) to obtain the snout
and tail positions in 3D.

The snout position can be directly used to initialise the position parameter for the op-
timisation. We set the initial roll angle to 0, the pitch angle to

ϕpitch = arctan

 zsnout − ztail[
(xsnout − xtail)2 + (ysnout − ytail)2

] 1
2

 (S4.12)

and the yaw angle to

ϕyaw = arctan

(
ysnout − ytail

xsnout − xtail

)
. (S4.13)

The arctangents are computed usingMATLAB’s atan2 function, that takes into account
the sign of the nominator and denominator to compute the angle in the correct quadrant.

We approximate the fish length ` as follows:

`init =
√

(xsnout − xtail)2 + (ysnout − ytail)2 + (zsnout − ztail)2 (S4.14)

This approximation is used as an initial condition for an optimisation in the first frame of
the sequence, where we allow the fish length to vary. The final, optimised fish length ` is
then kept fixed in the rest of the video sequence.
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S4.2.3 Solution extrapolation

We extrapolate the solution from previous time steps to initialise the next time step. We
use the following:

Ωinit,it =


Ω0 it = 1
Ωopt,it−1 it = 2
−Ωopt,it−2 + 2Ωopt,it−1 it = 3
Ωopt,it−3 − 3Ωopt,it−2 + 3Ωopt,it−1 it > 3

(S4.15)

where it ∈ N denotes the time step,Ωinit,it is the set of parameters used to initialise the
optimisation at time step it andΩinit,it is the final, optimised set of parameters at time
step it.

S4.3 Post-processing and inverse dynamics

S4.3.1 Smoothing

In general, the solution from the optimisation procedure is insufficiently smooth in time
to accurately compute (second) derivatives. We perform post hoc smoothing to remove
spurious high-frequency components, but retain (most of) the physical signal. We use a
regularised data fit similar to (Stickel, 2010), where smoothing is presented as a minimisa-
tion problem:

argmin
φsm


tmax∫
0

∣∣φdata(t)− φsm(t)
∣∣2 dt + λsm

tmax∫
0

∣∣∣∣dnφsm(t)

dtn

∣∣∣∣2 dt

 , (S4.16)

where φsm are the smoothed data points, φdata are the measured data points, λsm is a
parameter controlling the amount of regularisation andn is the order of the derivative used
for the penalty function. It has been shown (Stickel, 2010) that the solution for a discrete
number of points is given by

φsm = (I + λsmDTD)−1 φdata, (S4.17)

where D is a matrix that approximates the required nth-order derivative. We assume here
that our fitted points are located at the same time instants as the data points. For the D
matrix, we use 4 subsequent one-sided differences (usingMATLAB’s diff) to approxim-
ate the fourth order derivative, ensuring that our second derivatives are smooth.

To combat edge effects of the smoothing, we separate two cases: starts, where the an-
imal accelerates from a stationary position, and ‘continuous’ swimming, where it enters
and exits the field of view while swimming. In the case of starts, we know that the animal
is stationary before the time series starts. We therefore add 25 time points before t = 0
which all have the value at t = 0, thus forcing the solution to have a realistic zero gradient
at the start. In the case of ‘continuous’ swimming, we can simply cut off the first few (in
our case 5) points, where the edge effects are strongest. For both cases, we cut off the same
number of points off the end of the time series.
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S4.3.2 Derivatives

Differentiation is required to compute velocity and acceleration from the centre of mass
position, and torque from the angular momentum vector. We use the same procedure for
any time series, for first derivatives:

∂φ

∂t
≈


−3φ1+4φ2−φ3

2∆t it = 1
−φit−1+φit+1

2∆t 1 < it < Nt
φNt−2−4φNt−1+3φNt

2∆t it = Nt

(S4.18)

for second derivatives:

∂2φ

∂t2
≈


φ1−2φ2+φ3

∆t2
it = 1

φit−1−2φit+φit+1

∆t2
1 < it < Nt

φNt−2−2φNt−1+φNt
∆t2

it = Nt

(S4.19)

S4.3.3 Resultant forces and torques

The resultant forceFnet on the fish can be computed fromNewton’s second law:

Fnet = maCoM = ρV
d2rCoM

dt2
, (S4.20)

wherem is fish mass, ρ is fish density, and aCoM denotes the acceleration of the centre of
mass; the volume V and position of the centre of mass rCoM can be computed using the
method by Dobrovolskis (1996) from the triangulated surface of the body model. Every
triangular face ismade into a tetrahedron by taking the coordinate systemorigin as a fourth
vertex, see Fig S4.1A. Calculations can be performed separately on each of these tetrahedra,
and subsequently summed to yield the result for the complete fish.

1

1
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d́
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f´
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d e

f
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∆V

∆rCoM

A B

Figure S4.1: Tetrahedra used for computation of derived quantities: centre of mass position and
instantaneous forces and torques. (A) To compute volume properties from a surface description, a
tetrahedron is created for each surface triangle d e f , with a volume ∆V and a centre of mass posi-
tion ∆rCoM. The sign of its contribution is determined by the direction of the normal n. (B) The same
tetrahedron is transformed into a unit tetrahedron for easier interpolation and integration, allowing us to
compute the contribution of each tetrahedron to the angular momentum separately with a single analytical
expression as a function of the values at the vertices.
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ThemethodbyDobrovolskis (1996) only computes the centre ofmass and themoment
of inertia matrix; we extend their method to compute angular momentum for an arbitrary
triangulated polyhedron of constant density. Angular momentum is defined as:

L = ρ

∫∫∫
V

r∗(x)× v∗(x) dV, (S4.21)

where the asterisks denotes quantities measured with respect to the centre of mass. The
integrand is linear, so we can evaluate Equation S4.21 for each tetrahedron separately and
then sum the results. To simplify this computation, we transform every tetrahedron into
a unit tetrahedron in the origin of a new coordinate system (x′, y′, z′), see Fig S4.1B. This
is a linear transformation, with the following transformation matrix from unit to world
tetrahedron:

Ttet =

 x∗d,k x∗e,k x∗f,k
y∗d,k y∗e,k y∗f,k
z∗d,k z∗e,k z∗f,k

 (S4.22)

The transformed integral for every tetrahedron becomes

∆L = ρ det Ttet

1∫
0

1−x′∫
0

1−x′−y′∫
0

r∗(x′)× v∗(x′) dz′dy′dx′, (S4.23)

Transformed to a unit tetrahedron, linear interpolation of quantities known at its vertices
reduces to a single matrix multiplication. The interpolating matrices for the position and
velocity are given by:

Γr =

 x∗d,k x∗e,k x∗f,k
y∗d,k y∗e,k y∗f,k
z∗d,k z∗e,k z∗f,k

 (S4.24)

Γv =

 v∗x,d,k v∗x,e,k v∗x,f,k
v∗y,d,k v∗y,e,k v∗y,f,k
v∗z,d,k v∗z,e,k v∗z,f,k

 (S4.25)

With interpolation, Equation S4.23 can be written as:

∆Lk = ρ det Ttet

1∫
0

1−x′∫
0

1−x′−y′∫
0

Γrx
′ × Γvx

′ dz′dy′dx′. (S4.26)
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Evaluating this integral (using Maple 18, Maplesoft, Waterloo, Ontario, Canada) gives the
following expressions for the x-, y- and z-components of the angular momentum vector:

∆Lx,k = ρ∆Vk
20

[
+ y∗d,k (2v∗z,d,k + v∗z,e,k + v∗z,f,k)

+ y∗e,k (v∗z,d,k + 2v∗z,e,k + v∗z,f,k)

+ y∗f,k (v∗z,d,k + v∗z,e,k + 2v∗z,f,k)

− z∗d,k (2v∗y,d,k + v∗y,e,k + v∗y,f,k)

− z∗e,k (v∗y,d,k + 2v∗y,e,k + v∗y,f,k)

− z∗f,k (v∗y,d,k + v∗y,e,k + 2v∗y,f,k)
]
;

(S4.27)

∆Ly,k = ρ∆Vk
20

[
− x∗d,k (2v∗z,d,k + v∗z,e,k + v∗z,f,k)

− x∗e,k (v∗z,d,k + 2v∗z,e,k + v∗z,f,k)

− x∗f,k (v∗z,d,k + v∗z,e,k + 2v∗z,f,k)

+ z∗d,k (2v∗x,d,k + v∗x,e,k + v∗x,f,k)

+ z∗e,k (v∗x,d,k + 2v∗x,e,k + v∗x,f,k)

+ z∗f,k (v∗x,d,k + v∗x,e,k + 2v∗x,f,k)
]
;

(S4.28)

∆Lz,k = ρ∆Vk
20

[
+ x∗d,k (2v∗y,d,k + v∗y,e,k + v∗y,f,k)

+ x∗e,k (v∗y,d,k + 2v∗y,e,k + v∗y,f,k)

+ x∗f,k (v∗y,d,k + v∗y,e,k + 2v∗y,f,k)

− y∗d,k (2v∗x,d,k + v∗x,e,k + v∗x,f,k)

− y∗e,k (v∗x,d,k + 2v∗x,e,k + v∗x,f,k)

− y∗f,k (v∗x,d,k + v∗x,e,k + 2v∗x,f,k)
]
.

(S4.29)

The total angular momentum is then given by the sum over all tetrahedra k:

L =
∑
k

∆Lk. (S4.30)

With the angular momentum known in each time step, we can compute the net torque by
taking its time derivative:

τnet =
dL

dt
. (S4.31)

S4.3.4 Fish reference system

To make interpretation of the forces and torques more intuitive, we transform them to a
local fish coordinate system (xfish, yfish, zfish) that rotates with the changing orientation
of the fish. To create this fish axis system, we first rotate the world coordinate system so it
is aligned with the fish’s head, using the rotation matrix in Equation S4.5. This transforms
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the fish to the (x̂, ŷ, ẑ) coordinate system defined in §S4.1, where the x̂, ŷ-plane is aligned
with the deformation plane of the fish, and ẑ is perpendicular to it. The x̂-coordinate is
aligned with the head, which rotates with a large amplitude and makes interpretation of
the time-variation of the forces and torques difficult.

In order to define an angle that is related to the entire body, we use a ‘body angle’ (Van
Leeuwen et al., 2015), defined as:

ϕbody =

∫ 1
0 ICoM,i(s)α(s) ds∫ 1

0 ICoM,i(s) ds
, (S4.32)

where ICoM,i(s) is the moment of inertia about the centre of mass per unit length of the
cross-section at s andα(s) is the angle between a line projected from the centre of mass to
the centre of segment and horizontal. The body angle is effectively a moment of inertia-
weighted average of the local angles of each segment.

We can express the local moment of inertia per unit length as the contribution of the
cross-section about its own vertical centre axis Icross,i and its contribution with respect to
the centre of mass

ICoM,i = Icross,i + µr2
CoM,i, (S4.33)

whereµ is a mass per unit length and rCoM,i the distance between the centre ofmass in the
xfish, yfish-plane and the cross-section centre. We compute the moment of inertia per unit
length and area, and thus mass, assuming constant density, of each cross-section with the
expressions for arbitrary polygons (Liggett, 1988). The local segment angle α is computed
by projecting a line from the centre ofmass to the segment centre in the deformation plane
(i.e., in x̂, ŷ, ẑ-coordinates), and computing the angle it makes with respect to the head:

αi = arctan

(
ŷcentre,i − ŷCoM

x̂centre,i − x̂CoM

)
, (S4.34)

making sure we get the correct sign depending on the quadrant we are in by using MAT-
LAB’s atan2 function.

Wecompute thebody angle by evaluating the integral fromEquationS4.32usingMAT-
LAB’s trapz function. This results in a series of body angles over time that may still have
discontinuities where the centre of mass crosses the centreline; in these points, the angle
‘reflects’ around an unknown line since all the projected lines flip direction. To remove
these discontinuities, we average a one-sided derivative left and right of the discontinuity.
We then extrapolate the solution from the point left of the discontinuity:

αi = αi−1 +
1

2

(
αi−3 − 4αi−2 + 3αi−1

2
+
−3αi + 4αi+1 − αi+2

2

)
, (S4.35)

where i is the index of the point just right of the discontinuity. The entire sequence to
the right of the discontinuity is shifted, retaining gradient information. We iterate over
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all discontinuities in the sequence, yielding a body angle that is continuous from the first
angle onwards. Since we start with a straight fish in the x̂, ŷ, ẑ-coordinates, we define this
first angle as 0.

We rotate the head-aligned coordinate system along its vertical axis by the computed
body angle. We represent the rotation as an axis and angle: respectivelyωzhead

(abbre-
viated in Equation S4.36 asω), the unit orientation vector of the zhead-axis and ϕbody

(abbreviated in Equation S4.36 as ϕ). This results in a rotation matrix of the following
form:

Rbody =



(
cosϕ

+ω2
x(1− cosϕ)

) (
ωxωy(1− cosϕ)

−ωz sinϕ

) (
ωxωz(1− cosϕ)

+ωy sinϕ

)
(
ωxωy(1− cosϕ)

+ωz sinϕ

) (
cosϕ

+ω2
y(1− cosϕ)

) (
ωyωz(1− cosϕ)

−ωx sinϕ

)
(
ωxωz(1− cosϕ)

−ωy sinϕ

) (
ωyωz(1− cosϕ)

+ωx sinϕ

) (
cosϕ

+ω2
z(1− cosϕ)

)

 (S4.36)

Applying this rotation matrix to the axes of the head coordinate system yields our final
fish coordinate system (xfish, yfish, zfish), in which we express our forces and torques. We
transform the force vector by projecting it onto each unit orientation vector of the axes,
e.g.,

Fx,fish = F ·ωxfish
. (S4.37)

We define an additional axis in the direction of the velocity vector:

ωfwd = vCoM/||vCoM||, (S4.38)

wherevCoM is the instantaneous velocity vector of the centre ofmass. We project the force
to this axis to have an indication of the effective force propelling the fish.
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Abstract
Most fish species use fast starts to escape from predators. Zebrafish larvae perform effect-
ive fast starts immediately after hatching. They use a C-start, where the body curls into
a C-shape, and then unfolds to accelerate. These escape responses need to fulfil a num-
ber of functional demands, under the constraints of the fluid environment and the larva’s
body shape. Primarily, the larvae need to generate sufficient escape speed in a wide range
of possible directions, in a short-enough time. In this study, we examined how the larvae
meet these demands. We filmed fast starts of zebrafish larvae with a unique five-camera
setup with high spatiotemporal resolution. From these videos, we reconstructed the three-
dimensional swimmingmotionwith an automatedmethod and from these data calculated
resultant hydrodynamic forces and, for the first time, 3D torques. We show that zebrafish
larvae reorient mostly in the first stage of the start by producing a strong yaw torque, often
without using the pectoral fins. This reorientation is expressed as the body angle, a meas-
ure that represents the rotation of the complete body, rather than the commonly used head
angle. The fish accelerates its centre of mass mostly in stage 2 by generating a considerable
force peakwhile the fish ‘unfolds’. The escape direction of the fishs correlates stronglywith
the amount of body curvature in stage 1, while the escape speed correlates strongly with the
duration of the start. This may allow the fish to independently control the direction and
speed of the escape.

5.1 Introduction
The fast start is an important manoeuvre in the motion repertoire of many fish species
across developmental stages (Domenici and Blake, 1997; Hale et al., 2002). Fast starts are
commonly divided into two types by the shape changes of the fish during the motion: the
S-start and the C-start. This article concerns the C-start, which is mainly used to escape
from (potential) threats (Walker et al., 2005), and in some species for prey capture (Wöhl
and Schuster, 2007). It involves the fish bending itself into a C-shape, and then unfolding
to produce a strong acceleration and a change of direction (Hertel, 1966;Weihs, 1973). This
motion is often considered to consist of three stages (Domenici and Blake, 1997; Hertel,
1966; Weihs, 1973): stage 1, where the fish bends into a C-shape; stage 2, where the fish
unfolds; and stage 3, the remainder of the motion—continuous swimming or coasting. In
this study, we look at the first two stages of the C-start—we do not consider the highly
variable third stage.

For the fast start to contribute to the survival of the larvae, the stages need to satisfy a
number of functional demands (Voesenek et al., 2018). The primary demand on a start is to
escape from a predator (Domenici and Blake, 1997). This requires strong accelerations to
create sufficient distance in a short time between the predator and the larvae (Walker et al.,
2005). In addition, it requires control over the escape angle, as the relative heading with
respect to the predator often determines escape success (Domenici et al., 2011). Since pred-
atorsmay approach from all sides, it is necessary that the larvae can produce a large range of
possible escape directions, both horizontally and vertically. Finally, the threat should be de-
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tected early, and the response needs to be well-timed for the escape to be effective (Stewart
et al., 2013).

These functional demands should be fulfilled within physical constraints on the body
of the larva and the hydrodynamics. Fish larvae need to be able to escape immediately
after hatching (Voesenek et al., 2018), while their muscles (Van Raamsdonk et al., 1978),
sensory system, and motor control (Fetcho and McLean, 2010) are not fully developed—
even within these limits, the larvae need to respond appropriately, quickly, and produce
effectivemotion. Furthermore, to performeffective propulsion as anundulatory swimmer,
the larva needs to prepare its body for a propulsive tail-beat by bending into a C (Foreman
and Eaton, 1993). To produce thrust, the fish also needs to ‘prepare’ the surrounding water
by generating (precursors to) vortices and jets that will contribute to the hydrodynamic
forces in stage 2 (Ahlborn et al., 1991; Tytell and Lauder, 2008). In addition, stage 1 prepares
the axial muscle formaximumpower production by active lengthening of the contralateral
side during bending (James and Johnston, 1998).

To meet the functional demands of the fast start, the fish larvae must generate hydro-
dynamic forces and torques, producing linear and angular accelerations. Differentmethods
have been used to quantify these forces and torques. The motion of the fish and the flow
can be quantified with high-speed video images and particle image velocimetry, allowing
estimation ofmomentum changes of the fish and flow (Tytell and Lauder, 2008), or estim-
ation of forces via a reconstructed pressure (Lucas et al., 2017). The reconstructed motion
can also be used as input to a computational fluid dynamics method to estimate the forces
(Borazjani et al., 2012). Alternatively, the net forces and torques can be reconstructed from
kinematics without requiring flow visualisation or fluid-dynamicmodels, based on inverse
dynamics (Van Leeuwen et al., 2015; Voesenek et al., 2016). Since the hydrodynamics are
the only source of external forces and torques acting on the fish, we can use the net accel-
erations of the fish—both linear and angular—to calculate the hydrodynamic forces and
torques directly from the kinematics.

The kinematics of the fast start have been characterised inmany species (Domenici and
Blake, 1993; Fleuren et al., 2018; Kasapi et al., 1993; Müller and Van Leeuwen, 2004). Fast
starts have been stated to occurmostly in the horizontal plane (Domenici and Blake, 1997),
and most studies investigate two-dimensional kinematics from single-camera high-speed
video (e.g. Domenici and Blake, 1993; Harper and Blake, 1990; Hertel, 1966). However,
three-dimensional kinematics studies show a vertical motion component in adults (Butail
and Paley, 2012; Fleuren et al., 2018; Kasapi et al., 1993) and larval fish (Nair et al., 2015;
Stewart et al., 2014). This vertical component is ecologically relevant, since it may influence
the effectiveness of predator evasion with the escape response (Stewart et al., 2014).

In this article, we analyse fast starts of zebrafish larvae at 5 days after fertilisation. We
filmed fast-start behaviour with a synchronised five-camera setup with high spatial and
temporal resolution (Fig. 5.1A). From these videos, we reconstructed the kinematics in 3D
(Fig. 5.1B,C) and used these data to calculate resultant hydrodynamic forces and torques.
Based on the three-dimensional dynamics, we examined how zebrafish larvae meet the
functional demands on the fast start. We show that zebrafish larvae produce torques in
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Figure 5.1: Multi-camera setup and automated tracking method. (A) Sketch of the five-camera setup,
top view (left) and front view (right). (B) Parameterised fish model used in the automated tracking method.
The model parameters are the 3D position of the snout, the 3D orientation of the head as expressed
by the Tait-Bryan angles (roll, pitch, and yaw), and a series of control points for the curvature along the
body. Adapted from Voesenek et al. (2016) (C) Overlap between the high-speed video images (grayscale
background) and projections of the body model (transparent green). The numbers in the top left corner
correspond to the camera numbers in A.

stage 1 that provide most of the reorientation of the body, while limited propulsion is pro-
duced. This is followed by a peak in propulsive force in stage 2, resulting in a strong acceler-
ation of the centre ofmass. The turn angle of a start ismostly determined by the amount of
body curvature, while the speed at the end of stage 2 is mostly determined by the duration
of the start. This allows early-development larvae to perform appropriate escape responses
for threats approaching from different directions and at different speeds.

5.2 Results

5.2.1 Example of a fast start

Weused an automated video-trackingmethod (Fig. 5.1) to reconstruct the fast-startmotion
of a zebrafish larva of 5 days after fertilisation, showing a change in direction of 83 deg, and
a maximum speed of 0.15 m s−1. The larva curls into a C-shape in stage 1, then unfolds
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itself in stage 2 followed by a tail beat in opposite direction (Fig. 5.2A). Over the course
of the start, the larva reorients itself from being approximately aligned with the negative
x-axis of the world reference frame, to swimming in the direction of the positive y-axis. In
addition, it changes its pitch angle from a nose-down stance to an upward motion.

The reconstructed forces vary around 0 in stage 1 of the start, in x-, y-, and z-direction
(Fig. 5.2B). Around the halfway point of stage 2 the force peaks, mainly in ‘forward’ direc-
tion (i.e. the direction of the instantaneous velocity vector)—the larva pushes off and pro-
duces the largest acceleration resulting in a velocitypeak approximately2ms later (Fig. 5.2C).
At the same time as the forward peak, an upward (i.e. positive z-direction) force peak also
occurs, causing an upward velocity of the centre of mass (Fig. 5.2C). This is followed by a
force peak in opposite direction to the velocity, thus decelerating the larva.

The resultant x- and y-torques are limited in stage 1, but the z-torque is considerable
(Fig. 5.2D). The yaw torque is similar to the z-torque since the deformation plane is ap-
proximately aligned with the x–y plane for most of the motion. The first peak of the yaw
torque in stage 1 reorients the fish, and is producedwhile the fish is bending into a C-shape.
Later in stage 1, a counter-torque is produced that brakes the reorientation. In stage 2, a
higher peak in the same direction as the counter-torque is produced to reorient the fish in
the opposite direction during the push-off tail beat.

Wedeterminedbody angles (Fig. 5.2E) by integrating the angular velocity thatwe calcu-
lated from the angular momentum and instantaneousmoment of inertia. The head angles
are definedwith the orientation of the stiff head region of the fish. The roll and pitch angle
show different dynamics for the head than the body, because the coordinate systems are
not aligned so their relative contribution to the out-of-plane orientation changes. The yaw
angle is different due to the deformation of the larva—the head angle is not a good indic-
ator for the orientation of thewhole larva. The head angle shows large-amplitude variation
across the start, while the body angle changes close tomonotonously throughout the start,
in the direction of reorientation.

5.2.2 Reorientation and speed

Wedetermined the turn angle of the start by calculating the angle between the initial orient-
ation of the larva and the heading at the end of stage 2. The initial orientation was defined
as the unit vector pointing from tail tip to snout, while the heading was defined as the dir-
ection of the velocity vector of the centre of mass at the end of stage 2. The ‘final speed’ of
the start is defined as the speed of the centre ofmass at the end of stage 2. We show the turn
angle (Fig. 5.3A,B) and final speed (Fig. 5.3C,D) as a function of the head-to-tail angle and
start duration. The head-to-tail angle is defined as the angle between the head and the tail
at the transition point from stage 1 to stage 2, an indication of the whole-body curvature at
the most-curved point. The start duration is computed as the time interval between start
initiation and the end of stage 2.

More strongly curved starts show ahigher turn angle—the turn angle is strongly correl-
ated to the head-to-tail angle, with a correlation coefficient of 0.83 (P < 0.001,N = 33;
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Figure 5.2: Individual example of a fast-starting zebrafish larvae. Across all sub-panels, the light grey
rectangle indicates stage 1, and the vertical dark grey lines connect the fish shapes in A to the time series
in B–E. (A) Projections of the reconstructed fish model in the x–y (top) and x–z (bottom) plane. The white
dot indicates the centre of mass, the blue arrow indicates the instantaneous velocity, and the black arrow
represents the instantaneous resultant force. (B) The instantaneous resultant force in x (green), y (blue),
z (red), and forward (orange) direction, and the force magnitude (black). The forward direction is defined
as the vector pointing in the direction of the instantaneous velocity of the centre of mass. (C) The velocity
of the centre of mass in x (green), y (blue, and z (red) direction. (D) The instantaneous resultant torque in
x (green), y (blue), z (red), and yaw (purple) direction, and the torque magnitude (black). The yaw torque
is defined as perpendicular to the deformation plane of the centre line. (E) The body (solid) angle and
head (dashed) Tait-Bryan angles, roll (green), pitch (blue), and yaw (red).

bootstrapped 95% confidence interval (CI95%): [0.71, 0.92]). The slope of the correlation
is 0.59 (CI95%: [0.50, 0.65]) deg of turn angle per deg of head-to-tail angle. In contrast,
the turn angle is weakly correlated with the start duration, with a correlation coefficient of
0.19 (P = 0.032,N = 33; CI95%: [0.028, 0.36]). A longer start duration tends to result
in a slightly larger turn angle, at a rate of 0.84 (CI95%: [0.125, 1.61]) deg ms−1.

Shorter starts have a higher final speed—the final speed is strongly negatively correlated
with the duration of the start, with a correlation coefficient of−0.77 (P < 0.001,N =
33; CI95%: [−0.89,−0.63]). The slope of the correlation is −0.0061 (m s−1) ms−1—
every millisecond shorter duration will result in a speed increase of 0.0061m s−1. We also
fitted a power law to the final speed as a function of start duration, resulting in an expo-
nent of−1.42 (CI95%: [−1.87,−1.05]). The final speed is shows aweaker correlationwith
the head-to-tail angle, with a correlation coefficient of 0.38 (P = 0.0033,N = 33; CI95%:
[0.11, 0.64]). The slope is 4.88 · 10−4 (m s−1) deg−1 (CI95%: [1.33 · 10−4, 0.82 · 10−4]);
an increase in head-to-tail angle of 90 deg would result in an increase in final speed of
0.044m s−1.

The centrelines of the fish at the transition from stage 1 to stage 2 are shown in Fig. 5.3E,
transformed to the coordinate system attached to the head of the fish in its initial orient-
ation. The larvae curl up while the centre of mass remains in approximately the same po-
sition. The more strongly curved motions show a larger reorientation of the head, as well
as a larger turn angle. In general, the head angle at the end of stage 2 is larger than the turn
angle at the end of stage 2: the head turns further than the final heading at the end of stage
1, and then turns back over the course of stage 2.

We can divide the total angle change of the body during the start in an elevation angle
change (vertical reorientation) and an azimuth angle change (horizontal reorientation), see
Fig. 5.3F,G. The elevation change ranges from −35.0 deg to 34.2 deg (Fig. 5.3F); the azi-
muth change ranges from 3.9 deg to 102.7 deg (Fig. 5.3G). There is no significant correla-
tion between the final speed and the azimuth change (P = 0.77,N = 33) or final speed
and the elevation change (P = 0.13,N = 33).
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Figure 5.3: Higher start curvatures increase turn angle, while shorter start durations increase
final speed. (A,C) The turn angle (A) and the final speed at the end of stage 2 (C) as a function of
the maximum head-to-tail angle, an indication for the total amount of curvature of the body as illustrated
below the horizontal axis of C. (B, D) The turn angle (B) and the final speed at the end of stage 2 (D) as a
function of the start duration (computed as the time interval between start initiation and the end of stage
2). (E) The shape of the centreline at the transition from stage 1 to stage 2, coloured by the turn angle of
the start. (F) The elevation change (curved axis) and final speed at the end of stage 2 (green radial lines)
for all analysed starts. (G) The azimuth change (curved axis) and final speed at the end of stage 2 (green
radial lines) for all analysed starts.
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5.2.3 Stages of the fast start

Wedivided the fast start in stageswith the samemethod asFleuren et al. (2018), and analysed
the first two stages. The durations of stage 1 and stage 2 are significantly correlated (P <
0.001,N = 33; correlation coefficient 0.79, CI95%: [0.70, 0.89]). Stage 1 takes on average
52 ± 4.6% of the start until the end of stage 2 (Fig. 5.4A)—slightly over half of the first
two stages is spent bending into a C-shape. No starts were recorded where stage 1 took less
than 42%ormore than 64%of the start duration. The larvae show a displacement between
3.3–21.1× larger in stage 2 compared to stage 1 (Fig. 5.4B). Also the speed is larger, both
total speed (Fig. 5.4C; 1.5–5.6×) and speed in the direction of the final heading (Fig. 5.4C,
‘forward’; 1.7–23.6×). The total speed in stage 1 is higher than the ‘forward’ speed—the
centre of mass moves slightly in stage 1, but not much in ‘forward’ direction (i.e. in the
direction of the velocity at the end of stage 2).

In all cases, the peak linear momentum is larger in stage 2 than in stage 1 (Fig. 5.4D;
1.5–5.6×), while the peak angular momentum is often smaller in stage 2 than in stage 1
(Fig. 5.4E; 0.58–1.9×). Stage 1 therefore often shows higher angular velocities than stage
2. In most cases, the peak force is higher in stage 2 than in stage 1 (Fig. 5.4F), this holds for
both the total force (0.80–4.6×) and the ‘forward’ force (i.e. in the directionof the velocity
at the end of stage 2; 0.82–10.3×). Notmuch force is produced in stage 1, especially in the
direction of the start—the acceleration is mostly visible as an undirected wiggling of the
centre of mass. In most cases, the torque is also higher in stage 2 than in stage 1 (Fig. 5.4G;
0.78–3.9×), but the ratio is smaller than that of the speed and forces; some sequences even
show higher torques in stage 1 than stage 2. The higher torques in stage 2 are presumably
produced by the higher forces during the push-off.

5.2.4 Reorientation

Stage 1 has a significantlyhigher contribution to the yawangle change than stage 2 (Fig. 5.5A;
t-test, P < 0.001, N = 33); on average the contribution of stage 1 is 28.7 ± 13.7 deg
higher than the contribution of stage 2. For smaller total yaw changes, stage 2 might have a
negative contribution, undoing part of the reorientation of stage 1. Phase plots of the yaw
angle (Fig. 5.5B) show that starts with relatively small turn angles generally have a negative
contribution of stage 2 to the body yaw angle, while for large turn angles the body yaw
angle changes almost monotonously. In contrast, the head yaw angle shows considerably
larger variation over the fast start than the body angle, reaching a maximum near the end
of stage one, before rotating in opposite direction in stage 2.

For all fast starts, we averaged the linear momentum, angular momentum, and change
in moment of inertia normalised by their maximum value (Fig. 5.5C–E). The linear mo-
mentum (Fig. 5.5C) reaches a small peak in stage 1, followed by a much larger peak in stage
2, where peak speed is reached. In contrast, the angular momentum (Fig. 5.5D) shows its
largest peak in stage 1, followed by a lower peak in stage 2. The large peak in angular mo-
mentum just proceeds to the dip in moment of inertia (Fig. 5.5E). A combination of large
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Figure 5.4: Stages of the fast start: highest speeds, forces, and torques occur in stage 2. (A) The
duration of stage 1 with respect to the duration of the start (computed as the time interval between start
initiation and the end of stage 2), the histogram indicates the frequency of each bin as a percentage of all
starts. The bar below the histogram shows the mean and one standard deviation. (B–G) The white region
indicates where the values in stage 2 are lower than stage 1, in the light blue region, the values for stage 2
are 1–2× higher, in the medium blue region 2–4×, and in the dark blue region > 4×. The contribution of
stage 1 is on the horizontal axis, the contribution of stage 2 on the vertical axis. (B) Net displacement, i.e.
the reduction in distance to the final position of the centre of mass at the end of stage 2. (C) Peak speed;
white dots indicate the total speed, blue dots indicate the speed in the direction of the final heading. (D)
Peak linear momentum. (E) Peak angular momentum. (F) Peak force; white dots indicate the total force,
blue dots indicate the force in the direction of the final heading. (G) Peak torque.

angular momentum and lowmoment of inertia leads to a high angular velocity, indicating
a strong reorientation in stage 1. After the peak, the angular momentum reduces, indicat-
ing that the yaw rotation is braked by a counter-torque before rising again as the fish beats
its tail in the opposite direction.

5.2.5 Propulsion in stage 2

We calculated the speed of the tail as the speed averaged over the posterior 10%of the body,
relative to the speed of the centre of mass. The peak tail speed over the fast starts tends to
increase with decreasing duration of the motion (Fig. 5.6A), with a correlation coefficient
of −0.67 (P < 0.001, N = 33; CI95%: [−0.79,−0.54]). For every millisecond of de-
crease in duration, the peak tail speed increases by 20.3 m s−1 (CI95%: [16.3, 23.9]). In
addition, we fitted a power law to the tail speed as a function of start duration, resulting
in an exponent of−1.27 (CI95%: [−1.68,−0.96]). Since much of the propulsive force is
produced at the tail, whichmoves in opposite direction to the velocity of the centre ofmass
(Fig. 5.1A), the peak force tends to increase with increasing peak tail speed (Fig. 5.6B), with
a correlation coefficient of 0.85 (P < 0.001,N = 33; CI95%: [0.70, 0.94]). The slope of
the correlation is 58.4 µN (m s−1)−1 (CI95%: [48.3, 64.7]). In this way, a decrease in dur-
ation leads to an increase in tail speed, and hence a corresponding increase in propulsive
force, and therefore leads to an increase in escape acceleration.

5.2.6 Pectoral fin use during the fast start

For each time point in the fast start, we manually indicated whether or not the pectoral
fins were abducted. During high-speed starts, the pectoral fins remain adducted for the
entire duration of the start, while during slower starts, they are abducted for part of the
start (Fig. 5.7A). Whether the pectoral fins are abducted during a start does not depend on
the turn angle (Fig. 5.7A). In starts where the fins were used, they were first abducted in
stage 1 after 8.2± 6.0% of the start duration (Fig. 5.7B). They were then adducted in stage
two, after 75± 8.3% of the start duration, resulting in an average duration of pectoral fin
abduction of 67± 8.6% of the start.

In starts where the fins are used, the fraction of the start that they are abducted cor-
relates significantly with the change in elevation (P = 0.0252, N = 17), with a correl-
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Figure 5.5: Reorientation during the fast start. (A) Change in yaw angle in stage 1 (light purple),
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stage 2 before averaging over all starts.

ation coefficient of 0.54 (CI95%: [0.15, 0.83]). In starts where the fins are not used, large
elevation changes could also be produced—themean elevation change between starts with
and without fins are not significantly different (two-sample t-test, P = 0.82, N1 = 17,
N2 = 16).
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5.3 Discussion
We reconstructed the three-dimensional motion of zebrafish larvae of 5 days after fertilisa-
tion duringC-start escape responses and reconstructed linear and angularmomentum, and
forces and torques. We consider the results of the analysis in the context of the functional
demands of the start, as outlined in the introduction.

5.3.1 Producing acceleration

The primary demand of a fast start is to accelerate the body, both linearly and rotationally.
This acceleration is produced by a large force peak in stage 2 (Fig. 5.2B, Fig. 5.4F), causing an
increase in linear momentum, and hence speed (Fig. 5.2C, Fig. 5.4D, Fig. 5.5C). Although
thebody is prepared for thepropulsive strokeby curlingup in stage 1, thebody curvature (as
expressedwith the head-to-tail angle) correlates with the speed relatively weakly (Fig. 5.3C).
In contrast, the speed shows a strong inverse correlation with the duration of the start,
with a power law exponent of−1.42: shorter starts lead to higher speeds (Fig. 5.3D). The
durations of the stage 1 and stage 2 do not vary independently (Fig. 5.4A). Hence, shorter
start durations lead to shorter durations of stage 2, resulting in an increase in tail speed
(Fig. 5.6A)with apower lawexponentof−1.27, and a resulting increase in force (Fig. 5.6B).

To produce these forces, fish produce fluid-dynamic jets. During stage 1, fish larvae
produce a jet flow into theC-shape (Li et al., 2014;Müller et al., 2008). ACFDsimulationof
a single zebrafish larva swimming sequence (Li et al., 2012) showed that initially this mainly
produces a torque that reorients the fish. The jet is then reoriented along the body in stage
2, where it produces propulsive force, in agreement with our reconstructed resultant forces
(Fig. 5.2B).Adult bluegill sunfish showa similar flowpattern in velocity fieldmeasurements
(Tytell and Lauder, 2008).
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relative time as a fraction of the start that the pectoral fins
are abducted (purple lines) as a function of the speed.
Each grey line indicates a start, with the transition point
between stage 1 and 2 indicated by the dot. (C) The
elevation change as a function of the percentage of the
start that the pectoral fins are abducted.
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Based on numerical simulations it has been found that the motion of the larval C-start
was near-optimal for maximising escape distance in a given time (Gazzola et al., 2012)—a
measure that corresponds tomaximising themean acceleration during a start from a stand-
still. They also found that a higher curvature could result in a higher escape distance, given
a start duration; this corresponds to the weak correlation that we find for speed with head-
to-tail angle. For (near-)cyclic swimming of larval fish, the swimming speed was found to
increase with increasing tail-beat frequency and to a lesser extent amplitude (Van Leeuwen
et al., 2015). The fast start duration is the equivalent of the frequency, while the head-to-tail
angle is connected to the tail-beat amplitude. Hence, we see similar effects on the speed in
cyclic swimming as in fast starts.

5.3.2 Reorienting the body

The larvae produce a wide range of escape directions (Fig. 5.3F,G), both in azimuth and, to
a lesser extent, in elevation. The turn angle of a start correlates strongly with the head-to-
tail angle: more strongly curved starts tend to show a larger turn angle (Fig. 5.3A,E). The
turn angle correlates weakly with the duration of the start (Fig. 5.3B), where longer starts
show a slightly larger turn angle. Hence, large turn angles do not take much more time to
produce than small turn angles. In adult fish, the start duration correlates more strongly
to the escape angle (angelfish: Domenici and Blake, 1991; goldfish: Eaton et al., 1988). This
suggests a difference in reorientationbetween adults and zebrafish larvae: adults seem touse
an approximately fixed turn rate, while larval zebrafish increase turn rates with increasing
turn angles.

The changes in escape angle are mostly produced in stage 1 (Fig. 5.5A), despite lower
peak torques (Fig. 5.4G). The yaw torque is consistently in the direction of turning during
the first part of stage 1 (Fig. 5.2D), causing the angular momentum to show its largest peak
in stage 1 (Fig. 5.5D), while the moment of inertia is close to its minimum (Fig. 5.5E). The
high angular momentum combined with a low moment of inertia leads to a high angular
speed, allowing large turn angles. At the end of stage 1, the torque reverses sign (Fig. 5.2D),
thus reducing the angular momentum. Together with the increase in moment of inertia
(Fig. 5.5E), this decreases the angular speed. The torque thendecreases until the endof stage
2, where the torque increases again, rotating the fish in opposite direction (Fig. 5.2D). This
reorienting torque and the following counter-torque were shown to be caused mainly by
pressure forces, while the largest shear forces were found at the head, and counteracted the
initial reorienting torque (Li et al., 2012).

Previous studies of adult fish have shown that the turn angle of the head in stage 1 cor-
relates with the turn angle during the complete fast start (Domenici and Blake, 1993; Eaton
et al., 1988; Fleuren et al., 2018). This has also been found for fast starts of zebrafish larvae
(Nair et al., 2015). Danos and Lauder (2007) analysed routine turns of zebrafish larvae, for
which they created a model where only the body bending caused a change in head angle,
resulting in a large underprediction of the escape angle. They suggested that the additional
effect is caused by fins. In fast starts, however, the pectoral fins cannot explain the reori-
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entation torque as they are adducted at high speeds, even for large turn angles (Fig. 5.7A).
Without fins, fish have been shown to produce a yaw torque in the first stage of the start
(Li et al., 2012; Song et al., 2018). This torque is mainly produced by pressure forces at the
tail, which has a much larger lever arm with respect to the centre of mass than the pectoral
fins.

5.3.3 Alternatives to the head angle

The head angle change after stage 1 is connected to the head-to-tail angle of the fish due
to the stereotypical nature of the C-bend (Fig. 5.3E). The tail excursion of zebrafish larvae
was found to correlate with the head yaw angle (Nair et al., 2015), so the head-to-tail angle
correlates with the head yaw angle. Rather than use the head angle to indirectly indicate
the curvature of the start, we use the head-to-tail angle as a more direct indicator of the
whole-body curvature. Since the posterior part of the fish produces much of the reorient-
ing torque (Li et al., 2012; Song et al., 2018), it is useful to consider the complete bodywhen
analysing at escape direction.

Furthermore, rather than using the head angle as an indicator for orientation (Domen-
ici and Blake, 1993; Eaton and Emberly, 1991; Nair et al., 2015), we use the ‘body angle’, that
we calculate from the mass distribution. The head angle is not representative of the head-
ing of the fish: they differ considerably across most of the fast start (Fig. 5.2E, Fig. 5.5B).
The body angle is more difficult to quantify than the head angle, as it requires a three-
dimensional mass distribution model of the fish, and reconstructed kinematics of high
accuracy (Van Leeuwen et al., 2015). Nonetheless, it is worth calculating when analysing
reorientations, as it gives a much more accurate representation of the reorientation of the
fish mass. In the absence of body angles, the head angle cannot be used to replace it, as it
shows completely different dynamics.

5.3.4 Control of the fast start

The turn angle and final speed seem to be adjusted mostly independently for C-starts of
zebrafish larvae. The turn angle can be adjustedwith the head-to-tail angle (i.e. body curva-
ture), having relatively limited effect on the escape speed (Fig. 5.3A,C).The escape speed can
be adjustedwith the start duration, having a limited effect on the escape angle (Fig. 5.3B,D).
In adult goldfish, the escape trajectory was found to be controlled by the relative size of the
initial and second contractions and the timing between themwithminimal feedback from
sensors (Foreman and Eaton, 1993). Assuming that starts are controlled similarly in larval
zebrafish, the head-to-tail angle and start duration are presumably a direct result of these
parameters, and might be used as proxies for them.

The duration of stage 1 and stage 2 vary concomitantly (Fig. 5.4A), also previously
found for two species of adult fish (Webb, 1975) and zebrafish larvae (Nair et al., 2015).
The larvae do not individually tune the duration of stage 1 and stage 2 to adjust the angle
and speed of their escape. At a given escape speed, smaller head-to-tail angles are produced
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by turning more slowly, rather than turning at the same rate but shorter. Furthermore,
the duration of stage 2 is not shortened independently of stage 1 to increase the tail speed,
and hence propulsive force. This might suggest a limitation on how quickly the tail-beat
duration can be changed from one tail-beat to the next.

The elevation of the start has been found to be controlled by dorsoventral excursions
of the midline (Nair et al., 2015). In the slow starts where the pectoral fins were used, the
amount of time that the pectoral fins were abducted correlates with the elevation change
(Fig. 5.7C). Larvae of 5 dpf naturally show a nose-downpitchmoment (Ehrlich and Schop-
pik, 2017), so a hydrodynamic torque must be produced to counteract this for positive, or
perhaps even less-negative elevation changes. The action of the pectoral fins is an additional
effect to the dorsoventral tail excursion, since starts without pectoral fin abduction do not
produce significantly different elevation changes. The pectoral fins are only used during
relatively slow C-starts (Fig. 5.7A). At lower speeds, perhaps the required pitch torques
cannot be produced by the body alone, requiring help of the pectoral fins. In contrast, at
high speeds, the body is able to produce sufficient pitch torque, and can adduct the fins to
reduce drag to achieve a higher escape speed.

5.3.5 Timing the start

The importance of fine-tuning the speed and direction of the escape depends on speed of
the predator relative to the prey. When the speed of the predator is close to the speed of
the prey, faster starts will result in greater survival probability (Walker et al., 2005). How-
ever, for a much faster or much slower predator than prey, the speed and direction are less
important than for intermediate predator speeds (Soto et al., 2015). Zebrafish larvae have
been stated to be mostly in the ‘slow predator’ regime, where escape timing is the domin-
ant parameter (Stewart et al., 2013) influencing escape performance, although below strong
reductions (> 50%) in escape speed, the probability of escape from the predator’s suction
flow drops rapidly (Nair et al., 2017).

Zebrafish larvae show a relatively long stage 1 (Fig. 5.4A), in which hardly any propul-
sion is produced (Fig. 5.4B,C,F), reducing the mean acceleration of the start. However, if
the zebrafish detects the threat sufficiently early, it can initiate stage 1 of the fast start to be-
gin stage 2 at the optimal moment. Hence, the relatively long duration of stage 1 without
significant propulsion might not be a disadvantage in escaping predators for zebrafish lar-
vae.

5.3.6 Contributions of stage 1 and stage 2

Zebrafish larvae show a relatively long stage 1 (Fig. 5.4A), in which hardly any propulsion
is produced (Fig. 5.4B,C,F), reducing the mean acceleration of the start. However, if the
zebrafish detects the threat sufficiently early, it can initiate stage 1 of the fast start to begin
stage 2 at the optimal moment. Hence, the relatively long duration of stage 1 without sig-
nificant propulsion might not be a disadvantage in escaping predators for zebrafish larvae.
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The role of stage 1 and stage 2 in the fast start has been the subject of on-going debate.
The first stage has often been called purely preparatory (Domenici and Blake, 1997; Her-
tel, 1966; Weihs, 1973). Stage 1 prepares the body for stage 2: its preparatory role is clear
(Fleuren et al., 2018). In addition to the preparatory function, it has also been argued that
stage 1 may contribute significantly to propulsion (Fleuren et al., 2018; Tytell and Lauder,
2008;Wakeling, 2006). For bluegill sunfish, 37.2±0.6%of linearmomentum is produced
after stage 1 (Tytell and Lauder, 2008); for the larval zebrafish this is somewhat lower at
27.8 ± 8.2% (Fig. 5.5C). Based on the linear momentum, there is some propulsion com-
ponent in stage 1, but the displacement, speed, peak linearmomentum, and peak forces are
all considerably lower compared to stage 2 (Fig. 5.4). Arguably, the preparatory role of the
start, including reorientation, is more important for zebrafish larvae than the propulsive
role.

5.3.7 Conclusions

In this article, we analysed the dynamics of the fast start of zebrafish larvae at five days
post fertilization. We confirm that early-development larvae can produce effective escape
response in a wide range of directions (both azimuth and elevation) and speeds. The larvae
seem to be able to adjust the direction and speed of their escape close to independently.
They adjust the escape angle mostly with the extent of body curvature, while the escape
speed is adjusted mostly with the duration of the start. Apart from its preparatory role,
stage 1 is used to produce most of the reorientation, while stage 2 produces most of the
acceleration of the centre ofmass. This shows that despite their early stage of development,
zebrafish larvae meet the functional demands for producing effective escape responses.

5.4 Materials and methods

5.4.1 Animals

Weused two batches (from different parents) of 50wild type zebrafish larvae (Danio rerio,
Hamilton 1822), bred at the Carus animal facilities ofWageningen University. All fast start
sequences were filmed for fish of 5 days post fertilisation, with a body length of 4.2±0.14
mm. Wehoused each batch in a separate tank, kept at a constant temperature of 27◦C.The
experimental aquarium was also maintained at 27◦C by heating the experimental room.
We placed 50 larvae at the same time in the aquarium. The fish were stimulated to perform
fast start manoeuvres by approaching them with a horse hair. Sequences where the hair
touched the fishwere eliminated from analysis, because the resultant forceswould not only
be from the hydrodynamics, but also from the hair. The influence of the flow induced
by the hair is limited: the centre of mass of the larvae hardly moves before the initiation
of the start. All experiments were approved by the Wageningen University animal ethics
committee.

150



5

5.4.2 Experimental setup

The swimming of larval zebrafishwas recordedwith a synchronised high-speed video setup
with five cameras with different orientations (Fig. 5.1A). Zebrafish larvae were placed in a
glass aquarium in the shape of an octagonal prism (12 mm sides). To limit refraction ef-
fects, the cameras were placed perpendicular to the glass from five angles. From the bot-
tom and the right side, we used pco.dimax HS4 cameras (PCO AG, Kelheim, Germany;
2000× 2000 pixels). From the back, bottom left, and bottom right side, we used Photron
FASTCAMSA-X2 cameras (Photron,Tokyo, Japan; 1024×1024pixels). All cameraswere
equipped with 105 mm f/2.8 macro lenses (105 mm f/2.8 FX AF MICRO-NIKKOR
and AF-S 105 mm f/2.8G VR Micro, Nikon, Tokyo, Japan) with +5 diopter close-up
lenses (DHGAchromatMacro 200(+5), Marumi, Nagano, Japan), mounted on 27.5mm
extension tubes (PK-13, Nikon, Tokyo, Japan). All cameras were recording at 2200 frames
per second, synchronised with a pulse generator (9618+, Quantum Composers, Bozeman,
Massachusetts, USA). By using a collimated light setup, we created high-contrast shadow
images with large depth of field. Collimated light was produced by shining an LED light
source (MNWHL4/MWWHL4, Thorlabs Inc., Newton, New Jersey, USA) placed in the
focus of a 250 mm lens (250D, Canon, Tokyo, Japan). The light setup was aligned such
that the collimated light was parallel with the optical axis of the camera. Since the fish
larvae were in an aquarium between the light source and the camera, they projected deep
shadows on a brightly lit background image at short shutter speeds (≈ 10 µs).

5.4.3 Camera calibration and modelling

We generated calibration points visible in all cameras by moving a sharp-tipped needle
through the measurement volume with a computer-controlled micromanipulator (MCL-
3, LANG GmbH & Co. KG, Hüttenberg, Germany). The needle was moved through a
cuboid volume, at 5× 5× 5 uniformly spaced points along each dimension. This resulted
in 125 images per camera with a known position of the needle tip. In each of these images,
we indicated the needle tip manually with a custom Python 3 program.

Camera projectionsweremodelled by a simple affine transform, wherewe ignored per-
spective effects. For our camera setup, this is a valid assumption, as the shadows projected
onto the sensor by the fish are (theoretically) independent of the distance from the sensor,
owing to the collimated light. The affine transform for each camera was parameterised
by a 3D translation and the orthonormal basis of the image plane coordinate system (i.e.
one outward and two in-plane vectors). From an initial estimate of the camera parameters,
we started a constrained optimisation procedure inMATLAB (interior-point algorithm as
implemented in fmincon; R2016a, TheMathworks, Natick, Massachusetts, USA). Using
this procedure, we minimised the sum of squared differences between the clicked image
coordinates and the reprojected image coordinates, while maintaining orthonormality (i.e.
all vectors perpendicular and of unit length) of the image plane basis vectors.
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5.4.4 Motion reconstruction

The motion of the larvae was reconstructed from the synchronised high-speed video with
the method described in Voesenek et al. (2016); it was originally developed in MATLAB,
but converted to Python 3. Wewill briefly summarise themethod here, but refer the reader
to the original article for more details.

Themethod is based on a virtual representation of the camera setup and the fish larva.
The virtual camera setup was created from the results of the calibration procedure de-
scribed above. It transforms a point in world coordinates to image plane coordinates for
each camera. The fish was represented by a three-dimensional surface model. The shape,
position, and orientation of this model were determined by 14 parameters (3 for position,
3 for orientation, 8 for body curvature control points; Fig. 5.1B)—we ignore dorsoventral
curvature, deformation of the median fin fold, and motion of the pectoral fins. For every
point in time, we applied the Nelder-Mead optimisation algorithm to these parameters
to minimise the difference between virtual images, for which the 3D model was projected
onto the virtual cameras, and the real high-speed video images, from which the fish was
segmented. The result was a time series of body curvature along the body, position, and
orientation that described a three-dimensional surface with optimal overlap (Fig. 5.1C).We
smoothed eachof these time serieswith regularised least squares (Eilers, 2003; Stickel, 2010),
with derivatives of order 4, and a smoothing parameter of 100.

The reconstructed time series of parameters uniquely described the 3D shape of the
fish. Under the assumption of a constant density across the fish, the mass distribution
is known at every point in time. This allowed us to calculate its linear and angular mo-
mentum, and therefore the resultant fluid-dynamic forces and torques (Voesenek et al.,
2016). In addition, for each frame in each tracked sequence, we determined visually from
the bottom camera whether the pectoral fins were abducted or adducted.

5.4.5 Body angle calculation

We calculated the body angle by integrating angular velocity obtained from the angular
momentum. We calculated the angular velocity asω = I−1L, whereω is the angular ve-
locity vector in rad s−1, I is the moment of inertia tensor, andL is the angular momentum
vector. We integrated this angular velocity vector with themidpoint rule (Simo andWong,
1991; Zupan and Saje, 2011) to obtain rotationmatrices, with the rotationmatrix of the head
at the beginning of the start as the initial condition. Finally, we reconstructed the body roll,
pitch, and yaw Tait-Bryan angles from these rotation matrices.

5.4.6 Statistics

For all statistical tests, we used a significance threshold of 0.05. We performed all statistics
with MATLAB (R2018b, The Mathworks, Natick, Massachusetts, USA) and the associ-
ated Statistics and Machine Learning Toolbox (R2018b, The Mathworks, Natick, Mas-
sachusetts, USA). We verified normality of the data with a Kolomogorov-Smirnov test
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(MATLAB’s kstest). To calculate correlation coefficients, we fitted linearmodels (MAT-
LAB’s fitlm). We standardised all data before fitting the model by subtracting its mean
and dividing by its standard deviation, which allowed us to use the fit coefficients as cor-
relation coefficients (Schielzeth, 2010). To calculate confidence intervals of the correlation
coefficients, we used bootstrapping with 10, 000 repetitions, then calculated the 2.5th and
97.5th percentile. The correlation coefficients and their confidence intervals were conver-
ted back into slopes by multiplying with σx/σy , the ratio of standard deviations.

For the models of the turn angle and speed as a function of the head-to-tail angle and
duration, we initially fitted models with interaction terms between head-to-tail angle and
duration. For both models, the correlation coefficients of the interaction terms were not
significantly different from 0 (head-to-tail angle: P = 0.069,N = 33; speed: P = 0.37,
N = 33), so we eliminated them from the model.

For selected pairs of variables, we performed total-least-squares curve fits with an op-
timisation method (MATLAB’s fminsearch). We normalised both variables to a range
of [0, 1]. We fit functions of the form y = c1x

c2 , since we expect a negative power law
with an asymptote y = 0whenx→∞. For each set of trial coefficients, we calculated the
perpendicular distance to the curve for all data points. The squared sum of these distances
was used as the objective function of the optimisation, resulting in a set of best-fitting coef-
ficients c1 and c2. By bootstrappingwith 10, 000 repetitions and computing the 2.5th and
97.5th percentile, we calculated 95% confidence intervals of the coefficients.

Acknowledgements
We thank the staff of the Carus fish facilities for providing the zebrafish larvae. Kas Koen-
raads is thanked for his assistance during the experiments. This work was supported by
grants from the Netherlands Organisation for Scientific Research (Nederlandse Organisa-
tie voor Wetenschappelijk Onderzoek): NWO/ALW-824-15-001 to J.L.v.L. and
NWO/VENI-863-14-007 to F.T.M.

153



References
Ahlborn, B., Harper, D. G., Blake, R. W., Ahlborn, D. and Cam, M. (1991). Fish
without footprints. J. Theor. Biol. 148, 521–533.

Borazjani, I., Sotiropoulos, F., Tytell, E. D. and Lauder, G. V. (2012). Hydrodynam-
ics of the bluegill sunfish C-start escape response: three-dimensional simulations and
comparison with experimental data. J. Exp. Biol. 215, 671–684.

Butail, S. and Paley, D. A. (2012). Three-dimensional reconstruction of the fast-start
swimming kinematics of densely schooling fish. J. R. Soc., Interface 9, 77–88.

Danos, N. and Lauder, G. V. (2007). The ontogeny of fin function during routine turns
in zebrafishDanio rerio. J. Exp. Biol. 210, 3374–3386.

Domenici, P., Blagburn, J. M. and Bacon, J. P. (2011). Animal escapology I: theoretical
issues and emerging trends in escape trajectories. J. Exp. Biol. 214, 2463–2473.

Domenici, P. and Blake, R. W. (1991). The kinematics and performance of the escape
response in the angelfish (Pterophyllum eimekei). J. Exp. Biol. 205, 187–205.

Domenici, P. and Blake, R. W. (1993). The effect of size on the kinematics and perform-
ance of Angelfish (Pterophyllum eimekei) escape responses. Can. J. Zool. 71, 2319–2326.

Domenici, P. and Blake, R. W. (1997). The kinematics and performance of fish fast-start
swimming. J. Exp. Biol. 200, 1165–1178.

Eaton, R. C., DiDomenico, R. and Nissanov, J. (1988). Flexible body dynamics of the
goldfish C-start: implications for reticulospinal command mechanisms. J. Neurosci. 8,
2758–2768.

Eaton, R. C. and Emberly, D. S. (1991). How stimulus direction determines the trajectory
of the Mauthner-initiated escape response in a teleost fish. J. Exp. Biol. 161, 469–487.

Ehrlich, D. E. and Schoppik, D. (2017). Control of movement initiation underlies the
development of balance. Curr. Biol. 27, 334–344.

Eilers, P. H. C. (2003). A perfect smoother. Anal. Chem. 75, 3631–3636.
Fetcho, J. R. and McLean, D. L. (2010). Someprinciples of organization of spinal neurons
underlying locomotion in zebrafish and their implications. Ann. N. Y. Acad. Sci. 1198,
94–104.

Fleuren, M., Van Leeuwen, J. L., Quicazan-Rubio, E. M., Pieters, R. P. M., Pollux,
B. J. A. and Voesenek, C. J. (2018). Three-dimensional analysis of the fast-start escape
response of the least killifish,Heterandria formosa. J. Exp. Biol. 221, jeb168609.

Foreman, M. B. and Eaton, R. C. (1993). The direction change concept for reticulospinal
control of goldfish escape. J. Neurosci. 13, 4101–4113.

Gazzola, M., Van Rees, W. M. and Koumoutsakos, P. (2012). C-start: optimal start of
larval fish. J. Fluid Mech. 698, 5–18.

Hale, M. E., Long Jr., J. H., McHenry, M. J. and Westneat, M. W. (2002). Evolution

154

https://doi.org/10.1016/S0022-5193(05)80234-6
https://doi.org/10.1016/S0022-5193(05)80234-6
https://doi.org/10.1242/jeb.063016
https://doi.org/10.1242/jeb.063016
https://doi.org/10.1242/jeb.063016
https://doi.org/10.1098/rsif.2011.0113
https://doi.org/10.1098/rsif.2011.0113
https://doi.org/10.1242/jeb.007484
https://doi.org/10.1242/jeb.007484
https://doi.org/10.1242/jeb.029652
https://doi.org/10.1242/jeb.029652
https://doi.org/10.1139/z93-325
https://doi.org/10.1139/z93-325
https://doi.org/10.1523/JNEUROSCI.08-08-02758.1988
https://doi.org/10.1523/JNEUROSCI.08-08-02758.1988
https://doi.org/10.1523/JNEUROSCI.08-08-02758.1988
https://doi.org/10.1016/j.cub.2016.12.003
https://doi.org/10.1016/j.cub.2016.12.003
https://doi.org/10.1021/ac034173t
https://doi.org/10.1111/j.1749-6632.2010.05539.x
https://doi.org/10.1111/j.1749-6632.2010.05539.x
https://doi.org/10.1111/j.1749-6632.2010.05539.x
https://doi.org/10.1242/jeb.168609
https://doi.org/10.1242/jeb.168609
https://doi.org/10.1242/jeb.168609
https://doi.org/10.1017/jfm.2011.558
https://doi.org/10.1017/jfm.2011.558
https://doi.org/10.1111/j.0014-3820.2002.tb01411.x
https://doi.org/10.1111/j.0014-3820.2002.tb01411.x


5

of behavior and neural control of the fast-start escape response. Evolution (N. Y). 56,
993–1007.

Harper, D. G. and Blake, R. W. (1990). Fast-start performance of rainbow trout Salmo
gairdneri and northern pike Esox lucius. J. Exp. Biol. 150, 321–342.

Hertel, H. (1966). Fast Start—Trout. In Structure, Form, Movement, pp. 160–162. New
York City, NY, USA: Reinhold Publishing Company.

James, R. S. and Johnston, I. A. (1998). Scaling of muscle performance during escape
responses in the fishMyoxocephalus scorpius L. J. Exp. Biol. 201, 913–923.

Kasapi, M. A., Domenici, P., Blake, R. W. and Harper, D. (1993). The kinematics and
performance of escape responses of the knifefish Xenomystus nigri. Can. J. Zool. 71,
189–195.

Li, G., Müller, U. K., Van Leeuwen, J. L. and Liu, H. (2012). Body dynamics and
hydrodynamics of swimming fish larvae: a computational study. J. Exp. Biol. 215, 4015–
4033.

Li, G., Müller, U. K., Van Leeuwen, J. L. and Liu, H. (2014). Escape trajectories are
deflected when fish larvae intercept their own C-start wake. J. R. Soc., Interface 11,
20140848–20140848.

Lucas, K. N., Dabiri, J. O. and Lauder, G. V. (2017). A pressure-based force and torque
prediction technique for the study of fish-like swimming. PLoS One 12, e0189225.

Müller, U. K., Van den Boogaart, J. G. M. and Van Leeuwen, J. L. (2008). Flowpatterns
of larval fish: undulatory swimming in the intermediate flow regime. J. Exp. Biol. 211,
196–205.

Müller, U. K. and Van Leeuwen, J. L. (2004). Swimming of larval zebrafish: ontogeny of
body waves and implications for locomotory development. J. Exp. Biol. 207, 853–868.

Nair, A., Azatian, G. and McHenry, M. J. (2015). The kinematics of directional control
in the fast start of zebrafish larvae. J. Exp. Biol. 218, 3996–4004.

Nair, A., Changsing, K., Stewart, W. J. and McHenry, M. J. (2017). Fish prey change
strategy with the direction of a threat. Proc. R. Soc. B 284, 20170393.

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coeffi-
cients. Methods Ecol. Evol. 1, 103–113.

Simo, J. C. and Wong, K. K. (1991). Unconditionally stable algorithms for rigid body
dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng.
31, 19–52.

Song, J., Zhong, Y., Luo, H., Ding, Y. and Du, R. (2018). Hydrodynamics of larval fish
quick turning: A computational study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
232, 2515–2523.

Soto, A., Stewart, W. J. and McHenry, M. J. (2015). When optimal strategy matters to
prey fish. Integr. Comp. Biol. 55, 110–120.

155

https://doi.org/10.1111/j.0014-3820.2002.tb01411.x
https://doi.org/10.1111/j.0014-3820.2002.tb01411.x
https://doi.org/10.1111/j.0014-3820.2002.tb01411.x
https://doi.org/10.1139/z93-026
https://doi.org/10.1139/z93-026
https://doi.org/10.1139/z93-026
https://doi.org/10.1242/jeb.071837
https://doi.org/10.1242/jeb.071837
https://doi.org/10.1242/jeb.071837
https://doi.org/10.1098/rsif.2014.0848
https://doi.org/10.1098/rsif.2014.0848
https://doi.org/10.1098/rsif.2014.0848
https://doi.org/10.1371/journal.pone.0189225
https://doi.org/10.1371/journal.pone.0189225
https://doi.org/10.1242/jeb.005629
https://doi.org/10.1242/jeb.005629
https://doi.org/10.1242/jeb.005629
https://doi.org/10.1242/jeb.00821
https://doi.org/10.1242/jeb.00821
https://doi.org/10.1242/jeb.126292
https://doi.org/10.1242/jeb.126292
https://doi.org/10.1098/rspb.2017.0393
https://doi.org/10.1098/rspb.2017.0393
https://doi.org/10.1111/j.2041-210X.2010.00012.x
https://doi.org/10.1111/j.2041-210X.2010.00012.x
https://doi.org/10.1002/nme.1620310103
https://doi.org/10.1002/nme.1620310103
https://doi.org/10.1002/nme.1620310103
https://doi.org/10.1177/0954406217743271
https://doi.org/10.1177/0954406217743271
https://doi.org/10.1177/0954406217743271
https://doi.org/10.1093/icb/icv027
https://doi.org/10.1093/icb/icv027


Stewart, W. J., Cardenas, G. S. and McHenry, M. J. (2013). Zebrafish larvae evade pred-
ators by sensing water flow. J. Exp. Biol. 216, 388–398.

Stewart, W. J., Nair, A., Jiang, H. and McHenry, M. J. (2014). Prey fish escape by sensing
the bow wave of a predator. J. Exp. Biol. 217, 4328–4336.

Stickel, J. J. (2010). Data smoothing and numerical differentiation by a regularization
method. Comput. Chem. Eng. 34, 467–475.

Tytell, E. D. and Lauder, G. V. (2008). Hydrodynamics of the escape response in bluegill
sunfish, Lepomis macrochirus. J. Exp. Biol. 211, 3359–3369.

Van Leeuwen, J. L., Voesenek, C. J. and Müller, U. K. (2015). How body torque and
Strouhal number change with swimming speed and developmental stage in larval zebra-
fish. J. R. Soc., Interface 12, 20150479.

Van Raamsdonk, W., Pool, C. W. and Te Kronnie, G. (1978). Differentiation of muscle
fiber types in the teleost Brachydanio rerio. Anat. Embryol. 153, 137–155.

Voesenek, C. J., Muijres, F. T. and Van Leeuwen, J. L. (2018). Biomechanics of swimming
in developing larval fish. J. Exp. Biol. 221, jeb149583.

Voesenek, C. J., Pieters, R. P. M. and Van Leeuwen, J. L. (2016). Automated reconstruc-
tion of three-dimensional fish motion, forces, and torques. PLoS One 11, e0146682.

Wakeling, J. M. (2006). Fast-start Mechanics. In Fish Biomechanics (eds. R. E. Shadwick
and G. V. Lauder), volume 23, pp. 333–368. Cambridge, MA, USA: Academic Press.

Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. and Reznick, D. N.
(2005). Do faster starts increase the probability of evading predators? Funct. Ecol. 19,
808–815.

Webb, P. W. (1975). Acceleration performance of rainbow trout Salmo gairdneri and green
sunfish Lepomis cyanellus. J. Exp. Biol. 63, 451–465.

Weihs, D. (1973). Themechanismof rapid starting of slender fish. Biorheology 10, 343–350.
Wöhl, S. and Schuster, S. (2007). The predictive start of hunting archer fish: a flexible
and precise motor pattern performed with the kinematics of an escape C-start. J. Exp.
Biol. 210, 311–324.

Zupan, E. and Saje, M. (2011). Integrating rotation from angular velocity. Adv. Eng.
Softw. 42, 723–733.

156

https://doi.org/10.1242/jeb.072751
https://doi.org/10.1242/jeb.072751
https://doi.org/10.1242/jeb.111773
https://doi.org/10.1242/jeb.111773
https://doi.org/10.1016/j.compchemeng.2009.10.007
https://doi.org/10.1016/j.compchemeng.2009.10.007
https://doi.org/10.1242/jeb.020917
https://doi.org/10.1242/jeb.020917
https://doi.org/10.1098/rsif.2015.0479
https://doi.org/10.1098/rsif.2015.0479
https://doi.org/10.1098/rsif.2015.0479
https://doi.org/10.1007/bf00343370
https://doi.org/10.1007/bf00343370
https://doi.org/10.1242/jeb.149583
https://doi.org/10.1242/jeb.149583
https://doi.org/10.1371/journal.pone.0146682
https://doi.org/10.1371/journal.pone.0146682
https://doi.org/10.1111/j.1365-2435.2005.01033.x
https://doi.org/10.1111/j.1365-2435.2005.01033.x
https://doi.org/10.1111/j.1365-2435.2005.01033.x
https://doi.org/10.1242/jeb.02646
https://doi.org/10.1242/jeb.02646
https://doi.org/10.1242/jeb.02646
https://doi.org/10.1016/j.advengsoft.2011.05.010
https://doi.org/10.1016/j.advengsoft.2011.05.010


6

157





Chapter 6
Fish larvae use similar bending
moment patterns across early
development and speed
Cees J. Voesenek1, Gen Li2, Florian T. Muijres1, Johan L. van Leeuwen1
1 Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
2 Department of Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, Japan.

Submitted for publication in revised form.



Significance
Thousands of fish species swim with body undulations. The physics of undulatory swim-
ming are complex, involving strongly-coupled interactions between the body of the fish
and the water. Given this complexity, one would expect that fish require considerable
neural processing capacity to control swimming effectively. However, just-hatched fish lar-
vae without fully developed brains can already swim. With an advanced inverse-dynamics
approach, we show that fish larvae use similar bending-moment patterns across early de-
velopment, speeds, and accelerations. This suggests muscle activation in simple patterns,
with the kinematics emerging from the body-water interaction. This ‘offloading’ of com-
plexity to passive systems enables just-hatched larvae to swim successfully. The principle is
of interest as bio-inspiration for simple control of complex systems.

Abstract
Most fish swim by undulating their bodies. These undulations result from an interaction
between the fish’s internal tissues and the surrounding water. Despite the complex physics
and therefore expected need for advanced control, just-hatched larvae can swim effectively
without fully developed brains. To gain insight into the mechanisms of larval swimming,
we calculated the spatiotemporal distributions of bendingmoments along the bodyof free-
swimming larval zebrafish (3–12 days after fertilisation), based on reconstructed 3D kin-
ematics of 113 swimming events, a large-amplitude beam model, and 3D computational
fluid dynamics. The bending moment varies over time and along the central axis of the
fish due to the muscles, passive tissues, inertia, and fluid dynamics. We show that zebrafish
larvae use similar bending moment patterns for each half tail-beat as previously reported
for adults for near-cyclic swimming. Furthermore, we show that this pattern is qualitat-
ively similar across development, swimming speed, and acceleration. Changes are mostly
restricted to the amplitude and duration of the bendingmoments of the half tail-beat. The
envelope of possible bendingmoment amplitudes grows as the fish develops, allowing it to
reach higher speeds and accelerations with a similar bending moment pattern. The simil-
arity in bending moments suggests that muscle activation patterns are similar too, which
would allow fish larvae to use relatively simple control for the complex physics of swim-
ming.

6.1 Introduction
Swimming is a vital component of the fitness of a fish—it needs for instance to search for
food, hunt prey, escape from predators, migrate and disperse, and manoeuvre through
complex environments. Many fish species swim by performing body undulations that res-
ult from an interaction between body tissues and the surrounding water (e.g. McMillen
and Holmes, 2006; Tytell et al., 2010). Understanding these complex fluid-structure in-
teractions is crucial to gain insight into the mechanics and control behind fish swimming
(Voesenek et al., 2018).

To analyse the fluid-structure interactions during swimming, we need to understand
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the external fluid mechanics (water), the internal solid mechanics (skin, muscle, skeleton),
and their coupling. During swimming, the fish’s bodymoves through thewater, inducing a
flow around the fish (Borazjani et al., 2012;Müller et al., 2008). The resulting fluid dynamic
forces interact with the fish’s body tissues, resulting in a change in body deformation. This
deformation will change the motion of the surface of the body, which influences the fluid
dynamic forces, thus forming a loop of tight coupling between the fluidmechanics and the
internal solid mechanics (Jordan, 1996; Tyson et al., 2008; Tytell et al., 2010). The complex
two-way fluid-structure interaction creates the typical travelling wave pattern observed in
swimming fish (Gray, 1933; Wakeling and Johnston, 1999).

The complexity of the physics would suggest that fish need a sophisticated control sys-
tem to produce swimmingmotions reliably. Zebrafish (Danio rerio, Hamilton 1822) larvae,
the subject of this study, would seem to contradict this: they can swim immediately after
hatching, at considerable speed and tail beat frequency (Müller and Van Leeuwen, 2004;
Van Leeuwen et al., 2015; for a review, see Voesenek et al., 2018). Furthermore, the spinal
cord can produce swimming motions even when severed from the brain (Downes and
Granato, 2006). This suggests that a relatively simple system can produce reliable undu-
latory swimming, despite the non-linear governing physics. Over the first days of develop-
ment, the larvae refine their control of swimming (Borla et al., 2002; Ehrlich and Schoppik,
2017; Müller and Van Leeuwen, 2004) and improve swimming performance (Müller and
VanLeeuwen, 2004; VanLeeuwen et al., 2015). These improvements raise the question: do
control patterns change across early development, and at different swimming speeds and
accelerations?

To study the mechanics of control of swimming, we need insight into the internal
mechanics of the axial muscles and passive tissues. Muscle activation patterns can be meas-
ured directly with electromyography, where electrodes are inserted in the muscles to meas-
ure potential differences (Blight, 1976; Jayne and Lauder, 1995; Van Leeuwen et al., 1990).
However, this technique may incur considerable changes in swimming behaviour. Espe-
cially for fish larvae, it requires them to be paralysed (Buss and Drapeau, 2002) or fixed
in place (Cho et al., 2015), thus changing the fluid-structure interaction that produces the
body wave (Bowtell and Williams, 1991). Furthermore, the resolution along the body is
limited by the number of inserted electrodes.

An alternative is an inverse dynamics approach (Knudson, 2007), where we calculate
internal forces and moments from measured kinematics. Hess and Videler (1984) used a
simplified small-amplitude fluid and internal body model to estimate bending moments
along the central axis of saithe from the motion of its centreline. The bending moment is
defined for each transversal slice along the fish’s body as the sum of themoments produced
by the muscles and passive tissues, counteracting the moments due to inertia and water
(Cheng andBlickhan, 1994;Cheng et al., 1998;Hess andVideler, 1984). Because themuscles
are the only component in the system that produce net positive work over a cycle, bending
moment distributions hint towards properties of the muscle activation pattern.

In this study, we examined bending moments calculated from measured swimming
motion across early developmental stages in zebrafish larvae. Previous pioneering studies
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Figure 6.1: Procedure to calculate bending moments. (A) Larval zebrafish motion is reconstructed
from synchronised three-camera high-speed video. Video frames (background) from the three-camera-
setup overlaid with projections (blue) of the reconstructed model fish. The legend at the top indicates
which camera produced the video frame. (B) Reconstructed three-dimensional motion from the video,
projected onto the x–z plane, the highlighted time instant is shown in A and C–E. (C) Transparent vorticity
isosurfaces for the same motion as (B), calculated with computational fluid dynamics (CFD). (D) Total
fluid dynamic stress distribution on the skin, the sum of the pressure and shear stress magnitude contri-
butions, calculated from the flow field from CFD. (E) Fluid dynamic force distribution transformed to the
2D coordinate system attached to the deformation plane. This distribution is used as input to reconstruct
internal moments and forces. (F) Reconstructed bending moment distributions (colour) along the fish
(horizontal) and over time (vertical). The horizontal lines separate the half-phases in which the bending
moment was divided. The green line links a single half phase to a data point in G. (G) The mean speed
(horizontal), mean acceleration (vertical), and body length (colours) for all individual half-beats in the data
set. The green data point corresponds to the highlighted half-beat in F.

(Cheng and Blickhan, 1994; Hess and Videler, 1984) used a low-amplitude model and sim-
plified fluid-dynamics to compute bendingmoments for only a few cases of periodic swim-
ming in the inertial regime. We refined and extended these previous approaches by remov-
ing previous simplifying assumptions and analysing an extensive data set. We use three-
dimensional reconstructed kinematics (Voesenek et al., 2016), beam theory supporting ar-
bitrarily large amplitudes, and full numerical solutions of the Navier-Stokes equations to
calculate fluid-dynamic forces (Fig. 6.1). With this method, we examine the question: do
fish larvae use similar bending moment patterns across early development, speeds, and ac-
celerations? We calculated bending moments for 113 periodic and aperiodic swimming
sequences, across early development from 3–12 days after fertilisation. The reconstructed
bending moment patterns are qualitatively similar across development, speed, and accel-
eration. Rather than change the spatiotemporal distribution of bending moments, fish
larvae control speed and accelerationwith only the amplitude and duration of the bending
moment patterns. This suggests that fish larvae use the same simple control mechanism
across early development, despite complex physics determining the resulting motion.

6.2 Results

6.2.1 Overview of an individual swimming sequence

We performed phase-averaging on a periodic section of a swimming sequence of a 3 days
post fertilisation (dpf) zebrafish larva to illustrate how bending moments and bending
powers vary along the body during swimming. We selected four half tail-beats (Fig. 6.2A)
based on the periodicity of the body curvature. We averaged body curvature, bending mo-
ment, kinetic power, and fluid power over these half-beats.

Body curvature (Fig. 6.2B,C) shows a travellingwave pattern behind the stiff headwith
one positive and one negative peak per cycle. The highest curvatures are reached near the
tail, at around 0.8 of the body length (`), where body width is relatively small. Curvature
waves originate fromaround0.25 `, close towhere themost anterior axialmuscle is located.
They then travel at approximately constant speed (3.3 ` per tail beat) posteriorly, growing
in amplitude until close to the tail, and finally dropping to zero amplitude at the tail tip.
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Figure 6.2: Near-periodic sequence of a 3 days post fertilisation zebrafish larva. The larva swam at
31 ` s−1 with a tail-beat frequency of 69 Hz. (A) Centreline motion throughout the sequence. The colours
indicate half-phases. The coordinates were transformed to a best-fit plane through all points along the
centreline throughout the motion. (B) Motion during a single full tail-beat (half-beat 1 and 2) of the motion;
the grey centrelines correspond to the time points shown with horizontal lines in C,D,F–H. The diamond
(head) and dots on the centrelines correspond to points on the x-axis for C–H. (C,D,F–H) Heat maps
of distributions (colours) along the fish (horizontal) and over the phase over the tail beat (vertical); all
quantities are averaged over separate half-beats; ‘negative’ half-beats are mirrored for the curvature and
bending moment. (C) Body curvature normalised by body length. (D) Bending moment. (E) Muscle area
distribution along the fish. (F) Fluid power per unit body length (power exerted by the fish to move the
fluid). (G) Kinetic power per unit body length (rate of change in kinetic energy). (H) Resultant power, the
sum of the fluid and kinetic power.

Bending moments (Fig. 6.2D) show a positive and a negative peak during swimming,
corresponding to the direction of the tail beat, but preceding it in phase along most of the
body. The peak amplitude occurs around 0.4 `, corresponding to the area with the highest
muscle cross-section (Fig. 6.2E). Bending moments in the head and tail regions are low
due to the free-end boundary conditions, where the bending moment must be zero, the
absence of muscle, and in the tail region, the limited cross-sectional area. Also the bending
moment shows a travelling wave pattern, but its wave speed is more than twice as high as
the curvature wave speed (7.1 ` per tail beat).

The power used by the body to move the fluid (Fig. 6.2F) shows a large peak close to
the tip of the tail. The motion amplitude is large here (Fig. 6.2A,B), a well as the lateral
velocities, therefore fluid forces are large. Since power is the product of velocity and forces,
most power is expected to be transferred to the fluid here. The kinetic power, defined as the
time rate of change in kinetic energy, is smaller in magnitude compared to the fluid power
(Fig. 6.2G). The head shows considerable variation in kinetic energy over a tail-beat cycle,
owing to its relatively large mass and side-to-side motion. There is a dip in kinetic energy
fluctuations in the anterior region of the yolk sac. In the remainder of the body, the kinetic
power shows a travelling-wave pattern, caused by the travelling-wave character of the body
motion, and hence its speed. The resultant power (Fig. 6.2H), defined as the sum of the
fluid and kinetic power, is dominated by the fluid power.

6.2.2 Swimming effort and vigour

We reconstructed 3D kinematics from 113 video sequences of fast-start responses followed
by swimming, calculated flow fields throughout the sequence with CFD, and fitted dis-
tributions of internal forces and moments. These swimming sequences hardly contain
periodic swimming. To analyse the data despite its aperiodicity, we subdivided it into half-
beats based on zero-crossings of the bendingmoment in themid-point along the centreline
(Fig. 6.1F,G). For each of these 285 half-beats, we calculated the period length,mean speed,
mean acceleration of the centre of mass to the next half-beat, and peak (95th percentile)
bending moment.

To reduce the number of parameters for the analysis, we identified combinations of
parameters with high explanatory capacity. To control swimming, the fish has two main
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parameters to change the bendingmoment (see section below): its amplitude and the dura-
tion of each half-beat. We define the swimming effort asE = Mpeak t

−1
half —higher bend-

ing moments and shorter periods increaseE. We fitted a generalised linear model (gamma
distribution, log link function) with MATLAB (fitglm; R2018b, The Mathworks) and
the Statistics and Machine Learning Toolbox (R2018b, The Mathworks). This showed
that the swimming effort correlates significantly with themean resultant power (Fig. 6.3A;
P < 0.0001), with an exponent of 1.06—close to linear.

We expect the net propulsive force to scale with the mass of the fish, its acceleration,
and its squared speed (from the dynamic pressure). Based on this, we define swimming
vigour as V = m(cv2 + a), wherem is body mass, v is swimming speed, and a is mean
acceleration (i.e. change of speed to the next half-beat per unit of time). The coefficient c
is calculated with an optimisation algorithm that minimised the sum of squared errors of
a linear fit of vigour to effort with total least squares. The fitted value of 517.7m−1 results
in a clear trend of vigour as a function of effort (Fig. 6.3B; generalised linear model fit with
gamma distribution and log link function: P < 0.0001), collapsing the broad clouds of
speed and acceleration (Fig. 6.3C,D).
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6.2.3 Bending moment distributions are similar across swimming
vigour and development

To assess how bending moment patterns differ across vigour and development (indicated
by body length; Parichy et al., 2009), we compared bending moment patterns normalised
by their amplitude. We normalised the bending moment distribution of each half-beat by
dividing by the peak bending moment. We then calculated the mean and standard devi-
ation (Fig. 6.4A,B) of the normalised distributions of all half-beats. The standard devi-
ation (Fig. 6.4B) is relatively small, locally peaking at 0.24, caused primarily by variation
in the peak phase (Fig. 6.4E,F). For each half-beat, we calculated the mean absolute differ-
ence of each point in the distribution to the corresponding point in themean distribution.
Themean of these differences across half-beats is 0.091±0.028—the differences are relat-
ively low, and of similarmagnitude across half-beats. Thus, the patterns look similar across
different developmental stages and swimming vigour. Note that the peak value is smaller
than 1, since the peak location shows variation in both phase and location along the body
(Fig. 6.4C–F).

The centre of volume of the individual bending moment patterns (Fig. 6.4C–F) lies
around 0.5 ` along the body length and 25%of the tail beat (i.e. 50%of the half-beat). The
location along the body varies little across length (i.e. developmental stage) and swimming
vigour. The phase (i.e. time relative to the tail-beat duration) shows more variation over
length and vigour but shows no clear pattern. We fitted linear models with MATLAB
(fitlm; R2018b, TheMathworks) with the centre of volume location along the body and
in phase as response variable, and the length and vigour as predictors. The slopes for the
centre of volume position along the body are not significantly different from 0 for length
(P = 0.071), vigour (P = 0.78) or their interaction (P = 0.78). The slopes for the phase
of the centre of volume is not significantly different from zero for length (P = 0.32) and
the interaction between length and vigour (P = 0.065), but marginally significant for
vigour (P = 0.049).

Although the spatiotemporal distributions of the bending moments are similar across
lengths (i.e. developmental stage), the duration and amplitude vary (Fig. 6.4G,H). As the
fish develop, the range of half-period durations increases (Fig. 6.4G)—young larvae use
mostly short durations, while larger larvae use a broad range of durations. The maximum
peak bendingmoment increases substantially over development (Fig. 6.4H).Older fish can
generate higher peak bendingmoments and can reach higher swimming vigour values, but
do not always do so.

6.2.4 Control parameters of swimming vigour

Because the bending moment patterns are similar across swimming styles and develop-
mental stage, the parameters left for controlling swimming vigour are the amplitude of
the bending moment and the duration of the tail beat. All experimental points lie on a
broad cloud around a curve through the effort landscape, a function of peak bending mo-
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Figure 6.5: Swimming control parameters. (A,B,C) Individual half-beats in the duration–peak bending
moment landscape, the coloured background with white contour lines shows the swimming effort. (A)
Dots coloured by acceleration. (B) Dots coloured by speed. (C) Dots coloured by swimming vigour.

ment and half-beat duration (Fig. 6.5). In general, high peak bending moments are only
produced for tail beats of short duration. As the duration decreases (i.e. frequency in-
creases), the bending moment amplitude decreases. Higher efforts generally lead to higher
speeds (Fig. 6.5B), unless the larva is accelerating strongly. Strong accelerations are mostly
found with slow-swimming larvae using short half-beat durations and high peak bending
moments (Fig. 6.5A). For high-effort tail beats, the larvae are generally either swimming
fast, or accelerating: high-effort, low-speed tail beats show high accelerations, while high-
effort, low acceleration tail beats show high speeds. Swimming vigour tends to increase
with increasing effort (Fig. 6.5C).

6.3 Discussion
In this study, we analysed bending moment distributions of developing zebrafish larvae
with inverse dynamics. We found that larvae use similar bending moment patterns across
development. They control their swimming vigour, a combination of speed and accelera-
tion, by adjusting the peak bending moment and tail-beat duration. At higher speeds and
accelerations, the larvae produce the required fluid-dynamic forces by increasing bending
moment amplitude and/or decreasing tail-beat duration.

Previous inverse-dynamics approaches for the internal mechanics of swimming used
simplified models for both the fluid and the structure. The structure was modelled with
linear bending theory, assuming small deformations of the centreline (Cheng and Blick-
han, 1994; Hess and Videler, 1984). The effects of a large-amplitude correction to these was
expected to be small for adult fish that swim periodically (Pedley andHill, 1999). However,
zebrafish larvae beat their tails often at> 90◦with the head (VanLeeuwen et al., 2015), viol-
ating the small-amplitude assumption. The beam theory underlying our bendingmoment
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calculations allows arbitrarily large deformation, under the assumption of pure bending.
Our beam model ignores the effect of shear deformation that is expected to occur close to
the medial plane (Van Leeuwen et al., 2008), but we expect it to be of small influence to
the bending moments due to its proximity to the axis and hence small moment arm.

In addition, we used 3D CFD to calculate fluid-dynamic forces, dropping previous
assumptions of inviscid flow (Lighthill, 1960; Wu, 1961) and the necessity to model the
boundary layer separately (Pedley and Hill, 1999). The assumption of inviscid flow does
not hold for fish swimming in the intermediate regime (Li et al., 2012; Voesenek et al.,
2018)—full solution of the Navier-Stokes equations is necessary to obtain sufficiently ac-
curate fluid-dynamic force distributions. The intermediateReynolds number of the zebra-
fish larvae allows us to solve theNavier-Stokes equations accurately, without requiring tur-
bulence modelling (Li et al., 2012).

In our analysis of swimming sequences across development, we do not assume period-
icity. Periodic motion is a common assumption in the analysis of fish swimming (e.g. Van
Leeuwen et al., 2015; Videler and Hess, 1984). For zebrafish, cyclic swimming occurs most
often after a fast start, and rarely spontaneously (Budick and O’Malley, 2000; Müller and
Van Leeuwen, 2004), and generally only for a few tail beats. To analyse aperiodic motion,
we subdivided each swimming sequence in tail beats based on zero-crossings of the bend-
ing moment in the middle of the body. During aperiodic swimming, the speed is generally
non-constant. For this reason, we define a parameter ‘swimming vigour’, that combines
the effects of acceleration and swimming speed as V = m(cv2 + a). This approach for
analysing aperiodic swimming could be of general use in swimming research. The subdi-
vision in half-beats can also be done with quantities other than the bending moment, for
example body curvature. This enables similar analyses of aperiodic swimming from pure
kinematics without inverse dynamics.

We define the swimming effort exerted by the fish based on the amplitude of the bend-
ing moment and the duration of the tail-beat, as E = Mpeak t

−1
half . This quantity cor-

relates with resultant power, indicating that it is indeed an indicator of swimming effort
(Fig. 6.3A). The speed and acceleration fall on broad clouds as a function of effort
(Fig. 6.3C,D), since they interact in determining the required effort for the fish. The effort-
speed landscape (Fig. 6.3C) shows a two-pronged distribution, one branch showing high
effort but low speed, and the other, broader branch showing increased effort with speed.
This distribution is mainly explained by the acceleration, showing high values in the lower
branch—fish only accelerate strongly from low speeds and use high effort to do so. This is
reflected in the effort-acceleration landscape (Fig. 6.3D), low (including negative) accelera-
tion are found at high speeds, and vice versa.

When speed and acceleration are combined into the swimming vigour, these clouds
collapse into a narrower curve (Fig. 6.3B). Variation in this curve may be partly caused by
turning behaviour and contributions of the pectoral fins. We can estimate the relative con-
tribution of the speed and acceleration to the swimming vigour, giving an indication of
their relative cost. If we assume force production to maintain speed and to accelerate are
equally costly, we can estimate a drag coefficient from the coefficient in the vigour equation
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as cD,estimated = mc
(

1
2ρS

)−1, where ρ is the fluid density, and S is the wetted area. Its
value is 0.061, which is considerably lower than the value of 0.26 calculated from a previ-
ous CFD study on larval zebrafish (Li et al., 2016). This means our equal-cost assumption
does not hold: the contribution of the speed term is relatively low compared to the accel-
eration term. Since swimming vigour correlates with swimming effort, this indicates that
acceleration is more costly to achieve compared to maintaining swimming speed—the lar-
vae need to invest more effort to produce force to accelerate than to swim steadily.

Most of the resultant power produced by the fish is used to increase the energy in the
fluid, rather than the kinetic energy of the body (Fig. 6.2H). The energy spent on the water
is likely lost on lateral velocity: larvae swim at high Strouhal number, associated with large
tail-beat amplitudes and relatively high energy consumption (Borazjani and Sotiropoulos,
2009; Van Leeuwen et al., 2015). Most of this fluid power is produced at the tail, where
the largest fluid-dynamic forces are produced (Li et al., 2016), even though no muscles are
present here. This suggests a transfer mechanism by passive tissues from themuscles to the
tail (Altringham and Ellerby, 1999; Blickhan and Cheng, 1994; Long et al., 2002).

The bendingmoment does not correspond directly tomuscle action, as it also includes
the effects of passive structures inside the body (Hess and Videler, 1984). We do not know
the contribution of the muscles to the total bending moment, nor the specific distribu-
tion of stresses inside the body. Cheng et al. (1998) modelled the elastic and visco-elastic
properties of the passive tissue, and thus estimated the contribution of the muscle bend-
ing moment. The amplitude of the muscle bending moment was found to be higher than
the overall bending moment, while the wave speed was found to be lower. However, the
overall dynamics look reasonably similar. If we assume similar distributions of passive tis-
sues inside the fish across the considered developmental stages (Parichy et al., 2009), similar
total bending moment patterns will require a similar muscle contribution. Furthermore,
the difference in amplitude between similar bendingmoment patternsmust originate from
the muscle moment, since it is the only net source of power in the system—the work done
by the fluid and passive tissues indirectly comes from the muscles.

We found that the bending moments follow a similar pattern across development and
swimming vigour (i.e. speed and acceleration). The only significant coefficient in the lin-
ear models is the phase of the centre of volume of the bending moment patterns as a func-
tion of swimming vigour (Fig. 6.4F), but the effect is limited. More vigorously swimming
fish generate the peak bending moment slightly earlier in the half-beat. The mean pat-
tern looks qualitatively similar to earlier calculations done for adult fish (Cheng and Blick-
han, 1994). It is a single-peaked distribution, with the maximum around the bulk of the
muscle (Fig. 6.2E, Fig. 6.4A), and a fast-travellingwave character. Muscle electromyograms
(EMG) done on paralysed zebrafish also looked similar to adult activation patterns (Buss
and Drapeau, 2002). This suggests that this simple pattern of bending moments is com-
mon to fish across species and developmental stage. Even though fish larvae swim in the
intermediate regime (Voesenek et al., 2018), and adult fish often swim in the inertial re-
gime (Müller and Videler, 1996), the differences in fluid dynamics do not seem to require
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fundamentally different bending moment patterns.
Since the bending moments look similar along the body and over the phase for each

half-beat, the two control parameters left for the larvae to adjust are the amplitude and
duration of the half-beat. Young larvae use a relatively narrow range of amplitudes and
durations (Fig. 6.4G), which broadens as the fish develop. Older larvae are able to gener-
ate higher peak bendingmoments, likely correlated to development of their muscle system
(Van Raamsdonk et al., 1978). While younger larvae only use a combination of short dur-
ation and relatively low bending moment amplitude (Fig. 6.4G,H), older fish often use
longer-duration tail beats than young fish, suggesting that they havemore freedom to con-
trol their swimming vigour.

Swimming kinematics emerge from simple bendingmoment patterns. These patterns
presumably stem from simple muscle activation input—their quantification is an interest-
ing avenue for future research. The arrangement and properties of the muscles, passive tis-
sues and propulsive surface causes simple inputs to translate into complex kinematics and
flow fields. Thus, handling the non-linear coupling between the body and flow becomes
is simplified for the larvae. This has profound consequences for the survival of larvae that
need to swim to survive (Walker et al., 2005). Straight from the egg, they can produce swim-
ming behaviour to escape threats, despite relatively limited neural processing capacity. This
concept of designing passive systems to allow complex systems to be controlled simply is of
broad interest in engineering and biology (Degallier et al., 2011; Full and Koditschek, 1999;
Liu et al., 2011).

6.4 Materials and methods
An in-depthmathematical treatment of themethods is given in the Supplemental Inform-
ation.

6.4.1 Reconstructing 3D motion from multi-camera high-speed
video

Wemade high-speed video recordings of fast starts of three separate batches of 50 zebrafish
larvae from 3–12 days post fertilisation (dpf). The camera setup was identical to the setup
described in Voesenek et al. (2016), with three synchronised high-speed video cameras, re-
cording free-swimming larvae at 2000 frames per second. To reconstruct the swimming
kinematics from the recorded high-speed video, we used in-house developed automated
3D tracking software (Voesenek et al., 2016) in MATLAB (R2013a, The Mathworks). For
every time point in a multi-camera video sequence, the software calculates the best fit for
the larva’s 3D position, orientation and body curvature to the video frames. These para-
meters are then used to calculate the position of the larva’s central axis and the motion of
its outer surface (Fig. 6.1A,B).
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6.4.2 Subdividing motion

We calculated phase-averaged quantities for an individual swimming sequence to look in
detail at the generated bending moments and powers. We determined whether a (subset
of a) sequence is periodic with a similar approach to Van Leeuwen et al. (2015). For every
possible subset of a swimming sequence, we calculated the sum of absolute difference with
a time-shifted version of the curvature, similar to an autocorrelation. We then calculated
extrema in this function—if extrema are detected, their maximum value determines the
‘periodicity’ of the sequence. We then selected the longest possible subsequence that has
a periodicity value higher than a threshold of 35—this is a swimming sequence for a 3
dpf fish. We divided this sequence in half-phases based on peaks in the body angle (Van
Leeuwen et al., 2015; Voesenek et al., 2016). The curvature, bending moment, fluid power,
kinetic power, and resultant power were then phase-averaged based on these subdivisions.

Most of the swimming of larval zebrafish is aperiodic, but there is an alternating pat-
tern in the bending moments. For this reason, we analysed swimming per half-beat, based
on the bending moment. We found the zero-crossings of the bending moment at 0.5 `.
Since some of these points are related to noise, we evaluated every possible permutation
of zero-crossings per sequence on several criteria with a custom MATLAB (R2018b, The
Mathworks) program. We eliminated zero-crossings with neighbouring sections with an
amplitude of less than 5%of the peak half-beat amplitude in the sequence, as they aremost
probably noise. We required more than three zero-crossings to have at least two half-beats
to be able to calculate amean acceleration. Extreme values in eachhalf-beat should alternate
direction to eliminate noisy zero-crossings: the larva beats its tail left and right, so therefore
bending moment must alternate. Finally, we eliminated half-beats with a duration shorter
than2.5ms (equivalent to200Hz tail-beat frequency)—themaximum tail-beat frequency
observed for zebrafish larvae is 95 Hz (Van Leeuwen et al., 2015). From all permutations
that met the criteria, we selected the permutation with the smallest standard deviation in
half-period length across the sequence. This left the longest possible, least noisy sequence
of half-beats for every swimming bout.

Out of 113 swimming sequences, we selected 398 half-beats with this procedure. For
each of these half-beats, we calculated the duration, mean speed, and peak bending mo-
ment. We determined themean acceleration by calculating the difference in speed between
the following and current half-beat. Since we could not calculate mean acceleration for the
last half-beat in each sequence, 285 half-beats remained for which we computed all quant-
ities.

6.4.3 Calculating fluid force distributions

To calculate fluid-force distributions, we used the adaptive multigrid, immersed boundary
method solver IBAMR (Griffith et al., 2007). We converted the tracked video data into a
three-dimensional point cloudmodel in the fluid solver. We exclusively used swimming se-
quences where the larvae start from rest in quiescent water, so we do not need to consider
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history in the wake. The solver time step was much smaller than the time step between
video frames, sowe interpolated the reconstructed kinematics with a quintic spline (Guen-
nebaud et al., 2010). Using this interpolated state, we updated the location of the point
cloud representing the surface of the fish. This resulted in a three-dimensional velocity
and pressure field at every point in time (Fig. 6.1C). To verify the accuracy of the method,
we compared reconstructed bending moments from IBAMR to an experimentally valid-
ated CFD solver (Li et al., 2012, 2014, 2016), showing only small differences, see the Supple-
mental Information.

We extracted force distributions by interpolating the pressure and velocity gradient
tensor components to the centre of each face of an offset triangulated representation of the
fish surface. We then integrated these values into contributions to the pressure force and
the shear force at every face of the surface (Fig. 6.1D). By further integration, we calculated
the force at every point along the centreline in a coordinate system attached to the larva’s
head (Fig. 6.1E).

6.4.4 Calculating bending moments

To calculate bending moments, we represented the fish by its central axis only. Effects of
muscles, spine, and other tissues were combined for every transversal slice along this axis.
This simplification allowed us to describe the fish as a non-linear, one-dimensional beam
in two-dimensional space. We derived the equations of motion for this beam (see Supple-
mental Information) in an accelerating and rotating coordinate systemattached to the fish’s
head (Török, 2000).

We obtained the motion of the fish from the tracked video, and the fluid forces from
the fluid model. This left the normal forces, shear forces, and the bending moment as the
only unknowns in the equations. We described the distributions of these unknowns with
a quintic spline (Guennebaud et al., 2010) with uniformly spaced control points along the
axis.

Todetermine the control point values of the normal force, shear force andbendingmo-
ment, we minimised the residuals of the equations of motion. For every trial combination
of control points, we calculated the residuals of equations at all points along the fish. The
squared sum of these normalised residuals was minimised with a Levenberg-Marquardt
algorithm (Jones et al., 2001) to obtain the best-fitting control point values that meet the
boundary conditions for both free ends (internal forces andmoments are zero). When the
residuals of the equations are equal to zero, the optimised distributions satisfy the govern-
ing equations and boundary conditions exactly. Therefore, this procedure ensured that the
computed internal force and moment distributions (Fig. 6.1F) were as close to physically
valid as possible within the measurement error. From the motion of the centreline and
fluid dynamic forces, we derived a local resultant power.

This optimisation procedure was validated with reference data obtained by integrat-
ing the equations of motion with a known external force distribution and internal mo-
ment distribution. We then reconstructed the bending moments, shear force, and normal
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force from the integrated motion and the prescribed external force distribution, resulting
in near-identical values (see Supplemental Information).

6.4.5 Calculating muscle cross-sectional area

We performed micro-computed-tomography (µCT) images of a 3 dpf zebrafish larva at
the TOMCAT beamline at the Paul Scherrer Institut (Stampanoni et al., 2007). The larva
was fixed in Bouin’s solution and stained with phosphotungstic acid (PTA). The complete
fish was imaged by stitching three scans with a resolution of 650 × 650 × 650 nm per
voxel. From these data, a centreline was extracted by finding the centre of area of each slice,
segmented with simple thresholding. Finally, the muscle area was manually digitised in 51
planes, forwhich the image datawas interpolated in a planeperpendicular to the centreline.
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Supplemental Information
In this Supplemental Information, we provide the detailed mathematical background of
the methods used in the article “Fish larvae use similar bending moment patterns across
early development and speed". In addition, we show the results of the validationperformed
on these methods.

S6.1 Equations of motion
In this study, we calculated internal forces and moments for swimming zebrafish larvae.
The three-dimensional motion of the larvae was obtained from multi-camera high-speed
video with an automated tracking method (Voesenek et al., 2016). From this motion, we
calculated the internal forces and moments by modelling the fish as a bending ‘beam’. In
this section, we show the derivation of the equations of motion for this large-deformation
beam representation of the fish.

S6.1.1 Deriving the equations of motion

We model the fish as a beam with varying cross-sections, undergoing arbitrarily large de-
formation. Plane cross-sections are assumed to remainplane andperpendicular to theneut-
ral line (no shear deformation), but axial deformation is allowed. Although themotion we
tracked from the video is three-dimensional, we assume that the fish deforms in a single
plane. Therefore, we can use a two-dimensional beammodel to represent the deformation
of the fish, under a suitable coordinate transformation. In summary, we model the fish as
a beam undergoing large bending deformations in two dimensions.

We describe the deformation of the beam with the displacement of each infinitesimal
beam element with respect to the reference configuration (Fig. S6.1A). It is defined as a
function ξ(s, t) =

(
ξ(s, t), η(s, t)

)
of a parameter s along the length of the beam, and

the time t. The position of the central axis at each point s is given by:(
x(s, t), y(s, t)

)
=
(
x0(s) + ξ(s, t), y0(s) + η(s, t)

)
, (S6.1)

where (x0(s), y0(s)) is the reference configuration of the beam. We define the reference
configuration as a straight beam aligned with the positive x-axis, so the position becomes:(

x(s, t), y(s, t)
)

=
(
s+ ξ(s, t), η(s, t)

)
, (S6.2)

This displacement results in a local deformation angleθ(s, t) for eachbeamelement (Fig. S6.1A).
It can be calculated from the displacements with:

θ = arctan

(
∂η
∂s

1 + ∂ξ
∂s

)
. (S6.3)
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Q(s+ds)

N(s+ds)

θ(s+ds)

θ(s)
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M(s+ds)
Q(s)

N(s)
M(s)s

ξ(s)

ffluidds
mfluidds

(s+ξ, η)

fficts

Figure S6.1: Beam representation of the fish body for computation of bending moments. (A)
Geometric definitions of a beam element ds at a position s along the body, in reference (left) and deformed
(right) configuration. We consider an infinitesimal element at (s, 0) in the reference configuration, that is
displaced by (ξ, η), and rotated by an angle θ. (B) Free body diagram of a beam element ds, with axial
force N, shear force Q, bending moment M, net fictitious force distribution ffict, net fluid force distribution
ffluid, net in-plane fluid moment distribution mfluid, and acceleration ∂2ξ

∂t2 .

To derive the equations ofmotion, we consider a free body diagram of an infinitesimal
beam element of length ds (Fig. S6.1B). The force balance in x- and y-direction for a beam
element ds can be expressed as:

ρfishA(s) ds
∂2ξ

∂t2
(s, t) =

N(s, t) cos
(
θ(s, t)

)
−N(s+ ds, t) cos

(
θ(s+ ds, t)

)
− Q(s, t) sin

(
θ(s, t)

)
+Q(s+ ds, t) sin

(
θ(s+ ds, t)

)
+ fx,muscle(s, t) ds+ fx,fluid(s, t) ds+ fx,fict(s, t) ds;

(S6.4)

ρfishA(s) ds
∂2η

∂t2
(s, t) =

+ N(s, t) sin
(
θ(s, t)

)
−N(s+ ds, t) sin

(
θ(s+ ds, t)

)
+Q(s) cos

(
θ(s, t)

)
−Q(s+ ds, t) cos

(
θ(s+ ds, t)

)
+ fy,muscle(s, t) ds+ fy,fluid(s, t) ds+ fy,fict(s, t) ds,

(S6.5)

where ρfish is the beam density,A is the beam cross-sectional area,N is the internal normal
force, Q is the internal shear force, fx,muscle, fy,muscle are the muscle forces in x- and y-
direction, fx,fluid, fy,fluid are the external fluid forces in x- and y-direction, and fx,fict,
fy,fict are the fictitious forces in x- and y-direction (from the non-inertial reference frame,
see section S6.1.2).

The moment balance (counter-clockwise positive) about the point on the neutral line
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at s+ ds is given by:

ρfishI(s) ds
∂2θ

∂t2
(s, t) =

M(s, t)−M(s+ ds, t)−Q(s, t)ds

+ mmuscle(s, t) ds+mfluid(s, t) ds+mfict(s, t) ds,

(S6.6)

where I is the distribution of the second moment of area, M is the internal moment,
mmuscle is the muscle moment,mfluid is the external fluid moment, andmfict is the ficti-
tious moment (see section S6.1.2).

Dividing equations S6.4, S6.5, and S6.6 by the infinitesimal length ds, applying the
definition of a derivative ∂ϕ∂s (s, t) = ϕ(s+ds,t)−ϕ(s,t)

ds , and dropping the explicit f(s, t)
notation, yields the equations of motion:

ρfishA
∂2ξ

∂t2
= − ∂

∂s

(
N cos θ

)
+
∂

∂s

(
Q sin θ

)
+fx,muscle +fx,fluid +fx,fict; (S6.7)

ρfishA
∂2η

∂t2
= − ∂

∂s

(
N sin θ

)
− ∂

∂s

(
Q cos θ

)
+fy,muscle +fy,fluid +fy,fict; (S6.8)

ρfishI
∂2θ

∂t2
= −∂M

∂s
−Q+mmuscle +mfluid +mfict. (S6.9)

S6.1.2 Fictitious forces

We reconstructed the motion of the fish from video in three-dimensional space, but de-
scribed the equationsofmotion in a two-dimensional plane. However, in the video-tracking
method,we assumed that the fish deforms in a single plane. Hence, we can create a coordin-
ate systemaligned to this plane andobtain the equations in twodimensions only. Wedefine
this head reference frame as fixed to the snout of the fish and rotating along with the stiff
head region in the deformation plane. Any point x̂ in world coordinates (denoted with a
circumflex) can be expressed in the fish coordinate system at time t as:

x = RT(t) (x̂− x̂snout), (S6.10)

where R(t) is the time-dependent rotation matrix expressing the orientation of the snout
and x̂snout is the position of the snout.

When we transform the motion to the non-inertial fish reference frame, additional
equation terms accounting for the effect of the translation and rotation of the frame must
be considered. These additional acceleration terms for any pointx in the rotating reference
frame are given by (Török, 2000):

aadd = −âhead − 2ω̂× v − ω̂× (ω̂× x)− α̂× x, (S6.11)
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where âhead is the acceleration of the origin, ω̂ is the angular velocity of the rotating co-
ordinate system, v is the velocity of the considered point, and α̂ is the angular velocity of
the rotating coordinate system. Note that the quantities âhead, ω̂, and α̂ are calculated
with respect to the world reference frame, but expressed in the basis vectors of the moving
reference frame. The position x and velocity v are expressed with respect to the moving
reference frame.

These accelerations can be considered as an additional ‘fictitious’ external force distri-
bution in the moving reference frame. This force distributions is given by

ffict = ρAaadd. (S6.12)

These fictitious forces are added to the fluid-dynamic forces to calculate the total external
force distribution acting on each beam element.

S6.2 Calculating fluid forces from kinematics
The equations of motion include an external force distribution, produced by the water
on the skin. Since this is exceedingly difficult to measure directly and non-invasively, we
modelled the fluid dynamics numerically. We used two independent computational fluid
dynamics (CFD) methods to calculate fluid-dynamic forces. We used an experimentally
validated method to validate the second method to assess its accuracy when calculating in-
ternal forces and moments.

We performed computational fluid dynamics using a Navier-Stokes solver based on
overset meshes (Li et al., 2012, 2014, 2016), coupled to a body dynamics solver to simulate
free swimming. Simulations were performed with swimming kinematics based on a trav-
elling wave with a known curvature amplitude at a frequency of 50Hz. The same motion
was used in a second, independent Navier-Stokes solver based on the immersed boundary
method, the open-source code IBAMR (Griffith et al., 2007).

The Navier-Stokes equations were solved on a rectangular domain, with extents de-
termined by the bounding box around the complete motion with an additional margin of
2 fish lengths. The immersed boundary solver used an adaptivemesh refinement approach,
in which the computational mesh can be locally refined depending on the flow conditions.
In our case, the mesh consisted of four levels of refinement. Each level was a simple rectan-
gular Cartesian mesh with 4 times the number of subdivision in all dimensions compared
to the coarser level. The choice of mesh refinement level depended on the local value of
the vorticity, we chose thresholds of 1, 25, and 250 s−1 to switch to the second, third, and
fourth refinement level respectively. We used a fixed time step of 0.5µs (see section S6.5.2),
where the CFL-number is always much smaller than 1. We saved the fluid solution every
0.25ms—at these points we reconstruct the internal forces and moments.

The surface of the fish was described as a cloud of Lagrangian points, moving over the
Eulerian fluid solution mesh. The motion of these points was prescribed based on quintic
spline interpolation (Guennebaud et al., 2010) of the tracked kinematics, with a custom-
developed add-on to IBAMR. The density of the point cloud was chosen such that the
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mean distance between the points is 0.75× the smallest mesh level. This ensured that each
cell inside the fish body will have at least one point in it, and not much more.

The resulting flow fields were post-processed to extract the fluid force distribution on
the skin of the fish with a custom Python 3 program. In this program, we interpolated
(Jones et al., 2001) the pressure and velocity gradients to a triangulated surface slightly offset
from the fish skin. These were then used to calculate the local stress on each triangular face
as:

σpressure = −pn; (S6.13)

σfriction = τn, (S6.14)

where p is the pressure, τ is the shear stress tensor, and n is the outward facing normal of
the face. Under the assumption of a Newtonian fluid, the shear stress tensor is defined as:

τ = µ

 2∂u∂x
∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂u
∂y + ∂v

∂x 2∂v∂y
∂v
∂z + ∂w

∂y
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y 2∂w∂z

 , (S6.15)

where µ is the dynamic viscosity, and u, v, w are the velocity components in respectively
x-, y-, and z-direction. These surface stress distributions were then grouped into segments
along the fish to calculate the local net fluid force in the moving reference frame.

S6.3 Reconstructing internal forces and moments with
inverse dynamics

We reconstructed bendingmoments from themotion of the fish and its simulated external
fluid force distribution, an approach commonly called inverse dynamics. This section de-
scribes the optimisationprocedureweused to reconstruct the internal forces andmoments.

In our inverse dynamics approach, we cannot separate the effects of the active and pass-
ive tissues inside the fish: the internal forces and moments that we compute include the
effects of both. Considering this, the moment equation becomes:

ρfishI
∂2θ

∂t2
= −∂M

∗

∂s
−Q+mfluid +mfict, (S6.16)

where ∂M∗

∂s = ∂M
∂s − mmuscle. This combined moment is what we reconstruct from

the motion with our optimisation procedure. From here onwards, we drop the asterisk
notation and refer to the combined active and passive internal bending moment as the
‘bending moment’.
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S6.3.1 Optimising internal forces and moments

To calculate the normal force, shear force, and bending moment, we used an optimisa-
tion algorithm that determines the best-fitting distributions in space and time. At every
point in time, we described the internal forces and moments with a quintic spline (Jones
et al., 2001) along the length of the fish. Values were prescribed at 12 uniformly spaced
control points, between which the values were interpolated with the spline. The first and
last control point, at respectively s = 0 and s = `, were fixed at a value of 0, to satisfy the
boundary conditions ofN(0) = Q(0) = M(0) = 0, andN(`) = Q(`) = M(`) = 0,
that should hold for the free ends of a beam.

At a each time step, we optimised the moment-, shear-, and normal distributions to
minimise the deviation from equations S6.7, S6.8, S6.9 at every point along the fish. This
deviation was quantified by the residual value that is needed to balance the left- and right-
hand side of the equations. We optimised the distributionswith the Levenberg-Marquardt
algorithm (Jones et al., 2001), thatminimises the squares of the residuals. At every time step,
this resulted in a series of control point values describing the internal forces and moments
that best satisfy the equations.

S6.3.2 Calculating resultant power

We calculated the resultant power on the fish from two source: the power exerted on the
fluid, and the changes in kinetic energy. Both quantities are computed in the inertial
reference frame. We calculated the power per unit length that the fish exerts on the
water as:

p̂fluid = −f̂fluid · v̂, (S6.17)

where v̂ is the velocity of the centreline in world coordinates. We negated the power since
we are considering the power that the fish exerts on the water, rather than the inverse.

The kinetic energy at any point in time was calculated as:

êkinetic =
1

2
ρA||v̂||2. (S6.18)

The kinetic power per unit length is the time derivative of the kinetic energy:

p̂kinetic =
∂êkinetic

∂t
. (S6.19)

S6.4 Integrating the equations of motion to generate
reference data

We integrated the equations of motion to determine whether the derived equations are
physically valid, and to generate reference data to test our algorithm for reconstructing
bending moments.
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S6.4.1 Constitutive and kinematic relations

Thenormal forces andmoments canbe calculated fromthedisplacementsusing constitutive
equations. To generate the reference data, we assumed aHookeanmaterial, resulting in the
following equations:

N = −YAε; (S6.20)

M = −Y I ∂θ
∂s
, (S6.21)

where Y is the Young’s modulus. The strain ε can be computed from the displacements as
follows:

ε =

√(
1 +

∂ξ

∂s

)2

+

(
∂η

∂s

)2

− 1. (S6.22)

These relations complete the set of equations required to calculate the accelerations of each
point on the beam with equations S6.7 and S6.8.

S6.4.2 Temporal integration

We used the backward Euler method to integrate the beam accelerations to velocities, and
velocities to displacements. To calculate the velocities and displacements in x-direction at
the time step i, we used:(

∂ξ

∂t

)
i

=

(
∂ξ

∂t

)
i−1

+ ∆t

(
∂2ξ

∂t2

)
i

; (S6.23)

ξi = ξi−1 + ∆t

(
∂ξ

∂t

)
i

; (S6.24)

and analogous expressions for η.

S6.4.3 Equation scaling

The governing equations resulted in an ill-conditioned system, caused by large scale dif-
ferences in the matrix coefficients. This makes a system difficult to solve numerically. To
improve the condition number, we scaled variables such that all coefficients were close to
1. We used the following scaling coefficients, where an asterisk denotes a scaled quantity:

s∗ =
1

∆s
s; t∗ =

1

∆t
t;

ξ∗ =
1

∆s
ξ; η∗ =

1

∆s
η; θ∗ = θ;

N∗ =
∆t2

ρA∆s2
N ; Q∗ =

∆t2

ρA∆s2
Q; M∗ =

∆t2

ρI∆s
M.

(S6.25)
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The scaled equations for temporal integration of ξ then become:

ξ∗i − ξ∗i−1 −
(
∂ξ∗

∂t∗

)
i

= 0, (S6.26)

and analogously for the other three equations related to integration of ξ and η.
Scaling the force balance in x-direction yields:

∂2ξ∗

∂t∗2
+
∂N∗

∂s∗
cos θ∗ −N∗∂θ

∗

∂s∗
sin θ

− ∂Q∗

∂s∗
sin θ∗ −Q∗∂θ

∗

∂s∗
cos θ − ∆t2

ρA∆s
fx = 0.

(S6.27)

Equivalently, for the force balance in y-direction:

∂2η∗

∂t∗2
+
∂N∗

∂s∗
sin θ∗ +N∗

∂θ∗

∂s∗
cos θ∗

+
∂Q∗

∂s∗
cos θ∗ −Q∗∂θ

∗

∂s∗
sin θ∗ − ∆t2

ρA∆s
fy = 0.

(S6.28)

The scaled moment balance becomes:

∂2θ∗

∂t∗2
+
∂M∗

∂s∗
+
A∆s2

I
Q∗ − ∆t2

ρI
m = 0 (S6.29)

Finally, the constitutive and kinematic relations become:

N∗ +
Y∆t2

ρ∆s2

√(1 +
dξ∗

ds∗

)2

+

(
dη∗

ds∗

)2

− 1

 = 0 (S6.30)

M∗ +
Y∆t2

ρ∆s

∂θ∗

∂s∗
= 0 (S6.31)

θ∗ − arctan

(
∂η∗

∂s∗

1 + ∂ξ∗

∂s∗

)
= 0 (S6.32)

S6.4.4 Solution method

We integrated the scaled equations ofmotionwithmultivariateNewton-Raphson, an iter-
ative solution method for non-linear partial differential equations. Based on the solution
at the previous time step, we calculated the vector of residuals for each of the 4 temporal
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integration relations, 3 force and moment balances, and 3 constitutive and kinematics re-
lations per point along the beam. This led to a vector of 10nlon residuals, with nlon the
number of longitudinal points in the beam. To calculate the value for the next iteration,
we solved:

JF (ϕi)
(
ϕi+1 −ϕi

)
= −F (ϕi), (S6.33)

where the subscripts i and i+ 1 denote the current and next iteration,JF is the Jacobian
of the residuals, F is the vector of residuals, andϕ is the vector of variables.

We calculated the Jacobian numerically by perturbing each variable with a fixed-step
size and then calculating one-sided finite-differences. We solved the system with a direct
solver (Oliphant, 2006).

S6.5 Validating the inverse dynamics methods
This section describes the validation of the internal forces and moments reconstruction,
based on reference data, and based on a reference CFD simulation.

S6.5.1 Internal forces and moment reconstruction

We assessed the validity of the equations of motion by comparing a simulated beam to ex-
perimental results (Beléndez et al., 2002). We then tested the reconstruction of internal
forces andmoments based on reference data produced by integrating the equations ofmo-
tion (see section S6.4).

Equations of motion

To assess the validity of the derived beam equations, we compared experimental results
from Beléndez et al. (2002) with our simulation of a cantilever beam. In their study, a 300
mm steel ruler (Y = 200GPa) with rectangular cross-section (width× height = 30.4mm
× 0.78 mm) was clamped at one end. The beam was loaded with a point force of 3.92 N
in negative y-direction at the unclamped tip, in addition to the distributed gravity load of
1.85Nm−1 (total 0.554N over 300mm).

We simulated a beam with the same geometry and loading, but in a time-dependent
manner. We started with the beam in undeformed configuration, then smoothly ramped
the loading from 0 to the reference amplitudes over a period of 5 seconds, and continued
simulating for 5 more seconds. The resulting deformation was compared to the experi-
mental reference in Fig. S6.2A—it overlaps strikingly, providing confidence in the physical
validity of the derived equations of motion.

Calculating internal forces and moments

To check the correctness of the algorithm for reconstructing forces and moments, we gen-
erated a simplemodel of a ‘swimmer’ by prescribing analytical external forces andmoments
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Figure S6.2: Reference
data for the internal forces
and moments reconstruc-
tion. (A) Comparison of our
simulated beam (solid grey
line) with experimental res-
ults (Beléndez et al., 2002,
dots), under a distributed and
point load (resp. red and
green arrows). (B) Motion
of the simulated reference
‘swimmer’, with the beam
centrelines (grey), path the
‘head’ (green) and of the ‘tail’
(purple). The dark grey,
green, and purple indicate
the cycle selected for further
analysis. (C) The motion of
the reference ‘swimmer’ over
the selected cycle, centreline
(black), beam coloured by
phase angle. (D–E) The
elastic contribution (D) and
the ‘muscle’ contribution (E)
to the internal bending mo-
ment for the reference ‘swim-
mer’.
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to a simulatedbeamof aHookeanmaterial (see section S6.4). Weprescribed the fluid forces
as:

fx,fluid(s, t) = Ax sin(2πft); (S6.34)
fy,fluid(s, t) = Ay cos(2πft), (S6.35)

and the muscle moment by:

mmuscle = Am sin(2πft)
[
1 + sin

(
2π
s

`
− π

2

)]
. (S6.36)

The resulting motion is shown in Fig. S6.2B, demonstrating a swimming-like motion. We
selected a single cycle from the motion (Fig. S6.2C), after the motion had become reliably
periodic after 11 cycles. The total internal bendingmoment, which is what we reconstruct,
consisted of an elastic contribution (Fig. S6.2D), and a contribution from the ‘muscle’
moment (Fig. S6.2E).

We reconstructed the total internal forces and moments of the reference ‘swimmer’
with themethod described in section S6.3, see Fig. S6.3. The results match well, both qual-
itatively and quantitatively. Qualitatively, the patterns are similar, showing the same dy-
namics between the reference and the reconstruction. The shear force and normal force
show relatively the largest errors (respectivelymaximum 9.7% and 7.0%of the peak value),
while the error in bending moment is low (maximum 0.9% of the peak value). This shows
that ourmainquantity of interest, the bendingmoment, can be reliably reconstructedwith
the proposed method.

S6.5.2 Computational fluid dynamics

As a reference to compare the computational fluid dynamics (CFD) results of IBAMR, we
used an extensively validated numericalmethod for fish free swimming (Li et al., 2012, 2014,
2016). The curvature of the fish was prescribed similar to Li et al. (2014), by a travelling cur-
vature wave (rather than an amplitudewave in the original reference) with an experimental
curvature amplitude envelope of a 3 days post fertilisation zebrafish larva. The frequency
was 50 Hz, the fish length 3.8 mm, the water density 1000 kg m−3, and the dynamic vis-
cosity 0.8301 mPa s. The motion of the fish was calculated based on the fluid dynamic
forces, resulting in a free-swimming fish. We used the resulting fluid force distributions
and motion to calculate internal forces and moments.

We prescribed the same motion with a custom-developed add-on to the open-source
immersed boundary method IBAMR (Griffith et al., 2007), see section S6.2. Note that
we did not integrate the motion of the fish, but prescribed the position of the fish surface
directly at all time points. For the results from IBAMR, we also calculated the internal
forces and moments to compare to the reference from the validated solver.
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Figure S6.3: Comparison between reference and reconstructed internal forces and moments. (A–
C) Reference normal force (A), shear force (B), and bending moment (C). (D–F) Reconstructed normal
force (D), shear force (E), and bending moment (F). (G–I) Difference between the reference and the
reconstructed normal force (G), shear force (H), and bending moment (I).
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Influence of the surface offset

We calculated the force distributions on the fish by interpolating quantities from the CFD
flow field to a triangulated surface of slightly offset from the skin of the fish. The amplitude
of these forces is dependent on this offset, related to the accuracy of the interpolation of
the pressure and velocity gradients. Due to the immersed boundary approach, there is also
a flow field inside the fish, but this is not physically relevant for the force calculations. If
this is taken into account in the interpolation, errors in the force distribution will occur.

Fig. S6.4A shows the effect of the surface offset on the accuracy of the bendingmoment
reconstruction. The optimal distance for the offset surface for a simulation with a finest
mesh size of 15 µm (the final selected mesh size) was found to be 20 µm. This distance
guaranteed that the flow field was interpolated from only cells outside the body, but was
close enough to accurately reconstruct the frictional forces.
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Figure S6.4: Convergence of the immersed boundary solver. (A–B) The difference in reconstructed
bending moment compared to the reference solution as a function of the offset of the surface used for
force calculations (A), and the mesh size and time step (B). The final choices of surface offset, mesh size,
and time step size are highlighted with a red circle.

Influence of the mesh size and time step

To assess the dependency of the solution on the mesh size and time step, we simulated the
reference case from the validated solver on three different mesh sizes (finest level size 20.4,
15.1, 12.0 µm), and 5–6 different time steps. The time steps were chosen such that the
coarsest step always led to a maximum CFL number close to (but below) 1. In the tested
range, mesh size nor time step had a large influence on the solution.

For mesh size, the largest step in accuracy is from 20.4 µm to 15.1 µm, the step to
12.0 µm is smaller. We chose a mesh size of 15.1 µm, as it allows reasonable accuracy
while remaining computationally feasible—memory usage is a limiting factor on our com-
putational facilities as the meshes get larger. For the time step, smaller time steps lead to
marginally smaller errors. Computation times are atmost linearly affected by the time step,
so the trade-off for computational feasiblity is less relevant. Hence, to be on the safe side,
we chose a time step of 0.5 µs for solving the fluid dynamics.
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A comparison of the reference simulation with the final choice of mesh size 15.1 µm
and time step 0.5 µs is shown in Fig. S6.5. The bending moments show qualitatively sim-
ilar patterns, in time and space. Themagnitude is slightly underestimated in IBAMRcom-
pared to the reference solution.
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solver settings. (A–B) The reconstructed bending moment for the fluid dynamic forces from the reference
solver (A) and IBAMR (B). The dashed lines indicate the two slices shown in C and D, at a single time
step, and a single position along the fish.
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Chapter 7
General discussion



In this thesis, we aimed to understand the biomechanics behind the swimming of fish lar-
vae in their early stages of development. To this end, we explored different aspects of the
swimming of larval fish. In chapter 2, we reviewed the functional demands of larval swim-
ming, and what solutions have evolved tomeet these demands. In chapter 3, we used two-
dimensional kinematics to analyse the effects of the intermediate hydrodynamic regime on
the mechanics of near-periodic swimming of zebrafish larvae at different developmental
stages. In chapter 4, a method is outlined to reconstruct three-dimensional kinematics, as
well as forces and torques from multi-camera high-speed video. This method is applied
in chapter 5, where we investigate how zebrafish larvae produce reorientation and propul-
sion during fast starts. Finally, in chapter 6, we show that zebrafish larvae seem to use sim-
ilar muscle activation patterns across development and swimming speeds and accelerations
with an advanced inverse-dynamics approach to reconstruct internal bending moments.

We focussed on the swimmingmechanics of the zebrafish in its early stages of develop-
ment. The swimming of fish larvae is highly relevant to fish biology. Fish larvae are orders
of magnitude more numerous than adult fish (Houde, 2002): most larvae die before they
become juveniles (Hjort, 1914). For fish larvae, swimming is a deciding factor in their sur-
vival: they need to hunt to eat, disperse, and escape threats (chapter 2). Understanding
how larvae can swim effectively will therefore give crucial insight into the ecology of fish.
Sincemany fish larvae are similar in early developmental stages (chapter 2; Kendall Jr. et al.,
1984), our results for the larval zebrafish are likely applicable to larvae of other species, and
perhaps also to some extent for adult fish.

In this general discussion, I place the knowledge on swimming gained in this thesis in a
broader framework of fish swimming. We use several novel methods to analyse swimming
in three dimensions, the strengths and limitations of which I address. Next, I discuss the
seemingly simple way that fish larvae exploit complex physics to swim. I then speculate
on how the results from this thesis could be generalised to adult fish, also of other species.
Based a simple scaling analysis, I ponder how different contributions to the bending mo-
ment might change with fish size. I propose a direction for future research with forward
dynamics, rather than inverse dynamics used in this thesis. Finally, I discuss how this rather
fundamental work might inspire engineering applications.

7.1 The end of the two-dimensional era?
Historically, fish swimming has been analysed mostly in the two-dimensional plane (e.g.
chapter 3; Bainbridge, 1958;Domenici andBlake, 1993;Gray, 1933;Müller andVanLeeuwen,
2004). This simplification has made it possible to perform research on undulatory swim-
ming over the past 100 years, despite technical limitations in e.g. number of cameras. How-
ever, in ignoring the third dimension, potentially important effects are neglected (Tytell
et al., 2008). Many fish swim three-dimensionally, exhibiting considerable pitch and roll
angles (chapter 4, 5; Fleuren et al., 2018; Kasapi et al., 1993). Analysing this motion in two
dimensions will often result in underestimated speeds, since the third component of the
velocity vector is ignored. Furthermore, the three-dimensionality of the motion may be of
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ecological relevance. For example, during fast starts, fishmay increase escape probability by
escaping in the vertical direction (Stewart et al., 2014). Analyses in 2Dwill miss this funda-
mentally 3D information; they might draw incomplete or even incorrect conclusions.

Not only kinematics have been simplified to two-dimensions, also flow fields around
swimming fish have often been examined in 2D (Carling et al., 1998; Lighthill, 1971; Liu
et al., 1996; Müller et al., 2008). Fluid-dynamic phenomena in general behave fundament-
ally different in 2Dcompared to 3D (Boffetta andEcke, 2012;Mittal andBalachandar, 1995).
In addition, when measuring or calculating fish swimming in a single plane, the 3D shape
of the fish is not taken into account—often only the mid-frontal plane of the fish is con-
sidered. This will cause important effects to be ignored, such as edge vortices on the tail or
fin fold (Borazjani and Daghooghi, 2013; Li et al., 2016). Hence, the fluid dynamics might
be even more important to analyse in 3D than the kinematics.

Technical advances in the past decade, especially in terms of computing power, have
opened previously locked doors for the 3D analysis of swimming. Multi-camera video
setups with high spatial and temporal resolution have become technologically feasible, as
cameras have gotten higher resolutions and sensitivity at lower prices than before. In the
past, researchers would labour for many hours digitising movie frames (e.g. chapter 3;
Drost et al., 1987; Van Leeuwen et al., 1990); computers can now take this load off our
shoulders (chapter 4). The increased computer power has made it feasible to automat-
ically track fish in 3D from high-speed images with minimal input, realising significantly
higher throughput and consistency compared with manual digitisation.

In the field of fluid mechanics of swimming, the third dimension has also become less
elusive. Over the past twodecades, considerable advances have beenmade in quantification
of 3D flow fields with tomo-particle image velocimetry (Elsinga et al., 2006) and shake-
the-box particle tracking velocimetry (Schanz et al., 2013). These methods are currently
still challenging to set up for swimming fish, requiring high light intensities and optimally
controlled seeding density. However, within the next decade(s) they should presumably
become widely (and inexpensively) available, similar to the rise in availability of particle
image velocimetry for biological research (Stamhuis, 2006).

For a long time, Computational Fluid Dynamics (CFD), especially in 3D, was unavail-
able to the biological researcher in terms of technical difficulty and cost. Fish swimming
is particularly complex to analyse with CFD, due to the large-amplitude deformation of
the complete body of the fish. Calculations on this complex, deforming geometry requires
advanced numerical techniques that have not been available until relatively recently, es-
pecially in readily available CFD codes (commercial or open-source). A pioneering CFD
analysis of swimming of a tadpole was done by Liu et al. (1996, 1997), who used two sets of
meshes betweenwhichwas interpolated: a static backgroundmesh, and amoving, deform-
ingmesh, conforming around the animal. This code was extensively used in the analysis of
swimming and flying (e.g. Li et al., 2016; Liu et al., 1998; Nakata and Liu, 2012).

An alternative approach to deforming meshes are immersed boundary methods (Mit-
tal and Iaccarino, 2005; Peskin, 1972), where the computational mesh does not conform to
the shape of the simulated object. Instead, the deforming object is represented by amoving
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cloud of points. Based on themotion of these points, a source term is added to theNavier-
Stokes equation to enforce the no-slip condition in cells overlapping the object. This ap-
proach allows relatively straightforward modelling of complex, deforming 3D shapes that
are difficult tomodel with a conformingmesh. An open-source implementation of the im-
mersed boundary method, IBAMR, is easily accessible (used in chapter 6; Griffith et al.,
2007). Although using this program still requires knowledge on high-performance com-
puting and the C++ programming language, specific expertise to implement efficient CFD
methods is no longer required of a researcher. This reduces the effort to performgoodCFD
significantly, perhaps making it more common in future swimming research.

In conclusion, I think that the era of two-dimensional analyses of fish swimming is
nearing its end—at this stage of swimming research, with current and future technical pos-
sibilities, the third dimension is open for exploration.

7.2 Fins and out-of-plane deformation
Although we analyse three-dimensional motion of the fish (chapter 4, 5, 6), we ignore
somedeformation contributions thatmighthave influenceon the swimmingmotion. There
are threemain contributions that we ignore in our analyses (Fig. 7.1): out-of-plane deform-
ation, pectoral fin motion, and deformation of the median fin fold.

We assumed that the larvae deform their bodies in a single plane, perpendicular to the
medial plane. It has been shown that zebrafish larvae show dorsoventral excursion of the
tail of over 30◦ during fast starts (Nair et al., 2015). Although considerably smaller than the
lateral excursion, it influences the fluid-dynamic forces and torques. Furthermore, it has
been shown that the body and caudal fin of adult fish twist during swimming (Donatelli

A

B

C

Figure 7.1: Complex, out-of-plane motion
components of swimming of zebrafish larvae
(8 days post fertilisation). (A) Twisting of the
tail, successive frames are 0.45 ms apart. (B)
Pectoral fin use, successive frames are 2.3 ms
apart. (C) Deformation of the median fin fold,
successive frames are 0.45 ms apart.
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et al., 2017; Lauder, 2000). This is also visible in our high-speed video images (Fig. 7.1A).
These out-of-plane deformations may be important for producing roll and pitch torques.

We also ignored the motion of the pectoral fins. Larval zebrafish develop functional
pectoral fins before hatching (Grandel and Schulte-Merker, 1998). The larvae beat their
pectoral fins during feeding (chapter 2), slow swimming (Thorsen et al., 2004), and during
slow C-starts (chapter 5). The motion of these fins is complex: they deform considerably
while they are beaten (Fig. 7.1B). The pectoral fins have been suggested to play a purely res-
piratory role during slow swimming, rather than a locomotory one (Green et al., 2011;Hale,
2014). These researchers proposed that the larvae mainly beat their pectoral fins to refresh
the oxygen-deprived water around their gills, rather than provide additional thrust. How-
ever, during feeding they appear to fulfil a propulsive role (chapter 2), as for example in
juveniles of metallic livebearers (Lankheet et al., 2016). Furthermore, we show in chapter 5
that the elevation change correlates with the amount of time that the pectoral fins are used
during the start. Hence, themotion of the pectoral finsmay be instrumental in controlling
key swimming manoeuvres.

Finally, we do not consider the deformation of the medial fin fold. The fin fold is a
thin structure surrounding the body, present as a precursor to median fins in the larvae of
many species of bony fish (Kendall Jr. et al., 1984). In zebrafish larvae, it surrounds the
body behind the yolk sac, and is much taller at the ventral side than the dorsal side (Parichy
et al., 2009). It deforms during swimming, especially on the ventral side (Fig. 7.1C; Van den
Boogaart et al., 2012), caused by the fluid-dynamic forces and fin tissue architecture. This
fin deformation changes the angle of incidence of the fin fold edge as it moves through the
flow, which is likely to have influence on the fluid-dynamic forces and torques.

Dorsoventral excursions are important for producing pitch torques during fast starts
(Nair et al., 2015). The deformation of the fin fold will likely also contribute to pitch and
roll torques. The ventral part of the fin deforms more strongly than the dorsal part, caus-
ing an asymmetry in the local incidence angles—the resulting differences in pressure will
result in roll and pitch torques. In a similar manner, axial twist of the body will influence
the produced torques. The effects of out-of-plane deformation may be the cause of the
considerable variation in roll angle during near-cyclic swimming of young zebrafish larvae
(chapter 4, 5); as the fish beats its tail, themedial fin fold will deform and the tail will twist,
resulting in periodic variation of the roll (and pitch) torque. Since the mass moment of
inertia of the fish is relatively small around its roll axis, relatively small torque variations
may result in considerable angle changes.

Because we considered only single-plane deformation, we also model the bending mo-
ment only in this plane (chapter 6). The bending moment in the yaw plane is the domin-
ant term: the axialmuscles producemomentsmostly in this plane, leading to amuch larger
motion amplitude than both dorsoventral excursions and tail twist. However, calculating
the distributions of the dorsoventral bendingmoment and torsionmomentmight give ad-
ditional insight. For example, one could examine how fish use dorsoventral tail excursion
to produce pitch torques (Nair et al., 2015). The reconstruction of these additional terms
from motion is possible, but would require the additional deformation contributions to
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be reconstructed with high accuracy.
For future, more accurate automated tracking approaches of fish in general, and zebra-

fish larvae in particular, I recommend introducing the additional deformation modes to
the fish model. A dorsoventral curvature and axial twist can be added along the centreline
of the fish, in addition to the lateral curvature. Furthermore, a model of the pectoral fins
should also be added to analyse their contribution to motions that involve beating of the
paired fins, e.g. feeding and slow C-starts. This will make the automated tracker more ap-
plicable to fish swimming in general; for many fish species, the paired fins are important
during swimming and manoeuvring (Drucker and Lauder, 2003; Westneat, 1996).

Adding deformation parameters to the fishmodel requires more information to be ex-
tracted fromthehigh-speed video images. This placesmore stringent demandson their spa-
tial and temporal resolution, and the number of viewing angles. With the current number
of parameters, the tracking problem is already ill-posed: many different wrong solutions
(i.e. local minima) will fit the images almost as well as the real solution. This is caused by
the limited information present in black-and-white silhouettes; only a projection of a 3D
model is made. To overcome the ill-posedness, we introduce regularising terms that pen-
alise physically invalid solutions (chapter 4; Tikhonov, 1963). This works up to a limit: as
the number of parameters is increased, the number of ‘local minimum’ solutions increases
rapidly.

The required extra information can be added by filming frommore angles. However,
using more cameras requires more complex, expensive setups. Alternatively, light condi-
tions can be changed to highlight different parts of the fish (Lankheet et al., 2016)—rather
than just a silhouette, individual body parts, such as the pectoral and median fins, can be
identified. Thismaymake it feasible to extract themissingmotion components, even from
a limited number of cameras.

7.3 The inverse dynamics approach: strengths and
limitations

The main methodological approach in this thesis is inverse dynamics: the calculation of
dynamics (external and internal) frommotion. This method has advantages, but also lim-
itations and drawbacks. The main strength of the inverse dynamics approach is that it can
reconstruct properties of actual motion (chapter 4, 5, 6). The amount and type of inform-
ation that we extract from the motion depends on the models that we introduce.

With an appropriate model, we can use the kinematics of the fish as a basis to fit or
reconstruct its dynamics. For the reconstruction of hydrodynamic forces and torques, we
used the kinematics in combination with amass distributionmodel (chapter 4). Since this
is a relatively simplemodel, the amountof additional informationwe extractedwas limited:
only two extra vectors per time step. For our bending moments analysis (chapter 6), the
models are more complex. We solved the full Navier-Stokes equations, and introduced a
large-amplitude beammodel for the fish. This allowed us to reconstruct considerablymore
information from themotion: we analysed internalmechanics based solely on the kinemat-
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ics. The approach of chapter 6 can be considered a form of data assimilation (Bengtsson
et al., 1981), inwhich amodel is optimised to best take into account the datawhile satisfying
governing equations. This is a powerful approach, with which even sensitive models (such
as meteorological predictions, or internal mechanics of a fish) can produce reliable results,
under the right conditions.

To reconstruct dynamics reliably, the accuracy of the input data should be sufficiently
high, as relatively small errors in the motion can lead to large errors in acceleration, in turn
causingbad estimates of forces (Cahouët et al., 2002). These errors generally donot propag-
ate to other time steps or locations, although this depends on the applied model (Silva and
Ambrósio, 2004). In our case of resultant forces and torques (chapter 4, 5), propagation
through time is minimal—the method depends only on the neighbouring time points.
However, for the internal moment reconstruction (chapter 6), fluid forces depend also on
the history of the flow, allowing errors to propagate forward in time.

The results we obtain with the inverse dynamics depend on the smoothing applied
(chapter 4). To assess the reduction in error depending on the smoothing, consider a sim-
plified one-dimensional example of force reconstruction of a point mass:

F = m
d2x

dt2
, (7.1)

where F is the resultant force,m is the mass, x is the position, and t is the time. I assume
that the mass is knownwith high accuracy, but that the position is measured with a certain
error ε:

x̂ = x+ ε, (7.2)

where x̂ is the measured position. We calculated the second derivative with a numerical
method on data sampled with finite resolution. Consider a (numerical, linear) second de-
rivative operatorD2, our estimate for the second derivative then becomes:(

d2x

dt2

)
est

= D2(x̂), (7.3)

leading to an error from the actual acceleration:

d2x

dt2
=

(
d2x

dt2

)
est

+D2(ε) + ε, (7.4)

where εD is the error originating from the derivative operator. With a sufficiently high
time resolution, εD is limited (Harper and Blake, 1989); the main source of error isD2(ε),
the (numerical) second derivative of the position error.

In the case of the video tracking in this thesis (chapter 4, 5), the errors in each frame
were mostly independent—although the previous frame was used to initialise the optim-
isation, this mostly resulted in faster convergence rather than a different solution. This res-
ulted in errors that are randomly distributed from frame to frame—differences between
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frames may be large, so the (numerical) second derivative will be huge. Hence, when the
position data remain unsmoothed, this error termwill dominate the solution. As the solu-
tion is smoothed, high-frequency components disappear (Eilers, 2003; Stickel, 2010). Ini-
tially, this will mainly result in a reduction of error terms. At higher smoothing settings,
the physical signal will be more strongly affected by smoothing, resulting in an increase in
error. In other words: one must walk the line between over- and undersmoothing, trading
reduction in errors for loss of high-frequency components. However, with sufficiently-
high time resolution compared to the expected physically relevant frequencies, as is the
case in this thesis (chapter 3, 5, 6), it is possible to filter out the noise while maintaining
most of the physically relevant frequency content.

The error propagation is more complicated in chapter 6, where we calculated fluid-
dynamic forces from the motion with computational fluid dynamics and used these to
reconstruct internal force and moment distributions. Here, errors in the reconstructed
bendingmoment depend non-linearly on position errors. The fluid flow itself has a damp-
ing effect due to the lowReynolds number and hence relatively high importance of viscos-
ity (Conca et al., 1997)—high-frequency errors in position will be dampened and result in
relatively small changes in forces. The optimisation approach that we used to calculate in-
ternal forces andmomentswill also tend to smooth errors, as it attempts tobalancebetween
satisfaction of the governing equations and minimal deviation from the data. Outlying
points were mostly ignored, as they would otherwise cause large residuals of the equations
ofmotion. In conclusion, despite the complex, potentially sensitivemodels, we can reliably
reconstruct internal forces and moments frommotion obtained from high-speed video.

7.4 Simplicity and complexity
Zebrafish larvae use relatively simple bendingmoment patterns for the complex process of
swimming (chapter 6). The brains of young larvae are still underdeveloped (Mueller and
Wullimann, 2016), and hence may not be able to reliably generate complex motor output.
Despite these potential inaccuracies, when a predator appears, the larvae need to escape to
survive to adulthood (Walker et al., 2005). These demands require the fish to effectively
accelerate in an optimal direction and swim at a sufficiently high speed (chapter 2; Nair
et al., 2017). This implies that the system (i.e. the fish interacting with the water) should be
robust to inaccuracies in the motor input. I hypothesise that zebrafish larvae have evolved
a finely-tuned combination of the muscle architecture, passive tissues arrangement and ex-
ternal morphology that makes the system robust to noisy inputs. As long as the larvae
activate their muscles alternately on the left and right side, undulatory swimming motion
or even starting motion is produced.

7.4.1 Undulatory swimming

To produce undulatory swimming, the stiffness distribution of the body might be such
that a simple forcing will still lead to a travelling wave body pattern through the fluid-
structure interaction of the body and thewater. For example, (near-) standingwavemuscle
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activation patterns may result in a travelling wave curvature pattern, through interaction
with the passive tissues andwater (Blight, 1976). As demonstratedwith a simplifiedmodel,
relatively simple forcing may induce a complex motion in a stiffness-tuned body by caus-
ing higher-order deformationmodes to be active (Bhalla et al., 2013). A similar mechanism
might be present for the zebrafish, allowing it to produce complex motion along its body
with simple forcing, mostly created by the interaction of the passive tissues in the body
with the surrounding water.

If simple forcing is sufficient to produce body undulations, swimming may be con-
trolledwith relatively fewparameters. In chapter 6, we show that across early development
a similar bendingmoment pattern is produced, allowing the larvae to control its swimming
speed and accelerationwith two parameters: the amplitude of the bendingmoment and its
duration. The duration could be controlled by modulating the central pattern generators
to act at a different frequency (Harris-Warrick, 2011). Thepeakbendingmoment is presum-
ably regulated bymuscle recruitment. In adult fish, as the swimming speed—andhence the
bending moment amplitude (chapter 6)—increases, the recruitment of red (aerobic) and
white (anaerobic) muscle fibres changes. At slow speeds, only red muscle is recruited, with
additional whitemuscle being recruited at higher speeds (Rome et al., 1984). At the highest
speeds, the redmuscle stops being active, leaving only white muscle to produce power (e.g.
for Centrarchidae: Jayne and Lauder, 1996). The red andwhitemuscle fibres have different
properties in adult fish, butnot in the early stages of larval development (Buss andDrapeau,
2000). Despite the similar properties, the recruitment pattern across speeds—from red, to
red andwhite, towhite—are similar to adults whenmeasured in paralysed larvae (Buss and
Drapeau, 2002). Muscle recruitment according to this pattern might controls the bending
moment amplitudes in fish larvae too.

7.4.2 Beyond forward swimming

The system to control forward swimmingmay be relatively simple, but zebrafish larvae also
produce more complex motion. At later developmental stages, zebrafish larvae show evid-
ence of fine control over their motion in prey capture (Borla et al., 2002) and maintaining
stability (Ehrlich and Schoppik, 2017). While just-hatched larvae appear to show little con-
trol over their orientation and the direction of swimming, older larvae seem much more
able to direct their swimming (Müller and Van Leeuwen, 2004). This precise turning be-
haviour presumably requires subtle alterations of the bending moment patterns from tail-
beat to tail-beat. I speculate that control of the turn rate is dependent onmuscle activation
strength in subsequent tail beats. For example, slightly stronger activation of the left axial
muscle compared to the right may lead to a left turn, similar to how stronger body curva-
ture during a fast start leads to larger turn angles (chapter 5). Manoeuvres further removed
from simple body undulations, such as a J-turn, may requires different muscle activation
patterns altogether, and hence specialised neural control. These motions are only shown
later in development, several days after hatching (Fero et al., 2011).

Undulatory axial muscle activation in fish is controlled via motoneurons that lie along
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the spine (Fetcho, 1987). In zebrafish larvae, the dorsal motoneurons are active at high fre-
quencies, whilemore ventrally locatedmotoneurons are active at low frequencies (McLean
et al., 2007). The dorsal motoneurons develop before the ventral motoneurons, which re-
flects in the behaviour of fish larvae: they first swim fast andwith coarse control, while later
in development finer control and slow swimming becomes possible (Fetcho andMcLean,
2010). This is also reflected by the fact that zebrafish larvae become better at maintaining
balance across early development (Ehrlich and Schoppik, 2017). In zebrafish larvae 6 days
post fertilisation, control over the swimming speed is highly localised to several neurons
(Severi et al., 2014). Although these neurons appear before hatching (Kuwada et al., 1990),
refined control over the swimming speed only becomes apparent later. This increase in
control also fits with observations in chapter 6, where the just-hatched larvae swim at ap-
proximately one speed ‘setting’ to produce maximal performance, while older fish show
muchmore variation in their swimming vigour. This could indicate that they become bet-
ter at tailoring their swimming speed to the requirements of their situation.

7.4.3 Fast starts

The bendingmoments we computed in chapter 6 also included starts: we did not base our
selection of half-beats on the kinematics, but only on the bending moments. Since they
are similar from tail-beat to tail-beat, the motion generated during a fast start (chapter 5)
is produced with similar bendingmoments in the first and in the second stage. This means
that the characteristicC-shape and subsequentpropulsive tail beatmotionprimarily emerge
fromthe fluid-structure interaction, andnotnecessarily fromthe specificmotion activation
pattern, as suspected before for adult fish (Foreman and Eaton, 1993). The difference in ini-
tial condition between a ‘normal’ tail beat and stage 1 of a C-start, both in terms of body
shape and surrounding fluid, leads to the emergence of a different shape, but with similar
bending moments.

The generation of the C-shape has been measured to be generated by a synchronous
unilateral muscle activation (Jayne and Lauder, 1993). The kinematics of following tail
beats emerge from similar activation of the opposite side (Foreman and Eaton, 1993). This
means that the escape angle and speed canprobably be controlledwith the sameparameters
used in forward swimming (chapter 5, 6): escape angle correlates strongly with the overall
body curvature, which is probably related to the peak bending moment and the duration.
The escape speed correlates strongly to the duration of the first two tail beats, which is
related to the duration of the bending moment waves. This corresponds with earlier ob-
servations on adult fish, where the start direction was found to be influenced by the relat-
ive strength of the first and second tail beat, and the timing between them (Foreman and
Eaton, 1993). Hence, it appears that even a seemingly complex, aperiodic motion such as
the fast start can be controlled similarly to regular, near-periodic swimming.
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7.4.4 Simple control in larvae across species

I expect that straightforward and reliable control over swimming is a valuable property
of fish larvae across species. Many fish larvae look similar (Kendall Jr. et al., 1984), while
they have a wide diversity of body shapes as juveniles and adults (chapter 2). I hypothesise
that the larvae of many fish species have similar control of swimming to zebrafish larvae,
which use simple bending moment patterns to produce effective swimming (chapter 6).
This would enable any larvae to swim soon after hatching, allowing them for example to
escape predators, hunt for food, or disperse (chapter 2). The universal body shape and
presumably muscle activation patterns of larvae might have evolved early in the history of
fish, and is common across a wide range of species. As the larvae develop into juveniles,
theymay develop the neural processing capacity to perform themore complex locomotion
patterns required by some of their adult swimming styles (e.g. with pectoral fins), or they
might adapt the pattern to their adult morphology (see below). To test whether all fish
larvae indeed swim similarly, it would be interesting to compare bendingmoment patterns
reconstructed for larvae of several fish species across taxa, and follow how these patterns
change as the larvae develop into juveniles.

7.5 Generalisation of across species and developmental
stage

Adult fish often differ considerably in morphology, swimming mode, and size from fish
larvae (chapter 2). Understanding the swimming mechanics of adult fish is also of consid-
erable interest. The fish that survive the larval stage spend most of their lives in the adult
stage, during which they need to swim to survive and eventually reproduce. Furthermore,
adult fish have historically been researched muchmore than larvae. We would like to com-
pare our results for larvae to this broad base of previous studies, so in this section, I attempt
to answer the question: can the knowledge on the swimming mechanics of larval fish be
generalised to adult fish?

7.5.1 Bending moment patterns and muscle activation

The bending moments (Hess and Videler, 1984) that we reconstructed are qualitatively
similar to results obtained for a near-periodically swimming adult saithe (Cheng and Blick-
han, 1994). This similarity is interesting considering the differences between saithe and
larval zebrafish in morphology and scale. This causes larvae and adults swim in a differ-
ent hydrodynamic regime, resulting in changes in the fluid-structure interaction that pro-
duces their motion (chapter 2). Furthermore, their swimming style is different: while in
saithe body deformation is largest in the tail, in zebrafish larvae almost the entire body
deforms (chapter 3). In addition, there are methodological differences between this thesis
and previous studies reconstructing bendingmoments: previous approaches assume small-
amplitude motion (Cheng and Blickhan, 1994; Hess and Videler, 1984), and use a simpli-
fied, inviscid fluid model (Lighthill, 1971; Wu, 1961) rather than a large-amplitude model
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and full solution of the 3DNavier-Stokes equations (chapter 6). Despite these differences,
the bending moment patterns look similar.

The shared pattern of adult saithe and larval zebrafish is a fast-travelling wave in pos-
terior direction that alternates between left and right with each tail beat, with an amp-
litude peak in themiddle of the fish and limited high-frequency content (chapter 6; Cheng
and Blickhan, 1994). I expect the bending moment to alternate direction, in accordance
with the tail beats—bending moments that do not change sign cannot produce alternat-
ing swimming motion. Furthermore, since both ends of the fish are free, boundary condi-
tions (Hibbeler, 2005) dictate that the internal bendingmoments are zero at the snout and
tail. Hence, we expect the bending moment to have the largest amplitude away from the
edges of the fish. These physical constraints may explain the overall similarity of the pat-
terns. However, the precise characteristics of the travelling wave differ between our results
for the larvae and the previously found results (Cheng and Blickhan, 1994). This might be
caused by changes in the fluid-structure interaction due to the size effects (see below), due
to dissimilar morphology and tissue properties, or due to methodological differences.

Rather than analysingbendingmoments by themselves, wewould ideallywant to com-
pare muscle activation patterns. The bending moment patterns that we calculate cannot
be straightforwardly translated to muscle activation patterns (chapter 6). This requires
additional modelling, where the passive and active contribution to the bending moment
need to be teased apart (Cheng and Blickhan, 1994; Pedley andHill, 1999). However, when
bending moment patterns are similar with the same morphology, it is likely that muscle
activation patterns are similar too (chapter 6). When comparing larvae to adults, similar
bendingmomentsmight not necessarily originate from the samemuscle activation pattern
for various reasons: scaling effects might be important (see below), the morphology often
changes considerably from larvae to adult (chapter 2), and passive tissue andmuscle prop-
erties are likely to be different. Hence, based on the bending moment patterns, it cannot
be stated confidently that the similar bending moment patterns between larvae and adults
stem from similar muscle activation patterns.

However, for both adults (Wardle et al., 1995) and larvae (Buss and Drapeau, 2002),
muscle activation patterns are superficially similar: they alternate between left and right
and show a phase delay along the body in posterior direction. Furthermore, like what the
similar bending moment patterns suggest might happen in the zebrafish larva (chapter 6),
timing of the onset and end of the muscle EMG signals is independent of the swimming
speed in mackerel and saithe: these fish show similar patterns across all speeds (Wardle and
Videler, 1993). Newt larvae, which look and swim like fish larvae, have been shown to have
variable rostrocaudal activation delay: during their fastest swimming the muscles contract
simultaneously, while during slower swimming the delay increases (Blight, 1976). In adult
fish, anguilliform swimmers show a relatively slow activation wave, in contrast to carangi-
form swimmers, where the activation wave is much faster (Wardle et al., 1995). Perhaps the
rostrocaudal delay of muscle activation is a suitable parameter to adapt a relatively simple
common muscle activation pattern to the specific demands of swimming with a certain
morphology at a certain speed. This could be tested by performing a parameter study with
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a forward-dynamics model of the fish (see below), varying for example body flexural stiff-
ness and the rostrocaudal delay of muscle activation.

In any case, it seems that having a consistent, adaptablemuscle activationpattern across
development and species is a good strategy. Across evolution, the control systemmight not
have needed much change to keep on swimming effectively as fish were radiating across
niches with large morphological changes. This would allow drastic adaptations in mor-
phology to remain viable, which might partly explain the enormous evolutionary success
of the fishes over a long period of time.

7.5.2 Scaling of the bending moment

The changes in body length between zebrafish larvae and adults may affect the bending
moment, since the contributions to fluid-structure interaction may scale differently with
length. The bendingmoment consists of fourmain contributions: passive tissues, muscles,
fluid-dynamic forces, and inertia. To assess how these contributions change with respect
to each other across length scales, and what consequences this might have, I propose a scal-
ing analysis. Since the bending moment shows similar patterns between larvae and adults
(chapter 6), I expect each contribution to the bending moment to scale similarly with the
body length. To highlight where we can expect differences in scaling, I initially assume
that there are no differences between the properties of the passive tissues and muscles of
larvae and adults. The resulting scaling relations based on this assumption will then indic-
ate which assumptions are likely to be invalid, and hence what might be different between
adults and larvae.

I assume that the passive tissues scale like a Hookean material, with similar Young’s
modulus across lengths. The passive contribution is then proportional to the moment of
inertia (∝ `4) and the curvature (∝ `−1). Therefore, the passive tissue contribution to
the bending moment scales asMpassive ∝ `3 Assuming that muscle properties remain
constant across lengths, the muscle forces should scale with cross-sectional area (∝ `2),
and the lever arm (∝ `). Hence, the contribution of the muscles to the bending moment
scales asMmuscle ∝ `3.

Lateral fluid-dynamic drag forces are an important factor to determine the body de-
formation (Godoy-Diana and Thiria, 2018). I expect these forces to scale with the dynamic
pressure (∝ v2), the surface area of the fish (∝ `2) and the lever arm (∝ `). Hence, ex-
pressed in terms of speed and length of the fish, the fluid contribution to the bending mo-
ment scales asMfluid ∝ v2`3. The inertial contribution scales with body mass (∝ `3),
acceleration due to deformation (∝ `f2), and lever arm (∝ `), soMinertia ∝ `5f2. Based
on data of 27 fish species, compiled by VanWeerden et al. (2014), I performed linear least-
squares fits in logarithmic coordinates for the dependency of the speed and frequency with
body length. I found that speed scales with `0.55—large fish swim faster in an absolute
sense, but not when normalised by body length; this is in approximate agreement with
earlier found values (Sambilay, 1990;Ware, 1978). The frequency scales with `−0.52—larger
fish beat their tails at lower frequencies; the exponent is in agreement with a study on cod
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(Altringham and Johnston, 1990). Rounding off both exponents to 0.5, bringing the coef-
ficients in line with a general locomotion scaling study by Bejan and Marden (2006), the
scaling relations for the fluid and inertial contributions become respectivelyMfluid ∝ `4

andMinertia ∝ `4.
Summarising, if I assume constant tissue properties across scales, the contributions to

the bending moment scale with length as:

Mpassive ∝ `3; (7.5)

Mmuscle ∝ `3; (7.6)

Mfluid ∝ `4; (7.7)

Minertia ∝ `4; (7.8)

The passive and muscle tissue contributions scale with `3, but the fluid and inertia con-
tribution scale with `4. Under these assumptions, for larger fish, the fluid and inertia are
expected to have a relatively larger contribution to the bending moment balance than the
internal tissues. Because we see a qualitatively similar pattern of bending moments, and
probably also muscle activation (see above), these assumptions apparently do not hold: I
expect that passive and muscle tissue properties change from larvae to adults.

For the bending-moment contribution of the passive tissues to remain similar across
scales, I would expect the tissues of larger fish to be stiffer than smaller fish. A low stiffness
tends to lead to more anguilliform swimming (Blight, 1977; Tytell et al., 2010a). However,
adult fish in general show a more carangiform swimming style than larvae, suggesting a re-
latively higher body stiffness. So, what could be the origin of this increased stiffness? The
zebrafish larvae that we consider in this thesis have not fully developed their skeletons, in-
cluding the notochord (Bird andMabee, 2003). The notochord/vertebral columnhas been
suggested to play an important role in increasing body stiffness (Nowroozi and Brainerd,
2014), although it is not clear how ossification might influence stiffness. Furthermore, it
was found that the relative skeletal mass in most cases does not increase further as the fish
grow from juveniles to adults (Berrios-Lopez et al., 1996). Past the larval stages, I do not
expect the skeleton to increase in stiffness contribution as fish become larger. The skin
stiffness has also been shown to have an influence on swimming kinematics (Long et al.,
1996). As it is located the furthest from the neutral line of bending, it will likely have a
large contribution to the flexural stiffness. In zebrafish larvae, the skin shows considerable
changes across development towards a juvenile (Parichy et al., 2009), perhaps causing an
increased stiffness. Perhaps a forward dynamics model (see below) could be of help in elu-
cidating the influence of the body stiffness on the bending moment patterns and motion
across scales.

In addition to the increased stiffness, I expect the muscles of larger fish to produce
higher forces per unit of cross-section than for smaller fish. Larval fish use high activation
frequencies (chapter 3), which generally leads to relatively low forces (Rome et al., 1999).
For optimal power output, larger fish use lower frequencies than smaller fish and hence
relatively higher muscle forces (Altringham and Johnston, 1990). In short-horn sculpin,
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the contractile properties of muscle change across lengths, causing a decrease in maximum
shortening velocity (James et al., 1998),while specificmuscle power remains the same (James
and Johnston, 1998). This points to an increase in force generation capacity of muscle for
larger fish.

The simple scaling analysis of the bending moments does not consider the changing
requirements for producing propulsion. In the transition from the intermediate regime
to the inertial regime, which happens as the larvae grow into adults, Strouhal numbers
decrease (chapter 3; Eloy, 2012; Kayan et al., 1978). This effect is asymptotic: above a cer-
tain length, many undulatory swimmers (and fliers) use similar Strouhal numbers (Taylor
et al., 2003). The Strouhal number has been associated with swimming efficiency, a range
of 0.25–0.35 was suggested to lead to the most efficient swimming (Triantafyllou et al.,
1993). However, this is not a sufficient condition for efficient locomotion. It has been
suggested that the dimensionless tail-beat amplitude (Saadat et al., 2017) or a parameter
based on the body wave properties (Wiens and Hosoi, 2018) determine the efficiency of
swimming, with the Strouhal number following from the body morphology and swim-
ming motion to a value where thrust and drag are balanced. The high Strouhal number of
fish larvae (chapter 3) suggests that their drag, and hence required thrust, is relatively high
(chapter 2). Therefore, the fluid-dynamic contribution to the bending moment might be
larger for small fish than the scaling suggests. A high Strouhal number has similar implic-
ations for the inertial contribution: a high tail-beat frequency and relative amplitude will
lead to a higher inertial bending moment. This might partly explain the similarity of the
bending moments despite the different scaling of the fluid-dynamic and inertial contribu-
tions compared to the passive and muscle tissue contributions.

In summary, a scaling analysis suggests that larger fish have a higher tissue stiffness and
highermuscle fibre stresses than larval fish. These effectsmightbe somewhat reducedby the
changes in hydrodynamics: the high required tail-beat amplitudes and -frequencies result
in relatively stronger fluid-dynamic and inertial contributions to the bending moment for
larvae. Finding the answers to these speculations requires new comparative experiments,
both physical and numerical.

7.6 Forward with forward dynamics
This thesis has focussed on inverse dynamics, extracting information from existing mo-
tions. Interestingopportunities alsopresent themselves in an alternative approach: forward-
dynamics modelling. In a forward-dynamics approach, the model is built bottom-up: the
motion follows frommodel parameters, rather than the other way around. The advantage
of forward-dynamicsmodelling is that counterfactual inputs can be given, simulatingwhat
would happen if certain parameters would be varied outside their biological range.

Since the 90s, several forward dynamics models of swimming have been made that in-
clude the internal dynamics of the fish (e.g. Jordan, 1996; Tokić and Yue, 2012; Tytell et al.,
2010b), with varyingmodelling assumptions. Due to a lack of computational power, these
models often used simplified fluid-dynamics model (Jordan, 1996; Tokić and Yue, 2012),
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such as Lighthill’s elongated body theory (Lighthill, 1960, 1971). While other models used
a computational fluid dynamics approach to solve the Navier-Stokes equation, but restric-
ted themselves to two-dimensional flow, again due to computational limitations (Hamlet
et al., 2015; Tytell et al., 2010b).

Despite their limitations, these valuable models have shown that well-tuned proper-
ties of the fish’s tissues are crucial for producing effective swimming motion, for example
body stiffness (Tytell et al., 2010b), or the muscle force-velocity relationship (Hamlet et al.,
2015). Furthermore, the optimal external shape andmuscle activation patterns determined
with a multi-objective optimisation for maximum swimming speed and minimum cost
of transport look similar to what is found in nature (Tokić and Yue, 2012). These studies
illustrate the strength of forward dynamics modelling: by varying parameters outside the
range found innature, sensitivity of parameters and evidence of optimisation canbe found.
This will never be possible to the same extent by performing experiments—environmental
factors can be modified, and perhaps the animal to some extent by genetic modification,
but the freedom that computer simulations offer will never be achieved.

A fundamental drawback of forward-dynamics models is the necessity to approxim-
ate every component of the model. With an inverse-dynamics model, we can combine
terms and thus forego the need to model them individually (chapter 6). With a forward-
dynamics model, we generally need to model many individual components. This requires
quantification of a considerable number of parameters—(visco-)elastic tissue properties,
muscle force production properties, passive and muscle tissue architecture, etc. By per-
forming reference experiments at a few different swimming speeds and frequency, the para-
meters may be tuned such that realistic swimming behaviour emerges, without requiring
detailed measurement of each individual parameter. However, this should be done care-
fully: the swimming efficacy has been shown to depend sensitively on mechanical proper-
ties, particularly stiffness (Tytell et al., 2010b). Although the opposite has also been sugges-
ted: Bhalla et al. (2013) stated that swimming ability is relatively insensitive to variations in
e.g. the stiffness. They argued that this makes sense from an evolutionary point of view:
even as the individuals change across generations, swimming ability cannot be lost to re-
main viable.

Thebeammodelwederive in chapter 6 can serve as abasis for future three-dimensional
forward-dynamicsmodels. Rather than reconstruct internal forces andmoments, the equa-
tions can be integrated to obtain the motion of the centreline. This simulation can then
be coupled to the fluid solver, such that feedback from the fluid is implemented. The con-
stitutive relations can be estimated to be representative for passive fish tissues from previ-
ous measurements on adult fish (e.g. Long et al., 1996, 2002). The effects of the muscles
can be implemented via distributed muscle forces and moments, making it unnecessary to
implement a complex muscle model initially.

Despite its relative simplicity, interesting numerical experiments could be performed
with this initial model. With the current and future computational power, larger para-
meter studies become feasible. For example, the sensitivity of effective swimming to vari-
ations in the bending moment pattern can be examined. Robustness of the swimming
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motion to inaccuracies in the bending moments, either due to neural noise or asymmetric
development, is interesting to examine, as it is likely of large importance to just-hatched
fish larvae. Furthermore, the origin of turning behaviour can be investigated—is it the case
that left-right asymmetries in the bending moment generation lead to turning?

Theholy grail of forward dynamicsmodelling of swimmingwould be a complete neur-
omechanical model of a fish, integrating neural models, tissue models, and fluid dynamics
to provide a platform for numerical experiments: a true in silico fish. For example, coup-
ling between the motor system and the lateral line could provide insight in the required
sensory feedback for producing motion. In adult fish, head oscillations have been sugges-
ted to be important for controlling their motion by optimising a sensed pressure gradient
to an expected profile (Akanyeti et al., 2016). Young fish larvae use their lateral line to sense
flow for detecting predators (Stewart et al., 2014), perhaps it also plays a role in their motor
control. A forward dynamics model is an ideal tool for this type of question: sensors could
be turned on and off at will to observe what their influence would be.

An alternative to a completely numerical model would be a robotic fish. Rather than
model the fluid-structure interaction numerically, an experimentalmodel of the fish can be
created (Gibouin et al., 2018;Wen et al., 2018), for examplewithmulti-material 3D printing
techniques (Porter et al., 2017). While it is feasible to create these robotic models on the
scale of most adult fish, it is difficult to do for fish larvae. Careful scaling is necessary of
for example the viscosity of the fluid, the material properties, and the actuation is required
to be accurate. This is likely to be difficult to achieve for zebrafish larvae, due to their tiny
scale. In this case, a numerical rather than physical model seems the most promising.

7.7 Inspiration for design
Nature has spent many millions of years evolving effective ways of swimming for a wide
range of requirements: speed, acceleration, manoeuvrability, accuracy, etc. In designing
underwater vehicles, engineers can take lessons from nature. For example, underwater
vehicles for surveillance are often powered with propellers; although quiet (Griffiths et al.,
2001), their unnatural noise spectrummight disturb the environment (Slabbekoorn et al.,
2010). Designing an underwater surveillance vehicle that ‘swims’ with body undulations
might be less disturbing to the underwater ecosystem for blending in better with the ‘nat-
ural’ background noise. In this thesis, we help to understand how undulatory swimming
motionmay be produced in a simplemanner, so itmay inspire future designs of swimming
(miniature) robots.

Delegating complexity of systems to passive systems may be of interest in engineering
applications aswell. For example, researchUAVshave flownwith aeroelastic control, where
small moving surfaces control a complex fluid-structure interaction that deforms the entire
wing (Vos et al., 2007). Thus, small, relatively simple control inputs can lead to much lar-
ger outputs acting via complex physics. In engineering, the complexity can also be reduced
with advanced control computer. For example, in fly-by-wire aircraft, the handling char-
acteristics of an aircraft can be altered by the flight control computer to be more usable
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for human pilots (Elliott, 1977). However, the development, and especially debugging, of
safety-critical software systems is extremely costly (Blanchet et al., 2002). A system that is
controllable passively is preferable, both in terms of cost and reliability: physics will never
fail, while software might. Perhaps the tiny zebrafish larva can be an inspiration to engin-
eers in the future development of passive control systems.

7.8 Epilogue
In this thesis, we set out to investigate how zebrafish larvae swim so soon after hatching.
We gained understanding of the effects of the intermediate Reynolds regime on the swim-
ming behaviour of the larvae (chapter 2, 3). Furthermore, by analysing the motion in 3D
(chapter 4, 5), and with inverse dynamics (chapter 5, 6), we conclude that swimming, al-
though complex, seems to be controlled in a relatively simple manner. Of course, many
open questions remain: how do the fish activate their muscles? How energetically efficient
is their swimming, and does this change over development? How are the neural patterns
that control swimming generated? How is sensory feedback used during swimming? The
results from this thesis will hopefully help future researchers in their quest for answers to
finally understand:

How do fish swim?
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Summary
Most of the world’s 34,000 known fish species are undulatory swimmers. Their body un-
dulations are produced by fluid-structure interaction between water and the body of the
fish, powered by its muscle system. Despite these complex physics, just-hatched fish larvae
can already produce effective swimming motion. How they do this is not yet fully un-
derstood. With this thesis, we aim to contribute to answering this question by examining
the biomechanics of swimming of early-development larval zebrafish. With novel experi-
mental and computational techniques, we reconstructed the dynamics of the larvae from
high-speed video. These analyses highlight the challenges that larval fish face during swim-
ming, and how the larvae have evolved to solve these challenges.

In chapter 2 we reviewed the mechanics of swimming of larval fish. We examined the
functional demands on the locomotory system of fish larvae: immediately after hatching,
fish need to escape predators, search and hunt for food, and migrate and disperse. These
demands need to be fulfilled by the larvae while undergoing large changes in their bod-
ies, both internal and external. Furthermore, the swimming speed and size of many larvae
causes them to be in the intermediate flow regime, where the nature of the flow changes
considerablywith changes in size or speed. In this chapter, we integrated previous literature
to gain insight into how these functional demands on the locomotory system are met with
the advantages and limitations of their developing bodies and the changing hydrodynamic
regime.

In chapter 3, we analysed near-periodic swimming of zebrafish larvae with two-
dimensional inverse dynamics from motion that was manually tracked from high-speed
video images. We used these data to show how the intermediate flow regime affects the
swimming dynamics of fish larvae. We used the Reynolds number, which indicates the re-
lative importance of viscous forces to inertial forces, to characterise the flow regime that
the larvae swim in. Furthermore, we applied the Strouhal number, a measure of the ratio
of the approximate lateral tail speed to the forward swimming speed, to express changes
in swimming kinematics. We found that the Strouhal number depends inversely on the
Reynolds number. Fish swimming at low Reynolds numbers tend to use relatively high
Strouhal numbers, indicating that their tail-beat amplitude and frequency are high. Even
the larvae swimming at the highest Reynolds numbers still use relatively high Strouhal
numbers (around 0.72) compared to adult fish (typically 0.2–0.3). Swimming at inter-
mediate Reynolds numbers is associated with high drag, requiring the larvae to use high
tail-beat amplitudes and frequencies (and therefore Strouhal number) toproduce sufficient
thrust. This mode of swimming requires relatively high-amplitude yaw torques, resulting
in large angular amplitudes and an expected high energetic cost of transport: the small size
of the larvae is a burden to their swimming.

Most of the previous research on fish swimming, including our chapter 3, has been
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done two-dimensionally. However, fish can perform complex, three-dimensional motions
to escape predators, search or hunt for food, or manoeuvre through the environment. To
expand our analyses to the third dimension, we developed a method to reconstruct the 3D
motion of fish from multi-camera high-speed video, described in chapter 4. With an op-
timisation algorithmwe find the 3Dposition, orientation, and body curvature that best fits
thehigh-speed video frames. Wedemonstrated that themethod allowsus to reconstruct the
swimming kinematics with high accuracy, while requiring minimal manual work. In addi-
tion, we developed a novel method to calculate resultant hydrodynamic forces and torques
from the reconstructed motion. The described method is a valuable tool for analysing the
biomechanics of swimming, providing data for future analyses of fish swimming.

In chapter 5, we apply this automated tracking method to analyse fast starts of zebra-
fish larvae five days after fertilisation. To be able to escape predators, the main functional
demands on a fast start are producing sufficient speed within a narrow time frame and be-
ing able to generate a wide range of escape directions. To investigate how these demands
aremet, we used a five-camera high-speed video of fast-starting zebrafish larvaewith unpre-
cedented spatiotemporal resolution. From these videos, we reconstructed the 3D motion
of the larvae and the resultant hydrodynamic forces and torques. Due to their undulatory
swimming style, the larvae first need to bend into a C-shape before being able to produce a
propulsive tail beat. For this reason, the first stage of the start is often considered ‘prepar-
atory’. Based on the reconstructed forces and torques, we show that the first stage of the
start, in addition to its preparatory role, also serves to provide most of the reorientation of
the start. After this stage, the larvae unfold their bodies, moving their tails at high speeds
and thus producing large propulsive forces. The turn angle produced during a start mostly
depends on the amount of body curvature in the first stage, while the escape speed mainly
depends on the duration of the start. This suggests that larvae are able to independently
adjust the direction and speed of their escape.

Fish larvae are able to produce these escape responses and the subsequent swimming
bout immediately after hatching, despite their bodies and brains still undergoing develop-
ment. To understand how this is possible, we use an advanced inverse-dynamics approach,
with computational fluid dynamics and a large-amplitude beam model, to reconstruct in-
ternal mechanics from themotion of the fish in chapter 6. We compute the internal bend-
ing moments from more than 100 3D-recordings of swimming over a range of develop-
mental stages. We show that larvae use similar bending moment patterns across develop-
ment, speeds and accelerations. By varying the amplitude and duration of this pattern, the
larvae can adjust their swimming speed and/or acceleration. This similarity suggests that
their muscle activation patterns are also similar, which would help to explain how just-
hatched larvae with limited neural capacity can produce effective swimmingmotion across
a range of speeds and accelerations.

In this thesis, we demonstrated that larval fish swim in a challenging hydrodynamic
regime. Despite the relatively high drag, they can produce effective swimming motions to
help them survive to adulthood. We developed novel methods to quantify this motion
in 3D, and from it reconstructed the external and internal mechanics. With these inverse-
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dynamics approaches, we show that fish larvae can likely adjust their swimming in a relat-
ively simple way, for both fast starts and continuous swimming. Thus, complex physics do
not obstruct developing larvae from swimming effectively.
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Samenvatting
Demeeste van de 34.000 soorten vis zwemmen door hun lichaam te laten golven. Deze li-
chaamsgolven ontstaan door interactie tussen het lichaamvande vis en hetwater. Ondanks
de complexe natuurkunde achter deze interacties kunnen vislarven onmiddellijk zwemmen
nadat ze uit het ei gekomen zijn, terwijl hun zenuwstelsel en brein nog in ontwikkeling zijn.
Het is nogniet volledig bekendhoe ditmogelijk is; het is doel vandeze thesis is ombij te dra-
gen aan het begrip van deze kwestie. Dit hebben we gedaan door de biomechanica van het
zwemmen van zeer jonge zebravislarven te onderzoeken. Met vernieuwende experimentele
en rekenkundige technieken hebben we inzicht verkregen in de dynamica van het zwem-
men van de larven, gereconstrueerd uit beelden van hogesnelheidscamera’s. Deze analyses
laten zien wat voor problemen vislarven ondervinden tijdens het zwemmen, en hoe zij zijn
geëvolueerd om deze problemen op te lossen.

In hoofdstuk 2 geven we een overzicht van de literatuur over de mechanica van het
zwemmen van larvale vissen. We bekijken daarvoor de functionele eisen die gesteld wor-
den aan het voortbewegingsstelsel van de vislarven: onmiddelijk nadat ze uit het ei komen
moeten ze ontsnappen aan roofdieren, foerageren en zich verspreiden. Dit stelt eisen aan
het zwemsysteem van de larven die vervuld moeten worden terwijl hun lichaam volop in
ontwikkeling is, zowel intern als extern. Het zwemmen wordt verder bemoeilijkt door het
vloeistofmechanische regime waarin zij zich bevinden, waarin de vloeistofkrachten sterk
variëren met veranderingen in lichaamsgrootte en zwemsnelheid. In dit hoofdstuk inte-
greren we de kennis uit eerdere literatuur om inzicht te verwerven in hoe de functionele
eisen op het voortbewegingssysteem van de larven ingevuld worden met de voor- en nade-
len van hun ontwikkelende lichamen en de veranderende vloeistofkrachten.

In hoofdstuk 3 hebben we gekeken naar het bijna-periodiek zwemmen van zebravis-
larven door de dynamica te reconstrueren uit zwembewegingen die handmatig zijn gedi-
gitaliseerd uit hogesnelheidscamerabeelden. Met deze data laten we zien wat voor effec-
ten het ‘intermediaire’ vloeistofmechanische regime heeft op de zwemdynamica van de lar-
ven. Hiervoor gebruiken het Reynolds-getal, dat de verhouding tussen de traagheids- en
wrijvingskrachten in het water aangeeft. Ook gebruiken we het Strouhal-getal, een indi-
catie van de verhouding van de (geschatte) staartsnelheid en de voorwaartse snelheid. Uit
onze data blijkt dat het Strouhal-getal omgekeerd afhangt van het Reynolds-getal: larven
die met een laag Reynolds-getal zwemmen hebben doorgaans een relatief hoog Strouhal-
getal (ongeveer 0.72) ten opzichte van volwassen vissen (meestal 0.2–0.3). Zwemmen op
lage Reynolds-getallen gaat gepaard met hoge weerstanden, waardoor de larven alleen vol-
doende voortstuwing kunnen produceren door grote amplitudes en frequenties van de
staartslag te gebruiken. Dit type zwembeweging veroorzaakt grote draaimomenten, resul-
terend in aanzienlijke hoekverdraaiingen en een hoog energieverbruik: het kleine formaat
van de larven staat ze in de weg om efficiënt te zwemmen.
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Hetmerendeel van eerder onderzoek aan viszwemmen is gedaanonder de aannamevan
tweedimensionaliteit, inclusief onshoofdstuk 3. In veel gevallen voeren vissen echter com-
plexe, driedimensionale bewegingen uit om bijvoorbeeld te ontsnappen aan een roofdier,
voedsel te zoeken of te vangen of door hun omgeving te manoeuvreren. in hoofdstuk 4
beschrijven we een methode om driedimensionale zwembewegingen te reconstrueren uit
beelden van meerdere gesynchroniseerde hogesnelheidscameras. Door middel van een op-
timalisatie-algoritme vinden we de combinatie van driedimensionale positie, oriëntatie en
lichaamsvorm die het best overeenkomtmet de camerabeelden. We laten zien dat deze me-
thodemetminimaal handwerk de zwembeweging accuraat uit de videobeelden kan volgen.
Daarnaast hebben we een methode ontwikkeld om uit deze reconstructies de netto vloei-
stofmechanische krachten en momenten te berekenen. Deze methode kan van zeer nuttig
zijn voor toekomstig onderzoek naar de biomechanica van zwemmen.

Wepassen de ontwikkelde reconstructiemethode toe inhoofdstuk 5 op ontsnappings-
reacties van zebravislarven vijf dagen na bevruchting. Om effectief te ontsnappen aan be-
dreigingen moet hun startbeweging voldoen aan twee primaire eisen: er moet voldoende
snelheid opgebouwd worden in korte tijd, en de larven moeten over een breed bereik aan
richtingen kunnen ontsnappen. Om te onderzoeken hoe de larven aan deze eisen voldoen
hebben we de larven gefilmd met een geavanceerde vijfcamera-opstelling met zeer hoge re-
solutie in ruimte en tijd. Uit deze beelden reconstrueren we de driedimensionale zwem-
bewegingen en de resultante hydrodynamische krachten en momenten. De larven buigen
zich eerst in eenC-vorm enproduceren daarna een voortstuwende staartslag. De eerste bui-
gingsfase van de startbeweging wordt vaak ‘voorbereidend’ genoemd. Op basis van de be-
rekende krachten enmomenten laten we zien dat de meeste heroriëntatie van de vis plaats-
vindt in de eerste fase, naast de voorbereidende rol. Na deze fase ontvouwen de larven hun
lichaam, waarbij hun staart met hoge snelheid door het water beweegt en daardoor grote
voortstuwende krachten produceert. De draaihoek gedurende de start hangt sterk samen
met de hoeveelheid kromming van het lichaam; de ontsnappingssnelheid hangt vooral sa-
menmet de duur vandemanoeuvre. Ditwijst eropdat de larvenhunontsnappingsrichting
en -snelheid onafhankelijk van elkaar kunnen bepalen.

Vislarven kunnen deze starts en de daaropvolgende zwembewegingen onmiddellijk
maken nadat ze uit het ei gekomen zijn, ondanks het feit dat hun lichaam en zenuwstel-
sel nog niet volledig ontwikkeld zijn. Om te beantwoorden hoe dit mogelijk hebben we in
hoofdstuk 6 een nieuwemethode ontwikkeld omde netto interne krachten enmomenten
te berekenen uit de gereconstrueerde zwembeweging, met behulp van computersimulaties
van de stroming en een vervormingsmodel voor het lichaam. We berekenen de interne
krachten enmomenten voor meer dan 100 driedimensionale zwembewegingen gedurende
de eerste dagen van ontwikkeling. Hieruit blijkt dat vislarven vergelijkbare patronen van
het interne moment vertonen voor verschillende ontwikkelingsstadia, en zwemsnelheden
en -acceleraties. Ze variëren slechts de duur en amplitude van deze patronen om de zwem-
snelheid of -acceleratie te bepalen. De vergelijkbaarheid van de momentpatronen wijst
erop dat ook hun spieractivatiepatronen op elkaar lijken. Dit zou helpen verklaren hoe
net-uitgekomen larvenmet een beperkte hersencapaciteit toch effectief kunnen zwemmen,
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ondanks de complexe natuurkunde achter hun zwembewegingen.
In deze thesis hebben we laten zien dat larvale vissen in een problematisch vloeistof-

mechanisch regime zwemmen. Ondanks de relatief hoge weerstand kunnen de larven ef-
fectieve zwembewegingen maken die ze helpen om het volwassen stadium te bereiken. We
hebben nieuwemethodes ontwikkeld om de driedimensionale zwembewegingen te recon-
strueren, en deze te gebruiken om externe en interne krachten en momenten te bereken.
Uit data verzameld met deze nieuwe methodes blijkt dat vislarven waarschijnlijk op een
relatief eenvoudige manier hun zwembewegingen kunnen aanpassen, voor zowel starts als
continu zwemmen: de complexe natuurkunde staat vislarven niet in de weg om effectief te
zwemmen.
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